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Abstract. In this paper, we present our recent work on single relaxation Lattice Boltz-
mann method and Large Eddy Simulation (LES) models, namely the dynamic Smagorin-
sky and wall-adapting local eddy-viscosity (WALE). Initially, forced and decaying homo-
geneous isotropic turbulence cases were run to compare direct numerical simulations with
LES. Moreover, the Taylor-Green vortex was employed to further test the performance
of the turbulence models under transition to turbulence. The main purpose of this work
was the verification for wall-free simulations of the two newly-implemented LES models
in the in-house AMROC framework.

1 INTRODUCTION

Two Large Eddy Simulation (LES) models, namely the Dynamic SMAgorinsky (DSMA)
and the Wall-Adapting Local Eddy-viscosity (WALE), have been recently implemented
in the in-house solver based on the Single Relaxation Time (SRT) Lattice Boltzmann
Method (LBM) [1]. The LBM solver [2, 3, 4, 5] is part of the AMROC framework (Adap-
tive Mesh Refinement in Object-oriented C ++) [6]. In this paper, we verify them under
wall-free circumstances by employed the test cases of Decaying Homogeneous Isotropic
Turbulence (DHIT), Forced Homogeneous Isotropic Turbulence (FHIT) and Taylor-Green
Vortex (TGV). For the case of FHIT, the forcing scheme of [7] was applied due to its low
implementation complexity and, particularly, the ability to start a simulation with the
fluid at rest. For the FHIT and TGV, the results are also compared against the Constant
SMAgorinsky (CSMA) model.
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2 LATTICE BOLTZMANN METHOD

In the standard finite difference SRT-LBM scheme the numerical step is divided into
two sub-steps. The first one, called streaming, deals with exchange of information with a
number of neighbour cells depending on the LBM model in use. In the current work the
D3Q19 models was used. The second sub-step, namely collision, occurs locally per cell
and reads

fα(x, t+ ∆t) = f̌α(x, t) +
∆t

τL
(f̌ eqα (x, t)− f̌α(x, t)) +

∆t wα(eα · F)

c2
s

. (1)

The notation f̌α refers to values of the distribution function after the streaming and before
the collision. The equilibrium distribution function f eqα is truncated to second order. eα
are the 19 lattice velocities with wα the coefficients of the LBM model. ∆t is the time step,
τL is the relaxation time and cs is the speed of sound with value 1/

√
3. The macroscopic

variables, density, velocities and pressure, can be estimated from the moments of the
distribution function.

The incorporation of an LES model into AMROC-LBM is achieved through the al-
teration of the discrete relaxation time τL and its replacement by an effective discrete
relaxation time τ ?L [8]. The difference is the addition of the eddy viscosity νt computed as

νt = (C∆)2OPLES, (2)

where C is a constant depending on the employed model; ∆ is the spatial step size, and
OPLES is a function expressing the characteristic timescale of each LES model.

2.1 The external force for FHIT

The last term in the right side of Eq. (1) is the contribution of the external force F.
In the case of the FHIT, the force of [7] was used, defined as

Fx = 2ρA
(κyκz
|κ|2

)
G(κx, κy, κz, φ),

Fy = −ρA
(κxκz
|κ|2

)
G(κx, κy, κz, φ), (3)

Fz = −ρA
(κxκy
|κ|2

)
G(κx, κy, κz, φ),

where ρ is the density and A the acceleration with value 10−4 for all the simulations. The
force was applied to the range of low wavenumbers 1 ≤ κi ≤ 2,where i ∈ x, y, z with
magnitude |κ|. Finally, the phase of the force is given by the function

G(κx, κy, κz) = sin

(
2πx

L
κx +

2πy

L
κy +

2πz

L
κz + φ

)
, (4)

with φ the random phase estimated by an equidistance distribution and L the length of
the domain which in this case was a cube with value 2π.
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2.2 CSMA

For the case of CSMA the eddy viscosity is computed as

νt = (CS∆)2|S|, (5)

where CS is a global user-defined variable and |S| =
√

2SijSij is the intensity of the

strain rate. The notation X describes an LES filtered variable. In the LBM framework
the strain rate can be computed locally per cell avoiding the use of finite differences as

Sij = − 1

2ρc2
sτ

?
L

∑
α

eαieαj(fα − f
eq

α ). (6)

After some algebra, τ ∗L can be also calculated locally.

2.3 DSMA

The implementation of the dynamic Smagorinsky in AMROC-LBM is based on the
work of Premnath et al. [9] and follows the idea of Germano et al. [10], including the
modification of Lilly [11]. The same formula of CSMA, Eq. (5), is also applied here for
the estimation of νt. In this case, C is a local per cell variable that is computed before
the streaming as

C2 = −1

2

〈LijMij〉
〈MijMij〉

. (7)

The two tensors Lij and Mij can be calculated as

Lij = ûiuj − ûiûj,

Mij = ∆̂
2

|Ŝ|Ŝij −∆
2 |̂S|Sij, (8)

where x̂ denotes a test-filtered value computed through the employment of a discrete
trapezoidal filter. In Eq. (7), 〈·〉 means averaging in homogeneous directions and, if
the problem is statistically stationary, in time, too. In AMROC the averaging takes
place locally in each cell and per time step. This has the potential of introducing local
extrema with unphysical values of C [11]. To alleviate this problem, C is truncated as
0 ≤ C ≤ 0.23. Compared to the CSMA, the application of the test-filter impose the use
of central finite differences leading to non-local calculations.

2.4 WALE

In the WALE model a more advanced timed scale is employed to handle effectively
the damping of the eddy viscosity in the vicinity of the wall [12]. The new operator is a
function both of the strain rate Sij and the rotation rate Ωij and reads

OPWALE =
(JijJij)

3
2

(SijSij)
5
2 + (JijJij)

5
4

, (9)
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where Jij is

Jij = SikSkj + ΩikΩkj −
1

3
δij(SmnSmn − ΩmnΩmn). (10)

The constant of the model C is always equal to 0.5. To compute the two rates, central
finite differences are used for the derivatives. Compared to DSMA, the WALE model does
not need truncation corrections besides the situation where all the velocities are zero, i.e.
during the initialisation of the flow field, in which scenario νt is set to zero.

3 FORCED HOMOGENEOUS ISOTROPIC TURBULENCE

The computational domain for the FHIT, DHIT and TGV test cases was a periodic
cube of a 2π length. The initial conditions for the FHIT were a zero velocity field and
unit density. The value of viscosity ν was used to alter for a specific resolution the value
of Reλ = u′λ/ν, where u′ is the root mean square of the velocity and λ the Taylor length
scale. After a transient time ∆tt, the external energy due to the force equilibrates with the
viscous dissipation and a statistically steady state is achieved for a duration of ∆ta. The
library FFTW [13] was employed to perform the essential Fourier transforms. The end
of the transient time was decided by examining the evolution of the kinetic energy k and
particularly the dissipation rate ε. Figure 1 presents an example of their evolution for a
specific simulation. The time has been normalised by the eddy turnover time τe = L11/u

′,
where L11 is the integral length scale.

Initially, Direct Numerical Simulations (DNS) for a variety of resolutions and viscosity
value equals to 5 · 10−5 were simulated to validate the LBM solver. As a benchmark, the
model spectrum of [14] has been used. Simultaneously, the performance of the applied
force to be used as a verification tool was evaluated. Table 1 shows some parameters and
the measured statistics of four simulations with different resolutions. In this table, we also
report the Kolmogorov scales, η the Kolmogorov length scale, uη the Kolmogorov velocity
scale and τη the Kolmogorov time scale. For more information on the computation of the
mentioned turbulent statistics the interested reader can refer to [14].
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Figure 1: Time evolution of dissipation rate ε (left) and turbulent kinetic energy k
(right) for DNS of resolution of 1283 cells and ν = 5 · 10−5. The vertical dashed line

shows the onset of the averaging time. The horizontal dashed line is the averaged value.
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Table 1: Turbulent statistics and simulation parameters for LBM DNS for the FHIT
case.

N3 323 1283 2563 5123

∆t 2 x 10−1 4.9 x 10−2 2.5 x 10−2 1.2 x 10−2

Reλ 47 59 66 69
k 2.6 x 10−5 7.4 x 10−5 1.2 x 10−4 1.5 x 10−4

ε 4 x 10−8 2.1 x 10−7 4.3 x 10−7 6.2 x 10−7

κmaxη 6.8 x 10−1 1.8 3 5.4

η 4.2 x 10−2 2.8 x 10−2 2.3 x 10−2 2.1 x 10−2

λ 5.7 x 10−1 4.2 x 10−1 3.7 x 10−1 3.5 x 10−1

L11 1 9.3 x 10−1 9 x 10−1 8.8 x 10−1

L(= k3/2/ε) 3.2 3 3 2.9

uη 1.2 x 10−3 1.8 x 10−3 2.1 x 10−3 2.4 x 10−3

u′ 4.1 x 10−3 7 x 10−3 8.9 x 10−3 9.9 x 10−3

τη 35.9 15.7 11 9
k/ε 632.1 349.3 274.4 238.9
τe 250.51 132.94 101.6 88.5
∆ta/τe 63.88 104.68 68.5 19.1
∆tt/τe 15.68 18.46 12.08 8.32
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Figure 2: Time-averaged Kolmogorov
energy spectra of LBM DNS for four

resolutions (solid) and the model
spectrum (dashed) [14] for ν = 5 · 10−5.
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Figure 3: Time-averaged energy spectra
normalised by k and L11 of LBM DNS

and LES for two resolutions and a value
of ν = 5 · 10−5.

Comparing the turbulent statistics in Table 1, it is evident that there is a resolution
dependence for the input energy due to the current forcing scheme affecting the other
turbulent statistics, too. However, by applying Kolmogorov normalisation for the spectra,
it is possible to compare them, as one can see in Fig. 2. Due to the different Reλ per
resolution the spectra do not collapse in the lower wavenumbers. On the other hand, it
is the numerical dissipation that prevents the spectra from aligning with the model one,
besides the highest resolution of 5123 cells or κmaxη > 5.

The results and particularly the energy spectra of DNS have validated the AMROC-
LBM solver to deal with elementary turbulent flows. Moreover, this DNS database was
used for comparison for the verification of the LES models. Table 2 shows the measured
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Table 2: Turbulent statistics and simulation parameters for LBM LES simulations for
two resolutions of the FHIT test case.

CSMA (C = 0.1) DSMA WALE

N3 323 1283 323 1283 323 1283

∆t 2 x 10−1 4.9 x 10−2 2 x 10−1 4.9 x 10−2 2 x 10−1 4.9 x 10−2

Reλ 51 60 55 61 52 60
k 2.5 x 10−5 7.3 x 10−5 2.5 x 10−5 7.3 x 10−5 2.5 x 10−5 7.4 x 10−5

ε 3.1 x 10−8 2 x 10−7 2.7 x 10−8 1.9 x 10−7 3 x 10−8 2 x 10−7

κmaxη 7.2 x 10−1 1.8 7.5 x 10−1 1.8 7.3 x 10−1 1.8

η 4.5 x 10−2 2.8 x 10−2 4.7 x 10−2 2.9 x 10−2 4.5 x 10−2 2.8 x 10−2

λ 6.3 x 10−1 4.3 x 10−1 6.8 x 10−1 4.4 x 10−1 6.4 x 10−1 4.3 x 10−1

L11 1.08 9.3 x 10−1 1.13 9.5 x 10−1 1.08 9.3 x 10−1

L 4 3.1 4.6 3.3 4.1 3.2

uη 1.1 x 10−3 1.8 x 10−3 1.1 x 10−3 1.8 x 10−3 1.1 x 10−3 1.8 x 10−3

u′ 4.1 x 10−3 7 x 10−3 4 x 10−3 7 x 10−3 4.1 x 10−3 7 x 10−3

τη 40.4 16.1 44 16.4 41.3 16.1
k/ε 796.1 363.6 928.8 380.8 823 367.7
τe 264.47 133.47 280.63 136.29 267.14 133.18
∆ta/τe 60.51 113.09 57.02 98.15 59.9 100.44
∆tt/τe 14.8 9.19 14 21.61 14.7 22.11

statistics of LBM LES for two resolutions, namely 323 and 1283 cells. To assist the
discussion, Fig. 3 presents the energy spectra of the LES models and DNS for this two
resolutions. The spectra are normalised by the turbulent kinetic energy k and the integral
length scale L11. Under this normalisation the spectra should collapse in the energy-
containing range, which is verified by the plot. The lowest resolution is under-resolved
based on the previous data, κmaxη = 0.68, while the other one is well-resolved, κmaxη =
1.8. Therefore, we can examine the behaviour of the LES models for both scenarios.

First of all, in the case of the well-resolved resolution, the spectra of all three LES mod-
els have collapsed to the one of DNS. This behaviour can be also identified by comparing
Table 1 and Table 2 for the resolution of 1283 cells. The turbulent statistics are identi-
cal for all simulations. This indicates the shut-down of the LES models in well-resolved
meshes as it is expected.

On the other hand, for the lowest resolution, all LES models have diverged for the
DNS spectrum in the higher wavenumbers, showing increased dissipation in this range.
In this way, by reducing the energy of the small scales, the turbulence models stabilise
the simulation. Indeed, all three LES models have estimated higher values of κmaxη
compared to their DNS counterpart. This behaviour is highly important for running high
Re number flows with a low dissipation scheme such as the SRT-LBM. Moreover, by
further examining the data, the CSMA with C = 0.1 had identical results as the WALE.
Considering the isotropy of this test case, this was expected. On the contrary, the DSMA
returned the highest value of κmaxη with the smallest estimated dissipation rate ε. These
results indicate increased values of eddy viscosity compared to the other models and thus
a more dissipative behaviour.
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Figure 4: Evolution of the turbulent kinetic energy k (left) and dissipation rate ε (right)
for DNS of 5123 against DSMA and WALE of 1283 cells resolution.

4 DECAYING HOMOGENEOUS ISOTROPIC TURBULENCE

To further exploit the above mentioned set-up, we restarted the DNS simulation of 5123

resolution from the final saved time step without the forcing scheme. Simultaneously, by
appropriately locally volume-averaging the same initial data, we run DSMA and WALE
simulations of a resolution of 1283 cells, again without the employment of the force. Under
this set-up, one can examine DHIT. We have also tried to initialise a DNS of 1283 cells
using the same procedure but it crashed.

Figure 4 shows the evolution of the turbulent kinetic energy k and the dissipation rate ε
for the three simulations. Their initial values have been used to normalise both variables.
All simulations were run for 1000 time units. It is evident that all three simulations have
estimated similar behaviour for the evolution of the turbulent kinetic energy k. On the
other hand, the LES models have deviated from the DNS solution in the case of the
dissipation rate ε for the first 300 time units. However, after this initial period, their
solution collapsed with the DNS data. At this point, it is important to mention that we
have not experienced the deviations reported in [15], where the DSMA model of 323 cells
resolution was compared against DNS of 643 for a similar case. Moreover, another vital
difference is that the Multi Relaxation Time (MRT) collision model was used instead of
the SRT in our case.

To further evaluate the LES models, Fig. 5 shows the energy spectra for the three
models after 100 and 1400 iterations, at t = 4.91 and t = 68.72, respectively. Both of
these times lie in the initial period of the deviation in the dissipation rate ε. It is clear that
the spectra in both times collapse in the energy-containing range and they only deviate
in higher wavenumbers due to the lower resolution and the application of the filtering due
to LES. We have also plotted the spectra at t = 1000 (not shown here), and the situation
was identical. This is a strong indication of the expected behaviour of the implemented
models.

Finally, Fig. 6 shows the vorticity field of the three models for the two previously
mentioned times. First of all, both LES models have predicted similar flow fields. On
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Figure 5: Energy spectra at t = 4.91 (left) and at t = 68.72 (right) for DNS of 5123

against DSMA and WALE of 1283 cells resolution.

Figure 6: Contours of vorticity magnitude (|ω| = 0.18) at t = 4.91 (left) and t = 68.72
(right) for DNS (thin blue lines) of 5123 against DSMA (dotted black lines) and WALE

(thick red lines) of 1283 cells resolution.

the other hand, the DNS solution of the higher resolution has captured much finer scales.
However, the LES models were able to simulate the majority of large eddies appearing in
the DNS.

5 TAYLOR GREEN VORTEX

The TGV case was chosen as the final wall-free benchmark for the newly implemented
LES models. Again the domain was a periodic cube with a length equal to 2πL, where
L = 1. There is no external force, while the initial conditions read

8



Christos Gkoudesnes and Ralf Deiterding

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 2 4 6 8 10 12 14 16 18 20

k(
t)

t*

k WALE 64

k DSMA 64

k CSMA 64

k WALE 32

k DSMA 32

k CSMA 32

0.001

0.002

0.003

0.004

0 2 4 6 8 10 12 14 16 18 20

ε(
t)

t*

ε WALE 64

ε DSMA 64

ε CSMA 64

ε WALE 32

ε DSMA 32

ε CSMA 32
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against dissipation rate based on enstrophy (solid) (right) of LES for two resolutions.

u(x, t0) = U0 sin
(x
L

)
cos
( y
L

)
cos
( z
L

)
, v(x, t0) = −U0 cos

(x
L

)
sin
( y
L

)
cos
( z
L

)
,

w(x, t0) = 0, ρ(x, t0) = ρ0 +
ρ0U

2
0

16c2
s

[
cos
(2x

L

)
+ cos

(2y

L

)][
cos
(2z

L

)
+ 2
]
. (11)

In the above, ρ0 = 1 and U0 = 0.1 leading to Ma ≈ 0.17. To achieve Re = U0L/ν = 1600,
the viscosity ν was set to 6.25 · 10−5. Due to the imposed initial conditions, large scale
vortices appear initially in the flowfield. As the time passes, they will start to break
into smaller eddies that finally will be dissipated. Therefore, this test case has an initial
inviscid part that is followed by transition to turbulence and finishes with the decay of
turbulence. The above procedure imposes new challenges for the new models.

To test them, two resolutions of 323 and 643 cells were simulated for WALE, DSMA
and CSMA, with C = 0.1, while their DNS counterparts crashed. The left plot in Fig. 7
shows the evolution of the turbulent kinetic energy k for these simulations. Firstly, for the
lowest resolution some oscillations can be detected in the initial part for all three models
indicating insufficient number of cells. For t∗ > 3, the lines predicted by the three models
are diverged, with DSMA has the largest diversion. On the contrary, the WALE is able to
recover and for t∗ > 7 returns similar values to CSMA. This diversion indicates that both
WALE and, particularly, DSMA have added extra dissipation during the transition phase
compared to CSMA, with C = 0.1. The extra dissipation has led to the appearance of
fewer small eddies and thus reduction in the peak of the kinetic energy dissipation rate, as
one can see in the right plot of Fig. 7. The WALE has predicted a lower peak compared
to CSMA. However, it has a smoother slope for the rest of the time showing that was
able to adjust better during the phase of decay of turbulence. Moreover, in this plot, the
difference between the two dissipations is a measure of the numerical dissipation. In that
respect, DSMA had the best performance.

For the highest resolution, there are no apparent discrepancies in the evolution of
the turbulent kinetic energy k for the three models. Examining the evolution of the
dissipation rates, again both WALE and DSMA have exaggerated the dissipation during

9



Christos Gkoudesnes and Ralf Deiterding

Figure 8: The Smagorinsky constant C estimated at t∗ ≈ 3 (left) and its volume
averaged evolution (right) for the DSMA for the resolution of 323 cells.

the transition phase, though in this resolution the difference was smaller. Similarly, the
CSMA has performed better during the transition phase but the steeper slope in the
dissipation rates during the decay phase denotes overestimated dissipation.

To further analyse the behaviour of the DSMA, the left plot of Fig. 8 shows the in-
stantaneous estimation of the constant C over the domain for the lowest resolution at
t∗ ≈ 3. Around this moment, the transition to turbulence is initiated. This is also the
time when DSMA started to diverge from the other models. It is evident from the plot
that the model was able to identify the inviscid large vortices, the square blue regions
with a value close to zero, while a value around 0.1 was estimated in the majority of the
domain. However, the constant C reached the maximum available value of 0.23 in regions
where the vortices interacted. In an attempt to further examine this issue, the same
simulation was rerun without trimming the maximum value. The outcome was regions
with overestimated values of C, even above 1, indicating that the trimming is necessary.
This behaviour is the result of calculating C, Eq. (7), locally and not averaging in ho-
mogeneous directions, which are all three in this case. This approximation tends to lead
to local maxima [11]. However, a complicated and rather expensive algorithm would be
needed to identify the homogeneous directions in a real engineering application and is thus
avoided. Finally, the right plot in Fig. 8 presents the evolution of the volume averaged
values of C. The maximum peak is located during the first inviscid part and it is around
35% higher than the value for CSMA, explaining the more dissipative behaviour during
this phase. Afterwards, as the time passes its value was reduced, as it is anticipated, due
to the gradual depletion of the kinetic energy. During the final phase of decay, it reached
values below the one of CSMA (C = 0.1) leading to the smoother shape of the dissipation
rates.
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6 CONCLUSIONS

In this paper, we present an easily to implement methodology to verify and evaluate
LBM-LES models under wall-free circumstances. To achieve this, initially, we employed
the test case of FHIT. For its realisation, the force scheme of [7] was applied, having the
important advantage that no initialisation of the velocity field is needed. The disadvantage
of this force is the appearance of a resolution-dependent Reλ. To deal with this issue,
one can still compare the energy spectra of different resolutions by applying suitable
non-dimensionalisation [14]. Moreover, having a solution of FHIT case, it is trivial to
run DHIT by deactivating the external force. In this way, one can compare different
resolutions with the same Reλ, by using the same initial data and appropriately locally
volume-average them. In the end, the test case of TGV can challenge the models for the
situation of an inviscid flowfield transitioning to turbulence and final decay.

By applying the above procedure, we have verified the two newly implemented models,
DSMA and WALE. In the case of FHIT and DHIT, we have examined their performance
to deal with a fully developed turbulent field showing an expected behaviour. We present
that under a reasonably well-resolved mesh, they could be deactivated. On the other
hand, in an under-resolved simulation, they estimated a more depleted dissipation range
compared to DNS, improving the stability. In comparison with the CSMA, the WALE had
identical behaviour while the DSMA seemed to be slightly more dissipative. In the case of
DHIT, they managed to capture accurately the large scales of a DNS of higher resolution.
Finally, by running the TGV case, we show that both of them tend to overestimate the
eddy viscosity during transition to turbulence. The DSMA had the worst performance,
particularly in highly under-resolved meshes. However, they were able to adjust their
extra dissipation in the final phase of the decay. As for the DSMA, we conclude that the
localisation of the calculation of the constant C leads to local maxima and thus a more
dissipative behaviour compared to the other models.

Acknowledgements

This work was supported by UK Research and Innovation under the grant EP/N509747/1
with project number 1831845. The authors also acknowledge the use of the IRIDIS High-
Performance Computing Facility, and associated support services at the University of
Southampton.

REFERENCES

[1] Succi, S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, OUP
Oxford, Oxford, New York, 2001.

[2] Deiterding, R. and Wood, S. L. An adaptive lattice Boltzmann method for predicting
wake fields behind wind turbines, in: A. Dillmann, G. Heller, E. Krämer, C. Wagner,
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