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Abstract—The utility optimization problem of radio access
network-slicing aided mobile systems is formulated considering
both throughput and delay demands from a mobile network
operator’s perspective, whilst relying on stochastic geometry and
Lyapunov optimization. Then a joint virtual resource optimiza-
tion algorithm is proposed to dynamically allocate both virtual
spectral and the power resources. Our numerical results support
both the high-throughput slice and the low-delay slice and
quantify the associated throughput vs. delay trade-off. Moreover,
we compare the proposed algorithm with the benchmark one,
which ensures better utility.

Index Terms—radio access network slicing, utility, stochastic
geometry, Lyapunov optimization.

I. INTRODUCTION

As a salient 5G networking technique, network slicing [1],

[2] is proposed for supporting diverse customized services

with various resource constraints. The Radio Access Network

(RAN) slicing [3], [4] constitutes an important part of the

end-to-end network slicing, which is capable of dynamically

allocating the RAN resources, such as the virtual base stations

(vBSs), as well as the spectral and power resources.

There is rich literature on the resource management and

performance analysis of RAN slicing [5]–[9]. Specifically,

Sallent et al. [5] analyze the radio resource management

functionalities of the RAN slicing in a multi-cell network,

which can be used for splitting the radio resources among

the RAN slices. Moreover, there are numerous performance

metrics for characterizing a virtual slicing aided network.

For example, Zhang et al. [6] consider the flow-rate over

the link as the optimization objective function of network

slicing. Shi et al. [7] carry out the tradeoff analysis between

energy efficiency and delay in wireless network virtualization,

whilst guaranteeing the users’ quality of service. However,

with the diverse requirements of the slices, it is a challenge to

comprehensively characterize several slices using only a single

performance metric.

In fact, RAN slices may also be considered as a set of

virtual sub-networks based on the same physical network,

and ideally a unified criterion is needed to describe the

performance of the entire network. Therefore, Caballero et

al. [8] define the concept of utility gains for quantifying

the users’ rate improvement gleaned from dynamic resource
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sharing across RAN slices. Similarly, Ye et al. [9] study the

optimal network utility dependence on the different traffic

statistics in a dynamic radio resource slicing aided framework.

However, there is a paucity of literature on the utility analysis

considering both throughput and delay demands in RAN slices,

which is hence the focus of our work.

Firstly, we will study the optimal utility of both the high-

throughput and the low-delay slices from the perspective

of mobile network operator (MNO) by invoking stochastic

geometry theory. Secondly, by using Lyapunov optimization,

a joint virtual resource optimization algorithm is proposed

for maximizing the utility, which dynamically allocates both

virtual spectral resources and the vBSs’ power. Finally, nu-

merical results will demonstrate that a pair of customized

RAN slices can be supported, which ensures better utility than

the benchmark algorithm. Simultaneously, there is the tradeoff

between delay and throughput in both the slices once the QoS

requirement is satisfied.

II. SYSTEM MODEL

A. High-throughput Slice and Low-delay Slice

Without loss of generality, we consider the downlink of a

RAN, in which N physical base stations (BSs) and multiple

user equipment (UE) are randomly distributed in the Euclidean

plane having an area of Sarea. We rely on the homogeneous

Possion Point Process (PPP) φB having a density of λB and

φk to model the BSs and UEs deployment respectively [10],

where N = λBSarea. Furthermore, a buffer is attached to each

physical BS for the data queues. The bandwidth of the system

is B and the power of each physical BS is PB . We define the

time slots as a time interval [t, t+ 1), where t ∈ {0, 1, 2, ...}
and the duration of every slot is τ .

In this system, the MNO needs to provide a pair of slices

for the users’ high-throughput and low-delay services. Firstly,

a physical BS may be mapped into one or two vBSs, each of

which is associated with a specific service by virtualization.

And the communication resources in the system are abstracted

into virtual resources to realize sharing. Next, the MNO

determines the vBS deployment as well as the vBS’s power

and virtual spectrum allocation for each service at slot t for

creating a high-throughput slice and a low-delay slice, defined

as Slice 1 and Slice 2, respectively.

Specifically, we define the activation probability ps(t)
1 to

indicate a particular vBS’s deployment in slice s (s∈{1, 2})

at slot t, the vBS’s power allocation factor ηs(t) as the vBS’s

power ratio of slice s at slot t and the virtual spectrum alloca-

tion factor ρs(t) as the ratio of spectral resources allocated

1Note that s (s∈{1, 2}) in all symbols represents slice 1 and slice 2.
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to slice s at slot t. Since the two slices are independent

of each other, the location of the vBSs and of the UEs

in the RAN slice s at slot t can be represented by the

dynamic homogeneous thinning PPP φVBs associated with the

density of λVBs (t) = ps(t)λB and φks with the density of

λks(t), where ps(t) ∈ (0, 1]. Furthermore, we can express

the power of each vBS in slice s at slot t, which is given

as PVB
s (t) = ηs(t)NPB

λVB
s (t)Sarea

= ηs(t)
ps(t)

PB . Additionally, we have

ρs(t) =
λk
s (t)bs(t)
λVB
s (t)B

, where bs(t) indicates the spectra allocated

to each user in slice s at slot t by the MNO, and λks(t)/λ
VB
s (t)

represents the number of users associated with a vBS in

slice s at slot t. Hence the bandwidth allocated to slice s
at slot t is ρs(t)B. Let us assume that there is no intra-cell

interference, and that the bandwidths assigned to the two slices

do not overlap with each other in every slot, hence there is no

interference between the slices, which is an explicit benefit of

their isolation.

B. Utility Definition of RAN Slices

Without loss of generality, each UE in slice s is associated

with the closest vBS at slot t and rk,min
s (t) represents the

distance between them. Hence, for a typical user k in slice s
at slot t, the signal to interference plus noise ratio (SINR) can

be expressed as:

SINRk
s (t) =

PVB
s (t)hk,VBi

s (t)
(

rk,min
s (t)

)−α

Iks (t) + σ2
, (1)

where hk,VBi
s (t) is the channel gain between user k and its

nearest vBS VBi in slice s at slot t, which follows an

exponential distribution with unit mean, α denotes the path

loss exponent, while σ2 is the noise power, and Iks(t) is the

interference arriving from other vBSs in slice s at slot t, which

is expressed as:

Iks (t)=
∑

j∈φVB
s ,j 6=i

PVB
s (t)h

k,VBj
s (t)

(

r
k,VBj
s (t)

)−α

. (2)

To indicate the vBS’s dynamic deployment density, the

activation probability ps(t) of the vBSs in slice s at slot t
is evaluated according to the users’ SINR status in the current

slot, defined as the probability that the users in slice s achieve

the current target SINR Ts. As a special case, when α=4, the

activation probability can be derived as:

ps(t)=ps [Ts, ηs (t) , ρs (t)]

=Er

{

P
[

SINRk
s (t)>Ts

∣

∣

∣
rk,min
s (t)

]}

=

∫ ∞

0

P

[

hk,VBi
s >

Ts

(

rk,min
s (t)

)α (

Iks (t)+σ
2
)

PVB
s (t)

∣

∣

∣
rk,min
s (t)

]

· e−πλVB
s (t)(rk,min

s (t))22πλVB
s (t)rk,min

s (t)drk,min
s (t)

α=4
=

√

π

es (t)
exp

(

ds
2 (t)

4es (t)

)

Q

(

ds (t)
√

2es (t)

)

,

(3)

where ds (t) = 1+ρs (t)
√
Ts

(

π
2 −arctan

(

1√
Ts

))

, es (t) =

σ2Ts

π2ps(t)ηs(t)PBλ2

B

and Q (x) = 1√
2π

∫∞

x
exp

(

−y2/2
)

dy repre-

sents the standard Gaussian tail probability. As we can see,

ps(t) is inversely proportional to ηs(t) and ρs(t), respectively.

According to the classic Shannon formula and stochastic

geometry theory [10], the data rate Rk
s (t) that the RAN slice

s can provide for user k at slot t when α=4 is given as:

Rk
s (t) =bs(t) · E

[

log2

(

1 + SINRk
s (t)

)]

α=4
=
bs(t)

ln 2

∫ ∞

0

√

π

cs (x, t)
exp

(

a2s (x, t)

4cs (x, t)

)

Q

(

as (x, t)
√

2cs (x, t)

)

dx,
(4)

where as (x, t) = 1 + ρs (t)
√
ex−1

(

π
2 −arctan

(

1√
ex−1

))

and cs (x, t) =
σ2(ex−1)

PVB
s (t)(πλVB

s (t))2
. Consequently, the downlink

throughput in RAN slice s at slot t may be expressed as:

Rsum
s (t) = Rsum

s

[

ηs (t) , ρs (t) , λ
k
s (t)

]

= λk
s (t)Sarea

[

Rk
s (ηs (t) , ρs (t))

]

.
(5)

The time-averaged expectation of the throughput can be de-

fined as

R
sum

s [ηs (t) , ρs (t)] = lim
t→∞

1

t

∑t−1

τ=0
E {Rsum

s (τ)}. (6)

At the same time, we can express the power consumed at

slot t by the physical network as:

Psum (t) = Psum [η1 (t) , η2 (t)]

= PVB
1 (t)λVB

1 (t)Sarea + PVB
2 (t)λVB

2 (t)Sarea

= [η1 (t) + η2 (t)]NPB .

(7)

The bandwidth used at slot t is:

Bsum (t)=Bsum [ρ1 (t) , ρ2 (t)]=[ρ1 (t)+ρ2 (t)]B. (8)

Next we analyze the delay of RAN slice s. Let the

vectors As(t) = {A1
s(t), A

2
s(t), ..., A

k
s (t), ...} and Qs(t) =

{Q1
s(t), Q

2
s(t), ..., Q

k
s (t), ...} represent the processes of ran-

dom data arrivals and current data queue backlogs in RAN

slice s at slot t, respectively, where As(t) is independent and

identically distributed (i.i.d.) over time, as governed by the

arrival rate γs. Naturally, the data arrival rate of slice 1 is

higher than that of slice 2, i.e. γ1 > γ2. We model the queuing

process of the data requested by user k of slice s at slot t as

Qk
s(t+ 1) = max[Qk

s (t)−Rk
s (t)τ, 0]+Ak

s (t),∀k, s. (9)

A network is stable, when all these discrete queues Qk
s(t)

are mean rate stable, i.e. they satisfy the following condition

[12]:

lim
t→∞

E{|Qk
s (t)|}

t
= 0. (10)

When the network is stable, based on Little’s Theorem [11],

we can get the average delay of the two slices according to

the average data queue length:

D
k

s = Q
k

s/γs, (11)

where Q
k

s = lim
t→∞

1
t

t−1
∑

τ=0
E
{

Qk
s(τ)

}

is the time-averaged data

queue length of user k in slice s. Furthermore, D
k

s =

lim
t→∞

1
t

t−1
∑

τ=0
E
{

Dk
s (τ)

}

is the time-averaged delay of user k

in slice s and Dk
s (t) is the queuing delay of user k at slot t

in slice s.
From the MNO’s perspective, utility is defined as the

difference between the income represented by the gain gleaned
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and the cost of the entire network. More specifically, for the

throughput-guaranteed slice 1, we define the utility as the

difference between the income defined by the throughput gain

and the cost quantified in terms of the power and spectral

resources in slice 1, formulated as:

U1 (t)=m1R
sum
1 (t)− [βη1 (t)NPB + δρ1 (t)B] , (12)

where m1 is the unit price of throughput gain charged by the

MNO, while β and δ are the power and spectral resource unit

prices, respectively. For the delay-guaranteed slice 2, we define

the utility as the income defined by the delay gain minus the

cost in terms of the power and spectral resources in slice 2,

namely:

U2(t)=
∑K2(t)

k=1

[

ψ−m2Q
k
2(t)

]

−[βη2(t)NPB+δρ2(t)B], (13)

where m2 is the unit price of delay gain charged by the

MNO, while ψ is the initial maximum benefit of slice 2 [13].

Furthermore, K2(t)=λ
k
2(t)Sarea denotes the total number of

users in slice 2 at slot t. Therefore, we have the system-wide

utility for the whole network, which is the sum of the utility

for each slice:

U (t) = U1 (t) + U2 (t)

=

{

m1R
sum
1 (t)+

∑K2(t)

k=1

[

ψ−m2Q
k
2 (t)

]

}

−[βPsum (t)+δBsum (t)] .

(14)

Similarly, the time-averaged expectation of the utility is given

by

U [η1 (t) , η2 (t) , ρ1 (t) , ρ2 (t)] = lim
t→∞

1

t

∑t−1

τ=0
E {U (τ)}. (15)

III. PROBLEM FORMULATION AND SOLUTION

In this section, we develop the optimal utility under specific

throughput and delay constraints. Mathematically, the problem

can be formulated as

max U (η1 (t) , η2 (t) , ρ1 (t) , ρ2 (t))

s.t. C1 : R
sum

s ≥ Rav
s , ∀s,

C2 : D
k

s ≤ ωs, ∀k, s,

C3 : η1(t) + η2(t) ≤ 1, ηs(t) ∈ (0, 1) , ∀t, s,

C4 : ρ1(t) + ρ2(t) ≤ 1, ρs(t) ∈ (0, 1) , ∀t, s,

(16)

where Rav
s and ωs denote the minimal average throughput and

the maximal tolerable delay requested by the users in slice s,
respectively. To elaborate, C1 is used to satisfy the average

throughput Rav
s requested by users, while C2 guarantees the

stability of the queues and limits the average delay in RAN

slices. Furthermore, C3 and C4 represent the non-negativity

and the value range of the vBS’s power allocation factor and

the virtual spectrum allocation factor, respectively.

Based on the general Lyapunov theory [12], we transform

the average rate requirement C1 in (16) into a virtual rate

queue stability problem C̃1 in (19). The virtual rate queue is

defined as Gk
s(t), where Gk

s(0) = 0 and

Gk
s (t+ 1) = max[Gk

s (t) +Rav
s −Rk

s (t), 0], ∀k, t, s. (17)

By jointly taking into account the constraint C2 and the data

queuing process (9), when the delay exceeds ωs, the received

information becomes stale. Hence the network temporarily

refuses to process new arrivals. Then the constraint C2 in

(16) can be equivalently written as C̃2:

Qk
s (t+1)=

{

max[Qk
s (t)−R

k
s (t)τ, 0]+A

k
s (t), if D

k

s ≤ωs,

max[Qk
s (t)−R

k
s (t)τ, 0], otherwise.

(18)

Then, (16) can be equivalently reformulated as:

max U [ρ1 (t) , ρ2 (t) , η1 (t) , η2 (t)]

s.t. C̃1 : Gk
s (t) is mean rate stable, ∀k, s,

C̃2, C3, C4.

(19)

To tackle C̃1 and C̃2 in (18), a combined vector, Θ(t) =
[Qs(t), Gs(t)], is defined for representing the queuing states

of all queues, where Qs(t) and Gs(t) are virtual queue sets.

Then, we can get the conditional Lyapunov drift △[Θ(t)]:

∆[Θ(t)] = E{L[Θ(t+ 1)]− L[Θ(t)] |Θ(t)}, (20)

where L[Θ(t)] is the Lyapunov function given by

L[Θ(t)] =
1

2

∑2

s=1

∑Ks(t)

k=1

[

(

Qk
s (t)

)2

+
(

Gk
s (t)

)2
]

. (21)

The drift-plus-penalty expression here can be obtained as

F (t) = ∆[Θ(t)]−V ·E[U(t)], (22)

where V ≥0 is the weight factor between the utility and delay.

We can then express the upper bound of F (t) by invoking

Lyapunov’s optimization theory [12] as:

F (t)≤B+
∑2

s=1

∑Ks(t)

k=1

{

ξsQ
k
s (t)E

[

Ak
s (t)|Θ(t)

]}

+
∑2

s=1

∑Ks(t)

k=1

{

Gk
s (t)E

[

Rav
s −Rk

s (t) |Θ(t)
]}

−

∑2

s=1

∑Ks(t)

k=1

{

Qk
s (t)E

[

Rk
s (t) τ |Θ(t)

]}

−V ·E [U(t)|Θ(t)],

(23)

where ξs is a function of Qk
s(t). If Qk

s(t)≤ωs, ξs = 1;

otherwise, ξs = 0, which satisfies C̃2 in (19). Furthermore,

B>0 is a constant.

Specifically, the optimal solution of the above problem in

(19) can be obtained by minimizing the upper bound of F (t)
slot by slot with the aid of stochastic optimization theory [12],

i.e., by solving the problem below:

min
∑2

s=1

∑Ks(t)

k=1

[

ξsQ
k
s (t)A

k
s (t)+G

k
s (t)

(

Rav
s −Rk

s (t)
)]

−
∑2

s=1

∑Ks(t)

k=1

[

Qk
s (t)R

k
s (t) τ

]

−V [U(t)]

s.t. C̃3 : η1(t) + η2(t)=1, ηs(t) ∈ (0, 1) , ∀t, s,

C̃4 : ρ1(t) + ρ2(t)=1, ρs(t) ∈ (0, 1) , ∀t, s.

(24)

At this point, we have transformed the challenging original

problem (16) into the problem (24) that is easier to solve.

However, to ensure that the optimal solution is obtained, the

constraint C3 and C4 must be converted into C̃3 and C̃4,

respectively. Therefore, we can propose an efficient joint vir-

tual resource optimization algorithm based on the classic drift-

plus-penalty algorithm of [12] as summarized in Algorithm 1.

Here we are assuming that the power- and spectral-resources

in the network are sufficient to satisfy the users’ average

data rate and delay requirements. In particular, the solution

of (24) can be found using the DIRECT algorithm of [14] at
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Algorithm 1 Joint virtual resource optimization algorithm to

solve (16).

1: Initialization: Qk
s (0)=0, Gk

s (0)=0, and U (0)=0, ∀k, s.
2: Repeat:
3: Update vBS’s deployment density λV B

s (t) according to (3).
4: Update vBS’s power allocation factor ηs(t) and the virtual

spectrum allocation factor ρs(t) according to (24).
5: Let t = t+ 1.
6: Update Qk

s (t), G
k
s (t) and U(t) according to (18), (17) and (14),

respectively.
7: Stop when t = T , where T is the total number of time slots.

a complexity order of O(TW 2), where W =max[ηs(t), ρs(t)]
is the maximum of the sampling number ηs(t) and ρs(t).

Furthermore, the theoretical bounds of the utility can be

derived.

Theorem 1: The utility in (16) is bounded by

Uopt ≥ U=U [η1 (t) , η2 (t) , ρ1 (t) , ρ2 (t)] ≥ Uopt −
B

V
, (25)

where Uopt is the theoretical optimal value of U .

Proof: Assume that Rk∗
s (t) and U∗(t) result from a

feasible virtual resource allocation policy {ps(t), ηs(t), ρs(t)}
of problem (16) at slot t. The following conditions can be

obtained for any δ > 0 and ε > 0 according to stochastic

optimization theory [12]:

E[Ak
s (t)−Rk∗

s (t)τ |Θ(t)] = E[Ak
s (t)−Rk∗

s (t)τ ] ≤ −ε, (26)

E[U∗(t)|Θ(t)] = E[U∗(t)] ≥ Uopt + δ, (27)

E[Rk∗
s (t)|Θ(t)] = E[Rk∗

s (t)] ≥ γs + ε, (28)

E[Rav
s −Rk∗

s (t)|Θ(t)] = E[Rav
s −Rk∗

s (t)] ≤ δ. (29)

Upon substituting (26)-(29) into the right-hand side of (23)

and letting δ → 0, we arrive at the following inequality:

∆[Θ(t)]−V E[U(t)|Θ(t)]≤
∑2

s=1

∑U(t)

u=1
(ξs−1)Qk

s (t)γs

−ε
∑2

s=1

∑Ks(t)

k=1
Qk

s (t)−V U
opt+B.

(30)

Taking the expectation of both sides of (30), and using the

telescope sum over t ∈ {0, 1, ..., H−1} for the result as well

as exploiting the fact that Qk
s(t)≥0 and ξs−1≤0, we have

E{L[Θ(H)]}−E{L[Θ(0)]}−V

H−1
∑

t=0

E[U(t)]≤HB−HV Uopt, (31)

where H represents the number of time slots.

Dividing both sides of the above inequality by VH yields

the following:

−E{L[Θ(0)]}

V H
−

1

H

∑H−1

t=0
E[U(t)] ≤

B

V
− Uopt. (32)

Upon letting H → ∞ and considering the equation

E{L[Θ(0)]}≥0, we arrive at the following conclusion

U=
1

H

∑H−1

t=0
E[U(t)]≥Uopt−

B

V
. (33)

Thus, (25) is proved.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we provide numerical results for validating

the theoretical analysis. We assume that the transmission

power of a physical BS is PB=40W and the bandwidth

available in the system is B=18MHz. In addition, we set

λu=0.00025(/m2), λB=0.00001(/m2), Sarea=2km×2km
and τ = 1ms/slot. For ease of analysis, we set the

unit prices are m1=0.001(s/bits), m2=1(/bits), β=50(/W ),
δ=0.005(/Hz) and the initial maximum benefit is ψ=800.

Furthermore, we set the thresholds to Rav
1 =900Mbps,

Rav
2 =400Mbps, ω1=10ms and ω2=2.5ms. Moreover, we

compare our proposed algorithm to the benchmark algorithm

of the even resources allocation between two slices [15], which

is defined as the “even allocation based algorithm”.

Fig. 1 shows several utility curves versus the data arrival

rate γ1 and γ2. The system-wide utility and the utility of

slice 1 are seen to increase near-linearly, but then they tend

to gracefully saturate upon further increasing γ1 beyond 800

Mbps. This indicates that as expected, the MNO could get

a higher utility at higher traffic loads. However, if the traffic

load is excessive, its utility remains unchanged because of the

associated resource limitation. By contrast, as γ2 increases,

the system-wide utility and utility of slice 2 decrease near-

linearly. This is because the increase of traffic loads leads to

the escalation of delay in slice 2, which has a detrimental

impact on both the utilities. Observe that the system-wide

utility obtained by the even allocation based algorithm is

much lower than that obtained by our proposed algorithm, so

our algorithm guarantees that the MNO gets a higher utility.

Finally, because slices 1 and 2 are isolated from each other,

the traffic load of one slice has little effect on the utility of

another slice.

Fig. 2 and Fig. 3 depict the throughput and delay of slice

1 and 2 versus the data arrival rate γ1 and γ2, respectively.

As expected, upon increasing γ1, the throughput of slice 1

gradually increases first and then saturates when the users’

arrival rate becomes excessive, which is a consequence of the

inherent resource limitation. At the same time, the delay of

slice 1 increases near-linearly with γ1 under the limit of ω1,

which indicates that our proposed algorithm gives priority to

a high throughput for slice 1 even at a high traffic load. The

trends of slice 2 are similar to those of slice 1. However, slice

2 avoids exceeding the max tolerable delay 2.5 ms, which is

much lower than the delay of slice 1. The throughput of slice

2 is also much lower than that of slice 1. It is worth noting that

since the two slices are isolated from each other, the change

of one slice’s traffic load does not affect the QoS of the other

slice.

Fig. 4 shows the throughput versus average delay of slices

1 and 2. Observe in Fig. 4 that increasing the throughput

is always at the expense of increasing the delay of slice 1.

Similarly, the minimization of delay is always accompanied

by a throughput-reduction in slice 2. There is an inevitable

tradeoff between the delay and throughput in both the slices,

once the QoS requirement is satisfied.
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Figure 1. Utilities versus data arrival rate γ1 and γ2.
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Figure 2. Throughput and average delay of slice 1 versus γ1.
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Figure 3. Throughput and average delay of slice 2 versus γ2.

2 4 6 8
920

930

940

950

960

970

980

990

1000

1010

1020

T
h

ro
u

g
h

p
u

t 
o

f 
s
lic

e
 1

 (
M

b
p

s
)

Average delay of slice 1 (ms)

Slice 1

0.5 1 1.5 2
420

440

460

480

500

520

540

560

580

600

620

T
h

ro
u

g
h

p
u

t 
o

f 
s
lic

e
 2

 (
M

b
p

s
)

Average delay of slice 2 (ms)

Slice 2

Figure 4. Throughput versus average delay of slices 1 and 2.

V. CONCLUSIONS

In this paper, the optimal utility considering both throughput

and delay demands of RAN slicing has been analyzed. Firstly,

the problem was formulated relying on stochastic geometry

theory to maximize the utility. Then, by using Lyapunov

optimization, we carried out joint virtual resource optimization

by integrating the virtual spectrum and power allocation.

Finally, the numerical results verified that both the high-

throughput slice and the low-delay slice could be supported

and the associated throughput vs. delay trade-off could be

struck. Also, our proposed algorithm ensured better utility than

the even allocation based algorithm.

REFERENCES

[1] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini and H. Flinck, “Network
Slicing and Softwarization: A Survey on Principles, Enabling Technolo-
gies, and Solutions,” IEEE Commun. Surveys Tuts., vol. 20, no. 3, pp.
2429-2453, Third Quarter 2018.

[2] T. Xu, M. Zhang, H. Hu and H. Chen, “Sliced Spectrum Sensing-
A Channel Condition Aware Sensing Technique for Cognitive Radio
Networks,” IEEE Trans. Veh. Technol., vol. 67, no. 11, pp. 10815-10829,
Nov. 2018.

[3] K. Koutlia, A. Umbert, S. Garcia and F. Casadevall, “RAN slicing
for multi-tenancy support in a WLAN scenario,” 2017 IEEE NetSoft,
Bologna, 2017, pp. 1-2.

[4] P. L. Vo, M. N. H. Nguyen, T. A. Le and N. H. Tran, “Slicing the Edge:
Resource Allocation for RAN Network Slicing,” IEEE Wireless Commun.

Lett., vol. 7, no. 6, pp. 970-973, Dec. 2018.

[5] O. Sallent, J. Perez-Romero, R. Ferrus and R. Agusti, “On Radio Access
Network Slicing from a Radio Resource Management Perspective,” IEEE

Wireless Commun., vol. 24, no. 5, pp. 166-174, October 2017.
[6] N. Zhang, Y. Liu, H. Farmanbar, T. Chang, M. Hong and Z. Luo,

“Network Slicing for Service-Oriented Networks Under Resource Con-
straints,” IEEE J. Sel. Areas Commun., vol. 35, no. 11, pp. 2512-2521,
Nov. 2017.

[7] Q. Shi, L. Zhao, Y. Zhang, G. Zheng, F. R. Yu and H. Chen, “Energy-
Efficiency Versus Delay Tradeoff in Wireless Networks Virtualization,”
IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 837-841, Jan. 2018.

[8] P. Caballero, A. Banchs, G. de Veciana and X. Costa-Prez, “Multi-Tenant
Radio Access Network Slicing: Statistical Multiplexing of Spatial Loads,”
IEEE/ACM Trans. Networking, vol. 25, no. 5, pp. 3044-3058, Oct. 2017.

[9] Q. Ye, W. Zhuang, S. Zhang, A. Jin, X. Shen and X. Li, “Dynamic Radio
Resource Slicing for a Two-Tier Heterogeneous Wireless Network,” IEEE

Trans. Veh. Technol., vol. 67, no. 10, pp. 9896-9910, Oct. 2018.
[10] J. G. Andrews, F. Baccelli and R. K. Ganti, “A Tractable Approach to

Coverage and Rate in Cellular Networks,” IEEE Trans. Commun., vol.
59, no. 11, pp. 3122-3134, November 2011.

[11] D. P. Bertsekas and R. G. Gallager, Data Networks (2nd edition).
Prentice Hall, 1992.

[12] M. J. Neely, Stochastic Network Optimization with Application to

Communication and Queueing Systems. San Rafael, CA, USA: Morgan
and Claypool, 2010.

[13] M. Xiao, J. Wu, C. Liu and L. Huang, “TOUR: Time-sensitive
Opportunistic Utility-based Routing in delay tolerant networks,” 2013
Proceedings IEEE INFOCOM, Turin, 2013, pp. 2085-2091.

[14] C.D. Perttunen D.R. Jones and B.E. Stuckman, “Lipschitzian optimiza-
tion without the lipschitz constant,” Journal of Optimization Theory and

Application, 79(1):157-181, October 1993.
[15] Y. L. Lee, J. Loo, T. C. Chuah and L. Wang, “Dynamic Network Slicing

for Multitenant Heterogeneous Cloud Radio Access Networks,” IEEE

Trans. Wireless Commun., vol. 17, no. 4, pp. 2146-2161, April 2018.


