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Abstract We demonstrate refinement-based formal de-

velopment of the hybrid, ‘fixed virtual block’ approach

to train movement control for the emerging European

Rail Traffic Management System (ERTMS) level 3. Our

approach uses iUML-B diagrams as a front end to the

Event-B modelling language. We use abstraction to ver-

ify the principle of movement authority before gradu-

ally developing the details of the Virtual Block Detector

(VBD) component in subsequent refinements, thus veri-

fying that it preserves the safety properties. We animate

the refined models to demonstrate their validity using

the scenarios from the Hybrid ERTMS Level 3 (HLIII)

specification. We reflect on our team-based approach to

finding useful modelling abstractions and demonstrate

a systematic modelling method based on the state and

class diagrams of iUML-B. The component and control

flow architectures of the application, its environment

and interacting systems emerge through the layered re-

finement process. The runtime semantics of the speci-

fication’s state-machine behaviour are modelled in the

final refinements. We discuss how the model could be

used to generate an implementation using code gener-

ation tools and techniques.
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1 Introduction

The Hybrid ERTMS Level 3 (HLIII) specification [1]

concerns the control of trains moving on a linear track

and communicating by radio and trackside equipment.

A train movement controller called the Radio Block

Centre (RBC) manages the Movement Authority (MA)

granted to each train in mission. The focus of this work,

called the Virtual Block Detector (VBD), conservatively

estimates train locations to a finer granularity than

physically detected track sections, and thus reports free

virtual track sub-sections available for train movement.
Trains and trackside report location data to the VBD.

In turn the VBD reports free track sections to RBC.

The MA granted to each train consists of a set of sec-

tions that the train is permitted to move into. An MA

can be extended by adding further contiguous sections,

or trimmed by removing sections that the train has

passed through. A controlled train is instructed that

the sections in its MA are free, allowing it to travel at

full speed. A trusted train is given a special on-sight MA

allowing it to move cautiously through sections that are

not guaranteed to be free; the driver is trusted to avoid

collisions. The key safety property which we verify is

that controlled trains do not run into trains that are

ahead of them.

The refinement-based Event-B modelling method [2]

is an appropriate choice since it allows us to verify key

properties while leaving certain features, and interact-

ing components, abstract and underspecified. The ar-

chitecture can be layered through the refinement: each

layer can focus on an abstract component interface, the
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environment, or a specific feature of the target system.

In their evaluation of seven competing state-based for-

mal methods, [3] judge Event-B favourably, and among

the best for verification and tool support. They also

find Event-B, while less expressive in refinement mod-

elling than ASMs [4] and Z [5], to be superior “when it

comes to (mechanically) proving and verifying refine-

ment”, ie in proof support. The Rodin [6] toolkit in-

cludes theorem provers and model-checkers. Integration

of diagrammatic UML modelling with Formal Methods

is well established, e.g. [7,8]. Rodin plugins include dia-

grammatic modelling notations and tools; we use UML-

like iUML-B class diagrams and state-machines [9,10,

11]. iUML-B leads to a readable formal specification

which is easier for domain experts to validate [12,13].

For validation of scenarios we used the ProB [14] model

checker with BMotionStudio [15] visualisation.

Formal models are often presented as if they were

developed in perfect inexorable steps when, in prac-

tice, they never are. We give an overview of our in-

formal team-based process illustrating the iterations

that involved many misunderstandings, failures and re-

work. The team consisted of research and academic staff

who had some experience of formal modelling of rail-

way applications such as interlockings and crossings,

but no previous experience of communications-based,

virtual section train control. Although there were fre-

quent and extensive discussion between the three orig-

inal team members (Dghaym, Poppleton and Snook),

the main model entry and validation and verification

(V&V) activities were carried out by one team member

(Dghaym). Improved team-working facilities for Event-

B are currently under development to alleviate this.

One team member (Dalvandi) was added for special-

ist advice on developing an implementation from the

model.

An early version of this work was published in [16].

The additional contributions presented here are as fol-

lows.

– Our previous models have been revised to reflect the

new version of the specification [1].

– The model is refined to cover more operational de-

tails of the system.

– The model has now been validated using the scenar-

ios from the specification.

– We propose methods to generate an implementation

from the model.

– We reflect on the process in a more accessible way.

The specification was re-issued partly to take into ac-

count the findings of our earlier work [16] and this was

reported as an impact of the Enable-S3 project. Specif-

ically, the problematic revoking of an MA has been re-

moved from the specification although the possibility of

an already allocated track section changing state still

remains.

Structure The paper is structured as follows. Sec. 2 de-

scribes our requirements and modelling strategy, giving

a summary of the methods and process we used and re-

calling Event-B and iUML-B basics. Sec. 3 describes the

results of our analysis of the system to derive and clarify

the requirements. Sec. 4 presents the details of our mod-

elling including refinement strategy (Sec. 4.1) followed

by a detailed account of modelling (Sec. 4.2). Sec. 5

describes our verification by theorem proof (Sec. 5.1)

and validation by scenario animation (Sec. 5.2). Sec. 6

discusses ways to derive an implementation from the

model. Sec. 7 provides observations about the specifi-

cation and reflections on the modelling methods arising

from the development. Sec. 8 compares our develop-

ment with other ABZ 2018 publications about the same

case study as well as some other related work. Sec. 9

concludes by reviewing the work, its increment over [16]

and required future work and tool improvements.

2 Requirements & Modelling Strategy

The HLIII specification focusses on the operational de-

tails of the VBD component whereas a formalisation

of safety prooperties requires an abstract system level

description. Therefore our first stage was to derive re-

quirements via a systems analysis which is described

in Section 3. We then proceeded to model the system

starting with the environment (ENV) and specifying

what we mean by safety before introducing the con-

cept of movement authority from the RBC and then

VBD operation to ensure safety. Further details of the

model structure are given in Section 4. We have not

provided traceability from requirements to the formal-

isation. This would be useful further work. The pri-

mary aim and result of our solution is that the safety

properties are clearly formalised and the principle of

movement authority is proven to be safe (with some

caveats) before the operational details of the VBD are

proven to maintain this safety while also being demon-

strated to satisfy the scenarios given in the specifica-

tion (again with some caveats). We modelled the re-

quirements fully except that we abstracted away from

length measurements such as ‘minimum safe distance’.

This affects the accuracy of one transition in the op-

erational state-machine. We also abstracted away from

an interval measurement of time and therefore do not

incorporate any notion of clock in our model. Although

the specification involves a number of time deadlines,

each one is a simple expiry event which can be fully
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modelled via arbitrary expiry events without a mea-

sure of time. The remainder of this section summarises

the steps of the process that we followed in developing

the model.

Systems Analysis While the HLIII specification [1,

17] is well presented in terms of explanatory scenarios,

its focus makes it a detailed requirements specification

for the VBD. It does not explain the overall system aims

and principles so well. We therefore started by reverse

engineering our understanding of the system in order

to understand its purpose and the concepts on which

it is based. This involved analysis of the information

in the specification, discussions and sketching white-

board diagrams such as components, entity relation-

ship and state-machine diagrams. The diagram-based

analysis naturally led into the iUML-B modelling. The

systems analysis identifies the main components in the

system and the information flow between them. This is

necessary for the model to reflect the appropriate re-

sponsibilities of the VBD versus assumptions it makes

upon other components. As with most stages of the

modelling process, the analysis was iterative. The mod-

elling improved our understanding of the system and

our new understanding helped us choose better abstrac-

tions for modelling. For example, initially we assumed

that only connected trains were in mission. However,

when modelling we realised that when a connection is

lost the system relies on the fact that the train will con-

tinue to respect its MA and this implies that the train

is still in mission. This new understanding of the sys-

tem led us to revise our models so that the ‘in-mission’

state-machine was independent of (i.e. parallel with)

the connected state-machine.

Refinement Strategy The refinement strategy pro-

vides a plan for building the model; choosing abstrac-

tions, adding details in refinement steps and introduc-

ing invariant properties at appropriate stages. We con-

sidered two alternative approaches, a) start from an ab-

stract safe system or b) start from an unsafe system and

make it safe. In this work we chose the second approach.

While the first approach is perhaps more traditional, in

this case, the safety properties were not so obvious and

were complicated by unsafe, albeit mitigated, scenar-

ios. So we wanted to capture the essence of train move-

ment before introducing assumptions and progressing

towards details that can distinguish between safe sce-

narios and mitigated unsafe scenarios. Again, the re-

finement strategy evolved as we discovered difficulties

and adapted our approach.

Modelling with Event-B and iUML-B Event-B [2,

18] is a refinement-based formal method for system de-

velopment. An Event-B model contains two parts: con-

texts for static data, and machines for dynamic be-

haviour specified by variables v, invariant predicates

I(v) that constrain the variables, and events. An event

comprises a guard denoting its enabling condition and

an action describing how the variables are modified

when the event is executed. In general, an event e takes

the form of the the following definition, where t are the

event parameters, G(t, v) is the guard of the event,

and v := E(t, v) is the action of the event.

e == any t where G(t,v) then v := E(t,v) end

Event-B is supported by the Rodin Platform [6], an

extensible toolkit which includes facilities for modelling,

verifying the consistency of models using theorem prov-

ing and model checking techniques, and validating mod-

els with simulation-based approaches.

iUML-B [11,10,9] provides a diagrammatic mod-

elling notation for Event-B in the form of state-machines

and class diagrams. The diagrammatic elements share

the repository of an Event-B model, and contribute

to that model. For example a state-machine will au-

tomatically generate the Event-B data elements (sets,

constants, axioms, variables, and invariants) to imple-

ment the states, and transitions contribute additional

guards and actions to existing events. Class diagrams

provide a way to visually model data relationships pro-

viding an object-oriented style ‘lifting’ which is absent

from standard Event-B. Classes, attributes and asso-

ciations are linked to Event-B data elements (carrier

sets, constants, or variables) and generate constraints

on those elements while class methods contribute addi-

tional guards and actions to existing events. Note that

iUML-B is designed to be a diagrammatic representa-

tion of Event-B and is syntactically and semantically

different from UML. For example, there is no notion of

triggers or ‘run to completion’ in iUML-B, transitions

are enabled and may fire when their source state is ac-

tive and their guard is true. Where several transitions

and/or methods are linked (i.e. contribute) to the same

event, they must all fire together. This gives a way to

synchronise transitions in different state-machines.

For modelling we used iUML-B for its diagrammatic

notation which follows on from the diagrams used in our

analysis and review stages. We used automatic theo-

rem provers to verify our Event-B models and the ProB

model checker to find counter examples when the the-

orem provers could not discharge proof obligations.

Review We held regular reviews to discuss problems

with the modelling. As indicated in the previous steps,

the reviews led to significant iterations to our under-

standing of the system, revisions to our refinement plan
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and consequent changes to the model. Problems fell into

the following categories:

– We cannot prove this proof obligation (PO) - look

for a better modelling approach. Example: Conti-

guity of next VSS relationship. We found it diffi-

cult to prove contiguity properties about Virtual

Sub-Section (VSS) using properties of the sequence,

the obvious Abstract Data Type model; [19] dis-

cusses some of the difficulties of modelling with such

ADTs. To avoid such effort we used numeric index-

ing of VSS, thus relying on the contiguity of a range

of integers. We retained the next function for ele-

gance of expression in guards and actions. Fig. 2a

of Sec. 4.2.1 presents the VSS class properties.

– This is not a useful refinement - change refinement

strategy. Example: We wished to introduce features

such as timers as soon as it was possible to do so (i.e.

when the triggering functionality was available). How-

ever, we had not yet introduced the relevant VSS

state changes to utilise the timeout. To rectify this

we altered our refinement strategy to introduce ab-

stract versions of VSS states and associated transi-

tions before introducing timers. This is explained in

more detail in Sec. 4.2.2.

– This is not a true data refinement - change systems

analysis. Example: As we modelled the flow of infor-

mation through the control components we found it

difficult to reconcile the reported train positions and

controlled MA with the safety properties of the ab-

stract environment. It seemed that we would need to

introduce some form of responsiveness assumptions

to limit the difference between actual and control

variables. However, the specification implied that

the VSS states were asynchronously updated. As

our understanding of the MA principle improved we

realised that the position inaccuracy is of no con-

sequence and we adjusted our systems description

accordingly.

Validation Once the model had been refined to in-

clude the operational details of the VBD, the model was

animated to validate it against the example scenarios

given in the specification. For this validation stage we

created a BMotionStudio visualisation of the railway

system and developed a new ‘scenario checker’ plug-in

that automatically animates internal processes of the

model and records/replays scenarios involving the ex-

ternal interfaces.

3 Requirements resulting from System Analysis

The HLIII specification is a detailed description of one

component (the VBD) of a wider system that controls

train movements. The other components involved in the

system are the trains and trackside equipment, which

we refer to as ENV, and the RBC that calculates move-

ment authorities limiting the movement of trains.

The VBD receives messages from trains and train

detectors. It also receives information about the out-

put of the RBC. It calculates a range of sections that

it believes to be free of any trains and sends these to

the RBC. The RBC sends to each train, a movement

authority consisting of a range of sections that the train

may move into. The train is either instructed that the

sections are all free or that they might not be free. We

wish to model and verify item 3, the VBD. To do this

we also need to consider (and model) the other 2 items.

The environment consists of a linear track divided

into fixed sections (Virtual Sub-Section (VSS)) with

trains moving in one direction on the track. Detectors

(Trackside Train Detection (TTD)) report when a train

is present. However, there is only one TTD for a range

of VSS. There are 2 kinds of trains; those that commu-

nicate with the control system, and those that do not.

Trains that communicate send three items of informa-

tion to the VBD:

– their current position (more precisely than track sec-

tions),

– the length of the train,

– whether the train is confirmed as integral (i.e. the

carriages are still all connected together).

Communicating trains are able to receive information

about the range of sections they are allowed to move

through and whether the authorised track is guaran-

teed to be free (full-supervision) or not (on-sight). For

the purpose of this description we partition trains into

three kinds: ghost trains (that are not communicating),

controlled trains (that are communicating and the con-

trol system authorises to move through sections of track

which it guarantees to be vacant), and trusted1 trains

(that are communicating and the control system autho-

rises to move through sections of track which may be

occupied). Trains that do not communicate can only be

detected by TTD and may move freely subject to cer-

tain assumptions concerning physical limitations and

those imposed by train design regulations.

The RBC grants movement authority (permissions)

to the communicating trains. The RBC uses informa-

tion it receives from the VBD about which VSS are

free. An MA consists of a range of track sections that

the train is allowed to move through. Under RBC con-

trol an MA is dynamically extended from the front VSS,

and trimmed from the rear VSS. The train is also in-

1 Controlled and trusted (trains) are terms that we have
introduced, they are not terms from the specification.
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structed as to whether it needs to be responsible for

avoiding collisions with trains in front (On-Sight Move-

ment Authority (OSMA)) or whether it can assume the

track sections are free (Full Supervision Movement Au-

thority (FSMA)). Note that the specification makes the

assumption that OSMA is safe. It is not within the

scope of this study to consider whether this is justified.

We assume the RBC always issues safe FSMA in accor-

dance with the information it receives from the VBD.

That is, all sections in an FSMA are ones that the VBD

has calculated to be free.

The VBD is responsible for deciding which VSS are

free based on information it receives from the TTD and

from Positive Train Detection (PTD) communications

received from communicating trains. It sends informa-

tion about which VSS it believes are free to the RBC.

Since PTD reports may be intermittent or interrupted

and some trains do not communicate at all, the estimate

of free VSS is cautious in these circumstances.

The positions of trains that are communicating are

known fairly accurately (subject to some lag in commu-

nications) from the PTD data sent by the train (posi-

tion, length and integrity) as well as physical limits on

possible train movement in between communications.

The position of the train is defined by the range of

sections from that occupied by the rear to that occu-

pied by the front; this may be a single section. Some

robustness is necessary to accommodate limitations of

the communication mechanisms such as temporary loss

of communication etc.

The position of a train that is not communicating

(i.e. a ghost train) is difficult to determine. This is es-

timated as a range of sections based on the following:

– its last known position (from a PTD or a loss of

integrity),

– how far it could possibly have travelled since its po-

sition was known,

– information from trains and free TTD that delimits

its movement range.

A ghost train is created in the VBD by one of the

following means: a communicating train stops commu-

nicating, a TTD spontaneously and unexpectedly de-

tects a train, or a communicating train reports that it

has lost integrity.

For loss of integrity, a ghost train is created just be-

hind the communicating train to represent the detached

section of carriages. A communicating train is converted

to a ghost train if the train’s mute timer expires (after

communication is lost) or if it sends a mission-end mes-

sage and terminates communication. A ghost train is

removed (i.e. destroyed) by sweeping. Sweeping is the

movement of a trusted train (with OSMA) through the

sections where the ghost train may be. If the trusted

train is able to pass through these sections, the ghost

train is judged not to exist. A ghost train may also be

converted to a communicating train if it starts com-

municating with the VBD (either by sending a mission

start communication or by re-starting previous commu-

nication).

4 Model Details

Our formalisation of the requirements uses iUML-B

which imparts a modelling style into the generated Event-

B. Our strategy for developing the refinements is shown

in Section 4.1 Further details of the strategy and mod-

elling style are shown in Section 4.2 which illustrates

how we modelled a) the ENV (Sec. 4.2.1), b) the RBC

and c) the VBD (Sec. 4.2.2).

4.1 Refinement Strategy

The model consists of an abstract level and ten re-

finements, with an additional extension refinement for

scenario validations using ProB and BMotionStudio.

Each refinement introduces more details about the be-

haviour. In most cases this is done by superposition,

where new data and associated behaviour is added with-

out changing that of the previous level. In some cases,

a data refinement is performed where some variables of

the previous level are replaced and an invariant gives

the correspondence between the state of the old and

new data. Both superposition and data refinement re-

fine the behaviour of the system since the behaviour is

modelled based on the new data.

ENV-M00 Trains: This is the abstract level of the

model. It defines a linked list of trains to keep track

of train order and prevent overtaking. Trains are

created at the rear of the linked list and removed

from its front. We also allow adding a new train in

the middle of the linked list as a result of train split.

ENV-M0 Train movement, VSS: Introduces the

train movement in terms of VSS section updates,

where a VSS section is either free or occupied by a

train. The train movement is modelled as an update

of the position of either the train front or the rear.

ENV-M1 Ghost vs connected trains: Distinction

between connected and ghost (i.e. non-connected)

trains, where all new trains join as ghost.

ENV-M2 TTD: Introduces TTD sections which can

be either free (no train on any of its VSS) or oc-

cupied (a train on at least one of its VSS). The

TTD state is immediately updated by train move-

ment events.
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RBC-M3 RBC: RBC can grant trains MA. We call

a train with MA inMission, where the RBC may

extend its MA while connected.

VBD-M4 Position reporting: Introduces the

reported versus actual train position with the asso-

ciated MA trimming. We also introduce the memo-

rised location of a train resulting from communica-

tion loss.

VBD-M5 Controlled vs trusted trains: Introduces

the concept of available VSS as an abstraction to

the detailed VSS state transitions table presented

in [1]. Fully supervised FS (controlled) vs on-sight

OS (trusted) trains are also introduced. An OS train

has unsafe MA (i.e. can include not available VSS)

but is assumed not to crash into the back of other

trains. An FS train has safe MA and therefore can-

not crash into the back of other trains.

VBD-M6 Integrity loss: If a train reports integrity

loss as a result of either train split or changed length,

the train is considered non-integral.

VBD-M7 Waiting timers: Defines three different

states for timers: Idle, Started or Expired . Waiting

timers apart from the shadow train timer B are in-

troduced at this level.

VBD-M8 VSS State-machine: Distinguishes three

different types of trigger that initiate the VSS state-

machine: TTD information, position reports (PTD)

and timer expiry. The abstract VSS state-machine is

refined to the four states: free, unknown, ambiguous

and occupied . The propagation timers and any re-

maining timers are modelled at this level.

VBD-M9 Lower levels: Full VSS state transition as

per specification, where transitions from one state

to the other are refined to model the different alter-

natives.

4.2 Modelling

The model consists mainly of three parts: the ENV,

RBC and VBD. Compared to our HLIII model pre-

sented in [16], the ENV part has not changed much.

Since we abstract away the details of how the RBC

calculates a movement authority, it is dealt with in a

single refinement which is not changed in this version.

The VBD is modified to conform to the new version

of the specification document [1] and to complete the

modelling of the VSS operational state-machine.

4.2.1 Modelling the Environment

In the first refinements we focus on modelling the ENV

and the possible trackside events, such as train move-

ment, splitting and loss of communication.

Fig. 1: Class diagram representing dynamic aspects of

the environment

Entering & Leaving HLIII Area: In the previous

version of the specification [17], the entry/exit of a

HLIII area was not mentioned. In our ABZ paper [16],

at the abstract level we introduced how trains can join

and leave the network. This is similar to the updated

specification [1], which includes a new section to de-

scribe how trains can enter/exit a HLIII area. Com-

pared to [16], we only updated the event names to con-

form to the specification.

In the model shown in Fig. 1, the variable (green

icon) class train, with superset TRAIN (purple star

icon indicating a carrier set), represents the trains that

currently exist in the HLIII area. There are two cases

for entering an HLIII area, i.e. for creating trains: ei-

ther a train can join from the beginning of the network

(method Env enter HL3 area in class train) , or in the

middle as a result of splitting behind an existing train

(method Env train split in class train). An important

property at this level is: trains cannot overtake, which

is why we introduce the relative ordering of the trains,

represented by the variable association next train be-

tween instances of class train. Therefore, a train can

only exit an HLIII area if there is no train immedi-

ately in front: this is represented by the guard tr /∈
dom(next train) added to method ENV exit HL3 area
of class train.

Trackside and Train Movement: In the context,

we model the network topology using iUML-B class di-

agrams (Fig. 2). First we introduce the TRAIN class

(not shown in figures), then the VSS with their lin-

ear layout enforced by indexing via attribute VSS i ,

Fig. 2a.

In the next refinement, we model train movement.

A train’s position is given by the range of VSS that it

occupies: variable association occupiedBy in Fig. 1. We

only model trains moving forward, hence a train can

only leave a VSS if it occupies the next one. In order
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(a) VSS Properties

(b) TTD Properties

Fig. 2: Class Diagram representing the track in the con-

text

to ensure the no overtaking property, a train can only

move forward if it does not share a VSS with its next

train. Apart from splitting, a train can only enter a

HLIII area from the first VSS and trains can only leave

from the last VSS. Since the no-overtaking property is

fundamental to the safety of the system, we ensure the

model does not break it by introducing the following

invariant, which states that a train cannot occupy a

VSS with an index higher than the lowest indexed VSS

of the next train:2

∀tr1 ,tr2 · (tr2 7→ tr1 ) ∈ next train =⇒
max(VSS i [occupiedBy ∼ [{tr2}]]) ≤

min(VSS i [occupiedBy ∼ [{tr1}]])

To distinguish between trains that are communicat-

ing and those that are not, we introduce sub-states

connected and ghost , of train (Fig.3).

Next, we introduce the TTD which groups sets of

contiguous VSS via association Sections (Fig. 2b). Class

occupiedTTD , which is a sub-class of TTD , represents

those TTD that have at least one of their VSS occupied

by a train. At this level, we distinguish two cases when

a train is leaving the last VSS of the TTD: i) no other

train occupies the TTD and the TTD becomes free (and

is removed from occupiedTTD) or ii) it remains occu-

pied and not free. The same applies to a train exiting

a HLIII area which can also free a TTD.

2 Where ∼ is an inverse relation and [] are relational image.
A concise summary of Event-B syntax is available at http:

//wiki.event-b.org/images/EventB-Summary.pdf.

Fig. 3: Train communication state-machine

Movement Authority: In the final environment

model, we introduce the RBC role which paves the way

for the VBD part. The RBC provides movement au-

thorities (MA) which we assume trains will respect. The

MA is modelled as a variable association ma between

train and VSS . We refine the train state-machine fur-

ther by introducing a parallel state-machine (Fig. 4).

The sub-states, inMission and noMission, distinguish

the mission status of trains. inMission represents trains

that have performed a Start of Mission (SoM) (transi-

tion ENV start of mission), while noMission represents

trains that either did not start, or performed an End

of Mission (EoM) (transition ENV end of mission). The

mission state-machine was introduced as a parallel state-

machine to the communication state-machine so that

trains that lose communication retain their mission sta-

tus. All connected trains have a mission. This is ensured

by the invariant: connected ⊆ inMission

Fig. 4: Parallel state-machines for communication and

movement authority

We also split each of the the radio connection/dis-

connection transitions in Fig. 3 into two cases to dis-

tinguish between SoM and reconnection vs connection

loss and EoM. The transitions ENV start of mission and

ENV end of mission are common to both state-machines.

Note that when a train first enters a HLIII area, it en-

ters as a ghost train with no mission, and when leaving

the HLIII area it also has to exit as a ghost train with

no mission.

When a train performs SoM, it is immediately granted

an MA for the VSS it occupies. However, this does not

http://wiki.event-b.org/images/EventB-Summary.pdf
http://wiki.event-b.org/images/EventB-Summary.pdf
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allow the train to move to new VSS sections. In order to

move forward, the RBC should extend the MA as shown

by the self transition RBC extend ma of the connected

state in Fig. 4. Our assumption that trains with a mis-

sion respect their MA is enforced by the inMission class

invariant: occupiedBy ∼ [{tr}] ⊆ ma[{tr}] 3.

In [16], we discussed how revoking ma (e.g. due to

propagation of an unknown VSS state) can result in an

unsafe state if the actual train position has progressed

sufficiently to occupy the revoked part of the ma. In

the updated version of the specification [1], the notion

of revoking ma has been removed; section 4.2.1.6 states

that the ma will be impacted depending on implemen-

tation. It seems there are special measures for these

cases to ensure safety, that are not part of this spec-

ification document. We therefore simplified our model

by removing the RBC shrink ma event and the associ-

ated unsafe attribute flag described in [16] which was

designed to highlight the unsafe area of operation. We

now verify that safety is ensured by ma which is never

revoked. In Fig. 1, RBC trim ma in the connected class

plays the role of a garbage collector, removing the VSS

the train has left behind.

4.2.2 Modelling the VBD

The VBD cannot see directly what is happening in the

ENV; it depends on periodic reports (PTD) sent by

the train, and it then asynchronously updates the VSS

states. Similarly, the RBC receives information about

VSS state from the VBD. This asynchronous behaviour

relies on the fact that the actual train position can-

not be behind that last reported and is somewhere

within the MA. That is, the reported position is only

used to free VSS after a train has passed. This is em-

bodied in the following invariants of class connected

which relate the actual position occupiedBy with the

reportedPosition seen by the VBD.

inv1: min(VSS i [reportedPosition[{tr}]]) ≤
min(VSS i [occupiedBy ∼ [{tr}]])

inv2: max(VSS i [reportedPosition[{tr}]]) ≤
max(VSS i [occupiedBy ∼ [{tr}]])

In [16], these invariants were part of class inMission,

but the new version of the specification introduces mem-

orised location, which is the last location known to the

VBD, before the train lost its connection or ended its

3 Note that class invariants are implicitly quantified over
instances of the class, hence the antecedent ∀tr · trεinMission

is added automatically.

mission. Fig. 1 presents the association memorisedLoc

between ghost and VSS . The same invariants, inv1 and

inv2, apply to trains with a memorised location.

Movement Authority & VSS Availability: In the

next refinement of the VBD, we distinguish between

the two different modes of MA: FSMA and OSMA. In

FSMA mode the RBC only uses free VSS to extend ma.

In OSMA mode, the RBC can extend ma with any VSS

since we trust the OSMA trains not to crash into the

rear of the next train. This behaviour is modelled in

Fig. 5 by partitioning inMission into two different sub-

states, controlled and trusted representing FSMA and

OSMA modes respectively. The choice between the two

transitions, RBC extend os ma and RBC extend fs ma,

is non-deterministic and determines the mode of the

train.

Fig. 5: Introducing sub-states to represent FSMA and

OSMA modes

Note that when a train performs a SoM, it is granted

OSMA (trusted). This is a design decision we took in [16],

to ensure safety, since a train is initially not connected

when it first enters a HLIII area. In the new version [1],

a new section (4.2.2.1.2) is added which notes the risk

and suggests the use of the ATAF method which uses

the OSMA profile to start the mission.

We can now introduce a safety invariant concerning

the separation of controlled trains; the ma of controlled

trains do not overlap:

∀tr1 , tr2 · tr1 εcontrolled ∧ tr2 εcontrolled \ {tr1} =⇒
ma[{tr1}] ∩ma[{tr2}] = ∅

Hence the RBC can only extend the ma of controlled

trains using VSS sections that are free and not part of

any ma. We introduce a sub-class availableVSS of VSS

to represent the free VSS sections. This will be refined

to the VSS state free in future refinements as we intro-

duce the state-machine of the specification. However,

extending the ma for trusted trains does not have these

restrictions.

At this level (VBD-M5) we model an abstraction of

the VSS state-machine as shown in the top (m5) part of

Fig. 6. We add events to add and remove availableVSS
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by generalising the conditions that apply for the VSS

state transitions. Therefore for adding an availableVSS ,

it either belongs to a free TTD or no train has reported

its position in this VSS, while for now the only condition

for removing a VSS from availableVSS is that it belongs

to an occupied TTD. We also add an event to model

‘no change in the availability of the VSS’.

The semantics of the VSS state-machine is a form

of run-to-completion where a trigger event (e.g. receiv-

ing new TTD/PTD information or timer expiry) re-

sults in all the consequently enabled transitions of the

VSS state-machine being fired to update the affected

VSS states before another trigger event is considered.

Later, we introduce the notion of triggers explicitly as a

scheduling mechanism for the events that require run-

ning the VSS state-machine.

We use the all-replicator of the Event Refinement

Structure (ERS) [20] approach to model the run-to-

completion semantics of the state-machine, where the

state of all the VSS sections must be updated before

completion allows the next cyle of events. The

VBD vss no change event introduced in the last refine-

ment simplifies completion by removing the need to cal-

culate what needs to be completed.

Integrity & Position Reports: Next we introduce

the concept of train integrity. We partition connected

into two sub-states: integral and nonIntegral . We also

refine the PTD position reports to include integrity in-

formation. Therefore we split the method

VBD receive position report into different cases for con-

firming integrity, integrity loss, integrity not available

and train length change. The difference between the po-

sition report events is that when integrity is confirmed,

both front and rear positions are updated. However,

when integrity is not confirmed, only the front position

of the train is updated and in later refinements this will

have an effect on the integrity timers.

VSS State-machine & Timing: We introduce tim-

ing at VBD-M7, by introducing TIMER STATUS which

can be either Idle, Started or Expired . We model time

abstractly with an ordinal scale, non-deterministically

allowing running timers an opportunity to expire. In

later refinement, the expired timers will trigger the VSS

state-machine to run. The timers are initially Idle and

some events or transitions will result in changing the

timer state to Started . For example, a train mute timer

will be started when a position report is received. At

this level we introduce all waiting timers except the

shadow train timer B which depends on VSS sub-states

yet to be introduced. The shadow train timer B, simi-

lar to shadow train timer A (inv3 ), is assigned to each

TTD to mitigate the risk of a shadow train following an

integral train. The timers introduced at VBD-M7 are

defined as shown below, where the last two invariants

represent relationships between the state of timers and

the train state.

1 @inv1: muteTimer ∈ train→ TIMER_STATUS
2 @inv2: waitIntegrityTimer ∈ train→ TIMER_STATUS
3 @inv3: shadowTrainTimerA ∈ TTD →TIMER_STATUS
4 @inv4: ∀tr·tr ∈ dom(memorisedLoc) ⇒muteTimer(tr) = Expired

∨tr ∈ noMission
5 @inv5: ∀tr·tr ∈ train ∧waitIntegrityTimer(tr) = Expired ⇒tr

∈ nonIntegral

The mute and wait integrity timers (inv1 & inv2 )

are total functions from train to TIMER STATUS, so

are assigned to every train entering a HLIII area. In the

case of ghost trains that never establish a connection

with the trackside, these timers will remain Idle and

will never be started. While the shadow train timer A

(inv3 ) is a total function from TTD to TIMER STATUS,

hence it is associated to every TTD section.

Invariant inv4 ensures that a train with a memo-

rised location is either a train with expired mute timer

(i.e. a train that lost its connection with trackside) or a

train that ended its mission. Invariant inv5 ensures that

the state of a train with expired wait integrity timer is

nonIntegral .

At the next VBD-M8 level, we introduce the full

VSS state-machine from the specification document,

Fig. 7. The free state refines the previous availableVSS

and the three states occupied , unknown, ambiguous cor-

respond to non-available VSS sections. Therefore, all

the transitions going to the free state will refine

VBD add available vss, and all the transitions leaving

the free state will refine VBD remove available vss, and

finally the remaining transitions will refine

VBD vss no change.

In Fig. 7, we model the abstract 12 transitions of the

VSS state-machine with additional self-loops for each of

the four states. The numbers in front of the transition

names correspond to the transition numbers shown in

m8 of Fig. 6 and the transitions described in the spec-

ification document.

The guards for self-transitions are the conjunction

of the negated guards of all other transitions from the

same source state. In other words the self-transition

only enables when no other transition is enabled to

leave that state. The grey m8 part of Fig. 6 demon-

strates how the events VBD add available vss,
VBD remove available vss and VBD vss no change are de-

composed to the VSS state transitions.

We also introduce the concept of triggers, which ex-

plicitly initiate the running of the VSS state-machine.

The presence of a trigger is a guard for

VBD start vss update in Fig. 6. We extend the context
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Fig. 6: ERS representation of the VSS state-machine

Fig. 7: The VSS state-machine in iUML-B

to distinguish between PTD, TTD, timer expiry and

startup triggers. (The startup trigger is only used for

the initial state to update the VSS sections starting

initially as unknown). The state-machine cannot start

dealing with another trigger until it completes updating

all the VSS states. To simplify the model we only al-

low one trigger at a time. This has the disadvantage of

always giving some triggers priority over others. In our

case TTD triggers have a higher priority. We also in-

troduce the propagation timers and the remaining wait-

ing timer. When the state-machine completes the VSS

state update (VBD vss update complete), it will reset

the trigger and the propagation timers.

In the last VBD-M9 refinement, we decompose the

state-machine transitions to model the different alter-

natives as presented in the specification table of the

VSS state-machine, and add all the remaining details.

5 Verification & Validation

In our modelling approach, we start by verifying safety

at the earlier stages of the model and, then later fo-

cus on validating the VBD system. We prove safety

using the MA concepts, where in [16], we show that

revoking MA can result in an unsafe state. However,

in the latest version of the specification [1], the notion

of revoking MA is removed. Therefore, we remove the

RBC shrink ma event from our model. However, there

remain questions about how MA can be impacted and

the conditions that can result in its change. MA is an

essential part of the system and to prove safety of the

model, more details should be provided.

After verifying system safety, we focus on introduc-

ing the details that help us in modelling the VBD state-

machine, which is the main concept in the specification

document. The table describing the state transitions of

the VBD state-machine is very difficult to follow, hence

the provided operational scenarios play a major role in

validating the model. For validation, we use ProB and

BMotionStudio to run the scenarios. We use BMotion-

Studio to display the main variables in a tabular format.

This provides the criteria for validating the scenarios.

For example, we present the VSS state, the actual posi-

tion of the trains and their reported positions, as shown

by the upper left part of Fig. 8. We have also used the

CODA Oracle Simulator [21] to record and replay the

event traces when running the scenarios. This is shown

in the lower left part of Fig. 8.
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5.1 Verification

Most of the manually verified proofs are related to in-

variants involving min and max where we used case dis-

tinctions to consider boundary cases. Take, for example,

the proof of the no-overtaking invariant for

ENV front move next in ENV-M0. This proof requires

the consideration of several cases: the train is the fol-

lowing train (tr p), the train is the followed train (tr n),

further sub-cases such as the VSS is in the occupiedBy

etc. In the next iteration of the model, we will look

at improving the degree of automation by introducing

additional theorems.

When defining the variable types, we try to apply

total functions instead of partial functions as much as

possible e.g. reportedPosition and timers, this improves

discovering missing guards and actions. Moreover, we

‘lift’ the state-machine to a set of instances (train).

Therefore, the generated state-machine type invariants

are based on subsets of the instance set (train), which

makes it easier to define the whole domain of the func-

tions.

5.1.1 Proof Statistics

In Table 1, we present the proof statistics of our model.

Our modelling resulted in 621 proof obligations. The

number that are discharged automatically varies de-

pending on the proof tactic profile used and the ma-

chine. Our best results were obtained using a proof tac-

tic profile that includes the ‘relevance filter’ RF (us-

ing ML and PP from the AtelierB provers) and then

runs the SMT solvers (CVC4 and Z3). The relevance

filter is a meta prover that improves the efficiency of

the selected theorem provers by localising relevant the-

orems. In the best case we achieved 95% automatic

proof but this dropped to about 88% on slower ma-

chines. For comparison, the best results using the de-

fault prover configuration of Rodin (after installing Ate-

lierB provers) was 47%.

5.2 Validation: Role of ERTMS Operational Scenarios

When validating the scenarios, we instantiated the model

with the example given in the scenario to be able to an-

imate and compare the results. In some cases, we have

recorded a partial pass. This means we detected some

differences, but managed later to synchronise and get

the same results. Below we describe the results of run-

ning the scenarios and the corresponding changes to the

model.

Table 1: Proof Statistics: Customised Auto-Tactics

Name Total Auto Manual Und.

ENV C00 0 0 0 0
ENV C0 7 7 0 0
ENV C1 2 0 2 0
ENV C3 0 0 0 0
VBD C7 0 0 0 0
VBD C8 0 0 0 0
ENV M00 4 4 0 0
ENV M0 29 26 3 0
ENV M1 18 18 0 0
ENV M2 11 11 0 0
ENV M3 64 62 2 0
VBD M4 107 95 12 0
VBD M5 32 32 0 0
VBD M6 60 60 0 0
VBD M7 66 66 0 0
VBD M8 139 137 2 0
VBD M9 82 75 7 0

Total 621 593 28 0

Scen. 1: A normal scenario for integrity confirmation.

Pass after updating #6A guards as a result of run-

ning step 4. In the specification, #6A states a VSS

changes from occupied to free if an integral train

leaves the evaluated VSS. We added to the Event-B

model an additional condition to take into account

a free TTD.

Scen. 2: Train splitting with confirmed integrity. Pass

after updating #11A as a result of running step 7.

We add a guard to transition #11A that takes into

consideration that an integral train has left the rear

TTD. This condition is explicitly mentioned in the

reference section 4.5.1.4 of the specification.
Scen. 3: Shadow train scenario. Partial pass, we do

not model travel distance, hence shadow train timer

B is started resulting in enabling #11B in step 7.

Scen. 4: Start and end of mission. Pass, similar to sce-

nario 2 because it runs steps 6 to 8 of scenario 2.

Scen. 5: Integrity loss. Partial pass, we have different

states in steps 3 and 7. The main reason of the dis-

crepancy is that we do not model delay in TTD com-

munication and always give priority to TTD triggers

over PTD.

Scen. 6: Train disconnecting and reconnecting. Par-

tial pass, resulted in updating #1B, changing the

state of a VSS from free to unknown, to start the

ghost propagation timer.

Scen. 7: Connection loss and reconnection with VSS

release. Partial pass, resulted in updating transi-

tions related to #8 (changing the state from occupied

to ambiguous), by adding the guard that TTD is

occupied. The additional condition is not described

in the specification table. Moreover fixing the pri-



12 Dana Dghaym et al.

ority guards of #12 (unknown to occupied) over

#5(unknown to ambiguous). We model transition

priorities by negating the guards of the higher pri-

ority transition. Discrepancies in step 6 because we

do not run the state-machine twice and separate

the the update of the front and rear positions of the

train.

Scen. 8: Sweeping the track and the jumping train

effect. Fail, step 4 demonstrates the need to sepa-

rate front and rear position updates by running the

state-machine twice.

Scen. 9: Ghost train. Partial pass, requires strength-

ening self transitions to make the state-machine de-

terministic, this is left for the next iteration when an

automatic tool is developed to generate the run-to-

completion conditions. For now we always give nor-

mal transitions a priority over self-transitions when

running the scenarios.

Looking at the results, our model fails in the case

of jumping trains. Jumping trains, as defined by [1],

are trains that the trackside cannot locate due to the

discrete position reports and/or delay in trackside de-

tection. Jumping trains are not mentioned much in the

specification and the solution of how to avoid this ef-

fect is not very well explained. The problem is we do not

run our VBD state-machine twice to separately update

the front and the rear positions. During our validation

phase, we discovered that this is important to avoid the

jumping train effect but it is not explained in the later

version of the specification [1]. In our current solution,

in the case where integrity is not confirmed, we up-

date the VBD position in one step by prepending the

new position to the front of the current position. We

assumed this would be equivalent to running the state-

machine twice, but it does not eliminate the jumping

trains effect. Listings 1 and 2 show the difference be-

tween assigning reportedPosition (@act1) in the events

VBD receive position report integrity confirmed and

VBD receive position report integrity loss. In the case

where integrity is confirmed, we set the train position

(reportedPosition) to be the reported position (pos) of

the train; hence the rear is updated as well as the front.

However in the case of integrity loss, the train position

becomes the union of the current position (reportedPo-

sition) and the reported position (pos new) so that the

rear is not updated. The witness (keyword with in list-

ing 2) gives the refinement relation between the new

and old parameters. The rest of the guards are needed

to determine the possible position values and the other

actions to set the state of the train as integral or not.

1 event VBD_receive_position_report_integrity_confirmed
2 refines VBD_receive_position_report
3 any tr pos

4 where
5 @instanceType_tr: tr ∈ connected
6 @grd1: pos ⊆ma[{tr}]
7 @grd2: pos 6=∅
8 @grd3: min(VSS_i[pos]) ≤ min(VSS_i[occupiedBy∼[{tr}]])
9 @grd4: max(VSS_i[pos]) ≤ max(VSS_i[occupiedBy∼[{tr}]])

10 @grd5: tr /∈ train_split
11 @grd_contig: VSS_i[pos] = min(VSS_i[pos]) .. max(VSS_i[pos])
12 @grd6: min(VSS_i[pos]) ≥ min(VSS_i[reportedPosition[{tr}]])
13 then
14 @leave_nonIntegral: nonIntegral := nonIntegral \{tr}
15 @enter_integral: integral := integral ∪{tr}
16 @act1: reportedPosition := ({tr} C−reportedPosition) ∪({tr}

× pos)
17 end

Listing 1: Position and Integrity Confirmation Event

1 event VBD_receive_position_report_integrity_loss
2 refines VBD_receive_position_report
3 any tr pos_new
4 where
5 @instanceType_tr tr ∈ connected
6 @grd1: pos_new ⊆ma[{tr}]
7 @grd2: pos_new 6=∅
8 @grd3: min(VSS_i[pos_new]) ≤ min(VSS_i[occupiedBy∼[{tr}]])
9 @grd4: max(VSS_i[pos_new]) ≤ max(VSS_i[occupiedBy∼[{tr}]])

10 @grd5: tr ∈ train_split
11 @grd_contig: VSS_i[pos_new] = min(VSS_i[pos_new]) .. max(

VSS_i[pos_new])
12 @grd6: min(VSS_i[pos_new]) ≥ min(VSS_i[reportedPosition[{tr

}]])
13 with
14 @pos: pos = pos_new ∪reportedPosition[{tr}]
15 then
16 @leave_integral: integral := integral \{tr}
17 @enter_nonIntegral: nonIntegral := nonIntegral ∪{tr}
18 @act1: reportedPosition := reportedPosition ∪({tr}× pos_new

)
19 @act2: train_split := train_split \{tr}
20 end

Listing 2: Position and Integrity Loss Event

In Fig. 8, we show how running step 4 of scenario

8 results in an event error. This problem is captured

by the provers, Fig. 9 where we cannot prove the conti-

guity guard in VBD receive position report integrity loss
because of a weakened guard between VBD-M5 and

VBD-M6 in the case of integrity loss. When decom-

posing the position reporting event to distinguish be-

tween the integrity cases in VBD-M6, we introduce a

new parameter pos new which is contiguous but the

witness replacing pos is not. In this case, running sce-

nario 8 has highlighted a problem in our model, helped

us to understand why we could not discharge the proof

obligation, and why we actually need to run the state-

machine twice to update the VBD position. The solu-

tion is to make a clear distinction between three types

of positions: the environment position, which we mod-

elled as occupiedBy , the position reports and the VBD

position (reportedPosition) which requires running the

state-machine twice in case of PTD and TTD triggers.

Since we need to separate the VBD position update

into two steps, modelling the position report as a pa-

rameter (pos) in the position reporting events is not

enough, and it needs to be recorded as a variable. This
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Fig. 8: Validation Example Using ProB and BMotionStudio

Fig. 9: GRD Proof Obligation

update requires another iteration of the model. After

this we will be able to prove that the VBD positions

are contiguous, but the position reports in comparison

to previous reports are not necessarily contiguous (i.e.

jumping train effect).

6 Towards Implementation of VBD

We previously mentioned that the focus of this work

is on modelling and verification of VBD. However, in

order to be able to model and verify different safety re-

quirements such as no-collision, we also had to model

other parts of the system, i.e. ENV and RBC. In this

section, we briefly explore some of the possible options

for generating executable code from our model and in-

troduce a new approach for generating code using an

experimental tool.

One of the possible approaches for code generation is

to use Tasking Event-B [22] code generation tool. To be

able to use Tasking Event-B, we will need to refine the

VBD model further until we have concrete data struc-

tures and events. Due to this, the first step for using

the tool and also tackling the complexity of the model

(through separating different components of the sys-

tem) could be model decomposition [23]. Decomposing

VBD from the rest of the model will allow us to focus on

this component and refine it towards a concrete level.

At the most concrete level, we should provide explicit

control flow for the model. The tool is able to generate

code for a number of different target languages based

on the provided control structure and the model. The

tool has been used with Rodin 3.3 for generation of ex-

ecutable code from an Event-B model of an intelligent

runtime management software for multi-core embedded

platforms [24].

Tasking Event-B has some limitations that makes it

difficult to use in some cases. For instance, the tool fa-

cilities for defining program structure is restricted (e.g.

nested structures are not supported) and only supports

concrete structures [24].
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Since the gap between the abstract data structures

used in our model and concrete data structures that

should be used in an efficient implementation is rather

large, and due to the aforementioned limitations, Task-

ing Event-B could not be used until the model is further

refined. Based on this, we decided to use a new experi-

mental tool called SEB-CG [25] for providing some sug-

gestions on how we can derive code from our abstract

model.

SEB-CG implements the ideas presented in [26] and

[27] where Event-B models are augmented with a sched-

ule. The schedule makes the control flow between events

explicit from the abstract level by allowing schedule re-

finement along with the Event-B refinement. Similar

to Tasking Event-B, generating executable code with

SEB-CG can be done if the model is refined to a con-

crete level. However, the SEB-CG support for abstract

control structures (i.e. iterations and choices) in addi-

tion to concrete ones (i.e. loops and branches) and its

flexibility in defining nested program structures makes

it useful for deriving the algorithmic structure of the

model even if the final concrete model is not constructed

yet.

Using SEB-CG, we initially introduce an abstract

schedule for the most concrete model of VBD:

1 schedule code0
2 machine VBD_M9_Anim1
3 proc vbd(in:vss_in)
4 begin
5 VBD_start_vss_update
6 do
7 {
8 1A_free_unknown
9 []

10 1B_free_unknown
11 []

12

.

.

.
13 []
14 self_ambiguous
15 []
16 self_occupied
17 }
18 od
19 VBD_vss_update_complete
20 end

The above schedule has two main purposes: 1) it groups

relevant VBD events using the proc construct (not all

events are shown) and 2) it provides explicit abstract

control flow between events. do..od is an abstract itera-

tion and { ... [] ... } is a non-deterministic choice.

Elements in a schedule are executed based on the sched-

ule order. We refine the above abstract schedule towards

a more concrete one as follows:

1 schedule code refines code0
2 machine VBD_M9_Anim1
3 proc vbd(in:vss_in)
4 begin
5 VBD_start_vss_update
6 do

7 if(vss in ∈ free ∧ vss in /∈ updatedV SS ∧
trigger = TTDInfo ∧
(∃ttd.ttd = Sections−1(vss in) ∧ ttd ∈ occupiedTTD
∧ Sections[{ttd}] ∩ma[controlled] = ∅
∧ Sections[{ttd}] ∪ ran(reportedPosition) = ∅))

8 {
9 1A_free_unknown

10 }
11 elseif(vss in ∈ free ∧ vss in /∈ updatedV SS ∧

vss in /∈ ran(reportedPosition) ∧
(∃vss prop.vss prop 6= vss in ∧
Sections−1(vss prop) = Sections−1(vss in) ∧
disconnectPropagationTimer(vss prop) = Expired
∧ (∀v.V SS i(v) > min(V SS i[{vss prop, vss in}])
∧ V SS i(v) < max(V SS i[{vss prop, vss in}]) =⇒

v ∈ (free ∪ unknown))) ∧
vss in /∈ ran(reportedPosition))

12 {
13 1B_free_unknown
14 }

15

.

.

.
16 od
17 VBD_vss_update_complete
18 end

The above schedule refinement refines the abstract choice

given in schedule code0 to concrete if..else branches.

The explicit branch conditions are extracted from the

respective event guards. Since the model is still ab-

stract, some of the computations required for decid-

ing which case should be executed are specified using

event parameters and guards. At this stage, we trans-

late those parameters and their guards to an existential

quantifier. These existential quantifications can be seen

as the specification of other procedures, so if there is

a procedure that satisfies this existential quantification

then the quantification in the branch condition can be

replaced by a procedure call to that procedure (which

should return a boolean value) in code level. Using an

approach similar to [28] it is possible to transform the

guards to a set of pre- and post-conditions in a language
which is supported by a static verifier and then imple-

ment and verify the aforementioned procedures there.

Using the above approach, we can gain insight into

the structure of the final implementation even though

the model is not refined to a concrete level yet. The

difficulty of refining the Event-B model of a complex

example, such as the one in this paper, to a level where

all the event parameters and abstract data structures

can be replaced by concrete variables, suggests the need

for a combinational approach where high level proper-

ties are specified and verified in Event-B and low level

code-oriented properties are verified using a program

verifier.

7 Other Observations

In this section we identify some ambiguities and lim-

itations in the HLIII specification document and sug-

gest improvements. We also suggest some improvements
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to the tools based on our experience of modelling the

HLIII, some of which are already in progress.

Specifications: The specification document [1] men-

tions several times, “while the MA is still valid”, how-

ever the document does not explain when an MA be-

comes invalid. As we have shown in [16], revoking an

MA can lead to an unsafe state. Similarly, the spec-

ification mentions that the MA can be “impacted”,

but does not explain how. In some scenarios (e.g. sce-

nario 6), the MA has changed between steps. We as-

sume this is a mistake in the specification since other-

wise the MA appears to have been revoked. As men-

tioned earlier in Sec. 5.2, the rationale for running the

VSS state-machine twice in the case of TTD and PTD

trigger events, should have been explained and empha-

sised more. This led to us making incorrect assumptions

about the behaviour of our model. In the VSS state-

machine transitions table [1], the condition for #6A is

“integral train has left the evaluated VSS”. When mod-

elling the conditions for the transitions, we missed the

case where TTD is free. Although this is covered by

an integral train leaving the VSS, it was only discov-

ered by running the scenarios. It would be better to

present this condition clearly as a separate transition

(i.e. introduce new condition #6B: TTD is free). More-

over, transition #7A changing the state of a VSS from

occupied to unknown, if the evaluated VSS is part of a

train memorised location with an expired mute timer

or no communication session, has a priority over #6A

which changes the state of the VSS from occupied to

free. Does this priority still hold if TTD is free?

In scenario 6, which covers the case of a train losing

its radio communication and later reconnecting, there

is a discrepancy with Sec. 3.4.2.2.2 in p.16 of [1], which

describes the change of the VSS state-machine to free

as one of the stopping events for the disconnect propa-

gation timer. On the other hand, in steps 4 & 5, when

vss12 becomes free the timer should be stopped ac-

cording to p.16. Hence it cannot expire in step 5. The

scenario also did not mention the start of the propaga-

tion timer for vss21 and vss22, because both sections

are part of a train MA for which the mute timer has

expired. In this case one of these timers can expire and

the transition should be #1C instead of #1D in step 5

of scenario 6, i.e. the VSS state will become unknown

due to the expiry of a propagation timer on the same

TTD (#1C) rather than a different TTD (#1D).

Tooling: The iUML-B diagrammatic notation, helped

us to express and communicate the models between the

team members and followed naturally from our system

Fig. 10: Textual Representation of iUML-B

analysis and review meetings. In later stages when sub-

stantial reworking of the model was required, the di-

agrams somewhat hindered progress because changes

often have to be repeated throughout the refinement

chain. As a result we intend to improve the refactoring

features of iUML-B tooling.

Modelling a specification such as HLIII involves it-

erative review and refactoring over refinements which is

made more cumbersome by having to re-draw diagrams.

Textual representations can be more efficient to refac-

tor using simple text copy and paste operations. We are

currently developing a textual representation of iUML-

B using Xtext [29], which is also beneficial for tracking

changes and supporting version control. Fig. 10 shows a

snippet of a textual representation of a state-machine.

It would have been useful to be able to structure

the model into components for VBD, RBC and ENV.

Model composition tools, based on inclusion of ma-

chines [30], are available but are not yet compatible

with iUML-B. We are developing a containment mech-

anism so that iUML-B can be used with inclusion. In

future work we will re-structure the model to assess

these composition techniques.

Our experiences of replaying large and detailed sce-

narios gave us strong motivation to improve tool sup-

port for running scenarios. The CODA Oracle Simula-

tor has some useful features but still requires each event

of the system and controller to be manually selected in

the correct sequence. When replaying scenarios any dif-

ferences in state or enabledness due to a change in the

model are discovered and halt the reply. This could be

improved if the user was able to configure which are the

important observable variables and events that should

match the recording and which are internal detail that

may be allowed to vary.
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8 Comparison

Our work on the HLIII specification began in the case

study track of the ABZ 2018 conference. In this sec-

tion we compare our approach [16] with the six other

contributions to the ABZ 2018 Case study track.

Three of these approaches [31,32,33] are based on

Event-B and use theorem proving to verify the main

principles behind the specification irrespective of sce-

narios. These contributions, like ours, are based on ab-

straction and refinement rather than the operational

details of the VBD scenarios. Of these theorem proving

contributions, Mammar et al. [33] covered the most de-

tail including the VBD state-machine behaviour, albeit

in a rather cumbersome last refinement with a single

update event. Fotso et al. [32] use a goal structured

analysis (KAOS) to drive the refinement structure but

do not model the closed system (i.e. including envi-

ronment). Abrial’s Event-B contribution [31] focuses

on synthesising a clearer statement of the requirements

and consequently does not progress beyond the first ab-

stract model. The model does however include a sub-

stantial, though simplified, subset of the requirements

which prove the main principle of the VBD. We agree

with Abrial that the specification is operational (or an-

alytic) in nature. Hence our systems analysis to extract

the requirements of the VBD subsystem and our re-

ports of increasing our understanding through iterative

modelling attempts.

The remaining three contributions do not attempt

any abstraction but model the concrete specification as

faithfully as possible in order to model check or ani-

mate it to discover bugs against the scenarios. Cunha

et al. [34] do this using Electum (an extension of Alloy)

and the Analyzer model checker, and Arcaini et al. [35]

use Promela with the Spin model checker. Hanson et al.

use ProB to execute ‘classical’ B [36] to demonstrate the

specification controlling an actual (test) railway system.

This contribution does not need to model the environ-

ment since it validates via ‘Model-in-the-loop’.

Although our ABZ contribution lacked the VBD

state-machine behaviour needed to validate scenarios,

we have now ‘caught up’ by making further refinements

to model the state-machine via a triggering process. In

this paper we attempt to achieve the best of both: the

proof of the abstract principles of safe operation and

the validation of the operational specification against

its scenarios.

Train control is a familiar domain for Formal Meth-

ods, and specifically for B and Event-B-based approaches.

Butler et al [37] give a methodical treatment of the di-

agrammatic modelling of the rail interlocking system

Railground with both iUML-B and Event Refinement

Structures [38]. In [19], the authors present the Event-B

development of a Communications-based Train Control

(CBTC) system from Hitachi Ltd. Their focus is on the

use of Abstract Data Types (ADTs) to manage the com-

plexity of modelling a graph-based rail network and its

dynamics. This example is comparable to European Rail

Traffic Management System (ERTMS) Level 3 and uses

moving blocks. The authors further proposed [39] the

extension of iUML-B to support diagrammatic mod-

elling of ADTs, using the same Railground case study

as [37].

Other related work such as [40] on Hybrid ERTMS

Level 3 is based on moving blocks. These models are

hybrid, being concerned with continuous modelling of

exact train position and speed reporting. This ABZ2018

case study is the first formal examination of fixed vir-

tual blocks that we are aware of.

9 Conclusions

To summarise, we have performed a full formal devel-

opment involving the following:

– Systems analysis to synthesise requirements from a

detailed operational specification.

– Iterative formal modelling to develop our under-

standing of the requirements.

– Abstraction of the environment and important safety

properties as a formal model.

– Refinement to introduce an abstract model of the

VBD control component.

– Refinement to introduce operational details of the

VBD control component.
– Use of diagrammatic modelling notations to increase

understanding and structuring of the models.

– Validation of the models by animation of the given

scenarios.

– Preliminary work towards generating an implemen-

tation.

The result is a formal model of the VBD specification

that is proven to be safe (with some caveats that still

need clarification) and has been demonstrated to accu-

rately represent the specification’s behaviour.

Our formal verification using theorem provers, of

the safety of the HLIII specification has been extremely

beneficial in identifying potential problem areas. While

industry experts are aware of the engineering decisions

behind the specification, unverifiable safety requirements

have encouraged re-consideration of some critical be-

haviours in the specification. To influence a major Euro-

pean standard is a significant achievement. Our model

captures the abstract principles behind HLIII and re-
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fines them with the full operational details of the spec-

ified state-machine behaviour.

For validation, we used a ‘scenario checker’ plug-in

tool to enhance ProB animation and BMotionStudio

to visualise the state being checked. We discovered one

area in the scenarios, where our model deviates from the

expected behaviour. The failure of the ‘jumping trains’

scenario requires a new iteration of the model, where

we will mainly focus on updating the VBD front and

rear position separately.

A List of Abbreviations

ADT Abstract Data Type
Rodin Rodin platform
ERS Event Refinement Structure
CBTC Communications-based Train Control
ERTMS European Rail Traffic Management System
HLIII Hybrid ERTMS Level 3
VBD Virtual Block Detector
ENV environment
RBC Radio Block Centre
VSS Virtual Sub-Section
TTD Trackside Train Detection
PTD Positive Train Detection
SoM Start of Mission
EoM End of Mission
TIMS Train Integrity Monitoring System
MA Movement Authority
FSMA Full Supervision Movement Authority
OSMA On-Sight Movement Authority
PO Proof Obligation
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