
INFINITESIMAL INVARIANTS IN A FUNCTION ALGEBRA

RUDOLF TANGE

Summary. Let G be a reductive connected linear algebraic group over an
algebraically closed field of positive characteristic and let g be its Lie algebra.
First we extend a well-known result about the Picard group of a semisimple
group to reductive groups. Then we prove that, if the derived group is
simply connected and g satisfies a mild condition, the algebra K[G]g of
regular functions on G that are invariant under the action of g derived from
the conjugation action, is a unique factorisation domain.

Introduction

The study of noncommutative algebras that are finite over their centres has
raised the interest in those centres and commutative algebras that look like
those centres. Important examples are the universal enveloping algebra of a
reductive Lie algebra g in positive characteristic and quantised enveloping al-
gebras at a root of unity. Their centres are not smooth, but have several nice
properties. For example, they are normal domains and admit a ”Friedlander-
Parshall factorisation” into two well understood algebras (see e.g. [3] Thm 3.5
(5) and Thm. 4.1 (3)). Analogues in a commutative setting for these centres are
the invariant algebras K[g]g and K[G]g (see below for precise definitions). In
these cases the Friedlander-Parshall factorisation was obtained by Friedlander
and Parshall ([7]) and Donkin ([5], one can replace G1 by g).

In this note we will consider the question whether such a commutative algebra
is a unique factorisation domain (UFD). For the algebra K[G]g this question was
posed by S. Donkin. In the noncommutative setting of the universal enveloping
algebra this question was answered in [12] for type An. This question turned out
to be rather trivial for the algebra K[g]g (see [12] 3.3, 3.4). For completeness we
state some general results in the final section. To answer this question for K[G]g

we need to know when K[G] is a UFD. This is well-known if G is semi-simple
simply connected. In Section 1 we extend this result to reductive groups. Our
main result is that K[G]g is a UFD if the derived group is simply connected and
g satisfies a mild condition. This is proved in Section 2. Another question one
could ask is whether such an algebra has a rational (i.e. purely transcendental
over the ground field) field of fractions. Even in the commutative setting this
question is unsolved outside type An. In the final section we state an affirmative
answer to this question for the algebra K[SLn]sln .

Throughout K is an algebraically closed field of characteristic p > 0, G is a
connected reductive algebraic group over K and g = Lie(G) is its Lie algebra.
The conjugation action of G on itself induces an action of G on K[G], the
algebra of regular functions on G. We will refer to this action and its derived
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g-action as conjugation actions. We also use this terminology for the induced
actions of subgroups of G resp. subalgebras of g on localisations of K[G].
The conjugation action of G on K[G] is by algebra automorphisms, so the
conjugation action of g on K[G] is by derivations. In the notation of [1] I.3.7
it is given by x 7→ ∗x − x∗ : g → DerK(K[G]): the left invariant vector field
determined by x minus the right invariant vector field determined by x.

If L is a Lie algebra over K and V is an L-module, then v ∈ V is called an
L-invariant if x · v = 0 for all x ∈ L and an L-semi-invariant if the subspace
Kv is L-stable. If v ∈ V is a nonzero L-semi-invariant, then there is a unique
linear function λ : L → K such that x · v = λ(x)v for all x ∈ L and for this λ
we have λ([L,L]) = 0.

1. The Picard group of G

Fix a Borel subgroup B of G and a maximal torus T of G that is contained
in B. We denote the character group of T by X(T ). The usual pairing of
characters and cocharacters of T is denoted by 〈 , 〉. Let B− be the opposite
Borel subgroup relative to T and let U and U− be the unipotent radicals of B
and B−. By a ”root” we will mean a root (i.e. nonzero weight) of T in g. The
root subgroup associated to a root α is denoted by Uα. We denote K as an
additive group by Ga. If θα : Ga

∼→ Uα is an isomorphism of algebraic groups,
then

tθα(a)t−1 = θα(α(t)a) for all t ∈ T and a ∈ K. (1)
A root α is called positive (α > 0) if it is a root of T in Lie(B). Let α1, . . . , αs

be the simple roots and let W = NG(T )/T be the Weyl group of G relative to
T . To every root α there is associated an element sα ∈ W that is a reflection
on R⊗ZX(T ). For w ∈ W define U−

w := wU−w−1 ∩U−. Clearly wU−
w−1w

−1 =
U−

w . In the terminology of [1] 14.3 (see also 14.12) we have that the unipotent
group U−

w is directly spanned by the U−α with α > 0 and w−1(α) > 0 in
any order. By a version of the Bruhat decomposition ([1] 14.12) we have that
G =

⋃
w∈W B−wB disjoint and B−wB = U−

w wB for every w ∈ W . If ẇ is a
representative in NG(T ) of w, then the map

(u−, t, u) 7→ u−ẇtu : U−
w × T × U → B−wB (2)

is an isomorphism of varieties. This implies that the codimension of BwB in G
is l(w), the length of w with respect to our choice of simple roots. Furthermore
we have that

ẇUαẇ−1 = Uw(α). (3)

Denote the ”big cell” B−B by Ω and denote the closure of B−sαiB by Γi. As
is well known, Ω is open and the Γi are the irreducible components of G \ Ω.

As G is a smooth variety, we can and will identify Pic(G) with the divisor
class group Cl(G) of G. For a nonzero rational function f ∈ K(G) we denote,
as usual, the divisor (of zeros and poles) of f on G by (f). For χ ∈ X(T ) we
define the function χ ∈ K[Ω] ⊆ K(G) by

χ(u−tu) = χ(t)

for u− ∈ U−, t ∈ T and u ∈ U .
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The next theorem corrects Theorems 2 and 6 in [11] and extends [6] Cor. 4.5
(and [6] Cor 4.6 and [8] Prop. 3.5) to reductive groups. See also [10] Cor 3 to
Prop. 4 (there G is assumed to be semi-simple simply connected).

It is not clear how the method of the proof of Theorem 2 in [11] can be
extended to reductive groups. The point is that to associate to certain Weil
divisors on G a projective representation of G, one needs to know that the
invertible regular functions on G are the nonzero constant functions. For re-
ductive groups that are not semi-simple this is no longer true. We will use
a method which is more elementary and much shorter. Besides the proof of
(iii), of which the main assertion (iv) is an easy consequence, all arguments are
standard (see e.g. [4] and [11]) and are only given for completeness.

Recall that T ∩ DG is a maximal torus of the derived group DG and that
its character group is naturally identified with a sublattice of the weight lattice
of the root system of DG relative to T ∩DG (which is the same as that of G
relative to T ).

Theorem 1 (see also [6], [8], [11]). Let L be the group of divisors that has the
Γi as a basis, let P be the weight lattice of the root system of G relative to T
and let $i be the ith fundamental weight. Then the following holds:

(i) L consists of the divisors that are fixed by B under right multiplication
and by B− under left multiplication.

(ii) For f ∈ K(G) nonzero we have (f) ∈ L if and only if f is regular and
nowhere zero on Ω if and only if f is a scalar multiple of χ for some
χ ∈ X(T ).

(iii) For χ ∈ X(T ) we have (χ) =
∑s

i=1〈χ, α∨i 〉Γi.
(iv) The homomorphism P → Pic(G) that maps $i to the divisor class of Γi

is surjective and induces an isomorphism P/X(T ∩DG) ∼→ Pic(G).

Proof. (i). Let D be a divisor that is fixed by B under right multiplication and
by B− under left multiplication. Then the same holds for the support Supp(D)
of D. If Supp(D) would intersect Ω, then it would contain all of Ω which is
impossible. Therefore Supp(D) ⊆ G \ Ω which means that D ∈ L.
(ii). We have (f) ∈ L if and only if Supp((f)) does not intersect Ω if and only
if f is regular and nowhere zero on Ω if and only if f is an invertible element
of K[Ω]. Now K[Ω] ∼= K[T ]⊗K K[U− ×U ] which is a polynomial algebra over
K[T ]. The invertible elements of this algebra are the invertible elements of
K[T ] which are, as is well-known and easy to see, the scalar multiples of the
characters of T . The assertion now follows from the fact that the embedding
K[T ] ↪→ K[Ω] corresponding to the embedding K[T ] ↪→ K[T ] ⊗K K[U− × U ]
is given on X(T ) by χ 7→ χ.
(iii). Since χ is regular and nowhere zero on Ω we have that (χ) =

∑s
i=1 niΓi

for certain integers ni. To determine the ni we follow the proof of Prop. II.2.6
in [9]. Choose isomorphisms θα : Ga

∼→ Uα as in [9] II.1.1-1.3 (there denoted by
xα). See also [14] §3, Lemma 19 and Cor. 6 to Thm. 4′. For a ∈ K× define, as
in [9] and [14], nα(a) := θα(a)θ−α(−a−1)θα(a). Then nα(a) = α∨(a)nα(1) is a
representative of sα in NG(T ) and

nα(1) = α∨(a−1)θα(a)θ−α(−a−1)θα(a) for a ∈ K× and α a root. (4)
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Let i ∈ {1, . . . , s}. Since Γi intersects the open set Ωi := sαiΩ = U−
sαi

sαiU−αiB,
it suffices to show that the restriction (χ)|Ωi of (χ) to Ωi equals 〈χ, α∨i 〉Γi ∩Ωi.
Take n−αi(1) as a representative in NG(T ) of sαi . From (3) it follows that
conjugation with n−αi(1) induces an automorphism of U−

sαi
. From this and (2)

with ẇ = 1 we deduce that

(u−, a, t, u) 7→ u−n−αi(1)θ−αi(a)tu : U−
sαi
×Ga × T × U → Ωi (5)

is an isomorphism of varieties. Let u− ∈ U−
sαi

, t ∈ T , u ∈ U and a ∈ K×.
Replacing α and a in (4) by −αi and −a we obtain

n−αi(1)θ−αi(a) = α∨i (−a)θ−αi(−a)θαi(a
−1) = θ−αi(b)α

∨
i (−a)θαi(a

−1)

for some b ∈ K. Here we used that (−αi)∨(c) = α∨i (c−1) for c ∈ K×. So

χ(u−n−αi(1)θ−αi(a)tu) = χ(u−θ−αi(b)α
∨
i (−a)tθαi(αi(t)−1a−1)u) =

χ(α∨i (−a)t) = (−a)〈χ,α∨i 〉χ(t)

Thus (5) gives us an isomorphism of Ωi with an affine space with some coor-
dinate hyperplanes removed and χ, considered as a rational function on Ωi, is
equal to an invertible regular function on Ωi times the 〈χ, α∨i 〉th power of minus
the coordinate functional that defines Γi ∩ Ωi. So (χ)|Ωi = 〈χ, α∨i 〉Γi ∩ Ωi.
(iv). Denote the homomorphism by F . Since Ω is affine and K[Ω] is isomorphic
to a localised polynomial algebra, we have Pic(Ω) = Cl(Ω) = 0. So for every
divisor D on G there exists a nonzero f ∈ K(G) such that (f)|Ω = D|Ω, that
is, such that D − (f) ∈ L. So every divisor D on G is linearly equivalent to a
divisor in L. This means that F is surjective. By (ii) and (iii) the kernel of F
is the image of χ 7→ ∑s

i=1〈χ, α∨i 〉$i : X(T ) → P , which is X(T ∩ DG) in its
usual identification with a sublattice of P . ¤

Corollary. K[G] is a unique factorisation domain if and only if Pic(G) = 0 if
and only if the derived group of G is simply connected.

Remarks 1. 1. The fact that nα(a) is a representative of sα in NG(T ) implies
that sαT (Uα \ {e}) ⊆ TUαU−α. From this it follows that sαiΓj = Γj for i 6= j
and therefore that (sαiΩ) ∩ Γj = ∅ if i 6= j, as suggested by the above proof.
2. As in [4] Prop. 4, it follows now that for any divisor D and any g ∈ G the
divisors D, gD and Dg are linearly equivalent: It is clear that for any divisor
D and any g ∈ B we have Dg ∼ D, since any divisor is linearly equivalent to
one in L and the divisors in L are fixed by B under right multiplication. Now
let g ∈ G. Then there exists an h ∈ G such that hgh−1 ∈ B. So we have that
Dh−1 ∼ Dh−1(hgh−1) = Dgh−1 and therefore that D ∼ Dg. The proof that
D and gD are linearly equivalent is completely analogous.
3. The mistake in Theorem 2 in [11] is caused by the fact that the varieties ∆i in
[11] are not the same as those in [4]. In [11] ∆i is the closure of B−sαiB/B. In
[4] ∆i is the closure of Bsαiw0B/B = Bw0sα∗i B/B = w0B

−sα∗i B/B. Making
the corresponding replacements one obtains a correct proof of [11, Theorem 2].

That Theorem 6 in [11] is incorrect can easily be seen by applying it to GLn.
This gives Pic(GLn) ∼= Zn if p - n, which is clearly not true. The isogeny
π : G̃Ln → GLn is inseparable if p | n and then it does not induce an
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isomorphism G̃Ln/Ker(π) ∼= GLn. Furthermore we have that Ker(π) * DG̃Ln

if n is not a power of p.
4. It might be possible to prove Theorem 1(iv) by examining the exact sequence
of [6] Prop. 4.2 (or [8] Prop. 2.6) and taking G′ the cover of G with Pic(G′) = 0
that is constructed in these papers.

2. Infinitesimal invariants in K[G]

To proof the main result we have to impose a mild condition on g. We
will first investigate this condition. Recall that the rank of G is the dimen-
sion of a maximal torus of G. For any x ∈ g we have dim(CG(x)) ≥ rank(G).
An element x of g is called regular if its G-orbit under the adjoint action has
dimension dim(G) − rank(G) or, equivalently, if its centraliser CG(x) has di-
mension rank(G). It is well known that the set of regular elements is open and
nonempty and that the set of regular semi-simple elements is open. Since the
set of semi-simple elements is constructible, it follows that g has regular semi-
simple elements if and only if the semi-simple elements are dense in g. Let T be
a maximal torus of G. It is easy to see that x ∈ Lie(T ) is regular if and only if
the differentials of the roots of G relative to T are nonzero at x. From this and
the fact that every semi-simple element of g is tangent to a (maximal) torus
([1] 11.8), it follows that g has no regular semi-simple elements if and only if for
some (and therefore every) maximal torus the differential of some root relative
to T is zero.

The next lemma shows that the existence of regular semi-simple elements in
g is a mild assumption. Note that Sp2

∼= SL2.

Lemma 1. If g has no regular semi-simple elements, then p = 2 and the derived
group DG has a quasi-simple factor that is isomorphic to Sp2n for some n ≥ 1.
Conversely, if p = 2 and G contains some Sp2n, n ≥ 1, as a direct algebraic
group factor, then g has no regular semi-simple elements.

Proof. Let T be a maximal torus of G and let Φ be the root system of G relative
to T . By assumption some α ∈ Φ has differential zero. Let H be the quasi-
simple factor of DG whose root system Ψ is the irreducible component of Φ
containing α. Then α = pχ for some χ ∈ X(T ∩H), so 2 = 〈pχ, α∨〉 = p〈χ, α∨〉
and therefore p = 2. Now choose a basis (α1, . . . , αr) of Ψ such that α1 = α.
Then we have 〈α1, α

∨
j 〉 = 2〈χ, α∨j 〉 for all j ∈ {1, . . . , r}. So some row of the

Cartan matrix (with our basis the first) has even entries. Inspecting the tables
in [2] we see that Ψ has to be of type A1 or of type Cn, n ≥ 2. If H would be
of adjoint type then the above basis of Ψ would also be a basis of the character
group of T ∩H and the differential of α would be nonzero. Since the connection
index is 2 this means that H is simply connected and therefore isomorphic to
Sp2n for some n ≥ 1.

If H ∼= Sp2n for some n ≥ 1, then twice the first fundamental weight is the
highest root. So the second statement follows from the fact that an equality
α = 2χ on T ∩H, for some direct algebraic group factor H of G and some root
α of H, is also valid on T if we extend χ to T in the obvious way. ¤
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The condition in the first statement of the preceding lemma is not sufficient
for the non-existence of semi-simple elements in g, since gl2 (in fact any gln)
always has regular semi-simple elements. If G = SL2 and p = 2, then the semi-
simple elements of g are the multiples of the identity. If G = Sp2n (n ≥ 2) and
p = 2, then the derived algebra [g, g] is equal to the sum of the Lie algebra of
a maximal torus and the root spaces corresponding to the short roots (see [13]
sect. 2 at the end). Since [g, g] is stable under the adjoint action we then have
that the set of semi-simple elements of g is contained in the proper subspace
[g, g] of g.

Note that the proposition below implies that every g-semi-invariant of g in
K[G] is a g-invariant.

Proposition 1. Assume that g has regular semi-simple elements. Let f ∈ K[G]
be a regular function. If the ideal K[G]f is stable under the conjugation action
of g on K[G], then f is g-invariant.

Proof. Note that the assumption that the ideal K[G]f is g-stable is equivalent
to the assumption that f divides x · f for all x ∈ g. So there exists a linear
function F : g → K[G] such that

x · f = F (x)f for all x ∈ g (6)

Clearly we may assume that f 6= 0. We will show that F = 0.
Let T be a maximal torus of G on which f does not vanish and let Φ be the

root system of G relative to T . Let U,U−, Uα, Ω and the choice of the positive
roots be as in Section 1. Note that Ω is stable under the conjugation action
of T . For α ∈ Φ let θα : Ga

∼→ Uα be an isomorphism of algebraic groups.
Choose an ordering β1, . . . , βN of the positive roots. Then the multiplication
defines isomorphisms of varieties

∏N
i=1 Uβi

∼→ U and
∏N

i=1 U−βi

∼→ U−. Using
the above isomorphisms and the isomorphism (2) for ẇ = 1, we obtain for each
positive (resp. negative) root α a coordinate function ξα ∈ K[Ω]: first project to
U (resp. U−), then project to Uα and then apply θ−1

α . Composing the elements
of a basis of the character group of T with the projection Ω → T we obtain
r = rank(G) further coordinate functions ζ1, . . . , ζr ∈ K[Ω]. The functions
ξα, α ∈ Φ, and ζi, i ∈ {1, . . . , r}, are together algebraically independent and
K[Ω] = A[(ξα)α∈Φ], where A = K[(ζi)i][(ζ−1

i )i], a localised polynomial algebra.
As a polynomial algebra over A, K[Ω] has a grading. Using (1) it is easy to see

that the grading of K[Ω] is stable under the conjugation action of T and there-
fore also under the conjugation action of Lie(T ). Now let h ∈ Lie(T ). Taking
degrees on both sides of (6) we obtain that either F (h) = 0 or deg(F (h)) = 0.
So F (h) ∈ A, which means that F (h)(u−tu) = F (h)(t) for all u− ∈ U−, t ∈
T, u ∈ U . Now (h · f)|T = h · (f |T ) = 0, since the conjugation actions of T and
Lie(T ) on K[T ] are trivial. So (6) gives F (h)|T = 0, since f |T 6= 0. Therefore
F (h) = 0.

Put S =
⋃{Lie(T ) | f |T 6= 0}, the union of the Lie algebras of the maximal

tori of G on which f does not vanish. We have shown that F is zero on S. So
it suffices to show that S is dense in g in the Zariski topology. Denote the set
of zeros of f in G by Z(f). Fix a maximal torus T of G. Let µ : G × T → G
be the morphism that maps (g, t) to gtg−1. Put O = {g ∈ G|gTg−1 * Z(f)}.
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This set is nonempty, since Z(f) is a proper closed subset of G and the union
of the conjugates of T is the set of semi-simple elements of G which contains an
open dense subset of G (see [1] 11.10). Furthermore O = prG(µ−1(G \ Z(f)))
is an open set, because the projection prG : G × T → G is open. Let ν :
G × Lie(T ) → g be the morphism that maps (g, x) 7→ Ad(g)(x). Its image is
the set of semi-simple elements of g which contains an open dense subset of g.
But then S = ν(O × Lie(T )) also contains an open dense subset of g, since it
is a constructible set and ν is continuous.

¤

Theorem 2. Assume that the derived group of G is simply connected and that g
has regular semi-simple elements. Then the invariant algebra K[G]g is a unique
factorisation domain. Its irreducible elements are the irreducible elements of
K[G] that are invariant under g and the p-th powers of the irreducible elements
of K[G] that are not invariant under g.

Proof. By Theorem 1 K[G] is a UFD. Let f be a nonzero element in K[G]g

and suppose f = f1f2 where f1, f2 ∈ K[G] are coprime and not a unit. Then
we have for all x ∈ g that (x · f1)f2 = −f1(x · f2). Since K[G] is a UFD and f1

and f2 are coprime this means that fi divides x · fi for i = 1, 2 and all x ∈ g.
By Proposition 1 it follows that f1, f2 ∈ K[G]g.

Now suppose f = gn for some n ∈ N. Write n = sp + r with s, r ∈ Z+ and
0 ≤ r < p. Then 0 = x · f = ngn−1(x · g). For r 6= 0 this yields g ∈ K[G]g,
while for r = 0 we have f = (gp)s and obviously gp ∈ K[G]g.

This shows that any irreducible element in K[G]g is either an irreducible
element of K[G] invariant under g or a p-th power of an irreducible element
in K[G] \K[G]g. Now the unique factorisation property of K[G]g follows from
that of K[G]. ¤

Remark 2. Note that by Remark 1.3 the units of K[G]g are the same as those
of K[G], since characters of K[G] are obviously invariant under the conjugation
representation of G and g.

3. Complements

The following proposition is an obvious generalisation of Proposition 1 in [12].
Note that if A0 = K, the second assumption says that every L-semi-invariant
is an L-invariant.

Proposition 2. Let L be a Lie algebra over K and let A be a commutative K-
algebra on which L acts by derivations. Assume that A is a unique factorisation
domain and that it has an L-stable K-algebra filtration A0 ⊆ A1 ⊆ A2 · · · whose
associated graded is an integral domain. Assume furthermore that every a ∈ A
such that A0a is L-stable is an L-invariant. Then the following holds:

(i) If, for a ∈ A, the ideal Aa is L-stable, then a is an L-invariant.
(ii) The invariant algebra AL is a unique factorisation domain and the irre-

ducible elements of AL are the irreducible elements of A that are invariant
under L and the p-th powers of the irreducible elements of A that are not
invariant under L.
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Proof. (i). We may assume that a 6= 0. We have a divides x ·a for all x ∈ L (*).
Since the associated graded is an integral domain, the (filtration) degree of a
product is the sum of the degrees of the factors. Taking degrees in (*) we obtain
that L · a ⊆ A0a which means, by assumption, that a is an L-invariant.
(ii). This is precisely as in the proof of Theorem 2. ¤

Lemma 2. Every g-semi-invariant in K[G] is a g-invariant.

Proof. We first make the following observation: Let V be a restricted g-module
and let v ∈ V be a g-semi-invariant. If there exists a maximal torus T of G
such that Lie(T ) · v = 0, then v is a g-invariant. This follows from the fact
that an element of a root space of g relative to T is nilpotent and therefore
has to act nilpotently on any finite dimensional sub g-module of V (a nilpotent
endomorphism of Kv is zero).

Now let f ∈ K[G] be a nonzero semi-invariant for g and let λ be the linear
functional on g such that x · f = λ(x)f for all x ∈ g. As we saw at the end
of the proof of Proposition 1, there exists a maximal torus T of G such that
f |T 6= 0. Again as in the proof of Proposition 1, we use the fact that the
conjugation action of Lie(T ) on K[T ] is trivial and obtain that λ(x) = 0 for all
x ∈ Lie(T ). ¤

The first statement of the next proposition is a generalisation of [12] Lemma 2.
The condition of the second statement only fails if p = 2 and the the derived
group has a quasi-simple factor which is adjoint and has root system of type
A1 or Bn, n ≥ 2 (see the proof of Lemma 1). The third statement includes one
case not covered by Theorem 2: SL2 in characteristic 2.

Proposition 3. Proposition 2 with A0 = K and L = g applies in the following
three cases:
(1) If g has regular semi-simple elements. For A = K[g] under the adjoint

action.
(2) If the differential of a coroot is never zero. For A = S(g) under the adjoint

action.
(3) If G = SLn and A = K[G].

Proof. (1). As filtration we choose the filtration that comes from the natural
grading of K[g] = S(g∗). The associated graded is obviously isomorphic to
K[g]. It remains to prove that every g-semi-invariant in K[g] is a g-invariant.
We use the observation in the proof of Lemma 2. Let f ∈ K[G] be a nonzero
semi-invariant for g. Let T be a maximal torus of G and let t be its Lie algebra.
As we have seen at the beginning of Section 2, the assumption on g is equivalent
to the assumption that the set of semi-simple elements is dense in g. But this
set is the union of the conjugates of t (see [1] 11.8). So, after replacing T by a
conjugate, we may assume that f |t 6= 0. Using the fact that the adjoint action
of t on K[t] is trivial we deduce, as in the proof of Lemma 2, that t · f = 0.
(2). Here we also use the filtration that comes from the natural grading. It
remains to prove that every g-semi-invariant in S(g) = K[g∗] is a g-invariant.
Again we use the observation in the proof of Lemma 2. Let f ∈ K[G] be a
nonzero semi-invariant for g. Let T be a maximal torus of G and let t be its
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Lie algebra. Put hα = dα∨(1) ∈ t. By assumption the hα are nonzero, so there
exists a λ ∈ h∗ that is nonzero at each hα. We extend λ to a linear functional
on g by requiring it to be zero on the root spaces. Denote the subspace of all
linear functionals on g with this property by t′. Note that T fixes t′ pointwise.
Since [gα, g−α] is spanned by hα and cg(λ) is T -stable, it follows that cg(λ) = t

and that CG(λ)0 = T . By the same arguments as [1] 11.10 we have that the set
Tr(λ, t′) of g ∈ G such that g · λ ∈ t′ consists of finitely many right cosets mod
T . A generalised version of Lemma 14.24 (or Lemma 11.9) in [1] is also valid
if we consider the action of H on an irreducible variety X and replace m by an
irreducible M -stable subvariety of X which has dimension dim(X)−dim(H/M).
This generalised lemma, applied to the G-variety g∗, the subgroup T of G and
the subvariety t′ of g∗, gives us that the union of the conjugates of t′ contains an
open dense subset of g∗. So, after replacing T by a conjugate, we may assume
that f |t′ 6= 0. Now we use the fact that the adjoint action of t on t′ ⊆ g∗ and
K[t′] is trivial and deduce, as in the proof of Lemma 2, that t · f = 0.
(3). If G = SLn, then G inherits a filtration from K[Matn] with associated
graded K[Matn]/(det) which is an integral domain. This filtration is clearly
stable under the conjugation actions of SLn and sln. The fact that every semi-
invariant of sln in K[SLn] is an invariant follows from Lemma 2.

¤
The fact that K[GLn]gln = K[gln]gln [det−1] is a UFD follows immediately

from Theorem 2 or from the fact that this holds for K[gln]gln (see [12] Lemma 2).

Remark 3. Assume we have connected normal subgroups G1, . . . , Gk of G such
that (Gi, Gj) = 1 for i 6= j and such that the multiplication homomorphism∏k

i=1 Gi → G is surjective. Denote the Lie algebra of Gi by gi. For h ∈ G

and i ∈ {1, . . . , k} define the algebra homomorphism evh
i : K[G] → K[Gi] by

evh
i (f)(g) = f(hg) for g ∈ Gi. If h ∈ ∏

j 6=i Gj , then evh
i is equivariant for the

conjugation actions of Gi and gi. Now assume that Proposition 1 is proved
for the Gi. Then we can prove it for G as follows. As in the proof we assume
that f 6= 0. Choose a maximal torus T on which f does not vanish and put
t = Lie(T ). As in the proof we get that t · f = 0. Now let i ∈ {1, . . . , k} and
h ∈ ∏

j 6=i Gj . Then the ideal K[Gi]evh
i (f) is gi-stable, so for x ∈ gi we have that

evh
i (x · f) = x · evh

i (f) = 0. Since this holds for any h ∈ ∏
j 6=i Gj , we must have

that gi · f = 0. The conclusion now follows from the fact that g = t +
∑k

i=1 gi.
In view of Lemma 1 this shows that Proposition 1 and Theorem 2 are also

valid if we replace the condition ”assume that g has regular semi-simple el-
ements” by ”If p = 2, assume that the rootsystem of G has no irreducible
component of type Cn, n ≥ 2”, since in Proposition 3(3) we have proved those
results also for SL2 in characteristic 2. Note that this condition holds if p is good
for G. It also follows that the condition on the existence of regular semi-simple
elements in Proposition 1 and Theorem 2 can be omitted if Proposition 1 can
be proved for Sp2n, n ≥ 2, in characteristic 2. In [16] we will obtain this result
as a consequence of results on the symplectic ideal.

Finally we mention a ”rationality result”. Contrary to the corresponding
statement for K[sln]sln in [12] (Thm 1), there are no assumptions on p.
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Proposition 4. K[SLn]sln has a rational field of fractions.

Proof. The proof is very similar to (but easier than) that of Theorem 3 in
[15]. By the theorem of [5], K[SLn]sln is generated by K[SLn]SLn and K[SLn]p.
Since K[SLn]sln is a finitely generated module over K[SLn]p we have that the
transcendence degree of the field of fractions of K[SLn]sln is the same as that
of K[SLn]p which equals n2 − 1. For i ∈ {1, . . . , n} define si ∈ C[Matn] by
si(A) = tr(∧iA), where ∧iA denotes the i-th exterior power of A and tr denotes
the trace. For f ∈ K[Matn] denote the restriction of f to SLn by f ′. Then
s′1, . . . , s

′
n−1 generate K[SLn]SLn (see e.g. [15] 1.3). Denote the standard coor-

dinate functionals on Matn by ξij , 1 ≤ i, j ≤ n and put ζij = ξp
ij . We consider

the si as polynomials in the ξij . Then K[SLn]sln is generated by the n2 + n− 1
elements s′1, . . . , s

′
n−1, (ζij)ij and we have the n relations

si((ζij)ij) = s′i, i = 1, . . . , n− 1 and det((ζij)ij) = 1.

Now we proceed as in the proof of Theorem 3 in [15]: we observe that these
equations are linear in ζ1n, . . . , ζnn and eliminate those n elements from the
n2 + n − 1 generators. So the field of fractions of K[SLn]sln is generated by
n2 − 1 elements and therefore purely transcendental. ¤

The fact that K[GLn]gln has a rational field of fractions is an immediate
consequence of the fact that this holds for K[gln]gln (see [12] Theorem 1, gln

∼=
gl∗n as GLn-modules).
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