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ABSTRACT 

Objective: Haptoglobin is a haemoglobin-scavenging protein that binds and neutralises free 

haemoglobin and modulates inflammation and endothelial progenitor cell function. A HP gene 

copy number variation (CNV) generates HP1 and HP2 allele, the single nucleotide 

polymorphism rs2000999 influences their levels. HP1 allele is hypothesized to improve 

outcome after intracerebral haemorrhage (ICH). We investigated the associations of the HP 

CNV genotype and rs2000999 with haematoma volume, perihaematomal oedema (PHO) 

volume, and functional outcome as well as mortality after ICH. 

Methods: We included patients with neuroimaging-proven ICH, available DNA, and six-month 

follow-up in an observational cohort study (CROMIS-2). We classified patients into three 

groups according to the HP CNV: 1-1, 2-1 or 2-2 and also dichotomized HP into HP1-

containing genotypes (HP1-1 and HP2-1) and HP2-2 to evaluate the HP1 allele. We measured 

ICH and PHO volume on CT; PHO was measured by oedema extension distance. Functional 

outcome was assessed by modified Rankin score (unfavourable outcome defined as mRS 3-6). 

Results: We included 731 patients (mean age 73.4, 43.5% female). Distribution of HP CNV 

genotype was: HP1-1 n=132 (18.1%); HP2-1 n=342 (46.8%); and HP2-2 n=257 (35.2%). In 

the multivariable model mortality comparisons between HP groups, HP2-2 as reference, were 

as follows: OR HP1-1 0.73, 95%CI 0.34-1.56 (p-value=0.41) and OR HP2-1 0.5, 95%CI 0.28-

0.89 (p-value=0.02) (overall p-value=0.06). We found no evidence of association of HP CNV 

or rs200999 with functional outcome, ICH volume or PHO volume.   

Conclusion: The HP2-1 genotype might be associated with lower 6-month mortality after ICH; 

this finding merits further study.  
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INTRODUCTION 

Spontaneous (non-traumatic) intracerebral haemorrhage (ICH) is the most devastating form of 

stroke with a mortality of about 40% at one month, and 65% at one year1-3. Patients who survive 

frequently remain severely disabled4. Moreover, incidence of ICH is increasing in the elderly 

population5-7, in part due to increasing use of oral anti-coagulation5-7.  

Spontaneous ICH results from bleeding into the brain parenchyma arising from the rupture of 

an arterial vessel, most often (>80%) a small arteriole affected by cerebral small vessel diseases 

(SVD). The commonest sporadic SVD that cause ICH are deep perforator arteriopathy (also 

termed hypertensive arteriopathy or arteriolosclerosis) and cerebral amyloid angiopathy 

(CAA). A minority of ICH (less than 20%) is caused by structural or macrovascular bleeding 

sources such as tumours, arteriovenous malformations, cavernomas or fistulas. Deep perforator 

arteriopathy is associated with hypertension and is a frequent cause of deep ICH; CAA is 

caused by amyloid beta deposition in cortical and leptomeningeal blood vessels and is a key 

cause of lobar ICH. 

Haptoglobin is an acute-phase protein which neutralizes free haemoglobin by binding it, and 

in doing so targets haemoglobin to the CD163 receptor for clearance8-15. Haptoglobin prevents 

the toxic and inflammatory effects of haemoglobin by shielding its iron-containing pocket, and 

preventing its breakdown into haem and iron, which consequently cause cytotoxicity and brain 

oedema8-15. The HP gene has a copy number variant (CNV), which leads to two co-dominant 

alleles: HP1 and HP2. Three different HP CNV genotypes exist: HP1-1, HP2-1 and HP2-2, 

and their respective protein products differ in molecular size and haemoglobin-binding 

capacity15-17. A previous study demonstrated some evidence that patients with the HP2 allele 

have a larger haematoma volume, though the underlying mechanisms remain unknown18. An 

increase in haematoma volume may be accompanied by more perihaematomal oedema 

(PHO)18 19. ICH and PHO volume have been demonstrated to influence functional outcome18 
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19. A previous study reported worse functional outcome for patients with HP2 allele (HP2-1 or 

2-2) compared to HP1-1 patients as well as some evidence for increased mortality for each 

HP2 allele18. The HP CNV might be associated with functional outcome after ICH through 

differences in haemoglobin clearance and protection from the cytotoxic and inflammatory 

effects of haemoglobin breakdown products. However most previous studies investigating 

haptoglobin in ICH are based on investigations in rodents.  

The single nucleotide polymorphism (SNP) rs2000999 accounts for up to 50% of variation in 

circulating haptoglobin levels in the blood independently of the HP CNV20. The combined use 

of the HP CNV and rs2000999 has been suggested as an important genetic tool to discriminate 

between two potential mechanisms underlying differences between HP1 and HP2 alleles: 

haptoglobin expression level and functional differences in haptoglobin protein products21.  

We performed a comprehensible multivariable study investigating the influence of the HP 

CNV and rs2000999 SNP on functional outcome and mortality after ICH. We also aimed to 

assess the influence of the HP CNV and the rs2000999 SNP on ICH volume and OED.  

 

METHODS 

Data collection 

We considered patients, of predominantly Caucasian descent, with spontaneous ICH and 

available blood samples recruited into the Clinical Relevance of Microbleeds in Stroke ICH 

study22. We defined spontaneous ICH as a non-traumatic haemorrhage into the brain 

parenchyma, presumed due to cerebral SVD after the exclusion of patients with an underlying 

structural or macrovascular cause.  

We collected detailed information on demographics, risk factors, medication, clinical 

presentation, and radiological data. A diagnosis of hypertension, hypercholesterolaemia and 

diabetes mellitus was present if reported by the patient, stated on medical records or if either 
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drug treatment or any other form of advice (including lifestyle changes) was given. Smoking 

was defined as current and previous use. All patients had acute brain imaging with CT. Written 

informed consent was obtained from all participants, or a relative or representative. We 

excluded patients <18 years, patients without available or adequate CT scan. Patients with a 

CT scan after 72 hours from symptom onset were excluded from the primary ICH and PHO 

volume analysis.18 23 24. We classified ICH location into lobar, deep (basal ganglia, thalamus), 

cerebellar and brainstem according to a validated rating scale25. Our outcomes were death and 

functional outcome at 6 months (measured by the modified Rankin Scale [mRS] dichotomized 

into favorable [mRS 0-2] or unfavorable [mRS 3-6] categories).  

Haptoglobin genotyping 

To determine the HP CNV we optimised a high-throughput qPCR genotyping assay as 

described previously26. The assay amplified a region in the 5` terminal of the HP gene’s first 

exon as an internal control (HP5`), and the breakpoint of the HP duplication (HP2). The 

HP2/HP5` ratio (theoretically either 0, 1, or 2) was used to determine the genotype as HP1-1, 

HP2-1 or HP2-2 respectively. Samples were run in triplicates; triplicates with a HP2/HP5`ratio 

coefficient of variation >10% were re-assayed. A second method of HP genotyping by PCR27 

was performed on samples with HP2/HP5’ ratio values between 0.46-077, in order to confirm 

the HP CNV genotype. Rs2000999 was genotyped using Kompetitive Allele Specific PCR 

(KASP) assay technology28 (LGC Genomics Limited, Hertfordshire, UK), call rate was 97.3%. 

Measurement of ICH and PHO volume 

We measured ICH and PHO volume as previously described via a semi-automated, threshold-

based approach29. PHO was measured by the oedema extension distance (OED) using a 

previously described formula19; the rationale behind using OED is that PHO extends a 

consistent mean linear distance from the border of the ICH, independently of its volume. 
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Statistical analysis 

We present categorical variables using frequency and percentages, continuous variables using 

mean ± standard deviation (SD). We transformed ICH and PHO volume with cube root 

transformation to satisfy statistical normal distribution assumptions. We conducted a post hoc 

sensitivity analysis comparing patients with ICH volume and OED before and after 72 hours.  

We assessed the distribution of the HP CNV and rs2000999 SNP in the CROMIS-2 cohort 

compared to ALSPAC (Avon Longitudinal Study of Parents and Children) cohort of healthy 

individuals, which we used as controls. ALSPAC is a general population cohort study30 31; HP 

genetic data and rs2000999 SNP data was available from 927 and 748 participants. The 

ALSPAC study website (http://www.bristol.ac.uk/alspac/researchers/our-data/) contains 

details of all the data available through a fully searchable data dictionary and variable search 

tool. Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee 

and the Local Research Ethics Committees. To evaluate the HP1 allele, we also assessed the 

HP CNV as a dichotomized variable (HP1-1 and HP2-1 versus HP2-2) according to our pre-

specified analysis plan.  

We first performed univariable analyses for each of the four outcomes separately with 

demographic, clinical and radiological variables of interest. We subsequently fitted 

multivariable logistic regression models with significant variables from the univariable 

analysis in addition to pre-specified variables. For the analysis of ICH and OED volume we 

adjusted the models with the pre-specified variables: time from event to imaging, location of 

ICH, systolic blood pressure (SBP), HP CNV and rs200999 SNP. For functional outcome and 

mortality analysis, we fitted the multivariable model with the pre-specified variables: age, sex, 

hypertension, oral anticoagulation (OAC), HP CNV and rs200999 SNP. Additionally, we fitted 

the multivariable models with variables that were statistically significant at the 20% level in 

the univariable analysis. 

http://www.bristol.ac.uk/alspac/researchers/our-data/
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We investigated whether there were interactions between different variables. However, no 

interaction reached our pre-specified significant threshold for interactions of p<0.001 (chosen 

to guard against overfitting) and were therefore not included in the models32. 

Statistical analysis was performed using STATA 15 (StataCorp. 2011. Stata Statistical 

Software: Release 15. College Station, TX: StataCorp LP). 

 

Ethical approval 

The CROMIS-2 study was approved by the local Ethics Committee (reference: 10/H0716/64). 

 

RESULTS 

For the primary analysis of functional outcome at 6 months we included 732 patients. One 

DNA sample was uncallable for the HP CNV and 20 for the rs2000999 SNP. For the secondary 

analyses of ICH volume and PHO we included 709 patients with an available CT scan (Figure 

1). OED mas measured at a mean of 10 hours from ICH onset. Patients who were genotyped 

(n=844) were not different to those without DNA (n=250) with regard to baseline 

characteristics and risk factor profile (data not shown). The rs2000999 genotype frequency in 

CROMIS-2 was as expected when compared to ALSPAC (Supplementary Table 1). However, 

compared to ALSPAC, CROMIS-2 patients less often had the HP2-2 CNV. We found no 

systematic difference in demographics, comorbidities and ICH characteristics between those 

with and without available outcome variable (data not shown).  

 

Mortality  

Of 731 patients with available follow-up and genotype data, 112 died within 6 months (15.3%) 

and 318 (43.5%) were female.  
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The distribution of the HP CNV was 132 HP1-1 (18.1%), 342 HP2-1 (46.8%) and 257 HP2-2 

(35.2%). Distribution of the SNP allele was: 27 A:A (3.8%), 234 A:G (32.9%) and 451 G:G 

(63.3%), 20 samples were not callable (2.7%). 

Patients who died were older, more frequently female, more frequently on OAC, had a lower 

GCS on admission (GCS <8), a higher ICH and PHO volume, and intraventricular extension 

(IV). Results of the univariable analysis are shown in supplementary Table 2.  

The mortality according to HP CNV was as follows: HP1-1 18.2%; HP2-1 12.6%; HP2-2 

17.5%. In the multivariable model (n=608) mortality comparisons between the HP groups, 

with  HP2-2 as a reference group, were as follows: OR HP1-1 0.73, 95% CI 0.34-1.56 (p-

value=0.41) and OR HP2-1 0.5, 95% CI 0.28-0.89 (p-value=0.02) (overall p-value=0.06, Table 

1).   
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Table 1:  Factors associated with 6 month mortality after ICH in an adjusted multivariable 
logistic regression model 
 

  
OR 

 
95% CI 

 
P value 

 
 
Age (years) 1.11 1.07-1.14 <0.001 

    
Female Sex 1.14 0.68-1.92 0.63 
    
Hypertension 1.01 0.57-1.76 0.99 
    
Diabetes mellitus 1.31 0.65-2.65 0.46 
    
Oral anticoagulation 1.25 0.74-2.11 0.4 
    
GCS on admission (binary)    
- GCS 3-8  4.23 1.35-13.28 0.01 
- GCS 9-15 (reference)    
    
ICH location    
- Cerebellar (reference)    
- Brainstem Empty  0.38 
- Deep  0.98 0.33-2.93  
- Lobar 0.64 0.2-2  
    
Cr ICH volume (mL) 2.03 1.48-2.8 <0.001 
    
OED (cm) 2.82 1.01-7.92 0.05 
    
IV extension 1.56 0.89-2.72 0.12 
    

HP CNV    
0.06 

- HP1-1 0.73 0.34-1.56  
- HP2-1 0.5 0.28-0.89  
- HP2-2 (reference)    
    
Rs2000999   0.74 
- A:A (reference)    
- A:G 0.6 0.15-2.36  
- G:G 0.58 0.15-2.28  
    

 
cm = centimeter; CNV = copy number variation; Cr = cube root; CT = computed 
tomography; GCS = Glasgow Coma Scale; HP = Haptoglobin; ICH = intracerebral 
haemorrhage; IV = intraventricular; ml = milliliter; OAC: oral anticoagulation; SBP: systolic 
blood pressure 
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When dichotomizing HP into HP1-1/2-1 versus HP2-2 there was evidence for association of 

decreased mortality with the HP1 allele compared to HP2-2 (OR 0.55, 95%CI 0.31-0.95, 

p=0.03, supplementary Table 3). As expected, there was also evidence for an increase in 

mortality with increasing age (OR 1.11, 95%CI 1.07-1.14, p<0.001), decreased GCS on 

admission <9 (OR 4.37, 95%CI 1.39-13.73, p=0.01), and ICH volume (OR 1.99, 95%CI 1.45-

2.74, p<0.001).  

 

We further investigated the association between mortality and HP CNV across tertiles of all 

the covariates included in the multivariable model as a post hoc analysis. Mortality differed 

between the HP groups for older patients (>80 years) with lower (<12.2mL) ICH volume: in 

this subgroup, mortality was 26% for HP1-1, 14% for HP2-1 and 42% for HP2-2. Patients died 

at a median of 3.8 months after ICH. There was no difference (early vs. late death) in the time 

of death after ICH across HP CNV or rs2000999 groups, in the overall cohort or the subgroup 

of >80 years and <12.2mL ICH volume (regression data not shown, supplementary Figure 1). 

The mortality rate was similar across the HP groups for the remaining patients: 15% for HP1-

1, 12% for HP2-1 and 12% for HP2-2. The association between mortality and HP CNV was 

confirmed across tertiles of all the other covariates. Finally, we investigated covariates not 

included in the multivariable model, to see whether they differed across HP genotypes, but 

found no bias to explain the association between mortality and HP CNV (data not shown). 

 

Functional outcome  

Of 731 patients, 444 (60.7%) suffered an unfavourable outcome (mRS 3-6). Dichotomized 

unfavourable mRS according to HP CNV was as follows: HP1-1 64.4%; HP2-1 59.7%; HP2-

2 60.3%.  
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Patients with an unfavourable outcome were older, more frequently female, on OAC, more 

frequently had hypertension, hypercholesterolaemia, presented with a lower GCS (GCS of 3-

8), had a higher ICH and PHO volume and IV extension. See supplementary Table 2 for 

univariable analysis.  

In the multivariable model (n=623) age (OR 1.04, 1.02-1.06 95%CI; p<0.001), female sex (OR 

2.31; 1.58-3.37; 95%CI; p<0.001) and the cube root of the ICH volume (OR 1.5; 1.22-1.85 

95%CI; p<0.001) were significantly associated with functional outcome (Table 2). Neither HP 

CNV nor rs2000999 SNP were associated with functional outcome.  
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Table 2: Factors associated with unfavourable outcome after ICH in an adjusted multivariable 
regression model 
 

  
OR 

 
95% CI 

 
P value 

 
 
Age (years) 1.04 1.02-1.06 <0.001 

    
Female Sex 2.31 1.58-3.37 <0.001 
    
Hypertension 1.37 0.92-2.04 0.12 
    
Diabetes mellitus 1.18 0.71-1.97 0.52 
    
Oral anticoagulation 1.16 0.77-1.73 0.49 
    
Antiplatelets 1.08 0.7-1.69 0.72 
    
Hypercholesterolaemia 1.17 0.78-1.75 0.44 
    
GCS on admission (binary)    
- GCS 3-8  3.56 0.76-16.5 0.11 
- GCS 9-15 (reference)    
    
Cr ICH volume (mL) 1.5 1.22-1.85 <0.001 
    
IV extension 1.38 0.9-2.12 0.14 
    
Surgical evacuation 1.84 0.45-7.5 0.39 
    
HP CNV   0.78 
- HP1-1  1.17 0.67-2.03  
- HP2-1 0.97 0.65-1.45  
- HP2-2 (reference)    
    
Rs2000999   0.66 
- A:A (reference)    
- A:G 1.19 0.43-3.3  
- G:G 1.39 0.5-3.84  
    

 
 
CNV = copy number variant; Cr = cube root; CT = computed tomography; GCS = Glasgow 
Coma Scale; HP = Haptoglobin; ICH = intracerebral haemorrhage; IV = intraventricular; ml 
= millilitre; OAC: oral anticoagulation; SBP: systolic blood pressure 
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Intracerebral haemorrhage volume and oedema extension distance 

Of the 731 patients included in the functional analysis, 709 had a CT scan available, and of 

these 68 were >72 hours after symptom onset (Figure 1).  Of the remaining 641 individuals, 

453 (70.7%) had a scan <24h, 172 (26.8%) between 24-48h and 16 (2.5%) between 48-72h. 

See Figure 2 for the association of the HP CNV and SNP with OED and ICH volume.  

Mean ICH volume was 13.8 mL (± 18.82 SD), mean PHO volume 19.54 mL (± 20.56 SD) and 

mean OED 0.51 cm (±0.23 SD). Variables significantly associated with ICH volume in the 

univariable analysis are listed in the supplementary Table 3. 

In the fitted multivariable model (n=604) ICH location (overall p<0.001) and intraventricular 

extension (coefficient 0.53; 0.37-0.68; p<0.001) were associated with greater ICH volume 

(Table 3). Neither HP CNV nor the SNP rs2000999 were associated with ICH volume.  
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Table 3:  Factors associated with the cube root ICH volume in an adjusted multivariable 
regression model  
 

 Coefficient 95% CI 
 

P value 
 

    
Age (years) -0.005 -0.01-0.001 0.09 
    
Time Event to CT   0.35 
- Day 1 (reference)    
- Day 2 0.04 -0.23-0.31  
- Day 3 -0.29 -0.7-0.11  
    
ICH location   <0.001 
- Cerebellar (reference)    
- Brainstem -0.73 -1.22-0.23  
- Deep -0.13 -0.44-0.18  
- Lobar 0.79 0.47-1.1  

SBP (mmHg) 0.001 -0.002-0.002 0.88 
 

Platelet level (x109/liter) 0.001 -0.0004-0.001 0.31 
    
Hypercholesterolaemia 0.09 -0.05-0.22 0.2 
    
IV extension 0.53 0.37-0.68 <0.001 
    
Neurosurgery 0.36 -0.06-0.78 0.1 

 
HP CNV   

 
 

0.66 
- HP1-1 -0.09 -0.25-0.52  
- HP2-1 -0.02 -0.17-0.13  
- HP2-2 (reference)    
    
Rs2000999   0.68 
- A:A (reference)    
- A:G 0.14 -0.25-0.52  
- G:G 0.16 -0.22-0.54  

    
 
CNV = copy number variation; CT = computed tomography; HP = Haptoglobin; ICH = 
intracerebral haemorrhage; IV= intraventricular; mmHg = millimetre mercury; SBP= systolic 
blood pressure 
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After dichotomizing the HP CNV into HP1-1/2-1 versus HP2-2 we did not observe any 

evidence of an association in univariable or multivariable analyses (p = 0.39 [supplementary 

Table 4] and p = 0.6 respectively [data not shown]). Similar results were observed when 

dichotomizing HP CNV into HP1-1 versus HP2-1/2-2 [supplementary Table 4]. 

 

Oedema Extension Distance  

Variables significantly associated with OED in the univariable analysis are listed in 

supplementary Table 4. For comparison of HP CNV and SNP for ICH volume and OED see 

Figure 2.  

In the multivariable linear regression model (n=623), ICH location (with lobar and deep ICH 

locations featuring a longer OED and with a brainstem location featuring a shorter OED, 

compared to the reference group of cerebellar location, overall p<0.001) and antihypertensive 

medication (coefficient -0.09; 95%CI -0.16-(-0.02); p=0.01) were significantly associated with 

OED (Table 4). Neither the univariable nor multivariable analysis showed evidence of 

association of HP CNV or rs2000999 SNP with OED.  

Similar to the ICH volume model, dichotomizing HP did not yield any evidence of association 

in univariable and multivariable models (data not shown).  
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Table 4:  Factors associated with size of oedema extension distance in an adjusted 
multivariable regression model  
 

  
Coefficient 

 
95% CI 

 
P value 

 
    
Female Sex 0.01 -0.02-0.05 0.44 
    
Time Event to CT   0.18 
- Day 1 (reference)    
- Day 2 0.07 -0.008-0.14  
- Day 3 0.04 -0.07-0.15  
    

ICH location    
<0.001 

- Cerebellar (reference)    
- Brainstem -0.08 -0.21-0.06  
- Deep 0.16 0.07-0.24  
- Lobar 0.24 0.15-0.33  
 
SBP (mmHg) 

 
0.0002 

 
-0.0003-0.001 

 
0.49 

    
OAC 0.05 -0.02-0.12 0.17 
    
Antihypertensive medication -0.09 -0.16-(-0.02) 0.01 
    
Platelet level (x109/liter) 0.0002 -0.00005-0.0004 0.11 
    
IV extension -0.03 -0.07-0.008 0.11 

HP CNV    
0.5 

- HP1-1  0.03 -0.02-0.09  
- HP2-1 0.01 -0.03-0.05  
- HP2-2 (reference)    
    
Rs2000999   0.93 
- A:A (reference)    
- A:G 0.01 -0.09-0.11  
- G:G 0.003 -0.1-0.1  
    

 
CNV = copy number variation; CT = computed tomography; HP = Haptoglobin; ICH = 
intracerebral haemorrhage; mmHg = millimetre mercury; OAC: oral anticoagulation; SBP: 
systolic blood pressure 
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DISCUSSION 

In this large prospective, multicentre cohort study, HP was not associated with functional 

outcome as assessed by the mRS. The HP CNV distribution was comparable to that reported 

in a previous study, apart from a slightly higher proportion of HP1-1 patients and lower 

proportion of HP2-218. Despite the larger sample size, we could not replicate this previous 

study’s finding of an association of the HP2 allele with functional outcome18. 

 

However, we found evidence that mortality was lower in HP2-1 patients compared to HP2-2 

homozygotes; our post hoc analyses suggest that this observation is mostly driven by older 

patients with lower ICH volumes. No association with mortality was found for the rs2000999 

SNP (which is associated with haptoglobin expression level)21. This suggests that any link 

between the HP CNV and mortality is mediated by factors other than haptoglobin expression.  

 

While the HP CNV’s association with mortality could have been confounded by bias in a 

variable excluded from the model, we did not find any evidence for this. Such a factor could 

still remain unidentified, but a more likely explanation is that patients who died did not 

contribute to functional outcome analysis. We found evidence of HP2-2 missingness (of 

subjects of a particular genotype, in this case HP2-2), when comparing CROMIS-2 with 

ALSPAC cohorts, which might suggest that the HP2-2 genotype confers a mortality risk. 

 

We confirmed previous results showing evidence towards increased mortality with HP2-218, 

but did not observe a unidirectional dose response of HP alleles in a direction of increasing or 

decreasing mortality across HP genotypes (mortality: HP1-1 18.2%; HP2-1 12.6%; HP2-2 

17.5%). The lower mortality in HP2-1 individuals could be a chance finding. A possible but 

unlikely explanation is heterozygote advantage or heterosis33. At a molecular level, the HP1 
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allele might protect against the deleterious effect of the HP2 allele only when the two alleles 

are present together in HP2-1 individuals. Both HP1 and HP2 alleles scavenge haemoglobin, 

with HP2 being superior34 35, and this confers a beneficial effect. However, HP2 has additional 

off-target effects which are deleterious, mostly pro-inflammatory36. In HP2-2 individuals, the 

better haemoglobin scavenging potential of HP2 versus HP1 is offset by its proinflammatory 

effects, so that mortality is similar in HP1-1 and HP2-2 individuals. In HP2-1 individuals, the 

HP1 allele may be negating the deleterious effect of HP2, so that a greater benefit is observed 

in HP2-1 individuals than is expected by simple co-dominance of the two alleles.  

 

We did not confirm previous findings of worse functional outcome in patients with HP2 allele, 

which could be due to the significantly smaller cohort size and statistical power of the previous 

study, with potential for a chance finding18.  

 

PHO develops over a continuous period of time in three main stages. It peaks after two weeks, 

however its evolution is most rapid in the first 2-3 days37. PHO is thought to be mediated by a 

process of toxicity and inflammation19 37. We hypothesized that by modulating neurotoxicity 

and inflammatory processes haptoglobin might have influenced PHO and functional 

outcome.38 However, we did not find any association of HP genetic variants (CNV or the 

rs2000999 SNP) with OED. Similarly, HP genetic variants were not associated with ICH 

volume, which, like haemtoma expansion, is more likely to be driven by other factors including 

hydrostatic pressure at the bleeding point18.  

 

Despite having a large cohort available, we could not replicate the previous study’s reported 

finding of an association of the HP2 allele with larger ICH volumes and IV extension 18. Since 

ICH volume and OED was assessed on CT scans performed within 72 hours of symptom onset, 
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we cannot exclude an association of HP with ICH volume or OED after this timepoint, although 

our exploratory analysis of scans beyond 72 hours (n=68) and found no difference in ICH 

volume and OED across HP genotypes (for both CNV and rs2000999 SNP) (data not shown).  

We found that long-term antihypertensive medication prior to ICH event is independently 

associated with decreased OED, even after correcting for SBP. It is possible that patients on 

antihypertensive medication could have reduced sympathetic activity and inflammatory 

response when ICH occurs39, a hypothesis that merits further study. As we did not collect 

follow-up scans, we cannot comment on a potential influence of SBP on haematoma growth. 

 

Our study has strengths. Our prospective, multi-centre study is the largest on HP and ICH to 

date, and should be generalizable to Caucasian populations. We collected detailed baseline 

clinical and brain imaging data and undertook multivariable regression analysis adjusting and 

correcting for important predictors of all four outcomes, and took exceptional care to control 

for covariates.  

 

However, our study also has limitations. Since we obtained informed or proxy consent, our 

study is biased towards ICH survivors with less severe ICH than would be included in an 

unselected incident ICH population. However, it is likely that any protective effect of HP is 

most relevant in ICH patients who survive the acute period. Additionally, CT scans at multiple 

timepoints were not available and therefore we could not assess the influence of HP CNV and 

rs200999 SNP on ICH, PHO or OED expansion over time. We also did not have data on the 

time interval between the ICH and CT scan. However, in a post hoc sensitivity analysis ICH 

volume before and after 72 hours was very similar although OED was larger in patients with 

first imaging after 72 hours. As PHO increases beyond 72 hours further studies are needed to 

assess an influence of the HP CNV and rs2000999 SNP on oedema expansion. Although we 
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excluded patients without blood samples available for genetic analysis, there were no 

systematic differences in demographics, comorbidities and ICH characteristics between those 

with and without genetic data available.  Finally, it would have been interesting to study plasma 

and cerebrospinal fluid haptoglobin levels in relation to HP genetic variants, but unfortunately 

these were not available.  

 

CONCLUSION 

We investigated the association of HP genetic variation (the HP CNV and the rs2000999 SNP) 

in a large cohort of 731 ICH patients. We found evidence in support of a lower mortality with 

the HP2-1 genotype, but not functional outcome, ICH volume or OED. While HP genotype 

may not matter for functional outcome, upregulating or supplementing haptoglobin may still 

be of benefit, as demonstrated in animal studies40, so understanding how different haptoglobin 

types associate with outcome is important. A future meta-analysis may be appropriate to 

confirm our observations, and longer follow-up may be needed in case there is an association 

with longer term outcome. 
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FIGURES 

Figure 1. Patient selection flow diagram  
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Figure 2. A) Differences in OED in Haptoglobin genotype and SNP, B) Differences in ICH 

volume in Haptoglobin genotype and SNP 
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Supplementary Table 1: different in HP CNV and rs2000999 genotype CROMIS versus 
ALSPAC, genotype frequency 
 

 Hp1-1 Hp2-1 Hp2-2 Total 

CROMIS 151  
17.9% 

413 
49% 

279 
33.1% 

843 
100% 

ALSPAC 137 
14.8% 

418 
45.1% 

372 
40.1% 

927 
100% 

 rs2000999 AA rs2000999 AG rs2000999 GG  

CROMIS 29  
3.5% 

267  
32.6% 

523 
63.9% 

843 
100% 

ALSPAC 34 
4.6% 

229 
30.6% 

485 
64.8% 

748 
100% 
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Supplementary Table 2: regression of CROMIS versus ALSPAC with regards to 
rs2000999 genotype and regression of CROMIS versus ALSPAC with regards to HP 
CNV 
 
 

 OR (95%CI) SE p 

Hp 1-1 reference   0.007 

Hp 2-1 0.9 (0.69-1.72) 0.12  

Hp 2-2 0.68 (0.52-0.9) 0.1  

 OR (95%CI) SE p 

A:A reference   0.47 

A:G 1.37 (0.81-2.31) 0.37  

G:G 1.26 (0.76-2.11) 0.33  
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Supplementary Table 3:  Univariable analysis for functional outcome and death 

Variable Unfavourable outcome Death 
 OR 95% CI p-value OR 95% CI p-value 

Age, years 1.05 1.03-1.06 <0.001 1.1 1.07-1.13 <0.001 
Female Sex 2.3 1.69-3.14 <0.001 1.69 1.13-2.53 0.01 
Ethnicity    0.71    
- White Reference   Reference  0.89 
- Asian 1.3 0.66-2.58  0.74 0.22-2.53  
- Black 1.16 0.5-2.66  0.99 0.4-2.43  
Smoker 0.83 0.61-1.12 0.21 1.2 0.79-1.8 0.39 
 
Hypertension 1.79 1.31-2.45 <0.001 1.23 0.79-1.9 0.36 

SBP on admission, 
mmHg 1 0.99-

1.002 0.33 0.99 0.99-1 0.15 

DM 1.48 0.98-2.26 0.06 1.5 0.91-2.48 0.11 
Anti-hypertensive 
medication 1.45 1.07-1.97 0.02 1.76 1.17-2.65 0.01 

Anticoagulation 1.41 1.03-1.94 0.03 1.78 1.18-2.68 0.006 
Antiplatelets 1.33 0.93-1.89 0.11 1.04 0.65-1.66 0.86 
Hypercholesterolaemia 1.57 1.15-2.14 0.004 1.09 0.72-1.66 0.67 
GCS admission       
- GCS 3-8 4.41 1.52-

12.78 0.006 5.51 2.6-11.64 <0.001 

- GCS 9-15 Reference   Reference   
ICH location   0.63    
- Cerebellar Reference   Reference  0.1 
- Brainstem 1.35 0.4-4.55  0.34 0.04-3.08  
- Deep 0.77 0.39-1.52  0.82 0.33-2.07  
- Lobar 0.84 0.42-1.68  1.36 0.54-3.39  
crICH volume, mL 1.61 1.35-1.93 <0.001 1.88 1.52-2.34 <0.001 
IV extension 2.38 1.64-3.45 <0.001 2.62 1.72-4 <0.001 
crPHO volume, mL 1.39 1.17-1.66 <0.001 1.82 1.44-2.29 <0.001 
OED, cm 1.32 0.68-2.54 0.41 2.76 1.23-6.17 0.01 
Neurosurgery 2.99 1-8.94 0.05 1.23 0.41-3.72 0.71 
HP CNV   0.63   0.15 
- 1-1 Reference   Reference   
- 2-1 0.82 0.54-1.24  0.65 0.37-1.12  
- 2-2 0.84 0.54-1.3  0.96 0.55-1.65  
HP CNV 1 vs all 2 0.83 0.56-1.22 0.34 1.29 0.85-1.95 0.23 
HP CNV all 1 vs 2 0.93 0.71-1.33 0.86 0.77 0.47-1.27 0.31 
HP SNP   0.95   0.49 
- A:A Reference   Reference   
- A:G 0.88 0.38-2  0.91 0.32-2.54  
- G:G 0.9 0.4-2.02  0.71 0.26-1.96  

Cm = centimetre; CNV = copy number variation; crICH = cube root intracerebral haemorrhage; crPHO = cube 
root perihaematomal oedema; DM = diabetes mellitus; GCS = Glasgow Coma Scale; HP = Haptoglobin; ICH 
= intracerebral haemorrhage; IV = intraventricular; ml = millilitre; mmHg = millimetre of mercury; OED = 
oedema extension distance; OR = Odds Ratio; SNP = single nucleotide polymorphism; y = year 
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Supplementary Table 4, Factors associated with 6 months mortality after ICH in an adjusted 
multivariable logistic regression model, HP CNV dichotomized 
 

  
OR 

 
95% CI 

 
P value 

 
 
Age (years) 1.11 1.07-1.14 <0.001 

    
Female Sex 1.15 0.69-1.94 0.6 
    
Hypertension 0.98 0.56-1.72 0.95 
    
Diabetes mellitus 1.33 0.65-2.69 0.43 
    
Oral anticoagulation 1.27 0.75-2.13 0.37 
    
GCS on admission (binary) 4.37 1.39-13.73 0.01 
- GCS 3-8     
- GCS 9-15 (reference)    
    
ICH location    
- Cerebellar (reference)   0.39 

- Brainstem No 
observations   

- Deep 0.94 0.32-2.8  
- Lobar 0.62 0.2-1.93  
    
Cr ICH volume (mL) 1.99 1.45-2.74 <0.001 
    
OED (cm) 3 1.07-8.39 0.04 
    
IV extension 1.57 0.9-2.75 0.11 
    

HP CNV    
 

- HP1 allele (HP1-1/2-1 vs HP2-2) 0.55 0.31-0.95 0.03 
    
Rs2000999   0.77 
- A:A (reference)    
- A:G 0.61 0.16-2.4  
- G:G 0.61 0.16-2.41  
    

 
Cm = centimetre; CNV = copy number variation, Cr = cube root; CT = computed tomography; GCS = 
Glasgow Coma Scale; HP = Haptoglobin; ICH = intracerebral haemorrhage; IV = intraventricular; OAC 
= oral anticoagulation; SBP = systolic blood pressure 
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Supplementary Table 5:  Univariable analysis for ICH and OED volume  

Variable ICH volume OED volume 
 Coefficient 95% CI p-value Coefficient 95% CI p-value 

Time event to CT   0.5   0.13 
- Day 1 Reference      
- Day 2 0.18 -0.12-0.48  0.07 0.001-0.15  
- Day 3 -0.17 -0.61-0.27  0.03 -0.09-0.15  
Age, years 0.004 -0.002-0.01 0.2 0.001 -0.001-0.002 0.25 
Female Sex 0.05 -0.1-0.2 0.52 0.02 -0.01-0.06 0.19 
Smoker -0.03 -0.11-0.04 0.39 -0.008 -0.03-0.01 0.4 
Hypertension 0.06 -0.1-0.22 0.45 -0.005 -0.04-0.03 0.77 
SBP on admission, 
mmHg 

-0.002 -0.004-0.0005 0.12 0.0003 -0.0005-
0.0007 

0.66 

Anti-hypertensive 
medication 

0.08 -0.07-0.23 0.29 -0.07 -0.1-0.03 <0.001 

Anticoagulation 0.09 -0.06-0.25 0.25 -0.05 -0.09-(-0.01) 0.01 
Antiplatelets 0.01 -0.16-0.18 0.89 -0.03 -0.07-0.02 0.21 
High cholesterol 0.16 0.01-0.32 0.03 -0.006 -0.04-0.03 0.74 
Platelet level, 
x109/liter 

0.001 -0.0002-0.002 0.13 0.0003 0.0001-0.001 0.002 

ICH location   <0.001   <0.001 
- Cerebellar Reference      
- Brainstem -0.86 -1.34-(-0.37)  -0.09 -0.21-0.04  
- Deep -0.19 -0.49-0.11  0.15 0.07-0.23  
- Lobar 0.67 0.37-0.97  0.23 0.15-0.31  
IV extension 0.46 0.29-0.62 <0.001 -0.03 -0.07-0.01 0.16 
Neurosurgery 0.62 0.15-1.09 0.01 -0.003 -0.12-0.12 0.95 
HP CNV   0.35   0.84 
- 1-1 Reference      
- 2-1 0.11 -0.09-0.34  0.004 -0.05-0.06  
- 2-2 0.02 -0.2-0.24  -0.01 -0.06-0.05  
HP CNV all 1 vs 2-2 -0.07 -0.22-0.09 0.39 -0.01 -0.05-0.03 0.57 
HP CNV all 2 vs 1-1 0.08 -0.12-0.28 0.42 -0.001 -0.05-0.05 0.96 
HP SNP   0.82   0.98 
- A:A Reference      
- A:G 0.03 -0.39-0.45  -0.002 -0.1-0.1  
- G:G 0.08 -0.33-0.49  -0.005 -0.11-0.1  

 
CNV = copy number variation; HP = Haptoglobin; ICH = intracerebral haemorrhage; IV = intraventricular; OED = 
oedema extension distance; SBP = systolic blood pressure; SNP = single nucleotide polymorphism 
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Supplementary Figure 1. A) Time to death in days by HP CNV overall cohort, B) Time to death 

in days by rs2000999 overall cohort, C) Time to death in day by HP CNV subgroup >80 years 

<12.2mL ICH volume, D) Time to death in day by rs2000999 subgroup >80 years <12.2mL ICH 

volume 

 
 
 

 
 

 

 


	3 Department of Statistical Science, UCL, London, WC1E 6BT, UK
	Keywords: Intracerebral haemorrhage, Haptoglobin, intracerebral haemorrhage volume, oedema extension distance, perihaematomal oedema volume, functional outcome, death, ALSPAC
	Sources of funding: DJW and DW received funding from the Stroke Foundation/British Heart Foundation. This work was undertaken at UCLH/UCL which receives a proportion of funding from the Department of Health’s National Institute for Health Research (NI...
	ABSTRACT
	INTRODUCTION
	METHODS
	Data collection
	Haptoglobin genotyping
	Statistical analysis
	Ethical approval
	RESULTS
	REFERENCES

