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Abstract. A second-order central time-explicit method is implemented to solve the
Lattice Boltzmann Equation in generalized curvilinear coordinates in order to simulate
fluid flows with non-uniform grids and curved boundaries. Several test cases are used for
verification, including the Taylor-Green vortex in two-dimensions, the square lid-driven
cavity and the 2D circular cylinder. The Taylor-Green vortex is a classical benchmark
test that is compared with the analytical solution using a non-uniform grid. The 2D
lid-driven cavity is solved for moderate Reynolds numbers, where a clustering function
is employed to stretch the mesh and increase the resolution in the cavity corners. The
boundary conditions for these two test-cases are relatively straightforward to implement
since there are no curved walls. Therefore, the 2D circular cylinder is used to demonstrate
the capacity of the present method to perform steady and unsteady simulations with
curved boundaries. Our results have been compared with the literature available, and
the outcomes of this method are consistent with other results, confirming the feasibility
of the implemented scheme. In addition, the present method has been compared to our
own standard Cartesian lattice Boltzmann solver with adaptive mesh refinement for the
2D circular cylinder problem.
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1 INTRODUCTION

The lattice Boltzmann method (LBM) is a relatively new development, that has emerged
as a powerful computational method for the study of fluid dynamic problems. Instead of
approximating the Navier-Stokes equations, the approach is based on solving a simplified
version of the Boltzmann equation in a specific discrete space. It can be shown via the
Chapman-Enskog expansion that the LBM recovers the Navier-Stokes equations in the
nearly incompressible flow limit [1]. The simplicity of the lattice Boltzmann algorithm
can lead to dramatic reductions in computational time compared to traditional compu-
tational fluid dynamics (CFD) solvers. On uniform grids and unsteady flow simulations,
it can easily show performance gains up to two orders of magnitude [2], which has made
the approach certainly popular in recent years.

In the standard LBM, the discretisation of the physical space is coupled with the dis-
cretisation of momentum space [3]. The advantage of this scheme is the exact treatment
of the advection term, therefore it does not have any numerical diffusion. On the other
hand, this condition results in a numerical method that is restricted to Cartesian grids.
This aspect of the standard LBM limits its application and solving problems with curved
geometries and thin boundary layers become troublesome. For realistic geometries and
aerodynamic investigations, the usage of uniform Cartesian meshes is impractical, since
the boundary layer flow needs to be adequately resolved for a good representation of
the physics. It is somewhat straightforward to apply isotropic mesh adaptation to the
standard LBM, and thereby resolving laminar boundary layers is relatively easy [4]. How-
ever, this approach can become remarkably expensive for capturing boundary layers of
turbulent flows, and therefore it is impractical for most technically relevant problems in
aerodynamics.

The discretisation of the physical space does not necessarily require to be coupled with
the moment space [5]. Therefore, it is possible to implement standard numerical tech-
niques on the LBM to use non-uniform and body-fitted meshes. In recent years, several
efforts have been made to overcome this shortcoming in order to make LBM a practical
computational fluid dynamics tool. Some authors have taken different approaches toward
the same issue. Some of them have used interpolation schemes [6] and others have applied
traditional numerical methods used in CFD mainly, finite differences [7] and finite volume
[8]. Therefore, we propose an implementation of the LBM in generalized curvilinear coor-
dinates, so the LBE can be solved with non-Cartesian grids. Various test cases were used
for verification, including the Taylor green vortex, the 2D lid-driven cavity and the 2D
circular cylinder. Clustering functions are employed on all test-cases to stretch the mesh
and increase resolution on certain regions of the domains. This study shows that this
implementation deals with curved boundary walls more accurately and efficiently than
the Cartesian method.

2



J. A. Reyes Barraza and R. Deiterding

2 METHODOLOGY

In this paper, the implementation is done on the classical D2Q9 LBM-BGK model [1].
Hence, the LBE with a simplified collision operator can be written as

∂fα
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+ eα · ∇fα = −1

τ
(fα − f eqα ) . (1)

The latter can be transformed into a generalized curvilinear coordinate system, in which
the physical and computational planes are represented by (x, y) and (ξ, η), respectively,
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where J is the Jacobian of the transformation defined as
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The convection term in Eq. (1) can be rewritten as

eα · ∇fα = eαx
∂fα
∂x

+ eαy
∂fα
∂y

= eαx

(
∂fα
∂ξ

∂ξ

∂x
+
∂fα
∂η

∂η

∂x

)
+ eαy

(
∂fα
∂ξ

∂ξ

∂y
+
∂fα
∂η

∂η

∂y

)
=

(
eαx

∂ξ

∂x
+ eαy

∂ξ

∂y

)
∂fα
∂ξ

+

(
eαx

∂η

∂x
+ eαy

∂η

∂y

)
∂fα
∂η

= ẽαξ
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+ ẽαη
∂fα
∂η

,

(6)

where
ẽα = (ẽαξ, ẽαη) = (eαxξx + eαyξy, eαxηx + eαyηy). (7)

Therefore, the LBE in the computational domain can be written as
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= −1
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Equation (8) can be solved using any appropriate numerical procedure. The spatial
derivatives are discretised by the second-order central difference and the temporal term
is integrated by the explicit multistage Runge-Kutta. The right hand side of Eq. (8) can
be rewritten as

Rα(i,j)
= −

(
ẽαξ(i,j)

fα(i+1,j)
− fα(i−1,j)

2∆ξ
+ ẽαη(i,j)
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− fα(i,j−1)

2∆η

)
− 1

τ

(
fα(i,j)

− f eqα(i,j)

)
.

(9)
Now, the solution is advanced in the time by using the standard fourth-stage Runge-Kutta
scheme as follows,
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α +
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4
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3
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α,

f 4
α = f 1

α +
∆t

2
R3
α,

f t+∆t
α = f 1

α + ∆tR4
α.

(10)

Central schemes can be unstable when non-linearities are present. Therefore a fourth-
order artificial dissipation is added in Eq. (9) as

D = −ε
(

(∆ξ)4∂
4fα
∂ξ4

+ (∆η)4∂
4fα
∂η4

)
, (11)

in order to stabilize the solution [9]. The order of the numerical scheme does not change
since the artificial dissipation has a higher order than the formal scheme.

3 COMPUTATIONAL RESULTS

Numerical computations are carried out to show that the second-order central time-
explicit method implemented is an accurate, stable and reliable option to solve the LBE
in curvilinear coordinates. Also, to demonstrate its superior capabilities to resolve the
flow in the vicinity of the wall when using curved geometries.

3.1 Taylor-Green vortex

The Taylor-Green vortex decay problem has been widely used for the verification of
incompressible flow solvers. This problem has an exact solution of the incompressible
Navier-Stokes equations and the set-up is straightforward, since it only has a set of initial
conditions and periodic boundaries. This benchmark test is done to demonstrate the
accuracy of the scheme, and the capacity of the present methodology to use non-uniform
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grids. The exact solution of this unsteady problem is given by

u(x, y, t) = −uo cos(kxx) sin(kyy)e−k
2νt,

v(x, y, t) =
kx
ky
uo sin(kxx) cos(kyy)e−k

2νt,

P (x, y, t) = P0 − 0.25ρ0u
2
o

[
cos(2kxx) +

(
kx
ky

)2

cos(2kyy)

]
e−2k2νt,

(12)

where uo is the initial velocity magnitude, ν is the kinematic viscosity of the fluid, kx =
2π/Lx and ky = 2π/Ly are the wave numbers in x and y directions, k =

√
k2
x + k2

y , The
initial conditions for the velocity and pressure fields are obtained by setting t = 0.

A clustering function has been selected to stretch the mesh in both directions, x and
y. The stretched grid can be obtained with:

x = H
(2α + β)[(β + 1)/(β − 1)](ξ−α)/(1−α) + 2α− β

(2α + 1) (1 + [(β + 1)/(β − 1)](ξ−α)/(1−α))
, (13)

y = H
(2α + β)[(β + 1)/(β − 1)](η−α)/(1−α) + 2α− β

(2α + 1) (1 + [(β + 1)/(β − 1)](η−α)/(1−α))
, (14)

where β is the clustering parameter, α defines where the clustering takes place, and H is
the length. If α = 0.5, the clustering is distributed equally, and if α = 0 the clustering
takes place at H. Herein, all the computations are performed with α = 0.5 and β = 1.2.

Figure 1: Left: Non-uniform mesh. Right: Streamlines for the Taylor-Green Vortex at the initial
conditions.

Figure (1) shows the non-uniform grid, namely (65 × 65), that can be obtained by
applying the clustering functions described, and the initial flow field shown by streamlines.
The present methodology is compared with the analytical solution and shown in Figure (2)
at a dimensionless time of 0.2. For this simulation a grid of (128 × 128) was used, the
reference velocity uo is 0.02 and a Reynolds number of 100 was selected.
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Figure 2: Left: u-velocity along the vertical centreline. Right: v-velocity along the horizontal centreline.

3.2 2D lid-driven cavity

The 2D lid-driven cavity is a classical benchmark test, thanks to its simple geometry
and complex flow physics [10]. It consists of the movement of the top-lid at a constant
velocity (uo) and three stationary walls (u = v = 0). The geometry normally is a square of
aspect ratio one, but this may be different. The same grid (cf. Fig. 1) used for the Taylor-
Green vortex is also used for this test case. The numerical computations are carried out
with uo = 0.1 and the results are shown for two different Reynolds numbers, Re = 1000
and Re = 3200. The grid sizes used are (257× 257) and (513× 513) respectively.

Figure 3: Re = 1000. Left: u-velocity along the vertical centreline and v-velocity along the horizontal
centreline. Right: Flow field exhibited by streamlines.

There is no exact solution for the 2D cavity flow, because of this we need to compare
our results with a comprehensive study, such as the one done by Ghia et al. [10]. The
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Figure 4: Re = 3200. Left: u-velocity along the vertical centreline, v-velocity along the horizontal
centreline. Right: Flow field exhibited by streamlines.

u-velocity profile along the vertical centre line, the v-velocity profile along the horizontal
centre line and the streamlines for the two different Reynolds numbers are shown in Figures
3 and 4. This shows that our results have an excellent agreement with the reference [10],
and the streamlines show a correct flow behaviour in the entire domain. It is known that
the corners are singularity points, and our results do not exhibit any issue in this regions,
demonstrating the capability of the current methodology and the proper application of
the stretching function on the grid.

3.3 2D circular cylinder

The wall-boundary treatment of the previous test cases is relatively straightforward
since there are no curved walls. Therefore, the 2D circular cylinder is used to demon-
strate the capacity of the present method to perform steady and unsteady simulations
with curved surfaces. In addition, proper stretching functions have been implemented
to increase the resolution in the proximity of the wall and in the wake region. Our re-
sults have been compared with the literature available, and the outcomes of the present
method are consistent with other results, supporting the proposed scheme. In addition,
the present method is compared to our own standard Cartesian LBM solver [2], AMROC
(Adaptive Mesh Refinement in Object-oriented C++).

The following function is used for the stretching in the wall normal direction

yn = δ
(1− β)

(
β+1
β−1

)1−ξ
+ (β + 1)(

β+1
β−1

)1−ξ
+ 1

+ r, 0 ≤ ξ ≤ 1, (15)

where δ is the radial distance between the body and the outer boundary, β is the clustering
parameter which has been set to 1.007 for these simulations and r is the radius of the
cylinder. The grid clustering function shown in Eq.(14) was used to increase the resolution

7



J. A. Reyes Barraza and R. Deiterding

behind the cylinder. The clustering parameter used for the wake is 1.045.

Figure 5: O-Grid for the 2D cylinder mesh. Overlaid on the upper-right is a close-up of the body-
conforming mesh around the cylinder.

All the computations for the cylinder test-case using the proposed methodology were
carried out on a grid size of (257 × 257) with an outer diameter 30 times bigger than
the inner diameter (cf. Fig. 5). The simulations carried out using the Cartesian LBM
with adaptive mesh refinement were performed on a domain size of [−16D × 48D] ×
[−16D× 16D] with the axis located at (x, y) = (0, 0) and using a grid size of (640× 320)
at its coarsest level (for the steady-state cases). The adaptive mesh refinement is set to 3
additional levels with a refinement factor of 4.

Two Reynolds number were selected for the steady-state simulations, 20 and 40. At this
flow regime a stationary recirculation region appears for both cases behind the cylinder,
and the wake increases in length as the Reynolds number increases, as it can be seen in
Figure 6. The literature shows that the recirculating regions appear around 5 < Re < 47.
Anything under Reynolds number 5 the flow will remain attached and above the critical
Reynolds, which is 47, the solution produced will be unsteady.

The comparison of the steady-state results are shown in Table 1. The references used
are quite vast and they include the numerical solutions of the Navier-Stokes equations from
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Table 1: Effects of the Reynolds number on steady flow over the circular cylinder

Re Author(s) Cd Cp(0) Cp(180) 2L/D

20 Tritton [11] 2.10 - - -
Henderson [12] 2.06 - -0.60 -
Dennis and Chang [13] 2.05 1.27 -0.58 1.88
Hejranfar and Ezzatneshan [5] 2.02 1.25 -0.59 1.84
AMROC-LBM 1.98 1.26 -0.59 1.85
Present 2.02 1.31 -0.55 1.85

40 Tritton [11] 1.59 - - -
Henderson [12] 1.55 - -0.53 -
Dennis and Chang [13] 1.52 1.14 -0.50 4.69
Hejranfar and Ezzatneshan [5] 1.51 1.15 -0.48 4.51
AMROC-LBM 1.45 1.19 -0.49 4.66
Present 1.51 1.19 -0.46 4.60

Figure 6: Flowfield for steady flow over the 2D circular cylinder shown by streamlines using the imple-
mented methodology. Left: Re = 20. Right: Re = 40.

Henderson [12], Dennis and Chang [13], compact-finite difference LBM from Hejranfar and
Ezzatneshan [5] and the experimental data from Tritton [11]. The variables presented are
drag coefficient Cd, the pressure coefficient at the stagnation point Cp(0) and at the rear-
point Cp(180), the normalized length of the wake 2L/D, where L is the actual length of
the wake and D is the diameter of the cylinder. Table 1 shows that our results exhibit
good agreement with diverse references.

For the unsteady test-case, two laminar flows at 100 and 200 Reynolds number were se-
lected. These simulations demonstrate the capacity of the presented method to simulate
time-dependent flows around geometries with curved boundaries. At these flow condi-
tions, the recirculation bubbles behind the cylinders become unstable, and time-periodic
vortex-shedding solutions appear. The dimensionless number used to characterize this
phenomenon is the Strouhal number that is defined as St = fqD/uo, where fq is the
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shedding frequency. The Strouhal number can also be written as St = D/uoTp, where Tp
is the peak-to-peak period of the lift coefficient.

Figure 7: Drag and lift coefficient trends for the time periodic flow over the circular cylinder at Re =
100.

Figure 8: Drag and lift coefficient trends for the time periodic flow over the circular cylinder at Re =
200.

The lift and drag coefficient with respect to the non-dimensional time are shown in
Figures 7 and 8, after the simulations have reached a stable periodic solution. These
plots show the capacity of the central-scheme implemented to predict correctly the vortex-
shedding phenomenon within these Reynolds numbers. Table 2 compares the present time-
depended solutions with the reference selected and as well as with the results obtained
using AMROC-LBM. The Navier-Stokes solutions from Chiu et al. [14] are used as a
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Table 2: Strouhal number for different authors

Re Author(s) St Cd C ′l
100 Chiu et al. [14] 0.167 1.35 0.30

AMROC-LBM 0.165 1.25 0.30
Present 0.165 1.36 0.35

200 Chiu et al. [14] 0.198 1.37 0.71
Present 0.196 1.37 0.73

reference. The variables compared are the Strouhal number, the average drag coefficient
Cd and the lift coefficient amplitude C ′l . The results produced by the LBM in generalized
curvilinear coordinates have an excellent agreement with the references for all the variables
compared. The results obtained by AMROC-LBM also have a good agreement with the
variables compared. However, in this case it was necessary to increase the resolution to
(960× 480) at its coarsest level, the domain and the mesh adaptation settings remained
the same, in order to get convergence.

4 CONCLUSIONS

It is noticeable that the Cartesian solver requires a significantly higher number of grid
points in order to obtain a converged solution, given its inability to represent curved
geometries accurately and its lack of flexibility to have meshes of diverse sizes. On the
other hand, it is possible to apply isotropic mesh adaptation and to benefit from it. In
this study, it has been shown that the second-order scheme implemented is accurate,
stable and capable of solving the LBE in generalized curvilinear coordinates. The results
obtained by the present methodology and AMROC-LBM exhibit good agreement with all
references. However, the current implementation deals with curved boundary walls more
accurately and efficiently than the Cartesian method.

The test cases in this paper are relevant to the literature and serve well to validate
the current implementation. However, it is within our scope to solve more technically
challenging problems. Hence as a next step, it is planned to solve the flows around
aerofoils, which require a high-level of mesh stretching for properly resolving the boundary
layer.
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