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This research aims to improve the efficiency of intensive care units (ICU) by improving
patient flow. A UK ICU provides a case study for this research. Of particular interest in this
work is the impact of ‘late admissions’, which account for 13.8% of all first-time admissions
to this ICU. Patients admitted to the ICU more than a day after entering the hospital are
shown to have higher mortality rates and to stay longer in the ICU.

Mortality and length of stay (LoS) are predicted to assist ICU modelling. After comparing
different binary prediction models, three sets of logistic regression models have been built
to predict patients’ mortality from different admission groups (such as planned, unplanned,
late or re-admission). The overall performance of the prediction models developed in this
project is better than using ICNARC (Intensive Care National Audit and Research Centre)
probability directly. LoS of individuals is found to be hard to predict. A new method for
modelling LoS is tested and applied. LoS is split into three sub-parts, admission hour, nights
spent in the ICU and discharge hour, for which empirical distribution functions are used.

We describe a Discrete Event Simulation (DES) model to investigate the impact of the late
admission group and strategies for improving efficiency by bringing patients into the ICU ear-
lier. Mortality prediction models and the new method of LoS modelling are incorporated into
the DES input distributions. Several scenarios are investigated including varying resource
number and earlier admission of patients. A key finding is that the ICU can accommodate
20% more unplanned patients based on the current situation if the late admission group can
be reduced to 5% of all first-time admissions. We also consider an epidemic scenario: it is
demonstrated that the ICU would only be able to cope with a mild epidemic.
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Chapter 1

Introduction

Critical care is a very importance service in hospitals as it provides observation and care
for patients with potentially recoverable conditions which cannot be provided safely in a
general ward. Due to expensive equipment and demanding staffing resources, critical care
is a high-cost healthcare provision. An intensive care unit (ICU) is a ward that provides

critical care services.

The cost of an ICU consists of six components, which are capital equipment, estates, clinical
support services, non-clinical support services, consumables and staff cost. In a study of
eleven ICUs in the UK, staff costs were found to be the single biggest ICU cost, accounting
for over 50% of the total (Seidel et al., 2006). According to the Department of Health (NHS)|
2013b)), an ICU bed costs around £1,100 to £1,900 per day. In contrast, the cost of a general
ward bed is around £300 depending on treatments received. ICU service accounts for 15-40%

of hospital budgets among developed countries (Tan et al. 2012; Barrett et al., |2011)).

The utilisation of ICUs in England was constantly over 80% and sometimes close to 100%

over the period 2010 to 2016, resulting in cancellation of urgent operations (NHS| 2016a)).

This research investigates effective provision of critical care services. It is in collaboration

with Bristol Royal Infirmary (BRI), a tertiary level hospital serving the West of England.



The BRI ICU has an overall “good” performance recognised by Care Quality Commission

(CQC) in England. However, bed availability is an major issue for the ICU (CQC, [2014]).

1.1 Research motivation

Two major operational difficulties in an ICU in a hospital are shortage of clinical staff and
shortage of intensive care beds. The National Confidential Enquiry into Patient Outcome
and Death (NCEPOD) reports that these two major difficulties have occurred in ICUs in
England and Wales almost every year since the 1990s (NCEPOD) [2014)).

A study based on 65 ICUs in the UK shows that higher numbers of clinical staff per bed
are associated with higher survival rates in hospitals and especially in ICUs (West et al.,
2014)). Staffing levels and workload were also proved to be critical in ICUs in France (Neuraz
et al., [2015)). Multi-national research undertaken in North America and Western Europe,
including Canada, the US, Belgium, France, Germany, the Netherlands, Spain and the UK,
showed that the hospital mortality rate for ICU patients around 2005 was highly inversely
correlated with the number of intensive care beds per 10,000 people (p = —0.82) (Wunsch
et al |2008). Moreover, the UK had the lowest level of adult intensive care beds amongst all
the investigated regions with 1/5 and 1/6 of the intensive care beds per 10,000 population
in the US and Germany respectively. Wallace et al.| (2015)) analysed the trends of ICU beds
and staff in the US. Although the number of ICUs in the US is much greater than that of
the UK and is still growing, practitioners and researchers in the US still believe there is a

shortage of beds and staff there.

Delays in discharging patients from ICUs to general wards are not uncommon. Although beds
in ICUs are precious and limited resources, there are, nevertheless, a considerable number of
patients who have delayed discharge from ICUs. Lack of general ward beds accounts for a
large proportion of delayed discharges. |Colvin and Peden| (2012) state in their audit report
that congestion in general wards causes gridlock of the whole system and suggest that bed

management needs to be set at least at a whole hospital level and preferably at a local area



level. To improve discharge from general wards to home, patients are recommended to recover
at their home or local care home by using personalised care packages. Care packages include
essential equipment and allocation of professional personnel to deliver care. However, many
patients are unable to leave hospital because of the delayed preparation of care packages.
Hospitals try to solve the problem by cooperating closely with local Clinical Commissioning
Groups (CCGs) (BBC, |2014; NHS| |2016b). The service needs to be set within an effective
whole hospital bed management system which ensures that every patient is in an appropriate

location to meet their needs for staffing and equipment to support their care.

Premature discharge is also a problem for ICUs. ICUs are recommended to reserve around
30% of beds to deal with emergency admissions (CQC, 2014)). However, most of the time,
ICUs are not able to meet this recommendation because of lack of beds or nurses. Therefore,
it may occur that patients in ICUs are discharged early if more severely ill patients need to
be admitted. Patients could, therefore, stay in ICUs for a shorter time than they actually
need. This group of patients is more vulnerable to readmission, which is proved to cause an
increased risk of mortality and longer ICU length of stay (LoS) (Town et al.,[2014). Therefore,

premature discharge can cause a waste of ICU resources rather than saving resources.

According to |Chalfin et al.| (2007)), immediately admitting patients in need to ICUs helps to
lower the mortality rate and average LoS of ICU patients overall. However, some patients
may not be admitted in a timely manner due to numbers of reasons, e.g. prolonged waiting in
the emergency department (ED) or lack of ICU resources causing delayed admission. |Goldhill
et al.[(2004) showed that hospital mortality is higher for patients admitted from wards to ICU
rather than directly. Harris et al.| (2015) analysed 12,495 ICU patients from 48 hospitals in the
UK showing that delayed admissions lead to a significantly increased mortality. The concept
of late admission is similar to delayed admission in that it concerns the delay in admitting
patients in need. However, late admission is defined as late identification of patients’ needs
rather than the delay caused purely by operational effects (Restrepo et al., 2010; Renaud
et al., [2012)). We include both delayed admission and late admission in this research. Late
admission in our context refers to two groups of admissions: first, surgical critical care

admission following postoperative care on a standard ward; second, medical critical care



admission with an admission time difference between hospital and ICU admission of longer

than one day.

These problems, delayed discharge, premature discharge and delayed or late admission, lead
to a waste of expensive ICU resources and increase congestion in ICUs. The difficulties can

potentially be lessened by better planning of resources, admissions and discharge.

This research will concentrate on providing possible solutions to these problems by better
planning of ICU patients’ admissions and discharges and improving use of ICU resources

(i.e. beds and staff) on the basis of optimised admission and discharge.

1.2 Research objectives and questions

Modelling and analysis in this research are based on data collected in a case study of the
Adult ICU in BRI. We had various discussions with the BRI ICU staff and formed some

research objectives based on these discussions.

The ultimate objective of the research is to improve the efficiency of overall ICU management.

This can be decomposed into following objectives

e To find out the characteristics of “late” admission and investigate the impact of late

admissions and readmissions on the ICU.

e To investigate mortality and ICU length of stay prediction, incorporating the influence

of late arrivals in the ICU and busyness in the general wards.

e To investigate the potential benefits and challenges of combining data mining and sim-
ulation modelling to tackle healthcare management problems — using ICU management

as a test case.

Research objectives will be achieved by finding answers for the following research questions.

These questions arise from Chapter



How do late-admitted patients affect the efficiency and effectiveness of the ICU?

What factors may impact patients’ outcomes and LoS?

By applying different admission and discharge policies for patients in the ICU, what

improvements in efficiency can be achieved?

e How does resource level affect ICU effectiveness and efficiency?

How will extreme conditions (i.e. pandemic) influence the ICU?

1.3 Thesis structure

The thesis continues as follows.

Chapter [2| describes the current situation of ICUs in the UK and BRI in particular. This

chapter also describes frequently-used ICU scoring models.

Chapter the literature review, provides related literature in accordance with research
objectives including late admission, prediction and ICU modelling. Research questions to

achieve the objectives are raised from the review.

Chapter {4] provides preliminary analysis of the data with a focus on late admission. Late
admission is shown to have an adverse effect on both patients’ mortality and ICU LoS. An
analysis of timing effects is also provided in this chapter. We find that peak time admission
has a positive effect on ICU outcome, with patients admitted at peak times more likely to
be discharged alive. Patients acuity (PA), a measurement to obtain the busyness of mixed

ICU, is created to indicate the congestion of general wards.

Chapter [p| describes data mining for improving mortality and LoS prediction. Mortality is
split into three categories for investigation: within ICU, hospital and post-ICU. The bench-
mark models are found to work well in general but predictability varies with different patient

categories such as those admitted late. Some improvements in predictions are achieved using



regression models. Both single stage and multiple stage regression models are trialled for

predicting ICU LoS but are found to have low predictability.

Chapter |§| describes a discrete event simulation (DES) model of the ICU to investigate
effects of earlier admission and other scenarios. A novel approach to ICU LoS modelling is

introduced. Benchmark mortality prediction models are incorporated into the DES model.

Chapter [7] reports the results of testing six sets of scenarios, including earlier admission and

epidemic scenarios. Earlier admission is shown to help to improve ICU throughput.

Chapter [8| summarises conclusions drawn from former sections, discusses research limitations

and points to possible future extensions to this work.



Chapter 2

Background

This chapter aims at giving essential background information of intensive care services and
the hospital we collaborate with. With a knowledge of UK intensive care and established
methods in ICU operation, we can then step into better achieving our objectives by reviewing

more specialised research papers.

This chapter proceeds with introducing intensive care services in the UK and in the BRI.

Then, widely-used ICU scoring systems are introduced.

2.1 Intensive care in the UK

ICUs, also known as critical care units (CCUs) or intensive therapy units (ITUs), are special-
ist hospital wards. They provide intensive care (treatment and monitoring) for people in a
critically ill or unstable condition. Patients are admitted to ICUs for various reasons. Some
common ones are serious accidents (usually involving severe head injuries or burns), a serious
short-term condition (such as a stroke or a heart attack), a serious infection (typically sepsis
or pneumonia) and major surgery. Support equipment is commonly used in ICUs to support
patients’ body functions and monitor their states. Typical equipment includes ventilators,

feeding tubes, intravenous lines and pumps, drains and catheters and monitoring equipment



(NHS| 2014)). More seriously ill patients may need several organs supported.

The National Health Service (NHS) in England divides critical care into four different levels
according to patients’ needs, from Level 0 to Level 3, as shown in Table

Table 2.1: Classification of critical care levels [source: (Department of Health, |2000)]

Level 0 || Patients whose needs can be met through normal ward care in an acute hospital

Patients at risk of their condition deteriorating, or those recently relocated
Level 1 || from higher levels of care, whose needs can be met on an acute ward with
additional advice and support from the Critical Care team

Patients requiring more detailed observation or intervention including
Level 2 || support for a single failing organ system or post-operative care and those
‘stepping down’ from higher levels of care

Patients requiring advanced respiratory support alone, or basic respiratory
Level 3 || support together with support of at least two organ systems.
This level includes all complex patients requiring support for multi-organ failure.

The guidelines for ICU staffing levels suggest that level 3 beds need a 1:1 nurse-to-patient
ratio while level 2 beds need 1:2 (Bray et al., 2010; Ball and Barker], 2010; Royal College of
Nursing (RCN), [2012]).

Pearse et al.| (2006]) analysed inpatient general surgical procedures and ICU admissions in 94
NHS hospitals between January 1999 and October 2004. Valuable information was discov-
ered from the medical outcomes of the ICUs. First of all, around 20% of high risk surgical
procedures accounted for approximately 80% of death of surgical admission patients in the
UK. Focusing on ICU admissions, the groups of readmitted and delayed admission patients
generally had higher mortality rates compared to the group admitted to ICU directly. How-

ever, LoS in the ICU for those different groups of patients was not included in the research.

According to Jhanji (2008)), mortality rates in a large NHS trust in England were distinctively
high amongst patients discharged and readmitted to critical care and amongst those admitted
to critical care following initial postoperative care on a standard ward. It is shown that if late
admission and readmission is avoided, the mortality rate of elective patients and emergency
patients can be largely improved by 80.42% and 6.44%, respectively. An analysis of UK-wide

data found similar results (Pearse et al., |2006).



2.1.1 Intensive Care National Audit and Research Centre (ICNARC) Cod-
ing Method

All admissions to adult ICUs in England are reported to ICNARC. ICNARC established a
coding method to simplify the reporting of ICU patients’ admission reasons. There are 709
diagnostic categories according to the ICNARC coding method (ICM) (ICNARC, 2016). The
ICM has been updated twice, in the years 2006 and 2015 (ICNARC, |2015b). ICU admission
reasons are coded in five sections. The first section represents surgical /medical; the second
denotes body system; the third gives body site; the fourth the process involved and the fifth
gives the detailed condition. To illustrate this, the code 1.3.7.15.4 can be interpreted as 1:
a condition where surgery has been performed (surgical code), 3: Gastrointestinal (system),
7: Liver or biliary tree (site), 15: Haemorrhage (process), 4: Acute fatty liver of pregnancy

(condition) (ICNARC, [2015al).

2.2 Intensive care in BRI

Bristol Royal Infirmary (BRI) is one of eight hospitals in Bristol University NHS Foundation
Trust. This trust is a centre for medical training in the South West of England. BRI is a
teaching hospital affiliated to Bristol University. There are an accident and emergency (A&E)
department, acute medical and surgical wards and ICUs in the hospital. Services are provided
for both the city of Bristol and the whole South West region. Having foundation trust status
means that profits can be re-invested to improve services (BRI} 2016]). Critical care in BRI
received ‘good’ in the rating in the CQC report of 2014 while the Bristol University NHS
Foundation Trust as a whole received a ‘requires improvement’ rating. However, problems
relating to access to critical care beds, resulting in cancelled operations and delays in transfer
to critical care, were thought likely to continue due to the lack of available suitable beds

(CQC|, po14).

There are three different critical care / high dependency units in BRI: the adult intensive

therapy unit (ITU), the cardiac intensive care / high dependency unit (CICU) and the



coronary care unit (CCU). Both the ITU and the CICU are mixed ICUs with admission of
both level 2 and level 3 patients. The CCU is a high dependency unit, treating only level 2
patients. In this research we are collaborating with the adult ITU, which has 21 beds and
16 ICU nurses in every shift. The staffing level is equivalent to 16 level 3 beds or 12 level
3 beds and 8 level 2 beds as designed. Patients are admitted to the ITU from a range of
sources, from all kinds of department in the same hospital including other ICUs. The ITU
can also admit patients from sources not in this specific hospital, for example from home or
other hospitals. The four main sources of ITU patient admissions are the A&E department,
theatre/recovery area, general wards and the imaging department. The ITU in BRI may
also divert emergency patients to other hospitals if all the beds are filled. Around 1100

admissions are taken annually.

2.3 Introduction to ICU scoring systems and models

There are a number of useful and robust models for assessing the severity of ICU patients
and their probability of death. The models used in BRI are Intensive Care National Audit
and Research Centre (ICNARC) models and the Acute Physiology and Chronic Health Eval-
uation (APACHE) classification systems. The Glasgow Coma Scale (GCS), an important

contributor to all the models, will be described first.

2.3.1 Glasgow Coma Scale (GCS)

The GCS is a neurological scale that records the state of consciousness of a person. It is a
description of patients rather than a prediction. The assessment includes three tests: eye,
verbal and motor responses. The scale reports both total score and individual elements.
The total score is calculated by adding scores of the three tests. The total ranges from 3 to
15, with the lowest being 1 in each assessment and highest being 4, 5 and 6 in eye, verbal
and motor responses respectively. A lower score represents a lower level of consciousness.

Although GCS has been criticised for its inter-rater reliability (the inconsistency of scores

10



assessed by different raters for the same patient) and lack of prognostic utility (Greenl [2011;
Gill et al., 2004), it is still widely applied to all acute medical and trauma patients. The GCS
is also used as a part of many ICU scoring systems, including the APACHE classification
system, SAPS, the ICNARC score and SOFA score.

2.3.2 Sequential Organ Failure Assessment (SOFA) Score

The Sepsis-related Organ Failure Assessment score, also known as Sequential Organ Failure
Assessment score (SOFA score), is an ICU score to track patients’ multiple organ failure
during their ICU stay. The SOFA score assesses organ dysfunction or failure in critically
ill patients. The score is designed to describe patients’ status rather than predict patients’
outcomes, though assessment of morbidity does help to predict mortality (Vincent et al.,

1996).

The score is limited to six systems to keep it simple: respiratory, coagulation, liver, cardio-
vascular, central nervous system (using GCS directly) and renal. The scores are assessed in
each individual system and then added together. For each system, the score ranges from one

to four, with a higher score related to worse organ function.

The SOFA score can also predict nurses’ workload in ICUs, according to research in the BRI

adult ITU (Thomas et al., [2013).

2.3.3 APACHE classification system

Acute Physiology and Chronic Health Evaluation (APACHE) is a disease severity measure-
ment. It utilises conditions of patients within 24 hours of their admission. The model was
first developed by Knaus et al. in 1981 and it then underwent major revisions in 1985 and
1991 (Knaus et all (1981} |1985, 1991). The APACHE systems were developed and cali-
brated based on adult medical/surgical ICU admissions at US hospitals. ICNARC includes
definitions and classifications from APACHE II and III.

11



The first APACHE classification system includes 34 variables and is composed of two parts:
first, the APACHE II Acute Physiology Score (APS) measuring the severity of illness, ranging
from 0 to 60, collected within the first 32 hours of admission; second, past medical history

(Knaus et al., [1981).

APACHE I1

The APACHE 1I score is composed of APS, past medical history including recent surgery,
history of severe organ insufficiency and immunocompromised state; age, patient type (med-
ical and surgical); and 34 disease categories. All the data are collected in the first 24 hours
after ICU admission. No recalculation is allowed during the stay. The score is an integer
ranging from 0 to 71, with a higher score corresponding to a higher risk of death and more

severe diseases (Knaus et al., [1985).

The APS component considers 12 physiological measurements, including AaDO2 or Pa0O2
(depending on FiO2), temperature (rectal), mean arterial pressure, pH arterial, heart rate,
respiratory rate, Sodium (serum), Potassium (serum), Creatinine, haematocrit, white blood

cell count and GCS. The score ranges from 0 to 60.

A major disadvantage of the APACHE II score is that it is not comparable between different
disease groups. For example, an APACHE II score of 25 points is associated with a predicted
mortality rate of 73.6% if a patient is admitted for neoplasm, but only 38.9% if admitted for
a seizure disorder (ClinCalc, 2016).

The APACHE II risk prediction model combines the APACHE II score with other factors,
admission from theatre following emergency surgery, reason for admission and CPR within
24 hours prior to admission, to calculate the risk of hospital mortality for critical care unit

admissions.

12



APACHE III

The APACHE III score provides a risk classification of severely ill hospitalised patients with
three components, physiology, age and chronic disease. Unlike the APACHE II score, it can
be recalculated every day. Daily APACHE III scores are used in the APACHE III equation
to update mortality prediction of patients. First-day APACHE III score shows the highest
discrimination power compared to the past APACHE models (Knaus et al., |1991]).

The APACHE III score ranges from 0 to 299 with a positive correlation with patients’ mor-
tality risk (Knaus et al., [1991)). A physiology component of the APACHE III includes the
APS components and four more elements, urine output, Albumin, Bilirubin and Glucose.
The APACHE equation is developed by combining disease type and patient’s previous loca-
tion, and assigning different weights to the three APACHE III score components, physiology,

age and medical history.

2.3.4 Simplified Acute Physiology Score (SAPS)

SAPS was designed for use as a simplification of APACHE II. The score ranges from 0 to 163
with a predicted mortality between 0% to 100%. The score is calculated for every individual
patient during his/her first 24h after admission to the ICU.

SAPS II was developed from a multicentre study involving European and North America
hospitals (Le Gall et al., [1993)). It includes only 17 variables: 14 physiology variables (Heart
Rate, Systolic Blood Pressure, Temperature, Glasgow Coma Scale, Mechanical Ventilation
or CPAP, PaO2, FiO2, Urine Output, Blood Urea Nitrogen, Sodium, Potassium, Bicarbon-
ate, Bilirubin, White Blood Cell), age, type of admission (scheduled surgical, unscheduled
surgical, or medical), and three chronic disease variables (acquired immunodeficiency syn-
drome (AIDS), metastatic cancer, and haematological malignancy). The area under receiver
operating characteristic curve (AUROC) was 0.88 in the training sample and 0.86 in the

validation sample in mortality prediction (Le Gall et al.l [1993).
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In contrast to the APACHE II score, the resulting value of SAPS is better at comparing
patients with different diseases. There is no discrepancy of mortality prediction in a patient

population with the same score and with a variety of diseases (Le Gall et al., |1993]).

2.3.5 Mortality Probability Model (MPM)

The first MPM was developed in 1985, then revised in 1993 (Lemeshow et al., |1993]). The
most recent version was released in 2007 (Higgins et al., 2007)). The model has four predictive

models, at admittance, 24h, 48h and 72h.

MPM estimates mortality probability at hospital discharge using variables obtained at the
time of ICU admission or during ICU stay. The admission model, MPMj, contains 15 readily
obtainable variables. In developmental and validation samples AUROC=0.837 and 0.824,
respectively. The 24-hour model, MPMy, (developed for patients still in the ICU at 24
hours), contains five of the admission variables and eight additional variables at 24h. It also
discriminated well (AUROC=0.844 and 0.836 in the developmental and validation samples,
respectively). Among severity systems for intensive care patients, MPMy is the only model
available for use at ICU admission. Both MPMgy and MPMs, are useful research tools and
provide important clinical information when used alone or together. MPMyg and MPMy
contain the same 13 variables and coefficients as MPMs4. The models differ only in the
constant terms, which reflect the increasing probability of mortality with increasing LoS in

the ICU (Lemeshow et al., [1994]).

2.3.6 ICNARC models

The ICNARC model was first implemented in 2007 based on UK critical care statistics. The
model was proved to be the best mortality risk prediction model for patients admitted to UK
critical care units. The model is calibrated periodically. The most recent ICNARC model

was released in January 2016 (Ferrando-Vivas et al., [2016)).
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ICNARC physiology score

The ICNARC physiological score takes other models into account. The score uses physiolog-
ical indicator categories from other models, APACHE II, APACHE III, SAPS II, and MPM
II. Also included are selected categories of extreme systolic blood pressure, categories of
respiratory rate from APACHE III (removing the condition that ventilated respiratory rates
between 6 and 13 are not weighted), categories of PaO2/ FIO2 from SAPS II and interaction
with ventilation status, categories of arterial pH and associated PaCO2 and categories of
creatinine from APACHE II (without doubling the weighting for acute renal failure). Neuro-
logical status is modelled with 13 categories for individual GCS values from 3 to 15 (assessed
during the first 24h following admission to ICU) and two additional categories for patients
who were either sedated or paralyzed and sedated for the entire first 24h (Harrison et al.

2007).

The ICNARC score theoretically ranges from 0 to 100 with the observed highest score being
82. Although the score is no longer considered in the calculation of mortality risk since the

full ICNARC model is in use, it is still used to report severity of illness (Ferrando-Vivas

et al., [2016).

Full ICNARC model

The ICNARC mortality risk prediction model is developed from age, past medical history,
source of admission, cardiopulmonary resuscitation (CPR) before admission, diagnosis cat-
egory and ICNARC physiology score. Past medical history is considered in five categories.
Sources of admission are combined into six broad categories. 67 non surgical diagnoses and
19 interactions with the physiology score are considered directly in the model. 34 surgical
diagnoses and four interactions are also modelled directly. Other diagnostic categories are
allocated with coefficients according to body systems. The ICNARC model was simplified
by combining adjacent categories and backward elimination. The “best” model contains 12

physiological variables and 63 other variables were included in the final model (Harrison
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et al., 2007). The BRI ICNARC data is in accordance with this model.

The current collection of data in UK ICUs is widely standardised according to the require-
ments of ICNARC. The ICNARC risk prediction model is regularly calibrated. A new IC-
NARC model was calibrated with data collected between 1 April 2013 and 31 March 2014.
Instead of calculating the ICNARC physiology score and then inputting the score to the
risk prediction model, the latest model incorporates measured physiological data directly.
However, the physiological variables included are the same as that of the previous model

(Ferrando-Vivas et al., [2016).

2.4 Summary

The background chapter gives an overview of the current situation of intensive care in the
UK. Definitions have been provided for levels of care in intensive care wards, informing
the simulation modelling in Chapter [f] A wide range of ICU risk prediction models are
considered. An understanding of the various ICU scoring systems leads on to the use made
of such variables and scores in data analysis and modelling in Chapters and[6] Literature
reviewed in Chapter [3|refers to these ICU risk prediction models. The BRI ICU data include
ICNARC scores and probabilities, and APACHE scores.
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Chapter 3

Literature Review

This chapter aims at discovering feasible methods by reviewing related literature to achieve
our research objectives. Research questions shall also be drawn from what is learnt from the

review.

A review of related literature covering all related topics is provided in this chapter. The
review is ordered in accordance with our research objectives. First, late admission related
problems and models are reviewed. We next review mortality and LoS prediction models
used in ICUs to understand what might applied to our case study. Finally, ICU modelling

as a key part is reviewed and discussed.

Late admission is the key element of our research. Apart from the general investigation of
late admissions in Chapter [I, a better understanding of late admission is necessary. The
focus will be on consequences of late admissions shown in medical papers and the impact of
delayed admissions modelled by operational research papers. These articles also demonstrate

approaches to analysing the late admission problem.

As a preliminary to an understanding of prediction models, a review of timing effect is carried

out; this is widely recognised as a potential impact on patient outcomes.
An introduction of ICU scoring systems, which largely focus on predicting patients’ outcome,
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has been presented in Chapter 2 A further review of other methods used in ICU mortality
prediction enables us to investigate the prediction in a more detailed way. These models also

gives a hint of influential variables in predictions.

LoS modelling is another key part of our modelling, and so methods for ICU LoS prediction
are reviewed to initiate the construction of prediction models. We also pay attention to
covariates contributing to ICU LoS prediction to see how non-medical variables are involved,

for example, congestion and timing effects on ICUs.

In order to construct an appropriate ICU simulation model, we would like to review fre-
quently used ICU modelling methods, including modelling of both arrival process and ICU
services. Regarding ICU services, we consider ICU admission and discharge, ICU resources
management and ICU services under an extreme condition (i.e. a pandemic). Then, simula-

tion modelling of ICUs as a whole is reviewed to give a holistic view of the application.

We would like to investigate potential benefits and challenges of combining data mining and
simulation modelling to tackle healthcare management problems. We review literature in
order to know current applications of combining data mining and simulation modelling in

healthcare management and whether the combination can add value to a DES model.

3.1 Late admission in ICUs

We discuss firstly, a select of medical literature on the topic of late admission. Then, models
of late admission in ICUs are discussed. This is an area in which there is a scarcity of

literature.

The definition of late admission follows the one in |Jhanji et al.| (2008); Restrepo et al.| (2010);
Renaud et al.| (2012). It considers the delays originated from both lack of ICU resources
and late identification of sick patients. Compared to readmission and premature discharge
problems, late admission is a problem that has been given considerably less attention than

other risks face by patients |Jhanji et al.| (2008]).
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3.1.1 Medical research into late admissions

Discussion of late admission problems can be traced back to the 1990s with evaluation of
triage decisions for ICU admissions. Metcalfe et al.| (1997) find that patients who are refused
by the first-choice ICU have high mortality, in a UK study. In the research, they recorded
first time admission and admission after refusal but did not report detailed results. A similar
study carried out by |Sprung et al. (1999) in Israel shows that a higher mortality rate was

found in patients admitted later compared to immediate admitted patients.

In clinical studies in developed countries, poor hospital discharge outcomes, higher mortality
and longer hospital LoS are proved to be associated with delayed transfer of critically ill
patients from the ED to the ICU (Chalfin et al., 2007; Rincon et al.l 2010). Cohort studies
in developing countries also shows that delay in ICU admission from ED and post anaesthesia

care unit associates with higher mortality (Cardoso et al., 2011}; |Bing-Hua, 2014).

Goldhill et al.| (2004]) explored the relationship of hospital outcome and hospitalisation before
ICU admission using 50,837 records from 24 ICUs located in London and Essex, during the
period of Apr 1992 to Dec 2000. They categorised hospital LoS before ICU admissions into
six groups: 0-3, 4-6, 7-9, 10-12, 13-15 and >16 days. They found that the longer they
stayed in the hospital before their ICU admission, the higher mortality and longer LoS, after

case-mix adjustment.

Studies regarding specific groups of patients, patients with community-acquired pneumonia
(Renaud et al., |2012), cancer with acute respiratory failure (Mokart et al., 2013) and acute
myeloid leukaemia (Lengliné et al.,|2012) also show that immediate admission of patients are

related with lower mortality and shorter LoS.

However, a different view was found by |O’Callaghan et al. (2012). They analysed five-year
(2003 to 2007) ICU admissions from A&E of a 12-bed UK-based ICU. They conclude that
delayed admission (ICU admission taken after three hours of decision made) correlated with
both requirement and time of advanced respiratory support but no significant differences

in either mortality rates or ICU LoS could be found between the two groups (delayed and
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non-delayed). It should be noticed that longer delays than three hours are more generally

researched in the literature.

3.1.2 Modelling late admissions

Bountourelis et al.| (2011) present a large scale DES model aiming at solving patients’ delays
in both transfer into and out from the ICU. The model considers all ICUs and SDUs and
four other departments in a US hospital. The authors show that the model is capable enough
to capture situation of the ICU including bed-blocking. They plan to develop optimisation
method based on the DES model to make full use of current beds as well as carry out further

analysis of patient transfer scenarios.

Chan et al. (2016]) use a queueing model to study delays of providing ICU service to patients
coming from EDs, and find that long delays may have adverse effects on patient outcomes
and can potentially lead to longer lengths of stay. The delay here refers to the boarding
delay of ED patients to the ICU because of resource shortage or treatment needed. This
paper focuses on understanding the influences of delayed boarding and assumes there is no
early discharging in the ICU. The result shows that increased boarding times contribute
to longer ICU LoS, with a one-hour delay leading to a 5.69% increase in the stay, higher
overall congestion level of ICU and lower access to care for other critical patients. An
M/M(f)/s queueing model is used, where service times are exponentially distributed with
mean increasing with congestion following a growth function f. It is shown that the system
load with expected work grows much faster than the normal 1/(1 — p) relationship in most

queueing systems.

A topic related to that of late admission is that of early warning systems for ward patients.
Smith et al. (2014) review early warning system scores for clinical deterioration in hospital-
ized patients that have been implemented for earlier admission of ward patients to ICUs.
Implementation of early warning systems in wards can help health professionals to identify
sicker patients. It is related to a 33% decrease in hospital mortality of ICU patients, ac-

cording to research in Houston, US, involving 3090 baseline patients and 8926 intervention
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patients (Berger et al.l |2018).

Hu et al.|(2018) propose an Early Detection of Impending Physiologic Deterioration (EDIP2)
score to indicate the appropriateness of proactive admission of ward patients to ICUs. It
shows that a proactive admission policy could improve patient outcomes. However, it could
also lead to ICU congestion which may finally lower the effectiveness of critical care. The au-
thors suggest use of stochastic modelling and a dynamic optimisation framework to compare

alternative policies, but do not undertake such modelling.

The previous research related to the impact of delayed admission concentrates on admissions
to ICU from single sources, either delayed ICU boarding of patients from EDs or on delays
of ICU admissions for clinically deteriorated patients from general wards. No work has been

found in modelling the delays from all departments of hospitals.

Both delayed boarding of ICU patients from ED and delayed admission from general wards
affect mortality and LoS of ICU patients. Various questions are raised from the literature.
As most of the reviews are based in the US, is late admission a widely-existing problem?
Should all the admission sources be considered when investigating late admission? How do

late-admitted patients affect the efficiency and effectiveness of the ICU?

3.2 Timing effect of healthcare and intensive care

This review of timing effects in ICUs is carried out to provide a preliminary to mortality and
LoS prediction of ICU patients. There is a large body of literature regarding timing effects;

a flavour of different views are given here.

There widely exists a “weekend effect” of hospital admission of patients. The weekend effect
shows that patients admitted to hospital for treatment during weekends have significantly
higher mortality rates compared to those admitted during weekdays (Cram et al., [2004).
Several medical studies have been carried out on weekend effects all over the world. Some

of the studies show that the weekend effect appears in adult ICUs (Barnett et al.l 2002;
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Uusaro et al., 2003)) especially in the elective surgical patient group (Bhonagiri et al., 2011)).
Ensminger et al. (2004) claim that the weekend effect exists only in surgical ICUs, not
in medical or multispecialty ICUs, according to their study in the US. However, several
researchers claim that there is no significant difference of patients’ mortality between weekend
and weekdays for either admission or discharge; Laupland et al. (2008) showed this in a
Canadian study and lJu et al.| (2013) in a Chinese study. The weekend effect is of particular

interest in the UK healthcare system.

Moreover, “after hours” (“night time”) admission and discharge are also tested in many
studies. |[Uusaro et al. (2003), in a study in Finland of ICUs, find that discharge in the
night time has a significant negative impact on patients’ outcomes. Night time admission
rather than discharge was found to be detrimental to ICU patients by |Ju et al. (2013)). Both
Laupland et al| (2008) and Bhonagiri et al.| (2011) find a strong after-hour effect of both
ICU admission and discharge in their studies. |Neuraz et al| (2015) explained the weekend
effect and the after-hour effect by the patient-to-caregiver ratios, as the largest nurse staffing
shortages and highest patient-to-physician ratios occur at weekends and during the night

shift.

Timing effects in healthcare systems have received wide attention over a number of years.
However, different research shows different results to the question of whether timing effects
exist. Moreover, reasons for any effect have not yet been clearly found. An investigation of

timing effects and their contributions to prediction is thus worthwhile.

3.3 Mortality prediction

Mortality is the key and the most straight forward ICU patient outcome. Current per-
formance measurement of ICU is mortality-based (Barbash et al., 2016). The mortality
considered in this study is both mortality in the ICU and hospital mortality of patients who

have had an ICU stay i.e. mortality before the ultimate hospital discharge.
As introduced in Section there are many ICU mortality risk prediction models using
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scoring systems to predict the risk of mortality of patients admitted to ICUs. These were
tested and compared in a wide range of datasets. The ICNARC risk prediction model is
currently the best mortality prediction model for ICU patients in the UK (Harrison et al.,
2007)). These risk prediction models consider both physiological factors of patients and ICU

operational factors, e.g. admission sources.

Apart from ICU scoring systems, there are other widely used models in ICU mortality
prediction including artificial neural networks (ANNs), regression models and tree-based
models. Bayesian methods are also found incorporated in tree-based and regression models.
Frequently-used ICU scoring systems are introduced in Chapter [2] This section gives models
commonly used in mortality prediction, with the aim of covering different approaches. A se-
lection of examples of each method are given here to illustrate the applications and modelling

potential.

Artificial Neural Networks (ANNs) try to mimic the working of human brain. However,
the transparency of ANN models is low. Therefore, results gained from an ANN model
may not be incorporated well with medical experts’ knowledge. However, there are several
applications of ANNs to prediction in ICUs. |Gholipour et al. (2015) adopted ANNs for
predicting survival and LoS of patients in an ICU and ward for trauma patients. The
ANN model was fed by Trauma and Injury Severity Score (TRISS) components, biochemical
findings and risk factors. TRISS is a score for specifically trauma and injury patients rather
than ICU patients. Three different types of data were collected to predict ICU outcome and
LoS in trauma patients: i) mechanism of trauma and site involved,; ii) vital signs and physical
examination of patients in the ED; iii) laboratory findings. GCS and peripheral capillary
oxygen saturation (SpO2) in the second type of data together with base excess and blood
glucose in the third type of data showed significant differences between patient groups that
survived or died. The model achieved a 0.75 sensitivity and 0.96 specificity in predicting the
outcomes, and predicted 93.33% of outcomes in the test group correctly. Also, the mean LoS

predicted was not significantly different from the actual mean LoS.

A logistic regression model aimed at predicting death or readmission within seven days of
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discharge after clinically finishing their critical care was built by Ouanes et al. (2012) based on
empirical data from four ICUs in France and Tunisia. Six variables with good predictability
are age, SAPS II at ICU admission, use of a central venous catheter, Maximum Systemic
Inflammatory Response Syndrome scores during ICU stay, SOFA score at discharge, and
discharge at night. The model achieves an AUROC of 0.74, which is marginally better than
predicting using SAPS II only. Moran and Solomon| (2012) predict mortality of ventilate

patients by considering intensive care occupancy together with APACHE scores.

Chang et al.| (2013]) observed a surgical ICU (SICU) in Taiwan to investigate hospital mor-
tality of prolonged stay patients who were aged more than 16 and stayed more than 14 days.
Those patients consumed 9.7% of total SICU admissions but 51.7% of total SICU days. Four
patient factors (gender, longer pre-ICU days, larger Charlson comorbidity index and not ad-
mitted from ED at admission) and seven factors at the 14th day of ICU stay (lower GCS,
lower mean arterial pressure, higher dosage of inotropes required, higher serum lactate level,
higher serum bilirubin level, lower platelet count and the use of renal replacement therapy)
increased hospital mortality of prolonged-stay patients. Least absolute shrinkage and selec-
tion operator (LASSO) regression and logistic regression were adopted as variable selection

and prediction methods.

A different view of prediction is provided by Ramon et al. (2007), who summarise the appli-
cation of data mining methods for predicting state changes of patients in an ICU. Predictions
include patient mortality, LoS longer than three days, and how long a patient will be in one of
the endangering states (i.e. kidney dysfunction, inflammation, severe inflammation, inflam-
mation shock and low blood pressure needing vasopressor support). One of the challenges
in this area is that the absolute values of patient attributes such as heart rate are hard to
compare. To solve this problem, the authors suggest applying a two-level Bayesian approach
using the deviation of patients’ heart rate instead of the absolute value. The researchers
also compared four different data mining methods, decision trees (DT), First Order Random
Forests (FORF), Naive Bayes (NB) and Tree Augmented Naive Bayes (TAN) in carrying

out different tasks. Each one has their own strengths and weaknesses.
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Wong and Ismail (2016 build two sets of four multivariate logistic regression models for a
Malaysian ICU. One set uses maximum likelihood estimation (MLE); the other set utilises a
Bayesian Markov Chain Monte Carlo simulation approach in the development of the models.
APACHE scores and GCS are included in all eight models. The AUROCs for the Bayesian

models and MLE models are very similar.

Johnson et al.| (2012) develop a ‘forest’ based on 500 two-layer trees using UK ICU data. A
Bayesian Markov Chain Monte Carlo approach is used to optimise the tree-based ‘forest’.
They used scalar features, i.e. minimum, maximum, median, first, last, and number of values,
instead of temporal features in their model for each time-based variable. The AUROC of
the model is 0.86 which is significant higher than the SAPS II estimation of 0.667. However,
the authors have not stated all the variables they considered neither have they indicated if

they put an established ICU scoring system into their model.

Apart from the scoring systems, different prediction models have been developed according
to specific needs. These have also been compared with scoring systems in discrimination
ability. |Sinuff et al.| (2006) compare physicians’ subjective discrimination between survivors
and non-survivors with the performance of SAPS II, MPM, APACHE II and other computer
models. Results show that ICU physicians predict mortality more accurately than scoring
systems or models, in the first 24 hours of ICU admission (AUROC: 0.85 + 0.03 vs 0.63 +
0.06).

To summarise, to achieve a result considerably better than existing ICU scoring systems has
not been demonstrated in these studies. However, it is still possible to calibrate an ICU-
specific model by incorporating ICU scores and other factors. Therefore, we are interested
in whether there are any other factors that could contribute significantly to the mortality
prediction, for example, late admission of patients. Moreover, mortality prediction models
in literature focus either on all patients in an ICU or a certain group of patients. No

investigation of predictability of models for diverse groups of patients is found.
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3.4 LoS prediction

Since ICU resources are extremely expensive, hospitals and patients can both benefit from
optimising LoS, that is, providing patients with long enough but not excessive stays in an
ICU. This section discusses research into LoS prediction in hospital wards, whether general
wards or ICUs. Patient hospital length of stay refers to the number of days that an inpatient
stays in a health care facility during a single admission. LoS is a strong indicator of resource
consumption level in a hospital. It also helps to understand flow of patients and evaluate
the operational efficiency of hospital departments. This research is seeking ways to predict

patients’ LoS more precisely both in the ICU and in hospital after leaving the ICU.

LoS of a patient in general reflects the severity of patients’ illness. However, for ICU patients
in particular, the most severe group of patients may stay a very short time as they may die
very soon after their admission. For all the remaining patients, the longer they stay, the
higher mortality probability they have (Martin et al., 2005). Moreover, LoS also reflects
the operational efficiency of a hospital; the availability of general ward beds can impact
the discharge of ICU patients. Similarly, social care and community nursing support can
influence discharge of hospital patients. Hospital management style can also influence LoS

of patients (Awad et al., |2016).

In the following sub-sections reviews are given of different type of LoS prediction models and
their applications in the ICU. The aim is to introduce how methods are utilised in prediction
and give examples of them. Various methods and their advantages and disadvantages are

covered and some comparison of different methods is provided.

3.4.1 Statistical models for LoS prediction

Descriptive statistics

Average LoS is a frequently-used statistic of in-patient hospital LoS. It is easy to quantify

and often used in hospital resource and capacity modelling and management. However, it is
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not representative as LoS is often largely skewed. Median LoS could be more representative
in some cases as LoS is recognised as right skewed (Awad et al., 2016). However, both of
the two statistics give only a deterministic estimation of LoS. Outliers can be problematic
in LoS prediction. Predefined lower and upper boundaries could be used to replace the out-
liers, which could reduce the skewness of data. The boundaries can be a certain percentile or
predefined numbers calculated from robust statistical methods, for example mean + 2*(stan-
dard deviation) (Senthilkumar and Ramakrishnan|, 2012). Truncation is another way to deal
with outliers. Instead of replacing outliers with other statistics, truncation excludes outliers
directly. Various truncation methods have been applied to LoS modelling (Guzman Castillo,

2012)). Data transformation can be employed before setting truncation boundaries.

Regression analysis

Linear regression

Linear regression models are used in modelling LoS of both hospital and ICU patients. LoS
as a dependent variable is predicted by several independent variables. Moran et al. (2008)
predicted log transformed ICU LoS in Australia and New Zealand using linear regression
and incorporating patient demographics, severity score, surgical and ventilation status, ICU

categories, and geographical locality as independent variables.

The usual approach for estimating unknown parameters in linear regression models is ordi-
nary least squares (OLS). However, OLS is limited by several assumptions. These assump-
tions can easily be violated by the nature of LoS data (e.g. right-skewness). Transformations
are considered to normalise the data. However, transformed LoS is not practically mean-
ingful and requires back-transforming. There is a heteroscedasticity problem that causes a

large bias after back-transforming the logarithmic LoS (Mihaylova et al., [2011)).
Generalised Linear Models (GLMs)

In GLMSs, dependent variables are connected to the linear equation by a link function and

also the variance of data are captured in the models. The assumption of normality of
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data in a linear regression can be avoided. GLMs avoid problems of data transformation
(Guzman Castillo, 2012). GLMs perform better in interpretation of coefficients than using

transformed data in OLS models to deal with heteroscedasticity.

Moran and Solomon (2012) compare several LoS estimation models based on data from ICU
patients in Australia and New Zealand. The models include OLS models of original LoS
and log—transformed LoS, and GLMs with log link function and four different distributions
(Poisson, gamma, negative binomial and inverse-Gaussian) using untransformed LoS. They
also considered extended GLM with flexible link and variance functions as well as multi-
level or hierarchical linear mixed models (LMMs) incorporating random effects. The results
show that LMMs are the best amongst all methods regarding consistency and predictability.
However, the R-squareds of the LMMSs range from 0.17 to 0.22, not high predictability.

Survival analysis

Survival analysis is a method for exploring time-to-event data. It is generally defined as a set
of methods for analyzing data where the outcome variable is the time until the occurrence
of an event of interest. Referring to LoS modelling, the event is discharge from an in-patient

department e.g. an ICU (Collett, 2015).

Two main concepts in survival model are survival functions and hazard functions. While
survival functions give the probability that the event of interest has not occurred by a certain
duration, hazard functions are regarded as an instantaneous rate of occurrence of the event.

(Rodriguez, [2007))

There are two categories of hazard functions, parametric and non-parametric estimations.
Homogeneity of the study population is the basis for estimating hazard functions. A range of
distributions for continuous non-negative variables are used as parametric hazard functions
such as Weibull. Mason et al.| (2015) selected the Weibull distribution as the baseline hazard
function to analyse the LoS of patients in an ICU after cardiac surgery. |Cosgrove et al.

(2005) also used the Weibull distribution as a baseline hazard function to study LoS of
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patients after staphylococcus aureus bacteraemia. Ravangard et al. (2011) found that the
gamma distribution fitted the best to the LoS of patients in a tertiary teaching hospital in
Iran. Mason et al.| (2015) select the Weibull distribution as the baseline hazard function to

analyse the LoS of patients in an ICU after cardiac surgery.

Non-parametric survival models are often estimated by Kaplan-Meier curves or Nelson-Aalen
estimates, but these method limit the adjustments for covariates. [Barton et al. (2009) applied
Kaplan-Meier survival curves to determine LoS of stroke patients. Forster et al. (2012) used

Kaplan-Meier estimation to study patient LoS with hospital-acquired infection.

In a proportional hazards model, increase in a covariate does not have a simply additive
or linear relation with the hazard function; instead there is multiplication of the hazard
rate. The Cox proportional hazards model is an approach to estimate effect parameters
without any knowledge of the hazard function, based on the proportional hazards assumption.
Beyersmann et al.| (2006) adopt a Cox proportional hazards model in modelling prolongation
of ICU LoS due to nosocomial infection. Nosocomial infection was modelled as a time-

dependent covariate in a proportional hazards model.

Sa et al| (2007)) apply different parametric and semi-parametric survival models for analy-
sis of the influence of observed and unobserved covariates on patients’ hospital LoS. They
demonstrate that parameter estimates in LoS models are very sensitive to the assumptions

regarding the hazard function.

Death is treated as a censoring point in survival analysis by [Prinja et al.| (2010). However,
Lin et al.| (2017)) find that “censoring due to death” can lose implied causal inference in
LoS modelling. The key advantage of a survival model is that it considers censored data.
Although censoring is not a problem in most LoS analysis, survival analysis is still widely
applied in LoS analysis as it is less parametric compared to OLS and GLMs (Basu et al.,
2004]).
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Comparison of different statistical models

Verburg et al.| (2014) compare different regression methods for modelling patient ICU LoS in
the Netherlands. Eight different models are considered, linear regression using LoS, truncated
LoS and log(LoS), GLM using Gaussian distribution and a logarithmic link function, Poisson
regression, negative binomial regression, gamma regression with a logarithmic link function
and Cox proportional hazard regression. In general, the Poisson model and Gaussian GLM
performed the best in terms of R?. Cox regression and linear regression of log(LoS) did
better for patient ICU LoS shorter than four days. However, overall R?s for models are not
high falling in the range 0.09 to 0.20. Cyclical terms for discharge times were added to the
models by the authors but with little improvement. Moreover, linear regression for log(LoS)
may not be meaningful for decision-making processes (Verburg et al., [2014;|Guzman Castillo|

2012).

3.4.2 Data mining methods in LoS prediction

Lim et al.[(2000) compare a wide range of data mining methods for LoS and mortality predic-
tion in both ICU and hospital considering both their accuracy and training cost. Differences
in the results are generally ignorable. Interpretability of models can be a more important

factor when choosing models.

Guiza Grandas et al. (2006) use four different data mining algorithms, DT, FORF, NB
and TAN, on four different tasks: prediction of patient survival, prediction of patient LoS
(short, medium and long), prediction of development of endangering states and prediction
of recovery from endangering states. The results show that there is no one best model for
all tasks. Different models suit different tasks. For LoS, the best method is TAN with an

accuracy of 83%. Accuracy for other models ranges from 75% to 83%.

Milic et al.| (2009)) take use of a single score, either APACHE II or SOFA, on admission and
on the third day of stay to predict LoS in general and cardiac ICUs in Croatia. Either scores
on admission shows significant correlation with LoS. However, LoS and APACHE II/ SOFA
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on the third day of stay strongly correlate, with p = 0.728 and p = 0.725 respectively.

Hachesu et al| (2013)) use three classification algorithms, namely, decision tree (DT) using
C5.0 algorithm, support vector machines (SVM), and artificial neural network (ANN), in
predicting LoS of cardiac patients. They categorise LoS into LoS1, LoS2 and LoS3 where
LoS1 < 5 days, 6 days < LoS2 < 9 days, and LoS3 > 10 days. 36 input variables are used
for prediction. All three algorithms are able to predict LoS with limited different between
them, but SVM has the best fit (accuracy=96.4%). There was a significant tendency for LoS

to be longer in patients with lung or respiratory disorders and high blood pressure.

Lella et al. (2015 describe an unsupervised LoS prediction model, ANN combined with
clustering. The developed model detects autonomously the subset of non-class attributes to
be considered in these classification tasks, and the structure of the trained self-organizing
network can be analysed in order to extract the main factors leading to the overcoming of a
local LoS threshold. It is claimed that the model performs better than other ones commonly

used in this kind of problem.

LoS appears to be highly correlated with clinically scores (Mili¢ et al., 2009). Also, data
mining methods can classify LoS into short, median and long stays with an acceptable accu-
racy (Lim et al.l 2000; |Guiza Grandas et al., 2006, Hachesu et al., [2013)). However, such an
inexact classification would not help much with management of ICU resources. The differ-
ence in predictability of different methods appears to be limited. Moreover, interpretability

could be a more important factor when choosing between models.

3.4.3 Markov models

If probabilities of future states of a stochastic process depend only on the current state and
the states happening directly before the current state, then this process is said to have the

Markov property (Ross, |1996). Markov models are used to model systems with the Markov

property.
A compartmental model describes how patients are transferred between different sections of
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a healthcare system (Awad et al., 2016). Taylor et al.| (2000) investigate the time geriatric
patients spend in hospital and in the community by applying a continuous Markov model to
a six-compartment model. The six stages include acute, rehabilitative, long-stay, two stages
in the community and death. The study is based on an extensive 16-year dataset of UK
geriatric patients. The model provides adequate fit for patients with short stay (< 30days)

but deviates much for those with long-stay.

Pérez et al. (2006) build models to predict average LoS of patients in an ICU and at each
destination after discharge from the ICU. Patients are divided into six different diagnosis
groups, cardiovascular, neurological, respiratory, gastrointestinal, trauma and other diagnos-
tic groups. Different discrete time Markov models were estimated for each group. After
the first day of ICU admission, patients move to eight different destinations including two
absorbing states, death and discharge. The model shows good predictability (Chi-squared
test) in cardiovascular, neurological and gastrointestinal patients but not in other groups.

However, the Markov property is hard to verify.

Generally speaking, the accurate prediction of LoS for individual patient could be hard
to achieve. However, LoS prediction may also be enhanced by determining appropriate
covariates in regression models, splitting patients into homogeneous groups or incorporating
cyclical terms in prediction. It worth finding out what factors may influence LoS and how

we can better model LoS.

3.5 ICU modelling

Literature reviewed in this section focuses on simulation and queueing models depicting the
whole ICU. We consider first these preliminaries to ICU modelling: arrival processes and
service modelling, including ICU admission and discharge, ICU resource management and

services under extreme conditions. Then, a review of modelling of whole ICUs is provided.
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3.5.1 ICU arrival process

The modelling of arrival processes and service rates using exponential distributions is being
challenged. Back to 1970, Swartzman had already claimed that non-homogenous Poisson
process (NHPP) could only depict unscheduled patients (Swartzman, 1970). |[Kim et al.
(1999) recommend that patients from different sources, including scheduled patients, are
modelled separately to get a more accurate result when building a model to support capacity
management. It is found that modelling patient arrivals by week is not sufficiently accurate.
Kim and Whitt| (2014) investigated data from call centres and hospitals and demonstrated
that data rounding, mis-choosing of sub-intervals and ignoring the day-of-week effect may
cause the rejection of the NHPP null hypothesis. This paper investigates the use of NHPP
for modelling hospital arrivals but such a comprehensive investigation into the use of Poisson

processes in illustrating ICU arrivals is not evident in the literature.

Poisson processes are popular in modelling the arrival process of ICUs. However, the justi-
fication for their use is usually not provided (Bai et al., 2016]). Shmueli et al.| (2003) use a
homogeneous Poisson process (HPP) to model the arrival of all the ICU patients in a hos-
pital in Israel with a single arrival rate parameter. They then compare different admission
policies: first come first served (FCFS), first come first served for all referrals who can benefit
more than some hurdle (FCFS-H), and first come first served for all potential admissions
whose benefits exceed a bed-specific hurdle depending on the idle beds number (FCFS-BSH).
They find out that the FCFS-BSH policy is the best for overall utility. HPP is adopted to
modelling ICU admissions in other research. |[Kim et al| (1999) mix three HPPs for ward,
A&E and outpatient emergency patients together via convolution. The convolution of two
functions (f and g) is defined as (f * g)(t) = [~ f(7)g(t — 7)d7 (Bracewell and Bracewell,
1986). An NHPP is assumed as the arrival process in modelling an ICU at a US military
establishment (Masterson et al., 2004)). McManus et al.| (2004)) fit an HPP for all patients in-
cluding emergency and elective. |Litvak et al. (2008) use different HPPs to model the arrival

process of patients from different sources.
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3.5.2 ICU services

ICU admission and discharge

McManus et al.| (2004) use two years’ admission, discharge, and turn-away data in a busy,
18-bed ICU in the US. They claim that a simple queueing model (M/M/c/c) is powerful
enough to model ICU operation and flow. The model provides accurate results including
turn-away rate and monthly responsiveness to changing demand which indicates the need
for resources. The prediction works well at a high level (monthly changing demand and
average turn-away rate). However, none of the elements in the simple queueing model can

exactly depict what happens in an ICU.

Litvak et al.| (2008) research management of the overflow of ICU patients. They proposed
that several hospitals in a region jointly reserve a small number of beds for regional emergency
patients, to tackle the ICU capacity problem in the Netherlands. According to the authors,
the cooperation can achieve a higher acceptance of regional patients and a lower probability

of cancelling operations, together with a smaller total number of ICU beds.

Dobson et al.| (2010) built a model of ICU bumping, early discharging of patients who should
not be discharged that early. The model helps to predict performance when bumping occurs
with various arrival patterns and capacity. An algorithm is also developed to track the time
in the system for each patient. Use of the algorithm avoids use of the assumption of an
exponential distribution for LoS. The model also suggests the influence of surgery schedules

on bumping rates.

Chan et al.| (2012)) develop a decision support tool to aid clinicians in discharging patients
when an ICU is highly occupied (> 75% occupancy) and new patients are waiting. The
optimization is based on reducing readmissions as well as not sacrificing mortality rate given
that all new patients must be given a bed immediately unless they are diverted. The discharge
policy can be described as simply choosing a patient from a group to incur the least cost.
The policy requires data about particular patient groups but does not require estimation of

arrival rates of different classes. Ignoring future arrivals can lead to sub-optimality of the
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solution. Patients were classified into five groups by prediction of death probability using
medical scores (APACHE & SAPS). Each of the groups had approximately the same number

of patients. In the model, both patient state and patient diversion were considered.

Armony et al| (2013) consider the role of Step Down Units (SDUs) in the US which are
similar to HDUs in the UK. A queueing model of patient flow through an ICU and SDU is
built to determine the necessity for and the size of an SDU. Staff resource is a key part of
the model. The results show a zero-capacity SDU (nurses are released to ICU) or a sizable

SDU could both be good options under different circumstances.

Kim et al.| (2014) suggest an econometric model of ICU admission. The gain and cost of every
ICU admission is quantified. They built three simulation models of admissions, an optimal
full model considering both experts’ opinions and recorded data; an optimal observable
model regarding only recorded data; and a model adding an extra ICU bed without changing
the admission policy. Compared to the current admission policy, the ICU can save $8.1m,
$1.9m and $0.4m respectively by adopting these three models. The ICU admission decision
variables were decomposed into patient characteristics and instrumental variables to avoid
endogeneity of the variables. The optimal full model referred to the combination of observed
and unobserved patient factors. These unobserved factors are the conditions doctors may
consider in making decisions. The model can be improved significantly when including these
unobserved factors. However, the optimal full model is ambiguous without stating the actual

variables included.

Shi et al.| (2015) use simulation modelling to propose a discharge policy for an ED. They sug-
gest that the first discharging peak of ED patients should be brought forward from between
1lam and noon to 7am to 8am. An appropriate discharge timing can help to eliminate ex-
cessive waiting of patients needing resources. This idea may also be helpful in ICU discharge

arrangements.
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ICU resources management modelling

The two main resources in ICUs are beds and nurses, both of which are expensive and limited.

ICU nurses are required to provide careful assessment and monitoring of patient progress
in order to watch for sudden or subtle changes in a patient’s medical condition that might
require emergency intervention. Besides, nurses take multiple roles in the ICU and patient

care, for example, ICU administrative works and patient families support (Bisk, 2017).

As stated in Section[2.]] the recommended nurse-to-patient ratio is 1:1 and 1:2 for level 3 and
level 2 patients respectively. Having fewer nurses at night is associated with increased risk for
specific postoperative pulmonary complications and with increased resource use in patients
undergoing a hepatectomy (Dimick et al., 2001). A nurse caring for more than two ICU
patients at night increases the risk of several postoperative pulmonary and infectious com-
plications and was associated with increased resource use in patients undergoing esophageal
resection (Amaravadi et al.,[2000). Increased nursing staffing helps to decrease the number of
central line bloodstream infections in the ICU (Cimiotti et al., 2006). According to |Halwani

et al.| (2006)), an understaffed ICU can raise the chance for cross-transmission of a pathogen.

A simple queueing model proposed by McManus et al.| (2004) shows that the performance is
very sensitive to bed availability. The model is useful in determining the appropriate supply

of beds.

The nursing resource consists of both number of the nursing staff available and their workload.
Higher workload is proved to negatively impact the quality of service and eventually increase
the cost of the system (Hoonakker et al., 2011). ICU nurse workload can be measured
by two approaches: first, a patient-based approach considering patient characteristics and
nurse-patient ratio, which is widely used in budgeting and measuring process improvements;
second, an operator-based approach taking the experience of the nurses into consideration.

The first approach is usually checklist-based (Miranda et al., |1996]).

Baker et al. (2009) demonstrated that high patient inflow volumes to an ICU were associated
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significantly with subsequent unplanned readmissions to the unit. Kolker (2009)) built a
simulation model to find out the recommended maximum number of elective surgeries in
order to reduce the diversion of admissions from an ICU with fixed number of beds. The
model suggested the number of scheduled elective surgeries should differ by days of a week

and weeks of a year.

Véricourt and Jennings| (2011) model the workload experienced by nurses of a single medical
unit with n homogeneous patients as a closed M/M/s//n queue. The model was extended as
one with general service time and non-homogeneous patients. The many-server asymptotic
results showed that effective staffing policies should deviate from threshold-specific nurse-to-
patient ratios. The model comprehensively considers variability and congestion in healthcare
units and patients’ needs in terms of their nursing time. The model is useful in not only

determining nurse staffing rules but also indicating patients’ outcomes.

ICU admission and discharge decisions influence the efficiency of ICUs in the reviewed re-
search. Multiple research also confirms that the resource level of an ICU is critical to the
effectiveness of the service. It will, therefore, be interesting to know if changes in admission
and discharge policies and variations resource levels are key factors in the performance of

the ICU we investigate. Moreover, whether the results have a potential to be generalised?

Pandemic preparedness of ICU

ICUs are often involved in the treatment of influenza pandemics (Challen et al., |2007; Nap
et al., 2008 |]ANZIC Influenza Investigators, [2009; Kumar et al.,|2009; |Carr et al., 2010). The
US Centers for Disease Control and Prevention (CDC) define an epidemic as “an increase,
often sudden, in the number of cases of a disease above what is normally expected in that
population in that area” and pandemic as “an epidemic that has spread over several countries

or continents, usually affecting a large number of people” (CDC, 2012]).

Two key concepts need to be specified. First, “symptomatic patients” means patients show-

ing symptoms of disease (DH Pandemic Influenza Preparedness Team, 2011)). Second, “at-
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tack rate”, also known as clinical attack rate, is the cumulative proportion of symptomatic

patients over a specified period of time where

number of new cases of disease during specified time interval
attack rate = - — .
population at start of time interval

CDC designed a spreadsheet-based simulation tool for ICUs and hospitals to prepare for
influenza pandemic (CDC, [2016)). The tool estimates the possible requirement of hospital
beds and ICU beds. Menon et al.| (2005) utilised the tool to model the impact of an influenza
pandemic on critical care services in England. They concluded that current critical care
facilities were far from adequate to cope with surges in demand. Careful planning in advance

is needed for such situations.

To the best of our knowledge, influenza pandemic simulation models reported are all Monte-
Carlo simulation models. No detailed information on performance during a pandemic period
could be obtained from such models. It is of interests to BRI ICU management and to our

research to know how extreme conditions (i.e. pandemics) would affect the ICU.

3.5.3 Simulation models of ICUs

Simulation methods have gained increasing popularity in past decades (Brailsford et al.,
2009). In the healthcare sector, simulation modelling is commonly used in healthcare op-
erations, healthcare system design, medical decision-making applications, infectious disease
modelling and extreme events planning (Mielczarek and Uziatko-Mydlikowskay, |2012). Dis-
crete Event Simulation (DES) is one of the most widely used simulation tool in the past
years (Salleh et al |[2017). DES models built for healthcare services are ususally unit and/or
facility specific (Gunal and Pidd, [2010).

Simulation is useful in critical care modelling as the method captures interactions in a rel-
atively complex system where statistical modelling has difficulties (Kreke et al., 2004)). In
particular, DES models have great flexibility for testing different scenarios (Costa et al.,

2003). ICU DES models have usually been built to aid resource planning, performance eval-
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uation and decision making (Dong et al., [2012). We did a search in Web of Science Core
Collection using the search, ((“critical care” OR “intensive care” OR “ICU” OR “ITU”) AND

“simulation”), and filtered it to the area of “operations research management science”. Only
journals and conference proceedings are considered. Then, papers from irrelevant research
areas are excluded, e.g. papers where I'TU stands for International Telecommunication Union
and using simulation to research ICU reimbursement policies. There were 32 papers resulting
in total, including 24 journal articles and 8 conference proceedings. We note, however, this

search strategy may have missed papers in critical care medicine and surgery.

The literature can be categorised into four groups:

1. papers focusing mainly on ICUs (Romanin-Jacur and Facchinl [1987; Ridge et al., [1998;
Kim et al., [1999; [Seung-Chul et al, [2000; [Harper and Shahani, [2002; |Griffiths et al.

2005}, [Litvak et all [2008} |Griffiths et al, 2010} Marmor et al, 2011} Barnes et al.| 2011}

Bountourelis et all, 2011} (Gupta et al. 2013} Fournier and Zarid, 2013} Mallor and
[Azcarate], 2014; [Kim et al., 2014} Mallor et al., 2015} [Azadeh et al., 2016} Mallor et al.]

2016} [Hu et all, [2018)

2. papers aiming at modelling the whole hospital (Cochran and Roche, 2008; Williams|
et al., [2010; Helbig et al., [2015; Mancheva and Dugdale| 2015])

3. papers investigating other department of hospitals but heavily interacting with ICUs
(Kim and Horowitz, [2002; [Ng and Chick, 2004; Price et al., |2011; |Adan et al. 2011;
\Neyshabouri and Berg|, |2017)

4. papers introducing methodologies and using the ICU as an example (Kaplan et al.
2007; Sachdeva et al., 2007).

To better understand current research, papers are categorised according to their planning
levels. High level planning, i.e. at a strategic level, includes regional planning, hospital
planning and planning of a new ICU. Tactical level planning of an ICU includes capacity
and resource planning. Research at an operational level includes details of bed or patient,

including admission, discharge and scheduling
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Strategic planning papers, which consider regional cooperation (Litvak et al., 2008; Fournier
and Zaric, 2013) and planning a new ICU planning (Romanin-Jacur and Facchinl, [1987)), will
not be discussed in detail here since our project is not concerned with such strategic plans.

We will focus on tactical and operational modelling of ICUs in this section.

At a tactical level, Agent Based Simulation (ABS) is used to test communication protocols
between different hospital departments (Mancheva and Dugdale, [2015) and to compare infec-
tion control methods in an ICU (Barnes et al [2011). These two papers focus on interaction

between agents, i.e. people, in both cases. This does not particular apply to our situation.

DES is widely adopted to investigate problems related to ICUs in all three planning levels.
This method is used to test different policies and optimise ICU planning and operations. As

this is relevant to our case study, we will continue to discuss such research.

Several pieces of research investigate how resource level affects ICU effectiveness and effi-

ciency.

The relationship between bed occupancy and refusal or transfer of patients is complex. A
simple rule of refusal with high bed occupancy is used when planning beds in the research
of Ridge et al.| (1998) while Harper and Shahani| (2002) conclude that both bed occupancy
rate and refused admission rate need taking into consideration when managers are allocating
beds since the relationship between them is often overlooked. |Griffiths et al. (2005) used a
DES model to estimate the need for supplementary nurses during the busy period of a UK
ICU. Creating a shared pool of ICU and HDU nurses could be the most effective solution.
The hospital they investigated combined the two units before the publishing of their work.
However, the DES model is not applicable to the new mixed-ICU. |Cochran and Roche| (2008)
designed a capacity planning tool for four inpatient departments including an ICU in a US
hospital using financial data and billing data. They claim that these two types of data are
more reliable than census data in modelling bed demand. Troy and Rosenberg| (2009) built a
DES model to determine the need for ICU beds for surgical patients for a hospital in Canada,
by controlling wait time and cancellation of operative procedures. The result required an

increase of 2-4 staffed ICU beds to meet current demands. The authors also reinforced the
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view that simulation is valuable in addressing patient flow. Marmor et al. (2011) develop a
simulation model to support bed planning of cardiovascular surgical patients, in which ICU
and SDU beds requirements are two of the three main parts of the model. The tool is used
to test different surgery schedules. They summarised that “ensuring the correct number
of beds are available and staffed is an important decision”. They proposed a smoothed
schedule (i.e. perform Saturday morning surgeries) to reduce variability in the daily schedule
and therefore to smooth the demand for the ICU and SDU beds. |Barado et al.[ (2012]) built
a DES model to simulate daily bed occupancy in a Spanish hospital. They claimed that the
model can be used to predict bed requirements when case-mix is changing, by considering
demographic variables for input distributions. The authors also believe that the model has
the potential to be promoted to other units and hospitals. |Zhu et al.| (2012]) estimated the
required ICU beds for an hospital in Singapore, considering both service quality and cost-
effectiveness. They have shown that a DES model captures the variations and interactions

in this case. The model also made scenario tests straightforward.

Several papers investigate what improvements in efficiency can be achieved by applying
different management policies, e.g. admission and discharge policies, for patients transferred

into and out from an ICU.

Griffiths et al. (2010) built an Excel-based simulation model to minimise elective surgery
cancellation by considering current bed occupancy level. Several ‘what-if’ scenarios with
different policies were considered. Adan et al.|(2011) take a two-stage planning procedure to
schedule elective surgical patients: first, utilise goal programming to achieve a target level of
resource utilisation in the ICU; second, adjust the daily schedule of elective patients for the
operating room and also incorporate rules to decide admission of emergency patients and
cancellation of scheduled patients. A DES model is used to investigate how hospital efficiency
and patient service influence each other. Mallor and Azcéarate (2014) consider management
decisions, i.e. premature discharge or extended stay based on ICU occupancy, taken by
clinical staff to better describe operations in a Spanish ICU. They claim that a simulation
model without management decisions cannot be regarded as valid. They utilise simulation-

based optimisation to estimate model parameters. Mallor et al| (2016) uses simulation-
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based optimisation to determine optimal admission and discharge decision for a Spanish
ICU by minimising both new patient rejection and LoS shortening of current patients if early
discharge is required. [Mahmoudian-Dehkordi and Sadat| (2017 utilised a simulation model,
specifically a system dynamics model, to evaluate ICU management policies in an Iranian
hospital. They found that general ward admission was not a key reason for ICU congestion;
other ICU management policies were possibly the reason for congestion. Neyshabouri and
Berg (2017)) use DES to test solutions of an robust optimisation approach to elective surgery

scheduling based on capacity of downstream units, i.e. post-anaesthesia care unit (PACU)

and ICU.

It is evident that DES models are useful in modelling various ICU operations and the method
is also applicable in our case of a mixed ICU. Although simulation is widely used, none of the
above literature investigated an existing mixed-ICU or late admission problems. However, the
features of diversity and flexibility of DES modelling makes it suitable for modelling a mixed-
ICU. Scenario tests based on a DES model for admission, discharge and resource levels can
reveal the influences of different ICU operation policies. Testing influenza pandemic scenarios
based on a DES model can provide a more detailed picture of the effect of a pandemic. The
understanding of performance variations may contribute to ICU management in planning

for and managing changing situations and resources.

DES has also been widely applied to tactical and operational problems in ICUs. Resource
utilisation and ICU management policies are discussed in multiple papers. Questions relevant

to our case study will be investigated in this research:
e How does resource level affect ICU effectiveness and efficiency?

e What improvements in efficiency can be achieved by applying different admission and

discharge policies for patients in the ICU?
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3.6 Combining data mining and simulation

Data mining tools are widely applied in the healthcare industry as the industry itself is
typically ‘information rich’ yet ‘knowledge poor’ (Kaur and Wasan, |2006). Data availability
in the healthcare industry is high, while the quality of data may not be high and the inter-
relationships of data are largely unknown. Data mining techniques haves been implemented
in disease prediction, treatment effectiveness, healthcare management, customer relationship

management and fraud and abuse (Koh and Tan, [2011]).

Data mining methods also have great potential to add value to a simulation model, as
suggested by |Ceglowski et al.| (2007)), who combined data mining methods with DES. They
used a clustering method to categorise patients into treatment groups and then built a
treatment-based DES model to simulate a hospital ED in Australia. Average LoS of patients

from different categories were found to differ, which also impacted on the queueing time.

Glowacka et al.| (2009) utilised a hybrid data mining / simulation model technique to model
outpatient no-show problems in the US. Rule mining is used to predict patient no-show.

Simulation is used to find the optimal number of scheduled patients.

Elbattahl (2018) discussed how machine learning methods can be integrated in modelling
practice in particular with applications in healthcare. He discussed the use of unsupervised
data mining methods in pattern identification with a simulation model to represent flows.
Supervised data mining methods are adopted to predict outcomes for individuals. He also
discussed the possible applications based on an Irish hospital but did not carried out detailed

modelling.

To the best of our knowledge, hybrid models combining data mining and simulation have
not been well studied compared to pure simulation methods, while ICU models combining
simulation and optimisation are quite common in reviewed literature (Adan et al., [2011;
Price et al.| 2011; Mallor and Azcarate, |2014; [Mallor et al., [2015] 2016} [Neyshabouri and
Berg, [2017)). We did not find specific literature discussing ICU simulation models integrated

with data mining methods.
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Data mining models incorporated in the simulation models are generally not very sophisti-
cated but informative. Referring to Section models such as ANNs and random forests
could be useful but these models require huge amounts of input data and calibration. The fi-
nal model could also be composed of many variables, which require input data when running
simulation model. The constraints in data may cause difficulties in running DES models.
Therefore, it is essential to keep the data mining model effective but concise. There could
be multiple ways of connecting data mining models and ICU simulation models. It will be

useful for modellers if general principles for hybrid models are investigated.

3.7 Conclusion

From our literature survey, we find that ICU-related problems have gained much attention
from both practitioners and academia. However, gaps in the literature still exist. The
available literature concentrates on single level ICUs rather than mixed ICUs. Patient stays
are divided into either ICU stays or HDU stays and there is no need to consider changes in
level of care. Therefore, no well-established method exists for the study of mixed ICUs. The
BRI Adult ITU, a representative of many other ICUs in the UK, is a mixed ICU. According
to data from Health and Social Care Information Centre (2013;|2014; 2015; 2016|), more than
67% of ICU beds are used as flexible beds (both level 2 and level 3) in England. In our case,
we do not distinguish between the different lengths of stay in ICU and HDU. The LoS in the

unit is treated as a whole.

Delayed admission problems have been considered in some medical papers (Goldhill et al.,
2004; Chalfin et al., |2007; |Rincon et al., 2010]). The medical effects of late admission have also
been recognised by Restrepo et al.| (2010)); Renaud et al. (2012); Jhanji et al. (2008). |Chan
et al. (2016)) examine problems caused by a single hospital department, i.e. ED. However,
there is still a lack of comprehensive research into lateness in ICUs. An examination of
admissions to the ICU from all wards of a hospital is missing. Moreover, none of the existing

ICU simulation models consider the effect of earlier admissions of patients to the ICU.
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We will analyse the consequences of late admissions with descriptive statistics and multi-
variate analysis in Chapter [4 Then, in Chapter [5| we customise the prediction of mortality
and ICU LoS to our case study. We can conclude from the papers that a number of vari-
ables may contribute to both. Therefore, including them into prediction investigation would
be interesting. Investigating the influence of late admissions and other questions using a
comprehensively built DES model is what we are particularly interested in. In Chapter [6]
the process of developing a DES model is charted in detail and all aspects of the model are
tested. Then, we employ the DES model to test other scenarios in Chapter [7], including late
admissions, changes of admission and discharge policies, variations of resource levels and the

detailed influence of pandemics.
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Chapter 4

Preliminary Analysis

To understand the consequences of late admissions and the current situation of the ICU, a
descriptive analysis of current data will help. The literature suggests that late admissions
may lead to worse outcomes in the ICU. Descriptive statistics and multivariate analysis help
to understand what the structure of the data is, what population is included, what potential

inferences we may get. Analysing data of interest is the first key step of our modelling.

In this chapter, details are given of analysis of data from the BRI adult ICU according to
aspects highlighted in Chapters 2| and [3} readmitted patients, admission sources, mortality
rates, LoS, timing effects of admission and discharge and late admissions. The literature has
differing conclusions on timing effects and, therefore, we would like to investigate this for

our case study.

Details are given firstly of data processing with grouping according to readmission, in Section
An overview is provided on the processed data including mortality rates and LoS for
first admissions and readmissions. Admission sources are also described and mortality rates
and LoS by admission sources are also analysed. A detailed analysis of late admission in the
ICU is then provided with analyses by sources of patients in Section Next, readmission
is considered in Section[4.3] Moreover, timing effects are investigated in Section 4.4l Finally,

busyness measurements are introduced in Section
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4.1 Data processing

This analysis is based on the currently available dataset, BRI 2008-2013 ICNARC data, which
contains 6284 admission records in total. The data involves three key aspects of information:
first, operational information of patients, ICU admission time and discharge time; second,
medical information of patients, medical scores and patients’ states; third, basic biological

information, age and gender.

4.1.1 Data cleaning

In this section, a process of data cleaning is described. An indicator of ICU patients acuity
(PA) will be introduced in Section As PA is based on bed occupancy and patients’
levels, the values of the first ten days are significantly influenced by arrivals in preceding
days. To exclude the unstable period of PA, only admissions taken after 11-Jan-2008 and
discharged before 10-Nov-2013 are considered. Admissions out of this period were removed
(n=106). Also, records of admissions need to be complete. Patients with either no ICU
outcome or hospital outcome were excluded from the analysis (n=39). According to ICU
consultants in BRI, patients discharged alive from the ICU can only be discharged after eight
hours of admission. Records of patients with less than eight hours stay and discharged alive
were therefore excluded from the analysis (n=108). Then, we double checked readmission
data and removed unmatched data i.e. where related first / subsequent admissions had been
removed in previous steps (n=5). We also found a patient with two admissions, with the
same hospital admission time but different hospital discharge times and different hospital
outcomes. These two admissions were then removed (n=2). Also, unusual outliers were
omitted in order to have a robust result (n=2). For example, when we were considering the
time lags between hospital admission and ICU admission, there was one admission with an

exactly nine-year stay which was thought to be a typing error, typing 2000 instead of 2009.
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Figure 4.1:

Data cleaning and grouping



Data cleaning and grouping is summarised in Figure There are 6284 pieces of data in
the dataset. 6178 pieces of admissions lay within the desired period, 6139 with both hospital
and unit outcomes, 6031 with normal discharge. Unmatched readmissions were excluded
from the dataset, after which 6024 pieces of data were remaining. We then removed data
with obvious typing errors. 6022 out of the original 6284 pieces of data were kept for further

analysis, in which there are 5808 distinct patients.

4.1.2 Grouping by admission and readmission

Before analysing the data, we categorise the data by three admission groups: “group 07 is
made up of admission records of patients who were admitted only once to the ICU; “group 1”
contains first admissions of patients who were admitted more than once; “group 2” contains

second /third etc. admissions of all readmitted patients.

As shown in Figure[4.I] 5619 patient admission records are in group 0; 189 patient admissions
are in group 1 and 214 admissions are in group 2. All the patients appearing in group 1

must appear one or more times in group 2 also since multiple readmissions are possible.

4.2 Data overview

4.2.1 Demographic and clinical characteristics of patients

Demographic and clinical descriptions of ICU admissions are summarised in Tables [£.1] and
42l Table [4.1] describes all the admissions. Table [£.2] describes the first admission of all
the patients. “Hospital survivor” and “Hospital non-survivor” in this table mean patients

discharged alive and dead from the final hospital attended, respectively.
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Table 4.1: Demographic and clinical characteristics of ICU admissions

Total ICU survivor v '
non-survivor

Admission, count 6022 5164 858
Age, mean (sd) 60.24 (16.95) 59.46 (17.05) 64.94 (15.55)
Actual ICU LoS in minutes || 6898.98 6952.12 6579.12
mean (sd) (9227.36) (9210.26) (9328.69)
Actual ICU LoS in minutes || 3960.00 4020.00 3569.5
median (25%-75%) (2050.75-7410.00) | (2250.00-7415.25) | (1290.00-7400.00)
ICNARC score, mean (sd) 17.15 (9.39) 14.93 (7.25) 30.51 (9.68)

ICNARC probability

20.85 (26.72)

14.05 (19.48)

61.78 (27.84)

mean (sd)
APACHE II score

9.87 (8.76) 9.33 (8.02) 13.16 (11.78)
mean (sd)
APACHE II mortality

11.89 (18.60) 9.24 (14.82) 27.79 (28.51)
mean (sd)
ICNARC diagnosis system

Count Count Count
(Surgical)
Total for surgical 3549 3311 238
Respiratory 689 647 42
Cardiovascular 366 322 44
Gastrointestinal 2007 1880 127
Neurological 101 100 1
Trauma 80 71 9
Genito-urinary 180 176 4
Endocrine, Metabolic,

55 55 0

Thermoregulation

o1
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Table 4.1 — continued from previous page

ICU
Total ICU survivor
non-survivor
Haematological
gical/ 6 3 3
Immunological
Musculoskeletal 49 44 5
Dermatological 16 13 3
ICNARC diagnosis system
Count Count Count
(Medical)
Total for medical 2473 1853 620
Respiratory 644 509 135
Cardiovascular 9 7 2
Gastrointestinal 6 6 0
Neurological 1 1 0
Trauma 422 292 130
Poisoning 175 127 48
Genito-urinary 612 377 235
Endocrine, Metabolic,
38 35 3
Thermoregulation
Haematological /
191 184 7
Immunological
Musculoskeletal 170 142 28
Dermatological 120 112 8
Psychiatric 85 61 24




Table 4.2: Demographic and clinical characteristics of ICU patients:

first admissions

Total Hospital survivor Hospital'
non-survivor

Patients, count 5808 4685 1123
Age, mean (sd) 60.18 (17.00) 58.97 (17.17) 65.24 (15.23)
Actual ICU LoS in minutes || 6721.31 6624.77 7124.03
mean (sd) (9004.70) (8799.14) (9809.90)
Actual ICU LoS in minutes || 3895 3894.00 3937.00
median (25%-75%) (1979.75-7227.00) | (2148.00-7125.00) | (2148.00-7125.00)
ICNARC score, mean (sd) || 17.12 (9.44) 14.50 (7.06) 28.03 (10.26)

ICNARC probability

20.68 (26.84)

12.53 (18.12)

54.67 (30.40)

mean (sd)
APACHE II score

10.23 (8.71) 9.53 (7.79) 13.14 (11.34)
mean (sd)
APACHE II mortality

12.32 (18.80) 9.01 (14.26) 26.12 (27.28)
mean (sd)
ICNARC diagnosis system

Count Count Count
(Surgical)
Total for surgical 3432 3076 356
Respiratory 660 597 63
Cardiovascular 359 303 56
Gastrointestinal 1934 1742 192
Neurological 99 93 6
Trauma 76 65 11
Genito-urinary 179 169 10
Endocrine, Metabolic,

54 53 1

Thermoregulation

93

Continued on next page




Table 4.2 — continued from previous page

Hospital
Total Hospital survivor
non-survivor
Haematological
gical/ 6 3 3

Immunological
Musculoskeletal 49 41 8
Dermatological 16 10 6
ICNARC diagnosis system

Count Count Count
(Medical)
Total for medical 2376 1609 767
Respiratory 586 411 175
Cardiovascular 404 246 158
Gastrointestinal 166 101 65
Neurological 606 335 271
Trauma 38 35 3
Poisoning 191 183 8
Genito-urinary 166 123 43
Endocrine, Metabolic,

119 110 9
Thermoregulation
Haematological /

84 52 32
Immunological
Musculoskeletal 9 7 2
Dermatological 6 6 0
Psychiatric 1 0 1

4.2.2 Tests of significance

We would like to briefly introduced the statistical tests used test significance of differences.

Test of equal means (two groups)
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It is assumed that (Xi,---, X,) and (Y1, - -, Y,) are two independent identically distributed
samples with means X and Y and variances Sg( and S%,. The samples are extracted from
two populations following N (ux,0%) and N (uy,0%); a test of equal means (ux = py) is
achieved by a Welch’s t-test if n # m or 0% # o%. If n = m, a test of equal variances

(0% = 0%) is recommended before a t-test (Zimmerman, 2004).

X,Y, Sg( and S% are calculated as following;:

X — E?:l(Xi)7 Yy — Z?:l (YZ)’
Sg(:Z?:l(Xi_X)’ S}Q/: Z;L(Yi_y).

n—1 m—1

A Welch’s t-test is as described below.

1. Set null hypothesis H\ : jx = piy;

-V
5

b

2. Calculate t-statistic t =

)

0
Beato
N

+

3|

5% 52

(F+)?

3. Compute degrees of freedom df = {MJ ;
T+

4. Compare t with critical value; reject H(gt) if t > critical value.
Test of equal means (multiple groups)

One-way analysis of variance (ANOVA) is used to test the equality of means when there are

more than two groups in a sample. Here are some notations used in ANOVA.
n; : sample size of group %
n : sample size; n = Zle n;

k : number of groups

Y;;: jt" response variable from group i
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nq

Y;.: the sample mean of response variable of group i; Y;e = n% > Y

7j=1
Y: sample mean of all individuals; Y = %Z Yij

ij

Table 4.3: ANOVA table

SS df MS
k _ _
between groups | SSp = > n;(Yie — Y)? dfy =k—1 MS, = SSp/dfy
i=1

k n; _
within group SSw=> > (Yi; - Y; )2 dfy=n—k MSy, = SSy/dfw
i=1j=1
SST =SSy, + SSy,

koo o n—1
= (¥ -Y)

i=1j=1

total

The F-statistic is calculated based on the table, F(Y) = M S, /M S,,. The null hypothesis of

the test can be written as H(()A) Spn = pig = - = p. If FA) > critical value of Fy, ar.,» the

null hypothesis is rejected.
Multiple comparison between groups

The Tukey-Kramer method can be used to carry out multiple comparisons between groups

with different sample sizes.

First, the overall standard deviation of the sample (including all groups) is calculated as

i

1 k N, -

i=1 j=1

The confidence interval (CI) of the differences between group p and group ¢ (p,q =1,--- , k;

p # q) depending on the significance level («) is written as

¥, ¥, Qoskn—k
CIP‘I = Y;" - Y‘I' - 5 @

If the CI does not include zero, means of group p and group q are said to have a significant
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difference at a.
Test of differences in crude ratios

A contingency table with 7 rows and ¢ columns may presents frequencies of events (columns)
in each category (row). A Chi-squared test is used to test differences between crude ratios

in the contingency table.

The test statistic (x2) is calculated as:

where

O;;: observed numbers of event ¢ for sample j

E;;: expected numbers of event ¢ for sample j

Yate’s correction is applied when df = 1. Then,

L AU 2 2
=33 (104 Egﬂ 0.5)

j=1i=1 Y

Compare the y? statistics with critical value; if x? >critical value, reject the null hypothesis

of no difference.

4.2.3 Mortality rate

Table shows a comparison of mortality rates of patients admitted once only (group 0)
and those admitted more than once (group 1). The mortality rates were calculated based on

the hospital outcomes rather than unit outcomes.
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Table 4.4: Mortality Rate Comparison

Admission Group H 0 \ 1 ‘
Mortality Rate 18.36% | 21.58%
Lower 95% CI 17.85% | 18.58%

Higher 95% CI 18.87% | 24.58%

Group 2 was excluded from the mortality rate calculation as they were included in group
1 for their first admissions. The mortality rate of readmitted patients is higher than that
of patients admitted only once. However, there is overlap between the 95% CI of the two
mortality rates. The difference between them is not significant according to a Chi-squared
test. The UK nation-wide statistics have shown a larger discrepancy between these two

mortality rates (Jhanji et al., 2008]).

4.2.4 Length of stay

Statistics are presented in Figure regarding LoS in the ICU, where LoS is measured in
minutes. For patients discharged alive, the ICU LoS was calculated as “time when clinically
ready to be discharged —ICU admission time”. For patients who died in the ICU, the ICU
LoS was calculated as “time of death —ICU admission time”. The analysis of LoS considers

all admissions including readmissions.
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The red diamonds in Figure show the average ICU LoS of different groups of patients as

defined in Section [£.1.2] Compared to group 0 and 1 admissions, group 2 admissions have a

significantly longer LoS according to t-test. That is to say, readmitted patients have longer

stays in the ICU than first admission patients. Meanwhile, no significant difference between

LoS of group 0 and group 1 can be detected from our data.
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4.2.5 Admission sources

60@

Source

. A. Accident and Emergency 18.5%

. B. Recovery/theatre (following surgery/anaesthetic procedure) 54.32%
. C. Recovery ONLY (used as temporary critical care facility) 0.12%
[ o. ward 10.72%

B = cinic 0.07%

. F. Imaging department 4.5%

. G. Obstetrics area 0.2%

. H. Level 3 bed in adult ICU or adult ICU/HDU 1.31%

. I. Level 2 bed in adult ICU or adult ICU/HDU 0.55%

. K. Paediatric/Neonatal ICU/HDU 0.02%

. L. Specialist treatment area 0.4%

. M. Other intermediate care area 0.28%

. N. Home or other non hospital location WITHIN UK 0.03%

3000

Figure 4.3: Analysis of admission sources

The pie chart in Figure depicts the admission sources of patients. A. A&E, B. Re-
covery/theatre, D. Ward and F. Imaging department are the four main sources of ICU

admissions, accounting for approximately 97% of ICU admissions.

In the following analysis referring to admission source, we categorise the data into five groups,

the four main sources and the ‘others’ group.

Figure [4.4] shows mortality rates by admission source for the five main groups. Within these
five groups, patients from the Imaging Department and Wards were threatened by higher
probability of death while the mortality rate of patients from recovery/theatre is significantly

lower than that of the other groups, according to t-tests.
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Figure 4.4: Mortality rate of different admission sources

We cannot distinguish in the data between medical and surgical ward patients. However,
we know that patients coming from a surgical ward are usually admitted to the ICU via
theatre/recovery. Patients coming directly from a surgical ward would be readmitted or
late admitted patients. Subsequent admissions of readmitted patients are excluded from
the mortality rate calculation to avoid double counting of the same patients. Patients from
medical wards could be late admitted patients. The high mortality rate of patients from

wards is possibly caused by late admission patients.

The mortality rate of the recovery/theatre group could be underestimated. Patients who
were not admitted to the ICU directly after operations are not included in the calculation of
this group. However, these patients were more likely to die according to the late admission

analysis carried out later in Section 4.5

We were also interested in LoS of patients from different sources. An one way analysis
of variance (ANOVA) was conducted to observe the significance of the different mean LoS
from the five re-categorised sources. The result rejects the hypothesis of equal means (p-

value=2.2e-16), which means LoS of patients from different sources are significantly different.

Amongst the four main sources, A&E (A), recovery/theatre (B), ward (D) and imaging de-

61



partment (F), shown in Figure D and F have a remarkably high ICU LoS. The relatively
high average LoS of ICU patients admitted from the ward (D) and low in recovery/theatre
(B) could be caused by the proportion of patients who were not admitted to the ICU directly
after operations. These patients could not be identified as having come from recovery/theatre

patients and were not included in the calculation of source B.
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Figure 4.5: LoS of admissions from different sources

4.3 Readmission

In our research, readmission specifically means ICU readmission. It is defined as “the same
person being admitted to your unit on two or more separate occasions, regardless of whether
these admissions occurred during the same hospital stay” according to ICNARC Case Mix
Programme team (ICNARC, 2013)). Within the 214 readmissions of our data, 191 are admit-
ted during the same hospitalisation. Readmission thus generally means return to the ICU

after discharge to a hospital ward, rather than returning from home.
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Compared to the national average of 4.7% readmission rate during same hospital stay, the
overall readmission rate is 3.25% for the whole period in the BRI ICU. The key performance
indicator of readmission, unplanned readmission within 48 hours of ICU discharge, is 0.6%

in the ICU, which is much lower than the national average 1.4% (ICNARC, [2015c]).

Table [4.5] shows where the readmissions come from. Patients with their first ICU admissions
from source B (recovery/theatre) and D (ward) make a larger contribution to readmission
than other sources. Also they are more likely to be readmitted to the ICU than patients
admitted from all other sources. The subsequent admissions are mainly from source D and

source B as shown in Table which occupy 97.20% of all the readmissions.

Table 4.5: First admission sources of readmitted patients

Source | A B D F Z
Readmitted patients 13 131 38 0 7
Total patients 1114 3195 1055 271 173
Probability of readmission | 1.17% 4.10% 3.60% 0.00% 4.05%

Table 4.6: Readmission sources

Readmission Sources ‘ A B D F Z
Number of readmissions 0 76 132 0 6

Percentage of readmission | o 1o/ 95 s10r 61.68%  0.00%  2.80%
from the source

4.4 Timing effects analysis

4.4.1 Timing effects of admission day and time

We investigate the effects of admission day and time. As mentioned in several pieces of
research, admission during weekends and night time can have a negative impact on patients’

outcomes (mortality) (Neuraz et all 2015; Bhonagiri et al., [2011).

To avoid double counting the result of a same patient, only the first visit was considered for

patients with subsequent visits in analysing effects of admission day and time. There are
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5808 patients in all, summing group 0 and group 1, see Figure

Percentages of patients discharged from hospital alive or dead were calculated by times of
admission to the ICU in hours and plotted in Figure[£.6] Using Pearson’s Chi-squared test to
examine the difference of mortality rates in different admission hours, we obtained p—value

< 2.2e — 16. The result indicates the possible timing effect of admission time.

1.00-
0.75-
Outcome
0.50 - . Alive
I Died
0.25-
0.00-

Percentage

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Admission Time

4 5

Figure 4.6: Timing effect of admission time on outcomes for all patients

Figure [4.6] shows a spike of mortality in patients admitted from 5am to 6am and a relatively
low mortality rate in the afternoon and evening. The pattern could come from other con-
founding variables rather than the admission time. We may expect that surgeries are usually
started from morning so afternoon and evening admissions could largely come from planned
surgical admission and are less likely to be late admissions. We plot the figure to show the
different combinations of surgery type, admission source and admission type of each hour’s
admissions. Figure [£.7] shows percentages of different surgery types for all patients by hour
of ICU admission. “Not relevant” indicates medical patients, i.e. those not requiring surgery.
“Fmergency” and “Urgent” represent different degrees of urgency for performing surgery;
these are “unplanned surgical patients”. For “scheduled” and “elective” patients, surgery

is planned in advance: relatively long for elective, short for scheduled; these are “planned
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surgical patients”. Figure shows percentages of admissions by admission source and Fig-

ure by admission type, by hour of the day. All the admissions falling in the categories

‘unplanned local admission’ and ‘unplanned transfer in’ are called ‘unplanned admissions’;

the other admissions are termed ‘planned’.
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Figure 4.7: Surgery type of patients by different ICU admission time
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. A. Accident and Emergency

. B. Recovery/theatre (following surgery/anaesthetic procedure)
. C. Recovery ONLY (used as temporary critical care facility)
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. G. Obstetrics area

[ H. Level 3 bed in adult ICU or adult ICU/HDU

[ 1. Level 2 bed in adult ICU or adult ICU/HDU

. K. Paediatric/Neonatal ICU/HDU
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Figure 4.8: Admission source of patients by different admission time
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Figure 4.9: Admission type of patients by different admission time

As exhibited in Figures 4.7 and admissions occurring at different hours are very different
in composition, which may cause the different mortality rates for planned and unplanned

patients.

ICNARC probability of death considers both patients’ severity of illness and a large number
of operational factors. In order to take the influence of these factors into consideration when
analysing timing effect, ICNARC probability is included to adjust the odds ratio of mortality

rate for different admission times.
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Figure 4.10: Average ICNARC probability of death of admissions in each hour
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Figure shows average ICNARC probability by hour of admission, which confirms that
average ICNARC probabilities of patients vary by hour of the day. These differences suggest
that ICNARC probability could be a strong predictor of mortality by admission hour. Hence,
timing effect can only be confirmed after ICNARC probability adjustment.

A timing effect analysis was carried out for mortality in the ICU. To simplify the analysis
in a practical manner, we categorise admissions firstly by ICU nurse shifts, and secondly by

peak/non-peak times of day.

Table 4.7: Night effect examination

’ Admission time H Mortality rate \ Odds ratio \ Adjusted odds ratio

Day 0.1997 1 1
Night 0.1864 0.9331 0.9838

We categorised admission time in two groups in relation to the shift of ICU nurses, day
admission (admissions between 7am and 8pm) and night admission. The adjusted odds ratio
was calculated using ICNARC probability as a confounding variable. We used ICNARC
probability and night effect as the two independent variables in a logistic regression. The
log odds was calculated for night and day admission from the regression and then converted
back to an odds ratio. We failed to prove the timing effect of admission hours, as shown in

Table with a Chi-squared test p-value of 0.85.

We also examine the difference in mortality rates of patients admitted during peak and non-
peak admission times. First of all, Figure was plotted to determine the peak admission
period. All the admission data, including subsequent admissions of readmitted patients, were

included in this analysis.
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Figure 4.11: Number of admissions by hours

The time period, 2pm to 00:59am, can be observed to be the peak admission time according

to Figure

Table 4.8: Admission peak effect examination

‘ Admission time H Mortality rate ‘ Odds ratio ‘ Adjusted odds ratio ‘

non-peak 0.3110 1 1
peak 0.1498 0.4817 0.6636

As shown in Table the adjusted odds ratio of mortality rate in peak time is 0.6636.
The 95% CI of the odds ratio of adjusted peak time mortality rate is 0.5571-0.7916, with
p-value=4.7e — 06. Both of the results show that peak time admission has a significant influ-
ence on patients’ medical outcome. Looking back to Figures and we find that the
planned admissions account for most of the peak time admissions while the unplanned admis-
sions account for most of other slots. Mortality rate is higher in the unplanned admissions.
Moreover, after case mix adjustment by excluding the influence of ICNARC probability, the
positive impact of admission peak on patients’ mortality still exists. This specific timing

effect has not been previously researched. We further research the effect in Section [5.1.2

As well as time-of-day effect, day-of-week effect has also been discovered in worldwide re-

search as discussed in Section [3.2] Figure shows directly the day-of-week effect. We
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first tested timing effects of admission days. The p-value of Pearson’s Chi-square test equals
0.1872, meaning that we cannot reject the null hypothesis of the equality of mortality rates
on different weekdays. Equivalently, no effect of admission day was discovered in this specific
dataset. To be more conservative, we also calibrated the results by incorporating ICNARC
probability; p-value still failed to be less than 0.1, which further confirms our results that
no outstanding day of week effects could be found. Moreover, we also classed days into
weekdays and weekends. The p-value obtained for weekend effect admission is 0.21. To sum

up, no weekend or day-of-week effect could be discovered in our dataset.
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Figure 4.12: Day of week effect of admission day

4.4.2 Timing effects of discharge day and time

Only patients discharged alive from the ICU were considered in examining the timing effect

of discharge.

In the dataset, the two different discharge times are stated. Ome is “clinically ready to

discharge” time. The other one is actual discharge time.

In this section, the effect of these two different discharge times will be examined individually.

The analysis procedures are exactly the same as those of timing effects analysis of admissions.

First of all, we plot the frequency chart of ICU discharge by hours, see Figure
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Figure 4.13: Number of discharges from the ICU by hour of the day

A day was divided into two parts in two different ways. First, a natural day was divided
into day and night and then the night effect of discharge time was examined. Second, a
natural day was divided into peak discharge time and non-peak discharge time. There is
a clear peak for discharge, from 12:00 to 21:59. ICNARC probability was also introduced
as a confounding variable. Night discharge has a negative impact on patients’ mortality.
However, the significance of this negative impact is not very strong (p-value=0.0520). There
is no obvious peak time discharge timing effect on mortality based on an initial Chi-squared
test (p-value=0.2164). No discharge timing effect has been found in any other situations we

tested.

We are also interested in the effect of discharge decision timing. A frequency plot is provided

in Figure [4.14]
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Figure 4.14: Number of discharge decisions by hours

It is clear from Figure that the peak of making discharge decisions is: 9:00-14:59. Dis-
charge decision timing was not found to affect patients’ outcomes from all three perspectives,

which are hour-based difference, day and night difference and peak and non-peak difference.

To sum up, no effect of either day-of-week, clinically ready to discharge time or actual

discharge time can be observed in our data.

4.5 Late admission

An analysis follows to determine a suitable lag between hospital admission and ICU admission
to define “late” admission. All the patients are included in the analysis but only their first
time admissions were counted. Equivalently, only group 0 and group 1 are considered in this
phase. Group 2 patients are excluded because readmitted patients naturally have relatively

long lags between hospital admission and ICU admission.
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Figure 4.15: Data grouping: late admission

Lag trials were carried out to determine the lag to define late admission, see Figure 4.15
Because of the limitations of the data, lag was measured in days rather than hours or minutes.
For each trial, the cut-off was set from 0 to 20 days. The cut-off divides the patients into two
parts: first, patients with lags smaller than or equal to the cut-off; second, patients with lags
greater than the cut-off. For example, cut-off=1 (lag=1) divides patients into two groups.
One group is patients with admission lags equal to 0 or 1 day, which means this group of
patients were admitted to the ICU on the same day or the day after the day that they were
admitted to the hospital. We label the group as ‘<’ group. The other group is patients with
admission lags larger than 1, which means this group of patients were admitted to the ICU
more than one day after the day they were admitted to the hospital. This group is labelled
as ‘>’ group. The influence of late admission is assessed by using a statistically significant

lag cut-off, showing as 95% ClIs that are not overlapped for ‘<’ and ‘>’ groups.

Late admission will be examined for different groups of patients: first, for all patients; second,

for patients from operating theatres; third, for ward patients.

4.5.1 All patients

We put all the patients (all group 0 and 1 patients) together to carry out the first lag analysis.
Firstly, Figure shows the frequency distribution of lag days in the data.
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Figure 4.16: Number and percentage of patients by lag days

Figure also demonstrates that around 40% of the ICU patients were not admitted to
the ICU directly. Approximately 12% of all the admitted patients had been delayed for more

than five days.
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Figure 4.17: Mortality rates of patient groups of different lag trials
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The study of all patients continues with analysis of mortality rates for the different patient
groups defined by lags, as shown in Figure Bars show the 95% CI of the mortality rate

calculated from following approximations.

For each day of delayed admission, say n days, the “<” group contains patients admitted
to the ICU within n days of hospital admission. The “>” group contains those admitted to

the ICU more than n days of hospital admission.

It can be observed from Figure [£.17] that mortality rate undergoes a sharp increase for the
patients having admission lags larger than one day. It is maintained at a more than 30%
level for patients with admission lag days being more than four days. Then, it keeps going

up with the increase of lags.

The actual distribution of mortality rate is assumed to be a Binomial distribution with p

denoting mortality rate.

According to probability mass function (pmf) of binomial distribution,

p: the proportion of sample in a particular class

The random variable Y can be denoted as Y ~ B(n,p)

E[Y]=np

Var[Y] =np(1l —p).

We can estimate an unbiased p
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A common way to deal with the CI of p is to employ the Normal approximation to the
Binomial distribution. If n is large enough, we can approximate B(n,p) to the Normal

distribution N (np, np(1 — p)).

The random variable p follows a distribution with expected value (1) and variance(o?)

giving the CI of p:

p: proportion of interest i.e. mortality rate
n: population size i.e. number of admissions

zg: critical value of Normal distribution for the given error level o (22 ~ 1.96 for a = 5%)

(=1
2

It can be observed from Figure there is a drop in mortality for the “<” group between
cut-off=0 and cut-off=1 which may result from patients who died shortly after their ICU
admission. A relatively large number of patients (n=103) died shortly after their ICU ad-
missions (within eight hours of admission). We recalculated the mortality rate of different

patient groups after excluding patients dying within eight hours after admission. Table
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demonstrates the full results of mortality rates of different patient groups. Row titles in the

table show patient groups. Column titles in the table show the lags.

Table 4.9: Drop in mortality rate from Lag=0 to Lag=1

| Group\Lag || 0 | 0 (excl. death in 8hrs) | 1 | 1 (excl. death in 8hrs) |
< 18.87% | 17.56% 17.59% | 16.40%
> 19.97% | 18.96% 26.14% | 24.99%

Although patients dying within eight hours after admission increase the mortality rate of the
patients whose admission lag equals to zero, Table shows that the effect of the influence

is not as great as expected since this group would appear in all “<” groups.
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Figure 4.18: Average ICU LoS (minutes) of patient groups divided by different lag trials

Similarly, lag analysis was carried out for LoS, see Figure Patients who were admitted
immediately to the ICU are the most severely ill patients of all. It is natural that a higher
mortality rate and also a longer average length of stay occurred in this group. This explains
the average ICU LoS drop, from cut-off=0 to cut-off=1 shown in Figure The bars in
the Figure show the 95% CI of average LoS, which are calculated from following steps.

According to the Central Limit Theorem, we can approximate the distribution of average
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LoS to a Normal distribution and then calculate the CI using the appropriate error level a.

The CI could be described as

ag ag
(# L vl e Z%ﬁ)
n: population size i.e. number of admissions
1: population mean i.e. average LoS

o: population standard deviation i.e. standard deviation of LoS

za: critical value of Normal distribution for the given error level a (zs ~ 1.96 for a = 5%)

&
2

As shown in Figure and Figure patients admitted later (from the second day
onwards) have increases both in mortality rate and average ICU LoS. This group of patients
may be delayed by some complicated symptoms which are not easy to be discovered. As
discussed in Section|3.1], some early warning system scores for clinical deterioration of patients

could be implemented to better discover their needs.

Moreover, we tested the differences of mortality rate and average ICU LoS between two
groups of patients based on the lags using ¢-tests. Both of them become significant, with
significance level < 0.01, when cut-off equals to one. Therefore, cut-off equal to one was
chosen to define late admission. A plot of ICU LoS frequencies is shown in Figure to

demonstrate differences in LoS between “non-late” and “late” admissions.
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Figure 4.19: Number of patients with different lag (days) in different groups

The frequency plot in Figure shows that ICU LoS in different groups has significant

differences in not only their average value but also their distribution. The late admission

group had around 30% of patients staying more than seven days in the ICU, which was twice

as much as the percentage of the immediate admission group.

To better identify patients with delayed admissions, we individually plot the frequency of

lag days in patients from different sources, see Figures [4.20] [£.21] and [4.22]
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Figure 4.20: Number of patients with different lag days (A&E and imaging department)

Figure shows that the lags of patients from A&E and the imaging department are very
limited and so these are not the major sources of late admission patients in our data. Patients
with very long lags of admission from the imaging department are likely to have spent those

days in a general ward.

Frequency of lag days in patients from B. recovery/theatre
source

2000 3714
1500

1000

879
500
174
I 108 sg sp 31 33 26 18 18 14 112
0 . . -
o 1 2 3

4 5 5 7 B 9 10 11 »=12

Figure 4.21: Number of patients with different lag days (recovery /theatre)
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Figure 4.22: Number of patients with different lag days (ward)

Figure and above show that lags between hospital admissions and unit admissions
mainly come from B. Recovery/ theatre and D. Ward sources. We inspect the two sources

individually in the following sections.

4.5.2 Patients from recovery / operating theatre

One might expect that theatre patients do not have admission lags as they are planned to
be admitted to the ICU before their surgery and they were supposed to be admitted to the
hospital close to the date of their surgery. However, Figure show that a large number

of patients were delayed perhaps because of delayed surgery.
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Figure 4.23: Mortality rate of different patient groups from the Recovery/ Operating theatres

The two lines in Figure show the mortality rate of different patients groups from oper-
ating theatre. Bars show the 95% CI of the mortality rate. With the increase of lag days,
the mortality rate for the ‘>’ group increases. There is a sharp increase in mortality rate
for the ‘>’ group from lag=0 to lag=1, from 11% to 15%. The variation of the ‘>’ group

increases as lag increases, which may result from the reducing sample size.
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Figure 4.24: ICU LoS (minutes) of different patient groups from the Recovery / Operating
theatre

81



Figure show the mean ICU LoS of different groups of patients. As Figure shows the
mean length of stay has a significant difference between two groups when lag=1. However,
with the increase of lag and smaller numbers of patients in the “>" group, the differences
become less significant and overlaps of 95% ClIs of the mean LoS start to be displayed in the
large lag cutoffs. One may expect from the plot that lag=1 may divide two distinct groups

of patients.

4.5.3 Patients from general wards

It could happen that surgical patients were transferred to general wards directly after their
operations and then admitted later to the ICU. This transferring can cause lags between
hospital admissions and ICU admissions. Besides, medical patients may be admitted from

general wards to the ICU, and lags may also occur.
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Figure 4.25: Mortality rate of different patient groups from the ward

82



Lag analysis: ICU LOS of
different patient groups from ward

14000 -

10000 -

M

Q

= 1 Patients groups
E 12000 (defined by lags)
P <=

o]

-t - >

o

(&)

8000 -

10

5
Admission Lags (days)

Figure 4.26: ICU LoS (minutes) of different patient groups from the ward

A very high mortality rate was detected in the patient group from the ward. The mortality
rate is over 30% for the whole group, in which the late admission group could be threatened
by a 40% probability of death. Of the patients coming from wards with an ICU admission lag
of more than 14 days, 50% were dead before hospital discharge. Figure shows that there
is a significant difference in LoS between two groups when lag=1 (p-value = 2.75 x 1974 by

a t-test).

4.5.4 Test of confounding of late admission

To further investigate the cause of significant difference between two admission groups ,we
would like to analyse possible confounding variables. As explained in Section [£.4) ICNARC

probability is the main likely confounding variable.

First of all, we calculate the log odds of different groups of patients (non-late vs late and
planned non-late, unplanned non-late and late) for their mortality upon hospital discharge.
Log odds of hospital outcome versus ICNARC probability are calculated. These are plotted

with the y-coordinate transformed back to predicted probability by the inverse logistics
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function (i.e. y = showing the probability of survival.
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Figure 4.27: Transformed log odds plot: ICNARC probability versus hospital outcomes for
different patient categories

Figures [£.27a] and [£.270] show that late admissions of patients lead to worse outcomes even

after the adjustment of case-mix effect. ICNARC probability should be able to capture most
confounding effects. We should be confident enough to conclude that late admission results in
higher mortality. However, there may exist some other effects such as differences of decision

makers (i.e. ICU consultants) that also contribute to the differences but are hard to verify.

4.5.5 Conclusion on late admission

We clarify the definition of late admission based on definitions from Restrepo et al.| (2010));
Renaud et al| (2012); Jhanji et al.| (2008)) and the analysis above. Late admission is defined
separately for medical admission and surgical admission. Late medical admission is defined
as ICU admission with the delay between hospital admission and unit admission longer than
one day. Late surgical admission is defined by two rules. First, all the surgical patients
admitted from wards are counted as late admissions. Second, ICU admission with the delay
between hospital admission and unit admission longer than 1 day, from sources other than

ward, is counted as late admission.
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Our analysis shows that late admission appears to be a more severe problem in the hospital
than readmission since there is a higher percentage of late admitted patients and higher mor-
tality rate compared to the readmitted patients, while these two groups have similar average
LoS. We confirmed the effects of lateness by using ICNARC probability as a confounding
variable. However, It should be acknowledged that there may be other influences but in our

context we assume the existence of difference between non-late and late patients’ outcomes.

4.6 Measures of busyness in the ICU

In this section, to inform the prediction modelling that follows in Chapter [5) we describe
measures of patient levels, and a new indicator of the busyness of both the ICU and general
wards, the ICU Patients Acuity (PA). Month and day-of-week effects on these indicators are

also investigated.

4.6.1 Measurements of patient levels in the ICU

As the hospital has no independent High Dependency Unit (HDUs), all the severely-ill pa-
tients stay in the ICU. The ICU has both level 3 and level 2 beds as described in Section [2.1]
We analyse ICU patients’ days by their levels. Typically, either patients die quickly after
admission if they are critically ill, or they recover after some treatment. Thus, they often
step down from level 3 to level 2 in a short period after admission. However, patients’ states
could also worsen from level 2 to level 3. Normally, all the patients in the ICU are level 3
and level 2 patients as they need special treatment and extra attendance, but there were also
found some level 1 patients in the data. It is possible that these patients could have been
discharged earlier to a general ward, but for some reason, which could be the congestion in

general wards, they were kept in the ICU for a longer time.

To simplify expression, we use L1, L2 and L3 to denote level 1, level 2 and level 3 respectively

in the following text.
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Five different measurements are considered to measure the busyness of ICU. Beds in use
(#Beds), bed occupancy rate (%Beds), number of non-L3 patients (#NonL3), percentage of
non-L3 patients (%NonL3), and PA.

Beds in use and bed occupancy rate

The first two measurements take all patients as identical individuals when measuring how
busy the ICU is. These measurements could be simple and effective in measuring busyness
of an “all level 3 ICU” (Kim et all [2016) but are of limited ability for a mixed ICU with
both level 3 and level 2 beds..

Beds in use

# Beds = absolute number of beds occupied

Bed occupancy rate
# Beds

%Beds = total beds

Non L3 patients number and percentage

The ICU currently can accommodate twelve L3 patients and eight L2 patients in total at
most. If the ICU admits 13 L3 patients, they could only admit six level 2 patients due to
nursing resource constraints even though there are vacant beds. In other words, 60% L3

patients is the designed level of the ICU.

Therefore, we can measure the busyness of the ICU and general wards via the occupancy

rate of L3 patients and the occupancy rate of non L3 patients or L1 patients.

As mentioned before, the ICU went through two major changes in the past eight years. One
of the reasons for change was to expand the ICU to meet the demands of patients, which
means the ICU is really busy in admitting critically ill patients of which most are L3 patients.

Although L2 patients are supposed to be in the mixed ICU, admission priority still need to
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be given to L3 patients. A higher portion of non-L3 occupants in the ICU suggests that
ICU patients are overall under a less risky situation. Unless there are no severe patients in
waiting or the cost of an idle bed is greater than that of accommodating a less ‘qualified’
patient, it is inconsistent with the operation target if the ICU is majorly occupied by non-L3
patients. It could be expected that non-L3 patients may congest the ICU by unnecessary
prolonged stays in the ICU and preventing more severe patients from admission because of
lack of resources. If it was possible, these patients would have been discharged earlier. Once
the medical states of patients meet the discharge criteria, the only reason that keep patients
in the ICU is the lack of beds in general wards. Therefore, we could make a reasonable guess
that non L3 patients kept in the ICU suggests the congestion level of general wards in the

hospital.

Counting the number of non L3 patients, considering that the total number of patients is
given, does exactly the same thing as counting the number of L3 patients. Since non-L3
patient numbers may suggest the congestion level of general ward, which is desirable in
our case, we utilise non-L.3 rather than L3 patient numbers and percentage as two new

measurements.

Number of non-L3 patients

#NonL3 = absolute number of non — L3 patients in ICU

Percentage of non-L3 patients

#NonlL3
total patients

%NonL3 =
According to our interviews with intensivists, critical care nurses and administration per-
sonnel, lack of beds in general wards is the key reason for delayed discharge of patients. As
the high proportion of non-L3 occupants in the ICU could suggest a high congestion level of
general wards, it could be expected that a higher percentage of non-L3 patients in the ICU
suggests a probable longer LoS of ICU patients, which will be examined in Section LoS
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prediction.

Patients acuity

In order to better define the busyness ratio of an ICU, PA is introduced. The indicator
originated from bed occupancy rate and then was improved by taking human resource con-
sumption into consideration. We assign different multipliers in accordance with mandatory
nursing staff to different level of patients (Ball and Barker, 2010; Royal College of Nursing
(RCN), 2012). Using a ratio rather than exact numbers allows for changes in resource levels,
i.e. beds and nurses, during the data collection period. PA describes the overall acuity of
patients in ICU. The value could vary from 0 to 2 in theory since a bed can be occupied by

more than one patient in a day.

Patients Acuity (PA) is defined as

1 x (L3 patients) + 0.5 x (L2 patients) + 0.25 x (L1 patients)

PA =
1 x (designed L3 beds) + 0.5 x (designed L2 beds)

The average ICU PA during patients’ ICU stay may suggest care that patients received.
Nurse-to-patients ratio can influence the outcomes of ICU patients. Busy nurses lead to
unsatisfactory ICU outcomes (Numata et al.l |2006; Penoyer, 2010; Kelly et al. [2014)). Re-
search shows that as well as the nurse-to-patient ratio, the intensivist-to-patient ratio also
associates with the outcomes of ICU patients (Dara and Afessal 2005; |Ward et al., 2013).
Although the ICU we investigate implements the mandatory nurse-to-patient ratio, PA still
suggests the busyness of consultants which may also influence the care level that patients

could receive.

Relationships between Measurements

Several different measurements are suggested in measuring the busyness of ICU and hospital.

We use our data to examine the relationship between each of them.
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Although both of %NonL3 and %Beds could suggest how busy the ICU is, no significant
correlation could be observed between bed occupancy rate and percentage of non L3 patients

(p = 0.0668). The relationships between PA and %Beds, PA and %NonL3 were examined
independently (see Figures and [4.29)).
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Figure 4.28: Correlation between %Beds and PA

As expected, PA exhibits significant correlation with %Beds (p = 0.7011). PA is developed
based on bed occupancy rate and resource consumption level. There is a natural positive

correlation between bed occupancy rate and PA.
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Figure 4.29: Correlation between %nonL3 and PA
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Figure 4.30: Boxplot of monthly #nonL3 and %nonL3

Figure shows that PA strongly negatively correlated with %mnonL3 with p = —0.6124.
The result is quite intuitive as a higher percentage of non L3 patients means a less severely

ill patient group in the ICU.

From Figures[4.28and we demonstrate that PA is an integrated indicator as it combines

both bed occupancy and patients’ severity of illness.

4.6.2 Time series plots of indicators

Pattern check - monthly

Seasonality is of great interest to researchers in time series data. In our case, we would like
to see if there is any seasonality in the data. In this section, we will focus on the monthly
seasonality of the data. To specify the plots below, we denote January to December as 1
to 12. Box plots are recruited to check the monthly pattern of three indicators, #nonL3,

%mnonL3, and PA. Three box plots of monthly seasonality are provided below.
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Figure 4.31: Boxplot of monthly PA

Figures and [4.30bl both show a relatively high values of #nonL3 and %nonL3 from
July to September which is consistent with the low PA shown in Figure

Pattern check - day of week

After checking monthly patterns of the data, we are also interested in weekly seasonality of
the data. Similar to the monthly seasonality plots, we denote Monday to Sunday as 1 to
7. Box plots are recruited to check the day-of-week pattern of three indicators, #nonL3,

Y%mnonL3, and PA. Three box plots of weekly seasonality are provided below.

As Figures [£.32a], [£.325] and [£.33] show, besides the slightly higher average of Thursday, we

cannot observe a significant difference of #nonL3 and %nonL3 by different days of week but

there is a relatively lower PA at weekends compared to weekdays.

A one-way ANOVA test was used to examine the difference of PA in each day of the week
and the difference of PA in each month. Tukey-Kramer method was adopted to carry out

multiple comparisons between pairs of months and pairs of days.
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Test results show that PA in July, August and September is significantly lower than PA in
other months (p—value< 0.05). We thus group all July to September data as a category
named ‘summer’ for prediction purposes. A distinctly lower level of PA in summer could
be explained by less A&E admissions during summer time as A&E is a large source of ICU

admissions (Baker], 2016)).

PA on Saturdays and Sundays is significantly different from PA on other weekdays. There-
fore, we divided the days of the week into two categories, weekdays and weekends. Low PA
means busy general wards, which could result from the less nurse involvement at weekends

than on weekdays in general wards.

4.7 Conclusion

We have clearly defined late admitted patients, both surgical and medical, and identified the
risks of mortality and long LoS for these patients. We established relationships between late
admission and mortality or LoS by analysing data and considering a confounding variable,

ICNARC probability. Late admission of patients to ICU have gained little attention, while
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Figure 4.32: Boxplot of weekly #nonL3 and %mnonL3
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Figure 4.33: Boxplot of weekly PA

problems caused by re-admission of patients to ICU have been thoroughly studied during
recent years. According to the data collected in BRI, late admission problems are at least
as critical as readmission problems. The group of late admission is larger than that of
readmission with the late admission rate equalling 13.84% and the readmission rate equalling
3.25%. The mortality rate of the late admission group is much higher than that of the
readmission group (29.07% for late admitted surgical patients, 42.40% for late admitted
medical patients, 18.08% for readmitted surgical patients and 18.00% for readmitted medical
patients). LoS of late admission patients are of comparable length to readmitted patients
(6.91 days for late admitted surgical patients, 7.36 days for late admitted medical patients,
7.04 days for readmitted surgical patients and 8.79 days for readmitted medical patients).
The difference between the immediate admission group and the late admission group is even
higher. Therefore, identifying and accommodating late admission better can significantly
contribute to the performance of the ICU. We will continue to identify readmission records
in our prediction models and simulation, but will not propose new policies for readmission

as the problem is relatively well contained at BRI.

The profile of the late admission group is summarised. Of this group, 43.28% and 56.72%
are surgical and medical admissions, respectively; 12.19% and 87.81% are planned and un-

planned admissions, respectively; 60.57% and 39.4% are admitted during peak time and
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off-peak time, respectively; 9.33% are admitted from source A (A&E), 3.68% from source
B (Recovery / Operating Theatre), 75.25% from source D (Ward), 1.24% from source F

(Imaging Department) and 10.32% from Z (other sources).

We examine the timing effects of ICU admission and discharge using ICNARC probability
as a confounding variable. After excluding the influence of ICNARC probability, discharge
timing does not show any effect on mortality in either day of week or time of day aspects.
Admission during peak time (2pm - 00:59am) shows a positive impact on patients’ outcomes.
No other timing effect is detected. We further examine time effect in analysis of admission

categories in Section [5.1.2

The ICU we investigated is a mixed ICU with both L3 and L2 beds. Bed occupancy rate
alone does not give a measure of ICU busyness. We have developed the measure of PA to
indicate the busyness of both the ICU and general ward. As we explained in Section
a lower PA may indicate a busier general ward and cause longer ICU stays. Average PA
at weekends is considerably lower than average PA on weekdays; this could be explained by
less discharges from general wards during weekends. The average PA in July, August and
September being lower than that of other months may not be linked to busy general wards
but could be explained by less A&E patients during summer time as A&FE is a large source

of ICU admission.

The group of late admitted patients will be labelled and the timing effects will be considered
in the data mining models described in Chapter [5] to see differences caused by timing effect
in predicting hospital mortality and ICU LoS of ICU patients. The predictions can be finally
used in building the simulation model of the ICU as described in Chapter [6]
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Chapter 5

Predictions of Mortality and
Length of Stay

In this chapter, in order to investigate the mortality and LoS prediction, we develop a number
of predictive models. We first describe how we categorise patients and deal with variables.
Then, we incorporate the findings on Patients Acuity from Section and timing effects
in the ICU from Section in the improved mortality and LoS prediction models. By
predicting mortality and LoS with consideration of the specific situation of the BRI ICU, we

will be able to construct a more precise simulation model of the ICU in Chapter [6]

5.1 Preparation for prediction modelling
In this section, we carry out correlation analysis and determine suitable admission categories,
in preparation for the prediction models to be built of mortality and LoS.

We will first calculate the correlations for continuous variables in Section then use log
odds plots to visualise patients’ outcomes and categorise patients for mortality predictions

in Section finally we use the Kolmogorov-Smirnov (KS) test to detect the similarities
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of ICU LoS distributions for different categories of patients in Section [5.1.3

5.1.1 Correlations of continuous variables

Correlations for all the interval variables are calculated to help us understand the variables.

The full correlation matrix is shown in Appendix [B]

Strong correlations are shown in different ICU scores and mortality predictions. High correla-
tions between ICNARC score and ICNARC probability, p = 0.8741, suggests that using both
them in prediction models may cause multicollinearity. However, neither APACHE II score
nor mortality prediction has a high correlation with ICNARC probability, p = 0.2709 and p
= (0.5901 respectively. These relationships are shown in plots in Figure in Appendix

There are a number of “zeros” in the APACHE II system which may result from lack of
specific indicators. Thus, “zeros” are excluded in this analysis (i.e. not for subsequent pre-
dictions) and correlations for APACHE II system and ICNARC systems are recalculated and
plotted, see Figure[5.1] Both APACHE II mortality prediction and APACHE shows a strong
positive correlation with ICNARC probability. Figure exhibits the strong correlations
between predictions and scores from different ICU scoring systems. Moreover, the APACHE
IT scoring system does not suit our data as score and predictions are incalculable for more
than 2000 admissions. Thus, neither APACHE II score nor prediction will be incorporated

in our prediction model.

There are strong correlations for other ICU variables (e.g. %nonL3 and PA) as shown in
Appendix [B] However, these high correlations are expected as explained in Sections
Instead of keeping every busyness related measurement, only the most significant one will

be kept when modelling mortality and LoS.
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5.1.2 Log odds and admission categories
Log odds plots : ICU outcomes versus ICNARC probabilities

It would be expected that the mortality prediction using the ICNARC system is consistent
for patients with different operational factors as the ICNARC scoring system has taken oper-
ational factors into considerations. However, after checking log odds for different categorical
variables including surgery type, admission sources, admission type, admission timing and
combinations of them, we found that operational factors led to prediction bias for admis-
sion with same ICNARC probabilities. Therefore, categorising admissions according to their

operational factors is necessary.

First of all, we calculate the log odds of all the admissions (n=6022) for their mortality upon
ICU discharge time. Log odds of ICU outcomes versus ICNARC probability are calculated
where the outcome 1 is patients discharged alive, 0 dead. These are plotted with the y-
coordinate transformed back to predicted probability by the inverse logistics function (i.e. y =
Whgodds)' Figure reveals that the predicted probability of survival is negatively

correlated with ICNARC probability but it is not a linear correlation.

We also calculated the log odds of hospital outcomes versus ICNARC probability using all
the group 0 and the last admissions in group 2 (n=5808) in Figure As expected there
are similarities between the log odds for ICNARC probability versus hospital outcomes and
ICU outcomes. The curve shown in [5.2b| appears as a left-shifted version of Figure
Patients’ deaths during hospital stays after their ICU treatments will increase the mortality.
That is to say, patients with the same ICNARC probability on arrival will have a higher
probability of being alive at ICU discharge than at hospital discharge. Hence, the curve
shifts to the left.

Furthermore, we calculate the log odds of ICU outcomes versus ICNARC probability (by
groups) and plot to visualise categorical variables including surgery type, admission sources,
admission type, admission timing and combinations of them. We discuss these plots in

the following sections. A similar series of plots for ICNARC probability versus hospital

98



outcomelCU

outcomeF

0 25 100 0 25 100

50
ICNARC. probability

(a) ICU outcomes versus ICNARC probabil- (b) Hospital outcomes versus ICNARC prob-
ity ability

EY
ICNARC.probability

Figure 5.2: Transformed log odds plot: ICNARC probability versus ICU and hospital out-
comes
Note: Y coordinate is the predicted probability of being discharged alive

outcomes show similarities with plots based on ICU mortality. These hospital plots are

placed in Appendix [C] for reference.

Log odds for surgery types

After consulting intensivists from the BRI, we decided to categorise surgery types of patients
into three: one is ‘emergency admission’” which includes both emergency and urgent admis-
sion; one is ‘elective admission’ which includes both scheduled and elective patients; the
other is ‘not relevant’ which means the admission does not have surgery (i.e. medical admis-
sion). Figure shows the bias of using ICNARC probability only in predicting mortality.
For admissions with the same ICNARC probability, the predicted mortality varied between
surgery types. It could be seen from Figure for a given ICNARC probability scheduled
and elective patients tend to have better ICU outcomes than emergency and urgent and

medical patients.
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Figure 5.3: Transformed log odds plot for different surgery types

“EL” scheduled and elective, “EM” emergency and urgent, “NR” not relevant

Log odds for admission sources

Five admission source categories, A for A&E, B for operating theatre, D for general wards, F
for imaging department and Z for others, are considered in in Figure The lines are close
to each other for Source A, B and Z, showing that, for the same ICNARC probability, these
three admission sources will not result in much different outcomes. The curve of Source D
slightly shifts towards the right and the curve of Source F significantly shifts to the right;
this implies biases in predicting using ICNARC probability. ICNARC probability for patients
from Source F are worse than those for patients from other sources. However, it could be seen
from Figure for a given ICNARC probability patients admitted from imaging department
tend to have better ICU outcomes. We will use the five admission sources as a categorisation

method to group patients and then predict mortality for each group of patients.

100



1.00-

0.75-

Source
A

— B

0.50 - =D

—F

z

Predicted probability of survival

0.25-

0 25 50 75 100
ICNARC probability

Figure 5.4: Transformed log odds plot for different admission sources

Log odds for admission type and admission timing

Planned and unplanned admissions are modelled separately in some literature (Ridge et al.,
[1998; Kim et al.; [1999; |Costa et al., 2003} |Griffiths et al., 2005} [Hagen et al., 2013). Planned

and unplanned admissions are found to usually occur at different time (see Section and
Figure[4.9)). Curves of planned and unplanned admissions in Figure (1 and 0 representing
planned and unplanned respectively) display a significant discrepancy. The shadowed areas

in Figure are the 95% CIs of predicted probabilities.

A log odds plot of peak admissions and non-peak admissions is displayed in Figure [5.5b
The effect of admission timing has been analysed in Section [£.4] The lines deviate from
each other. Peak time admissions have positive influences on patients’ outcomes. However,
off-peak admissions may represent unplanned admissions, and it is not clear whether the

deviation of the curves results from admission type or admission timing.
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Figure 5.5: Transformed log odds plot for admission types or admission timing

Log odds for combined factors

As mentioned in Section both unplanned admissions and off peak time admissions
have negative effects on ICU outcomes, so we would like to consider the planned /unplanned
and peak/off-peak together. Figure shows the results for combined factors. The green
(planned peak), purple (unplanned peak) and turquoise blue (unplanned off-peak) curves
show clear distances between each other. Moreover, a minimal overlapping of 95% CI has
been detected. However, a large overlap of the red line (planned off-peak) and its shadow
area with all the other lines has been captured in the figure. This was expected as the group

of planned off-peak is relatively small (n=167).

Figures 5.4 and [5.5a] show that both admission sources and planned admissions lead to biased
ICNARC prediction of ICU mortality. Further grouping of admissions according to both
admission type and admission sources is of interest. Figure gives ICNARC probability

versus predicted survival probability for ten groups of patients.

The predicted probability is “1” for all the A1l admissions (planned admissions from emer-
gency department). There are 6 admissions in total for A1l group, all of them discharged
alive. The lack of data reduces the credibility of the prediction, and furthermore the presence

of planned admissions from emergency department is questionable. In later modelling, we
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Figure 5.6: Transformed log odds plot for different admission types and timing
“pn” planned off-peak, “pp” planned peak
“un” unplanned off-peak, “up” unplanned off-peak

combine the Al group with A0 (unplanned admission from emergency department). The
line of Z0 (unplanned admissions from other sources) almost perfectly overlays the curve of
D1 (planned admissions from general wards). Groups D1 and Z0 are also combined in later

analysis.

5.1.3 Tests for goodness of fit

We first plot the empirical distributions (EDFs) of different groups of patients in Figure
We plotted the EDFs of non-late and late admissions, also unplanned and planned

admissions. The EDFs diverge from their counterparts.

The KS test was adopted to test the empirical distribution for LoS of different groups of

patients. The KS distance (D) between two empirical distributions was calculated using
Dnm = sup [Fin(2) = Fom(2)],
xT

where F} ,, and F3,, are empirical cumulative distribution functions (ecdf) of two samples.
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Figure 5.7: Log odds plot for different admission sources and admission types
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Figure 5.8: EDF's of actual LoS for different admission categories
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The null hypothesis is rejected at level « if

n-—+m
Dy > c(a) —

where n and m are sizes of the two empirical distributions; c(«) is the critical value for

significance level a. ¢(«) is obtained from

If samples of two admission categories are shown to be from the same distribution, they will
be put together in the modelling of LoS and they will not be combined if distributions are

shown to be different.

Table shows the results of the KS test for these admission categories. Based on the low
p-values, we will reject the null hypothesis that the two tested groups are the same. That is
to say, when we go on to model LoS, it is better to consider them as different groups instead

of putting them all together.

Table 5.1: Results of KS tests

KS test H unplanned vs planned ‘ non-late vs late

D 0.1600 0.2521
p-value 0.0000 0.0000

In the following sections, we will give a description of predictions in three main parts. A
general picture will be given in the first place. It will list all the models carried out in
the predictions and describe how we handle categorical variables with several categories in
Section Then, mortality prediction will be further divided into ICU mortality prediction,
hospital mortality prediction and after-ICU mortality prediction and discussed in Section[5.3]
The last part is LoS prediction. We illustrate results in detail for the ‘all admissions’ models.

For a comparison of all models please refer to Appendix [D]
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5.2 Prediction models

Log odds plots of ICNARC probability versus ICU /hospital outcomes indicate that admis-
sions from different categories have different characteristics (see Section [5.1.2). Using the
same prediction model could bring bias to the result. Thus, the prediction will not merely
consider all the admissions as a homogeneous group. Mortality prediction models will also
be built individually for different categories of admissions; admission type, admission tim-
ing and admission sources will be adopted to categorise admissions. Every ICU admission
contributes to one ICU outcome but probably more than one hospital outcome. Therefore,
we put all the ICU admission data together for ICU mortality prediction but further di-
vided hospital mortality prediction data into ‘FirstAD’ and ‘LastAD’ (see Section for
details). The categories for predicting ICU LoS will be based on the results of the KS tests

and admission sources.

Table[5.2] shows all the models we will build in this chapter by admission categories. Different
models will be built by incorporating suitable variables, where “AD” represents admission
variables and “DIS” denotes discharge variables. In the table, symbol ‘X’ denotes ‘not appli-
cable’ and symbol ‘/” denotes ‘combined in other groups’. We have excluded the groups with
insufficient numbers to build prediction models. All the variables included in the prediction

models are listed in Appendix [A]

Table 5.2: Prediction models (variables used)

Mortality in ICU
Mortality after-ICU
Admission categories and hospital ICU LoS
in ICU Mortality
FirstAD | LastAD LastAD
All AD AD AD AD+DIS AD
Plannned AD AD AD AD+DIS AD
Unplanned AD AD AD AD+DIS AD
Unplanned peak time AD AD AD AD+DIS AD

Continued on next page
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Table 5.2 — continued from previous page

Mortality in ICU

Mortality after-ICU
Admission categories and hospital ICU LoS
in ICU Mortality
FirstAD | LastAD LastAD

Unplanned off-peak AD AD AD AD+DIS AD
Source A

AD AD AD AD+DIS /
(A&E)
Source B

AD AD AD AD+DIS /
(Operating theatre)
Source D

/ / AD / /
(General Ward)
Source 7
/ / AD / /

(Others)
Source D+7 AD AD AD AD+DIS X
Unplanned Source B AD AD AD AD+DIS X
Unplanned Source D AD AD AD AD+DIS X
Planned Source B AD AD AD AD+DIS X
Non-late AD AD AD AD+DIS AD
Non-late planned / AD X X /
Non-late unplanned / AD X X /
Late AD AD AD AD+DIS AD
Non-late planned

AD X AD AD+DIS AD
(no readmission)
Non-late unplanned

AD X AD AD+DIS AD
(no readmission)
Readmission X X AD AD+DIS AD

AD, admission variables; DIS, discharge variables;

X, not applicable; /, combined in other groups.

As discussed in Section ICNARC has developed a comprehensive way to predict the
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probability of mortality of patients in hospitals. Every patient admitted to an ICU has an
ICNARC probability which indicates his/her probability of death. ICNARC probability is
composed of the ICNARC score and GCS. Results predicted by ICNARC model are proved

to be more accurate than the prediction using APACHE II score (Harrison et al., 2007).

Three different models, two logistic regression models and a decision tree, will be built for
mortality prediction for each admission category for: 1) mortality in ICU (ICU mortality), 2)
I. mortality in hospital of all first admissions (hospital mortality FirstAD) and II. mortality
in hospital of all last admissions (hospital mortality LastAD) and 3) mortality in hospital
after ICU-stay (after-ICU mortality). First, a benchmark model, a logistic regression model
utilising ICNARC probability only will be built as a benchmark model for ICU and hospital
mortality prediction. Second, an improved logistic regression model, using all the admission
variables including ICNARC probability, will be built. The final logistic regression model
will be chosen based on the variables’ contributions to the reduction of residual deviation
and the lowest model AIC. Third, a decision tree based on the Classification and Regression

Tree (CART) algorithm will be constructed.

In a logistic regression model, Y; represents the state of admission i. The occurrence of event
‘discharged dead’ and ‘discharged alive’ in the admission is denotes as ¥; = 0 and Y¥; = 1.

The probability of Y; =1 (p;) is denoted by E[Y;|Xj] for given admission attributes Xj.

A logistic regression model could be generalised to

1

Bl =pe =
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where

Bo 1
b1 Ti1

/8 = 7X = ?
Bj Tij
Bn Timn

x;j are patients’ attributes; §; are parameters estimated by maximum likelihood for inde-

pendent variable z; ;.

Classification and regression methods are adopted in the prediction of LoS in ICU. A re-
gression model for the hospital LoS will be built with all the admission categories combined.
Data cleaning follows the procedure described in Section The predictions and analysis

are conducted using the R 3.3.3 and rpart package.

Handling variables

Before including all the variables into the models, we need to deal with categorical variables

that have numerous categories and some of the categories appear infrequently.

There are 466 distinctive admission reasons in the ICNARC methods. We counted the fre-
quency of every admission reason and divided them into four groups, Frequent, High risk,
Low risk and Others. Admission reasons under “Frequent” appear at least 200 times as the
primary admission reason. “High risk” contains admission reasons appear between 10 and
199 times and average ICNARC probability over 50. “Low risk” contains admission reasons
appear between 10 and average ICNARC probability less than 50. “Others” include are
the other admission reasons appearing 0 to 9 times in our dataset. There are six, eight,
114 and 338 admission reasons under each group respectively. A new nominal variable,
“CateReason”, is created to replace admission reasons. “CateReason” contains nine cate-

gories, which are all the admission reasons in the “Frequent” group, i.e. Anoxic or ischaemic
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coma or encephalopathy, Primary lung tumour, Malignant neoplasm of oesophagus, Pancre-
atic or pancreato-duodenal tumour, Secondary hepatic tumour and Pneumonia, no organism

isolated, High risk, Low risk and Others.

5.3 Mortality prediction

5.3.1 ICU mortality prediction

There are 6022 admissions in total. Random sampling was used to split the dataset into

training and testing parts, with 2/3 as a training dataset and 1/3 testing.

For the different admission categories, appropriate data points were taken from the training
and testing datasets. Table lists numbers of data points in the training and testing
datasets for all the ICU mortality prediction models. Because of low numbers, we will not

predict group Z1 and Z0+D1 separately.
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Table 5.3: Numbers of data points for ICU mortality prediction models

Prediction Model Total | Training | Testing
all 6022 | 4016 2006
planned 2430 1626 804
unplanned 3592 2389 1203
unplanned peak 2122 1416 706
unplanned off-peak | 1470 | 973 497
A 1114 | 744 370
B 3271 | 2190 1081
D+Z 1366 | 900 466
F 271 181 90
BO 990 660 330
DO 1133 | 748 385
Z0+D1 151 103 48
B1 2281 1530 751
71 82 49 33
non late 5004 3329 1675
Non-late p.lar.lned 9999 1533 761
(no readmission)

Non-late u.np.lanned 9705 1790 915
(no readmission)

late 804 544 260
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ICU mortality predictions: all admissions

Three different models were built for the dataset containing all admissions. A logistic re-
gression model of predicting mortality based on ICNARC probability only was built as a
benchmark. A comprehensive logistic regression model was constructed to see if mortality
prediction could be improved by adding other elements. A decision tree based on the CART

algorithm was also assessed.

Using maximum likelihood estimation, the benchmark model for this dataset could be written

as
1

1+ €(0.05934x — 3.77302)

E(Yi|X) =
The maximum split point of the benchmark model is ICNARC.probability=63.5831.

We then built the decision tree. Figure shows the tree where the left and right leaves
represent the predicted deaths and survivals. The variables involved are also shown in Figure

%)

0.8526
100.00%

—{yes J}FICNARC probability >= 48.28

0.3985 0.9451
16.94% 83.06%

ICNARC.score >= 32.5 ICNARC.probability >= 16.37
0.2233 0.5445 0.8074
7.70% 9.24% 17.58%

ICNARC.probability >= 89.38 ICNARC.probability >= 76.72 ICNARC.probability >= 32.58

O 6014
7 25%

adlevel3 >= 0.5279

0.09483 0.3005 0.3375 O 4516 0 6717 0.719 0.8534 0.9821
2.89% 4.81% 1.99% 2. 32% 4. 93% 6.03% 11.56% 65.48%

Figure 5.9: Classification tree for ICU mortality prediction (all admissions)
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A comprehensive logistic regression model was built for all the admissions. The final model
is selected by the minimum AIC values with avoidance of multicollinearity. As we discussed
in Section only one variable within a group of highly correlated variables will be kept
in the final model. Table gives the coefficients of variables and their p-values.

Table 5.4: Logit coefficients for ICU mortality prediction (all admissions)

Estimate P-value

(Intercept) 5.0557  0.0000
Age -0.0246  0.0000
SourceB 0.0073  0.9702
SourceD -0.3702  0.0254
SourceF 0.9851  0.0000
SourceZ -0.2664  0.4170
ICNARC.score -0.1695  0.0000
adPA 0.3228  0.0094
planned 0.5550  0.0104
CateReasonhighrisk 0.0899  0.7241
CateReasonlowrisk 1.2638  0.0000
CateReasonMalignant neoplasm of oesophagus 1.7393  0.0026
CateReasonothers 1.3779  0.0000
CateReasonPancreatic or pancreato-duodenal tumour 1.7382  0.0103
CateReasonPneumonia, no organism isolated 1.4788  0.0000
CateReasonPrimary lung tumour 1.1587  0.0108
CateReasonSecondary hepatic tumour 3.0282  0.0095

We use both AUROC and KS distance to assess the models. Table gives AUROC and KS
distances for different models. Figure displays the ROC curves for the different models.
The logistic regression model performs similarly to the benchmark model as performance
measured by AUROC and KS suggests conflicting result. The decision tree from CART

performed worse than the other two models.

Table 5.5: AUROC and KS distance for ICU mortality prediction models (all admissions)

’ H Training AUROC ‘ Testing AUROC ‘ Training KS ‘ Testing KS ‘

Benchmark 0.9164 0.9073 0.6872 0.6813
Logistic regression || 0.9198 0.9119 0.6911 0.6741
Decision tree 0.9023 0.8920 0.6757 0.6561

113



1.0

0.8
|

0.6

True positive rate

—————————— train—benchmark

04

—_— test—benchmark
,,,,,,,,,, train—-CART

e test—-CART

0.2

rrrrrrrrrr train—logit

————  test-logit

0.0
|

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

Figure 5.10: ROC curves for ICU mortality prediction models (all admissions)

5.3.2 Hospital mortality prediction

The ICNARC mortality prediction model is designed to predict hospital mortality (death
both in ICU and elsewhere in hospital) of ICU patients. It has proved to be the most ef-
fective mortality probability prediction model in the UK nationwide. A study of 343,860
admissions to adult ICUs in England, Wales and Northern Ireland gave AUROC=0.870. An
external validation in 23,269 admissions to Scotland ICUs shows a similar discrimination
power (AUROC=0.848) (Harrison et al., [2007, 2014). Our models look in detail at a num-
ber of admission categories and investigate possible improvements in mortality prediction

compared to the baseline ICNARC models.

Hospital mortality prediction requires dealing with readmissions. We cannot consider every
admission in the prediction. Instead, we will carry out predictions twice for two different
datasets considering either first or last admissions. First, we use only first time admissions,
all patients’ admissions from admission group 0 and 1. All the patients are distinct within
this group. We use “FirstAD” to denote these patients. Second, we will use all the last
admissions. All admissions from admission group 0 and part of admissions from group 2 will
be involved. For group 0 admissions, as they are admissions for one time only patients, they

are included in both of the two predictions. We denote it as “LastAD”.
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The same prediction models as ICU mortality prediction will be built in this section; we
will create three models, benchmark, logistic regression model and decision tree using the
CART algorithm, for two datasets considering each admission category. Results of these
three models will be assessed and compared using ROC curves, AUROC and KS distances

for discrimination power.

For the different admission categories, appropriate data points are taken from the training
and testing datasets created in Section Tables [5.6] and list numbers of data points

in the training and testing datasets for all the hospital prediction models.

Table 5.6: Numbers of data points of hospital mortality prediction models (FirstAD)

H Total ‘ Training | Testing ‘

all 5808 | 3872 1936
planned 2397 1602 795
unplanned 3411 2270 1141
unplanned peak 2016 1347 669
unplanned off peak 1395 923 472
A 1114 | 744 370
B 3195 2134 1061
D+Z 1228 | 813 415
F 271 181 90
BO 940 624 316
DO 1004 | 665 339
Z0+D1 146 101 45
B1 2255 1510 745
Z1 78 47 31
non late 5004 3329 1675
Non-late planned 2299 1538 761
Non-late unplanned | 2705 1790 915
late 804 544 260
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Table 5.7: Numbers of data points of hospital mortality prediction models (LastAD)

H Total ‘ Training ‘ Testing ‘

all 5808 3874 1934
planned 2320 1554 766
unplanned 3488 2320 1168
unplanned peak 2059 1370 689
unplanned off peak 1429 950 479
A 1101 | 733 368
B 3128 2092 1036
D 1136 759 377
F 271 181 90
Z 172 109 63
D+7Z 1308 868 440
BO 948 630 318
DO 1086 | 722 364
B1 2180 1462 718
D1 50 37 13
non late (no readmission) 4847 | 3220 1627
Non-late planned (no readmission) 2202 | 1474 728
Non-late unplanned (no readmission) || 2645 | 1746 899
late 772 5926 246
readmission 189 128 61
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All Patients (FirstAD)

A logistic regression model of predicting mortality based on ICNARC probability only was

built as a benchmark to assess if mortality prediction could be improved by adding other

elements. The baseline model can be written as E(Y;|X) =

1
14-¢(0.05762—3.0769)

split point of the benchmark model is ICNARC.probability=>53.4088.

After an initial test of three decision tree algorithms, classification tree and logistic regression

were recruited to predict patients’ hospital mortality. For logistic regression, we used the

stepwise method to select variables.

. The maximum

Table 5.8: Logit coefficients for hospital mortality prediction (FirstAD)

Estimate P-value
(Intercept) 3.7525  0.0000
Age -0.0195  0.0000
Days.between.hospital.and.unit.admit -0.0115  0.0407
ICNARC.score -0.0900  0.0000
ICNARC.probability -0.0246  0.0000
P2_system 0.0689  0.0136
adPA_1 0.5723  0.0766
CateReasonhighrisk -0.2718  0.3074
CateReasonlowrisk 0.6668  0.0127
CateReasonMalignant neoplasm of oesophagus 1.3954  0.0113
CateReasonothers 0.5822  0.0412
CateReasonPancreatic or pancreato-duodenal tumour 0.4775  0.3204
CateReasonPneumonia, no organism isolated 1.0658  0.0021
CateReasonPrimary lung tumour 0.7247  0.0894
CateReasonSecondary hepatic tumour 2.0756  0.0153
SourceB 0.4130 0.0727
SourceD -0.5413  0.0011
SourceF 0.8404  0.0004
SourceZ -0.3889  0.1805
EMELEM -0.7488  0.0003
Adpeak 0.2519  0.0292

Figure gives the pruned CART tree. Only ICNARC probability and ICNARC score are

recruited by the final pruned tree.

Logistic regression did better than the classification tree as shown in Figure and Table
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Figure 5.11: Classification tree for hospital mortality prediction (FirstAD)

regarding both AUROC and KS distance. However, the improvement is not huge.

Table 5.9: AUROC and KS distance for hospital mortality prediction models (FirstAD)

|

H Training AUROC ‘ Testing AUROC ‘ Training KS ‘ Testing KS ‘

Benchmark 0.8958 0.8743 0.6400 0.5923
Logistic regression || 0.9016 0.8783 0.6352 0.6127
Decision tree 0.8685 0.8371 0.6378 0.5789
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Hospital mortality (first admissions)
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Figure 5.12: ROC curves for hospital mortality prediction models (FirstAD)

All patients (LastAD)

‘ i 1
E(K[X) " 1+¢(0.05852—3.1565)

By using last admission only, we found a slightly different maximum split point of the

benchmark model, ICNARC.probability=>53.9752.

Table 5.10: Logit coefficients for hospital mortality prediction (LastAD)

Estimate P-value

(Intercept) 4.0607  0.0000
Age -0.0181  0.0001
Days.between.hospital.and.unit.admit -0.0156  0.0008
SourceB 0.0575  0.7716
SourceD -0.3659  0.0358
SourceF 0.9077  0.0002
SourceZ -0.2663  0.3775
ICNARC.score -0.0925  0.0000

Continued on next page
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Table 5.10 — continued from previous page

Estimate P-value

ICNARC.probability -0.0269  0.0000
P2_system2 0.2585  0.2084
P2_system3 0.2491  0.1927
P2_system4 -0.0632  0.8144
P2_systemb -0.0641  0.8755
P2_system6 1.5753  0.0226
P2_system7 0.3944  0.1373
P2_system8 1.7889  0.0026
P2_system9 0.3410  0.3926
P2_system10 -0.1421  0.7926
P2_system11 -0.5171  0.4627
P2_system12 -13.6822  0.9664
adlevell 6.3232  0.0094
adPA_1 0.5512  0.0933
Adpeak 0.3440  0.0030
CateReasonhighrisk -0.7253  0.0381
CateReasonlowrisk 0.2972  0.3739
CateReasonMalignant neoplasm of oesophagus 1.3957  0.0278
CateReasonothers 0.2114  0.5482
CateReasonPancreatic or pancreato-duodenal tumour 0.5027  0.3634
CateReasonPneumonia, no organism isolated 0.7584  0.0653
CateReasonPrimary lung tumour 0.7393  0.1332
CateReasonSecondary hepatic tumour 1.9153  0.0295

Figure[5.13|shows the CART decision tree. It is much larger than the tree for first admissions.
Also, it involves more variables. Admission PA and admission %L3 are included in the final

tree, which indicates the influence of busyness of the unit on patients.
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Figure 5.13: Classification tree for hospital mortality prediction (LastAD)

Table and Figure show the comparison of different models.

Table 5.11: AUROC and KS distance for hospital mortality prediction models (LastAD)

’ H Training AUROC ‘ Testing AUROC ‘ Training KS ‘ Testing KS ‘

Benchmark 0.9015 0.8849 0.6487 0.6176
Logistic regression || 0.9070 0.8869 0.6521 0.6281
Decision tree 0.8942 0.8700 0.6484 0.6099

We find that the logistic regression model performs better in the training dataset but not
as well in the testing dataset. This results from overfitting of the training dataset although

variables in the model have been selected using AIC.

The discrimination power of the benchmark model is excellent as measured by AUROC in
both two datasets. It outperforms the ICNARC development model (AUROC=0.870) and
an external validation in Scotland data (AUROC=0.848) (Harrison et al., 2007, |2014)).
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Figure 5.14: ROC curves for hospital mortality prediction models (LastAD)

5.3.3 After-ICU mortality

After-ICU / Post-ICU mortality means death after ICU discharge so deaths in ICU are not
included in the prediction. We do not use first admissions of readmissions in this prediction
since death after first ICU stay can occur during either their hospital stays or their subsequent

stays in the ICU. Only the last admissions for readmitted patients will be modelled.

Last admissions

Patient’s mortality after ICU is critical for modelling readmission. We found a split point at

ICNARC.probability=96.0113 from E(Y;|X) =

1+e(0'039§$_3.7746). The number is very close
to the largest ICNARC probability value (97.97) amongst all patients discharged alive from
the ICU. This proves the effectiveness of ICU treatments but not very helpful in predicting

after-ICU mortality.

Figure [5.15| shows the tree constructed for after-ICU mortality prediction. The final tree
contains only one split based on ICNARC probability.
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Table 5.12: Numbers of data points of after-ICU mortality prediction models

H Total ‘ Training | Testing

all 4950 3282 1668
planned 2253 1510 743
unplanned 2697 1772 925
unplanned peak 1645 1083 562
unplanned off peak 1052 689 363
A 866 566 300
B 2047 | 1974 973
D47 977 637 440
F 160 105 55
BO 812 543 269
DO 804 522 282
B1 2135 1431 704
D1 41 31 10
non-late (no readmissions) 4202 | 2783 1421
non-late planned (no readmissions) 2148 | 1437 711
non-late unplanned (no readmissions) || 2056 | 1346 710
late (no readmissions) 587 390 197
readmission 159 109 50

Table 5.13: Logit coefficients for after-ICU mortality prediction (LastAD)

Estimate P-value
(Intercept) 4.2547  0.0000
ReadmissionYes 0.7315  0.1246
SexM -0.3928  0.0489
Age -0.0294  0.0000
Days.between.hospital.and.unit.admit -0.0292  0.0000
planned 0.6866  0.0798
ICNARC.probability -0.0237  0.0000
Reason.dischargedB. Comparable critical care continuing -1.4750  0.0203
Reason.dischargedD. More specialist critical care -0.1531  0.8405
Reason.dischargedE. Repatriation -2.1882  0.0000
Reason.dischargedF. Palliative care -3.2478  0.0000
Reason.dischargedG. Self-discharge 12.2386  0.9819
EMELEM -0.7247  0.1044
EMELNR -0.7012  0.1216
adlevell 12.6141  0.0197
adPA_1 1.6624  0.0017
DisReadynighteffect 0.8897  0.0713
CDispeak 0.5011  0.0364
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Figure 5.15: Classification tree for after-ICU mortality prediction (LastAD)
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Table and Figure [5.16| show the comparison of after-ICU mortality prediction models.
The logistic regression model performed better than the other two models in the training

dataset. However, the benchmark model tended to predict all the patients as alive.

Table 5.14: AUROC and KS distance for after-ICU mortality prediction models (LastAD)

H Training AUROC ‘ Testing AUROC ‘ Training KS ‘ Testing KS ‘

Benchmark 0.8164 0.7974 0.5255 0.4913
Logistic regression || 0.8755 0.8235 0.5857 0.5198
Decision tree 0.7902 0.7772 0.4276 0.4771
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Figure 5.16: ROC curves for after-ICU mortality prediction models (LastAD)

5.3.4 Comparing the performance of mortality prediction models

We have included all the results of the predictability of the prediction models in Appendix
We would like to highlight results which will be helpful in our future simulation model

building.

For the ICU mortality prediction model, we find that the logistic regression model performs
the best in the training dataset for almost all the groups of patients, although the ICNARC
predictions are still excellent. However, the performance in the testing dataset is not guaran-
teed to be the best, although most of the time it is, as sometimes over-fitting may occur. The
logistic regression models perform especially better than the benchmark models in admis-
sions categorised by admission peaks for unplanned peak and unplanned off-peak patients.
The performance of late admission prediction is also improved with both AUROC and KS

in testing.

For hospital mortality predictions, the performance of the logistic regression models is sim-
ilar to the benchmark models. The logistic regression models still do better in mortality

prediction for late admission patients.
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For after-ICU mortality prediction, the benchmark models are not as good as the benchmark
ICU or hospital mortality prediction models since they based on admission variables only.
The results from benchmark after-ICU mortality prediction show that the benchmark model
tends to predict all the patients as ‘alive’, which is not true. Improvements in the after-
ICU mortality prediction were shown in both CART and logistic regression models for some
patient categories. These models include discharge variables so they would be expected to
perform better than ICNARC models. This group of predictions is designed specifically for
readmission modelling. Only patients who survived after their discharge from the ICU could
be readmitted. Also, the prediction for the unplanned admissions group shows that the
prediction can be based only on the operational factors at their discharge. That is to say,
we do not need to consider the severity of patients’ illness. This type of prediction could be

valuable in simulation modelling.

Taking both simplicity and accuracy into consideration, three benchmark logistic regression
models re-calibrating from current ICNARC models (i.e. using ICNARC probability as the
only covariate) for planned, unplanned and late admissions respectively will be brought

forward to the next Chapter.

5.4 LoS prediction

5.4.1 LoS prediction: single stage models

Two types of LoS are recorded in the dataset, clinical LoS and actual LoS. For patients
discharged alive, clinical LoS was calculated as “clinically ready to discharge time - ICU
admission time”; actual LoS was calculated as “actual discharge time - ICU admission time”.
For patients who died, clinical LoS and actual LoS are the same: “time of death - ICU
admission time”. Actual LoS reflects the time that a patient spends in the ICU. It is also the
key factor of ICU occupancy and busyness. Thus actual LoS will be the target variable in
LoS prediction. Clinical LoS will only be predicted in limited groups to observe differences

between two types of LoS in terms of which variables are used in predictions. |Chan et al.
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(2016) include only patients who were discharged alive. To predict LoS more accurately, we
use all patients and use patients’ status to re-classify patients. As showed in Table
three different types of prediction which involve three different response variables are carried
out in our research.

Table 5.15: Different response variables in actual LoS prediction

Response variable | Patient status groups
LoS1 All patients
LoS2 Patients discharged alive + Patients discharged died (LoS>8 hrs)
LoS3 Patients discharged alive only

The R package ‘rpart’ for CART was employed for variable selection. After that, linear
regression was adopted for predicting LoS. Two things need to be pointed out. First, in
the variable selection part, all available variables are included apart from those are highly
correlated. Second, the admission reasons were categorised in the same way as in mortality
prediction (see Section. Moreover, in LoS prediction, we also set aside one third of the
dataset as a test dataset. Models were built on the training data. Out-of-sample tests were

carried out using the test dataset.

The discrepancy between actual LoS and clinical LoS, namely operational delay, comes from
mainly lack of beds in the general ward and also the preparation of paperwork. From the
variable selection process, we find that PA is not included in the model construction for any
of the clinical LoS predictions. However, the indicator contributed to building the models
for predicting actual LoS of patients. From this we suppose PA reflects more on congestion

of general wards rather than actually measuring overall severity of all ICU patients in a day.

The homoscedasticity assumption of OLS cannot be guaranteed by using original LoS di-
rectly, so we applied log-transformation to the LoS. We then use all the variables of impor-
tance in CART to construct the linear regression models of log-transformed LoS data and

check R-squared values for all models.

We compared our results with those from the research of Verburg et al.| (2014)). The R-

127



Table 5.16: R-squared and adjusted R-squared of log-transformed LoS prediction in both
training and testing data

LoS || R-squared (training) égﬁfg{; R-squared R-squared (testing) é(eii}:llijge;)d R-squared
LoS1 0.1578 0.1334 0.0670 0.0598
LoS2 0.1835 0.1616 0.0556 0.0507
LoS3 0.3286 0.3042 0.0412 0.0392

squared for all patients and survivors are 0.149 and 0.196 using log-transformed LoS in
their research, which are very similar to our results in Table Meanwhile, we have the
same problem as theirs, the heteroscedasticity in the linear regression cannot be solved even
after the log-transformation of LoS data. This causes robustness problems when using the
model. Therefore, to be prudent, we perform linear regression on the original LoS data and
report the results of heteroscedasticity consistent (HC) coefficients and p-values instead of
the result from the original linear regression using OLS estimations in Tables and
The R-squared values for models fitted with original data are also reported in Table

As we can see from model coefficients in predicting LoS3 in Table discharge PA has
a negative effect on ICU LoS, which is consistent with the supposition we made before. It
suggests that a lower PA means a busier general ward which will eventually lead to a longer

ICU LoS. However, if patients who were discharged dead are included in the prediction, PA
is not a significant variable in the model shown in Tables and

Table 5.17: R-squared and adjusted R-squared of LoS prediction in both training and testing
data (original data)

LoS R-squared (training) l(iil?;f;g) R-squared R-squared (testing) é(eiizsrfg? R-squared
LoS1 0.1262 0.1205 0.1138 0.1253
LoS2 0.1439 0.1380 0.1398 0.1291
LoS3 0.2589 0.2524 0.2338 0.2219

Table suggests that if only patients discharged alive are included in LoS prediction, the

predictive power of models will be significantly increased. However, in modelling operation

of the ICU, LoS of every patient is critical
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Table 5.18: HC estimations of LoS prediction model (all patients)

Estimate  P-value

(Intercept) -645.4569  0.5363
ICNARC.score 226.0699  0.0000
EMELEM 1742.0405  0.0000
EMELNR 1839.5308  0.0007
SourceD 2362.6347  0.0001
SourceF 1673.5512  0.0483
SourceZ 5815.9121  0.0002
CateReasonhighrisk -1802.4851  0.0814
CateReasonlowrisk 2631.2908  0.0014
CateReasonMalignant neoplasm of oesophagus 4303.2957  0.0001
CateReasonothers 1726.2010  0.0655

CateReasonPancreatic or pancreato-duodenal tumour  2337.5917  0.0249

CateReasonPneumonia, no organism isolated 3730.6379  0.0055
CateReasonPrimary lung tumour 2316.0894  0.0356
CateReasonSecondary hepatic tumour 703.0581  0.4393
P2_system2 -1122.4750  0.0685
P2_system3 954.0693  0.0741
P2_system4 -2001.2075  0.0026
P2_systemb -408.4263  0.6179
P2_system6 -3569.7125  0.0000
P2_system7 -1686.5200  0.0049
P2_system8 -2016.3440  0.0035
P2_system9 -4873.4496  0.0000
P2_system10 -1351.2166  0.2614
P2_system11 -4641.0006  0.0002
P2_system12 6364.8968  0.0000

Continued on next page
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Table 5.18 — continued from previous page

Estimate  P-value

Days.between.hospital.and.unit.admit 20.2229  0.1699

Table 5.19: HC estimations of LoS prediction model (alive or dead after 8hr of admission)

Estimate  P-value

(Intercept) -2516.9192  0.0616
ICNARC.score 271.2897  0.0000
EMELEM 1614.3776  0.0000
EMELNR 660.3809  0.3916
SourceD 1587.1246  0.0161
SourceF 1659.2124  0.0584
SourceZ 5713.9237  0.0005
P1 987.8538  0.1750
P2_system2 -959.1475  0.1214
P2_system3 1046.3395  0.0563
P2_system4 -1947.4843  0.0040
P2_systemb -576.0929  0.4882
P2_system6 -3405.6068  0.0000
P2_system7 -1703.2828  0.0047
P2_system8 -1799.7974  0.0081
P2_system9 -4226.8293  0.0000
P2 _system10 -1453.9837  0.2327
P2_system11 -4192.0016  0.0009
P2_system12 5068.6933  0.0000
CateReasonhighrisk -1485.4667  0.1807
CateReasonlowrisk 2941.3307  0.0005
CateReasonMalignant neoplasm of oesophagus 4507.8267  0.0001
CateReasonothers 1954.3721  0.0409

Continued on next page
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Table 5.19 — continued from previous page

Estimate  P-value
CateReasonPancreatic or pancreato-duodenal tumour  2713.9508  0.0104
CateReasonPneumonia, no organism isolated 3907.3260  0.0040
CateReasonPrimary lung tumour 2652.6675  0.0183
CateReasonSecondary hepatic tumour 1013.3069  0.2749
AdLate 1828.3979  0.0100

Table 5.20: HC estimations of LoS prediction model (alive patients)

Estimate  P-value
(Intercept) -1778.1761  0.2132
ICNARC.score 538.3599  0.0000
P2_system2 -739.9817  0.2290
P2_system3 1360.3694  0.0102
P2_system4 -1339.7250  0.0612
P2_systemb 43.2905  0.9536
P2_system6 -2794.0598  0.0000
P2_system7 -1799.9773  0.0016
P2_system8 -2344.4433  0.0003
P2_system9 -4510.9813  0.0000
P2_system10 -1109.3204  0.2954
P2_system11 -3328.6514  0.0032
P2_system12 2766.5200  0.0002
adPA_1 1371.8698  0.0824
disPA -6881.0864  0.0007
SourceB -993.7363  0.0974
SourceD 1623.7478  0.0255
SourceF 262.2693  0.8313
SourceZ 6592.1270  0.0004

Continued on next page
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Table 5.20 — continued from previous page

Estimate  P-value

AdLate 1465.9221  0.0497
CateReasonhighrisk -1320.0970  0.4278
CateReasonlowrisk 1898.8090  0.0706
CateReasonMalignant neoplasm of oesophagus 2313.1100  0.0602
CateReasonothers 1174.8592  0.3142

CateReasonPancreatic or pancreato-duodenal tumour  2088.2720  0.0903

CateReasonPneumonia, no organism isolated 3065.6165  0.0540
CateReasonPrimary lung tumour 1117.5492  0.3645
CateReasonSecondary hepatic tumour 384.5207  0.7317
EMELEM 951.3637  0.0081

The R-squared of the training dataset is not achieved in the prediction of testing dataset.
It performs only slightly better than the a random guess. To better predicting LoS, we will

proceed to a two-stage model.

5.4.2 LoS prediction: two-stage models

As detailed in Section the prediction of LoS of patients discharged alive was better than
the prediction of LoS of all patients. Moreover, ICU mortality can be accurately predicted by
logistic regression models (see Section [5.3.1)). A “two-stage” process is therefore devised for
ICU LoS prediction of all patients with the first stage being prediction of ICU mortality and
the second stage prediction of LoS split by whether the patient is predicted to be discharged
alive or not. Such a model has a potential to predict LoS more accurately then the previous

single-stage methods.

The “two-stage” approach consist of three models in total. The first stage is building a model
to predict mortality of all patients. The mortality prediction model using logistic regression

described in Section will be adopted here. Then, two linear regression models are built
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to predict LoS for patients likely to be discharged alive or discharged dead are constructed
separately. Finally, R-squared for the model as a whole is calculated using predicted and

original LoS values to assess the performance of the two-stage model.

The linear regression model for patients who died in the ICU achieved 0.2481 and 0.2259
of R-squared and adjusted R-squared respectively. We finally achieve 0.1909 of R-squared
and 0.1852 of adjusted R-squared for the two-stage model. The model shows improvement
compared to the one-step linear regression models. However, the predictability is not high

enough to give accurate prediction.

5.5 Conclusion

This chapter investigated mortality prediction and LoS prediction models. In thestudy of
mortality prediction, the benchmark ICNARC models are shown to be excellent in predicting
patients’ death in ICU and in hospital in most of the groups but not so strong in prediction af-
ter an ICU stay in any groups. However, benchmark mortality prediction of late admissions,
in ICU, in hospital and after-ICU, is at a relatively lower power. This reassured the possible
negative impact of late admissions on ICU mortality and LoS and worthiness of incorporation
late admissions in prediction models. Therefore, we have built separate enhanced models to
predict mortality of late admissions and other patient categories. Benchmark ICU mortal-
ity prediction models (unplanned, planned and late admissions) will be used in simulation

modelling in Chapter [6] because of good predictability and simplified data requirement.

We found an interesting point in after-ICU mortality prediction for non-late unplanned pa-
tients that only discharge reason and operational factors (discharge time and ICU busyness)
are included in the logistic regression model. However, discharge reasons are not included
in our simulation in Chapter [6] so we are not able to carry out post-ICU predictions in the

simulation. The focus of our simulation is on late admission rather than discharge reasons.

When modelling LoS, we use three different combinations of patients with LoS as a response

variable and then assess the results of both log-transformed and original data. Models con-
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cerning only patients discharged alive from ICU perform better than other models. However,
modelling the real world ICU cannot ignore dead patients. The R-squared values for all pre-
diction models are not very high. The coefficients of LoS prediction models suggest that PA
has a negative effect on ICU LoS of patients. That is to say, low PA at discharge can reflect

general ward busyness and result in longer LoS.

To better understand the pattern of LoS, we will proceed in Chapter [6] with distribution

fitting to describe the data for the purpose of simulation modelling.
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Chapter 6

Simulation Models

Chapters [4] and [5] inform the simulation model in this chapter, concerning, for example,
the split of patient groups and ICU mortality prediction. To begin our investigation of the
potential benefits and challenges of combining data mining and simulation modelling, in this
chapter, a discrete event simulation (DES) model is described that depicts the ICU in our

case study.

A description of the conceptual ICU model is provided first in Section We then go on
to describe and justify the choice of input distributions for the simulation model in Sections
to The development of these distributions draws on the results of Chapters [4] and
but we also introduce a novel way of modelling LoS is in Section The logic and further
details of the DES model are provided in Section [6.5] and an analysis of input uncertainty
of the DES model is provided in Section A standard verification and validation process
is followed for the model and described in Section Conclusions from this chapter are
provided in Section
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6.1 Conceptual model

Our research focuses on late admission and its influences. The conceptual model is illustrated
in Figure[6.1] The model aims at emphasising the late admission group. There is a differen-
tiation between planned and unplanned admissions. As discussed in Section planned
admissions are modelled according to an empirical distribution function (EDF), mostly ar-
riving in peak times. Unplanned arrivals are generated by an NHPP and may occur at any
time of the day. Admission sources or disease categories are not modelled but readmission
to the ICU is included. Busyness in the general ward (leading to low PA in the ICU) is not

accounted for. The conceptual model was verified by an ICU specialist.

As discussed in Sections [4.4] and most of the performance divergences for pa-
tients admitted from different sources can be captured by ICNARC probability. However,
the performances of unplanned and planned admissions are very different after case-mix ad-
justment. Moreover, unplanned and planned arrivals to ICUs are usually modelled separately
in research (see Section . Therefore, the unplanned arrival process and the planned

arrival process are modelled separately in this research.

As described in Section all the beds are equipped with L3 facilities; the only difference
in service is the nurse-to-patient ratio. Therefore we do not distinguish L2 and L3 beds in

the model.
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Figure 6.1: Conceptual Model
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Data needed for a simulation model of the ICU can be identified from Figure The
planned and unplanned arrival processes need to be modelled separately; these are discussed
in Section As a key part of the model ICU, a new LoS modelling method is used as
introduced in Section A simplified version of mortality prediction is used as described
in Section LoS in the general wards for post-ICU patients is obtained from the data.
An exponential distribution is used to model length of general wards’ stay. Our data is,
thus, sufficient to build a DES model that can model the aspects of the ICU which we are

interested.

6.2 Input distributions for arrival processes

6.2.1 Unplanned arrival process

Poisson Processes (PPs) are used in modelling arrival processes in ICUs in several applica-
tions (Bai et al., 2016). In our research, a PP with a constant arrival rate cannot fit the data
well because of the weekly pattern. An NHPP with piece-wise rates is therefore adopted here.
The method of variance-to-mean ratio (VMR= %2, where o is standard deviation and p is
mean) is adopted here to ensure that our data can be adequately described by the selected
NHPP intervals. The VMR of the arrival number for each time interval should be around
1, for a Poisson distribution to apply (Cox and Lewis, 1966, p. 72). Taking interpretablity
into consideration, three different time intervals are tried and the best one is picked here: 1)

seven intervals using day of a week, 2) 14 intervals standing for 14 half days (i.e. 0:00am to

11:59am and 12:00pm to 23:59pm) in a week and 3) 14 intervals representing 14 shifts in a

week.
Table 6.1: The VMRs of shift time intervals for unplanned arrivals
Monday Tuesday Wednesday Thursday Friday Saturday Sunday
Day Shift 1.2820 1.0077 1.0877 1.2161 1.0621 1.2329 1.1037
Night Shift | 1.0659 0.9981 1.1659 1.1943 1.0679  1.1065 0.9730

After comparing VMRs, the division of 14 intervals representing 14 shifts is selected. Table
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shows that the VMR for each interval is approximately 1 with this interval division,
which means an NHPP using shifts as time intervals is suitable to model unplanned arrivals
in our data. The VMRs for other two interval divisions are listed in Table [F.1] and Table [F.2]
in Appendix [F]

An arrival rate is estimated for each shift, where day shifts start from 08.00 and end at 19.59
and night shifts account for the period from 20.00 to 07.59 on the following day. Parameters
of exponential distributions for the DES model are listed in Table[6.2} the inter-arrival times
(hours) equal to 1/ mean hourly number of unplanned arrivals (i.e. ﬁ, where As are average

arrival numbers in the intervals ).

Table 6.2: Average inter-arrival time (hours) for exponential distribution for unplanned
admissions

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Day Shift 13.9770  15.0744 15.5234 15.3924  14.1313 17.5962  15.6567
Night Shift | 14.9508  15.3277 15.7922 13.8707  14.8780 15.1240 13.4118

6.2.2 Planned arrival process

For planned admissions, seven empirical distribution functions (EDFs) for number of patients
arriving on different days of the week are used for modelling arrivals. Next, the arrivals are
assigned to different admission times according to an EDF of admission time for planned

arrivals, which is the same for each day of the week.

Assuming (X71,---,X,,) are independent identically distributed random variables (the num-

bers of daily planned arrivals), EDFs are calculated using

Fn(t) _P(X <) = number of elements in the sample < 157
n

with values listed in Table For a more straightforward illustration, frequency plots are
shown in Figures and
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Table 6.3: EDF's of numbers of planned arrivals

Cumulative probability of numbers of arrivals
# of arrivals (¢t) | Monday Tuesday Wednesday Thursday Friday Saturday Sunday
t<0 0.0000  0.0000 0.0000 0.0000  0.0000  0.0000  0.0000
0<t<l1 0.2303  0.1842 0.1908 0.1711 0.2007  0.7566  0.8651
1<t<?2 0.5888  0.4737 0.5592 0.4375  0.5263  0.9737  0.9836
2<t<3 0.8487  0.8224 0.8289 0.7763  0.8092 1.0000  0.9967
3<t<4 0.9770  0.9539 0.9539 0.9474  0.9770 1.0000  1.0000
4<t<b 0.9934  0.9967 0.9967 0.9901 0.9967 1.0000  1.0000
t>5 1.0000  1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
Similarly, assuming (X, ---, X,,) are independent identically distributed random variables,

admission hour of planned patients, in this case, the EDF is described in Table [F.3] and

relative frequencies are plotted in Figure [6.2
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Figure 6.2: Admission hours of planned arrivals
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As shown in Section predicting LoS on an individual patient basis does not work well

in our data.

A collective way is therefore tried in this chapter.
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distributions to the data is tried first. Then, we propose a new model to sample LoS.

6.3.1 LoS distributions

LoS in ICUs is captured by exponential distributions as discussed in Chapter In this
research, several distributions were fitted to LoS and tested using goodness of fit. The
distribution fitting was for six categories of patients: planned, unplanned, late, readmissions,
late and readmission combined and all patients combined. Figure [6.3] shows the frequency

plot, PP plot, QQ plot and cdf plot for all patients.

Figure illustrates that none of the tested distributions fit the data well. A goodness of
fit test was also carried out to statistically prove the results. A Chi-square test, KS test and
CVM test rejected the null hypothesis of no significant difference at 0.01 level for all the
tested distributions. Therefore, the tested distributions cannot capture the LoS pattern in

our data well.

However, the PP plot in Figure [6.3| shows an interesting feature. The multiple spikes of LoS
indicate a cyclical characteristic of LoS, which result from peaks in admission numbers and

discharge numbers during the day, as noted in Chapter 4] (see Figures and [4.13]).

6.3.2 LoS modelling using sub parts

As a result of its cyclic behaviour, we propose modelling LoS in three parts as shown in
Figure [6.5} admission time, nights spent in ICU and discharge time. We use “subLoS” to

denote the separate components of the LoS. The LoS can be expressed as
LoS = subLoS1 + subLoS2 + subLoS3,
where

subLoS1 =24 — AdH, subLoS2 = (nights — 1) % 24, subLoS3 = DisH .
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“AdH” means admission hour in a day. “Nights” denotes nights spent in the ICU. “DisH”
means discharge hour in a day.
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Figure 6.4: Frequency plot of LoS in hours
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Figure 6.5: LoS modelling

The original LoS modelling problem is consequently divided into three sub-problems: mod-
elling the arrival time, nights in ICU and the discharge time. No suitable distribution has
been found to fit any of the three subLoS. Consequently, we sample from the EDFs for
subLoS. Total LoS is obtained by summing up the three subLoS. When setting up the
EDFs for the three subLoS calculations, we group patients according to different character-

istics (e.g. arrival process or discharge states).

Modelling AdH is the first problem to solve. Figure[6.6a]is a frequency plot of total admissions
at different hours in a day. Occurrence of planned admissions is mainly in the afternoon,

while unplanned admissions are spread over the day. AdH in data is captured using two
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different EDFs (Figure for planned and unplanned arrivals. A KS test of the EDFs
gives a p-value=0.0000, which means these two groups are from two different distributions.
When building the DES model, the EDF in Table is used to obtain AdH for planned
patients. AdH for unplanned arrivals is obtained from arrivals when they occur following

the NHPP with parameters stated in Table

group group
planned
~— unplanned

Fn(X)

10 15 10
discharge hour discharge hour

(a) Frequency of ICU Admission Time (b) EDFs of ICU Admission Time

Figure 6.6: ICU Admission Time Modelling

Next, nights in the ICU are modelled. Figure illustrates the four groups used in in-
vestigating LoS distributions, planned non-late, unplanned non-late, late and re-admissions.
According to a KS test, the difference between readmissions and late admissions is not statis-
tically significant (p-value > 0.1). Therefore, nights in the ICU are modelled by three EDFs

for planned non-late admissions, unplanned non-late admissions and late/re-admissions.
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Figure 6.7: EDFs for Nights in ICU

Finally, discharge times are investigated. Grouping patients into planned/unplanned ad-
mission does not provide as much information as ICU outcomes when modelling discharge
time. As shown in Figure patients who died in the ICU can be discharged at any time
of the day, while patients who survived after ICU treatments tend to be discharged at a
fixed period of the day. In addition, mortality prediction in ICU has a good performance
as demonstrated in Section m Therefore, ICU outcomes (i.e. alive/dead) are selected to
group patients. Two EDFs of ICU discharge time are illustrated in Figure

0 20

10
discharge hour

(a) Frequency of ICU Discharge Time (b) EDF's of ICU Discharge Time

10
discharge hour

Figure 6.8: ICU Discharge Time Modelling
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Consequently, we model the three subLoS using different grouping methods:
e subLOS1 (arrival time) split into two groups: planned and unplanned.

e subLOS2 (number of nights) split into three groups: planned, unplanned and late/re-

admissions.
e subLOS3 (discharge time) split into two groups: discharged alive and discharged dead.

The proposed method was tested and compared to the original data. Cumulative distribu-
tions of original LoS and simulated LoS are shown in Figure [6.9] A considerable overlap is

observed, showing that the method samples LoS correctly.

1.0

Fn(x)
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- « Original LoS
+ Simulated LoS

0.2
|

0.0

(o] 500 1000 1500

Figure 6.9: EDFs for original and simulated LoS

Furthermore, compared to directly sampling from the LoS EDF of ICU patients, this three-
part method keeps flexibility for scheduling planned patients arrivals and testing the effect

of discharge timing for patients.
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6.4 Prediction models in the DES model

This section describes prediction models incorporated in the DES model. First, ICU mortal-
ity prediction and hospital mortality prediction are summarised. Then, a patients’ starting

critical care level (patients’ severity) prediction model is built.

6.4.1 Mortality prediction

Models for mortality prediction have been discussed thoroughly in Section [5.3] For the sake
of simplicity of variables, we use the benchmark models here; admissions are first split into
planned, unplanned and late/re-admitted as suggested in Section To summarise, The
probability that a patient is discharged alive is given by

1

Bl =1 =p = mea

where x; is the ICNARC probability of patient ¢ and 3y, f1 are parameters to be estimated
from the data. Table lists the values of By, 81 for the three regression models for reference

purposes.

Table 6.4: Parameters for the ICU Mortality Prediction Logistic Regression Models

Model Bo 051

Planned 4.5425 0.0785
Unplanned 3.4210 0.0539
Late/re-admitted* 3.2723  0.0495

* using the model built for late admission

The predictability of the models were assessed by AUROC, which are 0.9073, 0.9073 and
0.8692 respectively. These three models are incorporated into the simulation model to gen-

erate the ICU mortality of patients.

Hospital mortality of all patients is also modelled using a new simplified logistic regres-

sion model (training AUROC=0.8990, testing AUROC=0.8792), which includes both the
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ICNARC probability and the effect of readmission as factors:

ElY; =1X;] = !
T 1 46(0.0394 %« ICNARC — 0.1540 * Readmission — 3.7699)

6.4.2 Setting the initial critical care level

Each ICU nurse can take care of at most two patients depending on the patients’ levels. As
discussed in Section a patient’s level indicates the severity of their condition and the
Nurse-to-patient ratios are 1:1 and 1:2 for level 3 and level 2 patients respectively. Nurse
requirements therefore vary for each patient according to their level. A patient’s initial
critical care level refers to the level of a patient at admission. Hence, we build a logistic
regression model to predict patients’ levels on admission to the ICU. The best fitted model

selected using AUROC is described as:

1
E[Y; = L3 X] =

1+ exp(0.0443 x ICNARC — 0.3654 * Lateor Re — 0.8970 x planned — 0.2886)

with ICNARC probability, admission type (planned/unplanned) and effect of late or read-
mission used as independent variables of the model. The training and test AUROC for the
model are 0.8321 and 0.7957 respectively.

6.5 DES model description

6.5.1 DES model building

Sargent| (2013)) provides a comprehensive process of building a valid simulation model. We
summarise the process as problem formulation, conceptual model building and validation,
data validation, computer model building and verification and operational validation. Figure

6.10] shows how each stage contributes to the model building process.

The STRESS guidelines proposed by Monks et al. (2017) are used to support the model
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Figure 6.10: DES model building, verification and validation

description and ensure that we include sufficient details to enable reproducibility. These
guidelines require authors to specify the objectives of a DES model first and then give
detailed logic, data sources, data pre-processing methods and input parameters for the model.

Software used, run length and sampling method for the simulation also needs to be stated.

A computer model was built and implemented in Simul8 2017 professional under Windows
10. The logic for mortality predictions and occupancy checking was coded and realised by
the Visual Logic module included in Simul8. The data analysis part was conducted using R

4.1.1.

Problems identification has been achieved in Chapter [4] where we found that late admission

is a severe problem and has a potential to be solved by better planning.

148



6.5.2 Model details

A DES model is built to study the behaviour of the ICU. The model focuses on the effect of
late admissions and the potential impacts of bringing patients into the ICU more promptly.

The model is described by the flow chart in Figure [6.11

The validated model is described below. Model validation will be further discussed later in
Section [6.7] The model can be divided into 4 major parts: ICU arrival, pre-ICU sampling,

ICU service and post-ICU service.

The system runs for twenty four hours per day, seven days per week, with the same quantities
of resources. There are no staff or bed reductions at any time. The simulation time unit in
the model is “hour”. ICNARC data from BRI between January 2008 and November 2013

are used to estimate distributions and parameters in the ICU model.
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ICU arrivals

Two independent entry points are used to give different arrival rates to planned and un-
planned patients as discussed in Section[6.2] The NHPP with piecewise rates shown in Table
6.2|is used to model the weekly cycle of unplanned admissions. For planned admissions, we
use the empirical distribution of daily admission numbers on a weekday basis to estimate the
number of admissions per day, as shown in Table Arrivals are then assigned to different

arrival hours according to the EDF of arrival timing for planned arrivals (see Table [F.3)).

We introduce a cancellation policy for planned arrivals: if the ICU has less than two idle beds
or equivalent nurses on a particular day, all the planned patients for that day will be cancelled.
The model follows NHS policy that cancelled planned patients will be readmitted within 28
days after cancelling (NHS| [2015). The length of time to readmission is estimated using a
discrete uniform distribution with values being integers. The lower bound and upper bound
of the distribution equal 1 and 28 (days) respectively. For any k € [1,28], the cumulative

distribution function (CDF) of the distribution can be written as, F'(k) = %.

If a patient has to wait for more than 28 days from their first cancellation, the patient will be
diverted to another hospital. Otherwise, the maximum number of planned admissions that

can be admitted on any day is the total idle beds minus two reserved for unplanned arrivals.
The anticipated number of empty beds, e, is given by e = max{r — (n — 18),0} where

n is the number of occupied beds;

r is the number of beds expected to be released in the next 24h.
The total cancellations in a day, m, are given by m = max{(p + ¢ — e),0}, where

¢ is the number of patients who have been cancelled once and are waiting for readmission;

p is the number of planned arrivals for that day.

The cancellation priority is: first, admit all patients; second, admit all patients who have

been cancelled once and cancel some planned patients; third, cancel all planned patients and
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some patients who have been cancelled once already; fourth, cancel all planned patients and

all patients who have been cancelled before.

Algorithm [1|is implemented at every midnight to decide on the cancellation of patients (see
the first block from the left in Figure . “X;” is used to denote the ¥ patient in the
ICU.

Algorithm 1 Planned patient cancellation

r<0
for i =1 ton do

if remaining nights of X; < 1 then

r<r+1

end if
end for
e < max(r — (n — 18),0)
Sample for p
if p4+c <e then

admit all patients
else if ¢ < e <p+ c then

admit all cancelled patients and (e — ¢) number of planned arrivals
else

admit e (> 0) number of cancelled patients and cancel all the other patients
end if

Pre-ICU sampling

Patients are routed to queues on a percentage basis: 79.30% of unplanned arrivals are
routed to ‘queue for unplanned’. The remaining unplanned arrivals travel to ‘queue for
late /readmission’. Similarly, 95.91% of planned arrivals go to ‘queue for planned’. The oth-
ers are sent to ‘queue for late’. The severity and impact of late admission has been discussed

in Section Therefore, a separate queue is created for these patients.

ICNARC probabilities are sampled for different arrival categories (unplanned, planned and
late) as soon as patients arrive. The predictions of the initial critical care level of a patient
and of ICU mortality are explained in Sections and The levels are reassessed at

midnight every day. Patients can move between L2 and L3.
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ICU service times are sampled from EDFs using the modelling method described in Section
Sampling of ‘nights spent in the ICU’ is achieved by creating three dummy work-
centres: ‘unplanned nights’, ‘planned nights’ and ‘late nights’, and attaching the sampled
values from EDFs to every patient. Every individual patient is routed to a dummy work-
centre either ‘discharge hour (alive)’ or ‘discharge hour (dead)’ to get a discharge time from

EDFs.

All the patients join the queue for ICU services after getting the sampled ICU LoS. Patients
who are late will be given the first priority. All the other patients will be routed into the
ICU on a first come first served (FCFS) basis when spaces become available. Moreover,
patients waiting longer than one day (24 hours) will renege from the current queue and join

the ‘queue for late/readmission’ and get re-sampled data.

ICU service

As soon as the ICU has adequate beds and nurses to serve more patients, patients in the queue
will join the ICU. At every midnight, in accordance with practice in the ICU, the severity
of each patient in the ICU model will be reassessed. According to the data, patients’ level

change at midnight is calculated as the state chart shown in Figure [6.12

0.9584 0.8332

0.1668

0.0416

Figure 6.12: State chart of patients’ level change

The transition matrix can be expressed as:
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L2 L3
p- L2 (0.9584 0.0416)

L3 \0.1668 0.8332

The transition matrix is used to assign new levels to patients in the ICU at midnight. Nurses

required for patients will also be altered according to their new levels.

Post-ICU service

All patients who are discharged alive from the ICU will spend a certain amount of time in
general wards: the LoS there follows an exponential distribution with average service time
equal to 348h. The post-ICU mortality prediction model as detailed in Section [5.3.3|and sum-
marised in Section [6.4]is modelled in this stage to indicate each patient’s ultimate outcome.
Among patients who are predicted to be discharged alive from the hospital, 3.55% of them
will be readmitted to the ICU. That is to say, they will join the “queue for late/readmission”
and get re-sampled statistics including ICNARC probability, nights in ICU and discharge

hour.

6.6 Input uncertainty

Input uncertainty (IU) arises from fitting a limited amount of real-world data to obtain
input distributions for simulations models. Variation of simulation outputs comes from two
origins, IU and stochastic variation of activities within simulation models (Barton, [2012).
Stochastic variation is the part that is the major interest: IU can be regarded as inaccuracy
in results. Therefore, IU needs to be considered for reliable simulation results and also to

indicate whether the amount of data available is sufficient.

For convenience purposes, all input distributions are summarised in Table As Table

6.5 suggests, most of the distributions come from real-world data. IU are likely to incur
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in distribution fitting and sampling. Amongst all the listed distributions, waiting time of
cancelled patients is modelled using the NHS rule. Thus, it is treated as a true distribution
rather than an estimation. The exponential distribution used to describe hospital LoS will
not be tested for ICU either, as this input will not affect the ICU output. IU of all the other

input distributions will be examined.

Table 6.5: Summary of the DES model input distributions

Input Model Source
Arrival unplanned arrivals NHPP (14 rates) real-world
arrival numbers (planned) 7 EDFs real-world
arrival hour (planned) EDF real-world
waiting time of cancelled patients  discrete uniform  NHS rule
Pre-ICU | ICNARC probability (unplanned)  EDF real-world
ICNARC probability (planned) EDF real-world
ICNARC probability (re-admitted) EDF real-world
ICNARC probability (late) EDF real-world
nights in ICU (unplanned) EDF real-world
nights in ICU (planned) EDF real-world
nights in ICU (late/re-admitted) EDF real-world
discharge hour (alive) EDF real-world
discharge hour (dead) EDF real-world
Post-ICU | hospital LoS Exponential real-world

The objective of a simulation model is to give E[Y (F)], where F is the collection of L true
input distributions {F1, F»,--- , F} of the DES model. However, Y (F) is usually approxi-
mated using Y (F) where F = {F}, Fy,--- , F} fitted from real-world data; the I'" marginal
distribution of F is denoted by F}. Real world observations follow { X, X2, -+ s Xim } < £,
Running n replications of the simulation model using input model f‘, the output of the j
replication is denoted by YJ(F) = n(F) + €, where n(kF) = IE[Y](F)] is the expected value
of the simulation output, given input models F and gj. Error terms {e1,--- ,¢j5,--- ,&,} are

ii.d. with mean = 0 and variance = o2.

IU is formally defined by Song et al.| (2014) as 07 = Var[n(F)], “the variance in the system

mean due to having estimated F”. a? is approximated using 6%* via direct bootstrapping.
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6.6.1 1IU from the whole model

Ankenman and Nelson| (2012) introduce Algorithm Quick (see Algorithm [2)) to quantify the
overall IU of a simulation model. This method can be applied to both parametric and non-
parametric models. Therefore, it is adopted to quantify the overall IU of the DES model.

The influence of IU can be quantified using a ratio v = 07\1/5 The ratio is interpreted as

standard deviation due to IU in the units of standard error of simulation estimated n(F).
The smaller the ratio is, the less significant the IU is relative to stochastic error. If the IU is
taken into consideration, the length of CI will be magnified by m (Song and Nelson,
2015)).

Algorithm 2 Algorithm Quick

for /| =1tondo
Given real-world data:{X;1, Xj2, -+, Xim
for b=1to B do
(a) Generate bootstrap samples: X;l(b),Xl*Q(b), e X
using real-world data
(b) Fit X7 x50 .. x5 b
(c) Simulate R replications of Yj(ﬁ‘l*(b)) using Fl*(b)
end for
end for
Calculate v =

(b)“deorb—12 , B

oy
o/

B *(b
‘71 is estimated using ‘71 = B Z( (F

( *(b))
) 7*)%, where 7* —Zbl T

o2 is estimated using input models F,

n is the number of replications required by the DES model.

Given capacity of N runs in total for testing IU, B and R should be such that BR = N. The
required number of B is recommended to be B = 2L + 2 (Song and Nelson, 2015)). After B
and N are decided, R can be obtained using R = | N/B].

ICU annual throughput, late admission rate and ICU and hospital mortality rates are key
outputs of the DES model. Thus, four v ratios were calculated to measure the influence
of IU in these aspects. In terms of the estimation of variance from random sampling (o2),

the minimum requirement of runs per trial is 39 to achieve 2.5% precision (equivalent to
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95% CI for two tailed distributions) with input distributions F. To save runs, 5% precision
is required for experiments with bootstrapped values. Thus, 15 runs per trial was used to

estimate 0%.

As illustrated in Table there are 14 input distributions including an NHPP with 14
different rates estimated from real-world observations. The NHPP with 14 piece-wise con-
stant arrival rates can be decomposed into 14 distinct stationary PPs (Morgan et al., [2016).
Therefore, the total number of input distributions is 31. The minimum requirement of
B =31 x 2+ 2 = 64 was used to quantify the overall IU in the DES model. Consequently,
n = 39 was used to get baseline statistics. B = 64, R = 15 and N = 960 were used for boot-
strapping and estimating IU. Direct bootstrapping sampling as described in Barton (2012)

~ (b
is used to obtain F*( ).

Figure illustrates how input distributions (blue nodes) influence simulation outputs (red
nodes). An arrow from a source node to a target node denotes an direct effect of the source
on the target. The effect of the input can be passed by intermediate nodes to a node not

directly linked.

Unplanned
arrival process

~a
[Annual throughput}i

v

Planned
arrival numbers

ICU occupancy
admission groups (%)

' /—\
%{ Late admission J—V[ Nights in ICU H ICU LoS }

4 4/ 7y
ICNARC probability}

v
‘ ;( |\/|0rtality Discharge hOUI’ F?Ia_nned
L admission hour

Figure 6.13: Influences of input distributions

Annual throughput is influenced by all the input distributions while other outputs are affected

by some of input distributions. Both hospital and ICU mortality are influenced by arrival
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processes and ICNARC probability. Percentage of late admissions is influence by arrival
processes and LoS. LoS is sampled for different groups of patients without involving ICNARC
probability. Therefore, the v ratio for annual throughput is likely to be larger than the ~

ratios for other outputs.

Table shows the ratios of all five simulation outputs. For annual throughput, a « ratio of
2.8 shows that the IU error is around three times the standard error of the point estimator.
For hospital and ICU mortality rates the input error is around twice the stochastic error.
The ~y ratio of approximately 1 for late admission rate is the smallest amongst all five ratios.

When estimating ICU LoS the error of IU is almost three times the stochastic error.

Table 6.6: IU from all input distributions

or o y

Annual throughput | 12.1802 26.7072 2.8481
Hospital mortality | 4.5567 x 1073 1.2275 x 1072 | 2.3183
ICU mortality 3.8993 x 1073 1.1090 x 1072 | 2.1958
Late admission 1.7807 x 1073 1.0156 x 1072 | 1.0950
ICU LoS 2.4454 5.4895 2.7820

Because of the « ratios observed, an analysis follows of IU of individual inputs.

6.6.2 IU from unplanned arrival process

The quantification of TU originating from the NHPP was also tested using Algorithm [2] In
order to test the IU from NHPP only, other input distributions of the model remained the
same in every replication. B =14 x 2+ 2 = 30, R = 15 and N = 450 were used to estimate
this particular ICU model.

All the generated work items (patients) are admitted to the ICU. The number of unplanned
arrivals is influenced by the NHPP only. IU originating from the NHPP also has an impact
on other outputs via indirect links. Therefore, the total number of unplanned arrivals is
added to the result as it is a better indicator of the IU from the NHPP compared to other

indicators.
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Table[6.7]lists all the standard deviations of bootstrapping and baseline results. The standard

deviation of total unplanned arrivals obtained from 14 bootstrap-generated NHPPs is about

twice as large as the standard error of the baseline model. As expected, = ratios of outputs

other than unplanned arrivals are smaller than the ~ ratios caused by all input distributions.

Table 6.7: IU from NHPP

o1

g

Annual throughput | 12.1802

Hospital mortality | 2.0960 x 1073

ICU mortality 1.9480 x 1073
Late admission 1.5556 x 1073
ICU LoS 0.2360

Unplanned arrivals | 7.9616

26.7072

1.6774

1.2275 x 102 | 1.0664
1.1090 x 102 | 1.0970
1.0156 x 102 | 0.7013

5.4895
24.7022

0.2685
2.0128

6.6.3 IU from planned arrival process

First, IU of the planned arrival process is visualised by plotting sampling with replacement for

number of arrivals on Mondays (6.14a) and Saturdays (6.14b]) in Figure and admission
hours in Figure (6.15)). Plots of the other weekdays are in Appendix
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Figure 6.14: Planned arrivals re-sampling

As Figure shows, the pink line (resample_5) is diverted from the red line (original value)

despite the relatively large sample size (n=305). The differences between bootstrapping
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samples for arrivals on Saturdays is not notable.

0.15-

sample
origin

0.10-

resample_1

I:' resample_2

resample_3

density

resample_4

resample_5
0.05 -

0.00-
0 5 10 15 20
Admission hour (planned)

Figure 6.15: Planned admission hour re-sampling

Figure demonstrates some shift in the bootstrapping samples of admission hours. How-
ever, no distinct shift is observed directly from the figure due to the large sample size

(n=2299) and concentration of the original data.

IU generated from the planned arrival process is quantified using Algorithm Quick. B =
8x2+2=18, R=15and N = 270 were used to estimate this part of IU. Results including

the number of planned arrivals are reported in Table

Table 6.8: IU from planned arrival process

oJ 4 Y
Annual throughput | 6.9339 26.7072 1.6214
Hospital mortality | 1.8372 x 1073 1.2275 x 1072 | 0.9347
ICU mortality 1.9259 x 1073 1.1090 x 1072 | 1.0845
Late admission 1.5877 x 1073 1.0156 x 1072 | 0.9763
ICU LoS 0.3519 5.4895 0.4003
Planned arrivals 6.7774 15.9121 2.6599

It is shown in Table that the impact of planned arrival process IU on the number of

160



planned arrivals is twice as large as the stochastic error resulting from simulation. Similar

to the IU of NHPP, the effect on other outputs are smaller than the effect of IU caused by

all input distributions.

6.6.4 IU of nights in the ICU

A similar approach to the analysis of IU from planned admission process (Section
is adopted to investigate IU from sampling nights in the ICU. In addition, bootstrap Cls
of four statistics, mean, variance, maximum, and percentage of longer than 20 nights, are
calculated. Figure[6.16]illustrates five bootstrap sample sets of unplanned nights in the ICU.

Figures for planned and late/re-admission are in Appendix
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Figure 6.16: Nights (unplanned) in the ICU re-sampling

No significant difference between bootstrapped samples and original samples can be observed
directly from Figure [6.16] The calculation of statistics was fulfilled by the “boot” package
in R. 1000 replications were assigned to obtain statistics. The results are reported in Table

Results for planned and late/re-admission nights are in Appendix

As shown in Tables and statistics obtained from non-parametric bootstrap

samples are very close to the original statistics. IU is not expected to be a critical problem

in this particular part of the simulation, number of nights in the ICU.
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Table 6.9: Bootstrap statistics of nights (unplanned) in the ICU

original bias standard error 95% CI
Mean 48651  5.4166 x 103 0.1246 (4.6155, 5.1038)
Variance 42.2403 0.0126 3.7122 (34.9518, 49.5035)
Max 73 -2.741 5.2095 (65.5305, 85.9515)
Nights>20 (%) | 0.0351  1.6377 x 1074 3.3385 x 1073 (0.0284, 0.0415)

A further quantification using Algorithm Quick was conducted; B = maz(3 x2+2,10) = 10,
R =15 and N = 150 were used to estimate the influence of IU. Results are listed in Table
6.10

Table 6.10: TU from nights

or o ¥y

Annual throughput | 3.8214 26.7072 0.8936
Hospital mortality | 1.6281 x 1073  1.2275 x 1072 | 0.8283
ICU mortality 1.8627 x 1073 1.1090 x 1072 | 1.0489
Late admission 1.1270 x 10~3  1.0156 x 1072 | 0.6930
ICU LoS 2.0159 5.4895 2.2934

Although IU from sampling nights in the ICU is not expected to be a serious problem,
the results show that the IU contributes error more than twice the stochastic error to the
total error of ICU LoS. The number of bootstrap replications (B) just meets the minimum

requirement, which may lead to an imprecise estimation.

6.6.5 IU of discharge hours

The quantification of IU of discharge hour EDF's is based on 15 replications for each bootstrap
sample with total B = max(2 x 2 + 2,10) = 10. Results are presented in Table As
expected, discharge hour inputs do not show as large an impact on the results as other inputs

(i.e. nights and arrival processes). Nevertheless, the IU cannot be eliminated.
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6.6.6

Table 6.11: IU from discharge hour

o1 o vy

Annual throughput | 3.1757 26.7072 0.7426
Hospital mortality | 1.5486 x 1073 1.2275 x 1072 | 0.7879
ICU mortality 1.3826 x 1073 1.1090 x 10~2 | 0.7786
Late admission 1.2406 x 10~3  1.0156 x 1072 | 0.7629
ICU LoS 0.2297 5.4895 0.2613

IU from ICNARC probability

ICNARC probability is a continuous variable with theoretical value ranging from 0 to 100.

It is a key influencing factor of mortality in the DES model. The IU is evaluated using

visualisation, statistical calculation and quantification. Figure [6.17] shows density curves of

original ICNARC probability of unplanned non-late admissions and its bootstrap samples.

Plots for ICNARC probability of other admission categories are in Appendix [G]
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Figure 6.17: ICNARC probability (unplanned non-late) re-sampling

As shown in Figure the dispersion of densities is observable in the tail range of bootstrap

samples. This dispersion may distort the generation of ICU and hospital mortality rates.

Table lists statistics obtained from running 1000 replications of bootstrapping.

As shown in Tables [6.12] [G.3] [G.4] and [G.5], given large enough bootstrapping iterations,
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Table 6.12: Bootstrap statistics of ICNARC probability (unplanned)

original  bias standard error  95% CI
Mean 29.6643  -0.0114 0.5720 (28.5546, 30.7968)
Variance | 905.4737 -0.3986 21.3406 (864.0454, 947.6991)

statistics calculated using non-parametric bootstrap samples are very close to the original
statistics regarding ICNARC probability. Furthermore, the impact of these particular inputs
on simulation outputs other than mortality is passed via discharge hours (see Figure [6.13)),
which do not have a large contribution to IU (see Section . 1U is not likely to be a key

issue for these particular inputs.

For the purpose of quantification, B = maz(4 x 2 + 2,10) = 10, R = 15 and N = 150 were
used to estimate impact of IU from all ICNARC probabilities. Table presents oy, o and

~ ratios of different model outputs.

Table 6.13: IU from ICNARC

or g Y
Annual throughput | 2.8419 26.7072 0.6645
Hospital mortality | 4.6880 x 1073 1.1090 x 1072 | 2.3851
ICU mortality 4.3657 x 1073 1.2275 x 1072 | 2.4585
Late admission 9.5346 x 10~* 1.0156 x 1072 | 0.5863
ICU LoS 0.1022 5.4895 0.1163

IU’s impact on error when estimating mortality is more than twice the simulation stochastic
error. Meanwhile, the impact on other output is relatively limited as expected. Error of
mortality caused by the IU would be likely to decrease as suggested by Table if a more

generous bootstrapping budget (1000 runs) was given.

6.6.7 Summary of the IU Results
It has been demonstrated that IU due to insufficient data causes problems in the simulation

outputs. In particular, IU has a relatively high impact on annual throughput and ICU LoS.

As more input data would required to solve the problem, we are unable to tackle it currently.
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However, the general conclusions gained from the model should still be valid as TU will not

affect the mean value and tendency.

6.7 Verification and validation

The whole process of DES model building was explained in Section As well as the
conceptual model validation, we also walked through Figure with an ICU consultant
to make sure the details of the model is in line with the real system. In this section, a
comprehensive verification and validation process will be described, covering the last two

stages, verification and operational validity of computer models, see Figure [6.10

6.7.1 Verification and validation of computer models

Regarding verification and validation of the computer model, two type of tests are recom-
mended: static testing and dynamic testing (Sargent|, |2013). Static testing is used to verify

a computerised model while dynamic testing is designed to validate its functionality.

Static testing techniques, code review and walkthrough, were adopted to verify the DES
model. The code review was conducted by the author to ensure the correctness of code logic
by giving explanations to current code. The syntax was checked by Visual Logic in Simul8

automatically. Code documentations were also created for record purposes.

As commercial software, Simul8 is reliable for standard procedures and usage. However,
some procedures in our DES model were realised by using some unusual routines since
no established procedure could be found. Dynamic testing focused on these non-standard

procedures and procedures involving coding.

Dynamic testing for the DES model was performed in a series of unit tests for individual
parts of the DES model. Before initiating systematic dynamic testing, a single run was

observed to check the general usability and flow, taking advantage of Simul8 visualisation,
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where the behaviour of every work item (patient) in the model can be observed directly.
Some abnormal results were observed in an early stage of dynamic testing. A new routine

(planned patient cancellation process) was added to solve the problem.

Regarding unit testing, the model is split into five parts to validate the functionality and
correctness: first, the implementation of NHPP; second, sampling of planned arrivals; third,
cancellation of planned patients; fourth, the change of requirement of resources in line with
patients’ levels; fifth, mortality prediction models embedded in the DES model. These five
units (shaded in Figure were tested independently by creating simplified models for

each part.

The implementation of the piece-wise constant NHPP was achieved by using a time depen-
dent distribution with three daily time slots which re-occur every day; distinct parameters
are obtained for different weekdays. This was tested by comparing simulated arrival numbers

with theoretical expected arrival numbers based on the data.

In the DES model, sampling planned arrivals is achieved by generating one batch at every
midnight and then setting the batch number, which can be any non-negative integer, follow-
ing EDFs shown in Table To test this process, it was simplified by setting the batch size
for each day to one, increasing by one to seven in subsequent days. The simplified model was
run for one week and monitored for arrival times of each item. The total number of arrivals

equalled 28 and the arrival pattern followed the settings.

The algorithm for cancellation of planned patients (Algorithm |1)) was tested separately by

giving fixed values to related parts and checking the cancellation process visually.

In the DES model, change of requirement of resources in line with patients’ levels is composed
of patients’ level change and nurse requirement change. The former is achieved using software
features. The latter is implemented using routing out and in and choosing resource according
to a level label. This was tested by isolating the ICU service part and simplifying it to a
single-server system, one ICU bed only, with two resources, 2 x (0.5 nurses). Two work items

with fixed operation time of 48h each were generated from the start point with predetermined
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changes, the first work item from L2 to L3 and the second work item from L3 to L2, happening
at midnight. A slow motion simulation was run for 96h to observe the behaviour. The
utilisation of the resource was 75%; the change in numbers of nurses could be visually

observed while running.

Mortality prediction models were tested by setting labels used in prediction (ICNARC prob-
ability and admission categories) to a predefined value and tracing route-out behaviour of

work items.

6.7.2 Operational validity

Each run of the model lasts 8760 hours (365 days). We use the trial calculator in Simul8
to find the appropriate number of iterations (39) to run to ensure that the variations of
completed jobs are within 5%. Three trials with three different random number sets were
run for comparison purposes. The validation process and scenarios were tested using each
random number set. General validity of the model, annual throughput and arrivals, ICU
and hospital mortality rates, ICU LoS and resource utilisations are checked to investigate
the operational validity of the model. Plots and statistical tests are adopted to compare the

model outputs with the real world system.

General validity check

Since the data populating distributions to the model only include admissions to the ICU, it
is, therefore, anticipated that the ICU in the model should be able to serve all the generated
arrivals promptly. The number of patients being late due to queueing for ICU for more than

24 hours is very small (around 2 per run).
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Annual throughput

Annual throughput in the model equals 1029, which is similar to the throughput of the actual
ICU (1031 per year). The average total arrivals in the model is 993 per run (year). The
average total arrivals to the real ICU is 994 excluding readmissions. Table gives the

statistics calculated from the simulation model output and the original data.

Table 6.14: Operational validity - throughput and admission

Model 95%CI Real-world system t-statistic p-value
Annual throughput | 1029 (1024, 1034) 1031 0.0394 0.9712
Annual arrival 993 (989, 997) 996 0.0719 0.9701

Results indicate that differences of annual admissions and the number of first-time patients
in the simulation model and real data are very small. Differences could not be detected by

a Welch’s t-test.

Mortality

We use a Chi-squared test with Yates’ correction to compare the model and actual ICU and
hospital mortality rates. Relevant statistics are reported in Table Model mortality
rates are 14.67% and 19.53% while the actual ICU and hospital mortality rates are 14.25%

and 19.39%. Neither difference is statistically significant, with p-value > 0.1.

Table 6.15: Operational validity - mortality

Model 95%CI System % p-value
ICU mortality rate 14.67% (14.15%, 15.19%) 14.25% 0.7165 0.3973
Hospital mortality rate | 19.53% (19.13%, 19.93%) 19.39% 0.0528 0.8183

We validate the predictions of the mortality rates using log-odds plots. Transformed log-odds
plots in Figure show a considerable overlap of prediction in the model and the real world

in both ICU (/6.18a)) and hospital (6.18b)) mortality predictions.

Regarding mortality in the ICU and hospital, the model provides a good simulation for both

the overall mortality rates and mortality prediction for individuals.
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Figure 6.18: Operational validity - mortality prediction

ICU LoS

The model predicts a mean LoS of 114.80 hours with 95% CI= (113.29, 116.31), compared
with the system’s mean LoS of 114.98 hours. A Welch’s t-test suggests that the difference is
not significant, with t-statistic = 0.0871 and p-value = 0.9306.

A boxplot is employed to explore the different between ICU LoS of the DES model and the

real world, as shown in Figure [6.19] These two boxes look very similar to each other.

1000 -

750 -

500 E Model
$ System

LoS (hours)

250 -

Figure 6.19: Boxplot for comparison of model and system LoS
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Overnight bed occupancy
Overall bed utilisation will not be checked as it is equivalent to a combination of annual
throughput and ICU LoS, i.e.

(average LoS) x (total number of admissions)

24h x (number of ICU beds)

utilisationpeq =

Our final check is, therefore, to compare the overnight bed occupancy of the model with that
observed in the ICU data. The number of occupied beds, instead of an occupancy rate, is

used to examine the occupancy.
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Figure 6.20: Boxplot for comparison of model and system overnight bed occupancy

The average number of beds occupied overnight is 13.41 (13.30,13.52) in the model, very simi-
lar to the observed average occupancy of 13.44 ICU beds. Differences in the average overnight
occupied beds are not statistically significant, based on a t-test with ¢-statistic=0.5266 and

p-value=0.595.

However, one may identify from the boxplot (Figure |6.20) that the model shows a larger
dispersion than the real system in terms of bed occupancy. For a more thorough analysis, we
compare the distributions of occupied beds simulated from the model with the real situation.

Both EDFs and smoothed distributions are plotted in Figure[6.21] The distribution of num-
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bers of overnight occupied beds simulated from the model looks more flat compared to the
original distribution (need to compare skewness & kurtosis). A KS test and a Mann—Whitney
U test are used to test the difference between these two distributions; p-values for both tests
are smaller than 0.05, which indicate that these two samples are not drawn from the same
population. We have to clearly point out that this difference may cause inaccuracy of sim-
ulation results. The ICU is less likely to run at a low occupancy in reality compared to the
model (i.e. the cumulative distribution with number of occupied beds less than 12 is more
likely to occur in the simulation model than in reality).
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Figure 6.21: Comparison of model and system overnight bed occupancy

6.8 Conclusion

This chapter described the DES model building, IU analysis and model verification and
validation of the ICU. In designing of the embedding of data mining models within the
simulation, we found that it was important to consider the degree of complexity to which we
should extend the models. If the data mining were to rely on large number of variables, both
the model building and running cost will be high. We, therefore, chosen simplified versions,

i.e. the benchmark models of the data mining models built in Chapter

In the preparation of DES model inputs, we split the problem into arrival process fitting,
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LoS modelling and modelling of other input. Modelling of arrival process was further divided
into unplanned arrivals modelling and planned arrivals modelling. We fitted an NHPP with
14 intervals representing 14 shifts of staff for the unplanned arrivals of the ICU and tested
the NHPP using VMRs to ensure suitability. The planned arrival process is modelled by
eight EDFs where seven of them depict the arrival numbers of day of a week and the other

one describes arrival time.

Neither distribution fitting or prediction (Chapter |5)) worked well for LoS modelling in our
case. A novel method to modelling LoS, a three-part model, was described in Section [6.3.2
LoS was modelled using three elements, arrival time, nights in ICU and discharge time. Each
element is modelled individually using suitable splits. In our case, arrival time is split into
unplanned and planned. Nights are sampled separately for unplanned, planned and late (and
re-) admissions. Discharge time modelling is split into ICU survivors and non-survivors. This

method models LoS accurately and keeps variability of admission and discharge time.

In addition to the mortality prediction model described in Section[5.2] a patients’ initial level

prediction model was also introduced.

The DES model was described in detail in Section [6.5.21 A flowchart of the DES model
was shown in Figure An algorithm of planned patient cancellation (Algorithm [1)) was

introduced to control the late admissions.

A thorough analysis of IU was provided in Section IU has a relatively high impact on
annual throughput and ICU LoS. It will not affect the mean values nor the general conclusions
but may increase the width of the confidence intervals. More input data, especially for nights

spent in the ICU, are needed to get more precise estimations.

A comprehensive verification and validation process was recorded in Section [6.7} Both static
and dynamic testing have been used to ensure that the computer model serves our aims.
For the purpose of operational validation, several statistics from the DES model have been
checked and compared with the original data. Model validation results show that the key

statistics gained from the current model are close to those calculated from the original data.

172



Chapter 7

Simulation Results

In order to investigate the effect of various admission, discharge and staffing policies, we have
designed a series of scenarios. The validated DES model depicting the current situation of
the ICU is used as a baseline model for the scenario tests. In this chapter, we first describe
the design of scenarios. Then, the results of the simulation experiments are reported in

Sections [7.1] to A conclusion to the scenario analysis is provided in Section
Six sets of scenarios were designed;
1. ICU performance under increased unplanned arrival rates are described in Section

2. Varying available resources including removing and adding ICU beds and nurses are

discussed in Section
3. Section gives results of reducing the proportion of the late admission group;

4. The scenarios of combinations of increased arrival rates and earlier admission are de-

scribed in Section
5. We also examine a set of scenarios of changing discharge times in Section [7.5

6. An epidemic scenario designed to simulate possible critical situations, is detailed in
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Section

7.1 Scenario set 1: arrival number increasing

A scenario test of increasing ICU arrivals was carried out in the first place to find out the
potential of the ICU. To increase the total arrivals, the baseline rates of the NHPP (Table
were multiplied by a factor between 1.05 and 2.00, which means the total unplanned arrival
numbers is factor times that of the baseline scenario. For example, 1.20X means multiply

current unplanned arrival rates by 1.20 which results in a 20% increase in unplanned arrival

inter-arrival time

numbers. In the simulation model, the variation is achieved by Factor

The means and 95% CIs of key outputs, late admission percentages, annual throughput, ICU
LoS, mortality rates, and resource utilisations are calculated based on 39 runs and plotted
in Figures [7.1] - [7.5] The baseline scenario is marked using blue colours in all these plots.

Error bars represent 95% Cls of means.
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Figure 7.1: Variation of late admissions while increasing unplanned arrivals

Increasing admissions means that queues increase for ICU beds (see Figure and there-
fore numbers of late admissions increase. As shown in Figure the late admission group
as a percentage of all admissions grows rapidly when the arrival rates are more than 30% of
the current level. The group will grow to the largest group of admissions, which accounts for

approximately 20% of total arrivals. Late admission may further lead to a prolonged ICU
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stay (Figure and higher probability of mortality (Figure .
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Figure 7.2: Variation of annual throughput while increasing unplanned arrivals

Figure exhibits annual throughput under different scenarios (different arrival rates). The
highest point of the figure shows that the ICU can accommodate approximately 1215 ad-
missions per year if all the increases in admissions are unplanned admissions. An increase
of throughput is observed with increased arrival rates when the factor is smaller than 1.45.
When the factor is larger than 1.60, annual throughput declines when arrivals increase. With
the growth of arrivals, the queue of patients waiting for admission to the ICU expands in
both size and waiting times. More patients become ‘late’ while they are waiting for an ICU
admission. These patients will have a prolonged stay in the ICU (see Figure . Therefore,

the annual throughput is worsened.
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Figure 7.3: Variation of ICU LoS while increasing unplanned arrivals
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An increasing trend is observed in the ICU LoS when the arrival rates are increased (see
Figure . As explained, the increasing number of late admitted patients induces prolonged
stays in the ICU. A relatively steady trend is observed initially. No statistically significant
difference can be observed between groups of 1.00X to 1.15X arrivals according to an one-
way ANOVA test. This indicates that the ICU has the potential for treating around 1100

patients while maintaining the current service standard.
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Figure 7.4: Variation of mortality rates while increasing unplanned arrivals

Figure presents ICU and hospital mortality rates under different arrival rates. As ex-
pected, an increasing trend in mortality is demonstrated because of the increase in late
admissions. Differences of mortality rates between the baseline scenario and 1.20X scenario
are significant. This difference originates from the growing proportion of unplanned patients
who are more prone to death compared to planned patients. If mortality rates are compared
when excluding planned patients, the differences between 1.00X and 1.20X are not significant

according to a Chi-square test.

We also analysed resource utilisations of the ICU. Figure demonstrates that with the
increase of arrival rates, the utilisation of ICU beds will grow to almost 100%. The utilisation

of nurse resources reaches around 83% due to the nurse-to-patient ratio of different levels of

patients from 1.75X arrival rates and higher (see Figure [7.5b)).
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Figure 7.5: Variation of resource utilisations while increasing unplanned arrivals

7.2 Scenario set 2: resource change

This section analyses the influence of resource changes on the operational efficiency of the

ICU. Both ICU beds and ICU nurses are considered in this set of scenarios.

First, we examine the situation of removing or adding ICU beds but maintaining nurse
numbers unchanged (n=16). Scenarios of setting the number of beds from 14 to 23 were
tested. Simulation results of percentage of late admissions, annual throughput, ICU LoS
and mortality rates from different bed numbers are plotted in Figures - The error
bars in these figures show the 95% CIs of the values. The calculation of means (points) and

CIs (error bars) are based on 39 runs of every trial.
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Figure 7.6: Variation of late admissions while changing number of beds

177



The bar chart (Figure presents the variation of percentage of late admissions while
changing bed numbers. The baseline 21-bed scenario is highlighted in blue. It is clear that
inadequate numbers of ICU beds lead to a severe delay of patients. The delay will eventually

result in a prolonged ICU stay (Figure and higher ICU mortality (Figure .
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Figure 7.7: Variation of annual throughput while changing number of beds

Figure[7.7]shows the influence of ICU beds on annual throughput. As expected, the decrease
in the number of beds causes decrease in the throughput. However, throughput of the 20-bed
and 21-bed scenarios are very close as the nurse resource is designed to serve a 20-bed ICU
(see Section . Variation of the throughput is not significant if an extra bed is added
(p-value > 0.90). This results from the number of arrivals staying the same as currently in
our model. The data include only patients who were admitted to the ICU but not patients

who had been turned away.

Figure shows the variation of ICU LoS with changing bed numbers. It appears to be a
trend of increasing LoS as numbers decrease from the baseline of 21. In simulation, this is
caused by the prolonged waiting time due to the lack to beds, which can be inferred from
Figure Adding extra beds above the baseline number makes only slight decrease of LoS
due to the fixed proportion of late admissions in the simulation (see Section .

ICU mortality rates, hospital mortality rates and their 95% CIs are demonstrated in Figure
The trends of the lines are similar to the trends shown in Figure The decrease in

both mortality rates with the increase of ICU beds is mainly as a consequence of less late
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Figure 7.9: Variation of mortality rates while changing number of beds
admissions.

After examining the influence of ICU beds, we then check the influence of the nurse resource.
Initially, there are 16 nurses in total. Each can serve either one L3 patient or two L2 patients.

The same set of results as for the bed number analysis are shown in Figures [7.10] to [7.13]

Percentages of late admission under different numbers of nurses are shown in Figure [7.10
With dropping nurse numbers by one or two, no significant increase in percentage of late
admission could be observed. If nurse numbers keep reducing, the group of late admitted

patients will grow dramatically.
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Figure 7.11: Variation of annual throughput while changing number of nurses

Figure demonstrates that annual throughput under scenarios between 12 and 18 nurses
does not differ significantly. A further drop of nurse numbers from 12 and downwards will
rapidly reduce the annual throughput, which shows the criticality of the nurse resource in

that range.

ICU LoS shows a stable pattern while the ICU is staffed with more than 13 nurses, as in
Figure which can be inferred earlier from Figure A high proportion of the late
admission group lengthens the ICU LoS.

Mortality rates in Figure shows similar trends to ICU LoS (Figure [7.12) and late ad-
mission (Figure(7.10), where the nurse number equalling 13 is a borderline scenario. Further
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Figure 7.13: Variation of mortality rates while changing number of nurses

decreasing from the borderline scenario leads to a fast worsening of performance.

Comparing the influence of nurse numbers with that of bed numbers, it can be discovered
that the decrease of bed numbers will be reflected in the worsened performance immediately
while the decrease of nurse numbers will not impact negatively on the ICU performance until
the number is reduced by more than three. Therefore, in the current situation, beds are more
critical to the ICU as it is just enough for current arrivals. However, if both resources are

reduced in the ICU, nurses will demonstrate a larger influence on ICU operation.
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7.3 Scenario set 3: earlier admission

We assume that a change in admission timing could influence the mortality and ICU LoS

accordingly although there may exist some not yet investigated confounding variables. This

set of seven scenarios consist of base case, five varied unplanned late percentage and an

optimal scenario of prompt admission of all patients. The base case is 20.70% late admission

for unplanned patients and 4.09% for planned. The details of the other scenarios are listed

in Table For example, the “85%-15% (unplanned)” scenario has 15% late admission

of unplanned patients and 4.09% of planned patients. Only percentage of late admissions

varied; all the other inputs maintain the same value as the validated baseline model.

Table 7.1: Description of scenarios of earlier admission

80%-20% 85%-15% 90%-10%

Scenarios (unplanned) (unplanned) (unplanned)
unplanned 20% 15% 10%
Late (%) janned 4.09% 4.09% 4.09%
Sconmrios | 95%5% 100%-0%  100%-0%
(unplanned) (unplanned) (all-optimal)
unplanned 5% 0% 0%
Late (%) anned 4.09% 4.09% 0%
£

950~

900~

100% - 0% 100% - 0%
(all) (unplanned)

95% - 5% 90% - 10% 85% - 15% 80% - 20% 79.3% - 20.7%
(unplanned)  (unplanned)  (unplanned)  (unplanned) base case

Figure 7.14: Variation of annual throughput under earlier admission scenarios

Annual throughput in the different scenarios does not exhibit much difference as shown in

Figure [7.14, An one-way ANOVA test indicates that the differences between each groups

are not significant. As explained earlier, due to the limitation of the data, no more arrivals
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can be generated under base conditions.
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Figure 7.15: Variation of ICU LoS under earlier admission scenarios

From Figure [7.15 it can be observed that ICU LoS would be shortened if more patients
could be admitted on time. There is a great potential in saving resources and increasing

throughput as indicated by the shorter LoS.
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Figure 7.16: Variation of mortality rates under earlier admission scenarios

Mortality rates do not show a dramatic decrease in earlier admission scenarios as shown
by Figure [7.16] However, the difference between the optimal case and the base case is
significant in both ICU and hospital mortality rates. It is worth pointing out that since
patients admitted by the ICU are critically ill, the mortality rate is not expected to be zero.

Therefore, the marginal improvement in chance of survival is still important.
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Figure 7.17: Variation of resource utilisations under earlier admission scenarios

The trends of the utilisation plots for beds and nurse in Figures [7.17a] and [7.175] are in line

with the line chart for LoS (Figure(7.15)). In the ideal scenario, a larger number of admissions

can be treated without increasing current workload.

7.4 Scenario set 4: earlier admission under increased un-

planned arrival rates

The previous section examined the earlier admission scenarios. Higher annual throughput
and better performance are expected if the late admission problem may be alleviated. We
further extend the scenarios by combining increased unplanned ICU arrivals with earlier
admission. In this section only 90%-10% (unplanned) and 95%-5% (unplanned) scenarios
will be considered as we expected an improvement in late admission but it is very hard to
eliminate the problem entirely. When plotting Figures[7.18|to each line represents a dif-
ferent set of scenarios with arrival rate increment factors shown as ‘X’ values. In consistency

with other scenarios, the blue line here shows the baseline scenarios.
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Figure 7.18: Variation of annual throughput under increased arrival rates and earlier admis-
sion

It is shown in Figure that annual throughput has a potential to be increased from 1210
to 1270 under the 1.50X factor of the NHPP rates. Similar tendencies of growth and decline
are observed in all three groups with the growth rate higher in earlier admission groups. The
95% CIs of annual throughput with arrival rates from 1.45X to 1.55X are not overlapped,

which indicates a significant difference between them.
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Figure 7.19: Variation of ICU LoS under increased arrival rates and earlier admission

The increasing trends of ICU LoS in all three groups observed from Figure[7.19]are the same
while the differences in LoS is significant between earlier admissions and base case when the
factor multiplying baseline NHPP rates is not larger than 1.55. The ICU LoS of the 90%-10%
and 95%-5% groups under factors 1.30X and 1.45X respectively is very close to the value of
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ICU LoS in the baseline case, which implies the

admissions.
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Figure 7.20: Variation of mortality rates under increased arrival rates and earlier admission

Figure demonstrates ICU and hospital mortality rates under different circumstances.

Both mortality rates improve marginally under earlier admission conditions. The improve-

ments under the maximum throughput arrival rates (1.30X to 1.55X) are significant for both

ICU and hospital mortality rates.
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Figure 7.21: Variation of resource utilisations under increased arrival rates and earlier ad-

mission

The line and the error bars of the base case (the blue line) in Figure [7.21a)) are not over-

lapped with most of the parts of the lines depicting earlier admissions, meaning that the bed

utilisation is significantly reduced if patients are admitted earlier. Figure presents a

similar trend for nurse utilisation as Figure
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7.5 Scenario set 5: varying discharge time

Previous scenarios are focused on admissions rather than discharge. In this section, we would
like to find out how discharge time influences ICU operations. Patients should be discharged
within four hours of their clinically ready-to-be discharged time. Delayed discharge is ob-
served in about half of all discharges. We set three different scenarios for three different
optimal discharge times as shown in Table The EDFs of nights spent in the ICU are
changed to reflect the scenario under consideration, making use of the data available on the

time that a patient is clinically ready for discharge.

Table 7.2: Scenarios of optimal discharge hours

ICU-surviors

ICU non-survivors discharged within 4hr limit \ discharged out of 4hr limit

base actual time actual time actual time

sce 1 actual time actual time clinically ready time

sce 2 actual time actual time clinically ready time + 2hrs
sce 3 actual time actual time clinically ready time + 4hrs

In order to analyse the effect of varying discharge time thoroughly, increases of the NHPP
rates are taken into consideration. Optimal discharge time are demonstrated in different
scenarios using different colours of lines in Figures to [7.26l The multiplication factors

of the rates are presented in the horizontal axis.

Figure gives the mean values and 95% ClIs of annual throughput under various con-
ditions. No significant differences of annual throughput can be observed in all the tested
scenarios while the number of annual arrivals is close to current level. Therefore, prompt
discharge will not substantially affect annual throughput in this particular case. However,
while the ICU is under pressure (e.g. continues high numbers of arrivals lasting for a period),

prompt discharge makes a significant difference to the potential annual throughput.

Four nearly parallel lines for LoS are shown in Figure The blue line is not overlaid
with any of the other lines, indicating that ICU LoS can be reduced significantly if patients
are discharged on time. The lines are parallel mainly because of the different settings of the

scenarios (i.e. 2hrs difference between each optimal discharge time group).
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Figure 7.22: Variation of annual throughput under optimal discharge times

As shown in Figure[7.24] the percentages of late admissions are close between groups when the
increases of unplanned arrival rates are smaller than 1.15. With the increase of arrival rates,
variations of late admissions also increase (i.e. larger 95% CI), possibly resulting from the
increasing dependency on the stochastic process of arrivals. The current discharge time (base
case) generates substantially more late patients while the ICU is under pressure. Discharge

on time is especially important while sharp increase of arrivals happens.

ICU and hospital mortality rates in this set of scenarios are demonstrated in Figures [7.253]
and No statistically significant between-group differences can be detected from either

of the mortality rates. Similar mortality rates arise from similar late admission percentages.

Both Figures [7.26a| and [7.26b| show parallel and non-overlapping lines and 95% Cls, suggest-

ing that if patients could be discharged within the required time limit, the workload of the
ICU can be brought down significantly. This reduction can also be implied from the ICU
LoS in Figure [7.23]
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Figure 7.23: Variation of ICU LoS under optimal discharge times

7.6 Scenario set 6: epidemic

As reviewed in Section [3.5.2] ICUs are involved in pandemics extensively. In this section,
a number of scenarios of epidemics are designed to mimic potential impacts of an influenza

pandemic situations. According to the UK Department of Health contingency and response

plans for an influenza pandemic (Department of Health, 2005 [2012), the worst case could

be an attack rate as high as 50% with a fatality rate of 2.4%, lasting for 15 weeks. Between
1% and 4% of symptomatic patients would be admitted to hospitals and up to 25% of them
would require L3 critical care. The pandemic preparedness strategy shows that demand for

critical care services will not be met even at maximum expansion in a relatively mild case

(DH Pandemic Influenza Preparedness Team) 2011). A likely scenario is a 25% attack rate

in an 8-week period with 0.37% fatality. A combination of high attack rates (circa 50%) and
a long pandemic duration (i.e. > 8 weeks) or severe cases (inferred by a high fatality rate)

is unlikely but hard to predict.

Workforce during an influenza pandemic is a major issue. In the absence of vaccination, 40-
70% of staff may not be able to work during an influenza pandemic according to
(2003). In the case in Liverpool in 1957, 12% to 19% of nurses were absent in most

hospitals during a four-week period. The highest absence rate was 1/3 (Department of
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Figure 7.25: Variation of mortality rates under optimal discharge times

2005). During the Severe Acute Respiratory Syndrome (SARS) period in Toronto,
73 ICU beds, approximately 1/3 of the ICU beds in the city, were closed due to secondary

transmission (Booth and Stewart|, 2003).

Several versions of three epidemic scenarios are described in Table [7.3] according to historical

records of influenza pandemics, assuming that influenza pandemic-related statistics (attack

rate, admission rate, etc.) are the same all over the UK (Department of Health, [2005| |2012;
2016). The scenarios are indexed in the first column.

Population data is also needed in the scenario design. We use a regional population projection
for 2026 (Table to estimate admissions and arrivals. The latest population census was
in 2011. Population projections by decade for 2016 to 2046 by area are based on the latest
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Figure 7.26: Variation of resources’ utilisations under optimal discharge times

Table 7.3: Epidemic scenarios

scenario | attack hospital 1CU period staffing
rate (%)  admission  admission*  (weeks) (%)
(%) (%)
la | mild 15 1 15 15 100
1b | mild 15 1 15 15 90
2a | likely 25 2.5 15 8 100
2b | likely 25 2.5 15 8 80
2¢ | likely 15 4 25 8 100
2d | likely 50 1 15 8 100
3a | worst 50 4 25 6 100
3b | worst 50 4 25 6 70

total ICU admissions

* raad —
ICU admission rate = total hospital admissions

census ((Office for National Statistics, 2017)).

Table 7.4: Population projection for 2026 of areas served

total <16 years old  >16 years old
Bristol, City of 496,807 103,105 393,702
North Somerset 231,585 44,852 186,733
South Gloucestershire 302,489 60,697 241,792
all areas 1,030,881 208,654 822,227

ICU LoS of influenza patients is modelled by an exponential distribution with mean =

173.1234 hours. The value was calculated from median ICU LoS of adult influenza patients

in a US hospital using mean = mﬁ)‘igign (Bramley et al., 2012]).

The arrivals are assumed to be spread out unevenly during the whole period. The listed
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scenarios are tested under two different patterns of arrivals. First, influenza patient arrivals
follow a PP with a constant daily arrival rate equalling total ICU admissions divided by
pandemic duration (dashed lines in Figure . Second, arrivals obey an NHPP with a
3% daily increase and a 3% daily decrease in the arrival rate before and after the peak time
(solid step lines in Figure . The peak time is assumed to be the mid-point of a pandemic
duration. All these settings follow suggestions from FluSurge2.0 (CDC] |2016). The tool was
not used directly as it does not support attack rates, periods or staffing level variations or

investigate behaviour of an ICU directly.

BRI serves the southwest of England with a focus on Bristol, North Somerset and South
Gloucestershire, which have around one million residents (NHS, [2017a]). Three NHS trusts
are equipped with ICU beds in these three areas. There are 214 ICU beds in total, within
which 108 and 106 are paediatric/neonatal (PICU) and adult critical care beds respectively
(NHS| 2017b). PICUs normally treat patients up to the age of 16 (NHS| 2013a).

Five additional assumptions for the scenarios are made:

e PICUs will not treat patients over 16 years old (even when adult ICUs are not able to

cope with all admissions)

e Resources in PICUs are enough to treat all influenza pandemic patients (tested using

FluSurge), which means adult ICUs will only treat patients over 16 years old.

e Patients in all age groups have similar admission rates and ICU LoS (no admission

data for different age groups could be found).

e Pandemic cases treated by the BRI Adult ICU are in proportion to critical care bed

numbers (i.e. 21/106 of total influenza pandemic ICU admissions in served areas)

e Staffing levels are assumed to steadily decrease from full attendance to the minimum
staffing level specified in Table before the beginning of a peak week, maintaining
the minimum level during three days before and after the peak time and then gradually

growing back to full attendance during the week after a pandemic. Detailed staffing
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levels are plotted in Figure [7.28

All the input parameters for the epidemic scenarios are summarised in Table and Figures
and based on these assumptions.

Table 7.5: Total arrivals and staffing numbers (epidemic scenarios)

scenario | symptomatic  hospital 1CU BRI ICU minimum
patients admissions  admissions  admissions nurses
la 123,334 1,233 185 37 16
1b 123,334 1,233 185 37 14
2a 205,557 5,139 771 153 16
2b 205,557 5,139 771 153 13
2c 123,334 4,933 1,233 244 16
2d 411,114 4,111 617 122 16
3a 411,114 16,445 4,111 814 16
3b 411,114 16,445 4,111 814 11

Assuming either a PP or an NHPP, the daily arrival rate of ICU admitted pandemic patients
can be calculated. Arrival patterns of different scenarios are plotted in Figure
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Figure 7.27: Arrival rates of the ICU (epidemic scenarios)

In an M/M/c queue representing a PP, assuming the arrival rate is A, the service rate is

i, server number is ¢; the utilisation ratio (p), also known as traffic intensity, is obtained
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using p = % p > 1 suggests an infinite queue. Table illustrates different p of different
scenarios and server numbers.

Table 7.6: Traffic intensities of different scenarios

A p Pe=6 Pe=10 Pe=16 Pe=21
la,b 0.3524 0.1386 0.4237 0.2542 0.1589 0.1210
2a,b 2.7321 0.1386 3.2847 1.9708 1.2317 0.9385
2c 4.3571 0.1386 5.2383 3.1430 1.9644 1.4967
2d 2.1785 0.1386 2.6191 1.5715 0.9822 0.7483
3a,b | 19.3810 0.1386 23.3007 13.9804 8.7378 6.6574

The results in the last four columns in Table [7.6] show traffic intensities of different scenarios
while different numbers of beds are available. Scenario with number of servers ¢ = 6 refers to
available resources based on current utilisation of beds and nurses. ¢ = 10 considers reducing
current arrivals to a 60% level, to reserve resources to serve pandemic arrivals. ¢ = 16 is
the full capacity of the ICU while considering both nurses and beds. ¢ = 21 requires an

involvement of more nurses to make all 21 beds into ICU beds.

Table shows that, under the most optimistic condition (21-bed), the ICU cannot cope
with scenarios ‘3a’ and ‘2¢’. The ‘2a’ scenario may also overload the ICU sometimes as the
traffic intensity is close to 1. Under all the other conditions (¢ = 6,10 or 16), the ICU is not
likely to be able to deal with the pandemic arrivals perfectly for any the pandemic scenarios

except the mild one.

To generate NHPP and PP pandemic arrivals, a new start point is added to the DES model.
The thinning method is used to generate NHPP arrivals. Consider a piecewise-constant
NHPP with rate function A(¢), ¢ > 0 and Ayy = maz(A(t)) in an interval (0,7]. The
thinning method for generating arrivals is shown in Algorithm [3] The new start point will

only generate arrivals from the 315 day till the end of pandemic period.

It should be noted that staffing level change is tested only under the NHPP arrivals as it is
a more practical arrival pattern compared to a PP. We index scenarios using PP and NHPP,

for example “la.PP” means a mild scenario with a constant staffing level and PP arrivals.

We made four more assumptions when programming epidemic scenarios:

194



16-  m—p—— e ==,
1
|
1

15- I

14- staffing level

= 70%
= 80%

— Q)0
13- 90%

number of nurses

12-

end of pandemic period (6 weeks)
end of pandemic period (8 weeks)
end of pandemic period (15 weeks)

11-

0 30 60 90
day

Figure 7.28: Staffing levels at the ICU during pandemics

e Pandemic patients have the highest priority amongst all arrivals
e Cancellation of planned patients using Algorithm[I] will also consider pandemic arrivals.
e Pandemic patients waiting for more than 3 days (72hrs) will renege the queue.

e The pandemic period starts from the second month of a simulation (i.e. 720hrs after
warm-up period). Putting the pandemic period in an early stage of the simulation

allows us to investigate the influence of an epidemic on the ICU.

We focus on the impact of pandemic on the operation of the ICU. For the pandemic part,

the reneging rate and service size will be checked. We ran all the scenarios to confirm:

e How many pandemic patients can the ICU treat during pandemic period as well as

how many pandemic patients will leave without treatment?

e How long do pandemic patients wait before being admitted to an ICU?
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Algorithm 3 Thinning
(1) Initialise t =0
(2) Generate an exponential random variable e with rate Ays
(3)Sett=t+e
(4) Generate a uniform random variable u ~ U(0, 1)
if t <T then
if u < A(t)/Ay then
Accept the arrival at time ¢
GoTo (2)
else
Reject the arrival
GoTo (2)
end if
end if

e How will the pandemic period affect ICU performance on treating regular patients
(i.e. the differences in ICU mortality, ICU LoS and late admissions of pandemic-

included and pandemic-excluded performance of regular patients)?
e How many patients will be cancelled?
e How long does the ICU takes to recover from a pandemic?

In the first place, the queuing behaviour of pandemic arrivals are examined. Figure[7.29]shows
arrivals and services, and Figure [7.30] summarises queue behaviour of pandemic patients.

Detailed results of each scenario are attached in Appendix

Each stacked column in Figure[7.29|represents total pandemic arrivals of a scenario, where the
plum coloured part denotes admitted patients and the grey colour denotes patients waiting for
more than 72hrs and leaving the queue without treatment. Values in the figure illustrate the
percentage of treated pandemic arrivals (i.e. admitted pandemic patients/all pandemic arrivals).

It can be observed that

1. if pandemic patients are prioritised, the ICU can admit all the pandemic arrivals in

the mild scenario;

2. in the other scenarios, when arrival rates vary (i.e. NHPP arrivals), not as many patients
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Figure 7.29: ICU admission of pandemic patients

can be treated as under a constant arrival rate;

3. decreasing in the number of nurses has a significant negative effect on the pandemic
throughput in the la,b and 3a,b scenarios, shown by t-tests between NHPP arrivals
with and without changing nurse levels (p-values= 3.23 x 10~* and 9.96 x 10~7 respec-

tively).

Error bars in Figure [7.30|show 95% CIs of average waiting time in hours of pandemic patients
admitted to the ICU. In the worst scenarios (3a,b), patients need to wait three days before

admission. In the likely scenarios (2a,b,c,d) the average waiting time is still over 24hrs.

Table 7.7: Percentage of pandemic patients waiting for less than 24hrs (%)

la 1b 2a 2b 2c 2d 3a 3b
PP 99.13 X 19.55 X 6.40 359 134 X
NHPP | 98.31 94.59 22.01 1894 790 33.65 1.34 1.34
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Figure 7.30: Queueing time of admitted pandemic patients

Table [7.7] exhibits the percentage of ICU-admitted pandemic patients who wait less than
24hrs to be admitted to the ICU. Except in the mild scenarios, most patients wait for more

than 24hrs before admissions if no premature discharge is considered.

In the case of the BRI ICU, it is clear that the ICU would be under great pressure during
a pandemic period except under the mild scenarios. These findings can be compared with
previous estimations which find in the UK that current ICU capacities are not able to accom-

modate all possible arrivals (pandemic and non-pandemic), not even all pandemic patients

only, according to|DH Pandemic Influenza Preparedness Team| (2011) and estimations based

on FluSurge (Menon et al., 2005). In the US, Rubinson and O’Toole| (2005]) also claim that

without careful pre-event planning, ICU resources will quickly be overwhelmed and further

prevent people benefiting from them in.

Besides short-term influence on the ICU, the impact of an epidemic on the ICU’s relatively

long-term operation is also important.

Figure [7.31] shows total annual throughput of the ICU in different epidemic scenarios. The

annual throughput increases under mild scenarios since the ICU can admit and treat more
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Figure 7.31: Annual throughput in different epidemic scenarios

patients. This could be also confirmed by Section which shows that the ICU has the
potential to admit more patients. However, the annual throughput decreases significantly
in all the other scenarios since the explosive arrivals of pandemic patients may lead to late

admission of regular patients.
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Figure 7.32: Annual throughput of regular patients in different epidemic scenarios

Figure shows the annual throughput of regular patients. No statistically significant
differences can be observed between the mild scenarios and the base case. This indicates
that the ICU is likely to cope with a mild epidemic in its area and still serve regular patients

well. However, significant drops of throughput of regular patients could be observed in all
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the other scenarios, which implies negative influences on regular ICU services due to the
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Figure 7.33: Percentage of late admissions of regular patients
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Percentages of late admitted regular patients are shown in Figure [7.33] The late admission
group accounts for a larger percentage compared to the base case. This group is doubled in

all the epidemic scenarios except the mild case.
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Figure 7.34: Mortality rates of regular patients in different epidemic scenarios

ICU and hospital mortality rates of regular ICU patients are plotted in Figure Signif-
icantly higher mortality rates can be observed in all the likely (2a,b,c,d) and worst (3a,b)
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scenarios. This could also be inferred from an increase of the late admission group (Figure

7.33).
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Figure 7.35: LoS of regular patients in different epidemic scenarios

We expect an increase in LoS as a result of the increase in late admission. It is confirmed by
Figure [7.35] which illustrates LoS of regular patients in different scenarios. The occurrence
of an epidemic is likely to bring continuous pressure to the ICU. The admission of regular

patients needs to be well scheduled in the early phase of an epidemic.
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Figure 7.36: Resource utilisation in different epidemic scenarios

The differences in resource utilisation of different scenarios as exhibited in Figure [7.36] show
similar patterns to both LoS (Figure[7.35]) and mortality rates (Figure , which are highly
correlated with late admission (Figure [7.33)).
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In addition to general analysis, the impact of an epidemic on the ICU is investigated in detail
by analysing the queue of regular patients waiting for ICU admission and resource utilisation

hour by hour of scenario 2a with NHPP arrivals.
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Figure 7.37: Scenario 2a with NHPP arrivals

Figures [7.37a] to show the details of the queue for the ICU and resource utilisation
over a year. The pandemic period is 1392hrs to 2734hrs. With the increasing demand of
pandemic patients, the queue of regular patients expands during the pandemic period. The
queue takes a similar period to recover. The utilisation of ICU bed is close to 100% after the

pandemic period (8 weeks) for about two and a half months. The nurse utilisation is also
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high. These figures infer that the ICU takes at least as long a time as the pandemic period

to recover to normal operations.

7.7 Conclusions

Six sets of scenarios were designed and tested in this Chapter. Tests of increased ICU arrivals
in Section show that the ICU can accommodate up to approximately 1220 admissions

every year but both mortality rates and LoS will increase.

As discussed in Section the number of ICU beds rather than nurses is the more critical
resource to the ICU in the current situation since the number of bed is just enough to meet
current demands. However, the marginal negative effect of reducing nurse resource is larger

than that of reducing bed numbers.

Regarding admission policies, with everything else kept unchanged, bringing in patients ear-
lier can save lives and resources as shown in Section Moreover, Section [7.4] demonstrates
that the ICU can accommodate 20% more unplanned patients based on the current situation
without sacrificing service standard if the late admission group can be reduced to 10% of all

first-time admissions.

In terms of discharge, controlling the discharge time of patients to be within four hours

of discharge decisions does not have a significant impact on ICU throughput, as shown in

Section [7.5

Results from epidemic scenarios (Section [7.6)) show that the ICU can only treat pandemic
arrivals in the mild scenario. If the scenario worsens, a large proportion of pandemic arrivals
will leave without receiving proper treatment. Moreover, the ICU could take a long time to

recover from an epidemic, which may require careful planning.
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Chapter 8

Conclusion

Five research questions as follows are proposed in Chapter

How do late-admitted patients affect the efficiency and effectiveness of the ICU?

What factors may impact patients’ outcomes and LoS?

By applying different admission and discharge policies for patients in the ICU, what

improvements in efficiency can be achieved?

e How does resource level affect ICU effectiveness and efficiency?

How will extreme conditions (i.e. pandemic) influence the ICU?

Full answers to all these questions are provided by research in previous chapters. The
conclusion chapter summarises those findings. Contributions of this work in achievement
of questions one and two and ICU modelling are listed and explained in Section We
summarise the features of the analysis that are of particular interest to ICU managers,
which mainly come from questions three to five, in Section Limitations of the research
are stated in Section Possible future work is discussed in Section [8.4] given that more

and wider data could be accessed.

205



8.1 Contributions to ICU modelling methodology

The main contributions to ICU modelling are listed here and we describe each of these in

more detail throughout the rest of the section.
1. Identification and investigation of late admissions to the ICU

2. The analysis and modelling of a mixed ICU: this includes introduction of a new measure
for a mixed ICU, PA in the ICU, which indicates how busy the general wards are where

data on these wards are limited.

3. Mortality prediction: the differing predictability of benchmark models for different
patient categories. Improving the prediction of mortality for late-admitted patients

over the benchmark models.

4. Improvements to the modelling of LoS in the ICU by splitting the LoS into three
components as described in Section

5. Combining data mining and simulation models to provide an enhanced description of

the system.

8.1.1 Identification and investigation of late admissions to the ICU

To the best of our knowledge, ours is the most comprehensive definition of lateness of ad-

missions, for use in both prediction and simulation modelling.

As a result of a unique analysis of mortality and LoS data, we defined late admissions in a
novel manner according to admission types and lag days. Late medical admission is defined
as ICU admission with delay between unit admission and hospital admission longer than one
day. Late surgical admission is defined by two rules. First, all the surgical patients admitted
from general wards are counted as late admissions. Second, ICU admission with the delay

between unit admission and hospital admission longer than one day, from sources other than
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ward and recovery, is counted as late admission. Therefore, each patient can be categorised
in either the immediate or late admission groups. LoS for the immediate and late admission
groups has been calculated. The late admission group of patients occupies a significantly
large portion of resources although the size of the group is considerably smaller than the

immediate admission group.

This novel analysis have shown that late admission impacts on patients’ outcomes and conse-
quently that this is a potential direction for improving ICU performance. Moreover, lateness
in admissions has a broader application in healthcare. This issue could be relevant in hospital

admission, operation scheduling, patients’ rehabilitation and so on, as we discuss in Section

B4

8.1.2 Analysis and modelling of a mixed ICU

Our modelling is unlike most other research into intensive care units, in that it concerns a
mixed ICU, rather than separate intensive care and high dependency units. Such a mixed
ICU is often present in UK hospitals. Moreover, unlike other research our modelling combines

prediction with simulation to study the effects of aspects such as lateness on outcomes.

An ICU, as a part of a hospital, cannot be well observed or studied by isolated approaches.
Researchers need to take a holistic view of the ICU and its surrounding wards. As analysis
of the BRI discharge data suggests, a large majority of delayed discharges result from lack of
general ward beds. We introduce a new measure suitable for a mixed ICU known as patients’
acuity (PA) to estimate the busyness of the ICU and also indicate the busyness of the general

wards. Busyness measurements are then included in both ICU mortality and LoS prediction.

A lower PA in the ICU may indicate congested general wards which can cause longer ICU
stays. The PA in the ICU gives a new and simple way to assess busyness of general wards
in a hospital when data from general wards is limited as in this study. However, we have
no hospital data to validate PA and so it would require further research to be used as a

measurement.
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We have built a discrete event simulation model for the ICU (see Figure . The model
shows a good validity as assessed in Section [6.7] The late admission group has been in-
corporated into the model using the results of the data mining to inform parameterisation.
Two independent entry points are created to capture different patterns of unplanned and
planned patients. Dummy work centres are created for setting ICNARC probabilities for
different groups of patients and fulfilling pre-ICU sampling as mentioned in Section [6.5.2
An NHPP with periodic intensity was used to model the weekly cycle of unplanned admis-
sions. We divided a week into 14 intervals that represent 14 shifts in a week. An arrival
rate was estimated for each shift as shown in Table For planned admissions, we used
the empirical distribution of daily admission numbers on a weekday basis. The number of
arrivals in the day were simulated and assigned to different arrival hours according to EDFs

of arrival timing for planned arrivals on different weekdays. These distributions have been

described in Section [6.2.2] The model details were described in Section

Six sets of scenarios have been tested using the validated model. The impact of ICU resources,
beds and nurses, are investigated first in Section The influence of the late admission
group on operations of the ICU was examined in Sections and[7.4] A wider admission
of patients could change the arrival process of patients and also impact on the throughput
and survival rates of the ICU. Discharge timing is investigated in Section Epidemic

scenarios are designed and examined in Section

8.1.3 Mortality prediction of ICU admissions

Our research gives a more comprehensive view of ICU mortality prediction than previous
research. To the best of our knowledge, previous research has either kept all patients to-
gether or has focused on a particular patient group. Our approach of splitting ICU patients
into different categories has demonstrated that the performance of the benchmark ICNARC
mortality prediction models varies greatly for different patient groups. Logistic regression
models have been built which show improvements on benchmark models for late admission

groups and most of ICU mortality prediction.
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8.1.4 Novel approach to modelling of LoS

When modelling LoS, we use three different combinations of patients with LoS and log-
transformed LoS as response variables and then assess the results of six models. Models
concerning all the ICU population or on the basis of a two-stage method (i.e. predict mor-
tality first and then LoS) have not achieved a high predictability. The R-squared results
gained from the testing dataset are poor. We also tried fitting distributions for LoS, but
no parametric distribution appears to fit LoS well. A cyclical pattern was discovered while

fitting distribution; therefore, an alternative method of modelling LoS is proposed.

LoS is modelled in a novel manner in our research by splitting it into three parts, admission
time, nights spent in the ICU and discharge time, modelled separately. Different grouping
methods are used in the three components. The method has been described in detail in
Section We tested the proposed LoS modelling method, using EDF's of arrival timing,
nights and discharge timing for all patients. The EDFs of original LoS and simulated LoS
are plotted in Figure which shows the simulated LoS matched the original data well.

8.1.5 Hybrid data mining and simulation models

Our study contributes to the literature on the value of combining data mining with simulation
modelling. In the models we build here, predictive models are used to categorise patients
and route them through the system. Outcome prediction for individuals was also considered
in [Elbattah (2018) in a simulation model, but was not modelled in detail. In our research,
four outcome prediction benchmark models are encountered in the simulation model to route

entities later. A model for initial critical care level prediction was also embedded.

A Data mining methods embedded simulation model describe a system more precisely com-
paring to a pure stochastic simulation model. It is not only informative in the system level,
but also gives some insights for individual entities in the system, which is important for
decision making. In real life systems with heterogeneous individuals, in particular, will be

benefited from data mining embedded simulation models. Many areas in healthcare are laid
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into this categories.

From our view, When incorporating data mining methods into a simulation model, one may
take extra caution in two aspects, the amount of details one would like to include and the
values one could gain from the model. With the growing of accessible details, modellers are
usually tempted to include all the information. However, data mining models embedded in
the simulation model are preferred to be simple but informative. Over complicated data
mining model requires extensive data and running cost, which may not worth. Moreover,
system with homogeneous individuals, for example a manufacturing system, may only gain
limited values from these kind of models. Modellers need to think of the balance between

the value gained and cost of model building.

8.2 Contributions to ICU Management

This research makes a number of contributions that are of interest to ICU managers. The

main contributions to management are listed here and detailed in following subsections.

1. An analysis of the timing effect of admissions and discharges on ICU and hospital

outcomes.

2. Determining the influence of late admission and different admission policies on LoS,

ICU bed turnover and ICU throughput.
3. Showing the effect of varying ICU resources.
4. Demonstrating impact of different discharge policies.

5. Designing and testing epidemic scenarios and investigating the influence on normal

1ICU operations.

6. Insights into ICNARC probability.
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8.2.1 Timing effect of ICU admission and discharge

Timing effects have been examined after excluding the impact of case-mix effects by using
ICNARC probablity as a confounding variable. A positive impact of timing on ICU mortality
are found in peak time admissions (2:00pm - 00:59am). Commonly found day-of-week effects
or discharge timing effects were not found to be significant in our data. This analysis is likely

to be specific to the BRI ICU because of different operation policies applied in different ICUs

8.2.2 Influence of late admission and different admission policies

The effect of late admission has been shown to be as severe as that of readmission on
outcomes. Also, as admission lag increases, the trend in mortality and LoS likewise increases.
Late admission is likely to be a widely exist problem in all the ICUs, although the exact

relationship between admission timing and patients outcome may slight vary.

We highlight some key findings from the scenario tests. A higher admission rate in the ICU
has been shown increase the pressure on ICU resources in the short term but tests show that
it may have an overall positive impact in the mid/long term. This is because, for instance,
a wider direct admission of post-operative patients to the ICU may reduce late admissions

that are often associated with long lengths of stay and intensive use of resources.

The impact of wider admissions is considered in Section Increasing current arrival rates
of unplanned patients by 10% will not cause significant differences in service time (LoS) or

service quality (mortality).

Earlier admission, reducing the percentage of late group, has also been evaluated in Section
It would not improve annual throughput given current arrivals due to the limitation of
the data. However, LoS would be shortened significantly and it shows a great potential in
resource saving by assuming change in admission timing influences the mortality and ICU

LoS.
A combination of wider and earlier admissions is discussed in Section [.4]l It would increase
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the annual throughput more than solely wider admission. Both hospital and ICU mortality
rates will also be improved significantly. ICU LoS will not be lengthened for a wider admission

if patients could be brought in earlier.

8.2.3 Effects of changes of ICU resources

Two critical ICU resources, beds and nurses, have been analysed in Section [7.2] Resource
allocation pattern are different for different ICUs, insights drawn from this analysis is ICU
specific. In general, the number of ICU beds is on the borderline to meet current service
demand. However, if both resources are further reduced in the ICU, it is demonstrated that

nurse numbers will have a larger influence on ICU operation.

A decrease in the number of beds would cause decrease in throughput. Results show that
inadequate numbers of ICU beds could lead to a severe delay to admission of patients, which

would eventually result in a prolonged ICU stay and higher ICU mortality.

No significant increase in the percentage of late admissions could be observed while dropping
nurse numbers by just one or two from the current baseline of 16. For scenarios between 12
and 18 nurses, annual throughput does not differ significantly. Further decreasing from the
borderline scenario of twelve nurses leads to a fast worsening of performance. Variations of

ICU LoS and mortality are caused by late admissions resulting from reduced resources.

8.2.4 Impact of prompt ICU discharge

The ICU experiences delays in discharges currently, mainly because of lack of general ward
beds. We analyse three possible discharge time scenarios: immediately when clinically ready,
and 2 and 4hours after clinically ready. Performance of the ICU has been analysed in
these scenarios. Since delayed discharge is a widely existed problem, the results should be

applicable to other ICUs although we use our ICU as a case study.

It is shown that all three scenarios for prompt discharge would not affect annual through-
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put substantially with current arrival rates. However, if the ICU is under pressure (e.g. a
continuous high level of arrivals lasting for a period), prompt discharge is shown to make a

significant difference to the potential annual throughput.

The current discharge scenario (base case) generates more late patients than prompt dis-
charge while the ICU is under pressure. Discharge on time is especially important if a sharp

increase of arrivals happens; ICU LoS and work load can then be reduced significantly.

8.2.5 Impact of epidemic scenarios

Our research provides comprehensive testing of epidemic scenarios through DES modelling.
Previous research has only considered overall resource needs using Monte-Carlo Simulations.
The insights gained from the epidemic scenarios should be very useful to all ICU practitioners

and policy makers.

Instead of using tools and scenarios established for situations elsewhere (in the US), three
categories of epidemic scenarios, mild, likely and worst (shown in Table [7.3]) are specifically

designed according to UK data in our research.

In the case of the BRI ICU, it is clear that the ICU would be under great pressure during
a pandemic period. Except in the mild scenarios (1a, b), most patients wait for more than

24hrs before admissions if no premature discharge is considered (see Section [7.6)).

An epidemic will also affect the normal operation of the ICU. Generally, the ICU is likely
to cope with the mild epidemic scenarios and still serve regular patients well. For more
serious epidemics, the annual throughput decreases significantly in all scenarios since the
explosive arrivals of pandemic patients causes late admission of regular patients. In terms
of throughput, significant drops of throughput of regular patients could be observed in all
likely and worst scenarios, which implies negative influences on regular ICU services due to
an epidemic. The late admission group accounts for a larger percent in epidemic scenarios
compared to the base case. This group is doubled in all the epidemic scenarios except the

mild case. Significantly higher mortality rates and longer ICU LoS of regular patients can
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be observed in all the likely (2a,b,c,d) and worst (3a,b) scenarios.

One of the most likely scenarios (scenario 2a) is investigated in detail both during and after
the epidemic. The utilisation of ICU beds is close to 100% after the pandemic period (8
weeks) for about two and a half months. The ICU takes at least as long a time as the

pandemic period to recover to normal operations.

The epidemic scenarios demonstrated that the current resource is not enough to deal with
any epidemic more than a mild one. Moreover, it will take a considerable period of time for

the ICU to recover to its normal operation level after a pandemic period.

The occurrence of an epidemic is likely to bring continuous pressure to the ICU. The admis-

sion of regular patients needs to be well re-scheduled in the early phase of an epidemic.

8.2.6 Insights into ICNARC probability

We have shown the effects of admission source on predicting outcome: it is of interest
that certain groups have better predicted probability of survival for the same ICNARC
probability. In particular, the effects of timing and patient categories on outcome have
been demonstrated. Peak/non-peak, planned/unplanned groups have differing probability
of survival for the same ICNARC probability. However, there is no evidence for a weekend

effect.

8.3 Limitations
Limitations of this research are detailed in this section to give insights into the possible
improvements and extensions of this research.

In the preliminary analysis (Chapter 4)), we found effects of late admission on mortality and
ICU LoS. Although we have analysed possible confounding variables, it is hard to exhaust the

complete list; for example, the effect due to decision makers is hard to measure. Moreover,
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late admission is defined by the lag between hospital admission and ICU admission, which
is counted by days. This may not be precise enough; a more accurate measurement (i.e. by
hours or minutes) has the potential to achieve a better result. Another limitation in the
chapter is that we proposed PA to indicate the busyness of the whole hospital. However, val-
idation of PA was not possible in this research. To confirm the usability of the measurement,

we need extra data to validate PA.

In terms of prediction models in Chapter[5], two limitations need to be pointed out, ICNARC-
based mortality prediction and the limited predictability of individual ICU LoS. Mortality
prediction is ICNARC based, which will be a limitation when implementing the model for
non-UK ICUs. However, the re-calibration of a well-established scoring system is usually
regarded as a good way to build a risk prediction model (Ankerst} |2016)); researchers may
substitute a re-calibrated country-specific model for ICNARC as appropriate. Prediction of
ICU LoS for individual patients did not achieve a good performance. As shown in Section
the R-squared of the prediction methods tested are generally not good. Several prediction
methods have been tried in this section. The next step for LoS prediction could be use

supplementary data with more effort in variable selection.

The performance of the DES model described in Chapter [6] is generally good. However, we
would like to flag up two limitations which could benefit from more attention: the disper-
sion of overnight bed occupancy and the unavailability of ICU LoS for individual patients.
Overnight bed occupancy generated by the model is more dispersed than that calculated
from system all ward data. The prediction of LoS for individual patient was found to be
hard to achieve as described in This meant LoS has to be sampled from EDF's, which
makes the model less informative. Both of these limitations can cause inaccuracy of the

model.

In the results chapter, Chapter [7] all the results are based on the model and the statistical
analysis. Whether a result is significant or not generally means the significance shown in the
DES model and measured by statistical methods. However, significance in the real world

may the otherwise so these results should be filled with caution. These effects need to be
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doubly confirmed by observing ICU operation.

8.4 Future possible extensions to this work

The findings of this research on late ICU admission have the potential to be incorporated into
a whole hospital bed management simulation to demonstrate benefits of earlier admission to
the ICU, and prompt discharge from the ICU, for the whole hospital. As earlier admission

to ICUs are enabled, shortened post-ICU stays and reduced mortality are likely to result.

Delayed admission for many healthcare procedures has been shown in recent research to re-
duce the probability of a successful outcome. The approach taken by this research, of using
analyses of LoS and mortality to define “lateness” and analyse its effects, could be appli-
cable in other areas. For example, in A&E, prolonged waiting times for patients admitted
to hospital leads to a higher mortality (Higginsonl 2012)). For surgical patients, a delayed
operation is associated with an increase in morbidity and mortality (Nyholm et al., 2015}
Haltmeier et al., 2015). [Vidal et al. (2012)) found that a longer fracture to hospital admis-
sion time rather than admission to surgery time decreases survival of hip fracture patients.
Delayed rehabilitation transfer impacts negatively on both finance and performance (The
King’s Fund, 2018)). Research focusing on solving such problems of delayed transfers of care
as a part of integrated systems has great potential for improving both patient and hospital

outcomes.

With the accumulation of post-ICU hospital stay data, the prediction of post-ICU mor-
tality could be improved. We found an interesting point that in some post-ICU mortality
predictions (e.g. non-late planned admission group), only discharge reason and operational
factors are included in the logistic regression model. This gives a direction for how post-ICU
mortality prediction modelling could be simplified and the results incorporated into a sim-
ulation model. It is not necessary to consider patients’ medical states if they are normally
discharged. Every admission can be labelled with its operational characteristics and the op-

erational factors used to predict post-ICU mortality. Such prediction shows a great potential
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to be used in the ICU discharge control and hospital bed management.

The methods demonstrated in this research have made a number of important contributions
to research in both the modelling and management of ICUs. Moreover, this work points the
way to benefits of studying and managing integrated health systems, as a means of sustaining

services that are under pressure from increasing demand.
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Appendix A

Full Variable List for All models

Variable Name

Variable Description

Abnormal.delay.caused.by

reason for abnormal discharge

adbusyness PA of admission day
AdDateHosp hospital admission day
AdDatelCU ICU admission day

AdLate late admission (late/immediate)

admission.group

admission group by readmission; see Section |4.1.2

adnonlevel3 %mnonL3 of admission day

Adpeak peak time admission; see Figure 4.11

Adshift nurse staffing shift when admission

AdTimelCU ICU admission time

AdWeffect weekend effect of admissions, 1 for weekends, 0 for week-
days

Age age of patient when admitted

APACHE.II.mortality.prediction

probability of death when using APACHE II mortality

prediction

APACHE.Il.score

APACHE II score

Body.removed.at..time.

body removed time (For patients who died only)
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Body.removed.on..date.

body removed date (For patients who died only)

CateReason

admission reasons re-categorised by their frequency and

severity

CCMDS.Level.3.day

show which day of the stay is level 3 day

ClinicalL.oS

clinical ICU LoS

Date.of.ultimate.hospital.discharge

hospital discharge date (for the last hospital that pa-

tient stays)

Days.between.hospital.and.unit.admit

lag days between hospital admision and ICU admission

Destination..name.

discharge destination

disPA_1

PA of the day before discharge

disPA

PA of discharge day

Discharge.delay.abnormal

if the delay of discharge is abnormal

disnonlevel3 Y%monL3 of discharge day

Dispeak peak time discharge; see Figure 4.13

DispeakReady peak time discharge decision making; see Figure [4.14
Disshift nurse staffing shift when discharge

EMEL Emergency (EM), Elective (EL), NR (medical)
HousedWithin hospital type that patient comes from

ICNARC ID of each ICU admission

ICNARC.probability

probability of death when using ICNARC mortality pre-

diction

ICNARC.score

ICNARC score

ICUadH hour of ICU admission

ICUdisH hour of ICU discharge

ICUdisHReady hour of the discharge decision making

OpDelay operational delay (RealLoS-ClinicalLoS)
outcomeHosp patient’s outcome of ultimate hospital discharge
outcomelCU patient’s outcome when discharged from the ICU

patient.type

patient type
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ReadyDisDate clinical ready to discharge date

ReadyDisTime clinical ready to discharge time

RealDisDate real discharge date

RealDisTime real discharge time

RealLoS actual ICU LoS (we also call it actual LoS in text)

Reason.Primary

primary admission reason

Reason.Secondary

secondary admission reason

Source admission sources; see Figure [4.2.5
Sex gender of patients

WdayAd day of week (admission)

WdayDis discharge (day of week)
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Appendix B

Correlation Matrix

ICNARC ICNARC
Age LagDays
score probability

Age 1 0.024 0.1065 0.2301
LagDays 0.024 1 0.0277 0.0391
ICNARC

0.1065 0.0277 1 0.8741
score
ICNARC

0.2301 0.0391 0.8741 1
probability
APACHE.II

0.1631 -0.0821 0.3063 0.2709
score
APACHE.II
mortality 0.1079 -0.0399 0.5243 0.591
prediction
adnonlevel3 0.0313 -0.0015 -0.0712 -0.0614
adlevell 0.0116 -0.0068 -0.0096 -0.0069
adlevel3 -0.0313 0.0015 0.0712 0.0614
adPA 0.0032 0.0077 0.0541 0.041
disnonlevel3 0.0115 -0.006 -0.0422 -0.0524
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dislevell 0.0177 0.0012 -0.0215 -0.0222
dislevel3 -0.0115 0.006 0.0422 0.0524
disPA 0.0105 0.0045 0.0423 0.0319
disnonl3_1 0.0219 -0.0042 -0.0385 -0.0472
disPA_1 -0.001 0.0029 0.0371 0.0318
disreadynonl3_1 0.0216 -0.0028 -0.0411 -0.0496
disreadyPA _1 0.0052 0.0032 0.0389 0.0332
disreadynonl3 0.01 -0.0062 -0.0415 -0.0519
disreadyPA 0.0036 0.0057 0.0494 0.0366
RealLoS 0.0076 0.0651 0.2447 0.1777
ClinicalLoS 0.0065 0.0647 0.2566 0.1897
OpDelay 0.0135 0.0121 -0.1194 -0.1275
APACHE.I1
APACHE.I1
mortality adnonlevel3 adlevell
score
prediction

Age 0.1631 0.1079 0.0313 0.0116
LagDays -0.0821 -0.0399 -0.0015 -0.0068
ICNARC

0.3063 0.5243 -0.0712 -0.0096
score
ICNARC

0.2709 0.591 -0.0614 -0.0069
probability
APACHE.I1

1.0000 0.7832 0.3761 -0.0122
score
APACHE.II
mortality 0.7832 1 0.1701 -0.019
prediction
adnonlevel3 0.3761 0.1701 1 -0.0118
adlevell -0.0122 -0.019 -0.0118 1
adlevel3 -0.3761 -0.1701 -1 0.0118
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adPA -0.0855 -0.0239 -0.6265 0.0365
disnonlevel3 0.3715 0.165 0.6988 -0.0503
dislevell -0.0191 -0.0282 -0.0213 0.2565
dislevel3 -0.3715 -0.165 -0.6988 0.0503
disPA -0.0775 -0.0156 -0.4161 0.0712
disnonl3_1 0.3688 0.1635 0.7749 -0.0455
disPA_1 -0.0742 -0.0127 -0.4612 0.0799
disreadynonl3_1 0.3691 0.1625 0.782 -0.0432
disreadyPA_1 -0.0779 -0.015 -0.4692 0.0827
disreadynonl3 0.3711 0.1661 0.7029 -0.0504
disreadyPA -0.0847 -0.0182 -0.4192 0.0696
RealLoS 0.0776 0.118 -0.0275 0.0146
ClinicalLoS 0.0732 0.1214 -0.0336 0.0108
OpDelay 0.0627 -0.0288 0.0719 0.0487
adlevel3 adPA disnonlevel3 dislevell
Age -0.0313 0.0032 0.0115 0.0177
LagDays 0.0015 0.0077 -0.006 0.0012
TENARC 0.0712 0.0541 -0.0422 -0.0215
score
TENARC 0.0614 0.0410 -0.0524 -0.0222
probability
APACHE.TI -0.3761 -0.0855 0.3715 -0.0191
score
APACHE.II
mortality -0.1701 -0.0239 0.165 -0.0282
prediction
adnonlevel3 -1 -0.6265 0.6988 -0.0213
adlevell 0.0118 0.0365 -0.0503 0.2565
adlevel3 1 0.6265 -0.6988 0.0213
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adPA 0.6265 1.0000 -0.4387 0.052
disnonlevel3 -0.6988 -0.4387 1 -0.0055
dislevell 0.0213 0.0520 -0.0055 1
dislevel3 0.6988 0.4387 -1 0.0055
disPA 0.4161 0.4660 -0.6221 0.0189
disnonl3_1 -0.7749 -0.4893 0.8505 -0.0097
disPA_1 0.4612 0.5691 -0.5354 0.0308
disreadynonl3_1 -0.782 -0.4943 0.8401 -0.0044
disreadyPA_1 0.4692 0.5797 -0.5338 0.0246
disreadynonl3 -0.7029 -0.4422 0.9886 -0.0082
disreadyPA 0.4192 0.4708 -0.6193 0.0125
RealLoS 0.0275 0.0039 0.0066 0.0381
ClinicalLoS 0.0336 0.0048 0.0004 0.0291
OpDelay -0.0719 -0.0104 0.0755 0.1128
dislevel3 disPA disnonl3_1 disPA_1
Age -0.0115 0.0105 0.0219 -0.001
LagDays 0.006 0.0045 -0.0042 0.0029
TENARC 0.0422 0.0423 -0.0385 0.0371
score
TENARC 0.0524 0.0319 -0.0472 0.0318
probability
APACHE.TI -0.3715 -0.0775 0.3688 -0.0742
score
APACHE.II
mortality -0.165 -0.0156 0.1635 -0.0127
prediction
adnonlevel3 -0.6988 -0.4161 0.7749 -0.4612
adlevell 0.0503 0.0712 -0.0455 0.0799
adlevel3 0.6988 0.4161 -0.7749 0.4612
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adPA 0.4387 0.466 -0.4893 0.5691
disnonlevel3 -1 -0.6221 0.8505 -0.5354
dislevell 0.0055 0.0189 -0.0097 0.0308
dislevel3 1 0.6221 -0.8505 0.5354
disPA 0.6221 1 -0.5037 0.6319
disnonl3_1 -0.8505 -0.5037 1.0000 -0.6075
disPA_1 0.5354 0.6319 -0.6075 1
disreadynonl3_1 -0.8401 -0.4996 0.9854 -0.5968
disreadyPA_1 0.5338 0.6208 -0.6065 0.9696
disreadynonl3 -0.9886 -0.6135 0.8583 -0.5381
disreadyPA 0.6193 0.9689 -0.5109 0.6537
RealLoS -0.0066 0.0075 0.0036 -0.0289
ClinicalLoS -0.0004 0.0094 -0.0026 -0.0267
OpDelay -0.0755 -0.0215 0.0760 -0.0299
disreadynonl3_1 | disreadyPA _1 | disreadynonl3 | disreadyPA
Age 0.0216 0.0052 0.01 0.0036
LagDays -0.0028 0.0032 -0.0062 0.0057
TENARC -0.0411 0.0389 -0.0415 0.0494
score
TENARC -0.0496 0.0332 -0.0519 0.0366
probability
APACHE.II 0.3691 -0.0779 0.3711 -0.0847
score
APACHE.II
mortality 0.1625 -0.015 0.1661 -0.0182
prediction
adnonlevel3 0.782 -0.4692 0.7029 -0.4192
adlevell -0.0432 0.0827 -0.0504 0.0696
adlevel3 -0.782 0.4692 -0.7029 0.4192
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adPA -0.4943 0.5797 -0.4422 0.4708

disnonlevel3 0.8401 -0.5338 0.9886 -0.6193

dislevell -0.0044 0.0246 -0.0082 0.0125

dislevel3 -0.8401 0.5338 -0.9886 0.6193

disPA -0.4996 0.6208 -0.6135 0.9689

disnonl3_1 0.9854 -0.6065 0.8583 -0.5109

disPA_1 -0.5968 0.9696 -0.5381 0.6537

disreadynonl3_1 1 -0.6131 0.8481 -0.5029

disreadyPA_1 -0.6131 1 -0.5393 0.6319

disreadynonl3 0.8481 -0.5393 1 -0.6218

disreadyPA -0.5029 0.6319 -0.6218 1.0000

RealLoS 0.0021 -0.0373 0.0067 -0.0009

ClinicalLoS -0.0041 -0.0341 0.0005 0.0045

OpDelay 0.0758 -0.0429 0.0761 -0.0659
RealLoS ClinicalLoS OpDelay

Age 0.0076 0.0065 0.0135

LagDays 0.0651 0.0647 0.0121

TENARC 0.2447 0.2566 -0.1194

score

TENARC 0.1777 0.1897 -0.1275

probability

APACHE.TI 0.0776 0.0732 0.0627

score

APACHE.II

mortality 0.118 0.1214 -0.0288

prediction

adnonlevel3 -0.0275 -0.0336 0.0719

adlevell 0.0146 0.0108 0.0487

adlevel3 0.0275 0.0336 -0.0719
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adPA 0.0039 0.0048 -0.0104
disnonlevel3 0.0066 0.0004 0.0755
dislevell 0.0381 0.0291 0.1128
dislevel3 -0.0066 -0.0004 -0.0755
disPA 0.0075 0.0094 -0.0215
disnonl3_1 0.0036 -0.0026 0.076
disPA_1 -0.0289 -0.0267 -0.0299
disreadynonl3_1 0.0021 -0.0041 0.0758
disreadyPA_1 -0.0373 -0.0341 -0.0429
disreadynonl3 0.0067 0.0005 0.0761
disreadyPA -0.0009 0.0045 -0.0659
RealLoS 1 0.9967 0.1436
ClinicalLoS 0.9967 1 0.0627
OpDelay 0.1436 0.0627 1
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Appendix C

Log Odds Plots for Hospital

Outcomes
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Figure C.1: Transformed log odds plot for different admission sources
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Figure C.2: Transformed log odds plot for different admission types
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Figure C.3: Transformed log odds plot for different admission timing
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Figure C.4: Transformed log odds plot for different admission types and admission timing
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Appendix D

Results for Mortality Prediction
Models

This appendix includes results ortality prediction models. Each dataset is predicted by
benchmark, logit and CART. AUROC and KS distance of all models are listed in Tables.

Three benchmark models adopted in the simulation model are also given here.

D.1 1ICU mortality
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Table D.1: AUROC of all ICU mortality prediction models

training testing

Models benchmark  logit CART | benchmark logit CART
planned 0.9170 0.9444  0.9023 0.8760 0.8853  0.8920
unplanned 0.8811 0.8878  0.8734 0.8776 0.8828  0.8701
unplanned peak 0.8832 0.9215  0.9023 0.8656 0.9083  0.8920
unplanned off-peak 0.8771 0.8825  0.8571 0.8899 0.9005  0.8706
source A 0.9223 0.9374 0.9111 0.895 0.8864  0.8788
source B 0.9251 0.9273  0.8606 0.9168 0.9090  0.8663
source D47 0.8403 0.8577  0.8360 0.8356 0.8271 0.8135
BO 0.8919 0.8926  0.8846 0.9049 0.8915  0.8728
DO 0.8359 0.8415 0.8364 0.8544 0.8537  0.8166
B1 0.9084 0.9302 0.7936 0.8336 0.8442  0.7660
non-late 0.9328 0.9332  0.7137 0.9161 0.9219  0.8944
non-late planned 09164 09250 0.8250 | 0.9073  0.8674  0.8037
(no readmission)

non-late unplanned | = 016/ 09068 0.8044 | 09073 08834  0.8713
(no readmission)

late admissions 0.8356 0.8425  0.8265 0.8692 0.8758  0.7748

Table D.2: KS distance of all ICU mortality prediction models
training testing

Models benchmark  logit CART | benchmark logit CART
planned 0.6777 0.7282  0.6757 0.6585 0.6721  0.6561
unplanned 0.6139 0.6314  0.6200 0.5979 0.6125  0.5907
unplanned peak 0.6414 0.6910 0.6757 0.5744 0.6689  0.6561
unplanned off-peak 0.5944 0.6076  0.5559 0.6195 0.6446  0.5703
source A 0.6997 0.7433  0.6804 0.6675 0.6862  0.6347
source B 0.6974 0.7149  0.6911 0.7247 0.6810  0.6984
source D+Z7 0.5456 0.5882  0.5244 0.5085 0.5150  0.4742
BO 0.6495 0.6762  0.6495 0.7174 0.6908  0.6311
DO 0.5378 0.5757  0.5212 0.5489 0.5865  0.5225
B1 0.6797 0.7387  0.5709 0.5267 0.6432  0.5198
non-late 0.7322 0.7284  0.7306 0.7188 0.7175  0.6812
non-late planned 0.6872 0.7039  0.6270 0.6813 0.6426  0.5893
non-late unplanned 0.6872 0.6641  0.6453 0.6813 0.6119  0.5908
late 0.5243 0.5662  0.5809 0.5888 0.6239  0.5309

236



D.1.1 Planned Admissions (non-late)

1

E(YilX) =

D.1.2 Unplanned admissions (non-late)

1

1+ e(0.0785x — 4.5425)

E(Yi|X) =

D.1.3 Unplanned admissions (late)

B(Y[X) = :

14 e(0.05392 — 3.4210)

D.2 Hospital mortality (FirstAD)

1+ e(0.04952 — 3.2732)°

Table D.3: AUROC of all hospital mortality prediction models (FirstAD)

training testing
Models benchmark logit CART | benchmark logit CART
planned 0.8379 0.861 0.8685 0.8255 0.7979  0.8371
unplanned 0.864 0.8702  0.8455 0.8497 0.8563  0.8166
unplanned peak 0.8621 0.8811  0.8706 0.8391 0.8325  0.7974
unplanned off-peak 0.8647 0.8718 0.848 0.8609 0.862 0.8232
source A 0.9133 0.9251  0.9064 0.8995 0.8941 0.8785
source B 0.8579 0.8712  0.7771 0.8569 0.8486  0.7591
source D47 0.8331 0.8368  0.8243 0.7671 0.7707  0.7348
BO 0.8236 0.8314  0.8076 0.8518 0.8362  0.7975
DO 0.8267 0.8307 0.822 0.7925 0.7914  0.7688
B1 0.8047 0.8121  0.7789 0.7626 0.7558  0.6551
non-late 0.903 0.9111  0.8986 0.882 0.8808  0.8675
non-late planned 0.8222 0.854 0.8001 0.7893 0.7952  0.6882
non-late unplanned 0.8761 0.8873  0.8644 0.8557 0.8586  0.8349
late 0.8143 0.8227  0.8082 0.797 0.7941 0.7614
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Table D.4: KS distance of all hospital mortality prediction models (FirstAD)

training testing
Models benchmark  logit CART | benchmark  logit CART
planned 0.5725 0.5613  0.6378 0.4855 0.4564  0.5789
unplanned 0.5656 0.5743  0.5259 0.5478 0.5595  0.4738
unplanned peak 0.5727 0.6025  0.6107 0.5296 0.5286  0.4953
unplanned off-peak 0.5655 0.5847  0.5278 0.5701 0.5832  0.4839
source A 0.6689 0.7204  0.6658 0.7044 0.6852  0.6189
source B 0.5532 0.5856  0.5321 0.5522 0.5647  0.4901
source D47 0.507 0.5123  0.4988 0.3781 0.3931  0.3464
BO 0.5299 0.5441  0.5262 0.568 0.5404 0.4834
DO 0.4987 0.5157  0.4986 0.4343 0.4238  0.3933
B1 0.5243 0.4702  0.5243 0.4166 0.4148  0.2833
non-late 0.6652 0.6703  0.6652 0.6137 0.6284  0.6029
non-late planned 0.5507 0.53 0.5507 0.4423 0.4809 0.341
non-late unplanned 0.595 0.6163  0.5946 0.5622 0.5582  0.5334
late 0.4781 0.4958  0.4742 0.4377 0.4762  0.3791

D.3 Hospital mortality (Last AD)
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Table D.5: AUROC of all hospital mortality prediction models (LastAD)

training testing

Models benchmark logit CART | benchmark logit CART
planned 0.8610  0.8835 0.7031 | 0.8653 _ 0.8560 0.6793
unplanned 0.8610  0.8835 0.7031 | 0.8531  0.8562  0.8320
unplanned peak 0.8632  0.8792  0.8679 | 0.8404  0.8438  0.8040
unplanned off-peak | 0.8651  0.8727 0.8645 | 0.8674  0.8736  0.8504
source A 0.9170  0.9282  0.9098 | 0.8991  0.8951  0.8780
source B 08816  0.8916 0.8050 | 0.8812  0.8795  0.7862
source D+Z 0.8259  0.8326  0.8192 | 0.7905  0.7923  0.7530
source D 08177  0.8298 0.8144 | 0.8035  0.8028  0.7646
source 7 0.8795  0.9305 0.8023 | 07185  0.6870  0.6109
BO 0.8362  0.8466 0.8155 | 0.8558  0.8364  0.8026
DO 0.8195  0.8261 0.8165 | 0.8087  0.8040 0.7675
Bl 0.8289  0.8414 0.7153 | 0.8047  0.8008  0.6598
non-late 0.9157  0.9227  0.9019 | 0.8939  0.8936 0.8723
non-late planned 0.8461  0.8563 0.6762 | 0.8276  0.8204 0.6254
(no readmission)

non-late unplanned | go\0 09050 08729 | 0.8600 08622 0.8414
(no readmission)

late 08154  0.8228 0.8109 | 0.8071  0.8074  0.7749
readmission 0.7108 0.8145 0.8043 0.8570 0.742 0.7582
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Table D.6: KS distance of all hospital mortality prediction models (LastAD)

training testing

Models benchmark logit CART | benchmark logit CART
planned 0.6048 0.6031 0.4063 0.5765 0.5692 0.3586
unplanned 0.5667 0.5778 0.5667 0.5554 0.5638 0.5222
unplanned peak 0.574 0.5922 0.597 0.5295 0.5437  0.4645
unplanned off-peak 0.5691 0.5756  0.5716 0.5924 0.6072  0.5787
source A 0.6788 0.7285 0.6758 0.7032 0.6856 0.6171
source B 0.6129 0.6358  0.5837 0.609 0.6072  0.5415
source D+Z 0.4999 0.5149 0.4888 0.4221 0.4407  0.3866
source D 0.4883 0.506 0.4804 0.4443 0.4773  0.4062
source 7 0.6394 0.7371 0.6046 0.3707 0.3217  0.2219
BO 0.5359 0.5402 0.5313 0.5883 0.5184 0.4877
DO 0.7905 0.4972 0.4862 0.4615 0.4601 0.4226
B1 0.5587 0.5439 0.4201 0.4878 0.4762 0.6109
non-late 0.6928 0.6952 0.6641 0.6418 0.6543 0.6082
non-late planned 05383  0.5842  0.3524 | 0.5037  0.5139  0.2509
(no readmission)

non-late unplanned | = 6o 5978 06053 | 05748 05831 0.5411
(no readmission)

late 0.4815 0.4818 0.4752 0.4601 0.5036 0.3946
readmission 0.4201 0.5136  0.5445 0.5789 0.5147 0.505
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D.4 After-ICU mortality

Table D.7: AUROC of all after-ICU mortality prediction models (LastAD)

training testing

Models benchmark  logit CART | benchmark  logit CART
planned 0.7492 0.7772  0.7255 0.8441 0.7454  0.6513
unplanned 0.7454 0.8650  0.7951 0.7375 0.8377  0.7876
unplanned peak 0.7531 0.8721  0.7398 0.7412 0.8491  0.7154
unplanned off-peak 0.7566 0.8893  0.7584 0.7294 0.7809  0.7179
source A 0.8142 0.9388  0.7617 0.8782 0.8499  0.6735
source B 0.7727 0.8022  0.6960 0.7927 0.7625  0.6455
source D+Z 0.7283 0.8757  0.7715 0.6611 0.7767  0.7098
BO 0.6870 0.8132  0.5961 0.6969 0.6371  0.6191
DO 0.7193 0.9053 0.7914 0.6660 0.7687  0.7491
B1 0.6768 0.7490 0.6768 0.7635 0.5928  0.5835
non-late 0.8170 0.8605  0.8018 0.8004 0.8327  0.7942
non-late planned 0.6909  0.7415 0.6949 | 0.7855  0.4771  0.6431
(no readmission)

non-late unplanned | 7o0s 0464 0.808 0.7416  0.8614  0.8208
(no readmission)

late 0.7190 0.8823  0.8053 0.6713 0.7362  0.6261
readmission 0.8225 0.8670  0.8111 0.7920 0.8174  0.7983
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Table D.8: KS distance of all after-ICU mortality prediction models (LastAD)

training testing

Models benchmark  logit CART | benchmark  logit CART
planned 0.448 0.4613  0.4216 0.5394 0.4083  0.3755
unplanned 0.3879 0.5446  0.4424 0.3761 0.5514  0.4517
unplanned peak 0.4293 0.5911  0.4718 0.4124 0.6247  0.4193
unplanned off-peak 0.3863 0.6483  0.4878 0.4039 0.5918  0.4077
source A 0.5336 0.7776  0.5160 0.7537 0.6114  0.3536
source B 0.4497 0.5248  0.3762 0.5079 0.4172  0.2757
source D+Z 0.3326 0.5794  0.5280 0.2933 0.4378  0.4300
BO 0.3285 0.4566  0.1921 0.4316 0.3308  0.2381
DO 0.3449 0.6160  0.5709 0.3049 0.4783  0.4932
B1 0.3370 0.4851  0.3375 0.4793 0.2866  0.1676
non-late 0.5291 0.6012  0.5429 0.5002 0.5513  0.5036
non-late planned 0.3575  0.4084 0.3747 | 04942  0.1425  0.2797
(no readmission)

non-late unplanned | 1100 (5166 04685 | 04003 05602 0.5094
(no readmission)

late 0.3456 0.6264  0.5758 0.2955 0.4750  0.2551
readmission 0.5357 0.5849  0.5471 0.4923 0.5220  0.4974
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Appendix E

Results for LoS Prediction Models

E.1 LoS1

LoS1: all admissions

Table E.1: HC estimations of LoS1 prediction (planned admissions)

Estimate  P-Value

(Intercept)
ReadmissionYes
ICNARC.score

Adnighteffect

-439.0046  0.7002
5216.8399  0.0866
448.9349  0.0000
-2585.1745 0.1211
19281.8693  0.0307
2012.5825 0.2303
5730.7949  0.0015
899.7385 0.0231

Table E.2: HC estimations of LoS1 prediction (unplanned admissions)

Estimate  P-Value
(Intercept) -2193.1400  0.3042
ReadmissionYes 1468.6409 0.1401
ICNARC.score 181.7433  0.0000
P1 1855.0978  0.0238

Continued on next page
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Table E.2 — continued from previous page

Estimate  P-Value
P2_system?2 -1788.4168  0.0285
P2_system3 2190.0812  0.0106
P2_system4 -2584.9272  0.0015
P2 _systemb -504.0537  0.5453
P2_system6 -3862.0837  0.0000
P2 _system7 -1950.4142  0.0084
P2_system8 -2931.0640  0.0014
P2_system9 -4122.2051 0.0000
P2_system10 -1260.9492  0.3897
P2 _system11 -3793.2969  0.0036
P2_system12 4714.4886  0.0000
adnonlevel3 -2661.6695 0.1024
disnonlevel3 4587.8506 0.0040
dislevell 25797.8627  0.0012
SourceB -1275.9844  0.1525
SourceD 1200.6238  0.0700
SourceF 1645.9345  0.0548
SourceZ 4079.9872  0.0249
AdLate 1645.4522  0.0206
Adnighteffect -898.0642  0.0215
Adpeak 1020.6546  0.0090
CateReasonhighrisk -1799.7172  0.0968
CateReasonlowrisk 2038.6945 0.0166
CateReasonMalignant neoplasm of oesophagus 4443.7181 0.0638
CateReasonothers 883.8303  0.3771

CateReasonPancreatic or pancreato-duodenal tumour  1753.7319 0.7082
CateReasonPneumonia, no organism isolated 3275.0813 0.0206

Continued on next page
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Table E.2 — continued from previous page

Estimate  P-Value
CateReasonPrimary lung tumour 2523.5668 0.1711
CateReasonSecondary hepatic tumour -3852.8535 0.0444
EMELEM 1884.0035  0.0065

Table E.6: HC estimations of LoS1 prediction (non-late unplanned admissions)

Estimate  P-Value
(Intercept) 1090.7654  0.4532
ICNARC.score 179.0387  0.0000
P2 _system?2 -1444.0783 0.1272
P2_system3 1935.9305  0.0548
P2_system4 -1866.8751 0.0521
P2_systemb -587.1093 0.5284
P2_system6 -3854.6837  0.0000
P2_system7 -1933.7139  0.0238
P2_system8 -3575.4481 0.0000
P2_system9 -4234.4027  0.0000
P2_system10 -1306.3303  0.3084
P2 _system11 -2837.4182 0.0437
disnonlevel3 2514.9650  0.0307
dislevell 25006.2389  0.0015
SourceB -2556.7553  0.0017
SourceD 1429.5945  0.0714
SourceF 1784.6302  0.0466
SourceZ 3483.1890  0.0910
Adnighteffect -930.6813  0.0293
CateReasonhighrisk -1253.3722 0.2887
CateReasonlowrisk 2750.9457 0.0037

Continued on next page
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Table E.6 — continued from previous page

Estimate  P-Value
CateReasonMalignant neoplasm of oesophagus 4693.5802 0.1815
CateReasonothers 1762.9331 0.1258
CateReasonPancreatic or pancreato-duodenal tumour 21407.0812 0.1618
CateReasonPneumonia, no organism isolated 3090.6286 0.0644
CateReasonPrimary lung tumour 3756.5433 0.0484
CateReasonSecondary hepatic tumour -2773.4819  0.1912
EMELEM 1508.9002  0.0294
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Table E.3: HC estimations of LoS1 prediction (unplanned peak admissions)

Estimate  P-Value
(Intercept) -1261.6386 0.6059
ICNARC.score 177.3176 0.0000
P1 1795.0106 0.0887
P2_system2 -2601.0603 0.0044
P2 _system3 3008.6898 0.0045
P2 _system4 -2948.5709 0.0010
P2 _systemb 431.5099 0.7125
P2_system6 -3976.4983 0.0000
P2 _system7 -1843.9867 0.0219
P2 _system8 -2981.6722 0.0092
P2 _system9 -4888.4383 0.0000
P2 _system10 -1172.9922 0.5343
P2_system11 -4394.7610 0.0097
P2 _system12 4010.6691 0.0000
disnonlevel3 4067.4502 0.0071
dislevell 25416.9137 0.0156
SourceB 189.8091 0.8626
SourceD 1137.3009 0.1908
SourceF 1245.0272 0.2894
SourceZ 6080.7106 0.0249
AdLate 2380.1204 0.0145
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Table E.4: HC estimations of LoS1 prediction (unplanned off-peak admissions)

Estimate  P-Value
(Intercept) 3245.8672  0.2138
ReadmissionYes 2534.4617 0.1043
ICNARC.score 399.0663  0.0000
ICNARC.probability -104.5019  0.0001
P1 1718.8234  0.0655
P2 _system2 -2096.5840  0.1436
P2 _system3 1156.1528  0.3666
P2_system4 -4224.3067 0.0002
P2 _systemb -2566.0761 0.0214
P2 _system6 -4895.0182  0.0000
P2_system7 -2372.8027  0.0714
P2_system8 -3805.0947 0.0099
P2 _system9 -4046.1930  0.0019
P2_system10 -2919.1225  0.0555
P2_system11 -2868.4239  0.0421
adnonlevel3 -1203.4091 0.3866
dislevell 26972.8675  0.0219
AdLate 1810.5530  0.0058
Adnighteffect -1383.3667  0.0251
CateReasonhighrisk -2359.2592 0.0537
CateReasonlowrisk -1619.8509  0.1478
CateReasonMalignant neoplasm of oesophagus 1081.0154 0.7477
CateReasonothers -3260.8797 0.0108
CateReasonPancreatic or pancreato-duodenal tumour -7066.6024 0.0001
CateReasonPneumonia, no organism isolated 1563.4565 0.4189
CateReasonPrimary lung tumour 750.2530  0.8315
CateReasonSecondary hepatic tumour -7817.5009 0.0000

Table E.5: HC estimations of LoS1 prediction (non-late planned admissions)

Estimate  P-Value

(Intercept) 1348.8895  0.2062
ICNARC.score 389.1853  0.0000
adlevell 17974.7529 0.0578

adPA_1 -1729.8700  0.1142
dislevell 10744.8414  0.0900
Adnighteffect 799.7125 0.0283
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Table E.7: HC estimations of LoS1 prediction (late admissions & readmissions )

Estimate  P-Value

(Intercept) 2474.6929  0.0726
ReadmissionYes 2894.3000 0.0295
ICNARC.score 248.9715 0.0000

dislevell 32867.8597  0.0889
SourceB -1510.2313 0.3952
SourceD 1644.5010 0.2119
SourceF -1785.4097 0.4104
SourceZ 7689.5402 0.0056
Adpeak 1911.4268 0.0303
AdWeffect -1698.9116 0.0600

Table E.8: R-squared of LoS1 Prediction Models

R-squared Adjusted R-squared Adjusted
(training) R-squared (testing) R-squared
(training) (testing)
planned 0.1597 0.1561 0.1378 0.1303
unplanned 0.1209 0.1086 0.0884 0.0627
unplanned peak 0.1158 0.1031 0.0887 0.0621
unplanned off-peak 0.1452 0.1217 0.0540 0.0017
non-late planned 0.1019 0.0990 0.0899 0.0838
non-late unplanned 0.1077 0.0940 0.0706 0.0423
late & readmission 0.0734 0.0611 0.0412 0.0344
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E.2 LoS2

LoS2: all admissions discharged alive and admissions discharged died after 8hr of admissions

Table E.9: HC estimations of LoS2 prediction (planned admissions)

Estimate  P-Value

(Intercept) -5069.9925  0.3728
ICNARC.score 464.9260  0.0000
adlevell 20510.1318  0.0236
SourceB -1360.6109  0.6894
SourceD 2676.2084  0.5111
SourceF -1979.8834  0.6752
SourceZ 7197.8671 0.0803
Adnighteffect 1011.4391 0.0090
CateReasonhighrisk 1962.8286 0.7697
CateReasonlowrisk 5150.7691 0.4486
CateReasonMalignant neoplasm of oesophagus 7423.0020 0.2767
CateReasonothers 4835.6766 0.4754
CateReasonPancreatic or pancreato-duodenal tumour  5926.3393 0.3849
CateReasonPneumonia, no organism isolated 1370.7508 0.8472
CateReasonPrimary lung tumour 4777.7570 0.4839
CateReasonSecondary hepatic tumour 4604.6274 0.4988

Table E.10: HC estimations of LoS2 prediction (unplanned admissions)

Estimate  P-Value

(Intercept) -2226.6918  0.2862
ICNARC.score 226.3710 0.0000
P1 1929.4104  0.0206
P2_system?2 -1560.9896 0.0612
P2_system3 2059.2333 0.0170
P2_system4 -2641.6329 0.0014
P2_systemb -562.4987  0.5000
P2_system6 -3791.6358 0.0000
P2 _system7 -2193.4743  0.0030
P2_system8 -2894.5055 0.0014
P2_system9 -4096.5438 0.0000

Continued on next page



Table E.10 — continued from previous page

Estimate  P-Value

P2_system10 -1388.8386  0.3484
P2_system11 -3737.8326  0.0037
P2_system12 4831.3053  0.0000
dislevell 24865.6025  0.0020
SourceB -1069.2258  0.2295
SourceD 1263.1642  0.0574
SourceF 1641.5857  0.0643
SourceZ 4018.8742  0.0329
AdLate 1771.3225 0.0140
Adnighteffect -789.0015  0.0464
Adpeak 1033.9584  0.0086
CateReasonhighrisk -1577.7042  0.1784
CateReasonlowrisk 2279.6928 0.0095
CateReasonMalignant neoplasm of oesophagus 4956.1280 0.0371
CateReasonothers 1148.8451 0.2676

CateReasonPancreatic or pancreato-duodenal tumour  3136.4658 0.5332

CateReasonPneumonia, no organism isolated 3449.6735 0.0159
CateReasonPrimary lung tumour 2535.7563 0.1746
CateReasonSecondary hepatic tumour -3688.6147  0.0743
EMELEM 1961.6960  0.0039

Table E.14: HC estimations of LoS2 prediction (non-late unplanned admissions)

Estimate  P-Value

(Intercept) 2825.1148  0.2506
ICNARC.probability 55.0022  0.0000
P2 _system?2 -1138.7478 0.2549
P2_system3 1837.0462  0.0737

Continued on next page
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Table E.14 — continued from previous page

Estimate  P-Value
P2_system4 -2034.1077  0.0405
P2_systemb -770.5406  0.4292
P2_system6 -4128.4268  0.0000
P2 _system7 -1897.0862  0.0290
P2_system8 -3477.4225  0.0001
P2_system9 -4139.8923  0.0000
P2_system10 -1484.9921 0.2642
P2_system11 -2409.5210  0.0978
adnonlevel3 -4226.8478 0.0246
adPA_1 -3348.5814  0.0287
disnonlevel3 5924.8535  0.0014
dislevell 24610.3466  0.0023
disPA 3490.8101 0.0262
SourceB -2889.4687  0.0009
SourceD 1191.1994  0.1384
SourceF 2147.9370  0.0202
SourceZ 3266.5389  0.1273
Adnighteffect -989.2815  0.0225
CateReasonhighrisk -524.2728  0.6926
CateReasonlowrisk 3722.1052 0.0006
CateReasonMalignant neoplasm of oesophagus 5483.0504 0.1333
CateReasonothers 2579.0674  0.0410
CateReasonPancreatic or pancreato-duodenal tumour 22665.3513 0.1224
CateReasonPneumonia, no organism isolated 4132.9678 0.0164
CateReasonPrimary lung tumour 4259.6939  0.0353
CateReasonSecondary hepatic tumour -1687.9946  0.4804
EMELEM 1642.3606  0.0237
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Table E.11: HC estimations of LoS2 prediction (unplanned peak admissions)

Estimate  P-Value
(Intercept) -2028.9007 0.4115
ICNARC.score 218.2505 0.0000
P1 1944.5203 0.0678
P2 _system?2 -2147.2728 0.0212
P2_system3 2967.2722 0.0054
P2 _system4 -2977.8541 0.0010
P2 _systemb 393.1968 0.7360
P2_system6 -3931.4739 0.0000
P2 _system7 -1943.0799 0.0153
P2_system8 -3063.0243 0.0068
P2 _system9 -4319.7784 0.0002
P2_system10 -1201.3848 0.5275
P2_system11 -4184.7424 0.0228
P2 _system12 3706.3141 0.0002
disnonlevel3 3736.5807 0.0140
dislevell 22909.7420 0.0280
SourceB 425.0103 0.7022
SourceD 1314.6399 0.1324
SourceF 1178.0966 0.3344
SourceZ 6409.0780 0.0230
AdLate 2200.2073 0.0251
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Table E.12: HC estimations of LoS2 prediction (unplanned off-peak admissions)

Estimate  P-Value
(Intercept) 5771.4034 0.0000
ICNARC.score 214.9902 0.0000
Days.between.hospital.and.unit.admit 48.1673 0.1318
P2_system?2 -3251.1759 0.0100
P2_system3 -1306.2308 0.2203
P2_system4 -5470.7438 0.0000
P2_systemb -3478.1613 0.0005
P2_system6 -4363.6039 0.0000
P2_system7 -3692.8790 0.0017
P2_system8 -3989.4280 0.0019
P2 _system9 -6933.6650 0.0000
P2_system10 -3842.4240 0.0045
P2_system11 -5275.4391 0.0010
dislevell 30113.9367 0.0123
SourceB -184.6192 0.8560
SourceD 1531.9059 0.0643
SourceF -133.7342 0.9063
SourceZ -242.7018 0.8739
Adnighteffect -1561.8638 0.0102

Table E.13: HC estimations of LoS2 prediction (non-late planned admissions)

Estimate  P-Value

(Intercept) -5315.6386  0.2722
ICNARC.probability 212.1659  0.0000
adlevell 17974.8402 0.0544
SourceB 4538.8507  0.2710
SourceD 9029.1670  0.1037
SourceF -1506.5462 0.7606
SourceZ 6341.0117  0.1909
Adnighteffect 957.1692  0.0088
CateReasonhighrisk 4576.5898 0.5429
CateReasonlowrisk 3740.2379 0.6294
CateReasonMalignant neoplasm of oesophagus 7106.8574 0.3613
CateReasonothers 3827.3671 0.6213
CateReasonPancreatic or pancreato-duodenal tumour  4329.4761 0.5780
CateReasonPneumonia, no organism isolated 62.3912 0.9936
CateReasonPrimary lung tumour 3786.2141 0.6271
CateReasonSecondary hepatic tumour 3124.8120 0.6879
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Table E.15: HC estimations of LoS2 prediction (late admissions & readmissions )

Estimate  P-Value

(Intercept) 1172.4021  0.4793
ICNARC.score 276.7212 0.0000
disnonlevel3 3719.8814 0.0914
dislevell 32584.9076 0.1006
SourceB 1090.0885 0.4553
SourceD 2211.7599 0.0868
SourceF -1913.3834 0.3672
SourceZ 8344.0028 0.0036
AdWeffect -1719.7953 0.0602

Table E.16: R-squared of LoS2 Prediction Models

R-squared Adjusted R-squared Adjusted
(training) R-squared (testing) R-squared
(training) (testing)
planned 0.1854 0.1778 0.1690 0.1532
unplanned 0.1281 0.1168 0.1034 0.0799
unplanned peak 0.1257 0.1129 0.1103 0.0838
unplanned off-peak 0.1285 0.1116 0.0723 0.0365
non-late planned 0.0967 0.0878 0.0763 0.0576
non-late unplanned 0.0988 0.0831 0.0592 0.0265
late & readmission 0.1303 0.1203 0.0613 0.0377
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E.3 LoS3

LoS3: all admissions discharged alive

Table E.17: HC estimations of LoS3 prediction (planned admissions)

Estimate  P-Value
(Intercept) -2596.7652  0.6933
ICNARC.score 460.5571 0.0000
adlevell 12315.7402  0.1171
SourceB -710.5379  0.8486
SourceD 4873.2081 0.2743
SourceF 92.6470 0.9870
SourceZ 9278.6475 0.0442
Adnighteffect 1033.5056  0.0034
CateReasonhighrisk -817.8441 0.9221
CateReasonlowrisk 1954.3247  0.8074
CateReasonMalignant neoplasm of oesophagus 3743.3899 0.6411
CateReasonothers 1613.9216 0.8399
CateReasonPancreatic or pancreato-duodenal tumour  3005.5783 0.7081
CateReasonPneumonia, no organism isolated -472.5579 0.9535
CateReasonPrimary lung tumour 1063.3437 0.8946
CateReasonSecondary hepatic tumour 1606.7119 0.8412
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Table E.18: HC estimations of LoS3 prediction (unplanned admissions)

Estimate  P-Value
(Intercept) -3236.2235  0.1276
ICNARC.score 551.8265 0.0000
P1 1793.1423 0.0357
P2_system?2 -2039.4448 0.0111
P2_system3 2415.9790 0.0048
P2 _system4 -2871.1843 0.0001
P2_systemb -110.7909 0.8811
P2 _system6 -3345.5565 0.0000
P2_system7 -3087.7421 0.0000
P2 _system8 -4371.6745 0.0000
P2_system9 -5628.5518 0.0000
P2_system10 -147.5933 0.9120
P2_system11 -3452.1493 0.0051
P2_system12 1096.9791 0.1646
adPA -1836.7662 0.1557
dislevell 25177.7595 0.0016
SourceB 344.5349 0.7020
SourceD 1313.4691 0.0629
SourceF -938.2964 0.4505
SourceZ 5132.4576 0.0235
AdLate 1546.5178 0.0432
Adpeak 1003.4322 0.0200

257



Table E.19: HC estimations of LoS3 prediction (unplanned peak admissions)

Estimate P-Value

(Intercept) -1675.7920  0.5195
ICNARC.score 535.3744 0.0000
P1 1932.3523 0.0755
P2_system2 -1576.9885 0.0881
P2 _system3 3284.4466 0.0029
P2 _system4 -2249.3671 0.0285
P2 _systemb 427.5900 0.6685
P2_system6 -3517.2465 0.0002
P2_system?7 -2451.9245 0.0018
P2_system8 -4714.5394 0.0000
P2_system9 -4586.1451 0.0002
P2 _system10 1253.9494 0.4602
P2_system11 -3305.2025 0.0319
P2 _system12 1852.6582 0.0623
adlevell -18243.5778 0.0530
dislevell 25964.3307  0.0115
disPA -2906.0300 0.0652
SourceB 295.4345 0.7931
SourceD 1146.7816 0.2172
SourceF 435.4293 0.7931
SourceZ 8618.7113 0.0053
AdLate 2120.4003 0.0377

258



Table E.20: HC estimations of LoS3 prediction (unplanned off-peak admissions)

Estimate  P-Value
(Intercept) -291.7821  0.8208
ICNARC.score 585.2170 0.0000
P2 _system?2 -2657.6543 0.0748
P2 _system3 390.8547 0.7410
P2_system4 -4138.7584 0.0000
P2 _systemb -851.8743 0.4066
P2_system6 -3507.1583 0.0009
P2 _system7 -4285.5190 0.0001
P2_system8 -3931.7359 0.0030
P2 _system9 -7562.8804 0.0000
P2_system10 -4021.9252 0.0216
P2_system11 -2210.0150 0.1971
dislevell 28510.7589 0.0413
SourceB -554.0524 0.6443
SourceD 1476.8889 0.1295
SourceF -3446.4756 0.0484
SourceZ -2439.9990 0.1762
Adnighteffect -1173.9985 0.0935

Table E.21: HC estimations of LoS3 prediction (non-late planned admissions)

Estimate  P-Value
(Intercept) -5697.2946  0.3826
ICNARC.probability 267.6023  0.0000
adPA_1 -1714.6804  0.0669
dislevell 9839.1209  0.0878
disPA 1402.4113  0.1924
SourceB 6841.0427  0.2514
SourceD 10664.7436  0.1186
SourceF -692.5031 0.9240
SourceZ 9227.3691 0.1885
Adnighteffect 998.6089  0.0018
CateReasonhighrisk 5150.8331 0.6245
CateReasonlowrisk 1673.0144  0.8661
CateReasonMalignant neoplasm of oesophagus 4436.5750 0.6551
CateReasonothers 1670.1713 0.8661
CateReasonPancreatic or pancreato-duodenal tumour  2592.7678 0.7942
CateReasonPneumonia, no organism isolated -1948.6858 0.8444
CateReasonPrimary lung tumour 1146.1702 0.9082
CateReasonSecondary hepatic tumour 1436.8145 0.8851
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Table E.22: HC estimations of LoS3 prediction (non-late unplanned admissions)

Estimate  P-Value
(Intercept) -2065.3335  0.3383
ICNARC.probability 191.7318  0.0000
P2 _system2 -926.1391 0.4049
P2_system3 2276.9627  0.0388
P2 _system4 -1289.0519  0.2449
P2_systemb -390.8986  0.6773
P2 _system6 -2989.6805  0.0003
P2_system7 -1922.2688  0.0122
P2_system8 -3116.4204 0.0004
P2_system9 -5033.0823  0.0000

-512.4822 0.6781
-1584.7300 0.3076

P2_system10
P2_system11

adPA_1 -2138.1138  0.1240
dislevell 29119.4910  0.0012
Adnighteffect -902.2622  0.0711
CateReasonhighrisk 1138.0407  0.5959
CateReasonlowrisk 7180.6632 0.0000
CateReasonMalignant neoplasm of oesophagus 10441.7518 0.0077
CateReasonothers 6491.4538 0.0001

CateReasonPancreatic or pancreato-duodenal tumour 25960.6091 0.0805
CateReasonPneumonia, no organism isolated 6830.8335 0.0007
CateReasonPrimary lung tumour 8697.8933  0.0001
CateReasonSecondary hepatic tumour 3707.6124  0.0933
EMELEM 1362.5733  0.0447
EMELNR 3159.1158  0.0002

Table E.23: HC estimations of LoS3 prediction (late admissions & readmissions )

Estimate  P-Value

(Intercept) -3688.2875  0.0507
ICNARC.score 665.7807  0.0000
SourceB 1032.4004 0.4820
SourceD 2389.1071 0.0795
SourceF -5444.5773 0.0667
SourceZ 9846.7441 0.0008
AdWeekday?2 788.5010  0.6357
AdWeekday3 3998.9219 0.0512
AdWeekday4 3927.6491 0.0625
AdWeekdayb 154.2060 0.9311
AdWeekday6 -888.2272 0.5398
AdWeekday7 -1223.7807 0.4223
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Table E.24: R-squared of LoS3 Prediction Models

R-squared Adjusted R-squared Adjusted
(training) R-squared (testing) R-squared
(training) (testing)
planned 0.2246 0.2172 0.1829 0.1669
unplanned 0.2430 0.2343 0.2122 0.1946
unplanned peak 0.2550 0.2409 0.2261 0.1970
unplanned off-peak 0.2566 0.2384 0.1639 0.1247
non-late planned 0.1878 0.1735 0.1403 0.1108
non-late unplanned 0.1303 0.1203 0.1136 0.0928
late & readmission 0.1303 0.1203 0.1136 0.0928
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Appendix F

Arrivals at the ICU

Table F.1: The VMRs of day time intervals for unplanned arrivals

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
1.656 1.0963 1.1513 1.1804 1.1819  1.1804 1.1243

Table F.2: The VMRs of half day time intervals for unplanned arrivals

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Day Shift 0.9813 1.0838 0.9511 1.2278 1.0789  1.0376 1.1048
Night Shift | 1.2575 1.0214 1.1661 1.1293 1.1382  1.3000 1.0199

Table F.3: EDF of admission hour of planned arrivals

Arrival Hour (t) 0 1 2 3 4 5
P(X <t) 0.0206 0.0305 0.0370 0.0399 0.0416 0.0440
Arrival Hour (t) 6 7 8 9 10 11
P(X <t) 0.0473 0.0477 0.0494 0.0519 0.0572 0.0646
Arrival Hour (t) 12 13 14 15 16 17
P(X <t) 0.0708 0.0893 0.1247 0.1860 0.2794 0.4169
Arrival Hour (t) 18 19 20 21 22 23
P(X <t) 0.5761 0.7272 0.8366 0.8996 0.9564 1.0000
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Figure F.1: Numbers of planned arrivals (weekdays)
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Appendix G

Input Uncertainties
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Figure G.1: Planned arrival sampling (Tuesday)
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Figure G.2: Planned arrival sampling (Wednesday)
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Figure G.3: Planned arrival sampling (Thursday)
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Figure G.5: Planned arrival sampling (Sunday)

Table G.1: Bootstrap statistics of nights (planned) in the ICU

original bias standard error 95% CI
Mean 3.4441 27207 x 1073 0.0953 (3.2601, 3.6335)
Variance 20.5577 -0.0809 2.6876 (15.3710, 25.9062)
Max 54 -3.2250 4.3247 (48.7487, 65.7013)
Nights>20 (%) | 0.0174  6.0461 x 1075 2.6613 x 1073  (0.0122, 0.0227)
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Figure G.7: Nights (late/re-admission) in the ICU re-sampling
Table G.2: Bootstrap statistics of nights (late/re-admission) in the ICU
original bias standard error  95% CI
Mean 7.4185 2.7809 x 1072 0.2725 (6.8816, 7.9498)
Variance 73.2210 -0.1693 7.2913 (59.0996, 87.6810)
Max 64 -2.3930 4.2674 (58.0290, 74.7570)
Nights>20 (%) | 0.0747  2.4754 x 107% 8.2999 x 1073 (0.0581, 0.0907)
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Figure G.8: Discharge hour (survivors) in the ICU re-sampling
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Figure G.9: ICNARC probability (planned) re-sampling

Table G.3: Bootstrap statistics of ICNARC probability (planned)

original bias standard error  95% CI
Mean 5.1179  —4.1697 x 1073 0.1786 (4.7721, 5.4721)
Variance | 72.5388 -0.2034 10.2213 (52.7087, 92.7756)

268

resample_2

resample_5

resample_1
resample_2
resample_3
resample_4

resample_5



0.020-

0.015- sample
origin
> || resample_1
g 0.010- resample_2
b L
ke resample_3
resample_4
0.005- resample_5
0.000-
Ll Ll Ll Ll Ll
0 25 50 75 100

ICNARC probability (late)

Figure G.10: ICNARC probability (late) re-sampling

Table G.4: Bootstrap statistics of ICNARC probability (late)

original  bias standard error  95% CI
Mean 34.9370  -0.0308 1.0011 (28.5546, 30.7968)
Variance | 785.3171 -1.2199 31.0932 (725.5955, 847.4785)
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Figure G.11: ICNARC probability (readmission) re-sampling

Table G.5: Bootstrap statistics of ICNARC probability (readmission)

original  bias standard error  95% CI
Mean 25.5304  —5.1682 x 10~° 1.5787 (22.4364, 28.6246)
Variance | 513.4311 -3.0625 50.5814 (417.3559, 615.6312)
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Appendix H

Results for Scenario Tests

H.1 Scenarios 6: serving pandemic arrivals
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Figure H.1: Queue of pandemic arrivals (scenario[mild] with PP arrival)
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Figure H.2: Queue of pandemic arrivals (scenario[mild] with NHPP arrival)
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Figure H.3: Queue of pandemic arrivals while changing nurse number (scenario[mild] with
NHPP arrival)
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Figure H.4: Queue of pandemic arrivals (scenario[likelyl] with PP arrival)
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Figure H.5: Queue of pandemic arrivals (scenario[likelyl] with NHPP arrival)
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Figure H.6: Queue of pandemic arrivals while changing nurse number (scenariollikely1] with
NHPP arrival)
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Figure H.7: Queue of pandemic arrivals (scenario[likely2] with PP arrival)
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Figure H.8: Queue of pandemic arrivals (scenario[likely2] with NHPP arrival)
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Figure H.9: Queue of pandemic arrivals (scenario[likely3] with PP arrival)
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Figure H.10: Queue of pandemic arrivals (scenario[likely3] with NHPP arrival)
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Figure H.11: Queue of pandemic arrivals (scenario[worst] with PP arrival)
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Figure H.12: Queue of pandemic arrivals (scenario[worst] with NHPP arrival)
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Figure H.13: Queue of pandemic arrivals while changing nurse number (scenario[worst] with
NHPP arrival)

274



H.2 Scenarios 6: influence on the ICU (epidemic-mild)
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Figure H.14: Use of resources (scenario[mild] with PP arrival)
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Figure H.15: Use of resources (scenariomild] with NHPP arrival)
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Figure H.16: Use of resources while changing nurse number (scenario[mild] with NHPP

arrival)

H.3 Scenarios 6: influence on the ICU (epidemic-likely1)
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Figure H.17: Use of resources (scenario[likelyl] with PP arrival)
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Figure H.18: Use of resources (scenario[likelyl] with NHPP arrival)
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Figure H.19: Use of resources while changing nurse number (scenario[likelyl] with NHPP
arrival)

H.4 Scenarios 6: influence on the ICU (epidemic-likely?2)
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Figure H.20: Use of resources (scenario[likely2] with PP arrival)
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Figure H.21: Use of resources (scenario[likely2] with NHPP arrival)
H.5 Scenarios 6: influence on the ICU (epidemic-likely3)
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Figure H.22: Use of resources (scenario|likely3] with PP arrival)
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Figure H.23: Use of resources (scenariollikely3] with NHPP arrival)

H.6 Scenarios 6: influence on the ICU (epidemic-worst)
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Figure H.24: Use of resources (scenario[worst] with PP arrival)
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Figure H.25: Use of resources (scenario[worst] with NHPP arrival)
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Figure H.26: Use of resources while changing nurse number (scenario[worst] with NHPP
arrival)
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