
 

University of Southampton Research Repository 
Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are 
retained by the author and/or other copyright owners. A copy can be downloaded for personal non-
commercial research or study, without prior permission or charge. This thesis and the 
accompanying data cannot be reproduced or quoted extensively from without first obtaining 
permission in writing from the copyright holder/s. The content of the thesis and accompanying 
research data (where applicable) must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the copyright holder/s.  

When referring to this thesis and any accompanying data, full bibliographic details must be given, 
e.g.  

Thesis: Author (Year of Submission) "Full thesis title", University of Southampton, name of the 
University Faculty or School or Department, PhD Thesis, pagination.  

Data: Author (Year) Title. URI [dataset] 

 

 

 

 

 

 

 

 

 

 

 





 

 

 

UNIVERSITY OF SOUTHAMPTON 

FACULTY OF MEDICINE  

Clinical and Experimental Sciences 

 

 

Proteomic Discovery and Validation of Diagnostic Plasma Biomarkers for Pulmonary 

Tuberculosis  

https://doi.org/10.5258/SOTON/T0009 

by 

Diana Jazmín Garay Baquero 

 0000-0002-9450-8504 

 

Thesis for the degree of Doctor of Philosophy  

November 2018 





 

 

ABSTRACT 

 

Despite more than a century fighting against tuberculosis, the World Health Organisation has 

estimated that around 1.7 million people died of tuberculosis in 2016 and over a quarter of the 

world’s population is infected (1). One of the critical hurdles for stopping tuberculosis transmission 

is early and effective diagnosis of patients with the active pulmonary disease. Although important 

innovations in molecular diagnosis have been recently developed (e.g. Xpert MTB/RIF, Cepheid Inc., 

USA), there are no suitable tests for population screening at point-of-care (2, 3). The current 

tuberculosis diagnosis pipeline presents a highly variable performance and requires access to 

reference laboratory facilities (3). A non-sputum based rapid test with high specificity and sensitivity 

could save ~400,000 lives per year (4). Therefore, new biomarkers for diagnosis are urgently 

required for identifying patients with early symptoms and to expedite treatment. Variable sensitivity 

and specificity can be overcome using a combination of multiple biomarkers (5). Proteins, as 

ultimate biological effectors, are ideal candidates for diagnostic biomarkers; consequently, 

proteomic studies are a crucial platform for biomarker discovery in tuberculosis. This work aims to 

develop a multi-marker panel for tuberculosis diagnosis with high performance capable of 

differentiating tuberculosis patients from relevant controls. Quantitative Multidimensional Protein 

Identification Technology (qMudPIT) is applied for biomarker discovery identifying candidates for 

early diagnosis of tuberculosis. The multidimensional method optimised in this work led to the 

identification of 5022 plasma proteins and 3577 quantified proteins using iTRAQ labelling. Known 

and completely novel markers for active tuberculosis in plasma were identified including a peptide 

derived from Mycobacterium tuberculosis. Complementary statistical and bioinformatic analysis 

were applied to prioritise candidates for validation in one or two independent cohorts. The plasma 

proteomic profile here described represents a power strategy for biomarker discovery and the panel 

proposed has the potential to be translated to a rapid test and which might contribute to tuberculosis 

control. 
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CHAPTER 1 

 

Introduction 

 

Overview of PhD 

Pulmonary tuberculosis is a highly infectious communicable disease that has accompanied humanity 

for centuries and still today claims over 1.7 million lives per year (1), more than any other infection. 

In spite of decades of efforts and scientific progresses in this field, around a quarter of world’s 

population is infected and the strategies of control and elimination are insufficient (6-8). 

Mycobacterium tuberculosis (Mtb), an obligate human pathogen, is the etiological cause of 

tuberculosis. The host-pathogen interaction is highly complex and often results in a wide dynamic 

spectrum of heterogeneous clinical outcomes. However, from a public health and clinical 

perspective, tuberculosis patients are classified into one of two groups: latent disease that can persist 

asymptomatically for lifetime and active tuberculosis, which is the most infectious stage when 

pulmonary (9, 10). Subsequent to M. tuberculosis infection, most individuals will contain the 

infection as latent disease and only 5-10% will develop reactivation leading to the active tuberculosis 

(11). M. tuberculosis bacilli are transmitted directly between individuals through the airways when 

an individual inhales an infective aerosol generated by coughing of a patient with active pulmonary 

tuberculosis (12).  Consequently, the M. tuberculosis transmission cycle relies completely on patients 

with active pulmonary tuberculosis and the rapid diagnosis of this population is a potentially effective 

constraining step to control the disease. 

According to the latest World Health Organisation (WHO) report, in 2016, an estimated of 10.4 

million people developed active tuberculosis, of whom over  died. The incidence of tuberculosis is 

heterogeneously distributed; the 30 highest burden countries including India, Indonesia, China, the 

Philippines and Pakistan accounted for 87% of all worldwide incidence cases (1). Figure 1A presents 

the global distribution of tuberculosis incidence presented as incidence per 100000 population per 

year. Estimates of incidence disaggregated by sex and age are shown in Figure 1B. Most cases occur 

during productive age, which exerts a considerable pressure on economies of high burden countries. 

The WHO estimated that the global economic burden of tuberculosis is approximately $12 billion 

yearly due to a 30% decline in average productivity among the population with the active disease 

(13).   
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A. 

 

B. 

 

Figure 1. Tuberculosis global incidence  

A. WHO estimated tuberculosis incidence cases of the active disease in 2016 relative to 100000 population 

per year (incidence rate) B. Tuberculosis incidence disaggregated by sex and age. Black line represents global 

estimate, purple incidence in women and turquoise in men. Adapted from Global Tuberculosis Report 2017, 

World Health Organisation, figures 3.4 and 3.30  (1) 

The host-pathogen interactions during Mtb infection is heterogeneous, not only in terms of the 

specific immune response, but also in terms of broad variables such as gender and ethnicity that 

significantly modulate some features of the immunopathogenesis (14, 15). Worldwide, reports across 

many countries indicate that tuberculosis notifications are approximately double in men compared 

to women (16). In 2016, 65% of global cases were males (Figure 1B) with a male to female ratio 

(M:F) of bacteriologically confirmed tuberculosis ranging from 1.3 in Ethiopia to 4.5 (in Viet Nam)  

(1). Despite sociocultural differences between countries, biological factors regulating the immune 

response to tuberculosis have been associated to gender. For instance, a genetic association has been 

proposed between tuberculosis and the locus in the X chromosome for the toll-like receptor 8 (TLR8, 

on Xp22) (17). CYBB and IKBKB, two of the nine genes known to correlate with mendelian 

susceptibility to Mtb infection are X-linked and therefore these are only observed in males (18). 

Furthermore, a possible relationship between steroid hormones and tuberculosis (18, 19) has been 

suggested considering that most of immune cells involved in tuberculosis control express specific 

receptors for sex hormones. While the mechanism behind this particular association is poorly 

understood, animal models and clinical observations indicate that the male bias mainly results from 

a biological effect rather than an epidemiological artifact (18).  

Similar to age, ethnicity has been suggested as a host factor associated to differential pathogenesis 

in tuberculosis. For instance, a significantly higher prevalence of tuberculosis among black 

populations has been repeatedly reported in the literature for more than 30 years (20-23). The 

proposed causes of this disparity include differences in comorbidities, socioeconomic status and 
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other environmental and host factors. Although social underpinnings of tuberculosis are known and 

social/health inequities associated to ethnic differences are well recognised in some social settings, 

epidemiological studies adjusting for socioeconomic factors suggest that other host factors contribute 

to the ethnic disparities in tuberculosis. For example, Nahid, P. et al.,  (2011) found that black 

participants were 2-fold more likely to self-report tuberculosis disease (95% confidence interval, 

1.5–2.9) after adjusting for clinical and demographic indicators in a well characterised cohort of 5115 

black and white participants in the United States (21). Additionally, inflammatory profiles of 

tuberculosis patients exhibit an ethnic heterogeneity associated to the host variability rather than the 

Mtb genotype (14, 15).  

Most deaths caused by tuberculosis could be prevented with early diagnosis and appropriate 

treatment. Millions of deaths (53 million in total 2000–2016) are adverted every year due to 

successful detection and treatment of the infection, however there are still considerable gaps in 

diagnosis and treatment (1). The current tuberculosis diagnosis pipeline is focused on passive-case 

finding of active pulmonary tuberculosis and depends upon old and inadequate technologies. 

Therefore, it is widely accepted amongst key stakeholders that early and fast tuberculosis diagnosis 

remains as an urgent challenge to address in order to control this disease (4, 7, 24-26).  

The tuberculosis diagnostic techniques recommended by the WHO have important limitations that 

prevent their application for population screening. For instance, techniques such as microscopy 

examination, culture and Xpert MTB/RF require facilities available in intermediate to reference level 

laboratories (3). A recent survey of several stakeholders identified as a top priority for tuberculosis 

control the development of a non-sputum-based test suitable for point-of-care (POC) based on 

biomarkers or biosignatures (27). Mathematical modelling suggests that development of new 

strategies for vaccination and treatment and the introduction of a POC test are essential to increase 

the current decline of the incidence global rate from 1.5% to 17%/year for 2035 (28). This reduction 

in the incidence rate is required to meet the ambitious targets proposed by 2035 in the WHO’s End 

TB Strategy (29)  and the development of novel POCs will require the discovery and validation of 

new biosignatures.  

Biomarkers are measurable characteristics that allow identification of a particular physiological state 

or process and can be investigated at virtually any level of a biological system (30). Particularly, 

proteins as ultimate biological effectors are reliable markers for disease states especially relevant 

when post-translational processes are driven by pathogenic agents. Non-targeted mass spectrometry 

proteomics is the comprehensive study on a large scale of protein profiles and usually implicates 

identification and quantification of all proteins constituting diverse biomedical specimens (31). 

Therefore, proteomics is an ideal approach for biomarker discovery, frequently on basis of relative 

quantification over a control or healthy state, and the candidates are accordingly defined using fold 

changes in protein expression (32).  In order to quantify a proteome, diverse label-free (spectral 
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counting), chemical isobaric-stable isotope tagging strategies have been developed, such as iTRAQ 

(Isobaric tags for relative and absolute quantitation), TMT (Tandem Mass Tag) or metabolic SILAC 

(Stable isotope labelling by amino acids in cell culture) with subsequent liquid chromatography – 

mass spectrometry (LC-MS) based analysis (31). Combined quantitative techniques and shotgun 

proteomics (non-targeted approaches) allow the unbiased and systems-based interrogation of protein 

profiles resulting from a pathological state in complex biological samples.  

Biological significance and quality of the samples are crucial for biomarker discovery using 

proteomics (5). Although active tuberculosis infection is confined mainly to the lungs, pathological 

progression may be tracked in the peripheral blood. Therefore, analytical matrixes such as plasma 

are ideal for biomarker discovery through proteomics. The ease of collection and biological relevance 

allows the use of plasma as an indicator of the overall physiological state (33). Nevertheless, plasma 

proteomics involves analysis of a highly complex matrix, since plasma exhibits a significant 

variability between individuals and also presents a wide dynamic concentration range of proteins 

spanning twelve orders of magnitude (34).  This challenge has been usually addressed using depletion 

methods; however, depletion can lead to unspecific co-removal of less abundant proteins. 

Accordingly, new analytical methods that avoid depletion will allow larger coverage of the plasma 

proteome and therefore increase the opportunities for discovering novel biomarkers, and such 

approaches include Multidimensional Protein Identification Technique or MudPIT (35). 

Although new and more effective diagnostic tools for tuberculosis will require discovering novel 

biomarkers of the disease, validation of those candidates is crucial for clinical translation. Some 

studies have interrogated the plasma proteome in active tuberculosis using various methods, and have 

suggested that proteins such as, APOCII, CD5L, HABP2, RBP4 S100A9, SOD3, and MMP9 are 

biomarkers (36-38). However, these candidates were only verified or validated in limited cohorts, 

preventing their possible clinical translation (38). Typically biomarker validation is a challenging 

process that involves the evaluation of: sensitivity, specificity, variability, precision, reproducibility, 

accuracy, range of use, limit of detection, and probability of false negatives (39). On the other hand, 

biomarker qualification is aimed to determine the clinical validity of the candidate and implies 

diagnostic accuracy studies (40). Combined efforts in both analytical studies and clinical translation 

will be necessary to deliver a suitable test for tuberculosis population screening critical for 

transmission control of this disease. 

1.1 Tuberculosis 

Tuberculosis (TB) is one of the oldest recorded diseases but still remains as a leading cause of 

mortality in the world (41, 42). 9000-years-old archaeological evidence have demonstrated TB 

lesions in human bones from settlements of the Neolithic period (43). Despite more than a century 

of research, the growing development of a range of antituberculous drugs, the availability of a 

vaccine (BCG) and global strategies implemented to fight this health threat  (44, 45), the latest report 
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in 2017 estimated that 10.4 million people have active TB and  died as a consequence of this disease 

(1).    Therefore, tuberculosis control is lagging far behind other major diseases such as HIV and 

malaria. 

The obligate intracellular pathogen Mycobacterium tuberculosis (Mtb) is the causative agent of 

tuberculosis and was identified for first time by Robert Koch in 1882. Due to the aerobic nature of 

this acid-fast bacillus, it grows most successfully in highly oxygenated tissues, such as the lungs (46).  

Although tuberculosis is mainly a pulmonary disease, the infection may develop as extra-pulmonary 

disease affecting other organs, and it can even involve multiple organs, especially in the context of 

human immunodeficiency virus (HIV) co-infection (47). 

The life cycle of Mtb is initiated when an individual inhales aerosolised bacilli from a patient with 

active pulmonary disease (46, 48). Figure 2 depicts the tuberculosis pathogenesis cycle. After the 

infectious droplets are inhaled and deposited in the alveoli at the well ventilated base of the lungs, 

innate responses are triggered mainly through alveolar macrophages and dendritic cells. Mtb’s ability 

to infect macrophages seems to promote bacterial dissemination (49). Induction of the adaptive 

response is triggered later when dissemination of the mycobacteria to draining lymph nodes occurs, 

and antigen presentation by dendritic cells lead to priming and expansion of effector T cells. 

Granuloma formation is promoted by the migration of these effector cells to the lungs in combination 

with other leukocytes (50).  The granuloma is the hallmark structure of tuberculosis; at its most basic 

is an organised and compact aggregate of epithelioid cells, mainly macrophages that have undergone 

transformation to develop tightly interdigitated cell membranes that link adjacent cells. In 

immunocompetent hosts, the immune response elicits the formation of granulomas, where Mtb is 

successfully contained but not eliminated (48). The initial granulomas may heal, resulting in a 

calcified Ghon focus in the lower portion of the lungs indicating the sites of the primary infection 

(Figure 2).   
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Figure 2. Tuberculosis pathogenesis 

Inhalation of aerosol droplets containing the bacteria Mycobacterium tuberculosis initiates the infection. 

Macrophages take up the bacteria and transport across the alveolar epithelium to the lungs. Subsequent to 

dissemination of bacilli to the draining lymph node, dendritic cell presentation of antigens drives T cell priming 

and expansion of antigen-specific T cells, which migrates to the lung.  Recruitment of activated macrophages, 

T cells, B cells and other leukocytes leads to granuloma establishment. Many different cell populations are 

part of the granulomas, such as dendritic cells, neutrophils, natural killer (NK) cells, B and T cells, fibroblasts 

and cells that secrete extracellular matrix components (51). Infection is mainly contained latently (LTBI) but 

approximately 10% of patients progress to the active state (ATBI) when the bacilli can be coughed up and 

spread (50, 52, 53). 

Classically, diverse clinical phenotypes has been recognised following Mtb infection: primary active 

disease, which is referred as symptomatic primary infection occurring soon after infection; latent 

disease (LTBI), in most cases, around 90%, the infection is contained asymptomatically for life and 

this population constitutes an enormous reservoir of potential transmission.  Around 5% to 10% of 

these latent patients will progress to secondary active disease (ATBI) at any time of their lifetime 

typically as apical pulmonary tuberculosis (48). More recently, tuberculosis has become recognised 
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as a highly heterogeneous disease encompassing a variety of immune responses resulting in a wide 

range of clinical manifestations. These may include: infection with clearance without detectable 

adaptive response, localised immune response not detectable systematically, bacterial persistence 

with active immune control and subclinical active disease (9).   

Considering the range of clinical outcomes resulting from the heterogeneity of the immune responses 

triggered by Mtb infection, diagnosis is highly challenging. Importantly, solely individuals with the 

active disease can transmit the disease since the immune control is disrupted and the bacilli can 

disseminate through the airway.  Symptoms of active disease can range from systemic responses 

such as weight loss, night sweats and fever to cough and haemoptysis in pulmonary disease.  

Radiological examination can show pulmonary abnormalities such as consolidation, cavities and 

thoracic lymphadenopathy. In spite of these overt clinical manifestations, confirming the active state 

is challenging but crucial to break the cycle of transmission. In addition, the clinical presentation of 

active tuberculosis overlaps with diseases such as pneumonia, bronchitis and lung cancer (9). 

1.1.1 Current Diagnostic Pipeline 

The complex biology of tuberculosis has hampered the development of accurate and rapid point-of-

care diagnostic tests, which remains as one of the major hurdles to global control of this disease as 

presented in Figure 3 (54). Currently, the gold standard tests for tuberculosis are laboratory based, 

and the diagnosis can take weeks or even months (55). In latent disease, infection or exposure to Mtb 

can be only demonstrated by the reactivity of the host to Mtb antigens, and until the beginning of this 

century the tuberculin skin test (TST) was the only diagnostic tool available for the LTBI diagnosis.  

This test measures the induration formed after intradermal inoculation of a culture filtrate of Mtb 

known as PPD (Purified Protein Derivate) which contains around 200 antigens of Mtb into the volar 

forearm (9, 11). A delayed-type hypersensitivity reaction is promoted in patients previously exposed 

to Mtb and the size of this reaction is measured 48 to 72 hours after the initial inoculation  (56).   

Although TST is widely used as the clinical applications are well established, it has important 

limitations. TST testing requires two visits to the healthcare centre which results in significant loss 

of readings, it has a limited sensitivity in immunocompromised patients and exhibits cross-reactivity 

with Bacillus Calmette–Guérin (BCG) vaccination and non-tuberculous bacteria (11). Although 

some of these drawbacks have been addressed by antigen-specific interferon-γ (IFN-γ) release assays 

(IGRA) which are performed using peripheral blood after stimulation with culture filtrate protein-10 

(CFP-10) and early secretory antigenic target 6 (ESAT-6), neither TST or IGRA distinguish between 

active and latent stages or estimate the risk of tuberculosis progression to the active disease (11, 55). 

Additionally, IGRA tests require extensive laboratory infrastructure and training. 
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Figure 3. Tuberculosis natural history and diagnostic tools 

Following Mtb-exposure a heterogeneous range of clinical outcomes can take place, ranging from clearance 

of the infection through innate responses leaving no trace of Mtb exposure to symptomatic and infectious active 

disease. Mtb exposure or latent infection is inferred by detecting host’s reactivity to microbial antigens using 

either the tuberculin test (TST) or the IFN-γ release assay (IGRA). However, a positive response will be shared 

with individuals that have cleared the infection through adaptative response reactions. Additionally, patients 

with subclinical disease and active infection will have a positive response to these tests. Conversely, patients 

with disease-induced immunosuppresssion may have negative test results.  Active tuberculosis is diagnosed by 

detecting Mtb through sputum smear and culture. Positive results are highly dependent on bacillary burden 

and therefore sensitivity is highly variable. The pathophysiology complexity of tuberculosis limits the 

performance of the current available diagnostic tools and significantly contributes to underdiagnosis and 

transmission (9, 57).  

The diagnosis of the active disease relies on the detection of the Mtb bacilli or direct products of the 

pathogen. Sputum smear microscopy remains the most common diagnostic test for the active disease 

in low- and middle- income countries, which represent over 90% of the worldwide TB burden (46, 

58). Smear microscopy has particularly variable sensitivity between 32% and 97% and it is unable 
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to distinguish drug-resistant strains (59). Confirmation of TB diagnosis requires culture of bacilli, 

which can take over six weeks. The World Health Organization recommended in 2010 the 

implementation of the Xpert MTB/RIF test for real-time PCR identification of Mtb and rifampicin 

resistance (60). This method is robust, simple and fast, although it requires electrical supply and a 

high initial investment in machines, consumables and infrastructure, which often is not available in 

high TB-burden countries (9, 61, 62). However, the sensitivity of the Xpert assay displays variable 

performance according to the clinical settings (63).  Delayed or missed diagnosis and deficient access 

to high quality healthcare lead to suffering, sequelae, catastrophic financial consequences, higher 

risk of death and critically sustained transmission of infection.  

Various screening algorithms have been developed for children and adults 

(www.who.int/tb/tbscreening). Initial screening for pulmonary tuberculosis includes screening for 

symptoms or screening with chest radiography. These algorithms have different performance and 

depend upon the disease prevalence in the screened population. The screening algorithm 

recommended by the WHO in cases when chest radiography or Xpert MTB/RIF are not available is 

completely based on symptomatology assessment and sputum smear positivity (Figure 2) (64). The 

risk of false-positive diagnosis increases as the prevalence declines, thus accuracy is a crucial when 

the prevalence of tuberculosis is less than 1% in the target population.  

The screening algorithm presented in Figure 4 relies on passive case-finding which is the most 

common strategy in low- and middle-income countries, prioritising treatment success among 

detected cases. However, patients typically only seek treatment when the symptoms have worsened 

and during the time they were unwell prior to diagnosis they are infectious and extensive transmission 

has occurred. Targeted active case-finding and early initiation of treatment are essential for epidemic 

control of tuberculosis, strategies such as FAST (“Finding TB cases Actively, Separating safely, and 

Treating effectively”) has facilitated health-care facilities to implement procedures for reducing the 

duration and risk of exposure to tuberculosis for both health-care workers and patients (65).  
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Figure 4. Screening algorithm in cases where chest radiography and Xpert MTB/RIF are not available 

The sensitivity of this particular algorithm is limited by the use of sputum-smear microscopy as the principal 

diagnostic tool. The specificity of sputum-smear microscopy varies depending on the prevalence of non-

tubercular mycobacteria, gold standard used for assessment, case definition, and the quality of slide 

preparation and reading. Adapted from (64) 

 

Rapid biomarker-based tests that do not depend on detection of the bacilli in sputum could increase 

the accuracy and speed of diagnosis. Therefore, there is an urgent need for developing new 

diagnostics for tuberculosis as it has been estimated that fast and widely available tests, highly 

sensitive (≥85%) and specific (97%), could save around 400,000 lives per annum (4). The ideal 

diagnostic test should be accessible in the point-of-care, giving fast results, working without 

requiring electricity, refrigeration or clean water, and should be easy to operate with minimal training 

(4, 55, 66).  Carefully searching, qualifying and validating biomarkers and new signatures is a pivotal 

task required to meet the needs in tuberculosis diagnosis. However, differentially expressed host 

molecules in different clinical phenotypes are not necessarily qualified biomarkers.  A high number 

of immunological markers have been described as differentiating markers on the basis of general 

exploratory data, but have not been qualified properly (10). 
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1.1.2 Urgency for Novel Diagnostic Tools 

In 2016 the global gap between the new and relapse cases notified and the estimated incidence of 

tuberculosis was 39%, meaning about 4.1 million people were undiagnosed or managed in 

informal/private sectors (1).  This alarming figure has a critical impact on the transmission cycle of 

tuberculosis since most of these individuals remain driving ongoing transmission in their 

communities. The WHO has identified three main factors that determine this gap (1): 

• Under-reporting of detected cases: especially relevant in countries lacking of mandatory 

policies for notification of cases in both public and private sectors. 

• Uncertainty about the levels of tuberculosis incidence: estimation of incidence for 54 

countries presented in the latest WHO report was based on expert opinions rather than direct 

data from surveillance or surveys.   

• Under-diagnosis of tuberculosis cases: poor access to healthcare; absent or mild 

symptomatology that delay individuals to seek healthcare; failure to test for tuberculosis 

when people contact health system; and limited performance of current diagnosis tools.  

Noticeably, the contribution of each one of these factors to the gap of missing cases must considered 

as context-dependent. For instance, in countries with state-of-the-art national surveillance systems 

gaps between the number of notified cases and the tuberculosis incidence could be attributed to 

failure to detect the infection suggesting under-diagnosis. Conversely, in countries where major 

financial or geographical barriers limit the access to healthcare, discrimination of the particular 

contribution of underreporting and under-diagnosis to the gap of missing cases is more challenging 

to define. This epidemiological complexity implies that the effective impact of point-of-care 

diagnostic tools reducing the gap of missing cases might be maximised in contexts where under-

diagnosis is the major responsible for missing cases. 

Although significant developments have occurred in diagnostic technologies, many high burden 

countries depend upon antiquated sputum smear microscopy. Worldwide, only 57% of tuberculosis 

cases are confirmed with this tool, which requires a high bacilli burden. Unfortunately, tuberculosis 

is strongly correlated with low-income settings and only low-cost tools available at the decentralised 

level for the communities will efficaciously address the gap of undiagnosed tuberculosis (67, 68).   

Diverse strategies have been explored in order to develop an ideal diagnostic test, which might 

compromise factors such as: immediate results, suitable for point-of-care and widely available for 

any level of the health-system care; ranging from hospital wards, peripheral health posts to outreach 

teams visiting remote locations and within patient’s home. Although standalone diagnostic tools are 

already available for infection diseases such as HIV, malaria, and Chagas’ disease, tuberculosis 

imposes the greatest challenges. The wide range of clinical manifestations of the infection that can 

be produced by even low bacilli loads and occurs in potentially any anatomic site hampers the 

development of this necessary test (69).  
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In addition to Xpert MTB/RIF, there are various tests under development and a limited number of 

them have some potential for use in point-of-care in restricted conditions. Loop-mediated isothermal 

amplification (LAMP), a simplified manual molecular assay for laboratory-based with visual 

colorimetric readout is aimed for resource-limited settings since it only requires a water bath for 

amplification. However specificity was insufficient to be recommended as replacement of 

microscopy (70).  Detection of Mtb antigens are considered a promising diagnostic tool since it may 

reflect mycobacterial burden and it does not relies on the particular immune host’s response.  

Mycobacterial antigens can be detected in urine and the most promising of these is the cell wall 

lipopolysaccharide lipoarabinomannan (LAM). There are already two assays commercially available 

for this antigen: an ELISA based test and a lateral flow test strip for urine. Multiple studies have 

shown that the target population for this assay is HIV-associated TB in patients with advanced 

immunodeficiency, since the underlying mechanism of LAM presence in urine is renal involvement 

with TB following haematogenous seeding (69). Recently, hydrogel technology was used to capture 

LAM in urine of HIV-negative tuberculosis patients allowing for the detection of this antigen at very-

low abundance levels (71). On the other hand, the prospect for a rapid, simple, low-cost and non- 

instrumental assay suitable for all levels of the health system and community has made the serologic 

test very attractive. However, in 2011 WHO issued a negative recommendation against current 

available test as they exhibited a limited accuracy and therefore were of no clinical value (69, 72). 

Nevertheless, serological testing cannot be discouraged and active research is taking place. A better 

understanding of the humoral response to the tuberculosis infection, larger prospective studies and 

better methods for discovery and validation of new target candidates are required for developing new 

tests. 

1.2 Biomarkers and Tuberculosis Diagnosis 

Implementation of biomarkers on translational medicine has the potential of radically improving 

diagnosis, prognosis, treatment and follow-up of disease, which would reduce mortality and 

morbidity burdens and healthcare costs (73, 74).  Additionally, biomarkers can be used as a powerful 

and dynamic approach in randomized clinical trials, analytic and observational epidemiology and 

screening (75). 

1.2.1 Biomarker Definitions and Classification 

It is relevant to distinguish among biomarkers, clinical endpoints and surrogate end points, 

considering their different utility and application in the clinic. A biological marker or biomarker was 

defined by the Biomarkers Definition Working Group (2001) as “a characteristic that is objectively 

measured and evaluated as an indicator of normal biological processes, pathogenic processes, or 

pharmacologic responses to a therapeutic intervention”(76). From a more practical perspective this 

definition is augmented to emphasise its clinical utility. A marker is any physical sign or laboratory 

measurement which substitutes a clinically relevant end point and is expected to predict the effect of 
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therapy (77). Biomarkers, then, include a wide selection of molecules that ranges from gene 

expression products, gene variants, and single nucleotide polymorphisms to proteins, 

polysaccharides, hormones and metabolites.  

On the other hand, a clinical endpoint is defined as a variable or characteristic that reflects how a 

patient functions or feels, or how long is the survival expectancy. A surrogate endpoint is a biomarker 

that intends to substitute for a clinical endpoint. In is expected that if pathophysiological, therapeutic 

or epidemiological or other evidence is used to select a clinical endpoint, this may predict clinical 

benefits harm, or lack of effect (76, 78).  

Classically biomarkers were classified into three groups for the purpose of distinguishing them from 

clinical endpoints, thus enabling debate on application and validation of surrogate end points (78). 

These three groups are: 

• Type 0 biomarkers: Indicate the particular stages of the natural history of a disease and 

correlate longitudinally with established clinical signs, such as symptoms. 

• Type I biomarkers: Enable monitoring and prediction of the effects of a therapeutic 

intervention depending upon the pharmacologic mechanisms and properties of the drug. 

• Type II biomarkers: Considered surrogate endpoints because changes in the marker state 

allows to predict clinical benefits (75-78). 

Despite the efforts made to standardise the terminology describing characteristics, classification and 

application of biomarkers (76, 78), some confusion remains in the scientific literature particularly 

driven by diverse concepts of translational and personalised medicine. However, six categories has 

been proposed from a biomarker-driven decision-making process during disease management (74). 

Figure 5 describes these six groups: stratification, efficacy, differentiation, toxicity, screening and 

prognostic. Suitable diagnostic tools are critical to deliver the potential of clinical biomarkers in the 

clinical practice. 

 
Figure 5. Overview of biomarker categorisation 
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Diverse biomarker classification groups have been proposed according to their characteristics or 

applicability. However, six categories can be defined considering clinical biomarkers utility in a biomarker-

driven decision-making process during disease management. Diagnostic tools encompassing biomarker 

functions are required to deliver their potential in the clinics. Adapted from (74)  

 

1.2.2 Current Screening Biomarker Pipeline 

Although most of the current pipeline of screening biomarker development has been driven by the 

needs and advances in cancer biomarker research, the same rationale can be fully incorporated to any 

other translational need. Simplistically, this pipeline can be described in terms of five phases, which 

intrinsically involve pre-analytical, analytical and post-analytical challenges (79, 80). Accordingly, 

each of these five phases might encompass different validation and verification procedures in order 

to ensure that the required efforts and funding for biomarker development are invested in the most 

promising candidates. Figure 6 outlines the biomarker pipeline structure necessary to develop 

biomarkers from bench-based research to routinely tests at the bedside (79-82). Additionally, it 

presents the main objectives of each phase and some requirements in terms of validation and 

sampling.  

Taking into consideration the main aims of this research, which involve discovery and validation of 

screening biomarkers for tuberculosis, it is necessary to discuss in further detail the phases of 

biomarker development.  Special emphasis will be placed on Phase I, which directly implicates the 

discovery strategies. 

 
Figure 6. Biomarker development pipeline 

This figure summarises the phases of biomarker development and the objectives of each one. Additionally, it 

shows a potential regulatory scenario for a single test accounting for an FDA Co-Developed Products 

document. Adapted from (79, 80, 83) 
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• Phase I – Preclinical Exploratory Studies: Once a clinical need has been identified, 

sufficiently documented and evaluated, the screening biomarker pipeline is initiated with preclinical 

exploratory studies.  Phase I integrates the discovery stage and mainly aims to identify new 

candidates and prioritise them according to its ability to distinguish the diseased condition from 

healthy controls.  There are two complementary biomarker discovery approaches considering the 

underlying research paradigm: (1) ‘Knowledge-based’ (deductive method) and (2) the ‘unbiased’ 

(inductive strategy) (84). However the term ‘Discovery’ is frequently used in the biomarker literature 

to refer an unbiased and semiquantitative process by which the differential expression of specific 

analytes (gene products, gene variants, proteins, metabolites, etc.) between different states is first 

established (81).  High-throughput technologies, when adequately performed, enable the 

simultaneous unbiased assessment of thousands of analytes. Typically the discovery phase is 

executed on a limited number of samples, therefore strictly-defined Standard Operating Procedures 

(SOPs) for sample selection, collection, storage, handling, analysis and data mining (73, 74) are 

critical to define and prioritise the most promising candidates for further validation and qualification.  

Phase II – Clinical Assay Development for Disease Testing: A clinical assay based on a specimen, 

typically the same type used in the discovery phase, is developed at this stage (79). Additionally, an 

analytical validation must be implemented in order to determine the test performance distinguishing 

the diseased condition from healthy controls and its operating conditions. On the other hand, the 

platform used for validation should be reasonably simple ensuring reproducible results within and 

between laboratories.   

The participating cohorts must be carefully stratified and representative of the screening target 

population. The sample size is determined by the requirements of validation and may be large enough 

to allow testing of the null hypothesis H0: that operating characteristics are below target values. A 

biomarker with high level of discrimination, despite  random variation, might have a high probability 

of rejecting the H0 (79). The power calculation will depend on the objective of the test. For instance, 

if the objective of the diagnostic test is to determine whether (or not) a specific biomarker can be 

used as a screening tool; then the validation has to ensure that it has a sufficiently-high degree of 

sensitivity, but a lower degree of specificity can be tolerated. On the other hand, if the test is 

developed as a specific tool to be used as a diagnostic tool, then the validation will usually have to 

target for a high degree of both sensitivity and specificity (85). 

• Phase III – Retrospective Longitudinal Repository Studies: During this stage the biomarker’s 

ability for detecting preclinical disease is evaluated as a function of time. Algorithms for screen 

positivity based on multiple markers can be developed. Effects of cofounding variables including 

demographics and other relevant clinical information on biomarker discriminatory properties are 

described in this stage as well (79). Consequently, the final analytical validation platform for 

screening purposes is designed and its clinical feasibility evaluated. 
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• Phase IV – Prospective Screening Studies:  Importantly this phase involves screening the 

relevant population leading to diagnosis and subsequent treatment, therefore important ethical 

considerations are an integral part of this stage. The operating characteristics of the screening 

biomarker test are evaluated by determining the false referral rate and the detection rate (79).   

• Phase V – Disease Control Studies: This phase aims to establish the net benefit of a screening 

biomarker test on the population. There are various reasons why a good biomarker test might not 

represent an overall benefit for the tested population. Some of them may include political or 

economic reasons such as (a) limited compliance with screening programs or difficulties for 

implementing it in terms of practicality, (b) prohibitive economic costs of the screening itself and the 

diagnostic workup of individuals falsely screened positive (79). 

1.2.3 Biomarker Validation and Qualification 

Emergent high-throughput technologies such as DNA microarrays, RNA-seq, and proteomics 

continuously deliver a myriad of new biomarker candidates annually, notwithstanding only a 

considerably reduced number are routinely utilised in the clinical practice. In 2011, it was estimated 

that from 150000 papers documenting thousands of new biomarkers just fewer than 100, around 

0.07%, were properly validated for its use in the clinics (73). This dramatic figure illustrates the 

highly challenging process of biomarker validation, which should involve strict standardised 

selection, handling, and analysis of specimens as well as large scale studies for validation. 

The biomarker path to routine clinical application is a stepwise process. It involves two general 

phases: Validation or assessment of biomarker performance characteristics and operational 

conditions under which reproducible and accurate data will be obtained. In addition, qualification 

establishes the clinical utility of the biomarkers through an evidentiary process that links biomarkers 

with biological processes and clinical endpoints (39, 40). 

The validation approaches are defined by the type of biomarker that is assessed. Type 0 can be 

validated using longitudinal studies using a well-defined patient population against a gold standard 

validator. Type I must be assessed in parallel with the drug candidate and Type II should link both 

pathophysiology of the disease and the mechanisms of the drug (77). This section is focused on 

diagnosis biomarkers for screening (Type 0) which are relevant for this work. 

Many analytical parameters may be rigorously controlled in the biomarker discovery phase. The 

number of biomarkers that make it through the biomarker pipeline from the bench to the bedside is 

extremely limited. Several factors associated to limitations and pitfalls in biomarker discovery have 

been reported (39, 40, 74, 80, 84, 86-90) and some of them have been summarised in the Figure 7.  
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Figure 7. Common biomarker failure sources and possible solutions 

Overview of the main reasons of potential biomarker failure in achieving adequate specificity and specificity 

required in clinical settings.  The most relevant issues are related to discovery and validation pitfalls. 

Additionally, some potential solutions are presented to address these issues. Adapted from (74, 80) 

 

In terms of the pre-analytical factors, an adequate experimental design is pivotal, which in turn is 

determined by a clearly defined clinical question. Careful consideration must be given to factors such 

as; type of specimen and its pathophysiological relevance to diagnosis, statistical power calculation 

for determining number of samples according to an estimation of the biological and technical 

variability. On the other hand, possible sources of biases must be examined in order to control 

confounding variables and other variability sources. Consequently, comprehensive clinical and 

technical information of patients and samples should be kept, as well as clear criteria of inclusion 

and exclusion of patients defined. As illustration of the effect of these confounding variables on the 

stability of biomarker candidates, several publications have reported that factors such as longitudinal 

variability (aging), sexual dimorphism, genetic background (i.e. race) and environmental conditions 

influence the expression of plasma proteins and metabolites subpopulations (74, 91, 92).  

Although this scenario stresses the importance of detailed SOPs for sample collection, selection, 

handling and storage, it has been reported that failures at this stage are worryingly frequent in 

discovery studies and substantially impairs successful biomarker development (73, 74, 80, 87). 

The study execution stage comprises (1) analytical factors related to methodological performance 

and (2) post-analytical factors that mainly include statistical and bioinformatic analysis approaches. 

A wide range of discovery platforms based on high-throughput technologies and sensitive detection 

devices have been developed, aimed to analyse molecular composition to large-scale (77).  Typically, 

the methods associated to these platforms implicate a considerable number of different steps that 
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consequently have associated technical variability. Therefore, sufficiently standardised methods and 

quality control processes on critical steps are required to minimise and account for both systematic 

and random errors.  

Bioinformatics and statistical assessment of the data is a crucial stage. The methods of quality control 

and normalisation of data as well as significance assessment of the differential expression will dictate 

the biomarker candidates for validation and prioritise them through the development pipeline.  Figure 

7 summarises some of the problems frequently found in the data analysis. Often the selection of 

individual candidates into panels is based on significance of fold-changes, and conventional 

statistical approaches such as t-test, ANOVA and Kolmogorov-Smirnov are required in conjunction 

with more recent comprehensive approaches such as forward stepwise multivariate/logistic 

regression modelling and support vector machine analysis (SVN) (77). Additionally, software 

packages and tools for data visualisation, correlation (linear and non-linear), integration, retrieval 

and storage are essential for mining data generated from high-throughput technologies such as 

proteomics platforms. 

Once a multi-marker panel has been set up for validation, its performance is evaluated in terms of 

sensitivity (SN: ability of identifier to identify true positives ‘true-positive rate or TPR’) and 

specificity (SP: ability of identifiers to detect the absence of the disease). The correlation between 

these factors and therefore the test performance identifying the disease can be studied using a 

Receiver-Operating Characteristics (ROC) curve plotted against the clinical ‘gold standard’ test (84). 

The ROC curve method plots sensitivity (TPR) in function of the false-positive rate (FPR) (1 - 

Specificity) at different threshold settings. The area under the ROC curve (0 < AUC < 1) provides a 

statistical summary that allows to evaluate the performance of a classifier and is equivalent to its 

probability to rank a randomly chosen patient higher than a randomly given control which is 

equivalent to the Wilcoxon test of ranks (93). Another important tool for performance evaluation is 

the positive and negative predictive values, which usually are expressed as percentages and describe 

the probability that those individuals testing positive and negative are true hits, respectively (84). In 

Table 1, some of the more frequently considered parameters for performance evaluation are 

presented. 
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Table 1. Clinical meaning of parameters of biomarkers performance.  
Taken and adjusted from (84) 

 

 

 

 

 

 

 

 

 

 

1.2.4 Biomarkers in Tuberculosis Diagnosis 

Despite the policies and efforts addressed to control tuberculosis, the global incidence rate is just 

decreasing 1.5% annually (28). There is an urgent need for finding the millions of cases that are 

missed each year due to the lack of suitable accurate point-of-care diagnostic tests, particularly in 

locations with the highest disease burden (94). 

The targets for 2025 and 2035 proposed by the WHO in the EndTB initiative (29) are highly unlikely 

to be met without novel diagnostic tools with high performance and suitable for using close to the 

patients in affordable diagnostic algorithms (25). Biomarkers of early tuberculosis disease diagnosis 

and  vaccine-induce protection against tuberculosis were recognised as the type of markers 

representing the largest impact on eradication strategies (95).  Furthermore, in a more recent meeting 

summary reported by Denkingher, et al. in 2015, four high-priorities for diagnostic needs in 

tuberculosis control were established: (1) A sputum-based substitutive test of smear-microscopy; (2) 

A non-sputum-based biomarker test for the different forms of disease differential diagnosis; (3) a 

simple, low cost triage test as a rule-out test suitable for community health workers; and (4) a rapid 

test for drug susceptibility (25). This study comprised a survey to stakeholders including 

representatives from national tuberculosis programs, clinical/clinical laboratory experts and 

researchers from high, middle and low-income countries in conjunction to literature review. 

Consequently, enabling new biomarkers is a pivotal task to make the strategies of control and 

elimination of tuberculosis realistically feasible. 

Result Decision 

True positive (TP)  Correct hit 

True negative (TN)  Correct rejection 

False positive (FP)  Type I error (false alarm) 

False negative (FN)  Type II error (true miss) 

True positive rate (TPR) (Sensitivity - SN) TPR = TP/P = TP/(TP + FN) 

False positive rate (FPR)  FPR = FP/N = FP/ (FP + TN) 

Accuracy (ACC)  ACC = (TP + TN)/(P + N) 

Specificity (SP)  SP = TN/(FP + TN) =1 – FPR 

Positive predictive value (PPV)  PPV = TP/(TP + FP) 

Negative predictive value (NPV)  NPV = TN/(TN + FN) 
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It is generally accepted that a tailored combination of biomarkers will exhibit an improved 

performance when comparing to a single marker. When a multiple panel is being designed, it is 

important to consider not only the performance of each predictor but also its biological independency. 

In other words, the multiplexed test will be more likely to give a better performance if the included 

markers are not biologically related (74, 96).  

Especially relevant in this context are the high-throughput technologies, which ideally enable the 

unbiased screening of thousands of molecules (gene products, RNAs, proteins, metabolites, etc.) 

simultaneously. Such combination of predictors is typically referred in the literature as ‘biosignature’ 

(5, 96, 97). New biosignatures for tailoring novel high performance diagnostic rapid-tests have a 

pivotal importance for tuberculosis control strategies. Various platforms have been employed in the 

quest for new biomarkers for tuberculosis such as whole genome sequencing (WSG), 

transcriptomics, proteomics and metabolomics. 

• Gene signatures for tuberculosis 

Nucleic acid amplification technologies (NAATs) and WGS have been used for diagnosis 

confirmation, outbreak identification and information about antibiotic resistance (98-101).  Studies 

have proposed WGS for M. tuberculosis identification from liquid culture and uncultured isolates 

expediting the diagnosis between 1 to 3 days (99, 102).  Despite of recent technologies facilitating 

sample preparation and gene expression such as isothermal amplification (LAMP) with fluorescent 

endpoint detection and manual cross-priming amplification for M. tuberculosis identification in 

sputum, some important obstacles persist for point-of-care application particularly related to 

sensitivity (98). Firstly, DNA-based diagnostic tools may not distinguish between cleared infections 

and the active disease due to DNA from dead bacteria remains detectable (103). Secondly, these 

approaches still require a minimal infrastructure and trained personnel which preclude their 

application as screening tools.   

• Transcriptomics 

The transcriptome is defined as the wide collection of RNA transcripts including mRNAs and non-

coding small-RNAs expressed under given conditions. The analysis of the genome-wide gene 

expression through RNA sequencing or gene chip microarrays leads to the identification of the 

expressing genes and the measurement of transcript abundance (104). Particularly relevant to 

tuberculosis, the host transcriptional response resulting from the diverse M. tuberculosis infection 

stages has been examined in both blood and tissue. Nevertheless, only studies conducted in blood 

samples will be referred considering their diagnostic relevance. Over 20 papers exploring the 

transcriptome signatures derived from the diverse host-pathogen interactions have been published in 

the last 10 years, however no diagnostic tool resulting from this approach exists. Haas, C. T. et al. 

(2016) present a review of the available literature concerning the blood transcriptome signatures for 

tuberculosis. Among the limited number of studies aimed to discriminate tuberculosis from healthy 

controls, a very poor overlap between transcriptional signatures was found. Among the causes of 
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discrepancies, differences in study design, variations in patient demography and profiling 

methodologies were pinpointed. Additionally the use of whole, depleted or fractionated blood was 

highlighted as an important confounding factor. However functional annotations such as FCGR 

signalling, interferon signalling, and complement pathways were observed common in the active 

tuberculosis signature (103).  

Important efforts are being made to reduce the cost of gene expression based-tests improving 

efficiency by reducing the cost of PCR multiplexing. A recent study established a 4-gene signature 

able to distinguish tuberculosis patients from healthy individuals reaching a sensitivity of 88% and 

specificity of 75% (105). However, this test cannot outperform the Xpert MTB/RIF test specificity 

of 100%. Additional efforts have been made to explore RNA blood profiles for tuberculosis disease 

risk signatures, a recent study identified a 16-gene signature for tuberculosis progression (66.1% 

sensitivity and 80.6% specificity) (106) which open up the possibilities for targeted interventions. 

Notwithstanding, transcriptomic studies generate critical large-scale information for understanding 

the complex pathophysiological course of the infection, assuming events in the periphery relate to 

those at the site of disease,  but its application to point-of-care diagnosis is limited in terms of 

performance, infrastructure and training hampering  full translation to clinics.  

• Metabolomics 

The metabolome is described as broad collection of small molecules or metabolites (sugars, lipids, 

nucleotides, amino acids, etc.) present in a clinical sample. These diverse analytes are typically 

explored using mass spectrometry and magnetic resonance. Most metabolomics studies have aimed 

to ascertain tuberculosis pathogenesis rather than verify diagnostic value (103, 107-110).  

Metabolites in plasma, urine, breath, sputum and cerebrospinal fluid have been examined. The 

signatures generated compromise host and pathogen derived candidates. Particularly relevant to 

point-of-care diagnosis an active tuberculosis signature encompassing 42 features, mostly related to 

a dysregulated tyrosine - phenylalanyl metabolism was obtained with an AUC of 0.85 (111). More 

recently, a panel of 4 metabolites for urine testing:  sialic acid, diacetylspermine, neopterin, and N-

acetylhexosamine exhibited ROC AUCs >80% in a blinded validation cohort, providing a potential 

non-invasive signature for tuberculosis (112). 

However, heterogeneity of the chemical functional groups of metabolites results in a wide variety of 

physicochemical properties, and this imposes a significant analytical challenge to translation of 

metabolic signatures to POC settings. Additionally, the metabolome is particularly susceptible to a 

diversity of factors such as medication, diet, stress, comorbidities and environmental factors, 

therefore study design and rigorous validation are crucial.  

• Proteomics 

Typically proteomics is referred as the quantitative analysis of the protein composition at given time 

and conditions. The proteins are considered as the ultimate biological effectors and therefore 

examination at protein level, rather than transcripts and genes, reflects cellular functions and 

pathophysiological processes. On the other hand, a low correlation between gene number copy, 
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transcripts and protein expression indicates that analysis of genome and RNA level not necessarily 

is a direct measurement of active biological functions (113). Unbiased screening of protein content 

in biological samples is performed usually using mass spectrometry preceded by fragmentation of 

proteins/peptides. A detailed examination of this approach is presented in section 1.4. The first 

identified protein fingerprint capable to discriminate tuberculosis patients included; serum amyloid 

A, transthyretin, neopterin and C reactive protein with specificity and sensitivity of 74% and 88%, 

respectively (114).  

Many studies have been conducted in the field of tuberculosis proteomics, nonetheless, proteomics 

imposes many analytical challenges (36, 114-121). Protein biomarker translation to clinics has been 

hampered by (1) variability in reported biomarkers and (2) biased candidate validation. Differences 

in biomarker identification can be caused by limited coverage of the proteome due to the wide 

dynamic concentration range of proteins in biological matrixes, variability in proteomics techniques 

as well as differences in study design and statistical analysis. Validation is biased for availability of 

antibodies or ELISA kits and arbitrary inclusion/exclusion criteria of candidates (103). However, 

there are some common proteins significantly dysregulated in active tuberculosis; selected examples 

include CD14, S100A proteins, apolipoproteins, fibrinogen, orosomucoid and serum amyloid A 

(103). A recent study generated two biosignatures for active tuberculosis (AUC 0.96) and HIV co-

infected patients (AUC 0.95) using a nested co-validation procedure (117).  

Although, significant improvements are required in terms of method standardisation and candidate 

qualification to achieve successful translation to the clinic, proteomics is a promising approach for 

diagnostic biomarkers discovery and validation not only because proteomics data correlates better to 

biological processes but also because it captures post-translational processes such as protein turnover. 

Critically for tuberculosis diagnosis, protein signatures are highly conducive to rapid test devices and 

ongoing work is being conducted on this field, including colorimetric gold nanoparticles on paper-

based devices and label-free biosensors (122-124). 

1.3 Plasma Proteomics 

As was briefly described in section 1.2.4, proteomics can be defined as the comprehensive study of 

a proteome and usually is focussed on identifying and quantifying a diverse collection of proteins 

expressed as a function of time and cellular localisation using mass spectrometric techniques. 

Proteins are the direct functional effectors of gene expression in organisms and therefore complex 

processing and interactions at protein level precisely define the state of a living system at a given 

point of time (31, 125).   

Defining a proteome is a highly challenging task considering biological diversity and analytical 

complexity. Features such as post-translational modifications, isoforms, turnover, dynamic 

abundance and interactions define molecular diversity.  In addition, biological samples are highly 

complex analytical matrixes, which exhibit a wide dynamic concentration range comprising a broad 
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spectrum of proteins with diversity of physicochemical properties as molecular size, hydrophobicity, 

and isoelectric points (35, 126, 127).  

The abundance distribution of a proteome typically exhibits a nearly Gaussian distribution on the 

logarithmic copy number scale as is shown in the Figure 8. Examining the abundant portion of the 

proteome is a very productive task since sensitivity directly increases with every order of magnitude 

in number of copies per cell: less sample is required for identifying about a thousand additional 

proteins. Conversely, the low abundant proteome identification would require either larger amounts 

of sample or striking innovation in the methods (128).  

 
Figure 8. Proteome abundance distribution. 

Abundance of the proteins exhibits a bell-shape distribution. Current dynamic range of instrumentation allows 

efficient exploration of the abundant portion of the proteome. However, a wider coverage of the proteome 

requires considerably larger amounts of material. The analysis of the ‘dark corner’ is a particularly 

challenging task that will require notable improvement in both methods and instrumentation. Taken from (128). 

 

One of the most critical steps in both biomarker discovery and proteomic experimental design is the 

selection of the sample. Typically, cell lines and tissue samples exhibit lower complexity than 

specimens such as proximal fluids and blood-derived samples. Such complexity increases the 

dynamic range, which directly influences the efficiency of identification. There is a whole field of 

proteomics research devoted to profiling and quantifying diverse biological matrixes with the aim to 

define novel biomarkers for diagnosis, prediction, pharmacodynamics and surrogate endpoints (76). 

Plasma/serum is a common choice, considering the ease of collection, high concentration of protein 

and its relevancy as indicator of the overall physiological state of an individual since it contains 

proteins secreted, shed and released from all tissues and cells (33). 

Although both plasma and serum are part of the blood, there is an ongoing debate about selection of 

plasma or serum as matrix for biomarker discovery. Serum is defined as the liquid fraction resulting 

from whole blood clotting usually under glass/silica-based activation, centrifugation and collection 

of the supernatant. On the other hand, plasma is obtained when blood is treated with an anticoagulant 

(129). Serum is recognised as a more heterogeneous matrix than plasma, since its collection depends 
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upon a biochemical process that is regulated for many parameters as temperature, time for clotting 

and medication. Furthermore, some proteins can be bound to the clot or be released/activated during 

aggregation in an uncontrolled fashion, which is the case of some tissue inhibitors of 

metalloproteinases (TIMPs) and matrix metalloproteinases (MMPs) (130). These conditions are very 

difficult to standardise, therefore plasma is preferred for biomarker discovery.  

The complexity of human plasma, which contains over 20000 proteins with a wide dynamic 

concentration range spanning 12 orders of magnitude, is one of the greatest obstacles for plasma 

proteomics studies (131). Moreover, only 22 proteins account for the 99% of the total protein content 

in plasma where serum albumin represents 50% of the overall protein composition (132). Figure 9 

illustrates that low abundance proteins exhibit a higher diversity, being originated from different 

tissues in comparison to the most abundant proteins, making this protein subpopulation very 

promising for biomarker discovery (34). Importantly, Figure 9 highlights that proteins clinically 

relevant as biomarkers are expressed in low concentrations (µg/mL to pg/mL), however, most of 

profiled proteins in regular plasma proteomics studies are expressed in the range of mg/mL to ng/mL 

(133). This figure clearly depicts the considerable challenge of improving limits of detection and 

quantification of the proteomic platforms and methods to capture the low abundance proteome.  

 

Figure 9. Protein dynamic range in human plasma 

The large dynamic range of proteins in the plasma, spanning from mg/mL to pg/mL is shown and proteins are 

grouped into three categories: classical plasma proteins, tissue leakage products, hormones and 

interleukins/cytokines. Proteins discovered by HUPO’s Plasma Proteome Project are indicated in red and 
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clinically used biomarkers in yellow. Used biomarkers are physiologically expressed in the order of µg/mL to 

ng/mL, some of them under the minimal range of detection of common proteomic platforms. Taken from (34, 

133) 

 

A critical consideration for biomarker discovery based on plasma proteomics is the abundance 

stability of plasma proteins associate to host factors. A longitudinal study conducted on plasma 

samples collected from monozygotic and dizygotic twins at intervals of 2–7 years, demonstrated the 

patterns of abundance of plasma proteins are under regulation of genetic, environmental and 

longitudinal factors, suggesting that plasma biomarkers require calibration against temporal and 

genetic features (91).  Furthermore, Al-Daghri, N. M, et al. (2014) demonstrated differential 

proteomic profiles in nondiabetic overweight and obese women and men. Therefore, the 

experimental design for biomarker discovery should consider to host factors such as ethnicity, age, 

body mass index and smoking status. 

Mass-spectrometry based proteomics is continuously developing powerful platforms for the analysis 

of complex matrixes and the profiling of thousands analytes in single experiments. The more recent 

instruments can cover up to 5 orders of magnitude achieving a resolution up to 500,000 FWHM (Full 

Width at Half Maximum), with isotopic fidelity up to 240,000 FWHM at m/z 200 (133, 134). 

However, the presence of peptides originated from highly abundant proteins induces an ionisation 

suppression effect on the peptides from the lower abundance proteins, thus handicapping the 

detection of the latter. Moreover, at a given time-dependent MS analysis event the amount of ions 

being stored, transmitted and detected is strongly determined for the stoichiometric relation among 

different ionic species. Consequently, in plasma proteomics, it is critical to reduce the sample 

complexity by depletion or fractionation prior to MS analysis in order to maximise the proteome 

coverage. 

Despite the complexity of human plasma, most of clinical diagnoses (>70%) are blood informed and 

almost half of chemical pathology is dominated by proteins (135). Therefore, plasma biomarker 

discovery is an urgent need in the pursuit of improved/novel diagnostic tools. 

1.3.1 The Depletion Dilemma 

The multiple strategies developed to circumvent the analytical challenges imposed by the large 

dynamic concentration range of plasma can be categorised into three main methods: depletion, 

equalisation and hyper-fractionation.  

Depletion of plasma using immunoaffinity capture is certainly the most common method used 

routinely on samples before interrogation by MS (31). This approach uses columns modified with 

antibodies that retain specific proteins. Depletion up to twenty proteins has been conducted (136) 

and a variety of formats are commercially available including spin-columns (137), and online-LC 

columns (137). Additionally new methods for depletion such poly(N‑isopropylacrylamide-acrylic 
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acid) hydrogel particles were recently explored (131). Nevertheless, removal of highly abundant 

proteins leads to co-removal of less abundant proteins due to mutual interaction through non-covalent 

forces and non-specific interactions to the antibodies can increase this effect (92, 136, 138). It is well 

recognised that albumin binds a variety of ligands including small molecules, peptides and proteins.  

Additionally, different species of high abundant proteins may be biologically informative, for 

instance albumin can be modified at both concentration level and oxidation state in response to 

disease (137).  Consequently, the ‘albuminome’ offers an additional level of complexity to the 

plasma proteome analysis.  

Multiple reports suggest that proper quantification of proteins for biomarker discovery purposes 

should additionally include the bound fraction resulting from depletion methods. Scumaci, D. et al. 

(2011) identified 67 protein ligands of human serum albumin using an affinity approach. Yadav, A. 

K., et al. (2011) quantified 101 proteins with high confidence (<1% FDR) in the bound fraction from 

three different multi-affinity removal systems and Koutroukides, T. et al. (2011) profiled 170 

proteins in the depleted fraction using a top-20 immunodepletion column (139). Although the study 

of the ‘albuminome’ or ‘depletome’ may play an important role in clinical proteomics, depletion 

introduces significant biases to the plasma proteome profile and therefore to the biomarker discovery 

pipeline. 

One alternative to depletion is the equalisation of low abundance proteins using combinatorial 

peptide ligand libraries, which is the basis for ProteoMiner TechnologyTM (136). Briefly, this strategy 

utilises a large and highly diverse bead-based library of combinatorial hexapeptides ligands, which 

simultaneously dilutes the high abundance proteins, when the ligands of this particular population 

are rapidly saturated. Conversely, low abundant proteins are concentrated on their specific ligands 

(136, 140, 141). Zhao, Y. et al. (2016) conducted a comparison of five analytical strategies for plasma 

proteome profiling. Proteome equalisation showed limited low-abundance proteins enrichment and 

the obtained proteome was biased toward low molecular weight and basic proteins (142). 

Additionally, the commercially available kits required a relative large volume of sample (>1.0mL) 

which in many cases can represent an important limitation. 

Additionally to the depletion and equalisation strategies, a relatively simple approach is the hyper-

fractionation at both protein and peptide level which minimises the influence of the high abundant 

proteins and reduces the high complexity of this biological matrix. Fractionation methods exploit the 

physico-chemical properties of the proteins/peptides to simplify the sample, thereby generating 

multiple simpler fractions. There is a wide repertoire of methods to fractionate protein mixtures with 

a variable degree of throughput and coupling; ranging from SDS-PAGE electrophoresis, off-gel 

Isoelectric Focusing (IEF) to various liquid chromatographic techniques. Recent studies have proved 

that extensive multidimensional chromatographic prefractionation leads to greater coverage of the 
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plasma proteome over other strategies (35, 92, 142). The multidimensional strategy used in this study 

will be discussed in further detail in the next section. 

1.3.2 MudPIT strategy 

Garbis S. et al (2011) first published the multidimensional method applied in this work. This strategy 

comprised three different but complementary liquid chromatographic chemistries: size exclusion 

chromatography (SEC), zwitterion-ion hydrophilic interaction chromatography (ZIC-HILIC) and 

reversed-phase nano-ultra performance chromatography (RP-nUPLC). Notably, when samples pre-

fractionated using SEC were compared to depleted samples, the first approach demonstrated a 

significantly higher serum proteome coverage. 1955 proteins were identified (FDR ≤ 5%) compared 

to 563 and 499 proteins identified from depleted samples analysed using ZIC-HILIC and strong 

cation exchange (SCX), respectively. More recently in 2014, this approach was adjusted to conduct 

a quantitative study using iTRAQ. SEC followed by offline high pH reverse phase (RP) 

chromatography (C8 chemistry) for labelled peptide prefractionation and RP-nUPLC. 2472 proteins 

were identified (FDR ≤ 5%) in serum samples and 248 were significantly modulated. This technique 

has proved to be a powerful tool for plasma/serum proteomics. The chromatographic principles of 

each technique involved will be described in further detail in the next sections.  

1.3.2.1 Size Exclusion Chromatography (SEC) 

Size exclusion chromatography is a general term used to refer to the separation process of molecules 

according to their size, more exactly their hydrodynamic ratio, when a mobile phase flows through a 

packed bed of porous material. Separation is achieved by differential pore permeation; the effective 

accessible pore volume is greater for small molecules than for larger analytes. Figure 10A-B depicts 

this principle: the largest molecules elute first from the column since they present the shortest 

retention times in the pores of the packing bed (143). 

A. 

 

B. 

 

Figure 10. Size Exclusion chromatography principle.  

A. Schematic structure of the particles of SEC medium with an electron microscopic magnification, the 

architecture of the pores is visible. B. Schematic chromatogram illustrating differential elution according to 

the molecular size. Adapted from (144) 
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SEC packing typically consists of a porous matrix of inert spherical beads with physical and chemical 

stability. The packed medium is equilibrated with the eluent to fill the space between particles and 

the pores of the matrix. Samples are eluted isocratically with a final wash step with the solvent to 

remove the molecules that might have been retained and prepare the column for the next run. The 

resolution in SEC depends mainly on selectivity of the medium and its efficiency to achieved 

minimal peak broadening. The selectivity of a SEC medium depends on its pore size distribution, 

some common media for SEC are: silica, superdex (cross-linked dextran and agarose), sephadex 

(dextran) or agarose (144).   

Since SEC is performed isocratically, the pH, composition or ionic strength of the eluent and sample 

buffer does not directly affect resolution as long as these conditions do not affect the molecular size 

and stability of the packing material. Chaotropic agents such as urea and guanidine hydrochloride 

can be used to increase the solubility of proteins and as main component of the eluent allows 

separation under denaturing conditions, thereby disrupting all the non-covalent interactions and 

hydrogen bridges (144). 

SEC is widely used to separate therapeutic proteins, encapsulated drug-loaded liposomes from free 

drugs, extracellular vesicles, polymer chemistry and it has proved a good performance to isolate 

exosome-derived proteins (145). Although SEC provides a limited resolving power compared to 

other chromatographic techniques used in proteomics, it is considered a comprehensive technique 

for preparative purposes conducive to classify heterogeneous mixtures of biopolymers according to 

a general property: size. Additionally, SEC is relatively simple and robust. These particular 

characteristics make SEC uniquely useful as first step of a multidimensional pipeline for 

plasma/serum proteomics.  

In the particular workflow applied in this study, plasma/serum samples are prefractionated using SEC 

under denaturing conditions (6M guanidine hydrochloride), then the fractions are desalted before 

trypsin digestion. Tryptic peptides are iTRAQ labelled for quantification. Pooled labelled peptides 

are fractionated using high pH reverse phase HPLC and each fraction is further online separated 

using RP-nUPLC coupled to ESI-MS/MS analysis. (Further details in Methods) 

1.3.2.2 Reverse Phase Chromatography RP-HPLC 

RP-HPLC is by far the most extensively used chromatographic mode for biomolecule analysis, its 

wide range of mobile and stationary phases and online coupling to sample injection and detection 

systems, particularly MS, make it ideal for shotgun proteomics. RP-HPLC comprises a polar mobile 

phase and a nonpolar stationary phase, which typically is composed of spherical silica particles 

derivatised with hydrocarbon moieties. The variety of starting silica and methods of surface 

derivatisation provide a wide variability in separation and retention properties (146).  

Proteins/peptides differentially bind the stationary phase and the elution time differs according to 

their hydrophobicity.  
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The most common hydrophobic ligands are C18, C8, C6 or C4, subscripts indicating the number of 

carbons in the aliphatic chain. The mobile phase normally contains a mixture of water and a water-

miscible organic solvent, a pH modifier such as trifluoroacetic, and acetic or formic acid is added to 

promote positive ionisation of the peptides/protein limiting unwanted ionic interaction with the 

stationary phase. High-resolution separation diminishes co-elution reducing ion suppression in MS.  

1.3.2.3 Orthogonality in Multidimensional separations 

Analysis of highly complex mixtures requires techniques that provides the maximum separation 

possible.  In the case of iTRAQ quantification, which involves pooling the trypsinised protein content 

of eight different samples, it is key to use a multidimensional strategy. The combination of two or 

more different chromatographic techniques within the same system significantly increases the peak 

capacity. In order to effectively exploit the high peak capacities, the mechanisms of separation in 

each dimension must be independent from each other or chromatographically orthogonal (147). For 

example, a high orthogonal system could involve a hydrophilic separation in the first dimension and 

a hydrophobic separation for the second dimension. These two opposite physicochemical properties 

would increase the separation space among the components of the peptide mixture. 

To demonstrate this principle Gilar, M. et al (2012) compared the orthogonality of different liquid 

chromatographic chemistries and RP-HPLC using a C18 column (pH 2.6) which is the more widely 

used online technique coupled to MS analysis in shotgun proteomics. 196 tryptic peptides were 

separated in a LC x LC mode, including a phenyl reverse-phase column, a pentafluoro phenyl (PFP) 

reversed-phase column, a C18 column at high pH and a hydrophilic interaction chromatography 

(HILIC) column. Figure 11 illustrates the different extent of orthogonality in these four different 

systems. As expected, when two opposite chemistries in terms of hydrophobicity are coupled, i.e. 

HILIC vs. C18, the orthogonality is maximised. Conversely, when two modes with similar 

hydrophilicities are used, the orthogonality between dimensions is significantly reduced. 

Interestingly, the peptide separation increases when the fractionation is conducted using different pH 

conditions (alkaline and acidic) but the same column chemistry. 

 
Figure 11.  Graphical representation of orthogonality in an LC x LC system. 

Normalised sets of data from two-dimensional data. 196 tryptic peptides were separated using four LC x LC 

configurations. The highest orthogonality is achieved when modes of chromatography in each dimension are 

based on different chemical interactions. Adapted from (148) 
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1.3.3 Current Status of Plasma/Serum Proteomics in Tuberculosis 

The minimum specifications for a rapid point-of-care diagnostic test for adults that should guide 

research and assay development are summarised in Table 2. A standalone test for pulmonary 

tuberculosis that satisfies these requirements would be ideal, however the particular features of this 

disease such as the wide spectrum of clinical outcomes resulting from the infection caused by a very 

low bacillary burden, hinders this goal. An alternative option might include a high-sensitivity, low-

specificity screening test followed by referral for a definitive confirmatory test (69).  

Table 2. Minimum requirements for the ideal point-of-care diagnostic test for tuberculosis 

Data taken and adapted from (69) 

 a No consensus about this limit 

PTB: Pulmonary Tuberculosis, EPTB: Extrapulmonary Tuberculosis 

Although some progress has been made regarding novel biomarker discovery in plasma/serum 

particularly using various proteomic platforms, the methods used so far provide a very limited 

proteome coverage. Additionally, poor validation of proposed biomarkers is a common limitation of 

most biomarker discovery studies. A systematic literature research conducted in 2017 indicates that 

from 399 biomarkers (non-DNA) reported as tuberculosis biomarkers between 2010 and 2015 only 

12 were validated in a prospective study, from which only one has been reviewed by the WHO (LAM 

in urine) (149). Table 3 summarises the serum/plasma proteomic studies for new biomarker 

discovery for diagnosis of the active disease published in the last 10 years.  

 

 

Parameter Minimum specification required 

Outcome of testing  Initiation of treatment 

Sensitivity in adults (irrespective HIV 

status) 

Smear-positivity, culture positive PTB: 95% 

Smear-negativity, culture positive PTB: 60%-80%a 

EPTB: preferred but not required 

Specificity Compared with culture: 95% 

Throughput 20 tests per day by a single operator 

Waste disposal Environmentally friendly disposal feasible 

Storage and stability No cold chain required; stable at 30°C for 2 years 

Instrumentation 

Maintenance free, robust in tropical climates, acceptable 

replacement cost, portable (e.g., in backpack), can be battery 

operated, shock resistant 

Operation Requires minimal instruction 

Cost Less than $10 per test 
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Table 3. Serum proteomic studies for novel biomarkers in active pulmonary tuberculosis 

Authors Year 
Genetic 

Background 

Proteomic 

Strategy 

Proteome 

Coverage 

Proposed 

Candidates 

Performance 

Reported 

Agranoff, 

D., et al. 

(114) 

2006 African 

ProteinChip 

CM10 Array 

SELDI-ToF MS 

MALDI-ToF 

MS 

219 peak 

clusters from 

m/z spectra in 

the range 

2000–100000 

m/z 

SAA1 

TTR 

CRP 

Neopterin 

Sensitivity 88%,  

Specificity  

74% 

No HIV co-

infection 

Liu, J., et 

al. (121) 
2013 Chinese SELDI-ToF MS 

251 protein 

peaks 

1500 - 

15,000m/z 

Four peaks 

(2554,6; 4824,4; 

5325,7; and 

8606,8 Da) One 

of them 

identified as 

Fibrinogen 

Sensitivity 

83.3%,  

Specificity  

84.2% 

No HIV co-

infection 

Song, S. 

H., et al. 

(150) 

2014 

No 

information - 

Samples 

collected in 

Seoul 

RP-HPLC 

Quadrupole 

ToF, label-free 

quantification 

518 Proteins 
SERPINA1 

SERPINC1 

AUC 0.947 for 

alpha-1-

antitrypsin 

(SERPINA 1) 

Xu, D. D., 

et. al. (36) 
2014 Chinese 

iTRAQ-coupled 

2D LC-MS/MS 
434 Proteins 

APOCII 

CD5L 

HABP2 

RBP4 

Sensitivity 

93.42%,  

Specificity  

92.86% 

Xu, D., et 

al. (119) 
2015 Chinese 

iTRAQ 2D LC-

MS/MS 
434 Proteins 

S100-A9 

SOD3 

MMP9 

Sensitivity 

92.5%,  

Specificity  

95% 

Achkar, J. 

M., et al. 

(117) 

2015 

Asian/Black/

Hispanic/ 

Caucasian 

(NYC) 

LC-Q-ToF 

MRM-MS 

validation 

Total 

coverage not 

reported 165 

proteins 

modulated 

CD14, SEPP1, 

SELL, TNXB, 

LUM, PEPD, 

QSOX1, 

COMP, APOC1 

(HIV-) 

AUC 0.96 for 

HIV−TB  

 

AUC 0.95 for 

HIV+ TB 
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CD14, SEPP1, 

PGLYRP2, 

PFN1, VASN, 

CPN2, 

TAGLN2, 

IGFBP6 (HIV+) 

Li, C., et 

al. (151) 
2015 Chinese 

iTRAQ 

LC-ToF/ToF 
434 Proteins SHBG 

Sensitivity 

75.6% 

Specificity 

91.5% 

Jiang, T., 

et 

al.,(152) 

2017 Chinese 
iTRAQ LC-

Triple ToF 

Total 

coverage not 

reported 79 

proteins 

modulated 

SAA 

PROZ 

C4BPB 

Sensitivity 

97.08% 

Specificity 

95.45%  

Chen, C., 

et al. 

(153) 

2018 Chinese 
iTRAQ 2D LC-

MS/MS 
716 Proteins ENG (HIV+) Not reported 

Most of the biomarkers reported as upregulated in active tuberculosis are associated to phagocyte 

migration, neutrophil and granulocyte activation, inflammation, stress response, innate immune 

response and acute response. In contrast, proteins downregulated during active tuberculosis are 

associated with lipid processing and transport. Limited knowledge of the differential protein 

expression during tuberculosis infection course is available. Recently, Scriba, T. J., et al. (2017) 

enrolled a cohort of 6,363 adolescents and followed them for at least 24 months to conduct a 

longitudinal study for tuberculosis progression. Whole blood transcriptomic analysis by RNA 

sequencing and plasma proteome analyses using DNA aptamers (SOMAscan) was performed to 

interrogate progression makers in tuberculosis. Transcriptomic and proteomic data suggested that the 

complement cascade modules were upregulated earliest during progression simultaneously with IFN 

responses. Subsequently, changes in myeloid inflammation modules and blood coagulation appeared 

around 200 days before the tuberculosis diagnosis. Other modules associated with tissue remodelling, 

platelet activation and haemostasis emerged within 200 days before tuberculosis diagnosis (154). 

This study suggested that tuberculosis progression involves a slow progression through stages of 

inflammatory perturbations that results in strong inflammatory responses emerging proximal to the 

active disease. Furthermore, Hamilton, K., et al. (2018) in a systematic review of active-finding 

strategies for tuberculosis in a homeless cohort found that around 30% of asymptomatic or minimally 

symptomatic had smear-positive disease and 15% were cough aerosol-positive (155). These recent 

studies highlight the complexity of the tuberculosis natural history that it is not accurately represented 

by the clinical manifestations, which usually determine the initiation of the diagnostic algorithms. 
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Therefore, more precise biosignatures that better encompasses this complexity are urgently required 

for active case finding strategies in tuberculosis.   

Despite early studies, which investigated if serum protein biosignatures can be used to discriminate 

pulmonary tuberculosis patients, and several studies since, a universal proteomic profile remains 

elusive. Variable resolution of the utilised techniques and methods, case definition, statistical 

assessment of the differences and limited or absent validation of the diagnostic performance have 

contributed to these discrepancies. On the other hand, proposed biosignatures are not consistently: 

(1) evaluated for their diagnosis potential; (2) cross-validated, or (3) evaluated with external 

databases (103).  Improvements in standardisation and validation of proteomic platforms and 

methods are essential to increase accuracy and reproducibility of biomarker panels and facilitate their 

translation to clinical settings. 

1.4 Shotgun Proteomics 

The most widely used strategy for in-depth protein profiling is known as shotgun proteomics and, as 

a peptide-centric method, is conducive to biomarker discovery allowing the analysis of thousands of 

proteins from complex samples.  Proteomic strategies can be categorised by the molecular level at 

which the analysis takes place. Figure 12 depicts the three main approaches. The analysis of intact 

proteins so-called top-down proteomics provides information on protein mass and amino acid 

sequence. The proteins are separated and subjected to diverse fragmentation methods such as electron 

capture dissociation (ECD), collisional-activated dissociation (CAD), or electron-transfer 

dissociation (ETD). Among the advantages of this method are; reduced sample preparation and 

connectivity information of different posttranslational modifications (PTMs) and isoform 

occurrence. However, this method presents a low sensitivity since ionisation and fragmentation in 

gas phase of proteins is considerably more challenging than peptides, which is precisely the rationale 

of bottom-up proteomics (31, 156). 

The vast majority of proteomic studies involve the digestion of the proteins and the subsequent 

analysis of the derived peptide mixture by MS. This approach is so-called bottom-up proteomics, and 

when this strategy is applied to a mixture of proteins is referred as shotgun proteomics (157). The 

extent of proteolysis will define if the experiment is middle- or bottom-proteomics. Typically a 

bottom-up experiment will analyse peptides among 500 to 3000Da which means a sequence no 

longer than  ̴ 26 residues (156). Multiple advantages of working at the peptide rather than protein 

level include; more versatile chromatographic separation, fewer charge states, lower molecular mass, 

and more efficient ionisation and fragmentation in gas phase. These features have placed the bottom-

up strategy as the preferred for discovery purposes (31, 156, 157).  
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Figure 12.  Proteomic strategies. 

Schematic representation of the principles of the three strategies in proteomics. Bottom-up proteomics is a 

peptide-centric approach. Proteins are extensively hydrolysed and peptides are used to infer the identity of the 

proteins present in the sample. In middle-down proteomics, the proteins are digested generating longer 

sequences. Conversely, top-down proteomics rely on the direct analysis of protein mixtures  Taken from (156). 

Shotgun proteomics involves several handling steps from the enzymatic digestion to the MS analysis, 

therefore well optimised protocols are essential to generate reproducible results. Once the peptide 

mixture is obtained, it is subjected to liquid chromatographic separation coupled to a mass 

spectrometer where tandem mass spectrometry is required to sequence and quantified the proteome. 

The main features of this strategy will be discussed in detail through the next sections. 

1.4.1 Enzymatic Digestion 

Trypsin has been recognised as the standard enzyme in the proteomics field and has been heavily 

engineered to maximise its specificity, activity and stability, minimising autolysis which must be 

avoided since it results in chymotrypsin-like activity (156).  Considering that shotgun proteomics is 

a peptide-centric approach and therefore the proteolysis step plays a central role, a clear 

understanding of trypsin is required to understand the current strategies of protein inference in the 

context of complex peptide mixtures. 

Trypsin belongs to the group of extracellular serine proteases and structurally is characterised by two 

six-stranded beta-barrels exhibiting the classic Greek-key architecture (158). Figure 13A depicts the 

trypsin fold. The catalytic site is located in the interface of these barrels. Trypsin cleaves at carboxy-

terminal of Lys (K) and Arg (R) and the residues responsible of this catalytic activity are the 

nucleophilic Ser (S) 195 and Asp (D) 105, which are coordinated through electrostatic interactions 

by the imidazole group of the His 57 (158). Considering that Lys and Arg are relatively abundant 

residues in the human proteome (Figure 13B) and typically well distributed throughout a protein 
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(159), the trypsin hydrolysis pattern yields an average of 61 peptides per protein with an average 

length of 9 residues and a standard deviation of 15. However, if one miscleavage is allowed the 

average length increases to 14 residues with a standard deviation of 20 (156, 158, 159). Although 

engineered trypsin exhibits a high specificity, commercially available sequencing grade trypsin 

achieves <95% of specificity, there are well-recognised causes of miscleavage (Keil rules, 1992). 

The most widely known occurrence is the miscleavage taking place when Arg or Lys is followed by 

a Pro (P), explained by the steric hindrance imposed by the Pro on these residues. Two additional 

configurations can lead to restriction of the hydrolytic activity of trypsin: when two or more 

positively charged residues follow each other and when there are negatively charge residues in close 

proximity to Lys or Arg  (158).  

A typical bottom-up experiment involves the digestion in silico of the proteome under study using 

algorithms that include some of these rules to ensure the most accurate fit to the experimental trypsin 

hydrolysis activity on that particular proteome. These theoretical peptides are, then, fragmented in 

silico to generate a theoretical spectra set. Peptide sequencing is achieved through peptide-to-

spectrum matching algorithms which compare theoretical and experimental spectra (31, 158). This 

process will be discussed in further detail in the section 1.4.4. 

One important feature of the trypsin digestion is that the generated peptides usually fall within the 

detection range of the spectrometer, except for the smallest and biggest tryptic peptides. This can be 

clearly visualised in the Figure 13C where the blue histogram represents the probability of the length 

distribution of tryptic peptides derived from a digestion in silico of the human proteome of 

UniProtKB/SwissProt allowing one miscleavage. In comparison, the red histogram represents the 

peptide-length found in a typical shotgun experiment extracted from the PRIDE database repository 

(158). Hence, the enzymatic properties of the trypsin are critically exploited in two senses; firstly, to 

hydrolyse a given proteome into complex peptide mixture; and secondly, to simulate in silico the 

digestion of this proteome for inferring the protein identities.  
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C. 

 

Figure 13. Trypsin. 

A. Molecular structure of the trypsin; the residues responsible for the catalytic activity: Ser 195, Asp 105 and 

His 57, are shown in the interphase of two beta-barrels. B. Amino acid frequency distribution in the human 

proteome. C. Comparison between probabilities of histograms of peptide length distribution identified from 

human samples obtained from PRIDE database (red) and peptide length distribution of a trypsin digest of the 

human complement of UniProt/SwissProt (blue). Taken from (156, 158) 

In addition to the trypsin properties previously discussed such as high specificity, stability and length 

of tryptic peptides, there is an important additional related benefit; the balance in basicity between 

the free amine of the N-terminus and the presence of a basic residue in the C-terminus (Arg or Lys) 

in every tryptic peptide. This characteristic enhances ionisation (positive mode) and fragmentation 

as explained through the mobile-proton hypothesis (158). Overall, these characteristics have 

positioned trypsin as the preferred protease for shotgun proteomics. 

Alternatively to the use of trypsin alone, a few studies have been conducted exploring combination 

of two or more proteases with the aim of increasing the proteome coverage and capture more 

information of posttranslational modifications (160). Alternative proteolysis workflows can include 

proteases with different specificity to trypsin such as LysC, LysargiNase, ArgC or proteases with a 

broad specificity such as pepsin and subtilisin. Although the inclusion of multiple proteases into 

shotgun workflows has proved to increase the proteome coverage from cellular lysates (161, 162), 

the results for more complex specimens such as plasma can be more discreet. Additionally, some 

proteases may yield peptides with atypical charge states and lengths that fall outside of the detection 

limit of the mass spectrometers or coverage of the chromatographic retention capabilities of C18 

columns (162).  

Experimentally, the shotgun workflow starts with the solubilisation of the protein content using 

buffers containing detergents such as SDS (sodium dodecyl sulphate) or SDC (sodium deoxycholate) 

and chaotropic agents as guanidinium hydrochloride or urea. Importantly, these reagents might 

impair trypsin activity, therefore the working concentrations must be well optimised. Trypsin 

maintains most of its enzymatic activity at 2.0M guanidine HCl, 2.0M urea, 0.1% SDS, or 2-5% SDC 

(163, 164). Frequently, this chemical treatment is accompanied by physical disruption of protein and 
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membrane complexes using trituration methods and sonication. Prior to trypsin digestion, two 

reactions must occur to disrupt tertiary structures in the proteins, thus maximising trypsin access to 

the hydrolysis sites: reduction and alkylation of disulfide bonds.  

• Reduction of disulfide bonds  

Oxidative folding is crucial for stabilising tertiary structures in proteins. This process is driven by 

oxidation of sulfhydryl groups only present in cysteine (Cys) residues, resulting in the formation of 

a disulfide bond so-called cystine. Disruption of high structures at protein level is important to ensure 

availability of the hydrolytic residues to the trypsin and reduce miscleavages.  

The first step is the reduction of the disulfide bonds to thiol groups using reducing agents such as 2-

mercaptoethanol, dithiothreitol (DTT) or tris(2-carboxyethyl)phosphine (TCEP). The first two 

reagents contain thiol groups and act by exchanging the thiolate ion (XS-) with the cystine groups. 

However, this mechanism can be inconvenient when subsequently reacting protein sulfhydryl groups 

with thiol-reactive probes. Sulfhydryl groups from the reducing agent in excess will compete with 

those from the protein, and therefore must be eliminated before labelling (165). Trialkylphosphine 

based reducing agents such as TCEP irreversibly and quantitatively reduce organic sulphides in 

aqueous solution (166) according to the reaction in Figure 14. This reagent has shown to be 

significantly faster and stronger reductant than DTT at pH below 8.0 and more stable than DTT at 

pH below 7.5; additionally it is not necessary to eliminate prior to utilising sulfhydryl reactive labels 

(165). Although TCEP is widely used in shotgun proteomics, it is charged in aqueous solution and 

so must be avoided when isoelectric focusing is used. 

 

Figure 14. TCEP reaction mechanism. 

Schematic representation of reduction of cystine to cysteine by TCEP reaction. Adapted from (167). 

• Alkylation of sulfhydryl groups 

Once the sulphide bonds are reduced to sulfhydryl groups, these must be blocked to avoid the 

reformation of new bonds in a random fashion.  Thiol groups can be modified by a variety of reagents 

such as iodoacetic acid (IAA), iodoacetamide (IAN), 4-vinylpyridine and methyl 

methanethiolsulfonate (MMTS). Although IAA and IAN are by far the most popular for proteomic 

applications, MMTS is widely used due to its reversibility and is recommended when iTRAQ 

labelling is attempted (168). Figure 15 presents the sulfenylation mechanism of the MMTS, which 
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attacks the reduced sulfhydryl groups resulting in their alkylation to dithiomethane (-S-S-CH3). This 

modification must be considered in the workflows for peptide sequencing from spectral information. 

 

Figure 15. MMTS reaction mechanism 

Alkylation of cysteine by reaction with MMTS. Sulfhydryl groups are blocked by the addition of a 

thiomethane group. Adapted from (169). 

Once the cystine residues are blocked, trypsin is used in an optimised enzyme – substrate ratio 

between 1:30 to 1:50 (158, 170). This ratio is particularly important since autolytic rate of most 

exocrine proteases is concentration dependent; an optimised concentration reduces frequency of 

nonspecific cleavages and partial enzymatic digestion (170). The mixture is typically incubated 

overnight ( ̴ 16h) at 37°C to achieve a complete protein digestion. 

1.4.2 Mass Spectrometry and Tandem Mass Spectrometry (MS2) 

The emergence of new technologies and resources such as the completion of the Human Genome 

Project, advanced bioinformatics and mass-spectrometry (MS)-based profiling have driven the 

development of high-throughput methodologies for proteome analysis (32, 171). Mass spectrometry 

has emerged as the central tool for large-scale proteome analysis. By definition, a mass spectrometer 

consists of an ion source, a mass analyser that determine the mass to charge ratio (m/z) that is used 

as a molecular identifier and a detector which registers the number of ions at each m/z value (172). 

Figure 16 illustrates the general workflow of MS-based proteomics including the different 

instrumentation available (173, 174). MS-based proteomics involves generation and detection of 

charged peptide (shotgun proteomics) or protein (top-down proteomics) ions in the gas phase (mainly 

in positive ion mode via protonation).  
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Figure 16. MS-based proteomics: General workflow and available instrumentation. 

Description of the mass spectrometry workflow and available instrumentation for each component of the 

system. Abbreviations-ESI: Electrospray ionisation, APCI: Atmospheric-pressure chemical ionisation, APPI: 

Atmospheric pressure photoionisation, MALDI: Matrix assisted laser desorption ionisation, SELDI: Surface 

enhanced laser desorption ionisation, DIOS: Desorption ionisation on silicon, FAB: Fast Atom Bombardment, 

SIMS: Secondary Ion Mass Spectrometry, DART: Direct analysis in real time, DESI: Desorption electrospray 

ionisation, EESI: Extractive electrospray ionisation mass spectrometry, IC: Ion chromatography, TOF: time-

of-flight mass analyser, QqQ: triple quadrupole, TOF/TOF: tandem mass spectrometer composed of two TOF 

analysers, Q-TOF: hybrid mass spectrometer composed of a transmission quadrupole mass spectrometer (Q) 

coupled to an orthogonal acceleration time-of-flight mass spectrometer (TOF), LIT-FTICR: hybrid mass 

analyser between linear ion trap and Fourier transform ion cyclotron resonance mass spectrometer, 

QUIT/Orbitrap: Quadrupole ion trap-Orbitrap.  Adapted from (173). 

Once the sample is introduced into the system, the molecular ions are produced in the ion source and 

then they are transferred to the mass analyser through several ion optics (skimmer, focussing lens, 

multipoles, etc.), which basically focuses and stabilises the trajectory of the ion stream. The mass 

analyser sorts and separates the ions according to their charge and mass ratio (m/z) values and finally, 

detection systems are used for measuring abundance displayed as mass spectra. High vacuum (10-3 

to 10-6 Torr) is required since ions in gas phase are very reactive (175). 

In tandem mass spectrometry experiments, a first analyser is used to scan and selectively transfer an 

ion into another reaction area where excitation and fragmentation occurs. Then a second analyser is 

used to record the m/z of products of dissociation. The specific patterns of dissociation depend upon 

various factors such as amino acid composition, peptide length, charge state, and excitation method. 

The information extracted from the MS/MS spectra is used for both identification and quantification 

of the peptides (176). The main steps required in a MS/MS experiment workflow are conducive to 

reporter ion quantification. Reporter ion based quantification (iTRAQ/TMT) requires MS2 analysis, 

which involves fragmentation of a fixed number of precursor ions, selected from MS1 scans. 
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1.4.2.1 Electrospray Ionisation (ESI) 

Mass spectrometry requires the transference of analytes from the condensed state to gas phase 

followed by ionisation. However, proteins/peptides are thermally labile, non-volatile and polar 

molecules, which hamper their ionisation, and techniques circumventing structural destruction are 

necessary. Electrospray ionisation was first introduced in 1989 as a major advancement by J. B. Fenn, 

this soft ionisation method ionise intact molecules without undergoing fragmentation by multiple 

charging (177). An analyte undergoes three major processes during ESI, Figure 17 depicts the 

process of ESI.  

 
Figure 17. Representation of electrospray ionisation process. 

Application of high voltage to the emitter creates charged droplets containing the ionised analyte. Spraying is 

produced when the charges start to accumulate creating the Taylor cone, which ejects the droplets towards 

the heated ion transfer tube. As the droplets travel, the solvent is evaporated and the charge density increases 

at a critical point when the column fission occurs leading to naked charged analytes. Taken from (175) 

• Production of charged droplets 

An electron flow is caused when the analyte is pumped through the high voltage capillary (emitter). 

Redox reactions produce positive or negative ions depending upon the polarity of the emitter 

electrode. Charges start to accumulate and are repelled by the high-voltage capillary destabilising 

them creating the Taylor cone, an area of high turbulence where a high field ejects a fine spray of 

liquid from its apex towards a counter electrode (175).  

• Coulomb explosion and droplet disintegration 

There are two competing forces acting in the formed charged droplets: surface tension and the 

Coulomb repulsion forces between like charges on the surface of the droplet. As the solvent 

evaporates when the droplets travel from the spraying nozzle to the heated capillary, its size is 

reduced and the repulsive forces increase causing a Coulomb explosion or fission, disintegrating the 

droplets. This process occurs repeatedly generating nanodroplets from which the gas-phase ions are 

formed (175). 

• Gas-phase ion formation  
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The gas-phase analyte ions formed from precursor droplets have been explained by two hypothesis: 

(a) Charge residual mode (CRM) and (b) Ion evaporation model (IEM). Evidence suggest that 

molecular ions of large macromolecules like proteins are mainly formed following CRM (178). 

Basically, CRM proposes that analyte molecules retain the charges (protons in positive mode) after 

desolvation of the charged droplets (175). 

1.4.2.2 Fragmentation Methods  

Typically shotgun experiments are conducted in data-dependent mode (DDA) in which a preset 

number of the most intense peptide ions (typically between 5-12 precursor ions) from a full scan MS 

are selected for fragmentation and MS/MS analysis (179). Analysis of complex mixtures of peptides 

has driven new mass spectrometric technologies to improving measurement accuracy of both 

precursor ions and fragment ions using different fragmentation methods. Currently, the most popular 

instruments for proteomics are the linear ion trap (LIT), Orbitrap, Fourier transform ion cyclotron 

resonance mass spectrometer (FT-ICR), quadrupole (Q) and time of flight (ToF). Additionally, 

hybrid instruments such as LIT-Orbitrap have demonstrated to be powerful tools for shotgun 

experiments (31, 179). This last configuration is used in this work therefore will be discussed in 

further detail in the section 1.4.4.3. 

Excitation of the precursor ion is usually achieved by energetic collisions with inert gasses such as 

nitrogen or helium. The most robust and common fragmentation method is collision-induced 

dissociation (CID). CID implicates acceleration of the ions to promote energetic collisions with a 

target gas (He) causing conversion of kinetic energy to internal energy resulting in fragmentation. 

For trapping instruments such as LIT or LTQ, resonant excitation creates waveforms specific to a 

given m/z value to accelerate a precursor ion, consequently only one precursor ion is activated (31). 

Under CID the peptides are mainly fragmented along the peptide backbond, often transferring one 

or two hydrogens to yield a stable ion structure. Informative sequence ions are generated involving 

b and y ions, which are produced by the amide bond cleavage (Figure 18). Amino acid sequence can 

be determined from the mass difference of successive fragment ions of the same type. b and y ions 

are particularly informative since they usually retain the side chain of each residue (180). Depending 

upon energy of collision, fragmentation can occur at any bond along the peptide structure, generating 

different series of ions. Fragment ion series a, b and c are produced when the charged is carried at 

the N-terminus, while x, y, and z when the charge is retained at the C-terminus.  

 

Figure 18. Schematic representation of CID fragmentation 
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Adapted from (176). 

Ion trap CID cannot trap low mass fragment ions (up to 1/3 of the m/z of the precursor ion), restricting 

the analysis of product ions with m/z values below 25%-30% of the precursor ion. This implies that 

information about the termini might be lost and on the other hand, quantification using iTRAQ/TMT 

is highly limited since the reporter ions exhibit low m/z values. Hybrid instruments such as LTQ-

Orbitrap introduced a complementary fragmentation method: higher energy collision-induced 

dissociation (HCD). HCD fragments the ions in a collision cell rather than an ion trap, once 

fragmented product ions are transferred back through the C-trap for analysis at high resolution at the 

Orbitrap. HCD utilises higher energy dissociation resulting in more diverse fragmentation pathways. 

This approach allows investigators to overcome the 1/3 rule and acquire high quality MS/MS spectra 

due to high resolution detection and increased ion fragmentation yield (181).  

1.4.2.3 LTQ-Orbitrap Technology 

Since its first introduction in 2005, the Orbitrap-MS technology has been continuously improved and 

hybrid instruments are widely used in shotgun proteomics. In this section, some of the main 

characteristics of the Orbitrap Elite (Thermo Scientific) will be briefly described considering that 

this instrument is used in this work. Figure 19 depicts a scheme of the instrument configuration. In 

addition to the linear ion trap for ion trapping, selection, CID fragmentation and low resolution 

detection and a HCD collision cell, this instrument combines the sensitivity and speed of the LTQ 

with the high resolution and mass accuracy of the Orbitrap mass analyser.  

 
Figure 19. Schematic representation of Orbitrap Elite. 

The Orbitrap Elite is a hybrid instrument combines a linear ion trap and a high-field Orbitrap mass analyser. 

Additionally, it includes a HCD collision cell. Taken from (182) 

The Orbitrap analyser consists of a central spindle and an outer barrel-like electrode and employs 

electrostatic fields for trapping and analysing the ions. Thus, ions injected to the Orbitrap from the 

C-trap are electrostatically trapped while oscillating and rotating along the spindle. Image current 

signals are induced on the outer electrodes by oscillating ions. Fourier transformation is conducted 

in order to convert the current signals into frequencies specific for a given m/z value and ultimately 

generate a mass spectrum (179). Additionally, the Orbitrap Elite comprises a compact high field and 
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an enhanced algorithm for signal deconvolution, features that improve both resolution (15000 to 

240000 at m/z 400) and scan speed. This instrument has been successfully used for shotgun and top-

down proteomics (183). 

1.4.3 Quantitative Proteomics 

Accurate measurement of small changes in protein and peptide abundance in response to an altered 

status is a challenging area in proteomics. The bottom-up approach is the preferred for quantification 

due to its high-throughput capabilities and sensitivity. However, mass spectrometry for peptides is 

not inherently quantitative, as peptides exhibit a wide spectrum of physicochemical properties 

including: molecular mass, hydrophobicity and charge leading to a highly variable mass-

spectrometric response. Consequently, the MS signal intensity and the concentration of the analytes 

does not exhibit a linear relationship that can be used as an accurate quantitative measurement (174, 

184).  

In the last 15 years a range of approaches that allow relative and absolute quantification using label-

free or label-based strategies have become available (185). The main approaches will be briefly 

described below. 

1.4.3.1 Label-free Quantification 

This strategy aims to quantify peptides and proteins without using any chemical modification for 

labelling and compromises two general quantification methods: (a) Spectral counting and, (b) Peptide 

peak intensity as result of the peptide response in the mass spectrometer (174). Spectral counting 

indirectly infers the amount of a protein based on the observation that the number of MS/MS spectra 

or peptide-to- spectrum matches (PSMs) correlates to the protein abundance. This protein-centric 

approach requires a sufficient peptide yield in terms of number and abundance, therefore 

quantification of small (<20kDa) and low abundant proteins tends to be more variable (174, 185). 

On the other hand, quantification based on peak intensities comprises integration of the peak areas 

extracted from the ion chromatograms of every peptide. This approach requires multiple replicates 

and consistent standardisation of chromatographic and mass spectrometric conditions as it is 

particularly sensitive to technical variability. A major benefit is that label-free approaches are 

inexpensive and applicable to an unlimited number of samples (185). 

1.4.3.2 Stable-isotope Labelling 

The premise of any stable-isotope labelling approach is that labelled and natural occurring peptides 

will share the same physicochemical properties including chromatographic behaviour and MS signal 

response. Therefore, differences in peptide and protein expression among samples can be quantified 

by comparing the intensity of different isotope coded peaks distinguished by their MS spectra (174). 

Excluding isobaric mass tags, there are a range of strategies for labelling which typically involve the 

addition of small mass differences that can be measured in the MS1 spectra. The labelling can be 

incorporated very early in vivo through metabolic activity or during sample preparation by chemical 
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modification of peptides (186). Two of the most common stable-isotope labelling strategies are 

described below.  

• Metabolic Labelling  

In the case of metabolic labelling, the protein labelling is conducted in vivo during cell growth and 

division. The most popular metabolic labelling strategy is SILAC (stable isotope labelling by amino 

acids in cell culture) first introduced in 2002 (187). Basically, SILAC incorporates light and heavy 

isotopes (13C, 15N) of arginine and lysine in vivo and combines heavy and light samples prior to 

sample processing, reducing the technical variability and allowing the quantification of small protein 

expression alterations. Some SILAC refinements have been introduced to increase accuracy and 

extend its use to protein turnover studies (188, 189). In 2010 a new strategy called super-SILAC was 

developed for human tumour proteome quantification. A mixture of stable SILAC-labelled cell lines 

serve as internal standards when combined with samples of interest (190). Although super-SILAC 

extended the use of this strategy to some clinical samples, SILAC is mostly limited to cell lines, 

primary cells and few small animal models. 

• Isobaric-based Labelling  

Isobaric-based quantification was first introduced in 2003 and is achieved by peptide chemical 

derivatisation using an array of isobaric isotopologue tags. The difference in protein expression is 

determined by labelling each sample with a specific tag, then the samples are pooled together, co-

fragmented and analysed simultaneously which represents a clear advantage in terms of minimising 

technical variability (191). Importantly, a given peptide present in different samples, carrying a 

different isobaric tag in each sample, will exhibit the same chromatographic properties and will 

appear as a unique composite peak at the MS1 level. Fragmentation of this derivatised precursor ion 

during MS/MS will provide two pieces of information: (a) reporter ion peaks used for relative 

quantification and (b) peptides fragment ion peaks for peptide sequencing (186). Additionally to 

multiplexing, isobaric labelling-based quantification has advantages such as broad dynamic range 

profiling of both low- and high-abundant proteins with variated physicochemical properties and even 

increases MS/MS fragmentation efficiency (186). There are two main isobaric reagents 

commercially available: iTRAQ, which allows multiplexing up to 8 samples (AB Sciex), and TMT 

(Thermo Scientific) up to 10 samples. iTRAQ characteristics will be described in further detail since 

it is the approach used in this study. 

• Isobaric Tags for Relative and Absolute Quantification (iTRAQ) 

One of the most widely used methods for multiplex quantification is iTRAQ, a MS2-based method 

which allows simultaneous relative quantification of up to eight samples within a single run (192). 

Labelling is based on N-hydroxysuccinimide (NHS) chemistry and consists of three functional 

motifs: a unique isotopic reporter (N-methylpiperazine), a cleavable mass balancer (carbonyl group), 

and an amine-reactive group (186). Figure 20 illustrates the general structure of iTRAQ reagents. 

Briefly, peptide mixtures from different biological samples are labelled with different isobaric tags 

by reacting the NHS-ester activated group with the N-terminus and ε-amine groups of lysine residues. 
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The reporter is released during the peptide fragmentation process in the mass spectrometer by 

cleaving the linker group. The quantification is achieved by directly correlating the relative intensity 

of the reporter ions, which represent the relative abundance of the original peptides (31, 186). 

 
 

Figure 20. General chemical structure of iTRAQ reagents. 
A. The molecule consists of a reporter group (based on N-methylpiperazine), a mass balancer group 

(carbonyl), and a peptide-reactive group (NHS ester). B. Isobaric mass tags have identical overall mass but 

vary in terms of the distribution of heavy isotopes along their structure. C. An illustration four isobaric 

combinations for a mixture of four identical peptides. Each peptide labelled with a different isobaric tag 

appears as single, unresolved precursor in the MS1 scan. Following CID fragmentation, the four reporter 

group ions appear as distinct masses (114–117 Da). The relative concentration of the peptides is thus deduced 

from the relative intensities of the corresponding reporter ions. Adapted from (193) 

 

Figure 21 presents an illustration of the MS analysis of 8-plex iTRAQ reporter ions. The full MS 

scan registers the precursor ions detected at a given retention time, the same peptide originated from 

different samples labelled with a specific iTRAQ label will appear as one peak in the MS scan. Then, 

the most abundant ions are selected for fragmentation. The HCD spectrum shows the backbone 

fragmentation and the reporter ions in the low mass region. High resolution is required to achieve 

baseline separation of the reporter ions. The abundance of each reporter ion is used for calculating 

the relative abundance of a particular peptide in the different samples. 
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Figure 21. Illustration of iTRAQ quantification using MS/MS. 

The first spectrum shows a total ion chromatogram of the precursor ions at a specific retention time, then the 

most abundant ions are selected for fragmentation. HCD fragmentation method yields masses in the low m/z 

region required for reporter ion analysis. The abundance of the reporter ions is used for quantification of the 

same peptide originated from different samples. 

Although iTRAQ is an effective approach for relative quantification, which surpasses metabolic 

labelling in terms of reproducibility and precision (194), there are some analytical challenges that 

may affect the performance of the method. Briefly, some of these challenges will be discussed. 

a. Isotopic Purity and Correction 

iTRAQ and TMT reagents compromises a set of labels with variable isotopic composition: 13C and 
15N atoms.  However, the label reagents are not 100% isotopically pure as a result of the synthesis 

reactions. As consequence the observed intensity of a given peak or label will be smaller than the 

one expected if the composition was completely pure. Additionally, the impurities from other labels 

will contribute to the intensity of adjacent peaks. Figure 22 illustrates this effect. As an illustration, 

the label 117 will not only comprise molecules having three 13C atoms but might also contain 

molecules with one, two or even five 13C atoms therefore this reporter ion will report additional peaks 

at positions -2, -1, +1 and +2 Da from the nominal reporter ion mass. Impurities from other labels 

will contribute to the observed intensity of the peak at 117m/z. These shifts might confound the 

observed changes of protein expression and bias quantification.  
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Figure 22. Effect of isotopic purity on intensity. 

The observed intensity of a given reporter ion comprises a composed composition and differs from the 

abundance of the nominal tag. The true intensity of the tag results from the intensity loss because of impurities 

of such tag and the intensity gain because of other label impurities. An accurate quantification requires the 

correction of the reporter ion intensities considering the isotopic composition. 

Manufacturers provide information about isotopic composition indicating the percentage of the 

isotopic variants from each reporter ion. These values can be used for correction and some algorithms 

have been developed to recalculate the peak areas accounting for the isotopic distribution. A system 

of linear equations is required for correction. Shadforth, I. et al. (2005) applied Cramer’s rule to solve 

simultaneous equations and calculate true peak areas (195). However, current software tools for 

identification and quantification, such as Proteome Discoverer (Thermo Scientific), include an option 

for isotopic correction.  

b. Ratio Compression and Correction 

Typically to create a fragment spectrum, one precursor mass is selected, isolated and subjected to 

fragmentation within a preselected mass window, then the product ion masses are recorded. 

However, in practice not solely one mass is selected, but the precursor ions present in a specified 

window (1 – 2Da) around the isolation mass. Consequently, coeluting ions falling within this window 

will be co-isolated and fragmented together. This co-isolation effect can reduce the identification 

confidence and it is inherent to the reporter ion quantification.  

On the assumption that most of proteins in biological studies do not change significantly, peptides 

from these proteins co-fragmented with the peptide of interest will result in a compression towards 

one of the ion reporter ratios expressed as fold changes (186, 195, 196). There are some experimental 

and computational approaches to minimise and correct this co-selection phenomenon. Since the 

interference from coeluting peptides is a function of sample complexity, extensive fractionation on 

the protein and peptide level partially alleviates the ratio compression (197). Concurrently, other 

approaches can be implemented: a high resolving power, m/Δm > 15000, in the low mass region 

facilitates discrimination of contaminant from reporter ions minimising interference (198); narrow 



 

[68] 
 

MS/MS isolation window, gas purification (199) and multinotch isolation for MS3 mass analysis 

(200, 201). Additionally in the data processing pipeline, quantitative information can be rejected 

having a percentage of isolation interference above a specified threshold. 

c. Estimation of Fold Changes 

A protein is considered significantly modulated if the measured fold change upon perturbation 

exceeds a specified cut-off point. Fold changes calculated using reporter ion quantification have 

shown to be a function of protein abundance and mass, with low abundant and small proteins showing 

the largest variance (202). Threshold determination must encompass most of the technical and 

biological variation among replicates. Levin (2011) applied the function pwr.2p.test() in the 

statistical package R to calculate the statistical power for proteomic studies accounting for the total 

variation (biological and technical) and encompassing significance and fold changes. Therefore, a 

clear fold change cut-off can be determined considering the number of biological replicates and 

expected statistical power (203).  

1.4.4 Data Analysis 

Since each particular proteomic approach involves a specific statistical framework and 

bioinformatics, this section presents a general description of data analysis for reporter ion 

quantification. Protein identification and quantification requires independent but parallel analysis 

processes until the last steps of the workflow. Figure 23 illustrates a schematic of the data processing 

for protein quantification. The spectral data representing peptides is initially pre-processed to select 

peaks and remove noise, importantly quantification requires minimal filtering of data, which includes 

baseline correction and signal-to-noise threshold, thus profile data is recommended at this stage. On 

the other hand, identification benefits from processed and clean spectra and therefore centroid data 

is preferred (197).   

 

Figure 23. Reporter ion quantification workflow. 

Raw data is acquired in centroid and profile modes that are used for protein identification and quantification. 

Protein quantification is subjected to statistical assessment to validate the confidence of the protein inference 

and quantification. Adapted from (197) 

Protein identification implicates matching of each MS/MS spectrum with a database of simulated 

MS/MS spectra generated by in silico digestion of protein sequences from organisms with sequenced 

genomes. The extent of matching between theoretical and experimental mass spectra is ranked and 



 

[69] 
 

filtered, the sequence with the best fit above a pre-set threshold is generally considered correct and 

will be included in a list of peptide spectrum matches or PSM and peptide identifications. Identified 

peptide sequences are assigned by inference to create a list of proteins. Peptide ratio measurements 

assigned to a given protein are then averaged to quantify the relative protein abundance (31, 204).  

1.4.4.1 Protein Inference 

One of the main challenges of shotgun proteomics relies precisely on its peptide-centric rationale. 

Since peptides are used as surrogate representations of the proteins, the correct inference of proteins 

from peptide sequences require complex processing specially for isoforms and redundant proteins. 

Moreover, the correct assignation of peptides to proteins have become more complex with the 

improved capabilities of new proteomic platforms and continuously increasing databases. Among 

the main challenges for protein inference are particularly relevant: (a) stochastic sampling, (b) 

identification of redundant proteins (proteins which share tryptic peptides) and (c) identification of 

unique peptides for homologous proteins (protein isoforms) (31).  

Unique peptides are required for a confident identification of both redundant and homologous 

proteins, in fact, one single high confidence unique PSM can provide enough evidence for the 

identification of a protein, particularly in conjunction with other high confidence non-unique 

peptides. Additionally, for reporter ion quantification the most accurate method is based exclusively 

on unique peptides. However, shared peptides by definition are more abundant than the unique 

peptides and consequentially these latter are more problematic to detect and identify (31). Multiple 

strategies has been proposed and used to address this problem, Li, Y. F. et al. (2012) have categorised 

these various computational approaches into three groups (205): 

a. Rule based strategies: protein assignation is conducted relying only on the most confident 

identified unique peptides. 

b. Combinatorial optimisation algorithms: these methods are based on constrained 

optimisation formulations of the protein inference problem to provide a list of proteins that 

optimise certain criteria, generating, for example, minimal protein lists comprising some or 

all confidently identified peptides. Usually these methods apply approximation algorithms.  

c. Probabilistic inference algorithms: assign identification probabilities for each protein in the 

database and implicate usually two steps: (1) a pre-processing step which converts PSM 

scores into PSM probabilities. (2) Protein inference is conducted using the assumed 

probabilistic model, involving posterior error probabilities (PEP) calculation. 

Importantly the assessment of the method performance for protein identification remains as an 

additional problem. However two different approaches can be applied: calculation of FDR at the 

protein level using decoy protein sequences (e.g. reversed or randomised) and the use of standard 

samples (mixture of known proteins) (205). 
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1.4.4.2 Statistical Significance of Protein Identification: FDR and PEP 

False discovery rates (FDR) and posterior error probabilities (PEP) are two complementary statistical 

methods for assessing the significance of peptides assignments. Considering that a large number of 

peptide matches are required to be simultaneously validated for correct and incorrect assignments, 

multiple testing is essential. In this scenario, using even extremely small p-values by random chance 

alone can allow a significantly high number of false positives, which is detrimental when the protein 

inference is based on the peptide identifications. There are available various strategies to address 

multiple testing corrections, the most classical being the Bonferroni correction which restricts the p-

value in proportion to the total number of matches being validated. This is considered as a 

conservative approach that not only significantly reduces the number of false positives but at the cost 

of the true discoveries (206). 

A more moderate approach has been adopted for proteomic studies; the false discovery rate (FDR) 

defined as the ‘expected proportion of incorrect assignments among the accepted assignments at the 

global level’ (206).  If a FDR threshold of 1% is set it means that a list of PMS comprising 99% 

correct and 1% incorrect matches will be accepted. The most widely used strategy to calculate FDRs 

is the target-decoy dataset search (TDS), which implies to search a set of spectra against a decoy 

database of peptide sequences (shuffled, reversed or Markov-chain generated) and assign a particular 

score: a q-value, to every PSM. The underlying assumption here is that false positives should occur 

with similar likelihood in both the decoy and target databases. This idea can be applied to calculate 

local or global FDRs and validate assignations at peptide and protein level (207, 208). Some further 

improvements to FDR calculation are necessary when the large MS experiments comprising 

hundreds to thousands LC/MS runs the basic assumption of TDS is compromised. Recently, Savitski, 

M. et al. (2015) have proposed an alternative FDR approach so-called picked target-decoy strategy 

(picked TDS) to prevent decoy protein overrepresentation. Picked TDS treats target and decoy 

sequences as a pair rather than as individual factors. The sequence either target or decoy with the 

highest score is selected (208). 

A complementary strategy is the posterior error probability (PEP) calculation, which indicates the 

probability that an observed PSM is incorrect. If the PEP associated with a given sequence is 5%, 

this means that there is a 95% chance that the peptide was in the mass spectrometer when the 

spectrum was generated (207). The relationship between FDR and PEP is presented in the Figure 24. 

In terms of distribution areas, FDR is defined as the ratio of the number of incorrect PSMs with 

score >x (B) to the total number of PSMs with score >x (A + B). On the other hand, the PEP is the 

defined in terms of the heights of distribution: the number of incorrect PSMs with score = x (b) to 

the total number of PSMs with score = x (a + b) (207). 
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Figure 24. FDR and PEP for statistical assessment of PSMs. 

These complementary methods are used for assessment of PSM assignments. FDR is the expected proportion 

of incorrect assignments among the accepted assignments at the global level. PEP indicates the probability 

that a PSM is incorrect. Adapted from (207) 

Current software tools for proteomics data such as Proteome Discoverer (Thermo Scientific) allows 

calculation at peptide and protein levels, and provides PEPs and additional assessment tools for 

assignment confidence like XCorr and ΔCN, which are measurements of the correlation between the 

experimental and theoretical spectra. This particular software was used for the initial processing of 

the raw data in conjunction with statistical pipelines designed in this work to assess the changes in 

relative abundance of proteins and thus, determining novel candidates for tuberculosis diagnosis.   
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HYPOTHESIS 
 

Unbiased in-depth quantitative proteomic analysis of plasma from healthy controls and active 

pulmonary tuberculosis patients will identify novel biomarkers for active TB. Validation of these 

candidate biomarkers will lead to a multi-marker panel that can distinguish TB patients from relevant 

controls. 

In order to test this hypothesis I have proposed four main aims: 

1. Perform an unbiased in-depth plasma proteomic analysis of healthy controls and active pulmonary 

tuberculosis in two groups of different ethnic origin using an optimised quantitative MudPIT 

(Multidimensional Protein Identification Technique) approach. 

2. Identify a common set of biomarkers suitable for validation for active pulmonary tuberculosis 

through appropriate bioinformatic and statistical analysis, utilising peptide intensities to protein 

expression levels. 

3. Validate the multi-marker panel for active tuberculosis using appropriate plasma samples groups. 

4. Determine multi-marker panel’s performance considering possible confounding variables in order 

to evaluate its applicability for clinical use. 
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CHAPTER 2 
 

Materials and Methods 
 

2.1 General Experimental Design 

The general workflow for this study is presented in the Figure 25. Briefly, novel biomarkers for 

active tuberculosis diagnosis were explored using plasma samples from healthy controls and 

tuberculosis patients. Since the ultimate goal of this work is to identify a more universal biosignature 

that can distinguish active tuberculosis patients in diverse genetic backgrounds, the proteomic profile 

was conducted using samples from two different ethnic ancestries through an optimised MudPIT 

approach and iTRAQ quantification. Raw data generated by mass spectrometry were assessed by 

quality control and then normalised. Subsequently, the protein expression levels were determined 

and statistical differences between groups established. A diverse set of analyses was performed such 

as those based on principal component analysis, biological network and pathway characterisation, 

and gene ontology assessment, approaches to identify the top most significantly modulated proteins 

as markers for tuberculosis. Structure and characteristics of clinical cohorts for validation were 

established. A subset of those candidates were evaluated in various validation groups using Luminex 

and ELISA and performance of multi-markers panel was assessed.  

 
Figure 25. General workflow for TB diagnosis biomarkers discovery. 

Proteomics of plasma samples from two different ethnic ancestries: Black-African ancestry and Amerindian 

ancestry was performed using MudPIT technology and iTRAQ relative quantification. Bioinformatics and 

statistical assessment allow determination of a multi-marker panel for active pulmonary tuberculosis. 
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Subsequently, validation and performance assessment of this panel was performed using suitable groups of 

plasma and serum samples.  

This chapter presents general methods used in this work, details for specific experiments such us 

optimisation (Chapter 3) or plasma proteomic profiling (Chapter 4 and 5) are described in each 

chapter methods section. 

2.1.1 Sample Size 

In order to minimise the effect of host variability on clinical features of tuberculosis infection, only 

samples from male individuals were selected and two groups of different ethnic origin were 

considered: Black–African ancestry (Cape Town) and Amerindian ancestry (Peru). A reported 

simulation designed for proteomic studies assuming 40% variation and using the function for R 

pwr.2p.test() was considered to determine the number of plasma samples required for this study 

(203). Figure 26A shows a simulation which indicates that a study including 7 individual biological 

replicates per group with a total variation of 40%, the minimum size effect required to achieve 

statistical power over 0.9 would be approximately two-fold change. This calculation is consistent 

with Cohen, G., et al. (2013) power calculation for a discovery iTRAQ set up comparing two 

conditions.  

A. 

 

 

B. 

 

Figure 26. Power analysis simulation for proteomic analysis 

A. Calculation of number of samples vs. power for different expression differences using the function 

pwr.2p.test() in the statistical package R. Figure 2B taken from Levin,Y., et al. (185). B. Power calculation 

based on iTRAQ ratio quantification estimated considering a standard deviation of 0.25 on logged iTRAQ 

ratios. The red, green and blue lines indicates logged-2 effect sizes of 1.0, 1.5 and 2.0, respectively. 

Supplementary figure 1A taken from Cohen, G., et al. (209). 

In total, six 8-plex independent iTRAQ experiments were performed on SEC prefractionated 

samples, each set included seven samples and one master pool to control for batch effect. This work 

included two experimental approaches for discovery as illustrated in the Figure 27. The general 

structure of the work presented in this thesis compromises the optimisation of the proteomic 

multidimensional method for plasma profile which is described in chapter 3. A complete plasma 
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proteomic profile based on one single set of 8 samples and four iTRAQ experiments (one per SEC 

segment) presented in chapter 4. And finally, the detailed analysis of the most informative segment 

which involved two additional 8-plex experiments. 

Figure 27. Experimental strategy for discovery 

The discovery stage of this work involved six 8-plex iTRAQ sets. A first group of samples, four tuberculosis 

and three control were used to profile the plasma proteome across all 4 segments; the remaining tag was used 

to label the master pool. Sample size was increased for the most informative segment, which involved two more 

iTRAQ experiments analysing segment 4 reducing the false positive rate for discovery. 

The whole plasma proteome described in chapter 4 was profiled using the one set of samples, four 

tuberculosis and three control samples. Secondly, the sample size for the most informative segment 

was increased to a total of 11 tuberculosis and 10 control samples (chapter 5). In total, 29 samples 

from South African and Peruvian male controls and tuberculosis patients were available for this 

study, the master pool was prepared pooling together 20µL of each one of all this samples. From this 

cohort 21 samples were selected for proteomic profiling. The clinical data and general allocation in 

iTRAQ sets is described in Table 4.    

In general, three or four plasma samples per group from two different ethnic ancestries were included 

in each iTRAQ set. iTRAQ label allocation was block-randomised, excepting the master pool which 

was consistently labelled with the tag 113, thus reducing bias resulting from isotopic tag 

derivatisation. Considering the power calculation previously mentioned, at least ten samples per 

group were utilised for discovery, which, allows a statistical power near to 1.0 when the size effect 

cut-off is at least 2.0-log2 iTRAQ ratio. Table 4 describes the general iTRAQ experiment structure 

and sample allocation used for profiling the plasma proteome in active tuberculosis. Age, BMI and 

smoking status of the individuals included in this work is included. Additionally, the chapter where 

the data is presented and discussed is indicated. 
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Table 4. General description of iTRAQ experiments for comprehensive plasma profile 

Experiment 
Profiled 

SEC 
segment 

Chapter Group Sample 
ID 

iTRAQ 
Tag Age BMI Smoking 

Preliminary 
Exploration  4 3 

Active 
tuberculosis 

TB17 113 38 23.98 No 
TB35 114 25 17.32 Ex 
TB39 115 24 19.86 Smoker 
TB55 116 25 18.86 No 

Control 

HC14 117 28 21.02 Smoker 
HC24 118 36 22.7 Smoker 
HC29 119 34 29.37 No 
HC58 121 21 19.38 Smoker 

Set A 1, 2 ,3, 4 

4           
(Profile from 

segment 4 
used in 

chapter 5 as 
well) 

Active 
tuberculosis 

TB03A 114 42 19 Ex 
TB04A 121 30 22.27 No 
TB10P 118 27 21.9 Current 
TB01P 119 30 21.1 Ex 

Control 

HC03A 115 22 22.21 Ex 
HC04A 116 32 22.31 Current 
HC04P 117 34 25 No 
MP01 113 N/A N/A N/A 

Set B 4 5 

Active 
tuberculosis 

TB01A 117 28 17.87 Ex 
TB06A 119 35 17.63 Current 
TB03P 115 44 25 No 

Control 

HC02A 114 27 25.42 No 
HC07A 116 30 21.86 Current 
HC02P 118 26 25.1 No 
HC03P 121 26 24.1 No 
MP05 113 N/A N/A N/A 

Set C 4 5 

Active 
tuberculosis 

TB05A 116 25 20.6 Current 
TB02A 118 42 20.96 Ex 
TB02P 114 25 18.8 Ex 
TB05P 121 21 22.3 Ex 

Control 

HC05A 119 35 22.94 Current 
HC01P 115 24 23.2 No 
HC07P 117 27 25.3 No 
MP04 113 N/A N/A N/A 

 

2.1.2 Sample Collection 

Ethical approval for sample collection with informed consent was provided for both South African 

and Peruvian samples.  University of Southampton ERGO approval for transporting samples to the 

United Kingdom was granted (Approval 17758). The criteria for inclusion and exclusion are 

summarised in Table 5. Samples were collected and stored at -80°C. 
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Blood collection and plasma processing were performed according to the recommendations of 

Standard Operating Procedure Integration Working Group (SOPIWG) (210). To maintain 

consistency in the proteome, all blood samples were collected in tubes with sodium citrate. Plasma 

were collected in the Ubuntu HIV/TB clinic in Cape Town, South Africa and community health 

clinics in Lima, Peru. 

Table 5. Criteria for inclusion and exclusion of participating individuals 

Inclusion Criteria Control Group TB Group 

1. Male     

2. Age range from 20 to 35     

3. Body Mass Index from 18.5 to 24.9     

4. Non-smoker     

5. No drug treatment before enrolment     

6. Same ethnicity      

7. HIV negative     

8. Available standard clinical information      

9. Quantiferon negative (Only Peru)   X 

10. Smear positivity X   

11. Sputum culture positivity X   

12. Chest X-ray abnormalities X   

13. Extensive pulmonary infiltrates X   

Exclusion Criteria Control Group TB Group 

1. Female     

2. HIV positive     

3. Diabetes mellitus     

4. Haemoglobin <8 g/dl     

5. Renal impairment with Creatinine >150μm/l     

6. Abnormal liver function with ALT >80i.u./l     

7. Use of any investigational or non-registered drug, 

vaccine or medical within 182 days preceding of study, 

or planned use during the study 

    

8. Enrolment in any other clinical trial     

9. Evidence of severe depression, schizophrenia or mania     

10. Unable to provide informed consent     

11. Principal investigator assessment of lack of 

willingness to participate 

    
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2.2 Patient Recruitment and Ethics Statement 

Participants from South Africa belong to black-African ethnicity were recruited at Ubuntu HIV/TB 

clinic in Cape Town, located in the southwest coast of South Africa. Written informed consent was 

obtained, HIV testing was offered, and chest radiographs were performed as per routine practice. The 

study was approved by the University of Cape Town Research Ethics Committee (HREC, REF 

516/2011). The diagnosis of active tuberculosis was based on sputum smear positivity and x-ray 

chest examination. For the control group, all sputum samples were smear and culture negative for 

acid-fast bacillus (AFB). Samples from South Africa were retrospectively selected from a cohort 

collected and described by Walker, N. et al., (2017) (211). 

On the other hand, individuals from the Peruvian cohort were prospectively recruited at clinics in 

Lima, Peru to match individuals from South Africa. Written consent was obtained. The study was 

approved by the Peruvian University Cayetano Heredia Research Ethics Committee (Constancia 419-

21-15). The diagnosis of active tuberculosis was made on tuberculosis symptoms questionnaire, 

sputum smear positivity, culture positivity using microscopic-observation drug-susceptibility 

(MODS) culture and chest X-ray. Healthy control individuals were Quantiferon negative.  

Control individuals for both cohorts were recruited in the clinics when attending to the clinics with 

a friend/family member who was seeking healthcare due to respiratory symptomatology. Only blood 

samples from male individuals who were HIV negative were included in this study. Clinical data 

information is provided in relevant result chapters.  

2.3 Sample Collection and Processing  

Blood was collected on sodium citrate-treated tubes after consent and centrifuged in order to remove 

blood cells. Plasma samples were then frozen at −80°C in aliquots of 100µl to minimize freeze-thaw 

cycles prior to analysis. As soon as the samples were received at the Southampton General Hospital, 

aliquots of 121.2µl of plasma were liquid –fixed with 383.8µl of 7M guanidine hydrochloride and 

10% ethanol and stored at -20°C until size exclusion chromatography fractionation. 

2.4 Reagents and Chemicals 

The chemical reagents acetonitrile, ethanol, isopropanol, methanol, acetone, triethylammonium 

bicarbonate, and formic acid (HPLC grade) were obtained from Sigma Corporation (Poole, Dorset, 

UK.). Guanidine hydrochloride, acetonitrile and methanol (MS grade) was obtained from Thermo 

Fischer Scientific, UK. The ultrapure HPLC grade water, utilised for the initial peptide fractionation 

with high pH RP and subsequent LC-MS analysis procedures, was generated from the Barnstead 

water filtration system (Dubuque, IW, USA). All iTRAQ reagents and buffers were obtained from 

Applied Biosystems (Warrington, Cheshire, UK.). 
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2.5 Plasma proteomics analysis  

2.5.1 Multidimensional Protein Identification Technology (MudPIT) Analysis 

Optimisation and use of the bottom-up MudPIT approach for separation of plasma proteins in this 

work was based on the method reported elsewhere (35, 92). The general workflow for the plasma 

proteomics analysis is illustrated in the Figure 28 and consists of five steps: (1) High-Performance 

Size Exclusion Chromatography (HP-SEC), (2) dialysis purification, (3) trypsinisation, (4) Stable 

isotope labelling, (5) peptide prefractionation using alkaline reverse-phase high performance liquid 

chromatography (RP-HPLC) and (6) on-line acidic RP-HPLC coupled to tandem mass spectrometry, 

HPLC-MS/MS. The method presented in Figure 28 describes the method fully optimised and used 

to profile the differential plasma proteome resulting from active tuberculosis infection. Chapter 3 

describes optimisation steps to develop this particular method. Chapter 4 presents the application of 

this method to profile the plasma proteome from the four SEC segments in a set of 8 samples and 

finally, Chapter 5 describes a detailed analysis of one of the SEC segments 21 samples using the 

method depicted in Figure 28. 

 
Figure 28. Multidimensional protein identification technology (MudPIT) analysis 

Identification and quantification of plasma proteins was performed using MudPIT approach which comprises 

a series of fractionation steps at both protein and peptide level. Highlighted in blue are specific steps that were 

developed and optimised in this work. 

2.5.2 High Performance Size Exclusion Chromatography  

In general, SEC separations were performed on the Shimadzu HPLC system equipped with an inline 

membrane degasser (Model DGU-20A5), dual piston high pressure pump (Model LC-20AD), 

thermostatic column compartment (CTO-20A), and multi-wavelength UV detector (Model SPD-

20A). Each sample was independently pre-fractionated. For each injection, 550µL of previously 

fixed plasma in 7M Guanidine hydrochloride was thawed on ice. The separations were performed 

with five serially connected Shodex KW-804 (5.0µm size particle, 8.0mm × 300 mm) and KW-302.5 
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(7.0µm size particle, 8.0mm × 300 mm) columns (Showa Denko America, Inc., NY, U. S. A.) under 

isocratic elution. Five retention time defined segments (assigned as Segments 1−5) were generated 

as shown in Figure 28 detected at 280nm. 

2.5.3 Dialysis Purification 

The protein segments were dialysis-purified using 3KDa MWCO Slide-A-Lyzer cassettes according 

to manufacturer’s specifications (Thermo Fisher, Hemel Hempstead, Hertfordshire, UK). Four 

volumes of 4L of ultrapure water were renewed every 12h intervals in a cold room environment 

(4°C). The resulting dialysates were transferred into 15mL tubes and completely lyophilised using 

the Edwards Modulyo EF4-174 freeze dryer and Thermo Savant Micro Modulyo-115 benchtop 

freeze dryer. Protein extracts were stored at -80°C under argon atmosphere. 

2.5.4 Protein Quantification 

Total protein lyophilised extracts obtained from each SEC segment were reconstituted with 0.5M 

TEAB and 0.05% SDS and sonicated on ice. Protein extracts were then centrifuged for 10 minutes 

at 16000xg and 4°C. The supernatants were transferred to fresh tubes and the pellets were kept at -

20°C. The protein content in the supernatants were quantified using the Nanodrop ND-1000 

spectrophotometer (Thermo Scientific, Wilmington, USA) using the A280 program. 120µg of protein 

from each sample were aliquoted in new tubes and the volumes were adjusted with ultrapure water 

to the same volume, setting the most diluted sample as maximum volume. All the samples were 

adjusted to a final concentration of ~4µg/µL of protein. 

2.5.5 Trypsin Digestion 

120µg of protein volume-adjusted were reduced with 2µL of TCEP (50mM tris-2-carboxymethyl 

phosphine) and incubated for 1h at 60°C. Reduced samples were then alkylated using 1µL of MMTS 

(200mM methylmethane thiosulphonate) and incubated 10 minutes at room temperature. 6µL of 

500ng/µL Trypsin MS grade (Pierce, Thermo Fisher Scientific, UK) were added to each sample and 

incubated overnight for 16h at 37°C in dark. 

2.5.6 iTRAQ labelling  

iTRAQ 8-plex tags were equilibrated at room temperature and isopropanol was added accordingly 

to ensure >60% organic phase during labelling. Each tag was added to the appropriate trypsinised 

sample according to the particular experimental design, then the labelling reaction was conducted for 

2h at room temperature. The reaction was stopped with 8µL of 5% ammonium hydroxylamine. 

Samples were dried and stored at -20°C until chromatographic separation. 

2.5.7 Peptide Prefractionation with Offline alkaline RP-HPLC 

Offline peptide fractionation was based on high pH Reverse phase (RP) chromatography using the 

Kromasil, C4 column (3.5μm, 2.1mm x 150mm) and on the Shimadzu HPLC system described in 

section 2.5.2. iTRAQ labelled tryptic peptides were analytically reconstituted and pooled together 

with 100µL of mobile phase, centrifuged at 16000xg at room temperature for 10 minutes, and the 
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pellet was kept at -20°C. Supernatant was injected and separated at a flow rate 0.30mL/min and 30°C. 

The fractions were collected in a peak-dependent fashion detected at 215nm. The peptide fractions 

were dried at room temperature with speedvac concentrator for 4−5h and stored at −20°C until the 

LC−MS analysis. 

2.5.8 LC-FT-Orbitrap MS Analysis 

The LC−MS experiments were performed on the Dionex Ultimate 3000 UHPLC system coupled to 

the high resolution nano-ESI-LTQ-Velos Pro Orbitrap-Elite mass spectrometer (Thermo Scientific). 

Individual peptide fractions were reconstituted with 31μL of loading solution (2% acetonitrile, 1% 

formic acid). Injection mode using the loading pump was at 5μL/min flow rate for 5min.  

Two separate analyses for HCD and CID fragmentation for each of the collected fractions were 

performed. For the analytical separation the AcclaimPepMap RSLC, 75μm × 25 cm, nanoViper, C18, 

2μm particle column with trap cartridge retrofitted to a PicoTip emitter (FS360-20-10-D-20-C7) was 

used for multistep gradient elution. Mobile phase (A) was composed of 2% acetonitrile, 0.1% formic 

acid and 5% DMSO and mobile phase (B) was composed of 99.9% acetonitrile, 0.1% formic acid 

and 5% DMSO. The gradient elution method at flow rate 300nL/min gradually increased mobile 

phase B. The iTRAQ labelled peptides were fragmented in the axial electric field assisted higher 

energy collisional dissociation (HCD) cell. The mass spectrometer was set so that each full MS scan 

was followed by the ten most intense ions for MS/MS with charge +3 and +2. The normalised 

collision energy for MS2 was 35.0%. Full MS scans and MS/MS scans were acquired at a resolution 

of 30000 or 60000 for profile-mode and 15000 for centroid-mode, respectively, with a lock mass 

option enabled for the 445.120025m/z ion (DMSO). Data were acquired using Xcalibur software. 

The LTQ FT-Orbitrap system was externally mass calibrated every 3−4 days using the positive ion 

calibration solution (Thermo Pierce, Rockford, IL, USA). Ion tuning was verified on a weekly basis 

as recommended by the manufacturer. Conditions for ionisation, CID and HCD fragmentation and 

ion detection were reported in a previous work (212). 

2.6 MS Data Processing 

Processing of the acquired mass spectra was performed with the Proteome Discoverer 1.4 software 

followed the workflow illustrated in Figure 29A. SequestHT was used for the target decoy search for 

tryptic peptides, allowing two missed cleavages, a tolerance of 10ppm, and a minimum peptide length 

of 6 amino acids. A maximum of 2 variable (3 equal) modifications; oxidation (M), deamidation (N, 

Q) and phosphorylation (S, T, Y) were set as dynamic modifications. As static modifications were 

set: iTRAQ8plex (Any N-terminal), Methylthio (C) and iTRAQ8plex (K). 

Fragment ion mass tolerances of 0.02Da for the FT-acquired HCD spectra and 0.5Da for the IT-

acquired CID spectra. FDR was estimated with the Percolator (6.4Bit) and set to ≤0.01 and validation 

was based on q value at <0.01 for high confidence or <0.05 for moderated confidence. All spectra 

were searched against the reviewed UniProtKB SwissProt human proteome and the reference 
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proteome (SwissProt and TrEMBL) for Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) 

both retrieved on 04 August 2017. All peptide spectrum matches (PSM) of reporter ions and iTRAQ 

ratios were exported to .txt at 1%FDR or 5%FDR peptide confidence and 50% co-isolation exclusion 

threshold. Protein grouping was allowed, maximum parsimony principle was applied and 

normalisation on protein median performed with minimum protein count set at 20. Only unique 

peptides were considered for quantification downstream analysis. 

2.6.1 Statistical Pipeline for iTRAQ based quantification  

A general description of the statistical approach used in this work is presented here, more specific 

details are included in the relevant result chapters. Firstly, box-and-whiskers plots and interquartile 

analysis were performed as quality control for the raw peptide intensities. As a result of this first 

inspection, the pipeline shown in the Figure 29B was designed to calculate the protein expression 

levels. Briefly, raw data produced by Proteome Discoverer were imported into R (version 3.3.1), an 

open source statistical analysis software, and using custom code provided by Dr. Cory White, median 

adjusted normalisation was performed on unique peptides. Median-normalised peptide intensities 

were log2-transformed and values were averaged to obtain the mean relative expression for each 

protein. Statistical analysis (significance testing) methods were applied to determine size effect based 

on quantitative iTRAQ data.  

A. 

 

B. 

 

Figure 29.  Statistical and bioinformatic pipelines 
A. Spectra analysis is performed using Proteome Discoverer 1.4. SequestHT is used for the target decoy 

searching for tryptic peptides. All spectra are searched against a customised fasta file containing UniProtKB 

SwissProt human proteome and Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv). Peptide spectrum 

matches (PSM) of reporter ions are extracted and rejected if any channels were absent. Workflow generated 

in Proteome Discovery 1.4. B. Statistical pipeline for raw intensities data. PL0 involves the calculation and 

direct extraction of protein ratios from Proteome Discoverer (PD 1.4). For pipelines P1, PL2and PL3 peptide 

intensities are inspected by quality control, then median-adjusted normalised and log-2 transformed. 
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Normalised peptide intensities are averaged using geometric mean, evaluated by quality control again and 

used for protein expression levels calculation. These values are used for significance assessment of effect size 

between groups using two-sample t-test (PL1), or Limma with or without previous ratio-based permutation 

(PL2 and PL3, respectively). Differences considered significant when p value < 0.05). PL1: Pipeline 1, PL2: 

Pipeline 2 and PL3: Pipeline 3. 

To determine an appropriate statistical method for assessing differential abundance, three different 

pipelines were designed and tested including; two-sample t-test comparing control and tuberculosis 

individuals and, permutation based on ratios and linear modelling using the R package (version 3.1.2) 

linear models for microarray data “LIMMA”, followed by multiple test correction using FDR. 

RStudio (version 3.1.2) was used for data analysis, generation of box-and-whiskers plots, principal 

component analysis (PCA) or multidimensional scaling (MDS) plots, hierarchical clustering and 

heatmaps. GraphPad Prism 7 was used to draw volcano plots and chromatographic profiles of SEC 

and RP-HPLC separations. 

2.6.1 Gene Ontology Analysis 

ToppGene Suite (213) or the Cytoscape platform (version 3.1.2) was employed to process biological 

network visualisation and data integration. ClueGO (Biological Networks Gene Ontology tool) is a 

Cytoscape plug-in based for visualisation of non-redundant biological terms for gene clusters. CluGO 

network are generated using kappa statistics and reflects the association between the terms based on 

the similarity of their associated genes (214). Biolayout  Express 3D was used as orthogonal 

bioinformatic strategy to p-value based statistics for data analysis, since Biolayout is based on co-

expression network analysis (215)  

2.7 ELISA and Luminex validation 

Proteins selected for validation from the proteomic discovery experiments were measured in two 

different cohorts: a cross-sectional study with participants enrolled in South Africa and the 

Multifunctional Integrated Microsystem for rapid point-of-care TB IdentifiCation (MIMIC), a multi-

centre cohort enrolled in the UK (211). Patient samples from the South African group included in 

the discovery were selected from this latter cohort.  Both cohorts have suitable ethical approval for 

sample collection and informed consent was provided to participants. 

2.7.1 ELISA 

Plasma/serum samples from the South African and MIMIC cohort were analysed using commercially 

available ELISA kits from 2B Scientific Ltd, Upper Heyford, UK and Caltag Medsystems Ltd, 

Buckingham, UK. ELISA kits were performed according to manufacturer’s directions. In brief, each 

ELISA involved pre-coated plates with primary antibody against the antigen of interest. A calibration 

curve was prepared by serial dilution of concentrated standards and 50µL to 100µl of each sample 

and standard were placed in the plates. The plates were covered and incubated for 30 minutes to 2 

hours at 37 °C. Next, the plates were washed 3-5 times manually and 50µl of biotinylated antibody 
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were dispensed to each well followed by an incubation for 2 hours at 37 °C. A further step of washing 

was performed and 50µl-100µl of HRP-avidin were dispensed to each well incubating for 1 hour at 

37 °C. After a third step of washing, 90µl to 50µl of TMB substrate were added to each well 

incubating for 10 to 30 minutes at 37 °C. The reaction was stopped with 50µl of acidic solution. OD 

was determined using a microplate reader set at 450nm and wavelength correction at 540nm was not 

recommended. Volumes and incubation times vary between kits. 

2.7.2 Luminex 

Plasma/serum samples from the South African and Peruvian cohort were analysed on the Luminex 

Bio-Plex 200 platform to determine fluoresce intensities or concentration of proteins prioritised for 

validation. Luminex beads were custom-made and purchased from Protavio Ltd., Stevenage 

Bioscience Catalyst, UK. Bio-Plex manager software was used to construct standard curves and 

interpolate unknown concentrations. Briefly, standard curves for each protein were prepared by 

making eight three-fold serial dilutions from the corresponding analytes concentrated standard with 

sample diluent. Dilution factors were optimised for each protein. To run the assays, 50µl of beads 

mix were dispensed to each well of a pre-wet plate. 35µl of standards and samples were placed in 

each corresponding well. The plate was covered with foil and incubated for 90 minutes at 900rpm at 

room temperature. After incubation, the plate was washed twice and then, 20µl of diluted biotinylated 

antibody were added to each well incubating for one hour at 900rpm at room temperature. The plate 

was washed as before, and 50µl of diluted Streptavidin-PE was dispensed to each well incubating 

for 30 minutes. Finally, the plate was washed and the microparticles were resuspended with wash 

65µL buffer followed by incubation for ten minutes on a shaker. The plate was read using the 

Luminex 200 platform and Bio-Plex manager software was used for data analysis.  

GraphPad Prism 7 was used to visualise the data from ELISA and Luminex data. Group comparisons 

using Mann-Whitney test or Kruskal – Wallis test and Dunn’s multiple comparison correction to 

determine significant differences was performed on GraphPad Prism 7. Significant differences 

considered when p < 0.05. 

2.8 Contribution statement  

This PhD work was conducted by Diana J. Garay-Baquero under the supervision of Professor Paul 

Elkington, Dr. Spiro Garbis and Dr. Christopher Woelk. The work performed by Diana J. Garay-

Baquero included optimisation of the MudPIT strategy, proteomic profiling of the South African and 

Peruvian samples, data analysis in R, Cytoscape, Biolayout Express 3D, Graphpad Prism and SSPS, 

validation experiments by ELISA and Luminex on the MIMIC and South African cohort and 

production of this thesis. Importantly, many people contributed to the development of this work, 

names and contributions are listed below. 
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• Dr. Cory White: provided bioinformatics input. Dr. Cory wrote and provided the R code for 

peptide normalisation, transformation, calculation of protein expression, LIMMA, permutation and 

multiple testing correction.    

• Dr. Naomi F. Walker: conducted collection, clinical characterisation and shipping of South 

African samples for discovery and validation. 

• Dr. Cesar Ugarte Gil: conducted collection, clinical characterisation and shipping of Peruvian 

samples for discovery. 

• Dr. Marc Tebruegge: Principal Investigator of MIMIC study. Dr. Marc provided MIMIC samples 

for validation. 

• Hannah Schiff: managed MIMIC cohort and assisted the validation experiments including ELISA 

and Luminex measurements.  

• Dr. Ashley Heinson: provided initial training in R environment. 

• Dr. Antigoni Manousopoulou: provided initial training in the proteomic platform and method for 

plasma profiling. During this training period the preliminary experiments presented in chapter 3 were 

generated.   

• Dr. Liku B. Tezera: provided training in the Luminex platform. 

• Dr. Andres Vallejo: provided bioinformatic input for network analysis, particularly Biolayout 

Express 3D and GWCNA. Dr. Andres provided the R code for ComBat normalisation and GWCNA 

analysis. 
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CHAPTER 3 
 

A Preliminary Exploration of the Active Tuberculosis Plasma Proteome for Method 

Optimisation 

 

3.1 Introduction 

Plasma mass spectrometry based proteomics offers a unique opportunity to identify new biomarkers, 

since serologic tests based on antibody detection can be translated relatively easy to limited access 

clinical settings.  However, the proteomics analysis of plasma poses many challenges. These include 

the extensive protein concentration range of over 10-orders of magnitude, and limited availability of 

standardized or validated methods. Furthermore, over 90% of the total protein mass is comprised of 

mainly albumin and IgGs and thus mask the presence of the lower abundant and more clinically 

viable proteins. During the last 10 years, some serum proteomic studies have been conducted aimed 

at discriminate active pulmonary tuberculosis cases (103). Importantly, these studies were conducted 

using depletion approaches to reduce the complexity of the matrix and a limited coverage of the 

proteome was reached. The most extensive proteomes published to date have profiled between 518 

and 716 proteins (117, 153).  

A deeper proteome coverage is required to generate and validate a universal biosignature including 

different ethnic origins under a most robust experimental design, challenges that are addressed in this 

work.    

The central hypothesis of this work predicts that our quantitative MudPIT plasma proteome will 

discriminate active tuberculosis patients from healthy individuals. This chapter presents a 

preliminary exploration of the differential plasma proteomes of active tuberculosis using the MudPIT 

approach with iTRAQ quantification to test this hypothesis. Two different experiments are compared 

using a set of eight plasma samples comprising four healthy individuals and four active pulmonary 

tuberculosis patients from South Africa. Only segment 4 derived from SEC prefractionation was used 

for profiling.  

The original analysis methods reported by Garbis, S.D., et al (2011) and Al-Daghri, N. M., et al 

(2014) were used for these preliminary experiments (92). The resulting preliminary profiles guided 

the further development and optimisation of our MudPIT approach to reduce sample-processing 

biases and increase coverage and depth of the plasma proteome. This chapter presents further 

adjustment of SEC prefractionation, offline and online separation. Importantly, orthogonality 

between offline and online separation is a critical feature for multidimensional separations. Therefore 
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in this study, high pH C4 chemistry separation is explored as an optional substitute of C8, considering 

that C4 is more hydrophilic and should increase orthogonality and therefore the more efficient offline 

prefractionation process prior to the online separation based on low pH C18 chemistry. This 

combination of reverse phase chemistries enabled the reduction of peptide co-isolation prior to their 

mass spectrometric analysis, which in turn allowed for their improved relative quantitation and 

increased proteome coverage. On the other hand, as a result of iTRAQ labelling, a broad peak 

containing underivatised iTRAQ is consistently eluted in the early retention times of the offline 

separation, masking the most hydrophilic peptides. I developed a method for cleaning of these 

fractions applying solid phase extraction to recover highly hydrophilic peptides. This chapter 

presents the development process which led to the final method described in Figure 28 and 

subsequently used in Chapters 4 and 5. One set of 8 samples from the South African cohort were 

used for a preliminary exploration of the plasma proteome in the context of active tuberculosis. A 

series of small experiments were undertaken to increase the analytical power of this MudPIT 

approach and presented in this chapter.  

3.2 Methods 

3.2.1 Patients Cohort 

Recruitment and ethics for the South African cohort were described in the section 2.2. Healthy 

control individuals included in this preliminary study presented a mean age ± SD of 29.8 ± 6.8 (range 

21-36 years) and BMI ± SD of 23.1 ± 4.4. In the case of active pulmonary TB patients, age ± SD was 

28.0 ± 6.7 (range 24-38 years) and BMI ± SD was 20.0 ± 2.9. For these clinical characteristics, there 

was no significant difference between groups (at p < 0.05). Table 6 presents the clinical information 

of the individuals analysed in the pilot study. As previously stated in Table 4, this set of samples is 

uniquely used for technical refinement and method development presented in this chapter. 
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Table 6.  Clinical information of individuals participating in pilot study 

Variables Healthy  Controls Pulmonary Tuberculosis p value 

n 4 4 
 

Gender Male (100%) Male (100%) 
 

Mean age ± SD (years) 29.8±6.8 28.0±6.7 0.725(a) 

Age range (years) 21-36 24-38 
 

Mean BMI ± SD  23.1 ± 4.4 20.0 ± 2.9 0.343(a) 

Smoking History 
   

• Non smokers 1 2 0.314(b) 

• Current smokers 3 1 
 

• Ex-smokers 0 1 
 

Drug Treatment 
   

• None 2 3 0.286(b) 

• Amoxicillin 1 0 
 

• Vitamins 1 0 
 

• RHZE-Amoxicillin 0 1 
 

(a) two-tailed p-value calculated by t-test 
(b) two-tailed p-value calculated by Fischer’s exact test 

3.2.2 Sample Processing and Labelling  

Plasma samples were prefractionated using size exclusion chromatography as generally described in 

section 2.5.2, dialysed and quantified. 100µg of protein were trypsin digested and labelled as defined 

in sections 2.5.4 to 2.5.6. The labelling scheme is presented in Figure 30.  

 

 

Figure 30. iTRAQ labelling scheme of preliminary study. 

Isobaric tags 113, 114, 115, and 116 were used for labelling healthy controls and tags 117, 118, 119, and 121 

for active pulmonary tuberculosis patients.  

3.2.3 Peptide Fractionation 

Offline peptide fractionation was based on high pH Reverse phase (RP) chromatography using the 

Waters, XBridge C8 column (3.5μm, 3.0mm x 150mm). Mobile phase (A) was composed of 0.10% 

ammonium hydroxide and mobile phase (B) was composed of 99.90% acetonitrile and 0.10% 

ammonium hydroxide. The pooled mixture of tryptic peptides was reconstituted with 100µL of 

mobile phase (98% mobile phase A and 2% mobile phase B) and separated, with gradually increasing 
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mobile phase B according to the following program: 10 minutes isocratic 2% (B), for 10 minutes 

gradient up to 5% (B), for 60 minutes up to 20% (B), for 25 minutes up to 85% (B) and 10 minutes 

isocratic 85% (B) at a flow rate 0.30mL/min and 30 ͦ C. The fractions were collected in a peak-

dependent fashion during the entire gradient elution phase. The peptide fractions were finally dried 

with speedvac concentrator for 4−5 h and stored at −20 °C until the LC−MS analysis at 30°C. 

3.2.4 LC-FT-Orbitrap MS Analysis 

The LC−MS experiments were performed on the Dionex Ultimate 3000 UHPLC system coupled 

with the high resolution nano-ESI-LTQ-Velos Pro Orbitrap-Elite mass spectrometer (Thermo 

Scientific). Individual peptide fractions were reconstituted in 31μL of loading solution (2% 

acetonitrile, 0.1% formic acid). Scans were conducted at 30000FWHM for MS1 and 15000FWHM 

for HCD MS2 spectra. 

3.2.5 Bioinformatics and Statistical Analysis 

Spectra were processed and protein expression levels calculated through the pipeline presented in 

section 2.6.1. Protein expression fold changes were calculated by 𝑙𝑙𝑙𝑙𝑙𝑙2𝑇𝑇𝑇𝑇𝑥𝑥 −
1
4
∑ 𝑙𝑙𝑙𝑙𝑙𝑙24
𝑖𝑖=1 𝐶𝐶𝑖𝑖, where 

TBx is each tuberculosis sample and Ci is healthy control sample. 

3.2.6. Solid Phase Extraction Cleaning Protocol (SPE) and C4 Chromatography 

A set of experiments were designed to develop a SPE-based cleaning protocol for iTRAQ/TMT 

labelled peptides and a method for offline peptide fractionation using C4 chemistry to increase 

orthogonality in comparison with the C8 chemistry used for the preliminary experiments. 

Particularly, TMT was used for developing the cleaning protocol and to establish the conditions for 

C4 separations. TMT presents a higher multiplexing degree allowing for allocation of 2 more 

conditions than iTRAQ which is beneficial in this optimisation experiment. Additionally, optimised 

parameters are easily translated from TMT to iTRAQ since the labelling chemistry is highly 

comparable. HEK cell protein extracts were obtained following the methodology described in section 

2.5.4. 120µg of protein per isobaric tag was digested and labelled with TMT tags (Thermo Scientific, 

UK) according to manufacturer’s instructions as illustrated in the scheme presented in Figure 31. The 

TMT tags were split into two groups; tags 126, 127N, 127C, 128C and 128N were used for 

developing the SPE cleaning protocol and tags 129C, 129N, 130C, 130N and 131 were used to 

develop the C4 separation method and compare it to C8 chemistry. The first set of tags was pooled 

together and cleaned using a Gracepure SPE C18-AQ 100mg/1ml cartridge (Grace, St. Neots, UK). 

Cleaned peptides were then fractionated using C4 HPLC separation. The second set of samples did 

not undergo SPE cleaning and was directly separated using C4 chromatography. This first 

comparison allows to estimate peptide losses resulting from the SPE protocol. The fractions collected 

from the C4 separation in this second set were then pooled together, dried and reconstituted for C8 

separation. This second experiment compares C4 vs. C8 chemistry. All the fractions collected 

through these experiments were LC-FT-MS/MS analysed as described in section 2.5.8. 
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Figure 31. Experimental design for SPE cleaning and C4 separation method development 

HEK cell protein extracts were used to develop a SPE-cleaning method for TMT labelled peptides. Samples 

were TMT labelled and split into two groups. The first group of samples were subjected to SPE cleaning, 

followed by C4 HPLC separation and nUPLC-MS/MS analysis. On the other hand, the second set of samples 

were directly separated by C4 HPLC, then, the fractions were pooled together and separated using C8 

chemistry followed by nUPLC-MS/MS analysis of the fractions. 

3.3 Results 

3.3.1 Evaluation of Missingness 

Raw data (peptide intensities) generated from tandem mass spectrometry analysis from the segment 

4 were first evaluated at the peptide level to explore the incidence of missingness in the data set. This 

is a common issue in reporter ion based quantification due to the multiplex nature of the technology 

and it has a significant impact on the protein quantification. In fact, most of iTRAQ ratios are reported 

using uniquely the peptides that were quantified in all the samples. Missingness was evaluated in 

both data sets. Missingness maps were generated using the Amelia package in R. Maps show the 

peptides that were identified, blue areas represents quantified peptides and missing values are grey. 

These maps facilitate a general assessment of the magnitude of missingness in each sample. Figure 

32A presents the complete data set generated in the experiment 1 and Figure 32B represents the data 

set generated in the experiment 2. Experiment 1 comprised 15706 peptides and 9211 (58.65%) were 

quantified in all the samples. On the other hand in experiment 2, 35357 peptides were identified and 

16468 peptides were fully quantified (46.58%). Figure 32C and D present the distribution of missing 

values in each sample. Although experiment 2 identified 2.3 more peptides than experiment 1, the 

number of missing values were significantly higher, reducing the dataset by more than half. 

Interestingly, both experiments exhibits a similar pattern of missingness, with the sample labelled 
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with tag 114 presenting the lower missingness in contrast to samples labelled with tag 115 and 118, 

which presented the highest number of missing values. 

A. 

 

B. 

 

C.

 

D.

 

 Figure 32. Exploration of missingness 

A – B. Peptide coverage plots of raw peptides intensities showing missing values in each sample from 

experiment 1 and 2, respectively. C – D.  Number and percentage of missing values in each channel from 

experiment 1 and 2, respectively.  

3.3.2 Quality Control and Normalisation at Peptide Level 

A separate data set containing exclusively the fully quantified peptides was generated from each 

experiment; the distribution of the peptide intensities in each sample was evaluated using box and 

whiskers plots as shown in Figure 33A and B for experiment 1 and 2, respectively. Data was 

normalised using a median adjusted normalisation approach as described in section 2.6.1. Normalised 

peptide intensities distribution per channel is shown in Figure 33C and D for experiment 1 and 2, 

respectively. Principal component analysis was performed to evaluate clustering of data at peptide 

level. Importantly, most of variance in the data was explained with two components. Control and 

active tuberculosis groups were clearly discriminated as shown in Figure 33E and F for experiment 

1 and 2, respectively. 
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A. 

 

B. 

 
C.  

 

D. 

 

E. 

 

F. 

 

Figure 33. Quality control analysis of raw data intensities 

A- B. Box and whiskers plots showing distribution of raw data intensities in each sample from experiment 1 

and 2, respectively. C – D. Median-adjusted normalisation of raw intensities, experiment 1 and 2, respectively. 

C – D.  Principal component analysis at peptide level, in black control individuals and red pulmonary 

tuberculosis patients for experiments 1 and 2, respectively.  
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3.3.3 Partial Differential Plasma Proteome in Active Pulmonary Tuberculosis 

The matrix generated using the median-adjusted normalised data was used to infer protein expression 

as described in section 2.6.1. In experiments 1 and 2, 557 and 500 proteins, respectively, were 

identified and fully quantified. 399 proteins were common between both experiments representing 

60.6% of the total number of the quantified proteins. Pearson clustering was performed to evaluate 

grouping at the protein level between experiments presented in the Figure 34A. Overall, two main 

groups are observed discriminating control individuals from tuberculosis patients consistently in both 

experiments. The sample labelled with the tag 115 from experiment 1 appears as an outlier. Within 

the tuberculosis cluster, most of the samples group together according to the tag from both 

experiments. On the other hand, samples from the control cluster do not present clear discrimination 

between experiments or tags. Pearson correlation of common proteins between both experiments for 

each sample is presented in Figure 34B. R squared ranged from 0.5381 to 0.7270 for tag 115 and 

118, respectively. Principal component analysis of common proteins clearly distinguish the 

tuberculosis group from the control group and indicates batch effects between experiments as shown 

in Figure 34C.  

Significant modulation of protein expression in each experiment was assessed applying two different 

statistical strategies: one sample t-test and two sample t-test. Figure 34D presents the number of 

proteins significantly modulated calculated by both approaches in each experiment. Thirty-two 

proteins were common between experiments and confirmed by both tests. 
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A. 

 

B. 

 

 

C. 

 

D. 

 

Figure 34. Experiment comparison at protein level: clustering, correlation and statistical assessment 

A. Pearson clustering of samples at protein level across experiments 1 and 2. B. Correlation between 

experiments 1 and 2 across samples, R2 calculated as Pearson correlation.  C. Principal component analysis 

at protein level of control and tuberculosis groups in each experiment. D. Differential expression of proteins 

between control and tuberculosis groups in experiments 1 and 2 was evaluated using two different statistical 

approaches, one-sample t-test and two-sample t-test. Common proteins between both experiments and 

statistical test are presented in a Venn diagram. OSTT2 One sample t-test experiment 2, TSTT1 Two-sample t-

test experiment 1, OSTT1 One sample t-test experiment 1, and TSTT2 Two-sample t-test experiment 2. 
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Fold changes of these 32 proteins exhibit a high correlation between experiments (R2 spanning from 

0.9611 to 0.9820) as presented in Figure 35.  The patterns of upregulation and downregulation are 

consistent among samples and experiments; 23 proteins were upregulated and 9 downregulated. 

Proteins and fold-changes are summarised in the Annexe 1. 

 

Figure 35. Common proteins differently modulated between experiments 1 and 2 

Thirty-two proteins were found common between experiments and confirmed by two independent statistical 

tests. Fold-changes correlation between experiments 1 and 2 across samples, R2 calculated as Pearson 

correlation. FC_01: Fold-change experiment 1 and FC_02: Fold-change experiment 2. 

 

Although these preliminary experiments indicate that plasma proteome can be used for distinguishing 

tuberculosis patients form healthy donors and presents an acceptable reproducibility, the plasma 

proteome coverage is limited only to maximum 577 proteins, which is similar to previous reports. 

Various refinements to the method were necessary to improve its performance and increase the 

analytical power of this approach, including optimisation of the chromatographic parameters, 

orthogonality between offline and online separations and peptide recoveries from offline separations. 

These refinements are summarised in the following sections.  

3.3.4 Size Exclusion Chromatography Optimisation  

Three main parameters were evaluated for optimisation of SEC prefractionation of plasma: 

temperature of the column oven, number of columns and flow rate. The separation was performed 

using isocratic gradient of 6M guanidine HCl and 10% methanol and detection using UV-signal 
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response at 280nm. Initially, temperature of the column oven was standardised and three different 

points were tested: 40°C, 42°C and 45°C. Figure 36A shows the separation of 120µL of human serum 

using 5 columns and a flow rate of 1.2mL/min. Separation conducted at 45°C showed sharper peaks 

suggesting better resolution without evident effect on retention times and separation profile. This 

temperature was selected for further analysis. Subsequently, the number of columns and flow rate 

was standardised. 

Separation of 120µL human plasma was evaluated using 3, 4 and 5 columns. Figure 36B presents 

the chromatographic trace obtained with 3 columns 8.0mm I.D. x 300mm Shodex KW-804 serially 

connected operated at 45°C and 1.5mL/min. Figure 36C shows the traces obtained with 4 columns 

Shodex KW-804, 8.0mm I.D. x 300mm serially connected operated at 45°C and 1.0mL/min and 

1.5mL/min. Under these conditions, the five segments are clearly separated and the fastest gradient 

expedites the separation 15 minutes with no detrimental effect on the separation resolution. Figure 

36D presents the traces obtained using a 2x1x2 column configuration, this is: 2 columns Shodex 

KW-804, 8.0mm I.D. x 300mm, one column Shodex KW-802.5, 8.mm I.D. x 300mm and 2 columns 

Shodex KW-804, 8.0mm I.D. x 300mm serially connected, operated at 45°C and 1.5mL/min. The 

main differences between columns KW-804 and KW-802.5 are that the first one with particle size of 

7 micron and maximum pore size of 1500Å exhibits a higher exclusion limit (1000000Da), whereas 

the column KW-802.5, with particle size of 5 micron and maximum pore size of 400Å, offers 4000 

theoretical plates (TP) more than the KW-804. Figure 36D additionally shows duplicate runs for 

testing the reproducibility of the separation.  

Considering that sharper peaks were obtained using 4 and 5 columns, these two conditions were 

further compared. Figure 36E compares the separation achieved with 4 and 5 columns (2x1x2 

configuration), and Figure 36F presents the calibration curves obtained with 4 and 5 columns. 

BEH450 SEC (test mix Waters, Milford, USA) was used as a standard. This mix comprises 6 

proteins: thyroglobulin dimer (1.40x106Da), thyroglobulin (6.69x105Da), IgG (1.50x105Da), bovine 

serum albumin (6.64x104Da), myoglobin (1.70 x104Da) and uracil (112Da).  
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Figure 36. Optimisation of chromatographic parameters for size exclusion fractionation (SEC) 

A. Temperature optimisation for SEC separation. Separation of human serum was conducted at three different 

temperatures, 5 columns serially connected were used and a flow rate of 1.2mL/min. B. Chromatographic 

trace of human plasma using 3 columns Shodex KW-804, 8.0mm I.D. x 300mm serially connected operated at 

45°C and 1.5mL/min. C. Chromatographic traces of human plasma using 4 columns Shodex KW-804, 8.0mm 

I.D. x 300mm serially connected operated at 45°C. D. Technical replicate of human plasma SEC fractionation 

using 5 columns: 2 columns Shodex KW-804, 8.0mm I.D. x 300mm, one column Shodex KW-802.5, 8.mm I.D. 

x 300mm and 2 columns Shodex KW-804 serially connected, operated at 45°C and 1.5mL/min. E. Comparison 

between traces obtained using 4 and 5 columns (2x1x2 configuration) operated at 45°C and 1.5mL/min. F. 

SEC calibration curve using BEH450 and comparing separation with 4 and 5 columns, operated at 45°C and 

1.5mL/min.  
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The 5 column configuration did not increase time of separation substantially and sharper peaks were 

achieved, suggesting higher separation resolution. Additionally, the calibration curve indicates a 

better linearity using 5 columns. Taking these data together, parameters for SEC separation were 

selected: 5 columns (2x1x2 configuration) operated under an isocratic gradient at 1.5mL/min and 

45°C. 

3.3.5 Dialysis Purification and Protein Quantification  

Following SEC separation, each segment is processed separately. The 8 samples that constitute one 

iTRAQ set were subjected to dialysis purification, the conditions reported previously by Al-Daghri, 

N., et al.(92), were kept but only ultrapure water was used as exchange solvent. Ultra-filtration based 

protein purification protocols were verified to be inferior to the dialysis exchange techniques in the 

original Garbis, S., et al. (2011) report and were therefore not further examined. 

In terms of protein quantification, the method used for the preliminary experiments (infrared 

detection system) was replaced by Nanodrop. Precision and accuracy of measurements were 

investigated to compare both systems. For this purpose, a known amount of albumin was weighted 

and dissolved in 1mL of 0.5M TEAB and 0.05% SDS. Table 7 presents the evaluation of both 

systems. Considering that the Nanodrop system exhibits a significantly higher performance than the 

infrared system, it is selected as quantification method for following experiments.  

Table 7. Comparison IR quantification system and Nanodrop performance 

Parameter Infrared detection system Nanodrop system 

Reference concentration (mg/mL) 3.40 4.80 

x̄(mg/mL) 4.27 4.25 

SD 0.49 0.02 

%CV 11.6 0.49 

%Error 25.6 11.5 

  

3.3.6 Solid Phase Extraction Cleaning Protocol and C4 Chromatography 

Once protein from the 8 samples was quantified, trypsin digested and iTRAQ labelled, peptides were 

pooled and separated using RP-HPLC. From the pilot experiments discussed previously in this 

chapter, two features are required to be optimised in order to increase proteome coverage: 

orthogonality between offline and online separations and recovery of peptides masked by 

underivatised labelling reagents.  
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This set of experiments was performed using TMT labelling, an analogue of iTRAQ, following the 

workflow described in the Figure 31. The results obtained in this section are applied to iTRAQ 

labelling as will be demonstrated in the next chapters. TMT comprises 10 isotopic tags that were 

used to simultaneously optimise a suitable gradient for C4 based RP-HPLC separation and develop 

a method for cleaning labelled peptides using GracePure C18-Aq SPE cartridges (100mg, 50um 

particle size, 60Å pore size, GracePure, Hichrom, UK). Figure 37 depicts the workflow developed 

for cleaning, ensuring the minimal peptide losses. Ligands required to be activated using 100% 

acetonitrile and subsequently equilibrated using the same solvent for peptide reconstitution; 1% 

acetonitrile and 0.01% formic acid. Peptide fractions selected for cleaning are pooled and loaded into 

the cartridge, then samples and eluents need to be slowly dropwise eluted from the column (̴ 4 

drop/min). The eluents collected once the peptide pool is passed through the cartridge is loaded again 

twice in order to ensure the maximum interaction with the ligands. The next step involves washing 

the unbound material with two volumes of 1% acetonitrile and 0.01% formic acid. The elution of 

peptides is conducted stepwise, starting from 2% to 70% acetonitrile and 1% formic acid as shown 

in Figure 37, this constitutes an elution cycle. Complete elution of peptides requires two elution 

cycles. 

 

Figure 37. Solid phase extraction protocol for iTRAQ/TMT labelled peptides 

Protocol developed for peptide fractions subjected to iTRAQ/TMT labelling. It comprises five main steps: (1) 

Activation of ligands, (2) Equilibration of the stationary phase, (3) Loading sample, (4) Washing of unbound 

material, and (5) Stepwise elution of peptides. 

In order to evaluate peptide losses and the C4 gradient, labelled samples were split into two groups 

as shown in Figure 31. Considering that in this particular experiment a number of conditions are 

tested simultaneously (C4 vs. C8 chemistry, chromatographic gradients and SPE cleaning), it does 
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not provide a definite comparison but it serves to indicate more optimal conditions for further 

experiments. In order to preliminarily evaluate the peptide loses resulting from the SPE protocol one 

set of 5 pooled samples were directly separated using a C4 column with a step gradient from 3% to 

35% phase B in 105 minutes, followed by washing and equilibration steps. A set of 5 pooled samples 

was subjected to SPE cleaning and subsequently fractionated with a chromatographic gradient from 

3% to 45% phase B in 100 minutes followed by washing and equilibration steps. Figure 38A presents 

the traces obtained for the first group of pooled peptides and B a details section of the chromatic 

window from 20 to 130 minutes of the chromatogram presented in Figure 38A. On the other hand, 

Figure 38C shows the separation of the second set of labels and D a detailed section from 20 to 130 

minutes of the trace presented in Figure 38C. The pH of mobile phases was optimised to ensure 

alkaline pH within the working limit of the stationary phase of the C4 column. Mobile phase A is 

0.08% ammonium hydroxide (pH ̴ 8). and mobile phase B is 99.92% acetonitrile and 0.08% 

ammonium hydroxide The step gradient from 3% to 35% phase B resulted in a better distribution of 

peaks along the chromatographic window and therefore a higher resolution of the separation. Figure 

38E presents the optimised gradient for offline fractionation of labelled peptides using C4 chemistry.  

The method reported by Al-Daghri, N., et al. (2014) was used for the fractionation of the labelled 

peptides using a C8 column, and this same approach was used to profile the preliminary tuberculosis 

proteome derived from segment 4 (SEC) as previously presented. A comparison between C4 and C8 

was conducted to confirm suitability for proteome profiling. The C4 fractions collected from the first 

group of samples (no SPE cleaning) were pooled and subjected to SPE cleaning followed by C8 RP-

HPLC separation. Fractions from both experiments C4 and C8 were subjected to nUPLC (C18) 

coupled to MS/MS analysis. Although C4 moiety is a reverse phase ligand, it is expected to interact 

in a greater extent with hydrophilic peptides than C8 chemistry and therefore to be more orthogonal 

to C18 (online separation). Certain posttranslational modifications such as phosphorylation increases 

hydrophilicity of proteins/peptides. The fraction of phosphorylated peptides was evaluated in both 

data sets as an indication of the ability of the column to capture such more hydrophilic peptides. 

Figure 38F presents a comparison between C4 and C8 chemistries. Although C4 captured only 0.5% 

more phosphorylated proteins and, significantly more proteins containing multiple phosphate groups 

were selectively retained by the C4 stationary phase. Proteins carrying up to 14 phosphate groups 

where identified using the C4 column in contrast to the C8 column, which allowed the identification 

of proteins carrying up to 6 phosphate groups.  
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Figure 38. C4 Peptide fractionation 

A. C4 peptide fractionation of pooled TMT labelled peptides with tags 126, 127C, 127N, 128C and 128N, 

conducted at 0.30mL/min and 30  ͦC, B.  Chromatographic window of the previous trace showing a peptide 

rich region at relatively low intensity. C. C4 peptide fractionation of pooled TMT labelled peptides with tags 

129C, 129N, 130C, 130N and 131 and subjected to SPE cleaning. Separation was conducted at 0.30mL/min 

and 30 ͦ C D. Chromatographic window of the previous trace showing new captured peptides and a peptide 

rich region at relatively low intensity. E. Gradient of elution optimised for fractionation of iTRAQ/TMT 

labelled peptides. F. Enrichment of phosphorylated proteins using C4 chemistry compared to C8 separation. 
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Both data sets were compared in terms of number of proteins with variable number of phosphate groups and 

percentage of phosphorylated proteins.  

3.4 Discussion  

iTRAQ data analysis imposes various processing challenges, and one common issue is data 

missingness. Considering the nature of this quantification strategy, the intensity of the observed 

peptide intensities depends upon diverse factors such as the abundance of the protein originating the 

peptide, the sensitivity of the instrument, variable amounts of loaded sample, ion suppression, and 

ionisation and fragmentation properties of peptides. Previously, it has been reported that this 

missingness is a non-random phenomenon in iTRAQ/TMT quantification (216). Missingness 

occurrence in the data sets analysed in this preliminary study suggest that there are significant batch 

effects between experiments (Figure 33E and F). Particularly, experiment 2 showed a lower 

performance in terms of quantification; although considerably more peptides were identified than in 

the experiment 1, only 46.58% of these peptides were completely quantified. Parameters such as 

trypsin digestion, labelling conditions and performance of the mass spectrometer must be kept highly 

controlled and standardised. Additionally, the number of missing values showed a clear pattern 

related to either sample identity, isobaric tag or both variables. This finding suggests that an adjusted 

experimental design should involve a block-randomised approach to distribute the samples and tag 

variability. The differential performance in terms of peptide intensities of these two preliminary 

experiments run as technical replicates highlights the importance of standardisation of the methods 

used and the conditions of the mass spectrometric devices.  

In terms of proteome coverage improvement, this chapter presents optimisation and standardisation 

of the MudPIT method for plasma/serum proteomics first reported by Garbis, S., et al. (2011), and 

more recently optimised for iTRAQ quantification by Al-Daghri, N., et al. (2014) where exclusively 

segment 4 was explored (35, 92). Specifically, method development was focused on SEC separation 

parameters, offline to online orthogonality and iTRAQ labelled peptide fractions cleaning aimed to 

increase protein coverage and reproducibility.  

With more than a half-a-century of history, SEC is a well-known chromatographic technique widely 

used for protein separation.  However, its applicability has been relatively overlooked in the 

proteomics field, mainly due to low resolution and detrimental dilution of the protein fractions. 

Importantly, new SEC methods are under development such as ultrahigh pressure (UHP)-SEC for 

rapid and high-resolution separation of intact proteins for shotgun proteomics, which considerably 

accelerates the separation to few minutes and increases resolution by using small particle sizes (2µm) 

and organic/inorganic hybrid materials as BEH (ethylene bridged hybrid) (217).  

On the other hand, method development of SEC separation aimed to plasma/serum proteomics has 

shown to significantly increase proteome coverage compared to depletion methods (35). However, a 

proper optimisation of SEC separation considering parameters as number of columns, temperature 
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and flow rate has not been previously reported. The separation of proteins with SEC is based on their 

differences in hydrodynamic radius, which is analogous to their differences in MW. In other words, 

the larger the protein MW the larger the hydrodynamic radius that can be achieved under the 

appropriate chaotropic conditions of the sample solvent and matched mobile phase.  

A very important element to the practice of SEC is the versatility of mobile phase conditions that 

dictates the resulting hydrodynamic radius of the proteins of interest along with other factures (i.e. 

viscosity). In this case, aqueous 6M guanidinium HCL and 10% methanol exhibits multimodal 

effects; it neutralises all protease activity, thus stopping from any additional protein degradation, and 

dissolves lipid micro-vesicular species while extracting their intact protein content (i.e. exosome-

associated proteins). Additionally, physico-chemical properties of Guanidinium HCL effectively 

disrupt protein-protein or protein-ligand/co-factor interactions (albumin bound proteins); it serves as 

an excellent liquid-fixative thus capturing all in-situ clinically occurring events at the time of 

sampling. In a recent report, Guanidinium HCL was used for effectively studying exosome-derived 

proteins and its role in tumour metastasis (218). The efficient protein unfolding properties achieved 

at 6M GuaHCl also maximizes the hydrodynamic radius of all proteins, and therefore ensures their 

better SEC separation. 

SEC is used in this MudPIT method as a preparative step, therefore only a crude separation of plasma 

samples into five segments according to molecular size is expected. Systematic evaluation of 

temperature (40°C, 42°C and 45°C), number of columns serially connected (3, 4 and 5) and flow 

rates (1.0mL/min, 1.2mL/min and 1.5mL/min) was conducted to determine the best conditions for 

plasma pre-fractionation. Linearised calibration curves were generated and goodness-of-fit of linear 

regression as R2  evaluated to compare separation traces obtained with 4 and 5 columns (Figure 36F). 

The thyroglobulin dimer (1.40x106Da) standard is shown as an outlier in the curves of calibration, 

which is expected considering that the maximum exclusion limit of the column is 1.0x106Da.  

Selected standardised chromatographic parameters for SEC were: 45°C, 1.5mL/min and 5 columns 

(2x1x2 configuration) for plasma prefractionation. Although these columns still exhibit sub-optimal 

sample carryover effects, not easily observable carryover was detected by the typical UV-based 

HPLC detection systems. 

Introduction of iTRAQ to this MudPIT method for plasma proteomics was reported elsewhere (92). 

The manufacturer (AB Sciex, UK) recommends cation-exchange chromatography (for simple 

mixtures), high resolution cation-exchange chromatography (for complex mixtures) or ZipTip® for 

removal of reagents used for labelling such as buffer salts, SDS, high concentrations of organic 

solvents and underivatised iTRAQ/TMT. This is in part accomplished by the C8/C4 offline 

chromatography, which elutes these reagents at very early retention times. In the trace shown in the 

Figure 38A, these contaminants are eluted over the first 15 minutes and a second broad peak is eluted 

from the minute 22 to minute 38. Although contaminants are separated and eluted during the offline 
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separation, some peptides with similar retention times might co-elute with them. Here, an easy and 

fast method for cleaning of iTRAQ/TMT labelled peptides was developed using solid phase 

extraction (SPE).  

Peptide losses resulting from the SPE process were qualitatively assessed comparing peak intensities 

between the traces obtained with and without SPE cleaning. In both cases, the peptide peaks 

separated from the minute 40 to the minute 110 exhibited maximum intensities close to 400000AU 

at 215nm and the patterns of separation were similar. Notably, the broader peaks were considerably 

minimised and new peptide peaks were captured (Figure 38D). This cleaning protocol includes few 

steps of elution, low losses and the sorbent capacity allows loading of the peptide pool in one step, 

which is easier and faster than other methods.  

The MudPIT approach relies completely on comprehensive multidimensional chromatographic 

techniques which significantly increases the peak capacity per time unit, compared to their 

unidimensional equivalents. Nevertheless, the maximum separation among analytes requires 

independent mechanisms of separation, which translates into a higher degree of orthogonality. 

Peptide separation imposes some challenges such as solubilisation, compatibility between 

dimensions, throughput, additive compatibility for mass spectrometry analysis and limitations to the 

range of liquid chromatographic techniques to couple. The preliminary plasma proteome profile was 

generated using C8 based RP-HPLC as offline dimension, however, a more hydrophilic chemistry is 

likely to benefit orthogonality considering that C18 chemistry is widely used in shotgun proteomics.  

Data from mass spectrometric analysis of the C4 and C8 fractions were compared. Considering that 

the pooled peptides separated by C8 underwent two chromatographic separations which increases 

peptide losses, the results cannot be directly compared in terms of absolute number of proteins. 

However, the main purpose of using C4 instead of C8 is to increase the separation of analytes 

between the offline and online dimensions, therefore assessment of the proportion of hydrophilic 

peptides identified by each method can be used as an indicator of orthogonality. Moreover, certain 

posttranslational modifications such as phosphorylation increases the hydrophilicity of the proteins, 

hence the percentage of phosphorylated proteins identified by C4 and C8 was used to evaluate 

selective enrichment of hydrophilic peptides. As a consequence of phosphorylation, amino acids gain 

a double negative charge at physiological pH and, generally, this results in decreasing hydrophobicity 

as a result of two rearrangements in the protein surface in the phosphosites:  exposure of hydrophilic 

residues or/and burial of hydrophobic amino acids  (219). C4 chemistry enriched 0.5% more 

phosphorylated proteins than C8 and, interestingly, C4 was able to capture a wider variety of proteins 

carrying multiple phosphate groups up to 14 phosphate groups (Figure 38F).  Although, a modest 

increase of phosphopeptides was achieved with the C4 column, RP LC-MS approach generally 

exhibits poor retention behaviour of the more hydrophilic phosphopeptides. Moreover, no prior 
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phosphopeptide chemical affinity enrichment was used (i.e. HILIC, ZrO2, TiO2, Fe- or Cu- IMAC, 

etc.) which usually is preferred for phosphoproteomic studies. 

Additionally to the sample preparation, the bottleneck in systems biology research is processing and 

mining of large data sets and the central problem of accurately relating information derived from –

omics experiments to biological processes. In other fields such as microarray analysis, relevant 

advances has been made detecting and removing experimental biases from experimental datasets 

using a wide range of methods (from simple scaling to non-parametric quantile normalisation). 

However, analysis methods of data from LC/MS-based proteomics tend to be relatively simple and 

are still under development. Raw data derived from proteomics experiments must be normalised to 

produce more accurate estimates of the underlying biological effects. Normalisation reduces the 

effect of outliers on the dataset and removes atypical signals resulting from experimental and 

instrumental biases. The median-adjusted normalisation approach applied in this preliminary study 

effectively centred the data as shown in Figure 33C and D. Global normalisation methods are widely 

used in iTRAQ proteomics, here the main objective is to realign the observed intensity distributions 

of the reporter ions from each quantification channel, such the median or mean of the distribution is 

equal across all the channels (220).  Notably, control and tuberculosis groups are clearly 

discriminated at peptide (Figures 33E and F) and protein level (Figures 34A and C) in both 

experiments, even when batch effects are evident. These results indicate that this MudPIT approach 

is able to capture the differential proteome in active pulmonary tuberculosis using a partial analysis 

of the plasma proteome.  

Protein expression was calculated from geometric averaging of normalised peptide intensities per 

protein and two separate statistical methods were applied to determine the significantly modulated 

proteins: One-sample t-test and two-sample t-test. In the first case, the fold changes were calculated 

and, then compared to 0 in order to test the null hypothesis. In the second case, control and 

tuberculosis groups were compared. The limitation of this first statistical approach is that t-test based 

statistics is not suitable for small sample sizes and assumes normal distribution. Although the protein 

expression was logarithmically transformed in this case, the distribution of data is not entirely 

normal. Assessment of size effect for discovery proteomic experiments benefit of more robust 

statistical approaches and correction for multiple testing. These different strategies will be explored 

in the following chapters. 

The statistical approach based on t-test resulted in the identification of significantly modulated 

proteins reported in previous proteomic studies such as; serum amyloid A, transthyretin and C - 

reactive protein (114), apolipoprotein C-II and retinol binding protein 4 (36), S100-A9 (MRP14) 

(119). Importantly, the patterns of modulation were consistent with the previous reports. 

Additionally, new proteins were identified as significantly modulated which offers new opportunities 

for candidates.  
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The results of this first exploration of the active pulmonary tuberculosis proteome using a powerful 

multidimensional method are promising in terms of revealing novel biomarkers for early diagnosis 

of the infection. Importantly, this pilot study served to generate a “training” data set to explore the 

main features and structure of the generated data.  Additionally, the results pinpointed specific areas 

in the experimental design and methods that required further optimisation and standardisation aimed 

to increase proteome coverage, reproducibility and validity of the discovery phase. 

In summary, chromatographic parameters for SEC plasma fractionation were standardised and 

defined for further application. In addition, a fast method for SPE based-cleaning for iTRAQ/TMT 

labelled peptides was developed. In parallel, a reverse phase chromatographic method for peptide 

fractionation based on C4 chemistry was established. A higher enrichment of hydrophilic proteins 

was achieved with C4 than C8, which suggests an improvement of the orthogonality between offline 

and online dimensions. These different modifications on the method previously reported (89) are 

aimed to increase coverage of the complex plasma proteome.  Having finalised my optimisation, I 

then proceeded to study the entire proteome (segments 1 – 4: Chapter 4) and then one segment in 

great detail to maximise statistical power (segment 4, Chapter 5). 
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CHAPTER 4 
 

Comprehensive Plasma Protein Profile of Active Tuberculosis 

 

4.1 Introduction 

Previous chapters have presented preliminary evidence and method development demonstrating that 

the MudPIT strategy comprising SEC x RP-HPLC (C4/C8) x nUPLC (C18)-MS/MS can be used as 

a powerful tool to quantitatively profile the plasma proteome, a crucial milestone in the discovery of 

new biomarkers suitable for rapid tuberculosis diagnosis. Despite multiple serum proteomic studies 

in active pulmonary tuberculosis during the past 10 years, a universal biosignature remains elusive. 

As discussed in section 1.2.2, robust experimental designs encompassing confounding factors and 

proper validation are the most common pitfalls found in previous studies (103). Consequently, the 

biosignatures reported in these different studies exhibit poor correlation across proposed classifiers 

(section 1.3.3).  

One of the main objectives of this research project is to profile the plasma proteome of active 

pulmonary tuberculosis applying a depletion-free optimised MudPIT approach. Taking together the 

data generated from the exploratory study previously discussed and the method optimisations 

presented in the Chapter 3, a more comprehensive experimental design is undertaken here. The 

discovery stage is performed uniquely with plasma samples from male individuals as tuberculosis 

immunopathology exhibits sexual dimorphism (14). Two different ethnicities (Peruvian and South 

African) are included in the experimental design. This allows exploration of alterations in the 

proteomic profiles driven by tuberculosis encompassing genetic background diversity and exposure 

to circulating Mycobacterium strains in different geographic locations (15, 117). Additionally, this 

approach will result in relevance of the protein biosignature to diverse ethnic contexts. In terms of 

experimental methods, additional quality control checkpoints are included in particular steps of the 

chromatographic fractionations. Additionally, a selection of four different statistical approaches is 

applied and the rationale used to select the subset of proteins chosen for further validation is 

presented.  This chapter presents the complete plasma profile of a set of seven samples, as first step 

of my research that aims to establish a universal plasma biosignature for active pulmonary 

tuberculosis suitable for early diagnosis.  
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4.2 Methods 

4.2.1 Patient Cohort  

Recruitment and ethics for the Peruvian and the South African participants are described in the 

section 2.2. As presented in the general description of the cohorts distribution, 7 participants were 

selected to profile the active pulmonary tuberculosis plasma proteome by analysing the SEC 

segments 1 to 4. Table 8 presents the clinical information of the individuals included in this 

experiments. Healthy control individuals included in this preliminary study presented a mean age ± 

SD of 29.3±6.43 (range 22-34 years) and BMI±SD of 23.17±1.58. In the case of active pulmonary 

TB patients, age ± SD was 32.3±6.65 (range 27-42 years) and BMI±SD was 21.07±2.35. For these 

clinical characteristics, there was no significant difference between groups (p < 0.05).  

Table 8. Clinical information of individuals participating in the proteome profiling study 

 (a) two-tailed p-value calculated by t-test 
(b) two-tailed p-value calculated by Fischer’s exact test 

4.2.2 Experimental Design 

The plasma proteome of active pulmonary tuberculosis was profiled including samples of 

participants from South Africa and Peru. Additionally, a master pool was included for controlling 

variability across experiments. An aliquot of 20µL of all the samples available from South African 

control, Peruvian control, South African active tuberculosis and Peruvian active pulmonary, were 

pooled together to prepare the master pool and aliquoted to prevent freeze-thaw cycles. Figure 39 

illustrates allocation of plasma samples within the 8-plex. Samples were randomised and the tag 113 

was assigned to the master pool, which is maintained among 8-plexes.  

Variables Healthy  Controls Pulmonary Tuberculosis p Value 

n 3 4  

Gender Male (100%) Male (100%)  

Mean age ± SD (years) 29.3±6.43 32.3±6.65 0.586(a) 

Age range (years) 22-34 27-42  

Mean BMI ± SD  23.17 ± 1.58 21.07 ± 2.35 0.143(a) 

Smoking History    

• Non-smokers 1 1 0.999(b) 

• Current smokers 2 2  

• Ex-smokers 0 1  

Drug Treatment    

• None 3 4  
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Figure 39. Experimental design active pulmonary tuberculosis plasma proteome profile 

Plasma samples allocation within the iTRAQ 8-plex. Control and tuberculosis samples from both ethnicities 

were randomised using the tool available in https://www.random.org/. The tag 113 was assigned to the master 

pool for variability control  between -8-plex experiments. 

4.2.3 Sample Processing 

Twenty-nine samples in total from both ethnicities available for this work, in addition to four aliquots 

of master pool, were individually subjected to SEC prefractionation under the optimised conditions 

discussed in section 3.4. These conditions includes: 5 columns configuration: 2 columns Shodex 

KW-804, 8.0mm I.D. x 300mm, one column Shodex KW-802.5, 8.mm I.D. x 300mm and 2 columns 

Shodex KW-804 serially connected, operated at 45°C and 1.5mL/min under isocratic elution with 

6M guanidine hydrochloride and 10% ethanol. The five SEC segments were collected in a peak-

dependent fashion detected at 280nm and then stored at -20°C until further analysis. The five SEC 

fractions were collected but only the first four were subjected to downstream analysis. As previously 

reported by Garbis, S. D., et al. (2011) the protein content in plasma/serum is completely fractionated 

in the first four segments and segment five contains mainly small molecules such as metabolites (35). 

The first four segments collected from the prefractionation of the seven plasma samples selected for 

this study and a master pool aliquot were dialysed and quantified as described in section 3.3.5. 120µg 

of protein was reduced, alkylated and trypsin digested overnight (16h) as presented in section 2.5.5. 

iTRAQ labelling was conducted for 2 hours (section 2.5.6) and labelled peptides were dried in a 

speed vac at room temperature. Fractionation of labelled peptides was conducted using offline C4 – 

HPLC; peptides were analytically reconstituted and pooled together with 100µg of 3% phase mobile 

B (99.92% acetonitrile and 0.08% ammonium hydroxide) and 97% phase A (99.92% water and 

0.08% ammonium hydroxide). Pooled peptides were then centrifuged at 16000xg for 10 minutes. 

The pellet was stored at -20°C and the supernatant was injected for separation. Offline fractions were 

collected in a peak-dependent fashion and detected at 215nm. The elution gradient is illustrated in 

the Figure 38E using a Kromasil C4 column (3.5μm, 2.1mm x 150mm) operated at 35°C and 

0.3mL/min. 

Offline fractions containing contaminants, the early and late fractions, were pooled together with the 

pellet obtained in the previous step, then peptides were cleaned using the SPE protocol provided in 

https://www.random.org/
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the Figure 37 and separated again by C4 HPLC. All the fractions collected were dried overnight in 

speed vac at room temperature and stored at -80°C. 

Offline fractions were reconstituted in 31µL of loading solution (2% acetonitrile and 1% formic acid) 

and separated using an AcclaimPepMap RSLC, 75μm× 25cm, nanoViper, C18, 2μm particle column 

retrofitted to a PicoTip emitter (FS360-20-10-D-20-C7) and analysed by the high resolution nano-

ESI-LTQ-Velos Pro Orbitrap-Elite mass spectrometer (Thermo Scientific). Specifications for the 

mass spectrometric analysis are presented in section 2.5.8, specifically for these experiments the 

scans were acquired at a resolution of 30000 for CID and 15000 for HCD. 

4.2.4 Data Analysis 

The spectrum files were processed using Proteome Discoverer 1.4 following the workflow and 

specifications detailed in section 2.6.1. Isotopic correction factors for iTRAQ reporter ions were 

applied. Raw intensities for all the PSM were extracted at 1% FDR, median-adjusted normalised and 

log2 transformed. Normalised intensities were averaged to calculate protein expression. Data was 

prepared for analysis according to two general strategies: 

a. Independent analysis of each segment 

b. Merged analysis from multiconsensus report generated from Proteome Discoverer 1.4  

Figure 29B in section 2.6.1 summarises the main statistical pipelines selected for this work. 

Following the initial normalisation of data and protein relative expression calculation, four pipelines 

for the assessment of size effect between control and tuberculosis groups are applied: 

• (PL0) One-sample t-test: Ratios were calculated by 𝑙𝑙𝑙𝑙𝑙𝑙2𝑇𝑇𝐵𝐵𝑥𝑥 −
1
4
∑ 𝑙𝑙𝑙𝑙𝑙𝑙24
𝑖𝑖=1 𝐶𝐶𝑖𝑖, where TBx is 

each tuberculosis sample and Ci is healthy control sample and one-sample t-test applied 

considering as null hypothesis that the fold change is equal to zero. 

• (PL1) Two- sample t-test: Protein expression of each sample are used to compare healthy 

control and tuberculosis groups where the null hypothesis implies that the mean of both 

groups is the same.  

• (PL2) Permutation and LIMMA: Protein expression of each sample is used to calculate 

ratios, a permutation test (1000 cycles) is conducted to filter out ratios. Relative expression 

of proteins from filtered ratios where tested using linear modelling (221) (LIMMA built on 

R 3.3.3) to define significantly modulated proteins between groups. 

• (PL3) LIMMA: Linear modelling using LIMMA in R environment was applied to assess 

significant size effects in protein expression between control and tuberculosis groups.  

Box and whiskers plots, violin plots, heat maps and PCA analysis were generated in RStudio (version 

3.3.1). Chromatographic traces, volcano and scatter plots were produced in GraphPad Prism 7. Gene 
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ontology enrichment analysis was performed as detailed in section 2.6.2. Adobe Illustrator CS6 was 

used for final editing of figures. 

4.3 Results 

4.3.1 Prefractionation of Plasma Samples by Size Exclusion Chromatography 

The complete available cohort of plasma samples collected from Peruvian and South African 

participants (29 samples) and four aliquots of the master pool were individually SEC pre-fractionated 

using the standardised conditions presented in the Chapter 4. Each chromatographic separation was 

conducted over 45 minutes and distributed in such manner as to require a minimum number of days 

to complete the separations. This precaution was taken in order to reduce day-to-day variability. 

Additionally, a pool of human sera was run as first analysis each day to ensure optimal technical 

conditions and the BEH450 SEC standard was separated daily to evaluate system performance and 

reproducibility. Figure 40A-G presents the calibration curve obtained from each day of analysis, R2 

values ranged from 0.9590 to 0.9703. 
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Figure 40. Daily SEC calibration curves 

A-G. The BEH450 test mix containing six standard proteins with molecular weights ranging from 1.4x106Da 

to 112Da was separated on each day of analysis to evaluate the separation performance and calibration curves 
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are presented (Normalised elution volume to void volume V/V0vs. molecular weight, MW). Completion of 

prefractionation of the samples was achieved within 7 days.  Equation of linear regression fit and R squared 

for measure of linearity are shown. H. Composition of standard mix by Waters 

http://www.waters.com/webassets/cms/support/docs/720003385en.pdf  

Figure 41A-E presents the chromatographic traces obtained from 33 plasma samples including 

master pool aliquots, from which the 7 samples for complete proteomic analysis as presented in Table 

8 were selected. The patterns of separation particularly for the protein fraction, segments 1 to 4, 

revealed a consistent pattern of fractionation across groups with slight sample variation. Therefore, 

the five segments were independently collected in a peak-dependent fashion in order to maintain as 

much consistency as possible between segments from the different samples. Notably, the peak 

containing mostly metabolites (segment 5) exhibited important differences in terms of intensity and 

shape between Peruvian and South African specimens. Each collection is initiated in the exact 

inflection point between segments previously defined in section 2.5.2. Only one sample of the 

pulmonary tuberculosis group (TB03) from South Africa presents a shift in the separation time, 

however the pattern is completely consistent with the other samples. 
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Figure 41. SEC prefractionation of plasma samples 

Isocratic chromatographic traces of plasma samples are presented. Intensity was evaluated at 280nm over 45 

minutes. Separation was conducted at 1.5mL/min and 45°C. A. Overlapping of SEC chromatographic traces 

of healthy control plasma samples from South Africa. B. Overlapping of SEC chromatographic traces of active 

pulmonary tuberculosis plasma samples from South Africa. C. Overlapping of SEC chromatographic traces of 

healthy control plasma samples from Peru. D. Overlapping of SEC chromatographic traces of active 

pulmonary tuberculosis plasma samples from Peru.  E. Overlapping of SEC chromatographic traces of master 

pool samples separation. 

Despite sample processing over 7 days, the collection time points presented low variation among 

samples within a same group as shown in Figure 42A-C, suggesting good technical reproducibility. 

All samples within the South African group, excepting TB03A where elution was delayed by about 

three minutes compared to the elution times in the group, presented a low standard deviation per 

segment ranging from 0.4113 to 0.8154 in segment 1 and 5, respectively. In the case of the Peruvian 

group, the standard deviation ranged from 0.1714 to 0.2866 in segment 1 and 5 and, finally in the 

case of the master pool the standard deviation ranged from 0.0763 to 0.3309 in segments 2 and 5. 
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A.

 

B.

 
C. 

 
Figure 42. Quality assessment of collection time-points in SEC separations 

Collection time-points of each segment are plotted for each sample per group A. South African samples B. 

Peruvian samples and C. Master pool samples. (RT: retention times). Grey bands indicate 2SD. 

4.3.2 Peptide Fractionation by C4 nUPLC  

From the block-randomised experimental design presented in Figure 39, the set of seven samples 

described in Table 8 and one master pool aliquot were chosen to conduct a complete profiling of the 

plasma proteome. Figure 43A shows the C4 chromatographic traces obtained from the fractionation 

of the pooled iTRAQ labelled peptides of segment 1. Highlighted peaks in grey indicate the fractions 

that were selected for SPE cleaning and additional C4 separation presented in Figure 43B. A total of 

one hundred and nine fractions were obtained for online nUPLC-MS/MS analysis in segment 1. 

Figure 43C presents C4 trace for segment 2 and Figure 43D SPE cleaned fractions. Ninety-one 

fractions were obtained in total for subsequent MS analysis. Figure 43E presents the C4 trace for 

segment 3 and Figure 43F SPE cleaned fractions. Ninety fractions were collected in total for MS 

analysis. Figure 40G presents C4 trace for segment 4 and Figure 43H SPE cleaned fractions. One 

hundred and two fractions were collected for subsequent MS analysis. Importantly SPE cleaned 

fractions from segment 3 were run using the same gradient applied for the initial fractionation, 

however the central region of the chromatogram appeared barely occupied, therefore a new gradient 

was adjusted to expedite the analysis. This gradient was used for SPE cleaned fractions C4 

separations for segments 1, 2 and 4. 

 

 

H
C

0
1

A

H
C

0
2

A

H
C

0
3

A

H
C

0
4

A

H
C

0
5

A

H
C

0
6

A

H
C

0
7

A

T
B

0
1

A

T
B

0
2

A

T
B

0
3

A

T
B

0
4

A

T
B

0
5

A

T
B

0
6

A

T
B

0
7

A

2 0

3 0

4 0

C o lle c t io n  t im e -p o in ts  S o u th  A fr ic a n  S a m p le s

R
T

 (
m

in
)

S e g m e n t  1

S e g m e n t  2

S e g m e n t  3

S e g m e n t  4

S e g m e n t  5

H
C

0
1

P

H
C

0
2

P

H
C

0
3

P

H
C

0
4

P

H
C

0
6

P

H
C

0
7

P

H
C

0
9

P

T
B

0
1

P

T
B

0
2

P

T
B

0
3

P

T
B

0
5

P

T
B

0
6

P

T
B

0
9

P

T
B

1
0

P

T
B

0
7

P

2 0

3 0

4 0

C o lle c t io n  t im e -p o in ts  P e ru v ia n  S a m p le s

R
T

 (
m

in
)

S e g m e n t  1

S e g m e n t  2

S e g m e n t  3

S e g m e n t  4

S e g m e n t  5

M 0 P1 M P0 2 M P0 4 M P0 5

2 0

3 0

4 0

C o lle c t io n  t im e -p o in ts  M a s te r  P o o l

R
T

 (
m

in
)

S e g m e n t  1

S e g m e n t  2

S e g m e n t  3

S e g m e n t  4

S e g m e n t  5



 

[120] 
 

A. 

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

1
0

5

1
1

0

1
1

5

1
2

0

1
2

5

1
3

0

0

2 5 0 0 0 0

5 0 0 0 0 0

7 5 0 0 0 0

1 0 0 0 0 0 0

1 2 5 0 0 0 0

1 5 0 0 0 0 0

1 7 5 0 0 0 0

2 0 0 0 0 0 0

2 2 5 0 0 0 0

2 5 0 0 0 0 0

2 7 5 0 0 0 0

3 0 0 0 0 0 0

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

R T  (m in )

In
te

n
si

ty
 (

U
A

)

%
B

P o o le d  F ra c t io n s  fo r  S P E

 

B. 

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

0

2 5 0 0 0 0

5 0 0 0 0 0

7 5 0 0 0 0

1 0 0 0 0 0 0

1 2 5 0 0 0 0

1 5 0 0 0 0 0

1 7 5 0 0 0 0

2 0 0 0 0 0 0

2 2 5 0 0 0 0

2 5 0 0 0 0 0

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

R T  (m in )

In
te

n
s

it
y

 (
U

A
)

%
B

 
C. 

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

1
0

5

1
1

0

1
1

5

1
2

0

1
2

5

1
3

0

0

2 5 0 0 0 0

5 0 0 0 0 0

7 5 0 0 0 0

1 0 0 0 0 0 0

1 2 5 0 0 0 0

1 5 0 0 0 0 0

1 7 5 0 0 0 0

2 0 0 0 0 0 0

2 2 5 0 0 0 0

2 5 0 0 0 0 0

2 7 5 0 0 0 0

3 0 0 0 0 0 0

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

R T  (m in )

In
te

n
si

ty
 (

U
A

)

%
B

P o o le d  fra c tio n s  fo r  S P E

 

D. 

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

0

2 0 0 0 0 0

4 0 0 0 0 0

6 0 0 0 0 0

8 0 0 0 0 0

1 0 0 0 0 0 0

1 2 0 0 0 0 0

1 4 0 0 0 0 0

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

R T  (m in )

In
te

n
s

it
y

 (
U

A
)

%
B

 

E. 

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

1
0

5

1
1

0

1
1

5

1
2

0

1
2

5

1
3

0

0

2 5 0 0 0 0

5 0 0 0 0 0

7 5 0 0 0 0

1 0 0 0 0 0 0

1 2 5 0 0 0 0

1 5 0 0 0 0 0

1 7 5 0 0 0 0

2 0 0 0 0 0 0

2 2 5 0 0 0 0

2 5 0 0 0 0 0

2 7 5 0 0 0 0

3 0 0 0 0 0 0

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

R T  (m in )

In
te

n
s

it
y

 (
U

A
)

%
B

P o o le d  fra c tio n s  fo r  S P E

 

F. 

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

0

2 5 0 0 0 0

5 0 0 0 0 0

7 5 0 0 0 0

1 0 0 0 0 0 0

1 2 5 0 0 0 0

1 5 0 0 0 0 0

1 7 5 0 0 0 0

2 0 0 0 0 0 0

2 2 5 0 0 0 0

2 5 0 0 0 0 0

2 7 5 0 0 0 0

3 0 0 0 0 0 0

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

1
0

5

1
1

0

1
1

5

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

R T  (m in )

In
te

n
s

it
y

 (
U

A
)

%
B

 

G.

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

1
0

5

1
1

0

1
1

5

1
2

0

1
2

5

1
3

0

0

2 0 0 0 0 0

4 0 0 0 0 0

6 0 0 0 0 0

8 0 0 0 0 0

1 0 0 0 0 0 0

1 2 0 0 0 0 0

1 4 0 0 0 0 0

1 6 0 0 0 0 0

1 8 0 0 0 0 0

2 0 0 0 0 0 0

2 2 0 0 0 0 0

2 4 0 0 0 0 0

2 6 0 0 0 0 0

2 8 0 0 0 0 0

3 0 0 0 0 0 0

3 2 0 0 0 0 0

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

6 0

6 5

7 0

7 5

8 0

8 5

9 0

9 5

1 0 0

R T  (m in )

In
te

n
si

ty
 (

U
A

)

%
B

P o o le d  F ra c tio n s  fo r  S P E

 

H. 

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

0

2 5 0 0 0 0

5 0 0 0 0 0

7 5 0 0 0 0

1 0 0 0 0 0 0

1 2 5 0 0 0 0

1 5 0 0 0 0 0

1 7 5 0 0 0 0

2 0 0 0 0 0 0

2 2 5 0 0 0 0

2 5 0 0 0 0 0

2 7 5 0 0 0 0

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

R T  (m in )

In
te

n
si

ty
 (

U
A

)

%
B

 
Figure 43. C4 HPLC chromatographic traces of iTRAQ labelled peptides 

C4 chromatographic traces of pooled iTRAQ labelled peptides were performed at 0.3min/mL and 30°C. 

Intensity was evaluated at 215nm. Blue line indicates gradient of elution. A. Chromatogram of segment 1 

separation. Highlighted areas were pooled together and subjected to SPE cleaning. B. Chromatogram of SPE 
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cleaned fractions from segment 1 separation. C. Chromatogram of segment 2 separation. Highlighted areas 

were pooled together and subjected to SPE cleaning. D. Chromatogram of SPE cleaned fractions from segment 

2 separation. E. Chromatogram of segment 3 separation. Highlighted areas were pooled together and 

subjected to SPE cleaning. F. Chromatogram of SPE cleaned fractions from segment 3 separation. G. 

Chromatogram of segment 4 separation. Highlighted areas were pooled together and subjected to SPE 

cleaning. H. Chromatogram of SPE cleaned fractions from segment 4 separation.  

4.3.3 Partial Profiling of Tuberculosis Plasma Proteome  

4.3.3.1 Analysis of independent segments: Exploration of the plasma proteome 

Plasma proteome from segments 1 and 4 were MS/MS profiled, and each segment constitutes an 

independent experiment. Raw peptide intensities from each experiment were extracted from 

Proteome Discoverer 1.4 (Thermo Scientific) at 1% FDR and 5% FDR for comparison. The trade-

off between the percentage of co-isolation excluding peptides from quantification and the number of 

fully quantified proteins in the preliminary experiments was considered to determine the cut-off for 

this parameter as presented in Figure 44. 50% co-isolation excluding peptides from quantification 

was selected as optimal cut-off and applied for extraction of all the data presented in this work.  

 
Figure 44. Percentage of co-isolation excluding peptides from quantification 

Number of identified proteins in the preliminary experiments 1 and 2 were compared using three different cut-

off values: 30%, 50% and 100% co-isolation excluding peptides from quantification for proteins defined 

peptides extracted at 1% and 5%FDR confidence.  

Considering the total number of identified peptides in each dataset the percentage of iTRAQ labelled 

peptides was determined for each sample as shown in the Figure 45.  Labelling efficiency was 

consistently over 70% among the four different experiments (segment 1 to 4); therefore, all the 

samples were kept for downstream analysis. The dispersion of the labelling efficiency ranged 

2.70%CV in segment 1 to 9.09%CV in segment 4.  
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Figure 45. iTRAQ labelling efficiency segments 1 to 4 

As an indirect measurement of the labelling efficiency, the percentage of labelled peptides was calculated 

considering the number of quantified peptides labelled with a specific iTRAQ reporter in relation to the total 

number of identified peptides in the whole dataset. All the samples presented a labelling efficiency above 70%. 

Figure 46A presents the number of identified, unique and fully quantified peptides in each segment. 

In the context of this work, unique peptides refers to the peptides that are traceable to only a specific 

protein or protein group and fully quantified peptides indicate the number of peptides that were 

quantified in all 8 samples. Metrics for 1%FDR and 5%FDR are presented in the Figure 46A. In 

terms of number of peptides at 1%FDR; 181086 peptides were identified from which, 51622 were 

unique peptides used for quantification and 36657 peptides were quantified in all samples, in segment 

1. In segment 2, 149073 peptides were identified, from which 39158 were unique peptides and 28428 

peptides were quantified in all samples. In segment 3, 110938 peptides were identified, from which 

35908 were unique peptides and 25558 peptides were quantified in all samples. In segment 4, 87582 

peptides were identified, from which 26994 were unique peptides and 14612 peptides were 

quantified in all samples. Overall, in comparison to the peptide metrics extracted at 1%FDR, a 21% 

increase of peptide number is observed when data extracted at 5%FDR. Peptides resulting from the 

most strict FDR will be used for further statistical analysis.   

Considering the technical variability inherent to shotgun proteomic experiments, the centre and total 

spread of the data distribution among different experiments was reasonably comparable. For 

instance, at 1% FDR the master pool from segment 1, median was 3793 and the IQR was 7000.25. 

On the other hand, at the same confidence in segment 3, median was 2671 and the IQR was 6931.40. 

Box and whisker boxplots for segments 1 to 4 are presented in the Figure 46B to E, respectively.  
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D. 
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Figure 46. Data exploration at peptide level of plasma proteome 

A. Total number of identified, unique and fully quantified peptides per segment. Dark colour represents the 

number of peptides extracted at 1%FDR and light colour the additional peptides obtained when extracted at 

5%FDR.  B – E. Box and whiskers plots of raw and normalised peptide intensities at 1%FDR. Median-adjusted 

normalisation was conducted. B.  Segment 1; C.  Segment 2; D.  Segment 3; and E.  Segment 4. Raw and 

normalised from left to right. 

Peptides extracted from Proteome Discover 1.4 (Thermo Fisher) at 1%FDR and 5%FDR were used 

to calculate the relative protein expression values as described in section 2.6.1. Proteins with missing 

values were included for the first inspection of the data. Figure 47A presents the distribution of 

molecular weights resulting from the processing of each segment. The median (IQR) for segment 1 

was 78.87KDa (48.68 – 120.7KDa), for segment 2 was 83.25KDa (52.45 – 130.4KDa), for segment 

3 was 55.74KDa (36.43 – 96.41KDa) and for segment 4 was 49.15KDa (23.74 – 95.55KDa). As 

presented in Figure 47B at 1% FDR, 725 proteins were identified in segment 1 from which 616 were 

quantified in all the samples. In segment 2, 678 proteins were identified and 572 fully quantified. In 

segment 3, 869 proteins were identified, 763 fully quantified; in segment 4, 717 proteins were 

identified, and 547 fully quantified. In segment 1 at 5% FDR 1778 proteins were identified and 1310 

fully quantified. In segment 2, 1872 proteins were identified and 1357 fully quantified. In segment 
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3, 1441 proteins were identified and 1140 fully quantified. And in segment 4, 1555 proteins were 

identified and 912 fully quantified.  

Considering that SEC is a preparative technique, there is an overlap of the different segments during 

the separation; therefore, it is expected to profile a subpopulation of shared proteins across segments. 

The degree at which the quantified proteins were shared across segments is indicated in the Figure 

47C. Overall, the plasma proteome profiled in this work resulted in 4174 identified from which 3196 

were fully quantified at 5%. Two hundred and thirty one proteins were shared among the four 

segments. Six hundred and fifty eight proteins were exclusively profiled in segment 1, 669 proteins 

in segment 2, 569 proteins in segment 3 and 424 in segment 4.  
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Figure 47. Data exploration at protein level of plasma proteome 

A. Violin plots representing the distribution and density of the molecular weights of the proteins quantified in 
each segment at 1%FDR. Boxplots inside the violin plots indicates the median and interquartile range. Filled 
area represents the probability density plot. Molecular weights retrieved from UniProt. B. Number of identified 
and fully quantified proteins in segment 1 to 4. Dark colour indicates the number of proteins extracted at 
1%FDR and light colour the additional proteins obtained when extracted at 5%FDR. C. Venn diagram of 
proteins fully quantified at 1%FDR in segments 1 to 4. 
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4.3.3.2 Multiconsensus report: an integrated evaluation of the plasma proteome 

Taking in consideration that there is a considerable number of shared proteins among SEC segments 

and thus, peptides derived from a particular protein may be found across different segments, due to 

the intrinsic lateral diffusion of the protein analytes during their SEC separation process, an 

alternative approach can be applied in order to improve on statistics and power of analysis. The 

following section describes the analysis of the data extracted as a multiconsensus report. In this case, 

the data from the four experiments is merged and Proteome Discoverer 1.4 generates a single report.  

Integrated analysis of proteomic data resulted in 5022 identified proteins from which 3577 were 

quantified in all the samples at 5%. On the other hand, 1876 proteins were identified and 1435 

proteins quantified at 1%FDR as presented in Figure 48A. In comparison to independent analysis, 

the integrated evaluation of the data increased the coverage of the proteome in about 20%. Figure 

48B presents the distribution of proteins depending on the number of peptides profiled per protein, 

1095 proteins were profiled with 2 or more peptides at 1%FDR. The plasma proteome profile 

quantified in this work at high confidence exhibited a dynamic range of 11 eleven orders of 

magnitude from pg/mL to mg/mL as shown in Figure 48C. This ranged from proteins classically 

found in plasma such as albumin and immunoglobulins to signalling proteins such as CCL5 and 

MEGF8 (Multiple epidermal growth factor-like domains protein 8) and included enzymes and 

leakage products from tissues such as NAGPA (N-acetylglucosamine-1-phosphodiester alpha-N-

acetylglucosaminidase) and TIMP2 (metalloproteinase inhibitor 2).  The illustrated linear dynamic 

range only approximately represents the true linear dynamic that was achieved given that many 

proteins relatively quantified have an unknown native concentration level. 
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Figure 48. Multiconsensus report: coverage and dynamic range of profiled proteins 

Integrated analysis of segments 1 to 4 resulting from multiconsensus report. A. Total number of proteins 

identified and quantified at 1%FDR and 5%FDR. B. Distribution of the number of peptides profiled by protein 

at 1%FDR and C. Dynamic range of concentration for proteins fully quantified at 1%FDR. Highlighted in 

orange some proteins as illustration of the profiled proteins along the dynamic range.   Proteins with reported 

concentration in plasma or serum are only included. Protein circulating abundances were retrieved from 

Homo sapiens plasma integrated database available from the protein abundance database PaxDb4.1 

(https://pax-db.org/species/9606) or from the plasma proteome database 

(http://www.plasmaproteomedatabase.org). 

4.3.3.3 Statistical assessment of proteomic data 

In the section 4.2.4 the four statistical pipelines selected for this work are described: (P0) One-sample 

t-test, (PL1) Two-sample t-test, (PL2) Permutation and LIMMA and (PL3) LIMMA. A comparison 

based on the number of regulated proteins was conducted to select the most suitable pipeline for 

future analysis. Figure 49 demonstrates the number of regulated proteins resulting from each 

https://pax-db.org/species/9606
http://www.plasmaproteomedatabase.org/
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statistical pipeline. PL0 resulted in 360 significantly regulated proteins, PL1in 185 proteins, PL2in 

114 proteins and PL3 in 240 proteins. For this first inspection, segments were independently analysed 

and only nominal p values were considered. Thirty six proteins were common to all pipelines.  

 

Figure 49. Comparison of four statistical pipelines for assessment of significant protein regulation 

Four statistical pipelines were compared for evaluation of significant size effect between control and 

tuberculosis group. (PL0) One-sample t-test, (PL1) Two-sample t-test, (PL2) Permutation and LIMMA and, 

(PL3) LIMMA. Only nominal p values included. Significant modulation considered when p < 0.05 

Missing values are frequently considered a common nuisance derived from relative quantification in 

proteomics and therefore partially quantified proteins are usually excluded from downstream 

analysis. However missing data could provide biologically relevant information, specially related to 

an on/off phenomena. In this work, additionally to the statistical testing for significant changes in 

protein abundance resulting from tuberculosis infection, the data was manually evaluated looking for 

patterns of missingness associated to the groups. Annexe 2 presents a summary of the proteins 

significantly regulated per segment including those with a pattern of missingness based on sample 

groups.  

PL2 resulted in the strictest statistical approach and the fold-changes from shared proteins 

significantly regulated across various segments were compared to evaluate the variability of the 

relative quantification in the independent experiments. Relative quantification of 20 shared proteins 

among independent experiments presented reasonably reproducible values as shown in Figure 50.   
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Figure 50. Variability relative quantification of 20 shared proteins across independent experiments 

Relative quantification of the 20 shared proteins significantly regulated across the four segments. Permutation 

and linear modelling (PL2) was used to assess the significance of the size effects. Only nominal p values 

considered (p < 0.05)  

Additionally relative quantification of proteins extracted at high confidence from the multiconsensus 

report were used to evaluate the modulation of proteins in plasma resulting from active tuberculosis 

infection. Pipelines 2 and 3 were applied on this dataset. As shown in Figure 51A, 32 proteins were 

significantly modulated from the PL2 and 157 from PL3. Twenty eight proteins were common 

between these two approaches.  Considering that most of proteins from PL2 were included in the list 

derived from PL3, this later list of proteins was used for additional analysis. The multidimensional 

scaling or MDS plot presented in Figure 51B indicates that most of the variance of the data is 

explained by the group variable: healthy controls and tuberculosis patients. These results confirm the 

ability of this proteomic signature to distinguish active tuberculosis from healthy status. Protein 

expression pattern and clustering of both samples and  proteins is shown in a heatmap in Figure 51C 

and further visualisation of the significantly regulated proteins is presented in the volcano plot in 

Figure 51D. Forty four proteins were significantly upregulated and 75 significantly downregulated.  
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Figure 51. Differential plasma proteome driven by active tuberculosis 

Significantly modulated proteins were determined conducting pipeline 2 (Permutation and LIMMA) and 

pipeline 4 (Only LIMMA). A. Comparison of the number of significantly regulated proteins between the two 

statistical approaches including partially quantified data. PL2: pipeline 2 and PL3: pipeline 4. B. 
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Multidimensional scaling plot generated using the significant and fully quantified proteins derived from PL3 

(119 proteins). Orange indicates master pool, purple active tuberculosis patients and green healthy donors. C. 

Heatmap with significant and fully quantified proteins derived from PL3. Heatmap was generated using the 

function heatmap.2 in R. Blue indicates significantly downregulated proteins and red significantly upregulated 

proteins. Dendograms showing hierarchical clustering of both protein expression (rows) and samples 

(columns). Purple indicates active tuberculosis samples and green healthy donors.  D. Volcano plot derived 

from the analysis of data through PL3. Red indicates significantly upregulated protein, blue significantly 

downregulated proteins, grey no significant proteins and orange the four additional proteins resulting from 

PL2. Proteins with p value <0.01 annotated.  

4.3.3.5 Functional analysis of the plasma proteome in active tuberculosis 

Gene ontology analysis of the proteome generated indicates that over 43% of the proteins were 

annotated to extracellular space/region and structures expected for proteins from plasma. Over 128 

proteins were annotated as exosome derived (14%). The remaining proportion of proteins was 

distributed in a wide range of cellular compartments including cytoplasm, lysosomes and plasma 

membrane as presented in Figure 52A.  

Gene ontology network analysis enriched for biological process terms (Figure 52B) shows 

enrichment for acute inflammatory response, blood coagulation regulation of protein secretion, 

macromolecular complex remodelling, fibrinolysis, hydrogen peroxide catabolism and protein 

activation cascade including defence response to bacterium and antimicrobial humoral response. All 

of these terms are relevant to plasma proteome and response to tuberculosis infection.  
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A. 

 
B. 

 
Figure 52. Gene ontology enrichment of the plasma proteome in active tuberculosis 

Gene ontology enrichment of the plasma proteome, A. Cellular compartment enrichment generated with 

FunRich 3.1.3 (222) B. Biological processes enrichment GO network generated with the app ClueGo in 

Cytoscape based on the database EBI-QuickGO-GOA (11.09.2017). Only annotations derived from 

experimental evidence were allowed and significant pathways with p value < 0.001 represented. For clarity 

purposes only some of the most relevant GO terms are presented. Size of nodes represent enrichment 

significance and edges kappa-statistic relations.  
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An alternative network analysis based on the correlation of protein expression was used to find 

patterns of expression using Biolayout Express 3D. Two main clusters were produced with a Pearson 

correlation coefficient <0.85; the first one with proteins consistently downregulated and the second 

with proteins consistently upregulated in the tuberculosis group. Sample labelled as TB_121 again 

showed a different pattern to the tuberculosis group. Figure 53 shows the networks and the gene 

ontology enrichment associated to each one. 

A. 

 

B. 

 

Figure 53. Correlation network analysis of plasma proteome associated to pulmonary tuberculosis 

Co-expression networks generated using BioLayout Express 3D(215). Network of proteins with expression 

profiles correlated with a Pearson coefficient R>0.85. Nodes represent proteins and edges degree of co-

expression.  A. In orange a cluster of proteins upregulated in the tuberculosis group and B. In blue, clusters of 

proteins downregulated in the tuberculosis group. Additionally, main GO biological process term associated 

to each node. 

4.2 Discussion 

The current state of biomarker discovery for diagnostics of tuberculosis has relied upon depletion 

methods, which has delivered limited coverage proteomes and partial biosignatures (36, 117, 119, 

150, 151). This work presents the characterization of a comprehensive plasma proteomic profile for 
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tuberculosis using an optimised MudPIT strategy that has the potential to achieve unbiased deep 

coverage profiling. 

This particular MudPIT approach is based upon hyper-fractionation of the plasma samples using 

preparative and analytical chromatographic separations at both protein and peptide level. Figures 41 

and 42 show high reproducibility of the chromatographic traces for both sample and master pool 

fractionations resulting from SEC generated over seven days. Consequently, variability of the traces 

across groups is mainly explained by the expected biological differences. Unexpectedly, the Peruvian 

group exhibited a particularly variable peak in segment 5 in comparison to the South African group 

(Figure 41). This peak contains mainly primary and secondary metabolites, mRNAs and other 

oligonucleotide species, along with small organic molecules; therefore, this fragment was excluded 

since the main scope for this project is limited to the protein content (35). Different additives used in 

the tubes during sample collection, although this is only a suggestion and will require further 

investigation, might explain the differences between Peruvian and South African samples in terms 

of segment five. The seven plasma samples selected for the discovery experiments were matched, 

such that groups did not exhibit significant differences of age, BMI or smoking status (Table 7), and 

therefore protein modulation can be mainly associated to the tuberculosis infection status.   

Fractionation of iTRAQ-labelled peptide pools resulted in abundant traces for each segment (1-4) as 

presented in Figure 43. Additionally, early and late fractions containing underivatised labelling 

reagents, and other contaminants were subjected to SPE cleaning, using the protocol presented in the 

Figure 37. The second separation of the cleaned peptide fractions showed recovery of a significant 

number of peptides. Initially, the same chromatographic gradient was used for separation of both 

pooled peptides and SPE cleaned fractions as shown in Figure 43F. Considering that the SPE cleaned 

fractions represent a section of highly hydrophilic and hydrophobic peptides, the gradient was further 

optimised to increase the separation efficiency, and expedite separation. This gradient was used for 

segments 1, 2 and 4 (Figures 43B, D and H). The traces obtained with the new gradient were abundant 

and the separation was reduced by 50 minutes, representing an important methodological 

improvement. 

Segments 1 to 4 were MS profiled and both raw peptide intensities and iTRAQ protein ratios were 

extracted form Protein Discoverer 1.4 (Thermo Scientific) using a FDR threshold of 1% and 5%, 

which implies high and moderate confidence at peptide level identification, respectively. Peptides 

were efficiently labelled in all cases (Figure 45) with missingness percentages below 30%. Labelling 

notably improved under optimised conditions when compared to the pilot study presented in previous 

chapter. Data missingness is not at random phenomenon in iTRAQ proteomics, it has been suggested 

that the probability that a protein is missing is related to its abundance, and therefore this feature of 

the data could further contribute to gain biological information (216). The analysis presented in this 
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work explored proteins quantified in all the samples and missingness patterns as a complementary 

approach.  

Extensive datasets from proteome profiling were generated from segment 1 to 4 at peptide level. 

Considering the most stringent conditions at 1% FDR, the dataset comprising only unique peptides 

ranged from 51622 to 26994 peptides for segment 1 to 4, respectively. These data sets were used to 

calculate protein expression. The total number of unique and fully quantified peptides, presented in 

Figure 46A, suggest an extensive proteome coverage supported as well by the total number of 

inferred proteins. As part of the data processing, median normalisation is performed in order to 

correct the differences in the total observed protein abundance across samples. Assuming that 

expression from most of the proteins in a biological system are not regulated, the median peptide 

intensities in each sample should be the same. If that is not the case, it may point out experimental 

bias such as quantification errors, which must be corrected. Medians derived from each dataset 

exhibited an acceptable variation, ranging from 6.95%CV in the segment 2 dataset to 12.07%CV in 

the segment 4 dataset, which in overall presented the lowest intensities of all datasets. The raw data 

was effectively normalised and adjusted as presented in Figure 46B-E.   

Initial SEC prefractionation of the plasma is based on the hydrodynamic radius of the analytes that 

is most closely related to the molecular weight when the separation is conducted under denaturing 

conditions. The premise of this first step is the reduction of the complexity of the matrix by 

fractionating based on molecular size. The violin plots in Figure 47A suggest a tendency to smaller 

molecular sizes from segment 1 to 4 as expected. Relevant for plasma proteomics, abundant proteins 

such as albumin and immunoglobulins are concentrated in different fractions according to their sizes. 

For instance, albumin exhibits a molecular size of 69.37KDa and it is concentrated in segment 3, 

confirmed by the retention time of the BEH450 standard mix, which contains BSA. This feature of 

the method allows an unbiased and in-depth profiling of the plasma proteome, since the reduction of 

the complexity of the matrix is achieved avoiding the depletion of the biological sample. 

Considering that SEC is a preparative technique, protein separation into segments is completed only 

partially. Lateral diffusion during the chromatographic separation results in a shared subpopulation 

of proteins across segments. Nevertheless, each segment represents a sub-proteome and these can be 

mined independently depending on the scope of the experiment. In this chapter, a comprehensive 

analysis of the plasma was intended; therefore, a single list of proteins was derived according to the 

distribution of proteins presented in Figure 47C. This list comprises 5022 identified proteins from 

which 3577 were fully quantified, representing the most comprehensive plasma proteome to date in 

the tuberculosis field. In contrast previous proteomic studies based on depletion have yield limited 

plasma proteomes. For instance, in one of the most recent plasma profiles for tuberculosis Chen, C. 

et al., (2018) profiled 716 proteins using iTRAQ proteomics (153). 
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Additionally, a particular feature included in Proteome Discoverer 1.4 allows generating a single 

report that includes multiple reports from independent experiments. Different reports are treated as 

biological replicates and merged in a multiconsensus report. Additionally, more unique peptides per 

protein group can be captured that exhibit the same trend in differential expression across multiple 

segments. Consequently, this approach increases peptide and protein statistical power since evidence 

found of a particular protein from different segments is merged in one single protein report. This 

strategy increased in 17% the identified proteins and 10% the quantified proteins. 

Optimisation and development of this MudPIT approach led to a notable coverage increase of the 

plasma proteome compared to similar studies, and plasma proteins spanning a minimum of 11 orders 

of magnitude were confidently quantified (Figure 48). As previously stated, the actual dynamic range 

achieved is most likely substantially larger as many of the relatively quantified proteins have an 

unknown native plasma concentration level. By contrast, Xu, D., et al. (2015) only reported 434 

plasma proteins quantified using iTRAQ (95% confidence) (119) and Wang, C., et al., (2016) only 

quantified 160 serum proteins using iTRAQ (95% confidence) (223). Given that these were mostly 

generic and of high native abundance levels, their linear dynamic range was around 6-orders of 

magnitude or less. Deeper coverages increases the opportunities to discover novel biomarkers with 

clinical relevance (133).  

Isobaric labelling offers multiple advantages such as multiplexing of samples, which reduces the 

technical variability during MS analysis which benefits high-throughput quantification (186). The 

possibility of multiplexing samples within one experiment eliminates the need to compare multiple 

LC-MS/MS runs, therefore reducing the total analytical time and minimising run-to-run variation. 

An additional benefit is that iTRAQ/TMT exhibits a wide dynamic range, it can be utilised to profile 

high and low-abundance proteins as demonstrated in this work (224). However, assessing proteomic 

data for significant changes of protein abundance is a central task that faces multiple challenges, for 

example, small sample sizes result in large uncertainty of the variability estimates which impairs t-

test statistics. There is not a clear consensus in the field regarding the best approach to determine 

significant size effects from data generated by iTRAQ/TMT proteomics. Usually the best approach 

is selected from the evaluation of the data structure, sources of variability and experimental design 

features. 

FDR estimation at the peptide level has a significant impact on the number of proteins identified. 

Since this analysis is mainly orientated to the selection of candidates for further validation, only high 

confidence identifications were selected for downstream analysis. In this work, four different 

reported approaches for analysis were tested. (PL0) One-sample t-test, (PL1) Two-sample t-test, 

(PL2) Permutation and LIMMA and (PL3) LIMMA. According to the total number of significantly 

modulated proteins pipelines were characterised from less to most strict; PL0 – PL3 – PL1 – PL2.  
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t-Test based statistics presents reduced power when only small sample sizes are available and is 

limited to the assumption of distribution normality (225). This is usually the case for proteomic 

discovery experiments. Particularly, one-sample t-test (PL0) was initially considered since the main 

output from Proteome Discovery at protein level is restricted to ratiometric expression. However, 

this approach results in a large number of false positives since the null hypothesis is tested at the 

fold-change level and the variability within groups is ignored. Calculation of protein expression 

based on normalised and log2-transformed peptide intensities allows the group comparison including 

individual sample variation. Two-sample t-test is a more adequate test than one-sample t-test for 

processing of these datasets.  However, assumptions of normality and equality of variance limit its 

power for proteomic application. Recently, linear models such the LIMMA (Linear Models for 

MicroArray data) package component of Bioconductor, an R-based open-source software project, 

have expanded to proteomics from large-scale gene expression data. LIMMA has proved be 

particularly powerful with small sample numbers by using the full dataset to shrink observed sample 

variances towards an estimate allowing for variance distribution (225, 226). This empirical Bayes 

approach results in a more realistic distribution of biological variances compared to other methods 

(226). Permutation was introduced prior to LIMMA in PL2, to filter-out less stable ratios, reducing 

the number of false positives. This approach has proved to reduce false positives in microarray data 

processing for microarray data (227). In PL3 permutation was omitted to reduce stringency of the 

analysis. Multiple testing correction was applied (FDR) to all the pipelines, however nominal p 

values were mostly considered since this correction reduced dramatically the number of significantly 

regulated proteins. Additionally, the top hits were subjected to validation in independent cohorts.  

Since most of the proteins significantly modulated calculated from PL2 are included in the list 

derived from PL3 (Figure 51A), this last list was used for downstream analysis. On hundred and 

fifty-seven proteins were determined as significantly regulated from PL3 and the 117 fully quantified 

proteins from that group were used to discriminate tuberculosis patients from healthy controls as 

presented in MDS plot (Figure 51B). Sample 121 is separated from the tuberculosis groups and closer 

to the master pool, which correlates with the clinical data available from this patient. This individual 

presented with a normal CRP and only minor inflammation on lung radiography, indicating less 

advanced disease than the other patients. This therefore shows the sensitivity of the proteomic 

signature to stratify patients within the tuberculosis group. However, this observed biological 

heterogeneity highlights the necessity to increase the number of biological replicates in order to study 

the nature of variation and increase the confidence on the biological conclusions drawn from this 

study. 

Clustering of samples based on the relative expression levels of these 117 proteins is dictated mainly 

by the cases and controls grouping.  The heatmap in Figure 51C presents the pattern of expression 

and consistently with the MDS plot sample 121 is clustered with the control group. Consistent 

patterns of up- and down-regulation resulting from the tuberculosis infection are distinguishable, 
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including sets of proteins highly upregulated and downregulated, as well as moderately regulated 

proteins. Proteins with the most consistent regulation and stronger statistics were selected for further 

validation. Validation of potential candidates will be discussed in Chapter 5. The list of 117 proteins 

is presented in the Annexe 3.   

Gene ontology enrichment analysis of quantified proteins at cellular component level was consistent 

with those predicted for plasma samples as presented in Figure 52A. Network analysis of biological 

process GO enrichment at high confidence (p < 0.001) indicates activation of the immune system at 

innate and adaptive levels with nodes such as complement activation, protein activation cascade and 

acute-phase response (Figure 52B). Related to these biological processes, other nodes were 

represented such as defence response to bacterium and antimicrobial humoral response, fibrinolysis, 

cytokine secretion and tissue homeostasis. These results are consistent with the acute response to 

tuberculosis infection and clinical manifestation of the active disease.  

A complementary strategy to explore the proteomic data generated in this work was employed. 

Calculation of p value presents increasingly recognised shortcomings (228-230) particularly when 

testing hundreds of classifiers. The complexity of the biology systems encoded in large datasets 

requires alternative approaches to complement statistics based on p values and “null hypothesis 

testing”. Biolayout Express (3D) (215) was used to evaluate the proteins fully quantified at high 

confidence from the multiconsensus report. Network analysis clusters proteins based on coefficient 

of correlation, which results in patterns of expression that provides a biological relevant insight of 

the data. Analysis based on patterns of co-expression were consistent with tuberculosis 

immunopathogenesis as shown in Figure 52C. Proteins downregulated were mainly associated to 

cholesterol homeostasis and negative regulation of endopeptidase activity. These biological 

processes are consistent with the altered systemic state induced by tuberculosis pathogenesis 

resulting in clinical manifestations such as cachexia (231). Upregulated proteins were related with 

specific processes such as positive regulation of TNF production, complement activation and 

secretion of cytokines.  

The small sample size constitutes an important limitation of this profiled proteome, and consequently 

the biological insights that can be derived with confidence from this analysis are limited by a high 

false discovery rate. However, this proteome of active pulmonary tuberculosis represents the most 

comprehensive plasma proteome described so far for this global health threat. In this chapter the 

capabilities of this MudPIT approach to generate extensive and unbiased proteomes has been 

demonstrated. Additionally, refined statistical and bioinformatic approaches were developed in order 

to mine the large datasets produced from this approach.  Increased statistical power is required to 

harness the potential of this approach to reveal new biomarkers and generate novel knowledge about 

tuberculosis immunopathology. The next chapter will present increased biological replicates to 

increase statistical power and validation on independent cohorts of selected candidates. 
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CHAPTER 5 
 

Comprehensive plasma proteomic profiling reveals novel diagnostic biomarkers for 

active tuberculosis 

 

5.1 Introduction 

Chapter 4 presented an optimised method for an extensive profiling of the entire plasma proteome 

based on hyper-fraction, which circumvents the depletion of the matrix. This methodological 

approach offers a more comprehensive representation of the human plasma proteome ranging from 

classical plasma proteins at high circulating levels to signalling proteins expressed at pg/mL 

concentrations. The in-depth proteomic profiling, as described, constitutes a low-throughput and 

manually intensive process requiring extensive instrument time. This also translates to increased 

analysis costs. These factors limited the number of samples examined in the discovery phase, and 

thus curbing the statistical power.  

Considering the potential of this method to reveal new biomarkers suitable for point-of-care tests and 

its importance to improve our current diagnostic tools urgently required for tackling the transmission 

of tuberculosis, this chapter presents a deeper profile of one of the segments. Segment 4 was selected 

for a detailed proteomic analysis by increasing the sample size, analysing 10 control and 11 TB 

patients. This particular segment is enriched for small proteins ranging from 5KDa to over 600KDa. 

Most of profiled proteins were distributed around 50KDa, which is below the immunoglobulins and 

albumin molecular weights (Figure 47A). This suggests that the concentration of most of these highly 

abundant proteins is significantly reduced favouring the profiling of a more diverse subproteome. 

Independent statistical analysis additionally indicated that segment 4 profiling led to the largest 

number of modulated proteins compared to the other segments (Annexe 2).  Additionally, since 

pulmonary tuberculosis involves destructive immunopathology of the lung, some degradation 

products might be captured as well in this segment.  

After the in depth analysis of segment 4, this chapter describes the rationale behind the candidate 

prioritisation, validation of selected proteins using immunoassays in two independent cohorts.  These 

readouts validate the proteomic findings.  In addition, I undertook further bioinformatic analysis of 

this more robust proteomic dataset for biological interpretation.  
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5.2 Methods 

5.2.1 Patient Cohort 

Recruitment and ethics for the Peruvian and the South African participants are described in the 

section 2.2. Additionally to the data previously produced, two additional iTRAQ sets were processed 

to increase the sample size for segment 4 and generate a detailed analysis of this particular segment. 

As presented in the general description of iTRAQ experiments in Table 4 seven additional samples 

from heathy donors were included in the study and 8 samples for the tuberculosis group.  Table 9 

presents the clinical data for the overall cohort of samples used to analyse segment 4, including the 

sample set analysed in the previous chapter. Healthy control individuals included in this study group 

presented a mean age ± SD of 28.3±4.30 (range 22-35 years) and BMI±SD of 23.50 ± 1.29. In the 

case of active pulmonary TB patients, age ± SD was 31.7±7.86 (range 21-44 years) and BMI±SD 

was 20.7 ± 2.22. The participant individuals were age matched with no significant difference between 

groups (p < 0.05). However, nutritional status in patients with active tuberculosis is often 

compromised. Pulmonary tuberculosis may lead to reduction in appetite, nutrient/micronutrient 

malabsorption, and altered metabolism leading to wasting (232). The patients included in this cohort 

of samples reported significantly lower BMI to the control group. Samples were collected prior 

treatment initiation and there was not significant differences in the smoking status between groups.  

Table 9. Clinical information of individuals participating in the proteome profiling study 

Variables Healthy  Controls Pulmonary Tuberculosis p Value 
n 10 11  
Gender Male (100%) Male (100%)  
Mean age ± SD (years) 28.3±4.30 31.7±7.86 0.229(a) 
Age range (years) 22-35 21-44  
Mean BMI ± SD  23.50 ± 1.29 20.7 ± 2.22 0.002(a) 
Smoking History    
•       Non-smokers 6 2 0.07(b) 
•       Current smokers 3 3  
•       Ex-smokers 1 6  
Drug Treatment    
•       None 10 11  

(a) two-tailed p-value calculated by t-test 
(b) two-tailed p-value calculated by Fischer’s exact test 

5.2.2 Experimental Design 

The plasma proteomic profile associated to pulmonary tuberculosis infection was evaluated in depth 

using the segment 4 generated by the SEC fractionation of plasma samples. As described in the 

previous chapter, this work included participant samples from South Africa and Peru and a master 

pool used for controlling variability across experiments.  Figure 54 illustrates allocation of plasma 

samples for the three iTRAQ 8-plex experiments by block-randomisation. Samples were randomised 

and the tag 113 was assigned to the master pool. Set A refers to the group of samples processed as 
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part of the whole plasma profiling described in the previous chapter. Sets B and C were run one year 

after that initial analysis, but using the same protocol. Only some modifications at the MS analysis 

were applied (details below). 

 

Figure 54. Experimental design for depth profiling of plasma segment 4 in pulmonary tuberculosis context 

Plasma samples allocation for three iTRAQ 8-plex. Control and tuberculosis samples from Peruvian and South 

African ethnicities were randomised using the tool available in https://www.random.org/. The tag 113 was 

assigned to the master pool for variability control inter-8-plex experiments 

5.2.3 Sample processing and data analysis 

SEC segments were produced as described in section 4.2.3 and the chromatographic traces are shown 

in Figure 41. Segments were generated and stored at -20ᵒC until further processing. All the 

procedures were performed as described in section 4.2.3. Briefly, segment 4 from the selected 

samples were dialysed and quantified. 120µg of protein was trypsin digested and iTRAQ labelled 

according to the design presented in the Figure 54. Peptides were analytically reconstituted, pooled 

together and fractionated using offline C4 – HPLC. Gracepure SPE C18-AQ cartridges were used to 

clean selected fractions. Offline fractions were further separated using an AcclaimPepMap RSLC, 

75μm× 25cm, nanoViper, C18, 2μm particle column retrofitted to a PicoTip emitter (FS360-20-10-

D-20-C7) and analysed by the high resolution nano-ESI-LTQ-Velos Pro Orbitrap-Elite mass 

spectrometer (Thermo Scientific). Specifications for the mass spectrometric analysis are presented 

in section 2.5.8, particularly for these experiments the scans were acquired at a higher resolution 

(60000 for CID) than the previous experiments (30000 in Chapters 3 and 4) and 15000 for HCD. 

https://www.random.org/
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Resolution was increased since Data analysis was conducted as described in section 4.2.4 by 

pipelines PL2 and PL3. 

Further bioinformatic mining of the data was conducted to interrogate biologically relevant 

information captured by the more comprehensive plasma proteomic approach conducted. Initially, 

the three datasets generated for segment 4 were merged and subsequently, a new dataset containing 

the common proteins was corrected for batch effect. Two approaches were tested for batch effect 

correction, normalisation of the relative protein expression levels to the master pool and ComBat. 

ComBat is a software tool originally developed to adjust batch effects in microarray data using 

empirical bayes methods (233) but has been widely extended to multiple applications. Variance 

distribution of the data was inspected using PCA and the method providing the best effect on the data 

was selected for downstream analysis. 

Thus, weighted correlation network analysis or WGCNA (234) was applied to define protein co-

expression trends across control and pulmonary tuberculosis groups. WGCNA 1.63 was run in 

RStudio available from CRAN (https://cran.r-project.org/web/packages/WGCNA/index.html). 

Networks of highly interconnected proteins were constructed using a soft-thresholding power = 0.9 

and modules were identified using a minimum module size of 15. Module significance was calculated 

as a measurement of the correlation between biological traits, such as disease or group, ethnicity and 

smoking status and the protein expression profiles. Various visualisation tools available from the 

package were used to identify modules strongly correlated to biologically relevant covariates.  

5.2.4 Validation of prioritised candidates 

Serum and/or plasma samples collected from two different cross-sectional studies were included in 

this work for validation of the proteins that were prioritised as potential candidates to pulmonary 

tuberculosis biomarkers. The first cohort comprised 196 plasma samples from healthy volunteers, 

patients with respiratory symptoms requiring clinical assessment or patients recently diagnosed with 

pulmonary tuberculosis recruited at the Ubuntu HIV/TB clinic and GF Jooste Hospital, Cape Town, 

South Africa. These samples are part of a larger study described previously by Walker, N. et al., 

(2017) (211, 235)  and included patients co-infected with HIV. This study was approved by the 

University of Cape Town Human Research Ethics Committee (REF 516/2011). Sputum acid-fast 

bacilli culture, Xpert MTB/RIF and chest radiographic evidence confirmed pulmonary tuberculosis 

diagnosis. Table 10 presents the general demographics for the cohort used in this work for validation, 

which included individuals with negative (115 samples) and positive (81 samples) co-infection with 

HIV.  

 

 

 

https://cran.r-project.org/web/packages/WGCNA/index.html
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Table 10. Validation cohort from South Africa 

Variables Healthy Control Pulmonary Tuberculosis Respiratory Symptomatic 

n (total) 70 90 36 

HIV uninfected coinfection   
n 54 38 23 
Gender Female (22%) Female (34%) Female (22%) 
Mean age ± SD (years) 28 ± 7.8 37  ± 11.2 29  ± 9.1 
Age range (years) 16-51 24-73 20-50 
Mean BMI ± SD  22.9 ± 6.42 21.8 ± 4.09 21.9 ± 8.69 
BMI range 17.46-52.45 17.63-33.20 18.76-55.65 

HIV coinfection   
n 16 52 13 
Gender Female (68%) Female (46%) Female (53%) 
Mean age ± SD (years) 32.5 ± 4.6 32 ± 7.1 32 ± 9.3 
Age range (years) 26-42 23-56 19-58 
Mean BMI ± SD  26.9 ± 6.14 23 ± 3.77 25.8 ± 5.51 
BMI range 17.9-38.39 17.44-37.08 17.14-35.11 

A second independent cohort was included for validation of candidates in this work comprising 124 

samples from a cross-sectional study conducted in the United Kingdom 

(https://www.hra.nhs.uk/planning-and-improving-research/application-summaries/research-

summaries/mimic/). This study was sponsored by the University Hospital Southampton NHS 

Foundation Trust and approved by the National Research Ethics Service Committee South Central - 

Southampton A (ref 13 SC 0043).  Table 11 presents the demographics for this validation cohort. 

Sputum acid-fast bacilli culture, Xpert MTB/RIF and chest radiographic evidence confirmed 

pulmonary tuberculosis diagnosis and QuantiFERON positivity confirmed tuberculosis latent 

infection.  Both validation cohorts included patients attending the clinics with symptoms suggestive 

of pulmonary tuberculosis finally diagnosed with a different respiratory infection. This group is 

referred as respiratory symptomatic.  

Table 11. Validation cohort from UK (MIMIC Study) 

Variables Healthy 
Control 

Latent 
Tuberculosis 

Respiratory 
Symptomatic 

Pulmonary 
Tuberculosis 

Extrapulmonary 
Tuberculosis 

Negative HIV coinfection     
n 30 30 26 32 6 

Gender 
Female 
(67%) 

Female 
(73%) 

Female 
(42%) 

Female 
(56%) 

Female 
(50%) 

Mean age ± SD (years) 43 ± 16 39 ± 18 57 ± 12 40 ± 15 34 ± 8 
Age range (years) 20 - 69 19 - 80 30 - 78 20 - 72 25 - 45 
Mean BMI* ± SD  27.3 ± 6.9 26.52 ± 5.1 27.56 ± 6.2 25.72 ± 4.8 20.63 ± 2.1 
BMI range* 15 - 46 19 - 40 21.6 - 39 20 - 35.8 17.8 - 23 

* Only partial data available 

https://www.hra.nhs.uk/planning-and-improving-research/application-summaries/research-summaries/mimic/
https://www.hra.nhs.uk/planning-and-improving-research/application-summaries/research-summaries/mimic/
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Details for quantification of these proteins on the validation cohort by ELISA or Luminex are 

described in Section 2.7. 

Performance of the validated candidates was in first instance assessed by calculating receiver 

operating curves (ROC) for individual proteins and combined proteins in each validation cohort. The 

statistical package IBM SPSS Statistics 25 was used for this purpose. ROC analysis was conducted 

by setting pulmonary tuberculosis as a positive test and binary logistic regression probabilities were 

calculated when analysis of combined markers was performed. Coordinates of the curves was 

exported to estimate potential cut-off values. 

5.3 Results  

5.3.1 Peptide Fractionation of Segment Four by C4 HPLC  

The chromatographic traces resulting from the C4 fractionation of SEC segment 4 derived from the 

samples selected for sets B and C and SPE cleaned peptide fractions are shown in Figure 55. 

Fractionation of samples from set B resulted in 98 offline fractions and from set C in 121 fractions 

(Figure 55A and C, respectively). SPE cleaning of the samples recovered additional peptides as 

presented in the traces in Figure 55B and D. 
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Figure 55. C4 HPLC chromatographic traces of iTRAQ labelled peptides – Segment 4 

C4 chromatographic traces of pooled iTRAQ labelled peptides were performed at 0.3min/mL and 35°C. 

Intensity was evaluated at 215nm. Blue line indicates elution gradient. A. Chromatogram of segment 4 set B. 
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B. Chromatogram of SPE cleaned fractions from segment 4 set B.. C. Chromatogram of segment 4 set C. D. 

Chromatogram of SPE cleaned fractions from segment 4 set C. 

5.3.2 In-Depth Analysis of Plasma Subproteome of Pulmonary Tuberculosis Infection 

A general description of the data generated from segment 4 in sets A, B and C are presented in Figure 

56A and indicate that all the samples were successfully labelled with a percentage of quantified 

peptides ranging from 71% to 93.58%. Figure 56B depicts the number of peptides identified in each 

one of the sets, indicating unique and fully quantified peptides. This group of unique and fully 

quantified peptides (Set A = 14152 peptides, Set B = 29868 peptides and Set C = 29855, 1%FDR) 

was used for the determination of the protein expression. Figure 56 C presents the total number of 

identified and fully quantified proteins. At 1%FDR, 733 proteins were identified and 527 fully 

quantified in set A, 1228 proteins were identified and 1062 fully quantified in set B and 1248 proteins 

were identified and 1009 fully quantified in set C.  
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Figure 56. General metrics for the plasma profile resulting from segment 4  

General description of the data generated for set A to C from segment 4. A. Percentage of labelled peptides. 

B. Metrics for number of identified, unique and fully quantified peptides. Dark colour 1%FDR and in lighter 

colour additional peptides profiled at 5%FDR. C. Number of identified and quantified proteins in each set at 

1%FDR.  

The three datasets generated from each iTRAQ set were inspected to evaluate batch effects and 

distribution of the data. The variance of the data is mainly explained by the batch (dimension 1), 
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however the group effect is distinguishable when considering dimensions 2 and 3 (~15% variance), 

as illustrated in the MDS plots in Figure 57A.  Additionally, Figure 57B presents a heatmap generated 

with the common proteins among the three sets (426 proteins)  

A. 

 

 

 
B. 

 
Figure 57. Data distribution and clustering from sets A to C 

Distribution of the data generated from sets A, B and C. A. MDS plots and variance distribution. In purple 

tuberculosis, green controls and orange master pool. Histogram for the variance distribution is presented as 

well. B. Heatmap with fully quantified proteins derived from PL3. Heatmap was generated using the function 

heatmap.2 in R. Dendograms showing hierarchical clustering of both protein expression (rows) and samples 

(columns). Green indicates healthy controls individuals, purple tuberculosis patients and orange master pool.   
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5.3.3 Selection of Candidates for Validation 

The primary goal of my PhD was to identify novel diagnostic markers for tuberculosis, and therefore 

my first aim in analysing the dataset was to identify candidates with diagnostic potential.  A small 

set of proteins were selected for validation on larger independent cohorts. Validation is a challenging 

step of the biomarker pipeline that implies translation of platform from mass spectrometric based-

discovery to antibody-based quantification (ELISA/Luminex) and a significant investment of 

resources. Therefore, the selection of biomarkers was based on the best statistical evidence. The 

dataset of fully quantified proteins extracted at 1%FDR resulting from the analysis of segment 4 sets 

A to C were merged. Four hundred and twenty six proteins were common among the three sets and 

the statistical assessment of groups was based on this set of proteins (Figure 58A).  

Pipelines PL2 and PL3 were applied for calculation of p values (significance considered when p 

<0.05) and alternatively, analysis based on the correlation patterns of expression (Pearson correlation 

score R=0.75) using Biolayout 3D Express was utilised as well. PL2 and PL3 were conducted 

including experiment as a covariant, and only proteins whose regulation is explained by the group, 

controls vs. tuberculosis patients were included. The Venn diagram in Figure 58B indicates that all 

the proteins considered significantly modulated resulting from PL2 are included in the group of 

significantly regulated proteins determined by PL3, additionally 36 out of 38 proteins defined by 

Biolayout were included to the list of proteins from PL3. Figure 58C presents a volcano plot with the 

proteins significantly upregulated (red) and downregulated (blue) determined by PL3. Proteins with 

p values FDR adjusted are indicated with a thicker outline. Fifty-eight proteins were significantly 

upregulated and 116 downregulated. Alternatively, analysis based on the co-expression patterns 

(R=0.75) led to two main clusters defined by status group. Cluster 1 contains 23 proteins that were 

significantly upregulated and Cluster 3 includes 14 proteins downregulated in the tuberculosis group 

as shown in Figure 58D.   
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Figure 58. Differential expressed proteins common among sets A to C from segment 4 

A. Comparison of fully quantified proteins across sets A, B and C. B. Comparison pipelines of analysis PL2, 

PL3 and Biolayout (R=0.75). C. Volcano plot of common proteins fully quantified and analysed by PL3. In red 
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proteins significantly upregulated, in blue significantly downregulated. Dots with thicker outline indicates 

proteins with p values FDR adjusted. The proteins exhibiting the largest fold changes were annotated using 

UniProt ID.  D. Main clusters resulting from Biolayout 3D Express, 58 proteins were significantly upregulated 

and 116 downregulated. Bars with median and 95% CI. 

Annexe 4 presents the list of proteins defined as significantly regulated determined by PL2 and 

Annexe 5 by PL3. Noticeably, all the 25 proteins defined by PL2 were FDR corrected for multiple 

comparison and 127 out of 174 proteins were FDR corrected in the list defined by the PL3 pipeline. 

Table 12 lists the 36 proteins common among the PL2, PL3 and Biolayout pipelines.  

Table 12. Common proteins to PL2, PL3 and Biolayout significantly modulated by tuberculosis 

infection in segment 4 

Protein Accession Protein Name logFC  p Value Adj. p Value 

P02741 C-reactive protein (CRP) 2.155535 1.10E-08 4.67E-06 

P05109 S100 calcium binding protein A8 (S100A8) 1.730152 6.02E-06 0.000336 

P06702 S100 calcium binding protein A9 (S100A9) 1.489748 9.47E-06 0.000367 

P02750 Leucine rich alpha-2-glycoprotein 1 (LRG1) 1.377648 1.38E-07 2.93E-05 

P0DJI8 Serum amyloid A1 (SAA1) 1.308297 8.03E-06 0.000342 

P78352 Discs large MAGUK scaffold protein 4 (DLG4) 1.282465 2.62E-06 0.000223 

P14555 Phospholipase A2 group IIA (PLA2G2A) 1.168357 0.001234 0.009192 

P0DJI9 Serum amyloid A2 (SAA2) 1.118803 0.000388 0.00435 

Q9BXR6 Complement factor H related 5 (CFHR5) 1.09874 5.83E-06 0.000336 

P07988 Surfactant protein B (SFTPB) 1.080633 1.79E-06 0.000191 

P00738 Haptoglobin (HP) 0.816506 2.36E-05 0.000559 

P18428 Lipopolysaccharide binding protein (LBP) 0.773199 0.00033 0.003916 

P02763 Orosomucoid 1 (ORM1) 0.693382 1.58E-05 0.000448 

P50281 Matrix metallopeptidase 14 (MMP14) 0.671028 0.003418 0.018631 

P15907 ST6 beta-galactoside alpha-2,6-sialyltransferase 
1 (ST6GAL1) 0.670154 0.000331 0.003916 

P01011 Serpin family A member 3 (SERPINA3) 0.639662 1.69E-05 0.00045 

P25311 Alpha-2-glycoprotein 1, zinc-binding (AZGP1) 0.632819 0.000413 0.004507 

P28062 Proteasome subunit beta 8 (PSMB8) 0.600077 0.001312 0.009471 

Q9Y275 Tumour necrosis factor superfamily member 
13b (TNFSF13B) 0.598276 0.001366 0.009525 

Q10588 Bone marrow stromal cell antigen 1 (BST1) 0.497329 0.002479 0.015174 

P02671 Fibrinogen alpha chain (FGA) 0.479315 5.97E-05 0.001211 

P01009 Serpin family A member 1 (SERPINA1) 0.413837 0.004043 0.020751 

P19652 Orosomucoid 2 (ORM2) 0.398525 0.008966 0.035365 

P05090 Apolipoprotein D (APOD) -0.28712 0.02343 0.073392 

P05452 C-type lectin domain family 3 member 
B(CLEC3B) -0.41938 0.000981 0.008195 

P24592 Insulin like growth factor binding protein 6 
(IGFBP6) -0.47325 0.000543 0.005505 

P02766 Transthyretin (TTR) -0.51538 0.000118 0.00201 

P16035 TIMP metallopeptidase inhibitor 2(TIMP2) -0.55365 0.001104 0.008872 

P02652 Apolipoprotein A2 (APOA2) -0.58763 5.53E-05 0.001192 

Q16819 Meprin A subunit alpha (MEP1A) -0.59883 0.000343 0.003945 
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P02655 Apolipoprotein C2 (APOC2) -0.60503 0.00117 0.009089 

P35443 Thrombospondin 4 (THBS4) -0.6732 0.000475 0.005063 

P02654 Apolipoprotein C1 (APOC1) -0.69471 0.003317 0.018591 

P06727 Apolipoprotein A4 (APOA4) -0.83936 0.00025 0.003431 

P02656 Apolipoprotein C3 (APOC3) -0.96146 1.56E-05 0.000448 

P02753 Retinol binding protein 4 (RBP4) -1.03432 7.14E-07 0.000101 

Seven proteins of the top 15 proteins listed in Table 12 were selected for validation in two 

independent cohorts. C-reactive protein (CRP) and Serum amyloid A1 (SAA1) were included as 

positive control in the validation group since these proteins are well recognised major acute-phase 

proteins and are expected to be increased in the individuals with pulmonary tuberculosis. S100 

calcium binding protein A8 (S100A8) and Lipopolysaccharide binding protein (LBP) have been 

described in other proteomic profiles of tuberculosis; therefore, the expression of these proteins on 

the specific cohorts defined for the validation of this work is valuable information for the design of 

a multi-marker panel.  Identification of four proteins already reported in the literature suggested our 

approach was robust. Novel proteins such as Complement factor H related 5 (CFHR5), Leucine rich 

alpha-2-glycoprotein 1 (LRG1) and Surfactant protein B (SFTPB) were additionally selected for 

validation. Proteins closely associated to the selected proteins were excluded for further validation 

(S100 calcium binding protein A9 (S100A9) and Serum amyloid A2 (SAA2)) since biological 

independency is recognised to benefit performance of multi-marker panels.  

The multimarker panel designed took place before the detailed proteomic data analysis for segment 

four, therefore additionally to the 7 proteins selected for validation from this highly curated group of 

proteins, a subset of 8 proteins from segments 1, 2 and 3 were included in the validation process. 

Although the statistical power for these segments was low and therefore the likelihood of validation 

reduced, exploration of proteins with the most consistent patterns of expression might lead to possible 

biomarkers. We accepted that there may be relatively greater failure rate at the validation stage due 

to reduced statistical power of the initial proteomic analysis. Table 13 presents the list of proteins 

selected for validation from segments 1, 2 and 3.  Since this particular subset of proteins was defined 

prior to the additional proteomic experiments described in this chapter, one protein from segment 4 

based on the analysis of only set A was included in this list.  
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Table 13. Proteins selected for validation from segments 1, 2 and 3. 

SEC Segment Protein 
Accession Protein Name logFC p Value Adj. p 

Value 
Segment 1 Q68CZ1 Protein fantom (RPGRIP1L) -2.6862852 6.42E-05 0.0081542 

Segment 2 Q08830 Fibrinogen-like protein 1 (FGL1) 1.0763064 4.41E-02 0.1095433 

Segment 2 Q9NZM1 Myoferlin (MYOF) -1.56217 0.02545 0.109543 

Segment 3 P49747 Cartilage oligomeric matrix protein 
(COMP) 2.2372189 4.50E-02 0.3941814 

Segment 3 Q12905 Interleukin enhancer-binding factor 2 
(ILF2) 3.8421888 1.06E-02 0.3941814 

Segment 3 Q9H2S1 Small conductance calcium-activated 
potassium channel protein 2 (KCNN2) -3.5749196 9.24E-04 0.1607798 

Segment 3 O14788 Tumour necrosis factor ligand 
superfamily member 11 (TNFSF11) -2.6732522 1.52E-03 0.1607798 

Segment 4 O94822 E3 ubiquitin-protein ligase listerin 
(LTN1) 3.7360754 2.11E-02 0.0793238 

 

5.3.4 Validation of Selected Candidates in Independent Cohorts  

Two independent cohorts recruited in South Africa and United Kingdom where included for the 

validation of the 15 proteins selected, namely: RPGRIP1L, FGL1, COMP, ILF2, MYOF, KCNN2, 

TNFSF11, LTN1, CRP, S100A8, LRG1, SAA1, CFHR5, SFTPB, and LBP. Demographic 

description of the two cohorts is presented in Tables 10 and 11.  

ELISA or Luminex were used to measure the concentration levels of the selected proteins in plasma 

and serum depending on the availability of assays. ELISA measurements comprised candidates for 

which there are commercially available kits, such as: RPGRIP1L, FGL1, COMP, ILF2, KCNN2, 

LTN1, LRG1 and SFTPB. Three luminex multimarker arrays were custom-made by Protavio; a 4-

plex array including LBP, COMP, TNFSF11 and CFHR5, one 2-plex including S100A8 and MYOF 

and two single-plexes for SAA1 and CRP. The validation of candidates is a multistep process that 

included sequential steps. Figure 59 depicts the three main conducted steps for validation. Firstly, 

each one of the immunoassays was optimised. Specifically for the ELISA kits, the dilution factor for 

plasma and serum was determined for each protein and the incubation time for the primary 

antibodies. In terms of the Luminex arrays the optimisation of the assays involved determination of 

optimised dilution factor for serum and plasma samples, composition of the sample diluent buffer to 

reduce the cross-reactivity of heterophilic antibodies in plasma/serum, doublet discriminator (DD) 

gating and sensitivity (High RP1 target).  
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Figure 59. General workflow for antibody-based validation of selected candidates 

Validation of 15 selected proteins was conducted as a stepwise process. Initially each one of ELISA or Luminex 

assays were optimised. Under optimised conditions a subset of samples were tested to evaluate significant 

differences. Candidates that showed differences close to significance or significant when comparing control 

vs. tuberculosis patients were validated on one or both complete validation cohorts. 

Optimised dilution factors for each one of the analytes are presented in Table 14. In the case of the 

Luminex assays, the sample diluent buffer composition that provided the best reduction of matrix 

effects of serum/plasma for the 2-plex was 30% Pierce™ Protein-Free T20 (PBS) blocking buffer 

(ThermoFisher Scientific, UK), 0.5% polyvinyl alcohol and 0.8% polyvinylpyrrolidone. For the 4-

plex the buffer previously described was supplemented with 0.5% Super ChemiBlock™ Heterophile 

Blocking Agent (KC) (Merck, UK). The plates were read using 3000 to 20000 range for the Doublet 

Discriminator gating on the Luminex. Candidates were validated in one or both cohorts depending 

on sample volume availability.  

Table 14. Dilution factors for validation of selected proteins 

Protein Validation platform Dilution factor 
RPGRIP1L ELISA No dilution 
FGL1 ELISA 1:10 
COMP ELISA 1:10 
COMP 4-plex Luminex 1:625 
ILF2 ELISA 1:5 
KCNN2 ELISA 1:10 
LTN1 ELISA 1:5 
LRG1 ELISA 1:50 
SFTPB ELISA 1:2/1:5 
LBP 4-plex Luminex 1:625 
TNFSF11 4-plex Luminex 1:625 
CFHR5 4-plex Luminex 1:625 
S100A8 2-plex Luminex 1:2 
MYOF 2-plex Luminex 1:2 
SAA1 2-plex Luminex 1:100 
CRP 2-plex Luminex 1:500 

 

The following section will present the results of validation of the selected analytes. Figure 60 shows 

the proteins with no significant differences under optimised conditions in a validation subset of 

samples using ELISA kits. This subset comprised plasma samples from the South African cohort. 
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Figure 60A shows RPGRIP1L, Figure 60B FGL1, Figure 60C COMP, Figure 60D KCNN2 and 

Figure 60E SFTPB. 
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Figure 60. Assessment of candidates by ELISA on validation subset: Proteins with no significant differences 

Five candidates showed no significant differences between controls and pulmonary tuberculosis patients when 

measured by ELISA on a subset of plasma samples from the South African validation cohort. A. RPGRIP1L. 

B. FGL1. C. COMP. D. KCNN2 and E. SFTPB. Bars with medians and 95%CI, p value considered significant 

when p <0.05 and calculated from Mann-Whitney test for two groups comparison and Kruskal-Wallis test and 

multiple Dunn’s multiple comparison test for three or more groups. HC: Healthy controls, PTBI: Pulmonary 
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tuberculosis infection and RS: Respiratory symptomatic patients. RPGRIP1L: Protein fantom, FGL1: 

Fibrinogen-like protein 1, COMP: Cartilage oligomeric matrix protein, KCNN2: Small conductance calcium-

activated potassium channel protein 2 and SFTPB: Surfactant protein B. 

Figure 61 presents the proteins that passed the preliminary test on the validation subset and were 

successfully validated on the complete South African or MIMIC cohort by ELISA testing under 

optimised conditions. Figure 61A shows validation of ILF2 on the MIMIC cohort. Interleukin 

enhancer-binding factor 2 protein was significantly upregulated on latent and active tuberculosis and 

respiratory symptomatic patients. Figures 61B and C present validation of LTN on a subset of 

samples from the South African cohort and the complete MIMIC cohort, respectively. The E3 

ubiquitin-protein ligase listerin was significantly upregulated exclusively on pulmonary tuberculosis 

patients. Figure 61D shows validation of LRG1 on the MIMIC cohort. Leucine rich alpha-2-

glycoprotein 1 was significantly upregulated in pulmonary tuberculosis and respiratory symptomatic 

patients. 
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Figure 61. Proteins validated by ELISA on MIMIC and South African cohort 

Three candidates were significantly upregulated during pulmonary tuberculosis infection measured by ELISA. 

A. Validation of ILF2 on the MIMIC validation cohort. B. Validation of LTN on a subset of samples negative 

for HIV coinfection from the South African cohort. HC (n=20), PTBI (n=24) and RS (n=13). C. Validation of 

LTN on the MIMIC validation cohort. D. LRG1 validation on the MIMIC validation cohort. Bars with medians 

and 95%CI, p value considered significant when p <0.05 and calculated from Kruskal-Wallis test and multiple 

Dunn’s multiple comparison test for three or more groups. HC: Healthy controls, PTBI: Pulmonary 

tuberculosis infection and RS: Respiratory symptomatic patients. IFL2: Interleukin enhancer-binding factor 2, 

LTN: E3 ubiquitin-protein ligase listerin and LRG1: Leucine rich alpha-2-glycoprotein 1.   
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Figure 62 presents the results of validation by Luminex multiplex arrays on the mimic validation 

cohort and Figure 63 on the South Africa cohort. Figure 62A shows validation of CFHR5 on MIMIC 

and 63A on the South African cohort. CFHR5 was significantly upregulated in the pulmonary 

tuberculosis patients on both cohorts. This protein was upregulated as well in the extrapulmonary 

tuberculosis and respiratory symptomatic patients on the MIMIC cohort. CFHR5 was upregulated in 

patients with pulmonary tuberculosis that were HIV co-infected. Figure 62B shows validation of 

LBP on the MIMIC cohort and 632B on the South African cohort. Similarly to CFHR5, the LBP was 

significantly upregulated in the pulmonary tuberculosis patients on both cohorts. LBP was 

upregulated as well in the extrapulmonary tuberculosis and respiratory symptomatic patients on the 

MIMIC cohort but not on the South African cohort. Additionally, LBP was upregulated in patients 

with pulmonary tuberculosis who were HIV co-infected on the South African cohort. Figure 62C 

presents validation of TNFSF11 on MIMIC and 63C on the South African cohort. The TNFSF11 

(RANKL) was not significantly modulated on the MIMIC nor South African cohort. Figure 62D 

shows the validation of COMP on MIMIC and 63D on the South African cohort. The COMP was 

not significantly regulated on any cohort in the tuberculosis context. However, data on Figure 63D 

suggests that COMP is upregulated in patients HIV infected but not co-infected with Mtb.  

CRP and SAA were included in the panel as positive controls for the validation process and as 

expected, these two acute-phase proteins were upregulated on both cohorts as depicted in Figures 

62E, 63E for SAA1 from MIMIC and South Africa, respectively. Figure 62F for CRP on MIMIC. 

C-reactive protein evaluation on the South African cohort was part of the blood test profile at 

enrolment (data not shown). SAA-1 was significantly upregulated in the extrapulmonary tuberculosis 

and respiratory symptomatic patients on the MIMIC cohort. On the contrary, SAA1 is only 

upregulated in tuberculosis patients HIV negative and positive on the South African cohort. 

MYOF and S100A8 were tested together in 2-plex array. However, most of concentration levels on 

the tested samples were below detection and/or quantification levels, which impaired the group 

comparison. Therefore data from these 2-plex is not presented.  
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Figure 62. Proteins evaluated on MIMIC validation cohort by Luminex 

Six protein candidates were evaluated by Luminex arrays on both validation cohorts. A set of four different 

arrays were designed and optimised for this purpose: one 4-plex array including LBP, COMP, TNFSF11 and 

CFHR5, one 2-plex comprising S100A8 and MYOF and two single-plex for SAA1 and CRP. Fluorescence 

intensities are presented on the y-axis.  A. Validation of CFHR5. B. Validation of LBP. C. Determination of 

TNFSF11. D. Evaluation of COMP. E. Validation of SAA1 and F. Validation of CRP. Bars with medians and 

95%CI, p value considered significant when p <0.05 and calculated from Kruskal-Wallis test and multiple 

Dunn’s multiple comparison test. HC: Healthy controls, PTBI: Pulmonary tuberculosis infection and RS: 
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Respiratory symptomatic patients. CFHR5: Complement factor H related 5, LBP: Lipopolysaccharide binding 

protein, TNFSF11: Tumour necrosis factor ligand superfamily member 11, COMP: Cartilage oligomeric 

matrix protein, SAA1: Serum amyloid A1 and CRP: C-reactive protein. 
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Figure 63. Proteins evaluated on South African validation cohort by Luminex 

Six protein candidates were evaluated by Luminex arrays on both validation cohorts. A set of four different 

arrays were designed and optimised for this purpose: one 4-plex array including LBP, COMP, TNFSF11 and 

CFHR5, one 2-plex comprising S100A8 and MYOF and two single-plex for SAA1 and CRP. Fluorescence 

intensities are presented on the y-axis.  A. Validation of CFHR5. B. Validation of LBP. C. Determination of 

TNFSF11. D. Evaluation of COMP and E. Validation of SAA1. Bars with medians and 95%CI, p value 
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considered significant when p <0.05 and calculated from Kruskal-Wallis test and multiple Dunn’s multiple 

comparison test. HC: Healthy controls, PTBI: Pulmonary tuberculosis infection and RS: Respiratory 

symptomatic patients. CFHR5: Complement factor H related 5, LBP: Lipopolysaccharide binding protein, 

TNFSF11: Tumour necrosis factor ligand superfamily member 11, COMP: Cartilage oligomeric matrix 

protein and SAA1: Serum amyloid A1. 

Therefore, taking the ELISA and luminex data together, of the 15 proteins that were selected, 7 were 

statistically significantly elevated (57%).  Three proteins where the assay could not detect the analyte 

in plasma are excluded.  When proteins identified in segment 4 by analysis of 21 samples are 

considered, from 7 selected, 5 were validated (71.4%), showing that the more comprehensive early 

analysis increases significantly the predictive power, even considering the two proteins (SFTPB and 

S100A8) where the assay could not detect the proteins in plasma.   

A preliminary assessment of the performance of the validated proteins as classifiers of tuberculosis 

disease compared to the controls was conducted using receiver operator characteristic (ROC) curves 

and the area under the curve (AUC) as indicator of such performance (93).  Fluorescence intensities 

or concentration levels of significantly regulated proteins were utilised to generate individual ROC 

curves for each analyte. Additionally, binomial logistic regression was performed to predict the 

probability of tuberculosis disease (dichotomous dependent variable) based on a set of predictors, in 

this case the combination of the validated proteins. These probabilities were used to calculate the 

combined ROC curves.  

Figure 64 presents individual and combined ROC curves with statistics for the AUC using 

significantly regulated proteins as predictors. Figure 64A shows ROC curves and AUC analysis 

based on fluorescence intensities of SAA1, CRP, CFHR5 and LBP in the MIMIC cohort. The best 

AUC was achieved with combination of the four proteins (AUC=0.935, 95% confidence interval: 

0.878-0.993, p < 0.001). Figure 64B shows ROC curves and AUC analysis based on the 

concentration (ng/mL) of LTN, LRG1 and ILF2 in the MIMIC cohort. The best AUC was achieved 

with ILF2 alone (AUC=0.826, 95% confidence interval: 0.690-0.961, p < 0.001). Figure 64C shows 

ROC curves and AUC analysis based on fluorescence intensities of SAA1, CFHR5 and LBP in the 

South African cohort. The best AUC was achieved with combination of the three proteins 

(AUC=0.886, 95% confidence interval: 0.819-0.952, p < 0.001). 
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Figure 64. Receiver operator characteristic curves for validated candidates 

Lower 
Bound

Upper 
Bound

SAA1 0.887 0.041 0.000 0.806 0.968
CRP 0.817 0.054 0.000 0.711 0.922
CHFR5 0.853 0.051 0.000 0.754 0.952
LBP 0.749 0.064 0.001 0.624 0.874
Predicted probability 
CHFR5_SAA1_LBP_
CRP

0.935 0.030 0.000 0.878 0.993

The test result variable(s): SAA1 has at least one tie between the 
a. Under the nonparametric assumption
b. Null hypothesis: true area = 0.5

Test Result 
Variable(s) Area

Std. 
Errora

Asymptotic 
Sig.b

Asymptotic 

Lower 
Bound

Upper 
Bound

Predicted probability 
LTN + ILF2 + LRG1

0.805 0.070 0.001 0.667 0.942

LTN 0.753 0.077 0.005 0.602 0.904
ILF2 0.826 0.069 0.000 0.690 0.961
LRG1 0.782 0.079 0.002 0.626 0.937

b. Null hypothesis: true area = 0.5

Test Result 
Variable(s) Area

Std. 
Errora

Asymptotic 
Sig.b

Asymptotic 

The test result variable(s): LTN has at least one tie between the 
positive actual state group and the negative actual state group. 
Statistics may be biased.
a. Under the nonparametric assumption

Lower 
Bound

Upper 
Bound

LBP 0.845 0.041 0.000 0.766 0.925
CFHR5 0.729 0.054 0.000 0.623 0.834
SAA1 0.873 0.038 0.000 0.799 0.947
Predicted 
probability 
SAA1 + 
CHRF5 + LBP

0.886 0.034 0.000 0.819 0.952

The test result variable(s): LBP, CFHR5, SAA1 has at 
a. Under the nonparametric assumption
b. Null hypothesis: true area = 0.5

Test Result 
Variable(s)

Area
Std. 

Errora
Asymptotic 

Sig.b
Asymptotic 
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ROC curves were generated after binary logistic regression using SPSS Statistics v.25.  A. ROC curves for the 

MIMIC cohort calculated for individual analytes LBP, CFHR5, SAA1 and CRP. A combined curve for the 

combination of the four analytes was also produced.  B. ROC curves for the MIMIC cohort calculated for 

individual analytes IFL2, LRG1  and LTN and combined analytes. C. ROC curves for the South African cohort 

calculated for individual analytes LBP, CFHR5 and SAA1. A combined curve for the combination of the three 

analytes was also produced. Table with the statistical description of each ROC curve is included.  

Table 15 presents the coordinates of the ROC curves with the highest AUC including cut-off values, 

sensitivity and specificity values generated in SPSS Statistics v.25. Table 15A shows the curve 

coordinates based on fluorescence intensities in the MIMIC cohort, B the curve coordinates based 

on concentration levels (ng/mL) in the MIMIC cohort and C the curve coordinates based on 

fluorescence intensities in the South African cohort.  

Table 15. Coordinates of the ROC curves 

A. MIMIC – Fluorescence intensities used for calculations 

 

 

 

Test Result 
Variable(s)

Positive if 
Greater 
Than or 

Equal Toa

Sensitivity
1 - 

Specificity
Test Result 
Variable(s)

Positive if 
Greater 
Than or 

Equal Toa

Sensitivity
1 - 

Specificity

-0.9674 1 1 0.366165 0.875 0.2
0.033157 1 0.967 0.426082 0.875 0.167
0.034041 1 0.933 0.471173 0.875 0.133
0.042157 1 0.9 0.484286 0.875 0.1
0.051018 1 0.867 0.49962 0.844 0.1
0.053383 1 0.833 0.52845 0.813 0.1

0.05809 1 0.8 0.553413 0.781 0.1

0.067033 1 0.767 0.56667 0.781 0.067
0.072609 1 0.733 0.574133 0.75 0.067
0.074231 1 0.7 0.602072 0.75 0.033
0.085409 1 0.667 0.660157 0.719 0.033
0.096548 1 0.633 0.758044 0.688 0.033
0.098096 1 0.6 0.825446 0.656 0.033
0.099869 0.969 0.6 0.867304 0.625 0.033
0.102379 0.969 0.567 0.909084 0.594 0.033
0.107324 0.969 0.533 0.915235 0.563 0.033
0.118131 0.969 0.5 0.931385 0.563 0
0.137895 0.969 0.467 0.96054 0.531 0
0.160563 0.969 0.433 0.98183 0.5 0
0.171769 0.969 0.4 0.993166 0.469 0
0.180954 0.969 0.367 0.99964 0.438 0
0.192151 0.938 0.367 1 0.406 0
0.206608 0.938 0.333 1 0.375 0

0.2288 0.938 0.3 1 0.344 0
0.24465 0.938 0.267 1 0.313 0
0.272274 0.906 0.267 1 0.281 0
0.299111 0.875 0.267 1 0.25 0
0.321561 0.875 0.233 1 0.219 0

2 0 0

Coordinates of the Curve

Predicted probability 
CFHR5 + SAA1 + 
LBP + CRP

Coordinates of the Curve

Predicted probability 
CFHR5 + SAA1 + 
LBP + CRP
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B. MIMIC – Concentration (ng/mL) used for calculations 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test Result 
Variable(s)

Positive if 
Greater 
Than or 

Equal Toa

Sensitivity 1 - Specificity
Test Result 
Variable(s)

Positive if 
Greater 
Than or 

Equal Toa

Sensitivity 1 - Specificity

ILF2 -0.875 1 1 2.241 0.679 0.176
0.1745 1 0.941 2.5134 0.679 0.118
0.377 1 0.882 2.7037 0.643 0.118

0.5986 1 0.824 2.8017 0.643 0.059
0.7285 0.964 0.824 2.9418 0.607 0.059
0.8323 0.964 0.765 3.0632 0.536 0.059

0.8764 0.964 0.706 3.27 0.5 0.059

0.8857 0.964 0.647 3.4061 0.464 0.059
0.9029 0.929 0.647 3.4909 0.429 0.059
0.9632 0.929 0.588 3.6261 0.393 0.059
1.0352 0.929 0.529 4.5222 0.357 0.059
1.1196 0.929 0.471 5.3727 0.321 0.059
1.1899 0.893 0.471 5.5201 0.286 0.059
1.2517 0.893 0.412 5.7353 0.25 0.059
1.3381 0.893 0.353 5.939 0.214 0.059
1.4819 0.857 0.353 6.3868 0.179 0.059
1.6346 0.821 0.353 7.7949 0.143 0.059
1.6778 0.786 0.353 10.6927 0.107 0.059
1.7605 0.75 0.353 12.6438 0.071 0.059
1.8443 0.75 0.294 12.9138 0.036 0.059
1.878 0.75 0.235 13.9786 0 0.059

1.9262 0.75 0.176 15.9136 0 0
2.0497 0.714 0.176

Coordinates of the Curve

ILF2

Coordinates of the Curve
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C. South Africa cohort – Fluorescence intensities used for calculations 

 

a. The smallest cut-off value is the minimum observed test value minus 1, and the largest cutoff value is the 
maximum observed test value plus 1. All the other cutoff values are the averages of two consecutive ordered 
observed test values. 

Therefore, the ROC curve analysis potentially gave an optimal AUC of AUC of 0.935 (95%CI, 

0.878-0.933) in the MIMIC cohort, by including CFHR5, SAA1, LBP and CRP. In the South Africa 

cohort the performance was reduced since the CRP data was not available, AUC was 0.886 (95%CI, 

0.690 – 0.961). Further analysis of these analytes in diverse cohorts, and the power of adding 

alternative biomarkers that emerged from the interrogation of segment 4 and further analysis of 

segment 1 – 3, is needed to define the best diagnostic panel. 

5.3.5 A potential marker from Mycobacterium tuberculosis 

Alternatively to the analysis of the proteomic data based on fully quantified data which led to the 

selection of the candidates validated above, an alternative approach is to try to identify peptides only 

present in tuberculosis samples.  This analysis approach is necessary to show pathogen-derived 

peptides.  Further analysis of data using PL3 allowing for missing data indicated the presence of an 

Mtb derived peptide in 10 out of 11 tuberculosis patients.  This identification was possible since the 

Test Result 
Variable(s)

Positive if 
Greater Than 
or Equal Toa

Sensitivity
1 - 

Specificity
Test Result 
Variable(s)

Positive if 
Greater 
Than or 

Equal Toa

Sensitivity
1 - 

Specificity
Test Result 
Variable(s)

Positive if 
Greater 
Than or 

Equal Toa

Sensitivity
1 - 

Specificity

0 1 1 0.1368367 0.919 0.5 0.4407209 0.649 0.117
0.0425226 1 0.983 0.1394832 0.919 0.483 0.4964904 0.649 0.1
0.0496764 1 0.967 0.1476612 0.919 0.467 0.5206475 0.649 0.083
0.0528383 1 0.95 0.153943 0.919 0.45 0.5783908 0.649 0.067
0.0559323 1 0.933 0.1550783 0.919 0.433 0.6162633 0.622 0.067
0.0594681 1 0.917 0.1578296 0.892 0.433 0.620378 0.595 0.067
0.0634368 1 0.9 0.1616226 0.892 0.417 0.6243439 0.595 0.05
0.0687227 1 0.883 0.1636783 0.892 0.4 0.6406425 0.595 0.033
0.0728766 1 0.867 0.1653895 0.892 0.383 0.673791 0.568 0.033
0.0746193 1 0.85 0.1700262 0.892 0.367 0.7150463 0.568 0.017
0.0762439 1 0.833 0.1737987 0.892 0.35 0.7544402 0.541 0.017
0.0802747 1 0.817 0.1774076 0.892 0.333 0.7782297 0.514 0.017
0.0843991 1 0.8 0.1893629 0.892 0.317 0.7936893 0.514 0
0.0880026 1 0.783 0.2004697 0.865 0.317 0.8097073 0.486 0
0.0908821 1 0.767 0.2036134 0.865 0.3 0.8769995 0.459 0
0.0931761 1 0.75 0.2083621 0.838 0.3 0.9463703 0.432 0
0.0967707 1 0.733 0.2188413 0.811 0.3 0.9608297 0.405 0
0.0995513 1 0.717 0.2355137 0.811 0.283 0.9682376 0.378 0
0.1022588 1 0.7 0.247339 0.811 0.267 0.9745492 0.351 0
0.1048321 1 0.683 0.2498731 0.811 0.25 0.9775219 0.324 0
0.1063257 1 0.667 0.2595306 0.811 0.233 0.9785362 0.297 0
0.1078842 1 0.65 0.2732809 0.811 0.217 0.9793822 0.27 0
0.1092587 1 0.633 0.2832491 0.784 0.217 0.9828458 0.243 0
0.1148208 1 0.617 0.290309 0.784 0.2 0.9884791 0.216 0
0.1212178 1 0.6 0.2978909 0.757 0.2 0.9933741 0.189 0
0.1232555 0.973 0.6 0.3110075 0.757 0.183 0.9958237 0.162 0
0.1245202 0.946 0.6 0.3206368 0.73 0.183 0.9962689 0.135 0
0.1257834 0.946 0.583 0.3230623 0.73 0.167 0.9967276 0.108 0
0.1268544 0.946 0.567 0.3243051 0.73 0.15 0.997824 0.081 0
0.1279723 0.946 0.55 0.336836 0.73 0.133 0.9985297 0.054 0
0.1305172 0.946 0.533 0.3512792 0.703 0.133 0.9987584 0.027 0
0.133438 0.946 0.517 0.3596542 0.676 0.133 1 0 0

0.1352929 0.946 0.5 0.3769818 0.676 0.117

Predicted 
probability 
SAA1 + 
CHRF5 + 
LBP

Predicted 
probability 
SAA1 + 
CHRF5 + 
LBP

Predicted 
probability 
SAA1 + 
CHRF5 + 
LBP

Coordinates of the Curve Coordinates of the Curve Coordinates of the Curve
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spectrum raw data analysis was performed including the reference proteome for Mycobacterium 

tuberculosis strain ATCC 25618/H37Rv (UP000001584) together with the reviewed proteome for 

Homo sapiens (UP000005640). This finding was consistent in the three data sets generated for 

segment 4. Figure 65 presents the spectrometric evidence for the presence of this peptide derived 

from the possible dehydrogenase (O69693) product of the gene Rv3726. The peptide sequence 

MKAVTCTNAK comprises 10 amino acids at the N-terminus of the protein. 

Figure 65A shows the list of b and y ions used for sequencing and the CID fragmentation spectrum 

for the precursor ion 681.05096Da (z = +3) collected in the Set A.  Figure 65B depicts the list of b 

and y ions used for sequencing and the CID fragmentation spectrum for the precursor ion 

1021.08215Da (z = +2) collected in the Set B. Figure 65C presents the list of b and y ions used for 

sequencing and the CID fragmentation spectrum for the precursor ion 681.05188 (z = +3) collected 

in the Set B. The identification was performed with one high confidence unique peptide and 1 to 3 

PSMs with co-isolation ranging 0% to 20%. 

A. 
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B. 

 

 
 

 

C. 

 

 
Figure 65. Mass spectrometric evidence of an Mtb derived peptide 

CID fragmentation spectra used for the peptide MKAVTCTNAK identification including list of y and b ions. 
A. Set A. B. Set B and C. Set C. 

The finding of a pathogen-derived peptide in the plasma of HIV-negative individuals is potentially very 

exciting as it may form the basis of a rule-in test for TB.   
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5.3.6 Bioinformatic mining of proteomic profile from segment four  

Further data mining of the proteomic data generated in this work was conducted to interpret 

biologically relevant patterns of protein expression in plasma of patients with pulmonary 

tuberculosis. Network-based analysis was applied to the datasets resulting from the detailed profile 

of segment 4. Specifically, weighted gene co-expression network analysis (WGCNA) was used to 

explore correlation relationships between clusters of highly correlated proteins (colour modules) and 

specific sample traits. The batch effect was corrected in order to increase the analysis power. As 

indicated in the Figure 57A, the main variable explaining the variance of the data is the batch or 

iTRAQ set experiment. Two different approaches for batch correction were evaluated on the protein 

expression values from sets A to C: master pool and ComBat. The first approach involved the 

normalisation of each protein to its expression level in the master pool. Figure 66 presents a PCA 

with the sample variance distribution after master pool normalisation. Alternatively, ComBat is a 

well-recognised tool used for batch effect correction initially designed for microarray data but widely 

used for transcriptomics. ComBat was run as part of the Surrogate Variable Analysis package R 

package version 3.28.0. Figure 66B presents the sample variance distribution after ComBat 

correction.  Once the data was batch corrected, the common proteins across the three segments were 

processed through PL2 (LIMMA and FDR correction). A direct comparison of the number of 

significantly regulated proteins using PL2 resulting from both correction approaches is shown in 

Figure 66C. In overall, 159 proteins were significantly regulated using ComBat and 72 proteins using 

master pool correction. Forty-nine proteins were common to both approaches. All p values of 

significantly regulated proteins were FDR corrected.  
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A. 

 

B. 

 

C. 

 

Figure 66. Batch effect correction 

Batch effects were corrected to combine the datasets and increase the statistical power of the data analysis. A. 

PCA datasets from sets A to C batch corrected using master pool. B. PCA datasets from sets A to C batch 

corrected using ComBat. In blue set A, purple set B, green set C and orange master pool samples. Squares 

indicate control and circles tuberculosis samples. C. Venn diagram of proteins significantly regulated using 

PL2 after master pool and ComBat batch correction. Proteins considered significantly regulated when FDR 

adjusted p value <0.05. 

Considering that ComBat led to better correction of batch effects as demonstrated in Figure 66B and 

a higher number of proteins significantly regulated, the dataset derived from this approach was used 

for downstream analysis. WGCNA package for R was run in RStudio. Unsupervised sample 

hierarchical clustering is shown in Figure 67A. Four covariates are colour coded to assess possible 

cofounding effect of ethnicity, smoking status and batch. Samples are mainly clustered by disease 

status (group): healthy controls and pulmonary tuberculosis, excepting two samples TB_121 from 

set A and TB_118 from set C. Interestingly, samples showed a clustering pattern based on the 

ethnicity of the participants. Neither smoking status nor batch seemed to affect the clustering of 

samples. Figure 67B depicts the main protein co-expression modules, the correlation score for the 

absolute correlation between the protein expression profiles and predefined covariates and finally, 

significance of correlation. Consistent with the hierarchical clustering, ethnicity exhibits one of the 
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strongest modules (module brown) with a correlation score of 0.81 and p vale 0.000006, after the 

module turquoise correlated to the group (correlation score -0.87 and p value 0.0000002). Figure 

67C indicates the ethnicity of the participants on the PCA based on common proteins among sets A 

to C and corrected with ComBat.  

A.  

 

B. 

 

 

C. 

 

Figure 67. WGCNA analysis of plasma proteomic profile resulting from segment 4 

WGCNA analysis based on the common proteins resulting from segment 4 profile across iTRAQ sets A to C. 

A. Hierarchical clustering of samples with colour-coded predefined covariates. B. Module-traits associations 

describing protein co-expression modules and predefined covariates. C. PCA of ComBat corrected protein 

expression indicating ethnicities of each participant. In blue set A, purple set B, green set C and orange master 

pool samples. Squares indicate control and circles tuberculosis samples. Samples that do not cluster based on 

ethnicity are indicated with dashed circles.  
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Assessment of sample clustering and main co-expression modules suggested that ethnicity might be 

a biologically relevant covariate to explore further. Samples from the two ethnicities considered in 

this study were separated and the datasets processed independently using WGCNA. The pulmonary 

tuberculosis sample labelled with the iTRAQ tag121 from experiment A was removed since this 

sample exhibited the largest deviation from the group and its removal increased the statistical power: 

as a result 10 samples were included in each ethnic group. 

Figure 68 presents a parallel of the sample clustering, protein co-expression modules and covariates 

derived from WGCNA between Peruvian and South African samples. Figure 68A and B present the 

hierarchical clustering of samples with group and batch colour-coded for Peruvian and South African 

discovery cohorts, respectively. Samples clearly clustered by group, control vs. pulmonary 

tuberculosis and did not exhibit an obvious batch effect. Figure 68C and D depict the clustering 

dendograms of the topological overlap measurement (TOP) matrix, which show clusters of highly 

interconnected proteins with assigned colour modules for Peruvian and South African samples, 

respectively. Figure 68E and F present the module-traits associations describing protein co-

expression modules and two covariates: group and batch for Peruvian and South African individuals, 

respectively. Three modules were strongly correlated to the disease status in the Peruvian cohort: 

module pink (correlation score -0.65, p value 0.04), module green (correlation score -0.82, p value 

0.004) and, module turquoise (correlation score -0.94, p value 0.00004). In contrast, only one module 

was significantly associated to the disease status in the South African cohort, the module turquoise 

(correlation score -0.93, p value 0.00009).  
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A. 

 

B. 

 
C. 

 

D. 

 
E. 

 

F. 

 
Figure 68. Independent WGCNA analysis of Peruvian and South African samples 

Hierarchical clustering of samples with group and batch colour coded. A. Peru and B. South Africa. Module 

detection of highly correlated proteins based on clustering dendograms of the topological overlap 

measurement (TOP) matrix for C. Peruvian and D. South African samples. Heatmap of detected modules. 

Colour scale indicates the correlation score. Significance of correlation in brackets E. Peru and F. South 

Africa.  
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Analysis of highly correlated proteins identified module turquoise as the most strongly associated 

cluster to the disease status in both ethnicities. Further exploration of this particular module was 

performed in order to evaluate the commonalities and variations of the response to the tuberculosis 

infection in South African and Peruvian individuals. Figure 69A and B indicates a very strong 

correlation between the proteins from the module turquoise and the pulmonary tuberculosis infection 

in both ethnicities. Noticeably, the correlation score of the module and the disease status was 0.89 

with a p value 3.7x10-58 in the Peruvian group (Figure 69A). Similarly, the correlation score in the 

South African group was 0.89 with a p value 4.4x10-94 (Figure 69B). A comparison of the total 

number of proteins included in the module turquoise discriminated by ethnicity is presented in the 

Venn diagram of Figure 69C. Sixty-five proteins were common between both ethnic groups, whereas 

63 proteins where exclusive to the Peruvian cohort and 81 to the South African cohort. Gene ontology 

enrichment analysis of the proteins in each group based on biological processes was performed using 

the tool ToppFun from the ToppGene Suite (https://toppgene.cchmc.org/enrichment.jsp).  Only 

Bonferroni corrected enriched terms were included in the analysis. Figure 68D illustrates the GO 

enrichment for the proteins common between Peruvian and South African individuals from the 

turquoise module. The most significant GO terms common to both groups are platelet degranulation, 

protein activation cascade, proteolysis, acute inflammatory response and regulation of immune 

system, while other biological process enriched in both datasets besides immune response were 

cholesterol transport and plasma lipoprotein particle clearance. Figure 69E and F present the GO 

enrichment based on the proteins exclusive to each group. The GO enrichment of proteins exclusive 

to Peru (Figure 69E) identified biological processes such as protein-lipid complex remodelling, 

response to bacterium and alternative pathway of complement activation. Conversely, the biological 

process identified for the South African group (Figure 69F) included exocytosis, extracellular matrix 

organisation, cell adhesion, humoral immune response mediated by circulating immunoglobulin, 

classical pathway of complement activation and cell migration. 
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Figure 69. Strongly correlated proteins to tuberculosis infection: module turquoise 

Module turquoise exhibited a very strong and significant correlation to pulmonary tuberculosis infection in 

both ethnicities. A. Scatter plot of the correlation of proteins’ significance for disease status vs. module 

membership for Peru and B. South Africa. C. Venn diagram of proteins included in the turquoise module 

comparing both ethnicities. Gene ontology enrichment analysis was performed using ToppFun from Toppgene 

suit https://toppgene.cchmc.org/enrichment.jsp for biological processes. Bar plots show enriched terms and 

significance (Bonferroni corrected p values). In blue Peruvian individuals and orange South African 

individuals. D. Significantly enriched biological processes common to both groups. E. Significantly enriched 

biological processes unique for the Peruvian group and F. South Africa. 

Further bioinformatic analysis of the proteins belonging to the turquoise module was performed using 

the tool ClusterProfiler 3.8.1 an R package available from Bioconductor (236). Differential profiles 

for each ethnicity were generated integrating the top biological processes enriched on the gene 

ontology analysis and the fold changes when comparing controls vs. pulmonary tuberculosis patients 

at relative expression protein level. Figure 70 presents the GO network with the main proteins 

associated to each biological process. Figure 70A the GO network common between both ethnicities. 

Figure 70B exhibits the profile for the Peruvian samples and, Figure 70C the profile for South African 

samples. 
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C. 

 
Figure 70. Gene ontology enrichment analysis for strongly correlated proteins to tuberculosis infection 

Gene ontology enrichment analysis of proteins strongly correlated to disease status (module turquoise). 

Networks show top biological processes enriched and the proteins associated to such GO terms. Circles 

indicates biological processes and the size the number of proteins associated to each GO term. Colour scale 

indicated the log2 fold change of the relative expression levels of each protein. A. Network based on common 

proteins between both ethnicities. Network for B. Peruvian cohort and C. South Africa. In purple proteins 

validated in MIMIC and South African cohorts. 

5.4 Discussion 

Pulmonary tuberculosis remains as a devastating disease and the development of accurate, 

inexpensive, rapid and sputum-independent diagnostic tools suitable for resource-limited settings 

constitutes a critical priority in the fight against tuberculosis transmission. Diverse high-throughput 

strategies are being applied to detect whole or molecular traces of the Mtb bacilli or host responses 

to tuberculosis infection (103, 237). Such biomarkers or biosignatures have the potential to translate 

to point-of-care devices and proteins stand a greater opportunity of translation to a rapid test than 

other biomolecules. Many efforts are concentrated on developing diagnostic tools for tuberculosis 

that could yield results in minutes, such as lateral-flow or biosensor devices (122-124, 238, 239). 

However, novel biosignatures with higher performance than those currently available are urgently 

required to advance on the biomarker’s pipeline.  iTRAQ quantitative proteomics using the iTRAQ 

reagents was applied in this work to profile plasma proteins that could be used as a novel biomarkers 

of pulmonary tuberculosis. Chapter 4 demonstrated a powerful optimised multidimensional 

proteomic method based on hyper-fractionation of non-depleted whole plasma. This method 
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delivered the most extended deep plasma proteomic coverage reported to date thus increasing the 

opportunities of novel biomarker discovery. 

This chapter presented an extension of such a method demonstrating an increased statistical power.  

The most significant limitations of the results were discussed in the previous chapter. This detailed 

profiling was focused on the sub-proteome segment 4, which is primarily enriched for low-molecular 

weight proteins and protein degradation products. This fraction contains a diverse subproteome and 

successfully recapitulates multiple biological processes from plasma as demonstrated in a number of 

plasma discovery studies reported by our group in the context of cancer and nutrition (92, 240-242). 

In-depth profiling of segment 4 involved 10 healthy controls and 11 pulmonary tuberculosis, which 

according to statistical power estimations by Levin, Y., et al. (2011) (203) and Cohen, F. G., et al. 

(2013) (209) will provide a statistical power >0.9 when a fold change cut-off of 1.5 in logarithm base 

2 scale is considered. This powerful approach resulted in the identification and independent 

validation of known and novel biomarkers of tuberculosis infection, significantly including the 

identification of a peptide Mtb-derived. Validation of this exciting finding will require the 

development of a method suitable for measurement of this protein in multiple samples, therefore it 

is considered in the ongoing and future work. A common plasma proteomic profile to both ethnicities 

was defined which can potentially be translated to diverse host contexts. Additionally, this 

comprehensive plasma proteomic work has potentially revealed new biological aspects of 

tuberculosis immunopathology associated to geographically diverse populations using a variety of 

bioinformatic approaches and tools to mine the datasets generated. 

Samples were processed using the optimised settings defined to produce a complete plasma profile 

of a small sample set. In addition to the information generated for segment 4 in Chapter 4, two extra 

8-plex sets were processed for this particular segment. As presented in Figure 55B and C, the 

experiments run subsequently were reproducible at both peptide and protein. However, these 

experiments were conducted a year a part from the first plasma profile and the resolution for the 

HCD fragmentation event was increased from 30000 to 60000 for the second round of experiments. 

This explains the differences between sets B-C and A in terms of total peptide/protein number and 

proteins identities. Although shotgun proteomics is a powerful strategy to conduct hypothesis-

generating research with high-throughput, it suffers from limited reproducibility. This is mainly 

explained by the semi-stochastic sampling of the proteome when the number of peptides from 

complex biological matrixes exceeds significantly the sequencing cycles of the mass spectrometer 

(243). Although, the sensitivity and speed of the mass spectrometers have improved at fast pace over 

the last years, generating robust and reproducible quantitative data across a large number of complex 

samples remains as one of the greatest challenges in clinical proteomics (244).  

Concomitantly with proteome subsampling, proteomics datasets are frequently incomplete compared 

to transcriptomic or genomic data. Particularly, data from labelling-based quantitative proteomic 
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experiments will comprises a variable configuration of peptides totally, partially or non-quantified 

across the samples over an iTRAQ/TMT experimental batch. Recently, Chen L. S., et al. (2018) have 

suggested that the missing probability depends on the combined batch-level abundances and 

proposed linear mixed-effect strategy to model partially quantified data which is usually rejected 

(245).  In this work, 426 fully quantified proteins at 1%FDR were common to the three iTRAQ set 

experiments. This stringent dataset constituted the initial input for downstream processing leading to 

candidate selection for validation. Further bioinformatic analysis was conducted to explore the 

complete datasets including missing values, which led to biologically relevant insight on the host 

response to Mtb infection. This result section will be discussed later.  

Principal component analysis was performed to explore the variance distribution of the data. Figure 

57A demonstrates that the experimental batch explains over 55% of the variance of the data followed 

by the group effect. Despite the strong batch effect on the variance, the control and tuberculosis 

groups were clearly distinguished between the components 2 and 3. Similarly, the master pool 

location for the three experiments was consistent along component 3. The heatmap in Figure 56B 

allows a general visualisation of the batch relative protein abundance being the abundance order 

B>C>A. Altogether, these data suggests that the batch effect is mainly dictated by the combined 

batch-level abundance in concordance with Chen L. S., et al. (2018) (245). Statistical analysis 

involving LIMMA and FDR correction for multiple testing (PL2) was applied to the dataset 

containing fully quantified common proteins across sets A – C to evaluate significant changes in 

relative protein abundance driven by pulmonary tuberculosis infection. At this stage, no batch effect 

correction was applied and differentially expressed proteins (DEPs) were defined by the regression 

coefficient of the linear model, which estimates the group effect. One hundred and seventy four 

proteins were determined as differentially expressed by this method, representing a large biosignature 

for pulmonary tuberculosis. Well recognised acute response reactants such as CRP (246-248) and 

SAA (152, 249) were identified, enhancing our confidence that the methodology has been robust, 

but a set of completely novel proteins were also profiled, such as Disks large homolog 4 (DLG4), 

Retinol-binding protein 4 (RBP4), Protein CC2D2B (CC2D2B), and Pulmonary surfactant-

associated protein B (SFTPB).  

As an orthogonal bioinformatic assessment to differential expression analysis correlation patterns 

were evaluated to identify clusters of consistently co-expressed proteins resulting from Mtb infection. 

As previously discussed in Chapter 4, differential analysis is constrained not only by small sample 

sizes and by individual’s biological heterogeneity, but also small fold changes are difficult to detect. 

Co-expression analysis by Biolayout 3D express using a Person correlation cut-off of >0.75 

identified two main clusters of strongly correlated proteins related with up and downregulation. This 

comparison provided compelling evidence of the involvement of 32 proteins (Table 11) in 

tuberculosis pathogenesis and thus underpinned their value as candidates for validation.  
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Validation of potential classifiers of pulmonary tuberculosis is of pivotal importance for the 

qualification of new biomarkers or signatures with diagnostic value and is very often the point that 

such studies fall. Well-characterised tuberculosis cohorts with complementary profiles and from 

geographically diverse populations have been suggested as an ideal setting for validation (237).  In 

this work, two geographically diverse cohorts were selected for both discovery and validation. 

Specifically the validation cohorts included one from South Africa and one from the United 

Kingdom. Seven out of fifteen potential candidates were successfully validated in both cohorts when 

comparing healthy donors to pulmonary tuberculosis patients: IFL2, LTN, LRG1, CFHR5, LBP, 

SAA1 and CRP. Additionally, CFHR5, LBP, SAA1 and CRP distinguished pulmonary tuberculosis 

in HIV co-infected individuals. Importantly, IFL2, LTN and LRG1 have not yet been tested on the 

HIV co-infected cohort.  

The biomarker pipeline is a challenging path that involves a stepwise process where most candidates 

fail to reach the bedside. One of the multiple obstacles is the required platform changes from 

discovery to validation and finally to field-testing (83). Liquid Chromatography hyphenated with 

mass spectrometry constitutes the gold standard in analytical sensitivity, specificity and selectivity 

by contrast to immunoassays. Translational use of the novel protein candidates in larger cohorts 

usually relies on antibody-based assays such as ELISA, WB, IHC, Luminex and targeted IP/LC-MS 

which represents a challenge to the validation of candidates. The validation rate of shotgun proteomic 

findings is underreported in the literature and only the number of proteomic candidates currently 

utilised in clinical settings can be used to estimate translation success. Case in point, strikingly only 

about ten protein biomarkers were approved for clinical use by the FDA between 2000 and 2012 for 

cancer diagnosis (250).   In my work, some of the main challenges associated to biomarker validation 

were reflected. For instance, only two (ILF2 and LTN) out eight of the candidates selected from the 

complete plasma profile based on one iTRAQ 8-plex were verified on an independent validation 

cohort (MIMIC); RPGRIP1L, FGL1, MYOF, TNFSF11, KCNN2 and COMP failed to reproduce the 

differential expression detected at the discovery stage (Figures 60 and 62). This points out the critical 

effect of underpowered experimental designs on the false discovery rate even when strict data 

processing is put in place.  

Equally important to statistical power, the change of platform from mass spectrometry-based 

discovery to antibody-dependent verification plays a key role in the detection of the differential 

expression required for validation. ELISA kits and Luminex arrays selected to measure SFTPB, 

MYOF, TNFSF11 and S100A8 had a lack of sufficient sensitivity and specificity to produce robust 

quantification data, even after extensive optimisation of the assays. For example, three different 

ELISA kits were tested to quantify SFTPB but all had insufficient reproducibility. SFTB is one of 

the pulmonary surfactant-associated proteins; it is critical for lamellar body packaging (251) and 

relatively hydrophobic. SFTPB detection in plasma is challenging and has been usually addressed 

using western blot (252, 253), which is impractical for quantification in large cohorts. Although 
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SFTB is a promising candidate from the biological perspective with strong mass spectrometric 

evidence, its validation is limited to the current available antibody-based platforms. This protein is 

an excellent candidate for validation using targeted proteomics. Particularly relevant to assays such 

as ELISA and Luminex is the presence of heterophilic antibodies in the patient serological sample, 

which may cause falsely decreased or increased detection (81). During the optimisation of the ELISA 

and Luminex assays, the composition of the buffer was adjusted to reduce matrix effects, based on 

spike-in experiments. Nevertheless, matrix effect strongly impaired the sensitivity of the Luminex 2-

plex for MYOF and S100A8, an effect that was augmented by a limited antibody pairing design.  

Conversely, five (LRG1, CFHR5, LBP, SAA1 and CRP) out of seven prioritised candidates included 

in the list of the top 32 proteins resulting from the detailed profile of segment 4 were successfully 

verified in one or both validation cohorts, confirming the potential of a fully powered study. 

Noticeably, the two candidates, which failed validation, were S100A8 and SFTB. S100A8 was 

reported and validated in other proteomic studies (254). It has been suggested that targeting 

S100A8/A9 could decrease organ injury by reducing lung tissue damage during tuberculosis 

immunopathology (254, 255).  The most likely reason why this particular protein was not validated 

in this work is a poor performance of the assay, which was unable to consistently detect the protein 

in plasma/serum samples. Similarly, SFTB will require development of a more sensitive and high-

throughput assay as previously mentioned. Altogether, these results indicate that this optimised 

proteomic platform is a powerful method for biomarker discovery when sufficient statistical power 

is achieved accompanied by complementary bioinformatic methods. 

Previous proteomic studies in this field have proposed alternative biosignatures. For example Xu, D. 

et al., (2015) proposed the combination of S100A9, SOD3 and MMP9 with an AUC of 0.981 (119).  

However, validation was performed on the same discovery cohort which limits the diagnostic 

interpretation. Achkar, J. et al., (2015) described two different signatures for pulmonary tuberculosis 

for negative and positive HIV coinfection, particularly for HIV negative a signature of  nine proteins 

(CD14, SEPP1, SELL, TNXB, LUM, PEPD, QSOX1, COMP, APOC1) with high performance 

(AUC=0.96) distinguishing tuberculosis infections from other respiratory conditions. The validation 

was conducted in limited number of samples (n=75 from which 18 and 19 samples from tuberculosis 

and respiratory symptomatic patients were included, respectively). The authors indicated that larger 

cohorts from diverse geographic regions would be required to assess the diagnostic value of this 

signature (117), but to date no further publications have been reported . In a more recent study, Chen, 

C. et al., (2018) employed iTRAQ proteomics to identify a serum signature for tuberculosis co-

infected with HIV, the experimental designed compared HIV positive patients negative and positive 

for tuberculosis coinfection (153). However, only the proteomic findings were validated and no 

evaluation of the accuracy or diagnostic value of the signature was conducted. Chegou, N. N. et al., 

(2018) evaluated 12 biomarkers identified in QuantiFERON supernatants and a biosignature 

comprising unstimulated IFN-γ, MIP-1β, TGF-α and antigen-specific levels of TGF-α and VEGF 
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only provided a limited AUC of 0.81 (95% CI, 0.76–0.86) (validation set n=134 individuals) (256).  

Furthermore, analysis of cell culture supernatants after overnight stimulation is not a valid approach 

in resource-poor settings. 

Preliminary assessment of the diagnostic performance of the novel signature described in this work 

was based on the quantitative data from ELISA (ng/mL) and Luminex (Fluorescence intensity) from 

both validation cohorts and used to produce ROC curves and calculate AUC as an indicator of 

performance. The best biosignature included four proteins CFHR5, SAA1, LBP and CRP with an 

AUC of 0.935 (95%CI, 0.878-0.933) in the MIMIC cohort. In the South Africa cohort the 

performance was reduced since the CRP data was not available, AUC was 0.886 (95%CI, 0.690 – 

0.961). Considering the coordinates of the curve for the signature comprising four proteins, a cut-off 

of 0.484 would reach 90% overall sensitivity and 87.5% specificity. In 2014 the WHO defined the 

key requirements for a rapid biomarker-based non-sputum-based test for detecting tuberculosis based 

on a survey conducted with a community of stakeholders. Among the key characteristics the minimal 

sensitivity should be >80% for a single test when compared with culture (for smear-negative cases it 

should be >60%; for smear-positive it should be 99%) and specificity >98% against a microbiological 

reference (25, 257). Therefore, this exploratory evaluation of the novel biosignature described in my 

work for pulmonary tuberculosis suggests an adequate diagnostic ability and may be potentially 

further developed into a diagnostic test. Importantly, CFHR5, SAA1, LBP and CRP retained 

differential expression in HIV co-infected patients, albeit their diagnostic ability in this population 

will require additional testing. 

The analysis of diagnostic performance has been described in this work as preliminary since there is 

a number of considerations to this biosignature. The calculation of performance was based on the 

fluorescence intensities resulting from Luminex analysis, further development of the customised 

arrays produced for this particular work is required to generate quantification values with clinical 

applicability. ILF2 was only measured in the MIMIC cohort with an AUC of 0.826 (95%CI, 0.690 – 

0.961) based on ELISA measurements. This performance for a standalone analyte is promising and 

makes ILF2 a good candidate for the panel. Further evaluation of this analyte in the South African 

cohort to explore its diagnostic value will be necessary. This work comprised the validation of a 

small subset of the 32 top proteins, which constitutes a valuable biosignature for tuberculosis. 

Verification and validation of the remaining proteins could identify new classifiers with diagnostic 

utility.  Once this biosignature is refined will require further validation to confirm its diagnostic 

value.  This represents a major body of work, as I have only characterised a limited number of the 

regulated proteins, and have not performed detailed analysis of segments 1 – 3.  I aim to address 

some of these challenges in the future. 

A final consideration to the novel biosignature is the fact that the ROC analysis compared healthy 

donors to pulmonary tuberculosis patients; therefore, its diagnostic value to distinguish tuberculosis 
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from other respiratory conditions is unclear.  In this respect, direct detection of Mtb antigens in blood 

would provide a highly specific test that could rule out tuberculosis infection from other respiratory 

conditions. However, detection of Mtb antigens has proved to be problematic even when highly 

sensitive methods such SOMAscan have been attempted (258). Chang, L. et al., (2017) successfully 

quantified CFP-10 and ESAT-6 in serum using antibody-labelled and energy-focusing porous 

discoidal silicon nanoparticles (nano-disks) followed by high-throughput mass spectrometry (MS) to 

enhance sensitivity and specificity (258).  Although this is a significant technological step forward 

for tuberculosis diagnostics, discovery of novel Mtb-derived antigens with diagnostic value remains 

elusive.  

The optimised plasma proteomic method developed in this work allowed me to identify one Mtb-

derived peptide, a unique peptide from a predicted Mtb hydrogenase (O69693). This finding was 

consistent in three independent experiments and in two different ethnic groups (Figure 63). Statistical 

analysis of the dataset resulting from segment 4 profile and allowing missing values based on 

differential expression (PL2) identified this protein as one of the top proteins and co-expression 

network analysis verified this protein as strongly correlated to the disease status. Verification and 

validation of this promising finding will require development of a targeted proteomic assay or an 

antibody-based detection method so it presence can be confirmed in a wider range of samples. 

As a complementary approach to the data processing and bioinformatic analysis that led to the 

identification of biomarker candidates for pulmonary tuberculosis, WGCNA (weighted gene co-

expression network analysis) was applied on the dataset containing sets A to C and subjected to batch 

correction. This bioinformatic approach not only identified a cluster of proteins strongly 

interconnected and significantly correlated to the disease status (module turquoise) but also a 

confounding effect of the ethnicity variable (module brown). Correspondingly, 25% of the variance 

of the data is explained by the group effect but 11% is determined by the ethnicity (PC1 and PC2 

respectively in PCA Figure 67). Therefore, the proteomic profile derived from each ethnicity was 

independently evaluated and then compared. The module turquoise was strongly correlated to 

tuberculosis infection in both groups and 65 proteins were identified common between them. 

Interestingly, a similar number of proteins were unique for each ethnicity. These results suggest that 

although there is a common host response to Mtb infection, there are specific host-pathogen 

interactions dictated by the geographical diversity. This complex variable not only encompasses 

particular features of the genetic background associated to the host, but also exposition to diverse 

circulating Mtb strains in specific geographic regions.  

For instance, the Mtb linage distribution differs between Peru and South Africa as recently reported 

by Coll, F. et al., (2018). Coll and colleagues undertook a large genome-wide association study 

(GWAS) of 6,465 Mtb clinical isolates from more than 30 countries. The reported linage composition 

in Peru (n=78) was mainly constituted by lineage 4 (92.31%) and lineage 2 (7.7%), whereas in South 



 

[182] 
 

Africa (n=594) such composition was more diverse; linage 2 (39%), linage 3 (2.5%) and linage 4 

(57.2%) (259). Furthermore, direct interactions between mycobacterium lineage and ethnicity may 

occur since geo-ethnic restrictions significantly contribute to the Mtb lineage distributions (260). 

Additionally, other host’s factors such as nutritional and metabolic status, exposition to polluted air 

and social determinants might associate to the ethnicity variable.  

Gene ontology enrichment analysis of the protein expression profile in each ethnic group has 

pinpointed common aspects of the host response during pulmonary tuberculosis infection. Common 

responses involve well-known reactants of the acute-phase and inflammatory responses additionally 

to proteins associated to reverse cholesterol transport (Figure 70). Proteins such as CRP, LBP, SAA1, 

SAA2, S100A8, S100A9, CFHR5, C9, CRHBP, ORM1/2, CPB2, HP, CFP, ECM1 and SERPINA3 

were upregulated.  CRP, LBP, SAA1, SAA2, S100A8, S100A9, SERPINA3 and HP are involved in 

the activation of the acute-phase and inflammatory response and their role in tuberculosis is well 

recognised (150, 254, 255, 261-263). Similarly, ECM1 the extracellular matrix protein 1 has been 

reported upregulated in saliva (264) which is consistent with lung destructive immunopathology (52). 

CFHR5, C9, CFP and CPB2 are part of the complement classical and alternative activation pathways. 

CFHR5 co-localizes with C3, binds C3b in a dose-dependent manner, and is recruited to tissues 

damaged by C-reactive protein (265). Involvement of CFHR5 in tuberculosis is for the first time 

identified in this work. Downregulated proteins included CLU and apopoliproteins APOA4, APOC3, 

APOC2 and APOCM. The role of the lipids profile and cholesterol in tuberculosis immunopathology 

is still matter of debate. Cholesterol uptake, catabolism and broader utilization are central for 

maintenance of the pathogen in the host and contribute to pathogenesis and virulence.  However it is 

not completely clear if the low circulating lipid profiles in pulmonary tuberculosis patients are merely 

consequence of the disease (266) or have wider biological implications. Apopoliproteins are 

associated to lipid transport structurally associated to lipoprotein particles such as HDL, LDL and 

VLDL. Deniz, O. et al., (2007) demonstrated that serum HDL-C concentrations significantly and 

negatively correlate with the degree of radiological extent of disease and degree of smear positivity 

in patients with pulmonary tuberculosis (267). Downregulation of apopoliproteins is consistently 

reported in various serum/plasma proteomic profiles for pulmonary tuberculosis (36, 117, 118, 268) 

in agreement with the data generated in this work.  

In summary, this chapter has described the discovery and initial validation of a novel biosignature 

for pulmonary tuberculosis with satisfactory diagnostic performance in independent validation 

cohorts. Additionally, the detection of an Mtb-derived peptide in plasma constitutes a very promising 

biomarker for a highly specific rule in test and its validation must be prioritised. Comprehensive 

statistical and bioinformatic tools have been applied to mine biologically relevant information from 

the proteomic data generated. This analysis has revealed differential host responses to Mtb infection 

resulting from ethnic diversity. This work has generated new exciting research avenues in the field 

of tuberculosis diagnostics and tuberculosis host-pathogen interactions.  However, further analysis 
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of the dataset, and additional diagnostic markers identified, may further increase the power of a new 

TB test and the biological insight into the underlying processes. 
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CHAPTER 6 
 

Final Discussion and Future Directions 

 

Tuberculosis was cited as "one of the most seriously neglected and underestimated health, human 

rights and poverty problems of our era" by UNICEF in early 2000 (269) and yet in 2016 tuberculosis, 

a curable disease, caused over 1.7 million deaths worldwide. One of the main challenges for 

tuberculosis control is the striking diagnostic gap. In 2016 the WHO reported that 39% worldwide 

cases went undiagnosed or unreported (1); which means that the health care of about 4.1 million 

people was unknown. Importantly, undiagnosed active pulmonary tuberculosis patients drive 

ongoing transmission in their communities. 

Effective treatment is crucial to any strategy for controlling tuberculosis and biomarkers that benefit 

early initiation of therapy could reduce transmission. Identification of patients with tuberculosis 

preferably at level 0/1 of the health care systems and at the community level is a pressing need to 

improve diagnosis algorithms, especially in settings where chest radiography and Xpert MTB/RIF 

are not widely available. Although during the last 15 years several studies have been conducted to 

establish a tuberculosis biosignature relevant for a blood based diagnosis test that is fast, low-cost 

and high performance, it remains elusive. Challenges are associated with the complex biology of 

host-pathogen interactions taking place during the natural course of Mtb infection and analytical 

limitations of most plasma proteomic strategies, thereby hindering a universal blood proteomic 

biosignature.  

The ultimate aim of my thesis was to identify and validate a novel plasma biosignature for pulmonary 

tuberculosis suitable for translation to point-of-care that can be potentially applied in different 

contexts of the disease. Specifically, a more universal biosignature was aimed by profiling the plasma 

proteome of individuals from different ethnic background and possibly exposed to different Mtb 

circulating strains.  While indeed this is an ambitious target, this approach allowed the identification 

of common host response traits to active tuberculosis between two different ethnicities that could 

lead to a biosignature that recapitulates more accurately the heterogeneity of the pathology 

encompassing variables such as diverse geographical location and with potential adequate diagnostic 

performance represents valuable progress in the fight against tuberculosis. Validation of potential 

markers in both a South African and an UK based cohort provided additional evidence of the 

applicability of these plasma proteins for diagnosis of active tuberculosis in diverse host contexts. 

In brief, the four objectives proposed in this thesis to contribute to this biosignature were: 
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1. To produce a comprehensive plasma proteomic profile of pulmonary tuberculosis by optimising a 

quantitative MudPIT (Multidimensional Protein Identification Technique) approach.  

2. To identify a common set of biomarkers for pulmonary tuberculosis by systematic statistical 

analysis and complementary bioinformatic tools. 

3. Validate the proteomic findings for active tuberculosis using independent validation cohorts. 

4. Determine multi-marker panel performance in order to evaluate its potential for diagnostic use. 

In this chapter, I aim to explore to what extent the above objectives were achieved and the 

contributions made by this work.  

6.1 The most comprehensive plasma proteomic profile of pulmonary tuberculosis to date 

As I presented throughout this thesis, plasma proteomics imposes significant analytical challenges 

as a consequence of the wide concentration dynamic range of circulating proteins.  Depletion is the 

most common strategy to address the underrepresentation of the plasma proteome. The initial 

working hypothesis of this thesis was that depletion yields biased plasma profiles; whereas the most 

abundant proteins are pulled out, a discrete subpopulation of proteins are inadvertently co-removed 

(137, 138). Consequently, substitute approaches are required to best recapitulate the 

immunopathology driven by the tuberculosis infection reflected in the plasma proteome. Orthogonal 

chromatographic hyper-fractionation of plasma offers an alternative method to reduce the complexity 

of the matrix and still gain information from the whole spectrum of plasma protein concentrations.  

Hyper-fractionation provides two additional benefits: (a) Denaturing SEC plasma fractionation using 

6M guanidine dissolves blood microparticles such as exosomes and denatures any additional protease 

activity, and thus increases the identification of proteins associated to such structures. (b) Extensive 

chromatographic separation has proved to reduce peptide co-isolation, which in turn contributes to 

alleviate the ratio-compression effect, common in iTRAQ/TMT proteomics (270).  

Garbis and colleagues first reported this MudPIT approach in 2011 and in the following years, the 

method was evolved to generate quantitative profiles using isobaric labelling (35, 92). An early task 

undertaken in this work was to further optimise this method to increase its analytical capabilities. As 

presented in Chapter 3 and 4, the optimisation included chromatographic parameters for SEC, use of 

C4-based fractionation to increase orthogonality between offline and online separation of labelled 

peptides, development of a rapid solid phase extraction protocol and matched gradients between C4 

and C18 chromatographic separations. The optimised method was applied to profile the pulmonary 

tuberculosis plasma proteome of eight male volunteers from Peru and South Africa by comparing 

healthy individuals and pulmonary tuberculosis patients.  

Contributions 

The main contributions of the optimised qMudPIT method described in this thesis are: 
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1. The most comprehensive plasma proteome of pulmonary tuberculosis to date.  

 

2. An optimised protocol that produces unbiased and in-depth profiling of plasma capturing 

proteins throughout the dynamic range of concentration suitable for biomarker discovery. 

 

Previous plasma proteomic studies focused on pulmonary tuberculosis are limited to a proteomic 

coverage between 500 and 1000 proteins, of which the vast majority are higher abundant proteins 

with limited clinical utility to tuberculosis, and therefore the search space for novel biomarkers is 

restricted from its inception. My work has identified 5022 proteins in plasma from which 3577 were 

fully quantified. The dynamic range of this proteome ranged 11 orders of magnitude, limited to the 

abundance levels currently reported in databases and literature. Additionally, 128 proteins were 

annotated as exosome derived. Over two hundred proteins were differentially expressed by linear 

modelling assessment. This is the most comprehensive plasma proteome generated to date in the 

context of pulmonary tuberculosis. 

The limitations of this approach are mainly related to a limited throughput due to extensive offline 

chromatographic fractionation, which is a laborious and experimentally costly process. Additionally, 

the profile of the complete plasma proteome requires four independent MS experiments, which 

introduce batch effects and increases the cost of the method. These limitations restricted me to the 

analysis of seven samples for the profiling of all four segments as presented in Chapter 4 Despite 

these limitations, the protocol developed in this work has been used to produce extensive profiles not 

only from plasma but also from tissue in the context of other pathologies. For instance, our group 

investigated the primary cancer-associated fibroblasts in oesophageal adenocarcinoma, a study 

recently published in the British Journal of Cancer (271).   

6.2 Towards a universal biosignature for pulmonary tuberculosis 

Tuberculosis pathogenesis is a complex phenomenon determined by heterogeneity of the host-

pathogen interaction and the nature of the immune response mounted by the host resulting in a broad 

spectrum of clinical manifestations, which mimics a variety of other respiratory conditions. The 

confirmation of the active disease solely relies on the detection of Mtb bacilli in sputum by smear 

test or culture. Although over 77 million smears are performed annually (public sector of 22 high-

burden countries) (272), this test is insufficient to address the current diagnostic gap. New proteomic 

biosignatures for tuberculosis are reported every year in the quest for better diagnostic tests, but the 

commonalities across them are surprisingly small. Noticeably, the set of differentially expressed 

proteins profiled in this work overlap with a significant number of candidates previously reported. 

Annexe 6 highlights the common profiled proteins between this work and other studies. Seven out 

nine studies focused on pulmonary tuberculosis reported shared candidates with this work. These 

reports included a variety of proteomic techniques and diversity of ethnicities. This comparison 
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suggests that the biosignature described in this thesis is more universal and encompasses candidates 

relevant to diverse contexts of the disease.  

Chapter 5 demonstrated that an increased statistical power and complementarity of the bioinformatic 

tools employed for data processing was key to identify a list of 32 strong candidates and to suggest 

a differential host response between Peruvian and South African ethnicities.  

Contributions 

The main contributions of this thesis to the plasma proteomic exploration and discovery of novel 

biomarkers for proteomic are: 

1. A complementary bioinformatic approach to proteomics data 

2. A list of 32 strong candidates from which a subset of 8 proteins were selected for validation 

3. Identification of a Mtb-derived peptide as a potential highly specific marker of pulmonary 

tuberculosis 

4. Specific plasma proteomic profiles determined by ethnic diversity: Peru and South Africa 

Small sample sizes, incomplete datasets and significant batch effects across experiments due to high 

variability of shotgun proteomic methods create difficulties in the effective detection of abundance 

changes from proteomic data, as discussed in Chapter 4 and 5. Bioinformatic tools to process data 

derived from transcriptomic and genomic datasets are more advanced to the ones available for 

proteomics. Often the statistical assessment of differential expression relies on Mann-Whitney test 

or t-test which are underpowered by small sample sizes and make assumptions of the variance of the 

data. Here, I compared four proposed statistical pipelines systematically including linear modelling 

(LIMMA) and permutation to filter out ratios followed by correction for multiple testing.  

Complementary, correlation network approaches such as Biolayout 3D Express and WGCNA were 

applied to evaluate expression patterns. This extensive analysis led to the identification of 32 proteins 

as strong candidates with a high rate of validation in one or two independent cohorts (6 validated 

proteins out of 8 candidates). Additionally, an Mtb-derived peptide was consistently detected and 

identified as potential biomarker. Blast against the complete UniProt Knowledgebase (UniProtKB) 

confirmed 100% identity to a predicted hydrogenase from Mycobacterium tuberculosis and 

Mycobacterium bovis. This suggest that this potential marker might be relevant not only for 

diagnostic of the human pathology but also for diagnosis of tuberculosis in cattle. According to 

TBFree England 277341 cattle have been culled in England since January of 2008 to control bovine 

tuberculosis, causing devastating financial consequences to family farming businesses 

(http://www.tbfreeengland.co.uk/home/). This promising finding will require further investigation to 

determine diagnostic value.  

WGCNA network analysis suggested a differential plasma proteomic profile determined by ethnic 

diversity. A unique feature of the host response reflected in the proteomic profile from Peruvian 

http://www.tbfreeengland.co.uk/home/
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individuals suggests divergent control of the antimicrobial activity; proteins directly related to 

microbial clearance by innate and adaptive responses were significantly downregulated. Proteins 

with antimicrobial activity such as defensin A4, dermcidin and serine protease inhibitor Kazal-type 

5 were downregulated. Similarly, JCHAIN and PF4 had reduced expression. JCHAIN is a 

polypeptide secreted by plasma and mucosal cells involved in polymer formation of IgA and IgM 

and subsequent bacterial agglutination (273, 274). PF4, the platelet factor 4, is a chemokine secreted 

by platelets and binds to polyanions (P) on bacteria. Recently, P4 has been associated to opsonisation 

of several bacterial species (275).  Although a reduced antimicrobial response promotes bacterial 

persistence, control over this process might minimise the host-induced damage.  

In the case of the South African individuals, the proteolysis process was differentially enriched 

compared to the Peruvian group. This process was highly regulated by the upregulation of proteins 

such as KNG1, an inhibitor of thiol proteases, FETUB, a cysteine protease inhibitor associated to the 

severity of lung damage in COPD (276) and MMP-14. Membrane type 1 matrix metalloproteinase-

14 is key for leukocyte migration and collagen destruction. Elevated MMP-14 has been reported in 

induced sputum of tuberculosis patients (277). Consistently, proteins from the extracellular matrix 

such as EM1 and DAG1 were also upregulated. Conversely, TIMP-2 a metalloproteinase inhibitor 

was downregulated.  Although proteolysis is an extended process well recognised during tuberculosis 

pathogenesis, the enrichment of this process in the South African cohort might be associated to the 

pathology severity. A more profound understanding of the determinants of the host response to Mtb 

infection would benefit the design of better diagnostic tools and therapeutic treatments. For instance, 

personalisation of the interventions to specific populations might improve the clinical outcomes.  

The main limitation of the signatures generated in this thesis was that the analysis was entirely based 

on male individuals and although the pathogenesis of tuberculosis exhibits sexual dimorphism biased 

towards the male population, these biosignatures will require validation on cohorts including both 

genders. Additionally, two of the three cohorts used (South African cohort and the UK-based MIMIC 

cohort) in this study were part of a retrospective study, which limited the selection of the groups 

described in Table 4 to pre-established clinical features such as age, BMI and smoking status.     

6.3 A novel multi-marker panel for pulmonary tuberculosis diagnosis 

A critical aspect of the biomarker pipeline is the adequate validation of the candidate differential 

expression established during the discovery stage. In the case of diagnostic biomarkers, the validation 

cohort must be independent to the discovery group, well clinically annotated and the cases defined 

by the gold standard test. In this thesis, a subset of 15 proteins were selected for validation in 

independent cohorts using ELISA and/or LUMINEX assays. Additionally, the potential diagnostic 

performance was explored by ROC analysis and logistic regression for combined classifiers. 

Contributions 
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1. Validation of seven proteins in one or two independent validation cohorts including 

completely novel biomarkers for pulmonary tuberculosis: ILF2, LTN and CFHR5. 

2. Potential multi-marker panel with  AUC of 0.935 (95%, 0.878 – 0.993) 

From the subset of proteins subjected to ELISA or Luminex measurement, seven proteins were 

successfully validated. LBP, CFHR5 and SAA were significantly upregulated in both cohorts (320 

samples). ILF2, LTN and CFHR5 were novel findings. The interleukin enhancer-factor 2 functions 

mainly as a heterodimeric complex with ILF3, and may be involved in T-cell activation. A recent 

report identified ILF2 as a potential biomarker in paediatric tuberculosis by bioinformatic mining of 

publicly available gene expression datasets (278). There are no reports or patents available describing 

complement factor H-related protein (CFHR5) or E3 ubiquitin-protein ligase listerin (LTN) in 

tuberculosis to date.  

Evaluation of the performance of these markers by ROC analysis demonstrated that the multi-marker 

panel comprising LBP, CFHR5, CRP and SAA exhibited an AUC of 0.935 (95%, 0.878 – 0.993) in 

the UK cohort (MIMIC). Although this is a promising diagnostic performance, it is necessary to 

consider some limitations to the current validation state of these markers in this thesis. The ROC 

analysis was based on fluoresce intensities, and so further development of Luminex assays are 

required to improve quantification accuracy of these analytes. The concentration levels expressed in 

ng/mL are only available for the analytes measured by ELISA. These were not combined with the 

results produced by Luminex for calculation of the ROC curves. Validation in both cohorts was 

limited by sample exhaustion. The samples used for validation were part of a retrospective study and 

were biased towards male population, particularly in the South African cohort. However, this reflects 

the incidence distribution of the disease in Durban.  The analysis presented in this work for the 

diagnostic performance is preliminary, limited to advance tuberculosis pathology in adults and will 

require further validation.  

Summarising the main contributions of this work, I identified entirely new biomarkers of active 

tuberculosis including both host and pathogen derived analytes. These findings validate the 

proteomic and bioinformatic approaches used throughout this work but equally raises further 

questions about taking the work further as a diagnostic tool in the field. Ultimately this is the goal of 

this research and it should be regarded as determinant of success. In addition to developing a 

diagnostic, my work has given new information on the basic biological processes underlying 

tuberculosis pathology. For example, I demonstrated activation of specific immune response 

mechanisms such as the complement system and major changes in the lipid pathways once again. 

Additionally, some specific features of the immune response in Peruvian and South African 

individuals were proposed.  Although the data I found is promising, further experimental 

confirmation is required to consolidate my findings and confirm the biological relevance. Lastly, I 

have further refined a methodological platform which has applicability to a wide range of human 
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diseases. Therefore from this point, I am keen to pursue further work to advance my findings and 

translate to a new diagnostic test and better understanding of human tuberculosis. I outline the future 

work I propose below. 

6.4 Future directions 

My PhD has generated a large proteomic dataset from patients with tuberculosis and healthy controls, 

and it is inevitable that considerable further analysis of the dataset can be undertaken from both a 

biomarker and biological perspective.  For example, I have not analysed the majority of the 32 

biomarkers that are divergently regulated from detailed analysis of segment 4, due to time, financial 

and sample exhaustion considerations.  Similarly, further analysis of the biological sub-pathways 

and effect of ethnicity can be performed.  I have performed analysis showing the validity of the 

approach, by validating a significant number of the markers that I first identified, but am fully aware 

that significant further work is required to build on my thesis. 

Ongoing and future work towards the design of multi-marker panel suitable for point-of-care are 

outlined below. 

• We are currently working on the detailed analysis of the remaining segments 1, 2 and 3, 

which will increase the statistical power of the complete plasma proteome generating the 

most extensive plasma profile of pulmonary tuberculosis. This will expand our options to 

find novel biomarkers and potential Mtb-derived proteins.  

 

• I will develop a method to validate the Mtb-derived peptide (O69693) through targeted 

proteomics or antibody-based assays. A polyclonal antibody against this peptide has been 

already produced in rabbit. If we can validate this finding, we feel this has great potential as 

a near-patient rule in test similar to urinary LAM in HIV co-infected individuals, and will 

have significant translational potential. The antibodies generated are being used to confirm 

the presence of the protein O69693 in Mycobacterium tuberculosis using free cell lysates 

from different Mtb strains and in plasma from individual with active tuberculosis by 

immunoprecipitation followed by western blot and/or mass spectrometric analysis. 

 

• I will continue validating the currently discovered markers to complete both cohorts and 

generate quantitative data to produce a more accurate estimation of the diagnostic 

performance of the proposed biosignature. Additionally, the clinical relevance of the general 

biosignature proposed in this work needs to be evaluated in different clinical contexts. 

Preliminary results of this part of the study will be used to prepare a “diagnostic” paper. 
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• Further bioinformatics analysis of the biological pathways divergently modulated by 

tuberculosis will be complemented with immunohistochemical analysis of TB lymph nodes, 

to form the “biological” paper. 

 
• Specific features of the plasma proteomic profiles resulting from active tuberculosis in 

Peruvian and South African cohorts suggested in this work may be further evaluated, 

including Mtb strain characterisation and specific ethnicities to explore the role of the host 

genetic background and exposure to Mtb strain in the immunopathology of the disease.  

An MRC Confidence in concept (CiC) grant has been awarded with the aim to generate further 

evidence of the diagnostic value of the mycobacterium protein O69693, and this will be the focus 

of my laboratory work in the autumn. 

6.5 Publications and participation in congresses 

• UK Patent 1719565.2: This patent protects the intellectual property on the potential 

diagnostic biomarkers for pulmonary tuberculosis: CHFR5, SFTPB, ILF2 and O69693. 
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2017 16th Human Proteome Organisation World Congress – Dublin, Ireland 
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2015 British Society for Proteome Research 2015 Meeting: Capturing the Proteome in 
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ANNEXES 
 

Annexe 1. Proteins significantly modulated (p < 0.05) common to preliminary experiments 1 
and 2. 
Fold-changes are presented as  𝑙𝑙𝑙𝑙𝑙𝑙2𝑇𝑇𝑇𝑇𝑥𝑥 −

1
4
∑ 𝑙𝑙𝑙𝑙𝑙𝑙24
𝑖𝑖=1 𝐶𝐶𝑖𝑖. FC_01: Fold-change experiment 1 and 

FC_02: Fold-change experiment 2. Proteins presented in descendant fold-change magnitude.  

UniProt 
ID 

Protein 
name 

FC_01 

117 

FC_01 

118 

FC_01 

119 

FC_01 

121 

FC_02 

117 

FC_02 

118 

FC_02 

119 

FC_02 

121 

P07988 

Pulmonar
y 
surfactan
t-
associate
d protein 
B 

3.754 1.655 0.687 3.567 3.368 1.767 0.619 3.309 

P05109 
Protein 
S100-A8 

2.981 5.043 1.139 4.349 2.661 4.758 0.971 4.163 

P02750 

Leucine-
rich 
alpha-2-
glycoprot
ein 

2.804 1.434 3.202 2.845 2.848 1.580 3.371 2.885 

P02741 
C-reactive 
protein 

2.724 3.465 1.907 3.219 2.593 3.187 1.987 3.088 

P0DJI9 

Serum 
amyloid 
A-2 
protein 

2.692 3.018 1.331 3.302 2.385 2.620 1.376 2.972 

P06702 
Protein 
S100-A9 

2.392 4.329 0.867 3.763 1.898 3.631 0.823 3.195 

Q92496 

Complem
ent factor 
H-related 
protein 4 

1.611 0.343 2.125 1.883 1.869 0.473 2.580 2.137 

P0DJI8 

Serum 
amyloid 
A-1 
protein 

1.466 1.741 0.829 1.645 1.394 1.542 1.051 1.553 

Q9BXR6 

Complem
ent factor 
H-related 
protein 5 

1.449 1.650 1.653 0.927 1.856 1.888 2.272 1.493 

P78352 Disks 
large 

1.412 2.501 0.730 1.963 1.738 2.510 1.416 2.029 
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homolog 
4 

P02763 

Alpha-1-
acid 
glycoprot
ein 1 

1.381 2.447 0.710 1.913 1.460 2.373 0.959 1.941 

P08571 

Monocyt
e 
differenti
ation 
antigen 
CD14 

1.293 0.909 1.103 1.560 1.451 1.092 1.462 1.791 

P52566 

Rho GDP-
dissociati
on 
inhibitor 
2 

1.249 1.713 1.913 1.718 1.512 1.845 2.366 1.969 

Q5TFQ8 

Signal-
regulator
y protein 
beta-1 
isoform 3  

1.178 1.513 0.356 1.188 1.446 1.646 0.810 1.445 

P19652 

Alpha-1-
acid 
glycoprot
ein 2 

1.032 1.816 0.291 1.047 1.087 1.768 0.518 1.131 

P60660 

Myosin 
light 
polypepti
de 6  

0.966 1.445 2.378 2.449 1.549 1.923 3.194 2.966 

Q05682 
Caldesmo
n  

0.879 1.915 2.496 2.800 1.140 2.044 2.948 3.047 

P31146 
Coronin-
1A    

0.834 1.624 1.938 2.279 1.093 1.754 2.387 2.526 

Q15485 Ficolin-2  0.709 1.177 0.172 0.826 0.445 0.967 0.381 0.725 

P02790 
Hemopex
in  

0.706 0.277 0.575 0.705 0.881 0.436 0.907 0.930 

P62328 
Thymosin 
beta-4 

0.691 1.335 1.496 2.011 0.821 1.280 1.895 2.285 

P62937 

Peptidyl-
prolyl cis-
trans 
isomeras
e A 

0.522 1.110 1.285 1.601 0.788 1.239 1.738 1.852 

O00151 

PDZ and 
LIM 
domain 
protein 1 

0.505 0.897 1.886 1.898 0.767 1.028 2.338 2.147 

P02766 
Transthyr
etin  

-0.189 -0.876 -1.454 -0.875 -0.167 -0.894 -1.200 -0.763 
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P02654 
Apolipopr
otein C-I  

-0.236 -1.390 -1.108 -0.914 -0.366 -1.345 -1.003 -0.918 

P02656 
Apolipopr
otein C-III  

-0.563 -2.107 -1.368 -0.672 -0.576 -1.899 -1.085 -0.587 

P02647 
Apolipopr
otein A-II 

-0.665 -1.497 -1.017 -1.020 -0.356 -1.153 -0.493 -0.639 

Q13103 
Secreted 
phosphop
rotein 24  

-0.711 -1.474 -1.513 -1.897 -1.060 -1.735 -1.973 -1.612 

P02753 
Retinol-
binding 
protein 4 

-0.881 -1.655 -1.858 -1.072 -0.770 -1.500 -1.467 -0.908 

P02652 
Apolipopr
otein A-II 

-0.907 -2.013 -1.553 -1.203 -0.768 -1.837 -1.204 -0.995 

O95445 
Apolipopr
otein M 

-0.996 -0.787 -1.242 -1.169 -0.863 -0.757 -0.863 -0.930 

P29622 Kallistatin -1.096 -2.210 -1.029 -1.011 -0.897 -1.190 -0.766 -1.053 

 

 

 

 

 

 

 

 



Annexe 2. Summary of proteins significantly regulated from independent analysis of SEC segments 
p values were calculated from PL2– Linear modelling on filtered ratios by permutation. FDR correction for multiple testing.  

* Proteins significantly regulated resulting from the four pipelines 

HC:TB indicates the proportion of quantified samples in each group when comparing for missingness patterns. 

Segment 1 

No. Protein 
Accession Name logFC P.Value adj.P.Val All Pipelines HC_115 HC_116 HC_117 TB_118 TB_119 TB_114 TB_121 

1 Q68CZ1 Protein 
fantom -2.69 6.42E-05 8.15E-03 * 5187.48 4108.07 6563.26 663.12 690.48 685.00 1348.69 

2 A6NNF4 Zinc finger 
protein 726 -2.56 6.68E-04 4.24E-02  4642.59 2149.25 2312.11 579.69 331.08 NA 586.38 

3 Q6NSJ2 

Pleckstrin 
homology-
like domain 
family B 
member 3 

1.78 1.50E-03 4.95E-02  178.34 NA 225.64 823.02 823.80 726.09 454.63 

4 Q6P1X5 

Transcriptio
n initiation 
factor TFIID 
subunit 2 

-1.48 9.34E-03 1.19E-01 * 10142.94 6605.48 4717.68 2107.03 2471.38 4426.17 1530.05 

5 Q8N9V6 

Ankyrin 
repeat 
domain-
containing 
protein 53 

1.59 1.05E-02 1.19E-01 * 1339.86 985.40 1497.29 3229.04 4368.74 1897.05 7637.10 

6 P62070 
Ras-related 
protein R-
Ras2 

-1.41 1.06E-02 1.19E-01  NA 1926.64 2161.55 1123.61 605.43 NA 668.67 

7 Q76LX8 

A disintegrin 
and 
metalloprot
einase with 
thrombospo
ndin motifs 
13 

-0.96 1.63E-02 1.19E-01  13464.90 10488.39 12073.05 5433.98 5718.24 4470.94 10138.16 
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8 Q9UMZ2 Synergin 
gamma 3.62 1.82E-02 1.19E-01  927.25 NA NA NA NA NA 11425.50 

9 O75882 Attractin -0.56 1.93E-02 1.19E-01 * 6529.68 5509.25 5478.98 3821.97 3561.03 3910.56 4505.66 

10 P54802 
Alpha-N-
acetylglucos
aminidase 

-1.37 2.18E-02 1.19E-01 * 7696.40 9374.54 3548.73 2061.38 1817.64 2006.43 4822.39 

11 P43251 Biotinidase -0.83 2.33E-02 1.19E-01 * 4719.11 3481.00 2292.07 1927.03 1867.05 1572.58 2257.34 

12 P36784 Regulatory 
protein E2 -1.62 2.42E-02 1.19E-01  1554.16 5963.60 2774.26 1133.11 1476.32 440.45 1144.06 

13 A6NES4 

Maestro 
heat-like 
repeat-
containing 
protein 
family 
member 2A 

3.12 2.49E-02 1.19E-01  NA 921.22 NA NA NA NA 7988.55 

14 Q8TCS8 

Polyribonucl
eotide 
nucleotidylt
ransferase 
1, 
mitochondri
al 

-1.71 2.51E-02 1.19E-01  NA 1308.39 1041.83 356.03 NA NA NA 

15 P01042 Kininogen-1 -0.59 2.63E-02 1.19E-01 * 6822.19 7775.17 6576.49 4754.01 3952.55 4379.39 5880.65 

16 O15144 

Actin-
related 
protein 2/3 
complex 
subunit 2 

-1.63 2.63E-02 1.19E-01  1740.58 1531.13 1615.42 621.77 305.84 272.19 1489.82 

17 P9WGI5 

RNA 
polymerase 
sigma factor 
SigB 

-1.52 2.97E-02 1.25E-01  NA 6636.68 NA 2207.63 2438.59 NA NA 

18 P18428 

Lipopolysac
charide-
binding 
protein 

1.44 3.10E-02 1.25E-01 * 888.06 2098.30 1379.88 4025.43 4263.26 7143.06 1574.97 

19 P01770 

Immunoglo
bulin heavy 
variable 3-
30 

0.97 3.16E-02 1.25E-01  3970.80 3412.05 2033.71 5189.06 9677.38 5702.63 4238.49 
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20 Q96KN2 Beta-Ala-His 
dipeptidase -0.66 3.60E-02 1.34E-01 * 5857.54 5271.87 6284.95 2807.17 3221.23 3918.54 5148.63 

21 P03951 Coagulation 
factor XI -0.71 3.70E-02 1.34E-01  4201.65 7411.54 5747.75 4670.83 3390.74 2890.60 3049.21 

22 A3DSK5 

RNA-
directed 
RNA 
polymerase 

1.52 4.22E-02 1.45E-01  10583.02 14179.18 14513.12 74232.61 62902.45 34053.91 12074.35 

23 P09172 
Dopamine 
beta-
hydroxylase 

-1.00 4.22E-02 1.45E-01  6219.51 1958.56 2807.69 1243.46 1621.38 1750.45 1963.66 

24 P01008 Antithrombi
n-III -0.52 4.39E-02 1.47E-01  3499.77 3118.86 3277.18 2308.22 2094.64 1939.61 2966.76 

25 P06396 Gelsolin -0.54 4.80E-02 1.55E-01  4742.75 4589.95 5250.71 2983.46 3325.72 2799.63 4494.09 

26 P43652 Afamin -0.79 4.98E-02 1.55E-01  3867.50 3509.83 3608.52 2105.97 1597.29 1600.75 3774.10 

27 P62937 

Peptidyl-
prolyl cis-
trans 
isomerase A 

4TB:1HC      x     

28 Q8IZF2 

Adhesion G 
protein-
coupled 
receptor F5 

4TB:1HC     x      

29 Q14194 

Dihydropyri
midinase-
related 
protein 1 

1TB:3HC         x  

30 Q68798 Genome 
polyprotein 1TB:3HC         x  

31 Q9ULJ1 
Outer dense 
fiber protein 
2-like 

1TB:3HC         x  

32 Q9UPN9 

E3 
ubiquitin-
protein 
ligase 
TRIM33 

1TB:3HC         x  
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Segment 2 

No. Protein 
Accession Name logFC P.Value adj.P.Val All 

Pipelines HC_115 HC_116 HC_117 TB_118 TB_119 TB_114 TB_121 

1 Q9Y5W7 Sorting nexin-
14 -1.74 7.01E-04 7.71E-02 * 4774.70 4591.66 5962.30 2213.60 1461.01 984.90 1659.72 

2 Q96A44 
SPRY domain-
containing SOCS 
box protein 4 

-1.71 3.05E-03 1.10E-01  2143.94 2421.84 4386.04 1141.37 773.66 539.98 1181.59 

3 P04180 
Phosphatidylch
oline-sterol 
acyltransferase 

-0.82 4.71E-03 1.10E-01 * 6185.98 4905.51 5500.85 3540.67 2523.88 3113.48 3356.73 

4 P02749 Beta-2-
glycoprotein 1 -0.70 1.17E-02 1.10E-01  4609.33 4705.67 5193.47 2905.42 2820.18 2500.53 3816.25 

5 Q96N23 

Cilia- and 
flagella-
associated 
protein 54 

-1.84 1.43E-02 1.10E-01  1806.60 5769.16 9604.23 1274.60 1315.92 935.95 1814.16 

6 Q96PW8 

Putative 
uncharacterized 
protein 
KIAA1920 

-1.32 1.72E-02 1.10E-01  1960.01 1497.16 996.88 881.88 702.39 296.67 578.09 

7 O43610 Protein sprouty 
homolog 3 -1.79 2.04E-02 1.10E-01  28838.84 97387.59 78841.52 26213.82 32191.35 10027.40 11160.13 

8 P0A5T9 

Phosphoribosylf
ormylglycinami
dine synthase 
subunit PurL 

4.15 2.06E-02 1.10E-01  54.51 276.35 NA 553.45 NA 3687.36 5025.27 

9 P07358 
Complement 
component C8 
beta chain 

0.70 2.17E-02 1.10E-01 * 2342.02 2474.65 1893.64 4461.79 4069.51 3372.17 2741.54 

10 P00488 
Coagulation 
factor XIII A 
chain 

-0.47 2.44E-02 1.10E-01 * 5008.52 4959.16 4384.30 3218.07 3457.07 3586.55 3508.16 

11 P06276 Cholinesterase -0.88 2.50E-02 1.10E-01  5974.81 3470.62 6447.31 2698.23 2169.84 2641.73 3874.77 
12 Q9NZM1 Myoferlin -1.56 2.55E-02 1.10E-01  936.08 572.84 614.04 233.84 NA NA NA 
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13 P04431 
Immunoglobuli
n kappa 
variable 1-39 

-1.22 3.13E-02 1.10E-01  7392.10 15611.39 11965.89 6628.49 6049.94 5736.08 2287.72 

14 Q9H6F5 

Coiled-coil 
domain-
containing 
protein 86 

1.41 3.15E-02 1.10E-01  3848.19 6120.37 5455.88 16814.25 21986.90 17344.49 5053.55 

15 P02748 Complement 
component C9 0.81 3.22E-02 1.10E-01 * 3005.98 3774.63 2922.59 6192.79 7438.02 6301.62 3438.64 

16 Q14568 
Heat shock 
protein HSP 90-
alpha A2 

-2.69 3.42E-02 1.10E-01  NA NA 3647.77 519.68 575.96 1374.22 246.64 

17 P0C6H4 Capsid protein -1.61 3.49E-02 1.10E-01  4844.51 1479.75 1247.90 483.13 473.04 607.87 1537.46 
18 P00738 Haptoglobin 1.08 3.50E-02 1.10E-01  1162.28 2218.58 1777.31 4557.44 5223.54 3466.69 1866.20 

19 Q9IDV9 Gag-Pol 
polyprotein 2.25 3.55E-02 1.10E-01 * 787.91 9474.39 4387.00 20593.31 23270.90 16050.56 7008.77 

20 P05362 
Intercellular 
adhesion 
molecule 1 

1.80 3.69E-02 1.10E-01 * 3039.91 1321.10 1062.57 1681.62 8669.87 10067.40 7015.53 

21 P02790 Hemopexin -0.47 3.74E-02 1.10E-01  5033.68 6187.09 5752.66 4442.90 4433.83 3833.80 3602.33 

22 P01854 Ig epsilon chain 
C region 1.74 3.79E-02 1.10E-01  791.95 1866.04 1285.18 2081.98 2251.36 4951.11 12665.74 

23 P01780 
Immunoglobuli
n heavy 
variable 3-7 

-1.17 4.06E-02 1.10E-01  21948.64 10879.23 5962.90 3479.90 6981.36 4695.90 5425.57 

24 P04196 Histidine-rich 
glycoprotein -0.74 4.19E-02 1.10E-01  6219.60 4984.19 9558.06 2963.78 4134.28 4998.47 4174.62 

25 P19652 Alpha-1-acid 
glycoprotein 2 0.62 4.37E-02 1.10E-01  4222.83 2803.16 3077.62 6133.50 5553.03 5202.46 3789.22 

26 Q08830 Fibrinogen-like 
protein 1 1.08 4.41E-02 1.10E-01  1021.88 1437.82 795.21 2780.53 2359.91 3456.62 1072.63 

27 P02787 Serotransferrin -0.67 4.50E-02 1.10E-01  4287.02 3927.25 3992.87 2520.28 2161.83 1991.26 3963.90 

28 Q9H628 

Ras-related and 
estrogen-
regulated 
growth 
inhibitor-like 
protein 

2.69 4.54E-02 1.10E-01  621.67 11520.49 5610.85 35124.74 43104.84 23829.00 6526.37 

29 Q8IV33 
Uncharacterize
d protein 
KIAA0825 

1.35 4.59E-02 1.10E-01  888.21 260.33 470.43 971.53 1369.79 683.36 2434.81 
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30 P07357 
Complement 
component C8 
alpha chain 

0.61 4.61E-02 1.10E-01  2034.81 1683.19 2064.82 3633.34 3407.21 2834.27 2070.88 

31 Q8WWF3 

Serine-rich 
single-pass 
membrane 
protein 1 

-1.46 4.61E-02 1.10E-01  7304.62 1609.19 2598.13 647.00 888.77 1887.93 1538.26 

32 Q14568 
Heat shock 
protein HSP 90-
alpha A2 

4TB:1HC      x     

33 Q9C0K0 
B-cell 
lymphoma/leuk
emia 11B 

4TB:1HC     x      

34 Q9H9A5 

CCR4-NOT 
transcription 
complex 
subunit 10 

4TB:1HC      x     

35 Q9UKG9 

Peroxisomal 
carnitine O-
octanoyltransfe
rase 

4TB:1HC     x      

36 O15078 
Centrosomal 
protein of 290 
kDa 

1TB:3HC          x 

37 Q86VY9 Transmembran
e protein 200A 1TB:3HC          x 

38 Q9NQ66 

1-
phosphatidylino
sitol 4,5-
bisphosphate 
phosphodiester
ase beta-1 

1TB:3HC          x 

39 Q9NZM1 Myoferlin 1TB:3HC       x    
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Segment 3 

No. Protein 
Accession Name logFC P.Value adj.P.Val All 

Pipelines HC_115 HC_116 HC_117 TB_118 TB_119 TB_114 TB_121 

1 Q9H2S1 

Small 
conductance 
calcium-activated 
potassium 
channel protein 2 

-3.57 9.24E-
04 

1.61E-
01   212985.93 83330.56 64466.34 4541.92 10137.26 15951.60 8079.57 

2 O14788 

Tumor necrosis 
factor ligand 
superfamily 
member 11 

-2.67 1.52E-
03 

1.61E-
01   1069.97 1311.37 1185.39 169.58 152.88 NA 247.20 

3 Q12905 
Interleukin 
enhancer-binding 
factor 2 

3.84 1.06E-
02 

3.94E-
01   NA NA 1116.14 21980.09 15551.29 NA 12000.65 

4 Q8IVL1 Neuron navigator 
2 -3.39 1.40E-

02 
3.94E-

01   664.27 714.86 983.98 74.12 NA NA NA 

5 B2HQK3 
ATP synthase 
gamma chain 
(M.marinum) 

-1.82 1.95E-
02 

3.94E-
01 * NA 744.67 490.98 213.96 147.51 117.81 232.23 

6 Q9HC77 Centromere 
protein J -2.25 2.17E-

02 
3.94E-

01   462.52 2344.75 921.90 258.91 158.73 225.88 NA 

7 Q8WUA8 Tsukushin -1.53 2.99E-
02 

3.94E-
01   13745.84 8291.24 15497.08 3335.15 8196.31 4318.86 2566.24 

8 Q86TB3 Alpha-protein 
kinase 2 -1.48 3.11E-

02 
3.94E-

01 * 353.57 804.17 668.25 180.45 341.54 226.21 129.90 

9 A1KJN3 
Protein 
translocase 
subunit SecA 2 

2.33 3.55E-
02 

3.94E-
01   344.22 717.79 130.49 2591.46 3333.38 1667.40 455.46 

10 P49747 
Cartilage 
oligomeric matrix 
protein 

2.24 4.50E-
02 

3.94E-
01   1061.80 1604.12 1586.15 11230.33 13342.61 10447.21 1187.81 

11 A0FGR9 Extended 
synaptotagmin-3 4TB:1HC         x           

12 P30153 
Serine/threonine-
protein 
phosphatase 2A 

4TB:1HC         x           
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65 kDa regulatory 
13subunit A 
alp14ha isoform 

13 P62857 40S ri15bosomal 
protein 16S28 4TB:1HC       x             

14 P99999 Cytochrome c 4TB:1HC         x           

15 B2HE73 Catalase-
peroxidase 4TB:1HC         x           

16 Q13127 
RE1-silencing 
transcription 
factor 

1TB:3HC                   x 

17 Q8IVL1 Neuron navigator 
2 1TB:3HC             x       

18 Q96HZ4 Transcription 
cofactor HES-6 1TB:3HC                   x 

19 Q96JB1 
Dynein heavy 
chain 8, 
axonemal 

1TB:3HC             x       
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Segment 4 

No. Protein 
Accession Name logFC P.Value adj.P.Val All 

Pipelines HC_115 HC_116 HC_117 118 119 114 121 

1 P26543 Replication 
protein E1 3.03 7.50E-04 3.99E-02   168.28 NA NA 1415.60 1031.47 1773.56 NA 

2 P26676 RNA-directed RNA 
polymerase L 1.95 1.52E-03 3.99E-02   499.65 507.36 555.13 NA NA 1465.46 2753.73 

3 P02741 C-reactive protein 2.55 2.13E-03 3.99E-02 * 413.83 558.83 446.81 5451.67 2919.61 5087.91 709.99 

4 P07988 

Pulmonary 
surfactant-
associated protein 
B 

1.29 2.63E-03 3.99E-02 * 3030.92 3173.56 2704.91 7515.61 8116.19 9413.09 4801.81 

5 Q7KZ85 
Transcription 
elongation factor 
SPT6 

-1.63 4.04E-03 4.18E-02   8814.45 13888.41 28467.20 5343.37 3054.01 6416.83 5565.08 

6 Q9H0I3 
Coiled-coil 
domain-containing 
protein 113 

3.41 4.05E-03 4.18E-02   476.94 NA NA NA NA NA 5082.55 

7 Q7Z3J3 

RanBP2-like and 
GRIP domain-
containing protein 
4 

2.13 4.40E-03 4.18E-02   NA 353.88 NA 1268.19 1541.01 1903.40 NA 

8 P78352 Disks large 
homolog 4 1.47 5.64E-03 4.51E-02 * 8584.83 11105.86 7569.72 27931.07 36337.37 31733.36 11684.46 

9 O75015 

Low affinity 
immunoglobulin 
gamma Fc region 
receptor III-B 

1.63 6.53E-03 4.51E-02   4668.72 3608.22 4402.01 19890.94 13867.57 20453.97 5056.25 

10 P0DJI8 Serum amyloid A-
1 protein 1.49 7.51E-03 4.76E-02 * 599.78 816.69 816.47 2810.60 1910.54 3622.77 949.78 

11 P04545 Matrix M2-1 -2.13 1.36E-02 7.41E-02   2705.10 5435.41 3281.40 761.96 490.99 331.79 3869.20 

12 P18065 
Insulin-like growth 
factor-binding 
protein 2 

0.91 1.73E-02 7.93E-02   1043.12 1267.94 742.61 2127.76 1481.80 2022.21 1891.57 

13 P0CG05 Ig lambda-2 chain 
C regions -1.56 1.81E-02 7.93E-02   1890.61 2299.32 7055.06 714.72 875.35 815.80 2484.71 
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14 O94822 
E3 ubiquitin-
protein ligase 
listerin 

3.74 2.11E-02 7.93E-02   189.54 1492.22 NA 15386.74 6863.41 33041.86 722.79 

15 P03950 Angiogenin -0.98 2.24E-02 7.93E-02   2448.29 2445.12 2299.77 742.42 1062.73 1516.76 1833.42 

16 P46939 Utrophin 2.77 2.58E-02 7.93E-02   NA 1106.14 179.88 2671.98 3876.17 12336.37 675.86 

17 P08637 

Low affinity 
immunoglobulin 
gamma Fc region 
receptor III-A 

1.08 2.76E-02 7.93E-02   1412.32 1617.46 1196.55 5290.68 3771.83 1618.26 2351.84 

18 P25054 
Adenomatous 
polyposis coli 
protein 

2.13 2.76E-02 7.93E-02   224.11 NA NA NA NA 983.19 NA 

19 P13671 Complement 
component C6 1.26 2.82E-02 7.93E-02   1686.64 1516.51 487.61 3267.03 2903.70 3268.22 1418.88 

20 P01743 
Immunoglobulin 
heavy variable 1-
46 

-1.39 2.96E-02 8.04E-02   5141.13 5088.71 1771.56 1035.92 844.13 1160.82 3465.01 

21 Q13103 
Secreted 
phosphoprotein 
24 

-1.16 3.32E-02 8.13E-02   3985.42 3514.43 2660.30 2390.49 1167.95 698.10 2579.63 

22 P01781 Immunoglobulin 
heavy variable 3-7 -0.75 3.32E-02 8.13E-02   1735.52 1606.52 1351.42 981.27 849.31 757.00 1167.58 

23 O43866 CD5 antigen-like -0.84 3.42E-02 8.13E-02   2775.06 1660.24 2459.75 1309.89 1244.36 888.04 1709.98 

24 P68871 Hemoglobin 
subunit beta -0.85 3.46E-02 8.13E-02   1204.20 1490.67 2710.00 1029.48 829.51 985.60 938.75 

25 P0DJI9 Serum amyloid A-
2 protein 1.28 3.56E-02 8.13E-02   444.88 755.46 743.54 1515.19 1174.69 4160.74 747.96 

26 P01719 
Immunoglobulin 
lambda variable 3-
21 

-0.98 3.84E-02 8.34E-02   1449.43 1540.26 2242.72 609.49 1364.05 1261.88 533.31 

27 P17936 
Insulin-like growth 
factor-binding 
protein 3 

-0.73 4.75E-02 9.63E-02 * 1796.87 1537.38 2073.74 1438.64 1193.45 1002.71 797.54 

28 P08670 Vimentin 4TB:1HC         x           

29 Q9GZM8 

Nuclear 
distribution 
protein nudE-like 
1 

4TB:1HC       x             

30 O00585 CCL21 1TB:3HC                   x 
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31 O75419 CDC45 1TB:3HC                   x 

32 O75923 Dysferlin 1TB:3HC                   x 

33 P00488 Coagulation factor 
XIII A chain 1TB:3HC                   x 

34 P01275 Glucagon 1TB:3HC                   x 

35 P04792 Heat shock 
protein beta-1 1TB:3HC             x       

36 P09681 Gastric inhibitory 
polypeptide 1TB:3HC                   x 

37 P99999 Cytochrome c 1TB:3HC                   x 

38 Q12769 
Nuclear pore 
complex protein 
Nup160 

1TB:3HC                 x   

39 Q13948 Protein CASP 1TB:3HC                   x 

40 Q5T6F2 
Ubiquitin-
associated protein 
2 

1TB:3HC               x     

41 Q6UY70 RNA-directed RNA 
polymerase L 1TB:3HC                   x 

42 Q86VW0 

SEC14 domain and 
spectrin repeat-
containing protein 
1 

1TB:3HC                   x 

43 Q96JM7 
Lethal(3)malignant 
brain tumor-like 
protein 3 

1TB:3HC                   x 

44 Q9HDC9 
Adipocyte plasma 
membrane-
associated protein 

1TB:3HC                   x 

45 Q9NZT1 Calmodulin-like 
protein 5 1TB:3HC                   x 

 



 

Annexe 3. Summary of proteins significantly regulated from multiconsensus report and PL3 analysis  
Table presenting UniProt accession ID and parameters from LIMMA fit. Relative expression of each protein per sample included as well.  

Protein 
Accession logFC AveExpr t P.Value adj.P.Val B MP_113 TB_114 HC_115 HC_116 HC_117 TB_118 TB_119 TB_121 

P9WGP3 2.417462 9.727561 2.874197 0.023295 0.551897 -3.07851 1150.772 1849.704 340.5787 692.7804 128.1278 3027.214 3062.104 447.3947 

Q86SQ4 2.223481 11.69616 3.916241 0.005534 0.551897 -1.84126 11074.91 3518.69 1032.183 1354.16 1110.441 10610.09 2423.75 9447.413 

P43490 1.877177 11.93286 2.359881 0.04959 0.551897 -3.73958 3124.397 5123.893 1928.03 2904.575 1262.592 31459.29 3185.785 4812.751 

Q7KZF4 1.870984 12.11476 2.402821 0.046527 0.551897 -3.68392 3442.132 5426.861 2282.713 2708.32 1703.031 37493.93 4413.619 4599.913 

P05109 1.707977 11.01586 2.938039 0.021245 0.551897 -2.99799 2520.496 6984.227 729.2144 1717.232 856.3205 4105.536 3042.155 1433.401 

P02741 1.625375 10.08319 3.322674 0.012323 0.551897 -2.52439 1247.518 2934.013 498.3314 635.3758 550.4155 2453.429 1645.756 744.4996 

P05164 1.59594 11.04472 2.844706 0.024311 0.551897 -3.11586 1286.726 1467.007 1931.687 967.5374 936.4003 5990.125 5565.648 3600.876 

Q8N9V6 1.590722 11.07559 3.232609 0.013975 0.551897 -2.63334 1211.875 1817.813 1347.689 1000.901 1441.437 3136.036 4667.963 7505.806 

P18669 1.589438 9.686979 2.516007 0.039346 0.551897 -3.53736 621.2132 1169.353 622.1307 642.7353 239.1718 3843.375 881.2276 905.6485 

Q9Y5E7 1.553931 10.2979 3.513719 0.009471 0.551897 -2.2977 1089.669 1169.353 939.2031 808.5709 440.973 2176.429 2014.805 3370.663 

Q15149 1.458478 10.21631 2.681062 0.03086 0.551897 -3.32468 615.1029 1296.919 870.2516 681.9863 665.1966 5361.929 2004.83 1184.944 

Q9H6F5 1.440924 13.10499 2.57604 0.03601 0.551897 -3.45982 8595.147 17327.69 3625.178 6034.843 5701.685 17114.64 23140.33 4934.373 

Q8N720 1.431107 11.29291 3.173909 0.015179 0.551897 -2.70502 3989.513 3849.829 1149.192 762.4509 2698.157 2732.902 3912.411 4045.23 

Q9NP58 1.425772 9.92497 2.564094 0.03665 0.551897 -3.47524 1079.485 1392.593 202.6756 785.0202 1014.345 1533.393 1725.55 1242.28 

P14555 1.414323 9.110333 2.425981 0.044956 0.551897 -3.6539 635.4706 2455.641 295.6557 306.6485 326.7258 612.3679 721.1404 426.5453 

Q9Y6V0 1.409127 16.44552 2.424671 0.045043 0.551897 -3.6556 39120.14 250879.4 46803.45 73716.34 54988.16 172213.4 240380.1 52216.61 

P04843 1.393883 11.66016 2.416241 0.04561 0.551897 -3.66652 2209.89 3757.876 2173.017 2296.184 1526.856 15235 4054.545 3079.639 

Q8IV33 1.383717 9.790568 2.489358 0.040927 0.551897 -3.57183 1564.744 680.8824 834.2088 256.6035 491.1564 988.2964 1436.296 2380.314 

P01877 1.30832 11.14265 3.510079 0.009518 0.551897 -2.30196 2291.36 3842.919 1036.362 1354.16 1729.725 2413.857 2498.557 5294.895 

Q9BY89 1.294592 9.149526 3.936645 0.005389 0.551897 -1.81893 602.8824 1040.724 399.083 277.7009 345.9449 782.525 1067.248 538.6111 

P06702 1.257019 10.748 2.771887 0.027025 0.551897 -3.20848 1904.375 4347.867 740.184 1305.096 1131.795 3017.321 2114.547 1324.81 

Q14764 1.237704 10.62209 2.606167 0.034448 0.551897 -3.42098 1619.228 2041.053 1535.738 1108.841 522.1206 3996.714 1665.705 1945.95 



 

[210] 
 

P30046 1.167051 9.70309 2.456819 0.042947 0.551897 -3.61396 605.9375 1261.838 399.083 591.709 702.5672 1442.873 2169.406 586.8255 

P07900 1.149931 9.554208 2.629059 0.033307 0.551897 -3.39151 519.375 577.2352 429.3798 648.623 455.9213 1948.893 1266.734 1085.909 

P02750 1.146861 11.56515 3.053257 0.018012 0.551897 -2.85394 2953.309 4927.229 1634.987 2610.192 1687.015 5139.339 5426.008 2432.437 

O75015 1.144259 13.02735 2.668527 0.031433 0.551897 -3.34077 14715.63 15945.73 5850.431 3797.535 5274.593 12910.18 12567.59 5290.551 

Q96II8 1.144186 10.9635 3.593924 0.008493 0.551897 -2.2044 2963.493 3731.299 987.2602 1462.1 1195.859 2077.5 2084.624 3057.921 

P01133 1.119007 14.31428 2.36436 0.049261 0.551897 -3.73377 16294.12 29021.22 6905.598 20606.78 17297.25 37098.21 38201.49 17982.66 

Q9BXR6 1.085508 11.78053 2.946107 0.021 0.551897 -2.98785 2917.665 7563.588 1567.08 2772.103 2989.648 5203.643 3780.252 4161.205 

P06576 1.071517 12.03651 2.907587 0.022198 0.551897 -3.03634 3645.809 4204.356 2511.506 4140.982 2120.514 8864 5316.291 6089.78 

P18428 1.055326 11.73107 2.368957 0.048926 0.551897 -3.72781 3238.456 6665.313 1687.223 2914.388 2327.654 5609.25 5775.108 2228.286 

Q9UPY3 1.007305 10.1099 2.970923 0.020264 0.551897 -2.95671 2077.5 1056.67 695.7834 501.4317 891.5556 1434.464 1994.856 1138.033 

P78352 0.992514 12.43058 2.740345 0.028297 0.551897 -3.24875 5886.25 8483.125 3875.911 4768.998 2722.715 8379.25 9246.157 4430.511 

P0DJI8 0.979326 10.16666 2.789327 0.026347 0.551897 -3.18625 1247.518 2354.652 645.6369 836.0466 848.3125 1627.375 1456.245 955.6004 

Q9HAU6 0.97391 9.768267 2.528461 0.038629 0.551897 -3.52126 796.375 1796.552 664.9642 801.2113 406.8056 1147.571 1223.844 767.9552 

Q8IXL6 0.964658 9.850328 2.571637 0.036245 0.551897 -3.4655 639.5441 1615.833 662.3524 1049.965 420.6861 1365.214 1336.553 955.6004 

Q8WU39 0.917377 12.5559 2.400088 0.046716 0.551897 -3.68746 5865.882 8132.319 3278.853 4371.581 5178.497 4634.804 12313.25 8552.623 

Q9NS69 0.904797 10.45556 2.722299 0.029053 0.551897 -3.27183 1344.265 2253.662 1021.214 1079.403 873.4042 1256.393 2683.081 1537.648 

Q9P225 0.893104 10.28268 2.617589 0.033874 0.551897 -3.40627 1731.25 953.5543 826.3734 675.1174 1041.038 1671.893 1944.985 1859.077 

Q96FL9 0.886417 12.05135 3.368915 0.011557 0.551897 -2.46896 4297.574 4900.652 3907.252 2826.073 2402.395 5579.571 5805.031 5820.475 

P51826 0.884731 12.29495 2.502292 0.040152 0.551897 -3.5551 7189.779 4326.606 2904.321 3169.519 4132.12 7973.643 9036.698 4769.315 

P28062 0.845498 10.39952 2.470988 0.042055 0.551897 -3.59561 1512.298 1828.443 719.812 748.2224 1596.258 1825.232 1660.718 1537.648 

P07988 0.725376 12.42482 2.603802 0.034568 0.551897 -3.42403 6069.559 8966.812 4262.457 3660.157 4313.634 6361.107 7141.584 5021.246 

P13796 0.635005 11.2064 2.456167 0.042989 0.551897 -3.6148 2607.059 3561.212 1681.999 1834.985 1927.255 2740.321 2922.464 2197.881 

P08294 -0.58485 10.60326 -2.58484 0.035546 0.551897 -3.44847 1822.904 1302.234 1796.918 1933.112 2028.689 1108 1356.502 1363.902 

Q92859 -0.60171 10.35747 -2.68598 0.030639 0.551897 -3.31837 1385 974.8152 1713.341 1560.228 1687.015 1182.196 1047.299 1164.095 

Q9H4G4 -0.64265 9.998795 -2.77008 0.027096 0.551897 -3.21078 1056.062 739.3501 1379.03 1305.096 1259.923 815.1714 832.8524 999.0367 

P05451 -0.6664 9.947508 -2.61059 0.034224 0.551897 -3.41528 845.2574 812.1689 1159.639 1491.538 1313.309 666.2839 866.7649 1003.38 

Q4LDE5 -0.66853 10.49442 -2.3823 0.047966 0.551897 -3.71052 1171.14 1056.67 1953.626 1785.921 2082.076 1315.75 950.5489 1667.957 

P10721 -0.67626 13.47542 -2.5985 0.034838 0.551897 -3.43086 10861.05 12703.43 15357.38 14670.07 14948.24 9091.536 7909.604 8474.438 



 

[211] 
 

Q8WZ42 -0.67861 9.541532 -2.67123 0.031308 0.551897 -3.3373 865.1158 661.7475 934.5019 1049.965 886.217 530.2571 494.7243 728.4281 

O60880 -0.68555 12.59612 -2.78434 0.02654 0.551897 -3.19261 5091.912 4592.368 7971.212 8713.725 8392.368 4669.429 5106.831 6645.766 

P10646 -0.70617 8.892241 -2.79889 0.025984 0.551897 -3.17407 386.9853 459.7684 801.3001 560.7988 603.2682 404.6179 353.0895 377.0278 

Q9HA90 -0.70656 9.542743 -2.54695 0.037589 0.551897 -3.49737 950.1507 451.7955 780.9281 927.3052 1195.859 619.2929 608.4311 683.6886 

Q9BWP8 -0.75392 10.65944 -3.03926 0.018375 0.551897 -2.87135 1721.066 1116.201 2298.384 1903.674 2306.3 1177.25 1290.672 1589.772 

P17936 -0.76371 10.6261 -3.05005 0.018094 0.551897 -2.85792 1812.721 1037.535 2193.912 1727.045 2434.427 1295.964 1346.528 1285.717 

P68871 -0.76854 10.81701 -2.74877 0.027951 0.551897 -3.23798 2235.349 1488.268 1880.496 2134.274 3325.983 1419.625 1256.759 1416.026 

Q9HBJ7 -0.80325 10.89077 -2.99116 0.019684 0.551897 -2.93137 1965.478 1371.332 2423.75 2718.133 2658.651 1226.714 1416.348 2058.884 

P29622 -0.8047 11.71934 -2.5327 0.038388 0.551897 -3.51578 3330.11 2056.998 4393.047 4435.364 5146.465 2443.536 2333.981 4265.453 

Q96DX7 -0.83406 10.62398 -2.67169 0.031287 0.551897 -3.33671 2006.213 917.4106 2068.545 1864.423 2477.137 1671.893 935.5874 1398.651 

P41229 -0.84168 11.88276 -2.38094 0.048063 0.551897 -3.71227 4511.434 1754.03 4753.475 5220.385 5466.784 3333.893 2613.261 4421.823 

O94923 -0.86845 10.01533 -2.5355 0.038229 0.551897 -3.51217 993.4322 580.9559 1812.589 1280.565 1364.027 853.2589 663.2896 1272.686 

O76096 -0.8873 12.95924 -3.34019 0.012027 0.551897 -2.50336 8666.434 6091.266 9945.733 10205.26 13773.73 7291.036 4847.5 6202.715 

Q12860 -0.90355 10.32289 -3.0401 0.018353 0.551897 -2.8703 1395.184 904.1225 2021.533 1422.849 2060.721 773.6214 927.1093 1350.871 
A0A0C4DH
32 -0.95526 10.32704 -2.69878 0.03007 0.551897 -3.30195 1211.875 835.5559 2486.433 1422.849 1911.239 1360.268 668.7755 1190.157 

Q76LX8 -0.96291 13.0073 -2.83183 0.02477 0.551897 -3.13221 9231.636 4278.769 13529.12 10646.84 11584.88 5272.893 6109.246 9946.931 

Q8NCX0 -0.9788 10.39058 -4.07263 0.004521 0.551897 -1.67208 1059.118 1190.614 2183.464 2099.929 1868.53 893.325 945.5617 1155.408 

P51161 -0.99295 10.37753 -2.3755 0.048453 0.551897 -3.71933 1395.184 666.5313 1535.738 2148.993 2274.268 678.65 1157.016 1789.579 

Q96RP7 -0.99561 11.06666 -2.39675 0.046948 0.551897 -3.69179 2016.397 1520.159 3290.867 1727.045 5819.135 1691.679 1526.065 1711.393 

Q9NQX5 -1.00194 10.3927 -2.7955 0.026112 0.551897 -3.17839 1751.618 804.7275 2235.7 1589.666 2007.335 765.7071 817.8909 1694.019 

Q15166 -1.01925 10.47052 -3.56312 0.008855 0.551897 -2.2401 1700.699 697.3596 2178.241 2119.555 1921.916 1058.536 1186.939 1242.28 

O95502 -1.0581 11.77935 -2.35561 0.049907 0.551897 -3.74512 5030.809 1254.397 5025.102 5769.899 4516.503 2364.393 4767.706 2501.935 

P03950 -1.08584 10.6694 -2.48567 0.041151 0.551897 -3.5766 1889.099 1498.898 2580.458 2418.844 2359.686 606.9268 949.5514 2058.884 

Q9BRX9 -1.08807 8.839274 -2.44406 0.043767 0.551897 -3.63048 526.5037 229.6184 524.4494 486.7126 1291.955 383.8429 271.3004 466.5067 

Q96PW8 -1.10338 9.531773 -2.51138 0.039616 0.551897 -3.54335 743.4191 262.0414 1065.614 1118.654 1259.923 897.2821 490.2359 700.1944 

Q2NL82 -1.11205 11.40523 -2.62698 0.033409 0.551897 -3.39418 2851.471 1966.639 2188.688 4626.713 7228.541 2354.5 1730.538 1750.486 

P08047 -1.13368 11.70685 -3.01454 0.019036 0.551897 -2.90216 1028.566 1690.247 4617.662 6633.421 7773.084 2868.929 3161.847 4152.518 

P51570 -1.13949 12.56494 -2.46165 0.042641 0.551897 -3.6077 9481.14 5187.675 15775.27 7330.127 6150.132 2314.929 3919.892 5724.915 



 

[212] 
 

A6NFK2 -1.17376 12.89546 -2.59961 0.034782 0.551897 -3.42943 9185.809 5612.895 5547.462 17270.45 17190.47 4372.643 4837.526 6324.337 

O14777 -1.18577 10.71694 -2.38577 0.047719 0.551897 -3.70601 5468.713 727.125 4157.985 1138.279 2487.814 979.3929 878.7341 1598.459 

P39059 -1.18783 10.96711 -2.36378 0.049304 0.551897 -3.73452 2464.485 1275.658 3437.128 2463.001 3555.545 1108 759.0427 3240.354 

P61916 -1.19849 9.881909 -2.41125 0.045949 0.551897 -3.673 895.1581 812.1689 783.5399 3136.647 1452.115 445.1786 716.1533 759.2679 

Q6RI45 -1.21172 11.32533 -2.47927 0.041543 0.551897 -3.58489 2932.941 1498.898 5610.145 2531.69 4740.727 2305.036 924.6157 2979.736 

P00441 -1.22805 11.50451 -4.82242 0.001803 0.40679 -0.92573 7536.029 1732.769 4628.109 3140.081 4826.145 1859.857 1715.576 1737.455 

Q86TB3 -1.2451 8.921541 -3.23522 0.013924 0.551897 -2.63015 476.6029 251.9424 885.4001 565.7052 1006.871 277.4946 313.1924 580.7444 

Q13103 -1.27031 11.1577 -2.70507 0.029794 0.551897 -3.29389 2515.404 892.9605 4502.742 3915.288 2936.261 2028.036 1062.261 2962.361 

O00408 -1.28048 12.32268 -2.71322 0.029441 0.551897 -3.28345 6079.743 2625.729 5463.885 17859.21 5861.845 3551.536 3181.795 4595.569 

P06732 -1.28281 11.11089 -2.4018 0.046597 0.551897 -3.68524 3564.338 1067.832 2648.365 4180.233 3656.98 943.7786 1040.317 3783.309 

O94991 -1.29368 10.09292 -3.49296 0.009743 0.551897 -2.32203 1313.713 553.8481 1264.111 1893.861 2338.331 601.4857 699.197 1181.47 

P54802 -1.29894 11.81218 -2.70532 0.029784 0.551897 -3.29358 4144.816 1796.552 7010.07 8591.065 3400.724 1998.357 1944.985 4717.191 

Q9ULM0 -1.30008 11.06693 -2.48943 0.040923 0.551897 -3.57174 2469.577 1275.658 3897.85 5426.452 2059.654 843.8607 1286.682 3010.141 

P35443 -1.32188 11.33017 -2.55966 0.03689 0.551897 -3.48096 3004.228 1674.301 5223.599 3620.906 4062.718 850.7857 1466.219 4004.834 

Q9HD43 -1.33429 10.68969 -3.01903 0.018914 0.551897 -2.89655 1659.963 1037.535 4931.078 2355.061 1889.884 738.9964 1755.473 1129.346 

Q9UMX5 -1.36077 11.17676 -4.72951 0.002012 0.40679 -1.01244 2978.768 1302.234 4189.327 3537.497 3785.107 1266.286 1356.502 2206.568 

P0C221 -1.36387 14.37479 -2.54061 0.037942 0.551897 -3.50557 33301.1 12437.66 54116.49 20116.14 36729.96 7894.5 10871.97 29189.25 

Q96JM2 -1.37084 10.51077 -2.62146 0.033681 0.551897 -3.40128 1405.368 829.1776 3144.607 2148.993 2381.041 544.1071 812.9038 2475.874 

I6Y481 -1.4317 10.61025 -2.76651 0.027238 0.551897 -3.21533 1965.478 837.682 2235.7 2531.69 3352.676 822.0964 560.5545 2475.874 

Q8N3C0 -1.43469 10.98243 -2.39042 0.047391 0.551897 -3.69999 1455.778 1573.311 9642.764 2767.196 1965.693 1131.743 921.1247 2241.752 

Q8WUA8 -1.44793 12.82963 -3.31477 0.012459 0.551897 -2.53389 13356.08 4799.663 13633.59 7982.675 15268.56 3897.786 7525.594 2523.654 

Q6P1X5 -1.47866 11.8287 -3.31528 0.012451 0.551897 -2.53329 2882.022 4241.563 10186.02 6682.485 4527.181 2047.821 2643.184 1502.899 

P08123 -1.48559 9.507023 -3.10485 0.016737 0.551897 -2.79 846.2757 477.3087 1009.199 1687.794 1238.568 313.6036 294.2413 999.0367 

P37198 -1.52557 11.08567 -3.44113 0.010461 0.551897 -2.38311 2230.257 942.9238 3813.227 3306.898 4932.919 1058.536 1216.862 2953.674 

Q9UN79 -1.52747 10.20014 -2.51293 0.039525 0.551897 -3.54134 1191.507 909.9693 1358.136 6348.851 1153.15 550.0429 810.909 762.7428 

Q08378 -1.59658 10.62868 -2.43946 0.044066 0.551897 -3.63645 1659.963 451.7955 2173.017 2865.324 4164.152 1048.643 642.3436 3014.485 

Q8N584 -1.601 9.766489 -2.87028 0.023427 0.551897 -3.08347 1334.081 444.3542 1211.875 1717.232 1772.434 502.5571 234.3956 1285.717 
A0A087WS
Y4 -1.62528 11.42847 -2.69164 0.030386 0.551897 -3.31111 3472.684 2338.706 4356.482 3355.962 8947.588 612.3679 2703.03 1893.826 



 

[213] 
 

Q96A44 -1.68049 10.54281 -4.00146 0.004954 0.551897 -1.7485 1904.375 537.9024 2016.309 2384.499 4580.567 1157.464 812.9038 1155.408 

Q9Y5W7 -1.71177 11.37289 -5.01489 0.001443 0.40679 -0.75116 3493.051 982.2566 4492.295 4523.679 6235.551 2255.571 1536.039 1624.521 

P53618 -1.7391 9.931582 -2.45847 0.042842 0.551897 -3.61182 1002.088 424.1563 2831.191 1197.156 2146.14 395.7143 317.6808 2128.383 

O43610 -1.75924 14.44902 -2.77447 0.026924 0.551897 -3.20518 2973.676 9992.654 27162.72 95968.72 82428.85 26710.71 33812.81 10859.09 

Q7KZ85 -1.77999 13.0542 -3.70579 0.007307 0.551897 -2.0762 15937.68 6229.463 9412.926 14179.43 29202.45 4521.036 2688.068 5824.819 

Q07507 -1.79807 12.32535 -2.36036 0.049555 0.551897 -3.73896 5942.261 2514.109 12458.28 9955.038 8669.978 1785.661 1311.618 12792.01 

Q96N23 -1.80847 11.04777 -3.01729 0.018961 0.551897 -2.89873 1395.184 933.3564 1702.893 5691.397 10036.67 1295.964 1386.425 1772.204 

P23280 -1.83233 11.35245 -2.67705 0.031043 0.551897 -3.32983 4058.254 531.5241 10024.09 4312.705 3021.68 2750.214 1157.016 2436.781 

Q15645 -2.13049 9.714773 -4.31393 0.003333 0.465287 -1.42019 526.5037 955.6804 2998.346 2296.184 1323.987 396.7036 497.7166 274.5179 
A0A075B6
H9 -2.445 11.86787 -5.10057 0.001309 0.40679 -0.67562 2871.838 1998.531 17551.29 5877.839 10351.65 1434.464 1336.553 3240.354 

Q68CZ1 -2.68301 10.68265 -7.76597 9.83E-05 0.127721 1.108014 942.0037 655.9008 5213.152 4160.607 6299.615 643.0357 738.0967 1329.153 

Q9BZG8 -2.90215 12.87638 -3.71596 0.007209 0.551897 -2.06466 8411.838 808.9797 23715.14 43764.88 12278.91 5045.357 5934.697 3935.336 

Q9H2S1 -3.48832 14.51558 -6.25184 0.000388 0.234641 0.219017 12118.75 17752.91 211033.4 80366.45 63423.24 5302.571 9306.003 7931.483 

 



Annexe 4. Proteins significantly regulated from segment 4 fully quantified and common to 
sets A, B and C by PL2 
 

No. Protein Accession Protein Name          

1 P02741 C-reactive protein(CRP) 2.       

2 P05109 S100 calcium binding protein A8(S100A8) 1.       

3 P06702 S100 calcium binding protein A9(S100A9) 1.       

4 P02750 Leucine rich alpha-2-glycoprotein 1(LRG1) 1.       

5 P0DJI8 Serum amyloid A1(SAA1) 1.       

6 P0DJI9 Serum amyloid A2(SAA2) 1.       

7 P07988 Surfactant protein B(SFTPB) 1.       

8 P02774 GC, vitamin D binding protein(GC) 0.       

9 P00738 Haptoglobin(HP) 0.       

10 P02763 Orosomucoid 1(ORM1) 0.       

11 P02790 Hemopexin(HPX) 0.       

12 P01011 Serpin family A member 3(SERPINA3) 0.       

13 P25311 Alpha-2-glycoprotein 1, zinc-binding(AZGP1) 0.       

14 P01009 Serpin family A member 1(SERPINA1) 0.       

15 P19652 Orosomucoid 2(ORM2) 0.       

16 P02647 Apolipoprotein A1(APOA1) 0.       

17 O95445 Apolipoprotein M(APOM) -0       

18 P02766 Transthyretin(TTR) -0       

19 P02652 Apolipoprotein A2(APOA2) -0       

20 P02655 Apolipoprotein C2(APOC2) -0       

21 P01871 Immunoglobulin heavy constant mu(IGHM) -0       

22 P02654 Apolipoprotein C1(APOC1) -0       

23 P06727 Apolipoprotein A4(APOA4) -0       

24 P02656 apolipoprotein C3(APOC3) -0       

25 P02753 retinol binding protein 4(RBP4) -1       
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Annexe 5. Proteins significantly regulated from segment 4 fully quantified and common to sets A, B and C by PL3 
 

No. Protein Accession Protein Name logFC AveExpr t p value Adj. p value B 

1 P02741 C-reactive protein(CRP) 2.155535 10.76869 8.63115 1.10E-08 4.67E-06 10.10343 

2 P05109 S100 calcium binding protein A8(S100A8) 1.730152 11.36471 5.828895 6.02E-06 0.000336 3.896342 

3 P06702 S100 calcium binding protein A9(S100A9) 1.489748 11.05066 5.642339 9.47E-06 0.000367 3.449582 

4 P02750 Leucine rich alpha-2-glycoprotein 1(LRG1) 1.377648 11.53352 7.451894 1.38E-07 2.93E-05 7.619397 

5 P0DJI8 Serum amyloid A1(SAA1) 1.308297 10.5955 5.710012 8.03E-06 0.000342 3.611995 

6 P78352 Discs large MAGUK scaffold protein 4(DLG4) 1.282465 13.86823 6.174604 2.62E-06 0.000223 4.715464 

7 P80511 S100 calcium binding protein A12(S100A12) 1.255448 11.75491 3.376156 0.002593 0.015559 -2.02476 

8 P14555 Phospholipase A2 group IIA(PLA2G2A) 1.168357 11.14641 3.67997 0.001234 0.009192 -1.31223 

9 P0DJI9 Serum amyloid A2(SAA2) 1.118803 10.57383 4.146233 0.000388 0.00435 -0.19192 

10 Q9BXR6 Complement factor H related 5(CFHR5) 1.09874 10.68526 5.841979 5.83E-06 0.000336 3.927559 

11 P07988 Surfactant protein B(SFTPB) 1.080633 12.24775 6.335411 1.79E-06 0.000191 5.092154 

12 P02774 GC, vitamin D binding protein(GC) 0.869177 11.28326 5.484812 1.39E-05 0.000448 3.070102 

13 Q02985 Complement factor H related 3(CFHR3) 0.846279 11.88127 2.160717 0.041325 0.106693 -4.59584 

14 P00738 Haptoglobin(HP) 0.816506 10.90906 5.269922 2.36E-05 0.000559 2.549611 

15 P18428 Lipopolysaccharide binding protein(LBP) 0.773199 11.47646 4.211746 0.00033 0.003916 -0.0328 

16 Q9NPH3 Interleukin 1 receptor accessory protein(IL1RAP) 0.771159 10.72791 3.553975 0.001681 0.010853 -1.60984 

17 Q15485 Ficolin 2(FCN2) 0.732214 11.32835 3.898952 0.000718 0.006508 -0.7892 
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18 P62805 Histone cluster 1 H4 family member i(HIST1H4I) 0.721421 12.18652 2.303763 0.030569 0.088586 -4.32602 

19 P02748 Complement C9(C9) 0.71171 11.73737 5.786215 6.67E-06 0.000336 3.794406 

20 P08637 Fc fragment of igg receptor IIia(FCGR3A) 0.701374 11.39923 3.934121 0.000658 0.006229 -0.70463 

21 Q9UGM5 Fetuin B(FETUB) 0.696432 10.46962 4.689032 1.00E-04 0.001775 1.132228 

22 P02763 Orosomucoid 1(ORM1) 0.693382 11.17915 5.434071 1.58E-05 0.000448 2.947473 

23 P27918 Complement factor properdin(CFP) 0.675854 10.66218 3.700404 0.001173 0.009089 -1.26371 

24 P50281 Matrix metallopeptidase 14(MMP14) 0.671028 11.3425 3.26178 0.003418 0.018631 -2.28798 

25 P15907 ST6 beta-galactoside alpha-2,6-sialyltransferase 1(ST6GAL1) 0.670154 12.04035 4.210051 0.000331 0.003916 -0.03692 

26 P02790 Hemopexin(HPX) 0.663327 11.4246 4.409915 0.000201 0.002863 0.450013 

27 P14151 Selectin L(SELL) 0.655106 11.43208 4.408364 0.000202 0.002863 0.446227 

28 P01011 Serpin family A member 3(SERPINA3) 0.639662 11.78433 5.405874 1.69E-05 0.00045 2.879251 

29 P25311 Alpha-2-glycoprotein 1, zinc-binding(AZGP1) 0.632819 11.19054 4.121613 0.000413 0.004507 -0.25163 

30 P18065 Insulin like growth factor binding protein 2(IGFBP2) 0.621648 11.24948 3.874109 0.000764 0.006778 -0.84886 

31 P28062 Proteasome subunit beta 8(PSMB8) 0.600077 11.96528 3.655144 0.001312 0.009471 -1.37108 

32 Q9Y275 Tumor necrosis factor superfamily member 13b(TNFSF13B) 0.598276 12.64274 3.638659 0.001366 0.009525 -1.4101 

33 P00740 Coagulation factor IX(F9) 0.595895 10.52735 2.641103 0.014567 0.04925 -3.64931 

34 P68032 Actin, alpha, cardiac muscle 1(ACTC1) 0.591307 11.12393 2.6904 0.01303 0.045875 -3.54617 

35 P13473 Lysosomal associated membrane protein 2(LAMP2) 0.585016 12.18901 3.115937 0.004843 0.023446 -2.6188 

36 P60709 Actin beta(ACTB) 0.56933 11.16013 2.991225 0.006503 0.028975 -2.89687 

37 O75015 Fc fragment of igg receptor iiib(FCGR3B) 0.561708 12.90186 2.333731 0.028668 0.084224 -4.26812 
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38 P01042 Kininogen 1(KNG1) 0.561187 11.38211 3.246314 0.003547 0.018655 -2.32332 

39 Q86YT9 Junction adhesion molecule like(JAML) 0.545115 11.45958 2.337772 0.02842 0.084076 -4.26027 

40 Q8WU39 Marginal zone B and B1 cell specific protein(MZB1) 0.538274 11.86275 2.707977 0.01252 0.0452 -3.50916 

41 Q92820 Gamma-glutamyl hydrolase(GGH) 0.521311 11.36357 2.161998 0.041215 0.106693 -4.59347 

42 P13598 Intercellular adhesion molecule 2(ICAM2) 0.503563 11.8001 2.214747 0.036913 0.101518 -4.49523 

43 Q10588 Bone marrow stromal cell antigen 1(BST1) 0.497329 11.40364 3.394763 0.002479 0.015174 -1.98165 

44 P02671 Fibrinogen alpha chain(FGA) 0.479315 11.24331 4.895872 5.97E-05 0.001211 1.637972 

45 P24387 Corticotropin releasing hormone binding protein(CRHBP) 0.457691 11.3672 3.153235 0.004432 0.021983 -2.53474 

46 O95998 Interleukin 18 binding protein(IL18BP) 0.447294 10.77794 2.167402 0.040754 0.106511 -4.58348 

47 Q06033 Inter-alpha-trypsin inhibitor heavy chain 3(ITIH3) 0.421305 10.89745 2.819184 0.009705 0.037264 -3.27221 

48 P01009 Serpin family A member 1(SERPINA1) 0.413837 11.16872 3.191709 0.004043 0.020751 -2.44763 

49 P19652 Orosomucoid 2(ORM2) 0.398525 11.28305 2.853505 0.008966 0.035365 -3.19816 

50 Q16610 Extracellular matrix pnrotein 1(ECM1) 0.375813 11.21064 2.59339 0.016215 0.053201 -3.74816 

51 Q14847 LIM and SH3 protein 1(LASP1) 0.374206 10.9941 2.28947 0.031515 0.090712 -4.35347 

52 P03952 Kallikrein B1(KLKB1) 0.306673 11.38794 2.186812 0.039138 0.104204 -4.54745 

53 P07225 Protein S (alpha)(PROS1) 0.301303 11.85841 2.875339 0.008523 0.03458 -3.15082 

54 P02647 Apolipoprotein A1(APOA1) 0.286719 11.627 2.283386 0.031926 0.090997 -4.36512 

55 P61626 Lysozyme(LYZ) 0.281266 11.8665 2.139231 0.043208 0.108498 -4.63539 

56 P00751 Complement factor B(CFB) 0.235266 10.99869 2.173109 0.040273 0.105903 -4.57291 

57 P35542 Serum amyloid A4, constitutive(SAA4) 0.229656 11.97836 2.211594 0.037158 0.101518 -4.50114 
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58 Q14118 Dystroglycan 1(DAG1) 0.21608 10.57222 2.143468 0.04283 0.108498 -4.62761 

59 Q09666 AHNAK nucleoprotein(AHNAK) -0.2314 10.50802 -2.13948 0.043185 0.108498 -4.63493 

60 O00187 Mannan binding lectin serine peptidase 2(MASP2) -0.2435 10.92151 -2.20724 0.037499 0.101749 -4.5093 

61 P08493 Matrix Gla protein(MGP) -0.2625 11.15887 -2.14603 0.042604 0.108498 -4.62291 

62 P00746 Complement factor D(CFD) -0.26675 10.92193 -2.90071 0.008035 0.033235 -3.09561 

63 P06396 Gelsolin(GSN) -0.27285 11.17761 -2.79963 0.010152 0.037938 -3.31421 

64 Q96NZ9 Proline rich acidic protein 1(PRAP1) -0.28702 11.8321 -2.26079 0.033496 0.094498 -4.40824 

65 P05090 Apolipoprotein D(APOD) -0.28712 11.35434 -2.42691 0.02343 0.073392 -4.0852 

66 A0A087WSY6 Immunoglobulin kappa variable 3D-15 (gene/pseudogene)(IGKV3D-15) -0.28941 10.84584 -2.37939 0.02598 0.07794 -4.17902 

67 Q9P2X0 Dolichyl-phosphate mannosyltransferase subunit 3(DPM3) -0.29717 11.07508 -2.41339 0.024131 0.073955 -4.112 

68 P01023 Alpha-2-macroglobulin(A2M) -0.29749 11.33114 -2.18239 0.039501 0.104518 -4.55568 

69 P02760 Alpha-1-microglobulin/bikunin precursor(AMBP) -0.30014 11.48111 -2.66768 0.013718 0.047512 -3.59382 

70 P36955 Serpin family F member 1(SERPINF1) -0.30885 10.89062 -2.24687 0.034497 0.096647 -4.43465 

71 A0A075B6J9 Immunoglobulin lambda variable 2-18(IGLV2-18) -0.31973 12.41039 -2.18812 0.039031 0.104204 -4.54502 

72 P39060 Collagen type XVIII alpha 1 chain(COL18A1) -0.32113 12.1038 -2.87639 0.008502 0.03458 -3.14853 

73 P19022 Cadherin 2(CDH2) -0.32662 11.50907 -2.81125 0.009884 0.037264 -3.28928 

74 P17900 GM2 ganglioside activator(GM2A) -0.32679 11.27881 -2.81698 0.009755 0.037264 -3.27696 

75 P02751 Fibronectin 1(FN1) -0.32924 10.89849 -2.34427 0.028026 0.083489 -4.24765 

76 P01703 Immunoglobulin lambda variable 1-40(IGLV1-40) -0.33542 13.03563 -2.0918 0.047641 0.117876 -4.72178 

77 P10909 Clusterin(CLU) -0.33546 11.14296 -4.21244 0.000329 0.003916 -0.03112 



 

[220] 
 

78 P20700 Lamin B1(LMNB1) -0.34369 12.20052 -2.30464 0.030511 0.088586 -4.32432 

79 Q13232 NME/NM23 nucleoside diphosphate kinase 3(NME3) -0.34463 12.17341 -2.45273 0.022144 0.069877 -4.03377 

80 P43251 Biotinidase(BTD) -0.34765 11.81349 -2.09937 0.046906 0.116855 -4.70808 

81 P02042 Hemoglobin subunit delta(HBD) -0.36494 11.88266 -2.51719 0.019213 0.061539 -3.90399 

82 O43866 CD5 molecule like(CD5L) -0.36722 11.45606 -2.96038 0.006991 0.030081 -2.9649 

83 Q6YHK3 CD109 molecule(CD109) -0.37159 9.393202 -2.45715 0.021931 0.06972 -4.02494 

84 P55056 Apolipoprotein C4(APOC4) -0.3749 12.05332 -2.28169 0.032041 0.090997 -4.36836 

85 Q9H8L6 Multimerin 2(MMRN2) -0.37516 11.36591 -3.15267 0.004438 0.021983 -2.53603 

86 P98160 Heparan sulfate proteoglycan 2(HSPG2) -0.38147 10.72717 -2.08945 0.04787 0.117876 -4.72602 

87 Q13332 Protein tyrosine phosphatase, receptor type S(PTPRS) -0.38193 12.8865 -2.67085 0.01362 0.047512 -3.58719 

88 P51884 Lumican(LUM) -0.3848 11.92239 -2.72374 0.012079 0.04398 -3.47587 

89 P30086 Phosphatidylethanolamine binding protein 1(PEBP1) -0.38503 11.34566 -2.19248 0.038677 0.104204 -4.53689 

90 P80748 Immunoglobulin lambda variable 3-21(IGLV3-21) -0.39907 10.79213 -2.58241 0.016618 0.054041 -3.77078 

91 A0A0C4DH38 Immunoglobulin heavy variable 5-51(IGHV5-51) -0.40421 11.09357 -2.86127 0.008806 0.03507 -3.18135 

92 Q9H4G4 GLI pathogenesis related 2(GLIPR2) -0.40651 11.11526 -3.15293 0.004435 0.021983 -2.53542 

93 O00468 Agrin(AGRN) -0.40845 10.02615 -2.64759 0.014355 0.048923 -3.6358 

94 P68871 Hemoglobin subunit beta(HBB) -0.40941 11.18293 -2.93633 0.007395 0.031191 -3.01773 

95 P58166 Inhibin beta E subunit(INHBE) -0.41266 10.4746 -2.07451 0.049354 0.120833 -4.75293 

96 A0A0B4J1V0 Immunoglobulin heavy variable 3-15(IGHV3-15) -0.4145 10.54641 -2.13823 0.043297 0.108498 -4.63723 

97 P01591 Joining chain of multimeric iga and igm(JCHAIN) -0.41533 10.91625 -2.63458 0.014783 0.049586 -3.66288 
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98 P19827 Inter-alpha-trypsin inhibitor heavy chain 1(ITIH1) -0.41568 11.4254 -3.95223 0.000629 0.00609 -0.66102 

99 P05452 C-type lectin domain family 3 member B(CLEC3B) -0.41938 11.01441 -3.77292 0.000981 0.008195 -1.09102 

100 O95445 Apolipoprotein M(APOM) -0.42956 11.15343 -3.40282 0.002431 0.015174 -1.96296 

101 A0A0C4DH68 Immunoglobulin kappa variable 2-24(IGKV2-24) -0.43433 11.47595 -2.6956 0.012877 0.045714 -3.53523 

102 A0A0C4DH25 Immunoglobulin kappa variable 3D-20(IGKV3D-20) -0.43765 12.97624 -2.21137 0.037176 0.101518 -4.50156 

103 P61916 NPC intracellular cholesterol transporter 2(NPC2) -0.43857 10.78742 -2.75776 0.011176 0.041043 -3.40368 

104 A0A0A0MRZ8 Immunoglobulin kappa variable 3D-11(IGKV3D-11) -0.44507 12.43701 -3.28191 0.003256 0.018495 -2.24187 

105 P04211 Immunoglobulin lambda variable 7-43(IGLV7-43) -0.45476 11.28938 -2.39986 0.024852 0.075621 -4.13875 

106 Q92954 Proteoglycan 4(PRG4) -0.4569 11.6058 -2.24394 0.034711 0.096647 -4.4402 

107 P05154 Serpin family A member 5(SERPINA5) -0.45941 11.2661 -2.97546 0.006748 0.029636 -2.93169 

108 P19823 Inter-alpha-trypsin inhibitor heavy chain 2(ITIH2) -0.45991 11.47941 -3.67737 0.001242 0.009192 -1.3184 

109 P00441 Superoxide dismutase 1, soluble(SOD1) -0.46826 11.01585 -3.06525 0.005462 0.025852 -2.73237 

110 P24592 Insulin like growth factor binding protein 6(IGFBP6) -0.47325 10.75637 -4.01159 0.000543 0.005505 -0.51786 

111 P24593 Insulin like growth factor binding protein 5(IGFBP5) -0.48962 12.4793 -4.01157 0.000543 0.005505 -0.51792 

112 P20933 Aspartylglucosaminidase(AGA) -0.51091 11.81848 -3.92424 0.000674 0.006245 -0.72842 

113 Q92876 Kallikrein related peptidase 6(KLK6) -0.51216 10.78403 -3.63077 0.001393 0.009525 -1.42877 

114 P02766 Transthyretin(TTR) -0.51538 10.75924 -4.6228 0.000118 0.00201 0.970238 

115 Q96PD5 Peptidoglycan recognition protein 2(PGLYRP2) -0.52017 11.04553 -3.35774 0.002711 0.016043 -2.06734 

116 P29622 Serpin family A member 4(SERPINA4) -0.52774 11.38048 -2.96628 0.006895 0.029971 -2.95191 

117 O75340 Programmed cell death 6(PDCD6) -0.5313 10.95382 -2.78873 0.01041 0.038562 -3.33756 
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118 Q9NQ38 Serine peptidase inhibitor, Kazal type 5(SPINK5) -0.53208 11.33316 -3.25391 0.003483 0.018631 -2.30597 

119 A0A0B4J1X8 Immunoglobulin heavy variable 3-43(IGHV3-43) -0.53417 10.06729 -3.52258 0.001816 0.011545 -1.68355 

120 Q96S96 Phosphatidylethanolamine binding protein 4(PEBP4) -0.53703 10.49968 -2.59284 0.016235 0.053201 -3.7493 

121 P16035 TIMP metallopeptidase inhibitor 2(TIMP2) -0.55365 11.18436 -3.7252 0.001104 0.008872 -1.20476 

122 P43652 Afamin(AFM) -0.55367 10.47774 -4.55923 0.000138 0.002266 0.814806 

123 P17936 Insulin like growth factor binding protein 3(IGFBP3) -0.55573 11.92865 -3.67427 0.001251 0.009192 -1.32574 

124 P01743 Immunoglobulin heavy variable 1-46(IGHV1-46) -0.56793 11.205 -2.81301 0.009844 0.037264 -3.28549 

125 P02652 Apolipoprotein A2(APOA2) -0.58763 10.77286 -4.92668 5.53E-05 0.001192 1.713237 

126 P28827 Protein tyrosine phosphatase, receptor type M(PTPRM) -0.58912 12.7266 -3.2845 0.003236 0.018495 -2.23595 

127 O75071 EF-hand calcium binding domain 14(EFCAB14) -0.59242 10.65819 -3.39234 0.002493 0.015174 -1.98726 

128 Q16819 Meprin A subunit alpha(MEP1A) -0.59883 11.42098 -4.19609 0.000343 0.003945 -0.07085 

129 A0A0B4J1X5 Immunoglobulin heavy variable 3-74(IGHV3-74) -0.6033 11.00144 -3.06871 0.005417 0.025852 -2.72465 

130 P02655 Apolipoprotein C2(APOC2) -0.60503 10.88546 -3.70153 0.00117 0.009089 -1.26103 

131 P29279 Connective tissue growth factor(CTGF) -0.61798 11.69531 -2.69598 0.012866 0.045714 -3.53444 

132 P05019 Insulin like growth factor 1(IGF1) -0.62037 11.9662 -2.86113 0.008809 0.03507 -3.18164 

133 P01871 Immunoglobulin heavy constant mu(IGHM) -0.62351 11.57409 -3.21532 0.003821 0.01985 -2.39398 

134 P04070 Protein C, inactivator of coagulation factors Va and viiia(PROC) -0.62696 11.30821 -2.843 0.009186 0.035902 -3.22088 

135 Q16661 Guanylate cyclase activator 2B(GUCA2B) -0.62902 10.9391 -3.03671 0.005843 0.027054 -2.796 

136 A0A0C4DH34 Immunoglobulin heavy variable 4-28(IGHV4-28) -0.6303 11.62495 -3.00626 0.006277 0.028709 -2.8636 

137 O94874 UFM1 specific ligase 1(UFL1) -0.64395 12.50055 -2.38472 0.025682 0.077591 -4.16855 
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138 Q9GZM5 Yip1 domain family member 3(YIPF3) -0.6469 13.28264 -3.96615 0.000608 0.00602 -0.62749 

139 P02452 Collagen type I alpha 1 chain(COL1A1) -0.65444 11.47643 -2.60784 0.015698 0.052246 -3.71834 

140 P55290 Cadherin 13(CDH13) -0.65518 11.64084 -4.76546 8.26E-05 0.00153 1.319147 

141 P35443 Thrombospondin 4(THBS4) -0.6732 11.07112 -4.06477 0.000475 0.005063 -0.38931 

142 P81605 Dermcidin(DCD) -0.6733 11.02346 -5.27171 2.35E-05 0.000559 2.553952 

143 P02654 Apolipoprotein C1(APOC1) -0.69471 11.35837 -3.27424 0.003317 0.018591 -2.25945 

144 Q08554 Desmocollin 1(DSC1) -0.6954 11.37751 -3.00237 0.006335 0.028709 -2.87221 

145 P39059 Collagen type XV alpha 1 chain(COL15A1) -0.70432 11.43651 -3.86169 0.000788 0.006847 -0.87864 

146 P23083 Immunoglobulin heavy variable 1/OR15-1 (non-functional)(IGHV1OR15-1) -0.71466 11.9046 -3.7455 0.00105 0.008601 -1.15642 

147 P02144 Myoglobin(MB) -0.73068 11.62824 -2.98948 0.00653 0.028975 -2.90074 

148 Q76M96 Coiled-coil domain containing 80(CCDC80) -0.73838 12.02684 -2.55971 0.017482 0.056419 -3.81736 

149 P07602 Prosaposin(PSAP) -0.7491 10.98681 -2.41544 0.024024 0.073955 -4.10795 

150 Q15828 Cystatin E/M(CST6) -0.75097 10.80648 -4.28858 0.000272 0.003619 0.154158 

151 P12273 Prolactin induced protein(PIP) -0.75136 10.57002 -3.12039 0.004792 0.023446 -2.60878 

152 P01766 Immunoglobulin heavy variable 3-13(IGHV3-13) -0.75766 12.01079 -2.9479 0.007198 0.030663 -2.99233 

153 O60888 Cuta divalent cation tolerance homolog(CUTA) -0.7684 11.56088 -4.52419 0.000151 0.002381 0.729151 

154 Q15166 Paraoxonase 3(PON3) -0.76959 10.96242 -3.82051 0.000872 0.007431 -0.9773 

155 Q9UMX5 Neudesin neurotrophic factor(NENF) -0.77554 11.79971 -5.76092 7.09E-06 0.000336 3.733913 

156 P01614 Immunoglobulin kappa variable 2-40(IGKV2-40) -0.82224 11.38278 -3.25202 0.003499 0.018631 -2.31029 

157 Q07507 Dermatopontin(DPT) -0.83765 12.76099 -2.41487 0.024053 0.073955 -4.10907 
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158 P06727 Apolipoprotein A4(APOA4) -0.83936 11.74539 -4.32277 0.00025 0.003431 0.237458 

159 Q6UXH0 Angiopoietin like 8(ANGPTL8) -0.8562 12.12427 -3.26175 0.003418 0.018631 -2.28805 

160 Q14623 Indian hedgehog(IHH) -0.88224 11.28212 -2.9007 0.008036 0.033235 -3.09564 

161 P30990 Neurotensin(NTS) -0.88902 11.8986 -3.62616 0.001409 0.009525 -1.43967 

162 A0A0C4DH31 Immunoglobulin heavy variable 1-18(IGHV1-18) -0.92856 10.17756 -3.28915 0.0032 0.018495 -2.22527 

163 P02656 Apolipoprotein C3(APOC3) -0.96146 11.10896 -5.4383 1.56E-05 0.000448 2.957709 

164 Q7KZ85 SPT6 homolog, histone chaperone(SUPT6H) -0.99713 13.77179 -4.27649 0.00028 0.003619 0.124715 

165 A0A0A0MS14 Immunoglobulin heavy variable 1-45(IGHV1-45) -1.0075 11.33805 -3.60953 0.001467 0.009767 -1.47896 

166 P02753 Retinol binding protein 4(RBP4) -1.03432 11.32415 -6.72774 7.14E-07 0.000101 5.998467 

167 Q13103 Secreted phosphoprotein 2(SPP2) -1.04046 11.80969 -5.46475 1.46E-05 0.000448 3.021642 

168 A0A0C4DH29 Immunoglobulin heavy variable 1-3(IGHV1-3) -1.07394 10.80289 -3.58914 0.001543 0.01011 -1.52705 

169 A0A0B4J1V2 Immunoglobulin heavy variable 2-26(IGHV2-26) -1.08847 12.20977 -2.65767 0.014033 0.048208 -3.61476 

170 A0A075B6H9 Immunoglobulin lambda variable 4-69(IGLV4-69) -1.12357 11.12487 -4.4115 0.0002 0.002863 0.453873 

171 P01742 Immunoglobulin heavy variable 1-69(IGHV1-69) -1.19345 11.96599 -3.04963 0.005667 0.026529 -2.76722 

172 P23280 Carbonic anhydrase 6(CA6) -1.20511 11.18524 -4.84817 6.72E-05 0.001302 1.521391 

173 A0A0B4J1U7 Immunoglobulin heavy variable 6-1(IGHV6-1) -1.22754 13.11368 -3.63733 0.00137 0.009525 -1.41325 

174 Q6DHV5 Coiled-coil and C2 domain containing 2B(CC2D2B) -1.36697 13.59498 -4.92173 5.60E-05 0.001192 1.701144 
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Annexe 6. Common proteins with reported signatures 
 

Authors Year Ethnicity Proposed Candidates 

Agranoff, D., et al. (114) 2006 African SAA1 

TTR 

CRP 

Neopterin 

Liu, J., et al. (121) 2013 Chinese Four peaks (2554,6; 4824,4; 5325,7; and 8606,8 Da) One of them identified as Fibrinogen 

Song, S. H., et al. (150) 2014 No information Samples 

collected in Seoul 

SERPINA1 

SERPINC1 

Xu, D. D., et. al. (36) 2014 Chinese APOCII 

CD5L 

HABP2 

RBP4 

Xu, D., et al. (119) 2015 Chinese S100-A9 

SOD3 

MMP9 

Achkar, J. M., et al. (117) 2015 Asian/Black/Hispanic/ 

Caucasian (NYC) 

CD14, SEPP1, SELL, TNXB, LUM, PEPD, QSOX1, COMP, APOC1 (HIV-) 

CD14, SEPP1, PGLYRP2, PFN1, VASN, CPN2, TAGLN2, IGFBP6 (HIV+) 

Li, C., et al. (151) 2015 Chinese SHBG 

Jiang, T., et al.,(152) 2017 Chinese SAA 

PROZ 

C4BPB 

Cheng, C., et al. (153) 2018 Chinese ENG (HIV+) 
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