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Abstract

Interleaving heavy micro-fibre veils, commonly used to improve interlaminar
fracture toughness, severely compromises tensile and compressive properties. To
reduce the trade-off, this study interleaved two different types of light (4 g/m?)
co-polyamide veils into a thin-ply quasi-isotropic baseline laminate. Sub-micron
resolution X-ray micro-computed tomography provided insight into the
after-manufacturing state of the veil fibres as well as into the fracture process zone of
mode-I interlaminar fracture toughness specimens. The veil fibre diameter was the
key parameter in determining the tensile properties (the veil with thinner fibres
avoided resin accumulation at the interfaces and left the baseline properties
unaffected). Both veils decreased the compressive strength by up to 9%. Mode-I crack
propagation was controlled by the adhesion between the veil fibres and resin. Veils
fibres with the higher adhesion deflected crack propagation to the surrounding 0°
plies, which improved mode-I initiation and propagation interlaminar fracture
toughness (by 101% and 43%).
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1. Introduction

In an effort to reduce costs, the airline industry is increasingly considering thinner
composite laminates manufactured using out-of-autoclave methods such as resin
transfer moulding (RTM). However, infusion techniques demand low-viscosity
inherently brittle resins, which lowers the component’s damage tolerance [1]. This is
even more accentuated when laminates are made of “thin-plies” (i.e. plies thinner
than 125 pm [2]). Thin-ply laminates are a new generation of composite materials
that, despite increasing certain mechanical properties [2-15], entail brittle damage
mechanisms compared to their conventional-ply counterparts. [6, 16—20].

From an industrial point of view, brittleness can be reduced with toughening
methods that are cheap and easy to incorporate during manufacturing. Nash et al. [1]
wrote a comprehensive review on toughening methods that use a thermoplastic
modifier. They classified them into two groups: bulk resin modification and
interlaminar toughening. The first group increases the fracture toughness of the resin
by dispersing/dissolving external agents, which normally increases the viscosity. The
second group incorporates a toughening system such as thermoplastic particles or thin
films in the interfaces. However, the particles migrate during resin infusion while the
films inhibit through-thickness resin flow. To overcome these difficulties, this study
used micro-fibre “non-woven veils” i.e.; thin heterogeneous networks made of
dispersed micro-fibres [1, 21-23]. The main advantages are that non-woven veils are
commercially available, relatively cheap, can be manually placed during the lay-up
and allow resin infusion through the z-direction (the veils are permeable) [1].

Interleaving polyamide (PA) veils improves the mode-I interlaminar fracture
toughness (Gic) of the non-interleaved laminate [1, 24-32]. Kuwata [33] explained
that a critical parameter for Gic performance is the adhesion between veil fibres and
matrix. Veil fibres with a low adhesion pull out from the matrix and dissipate part of
the fracture energy by fibre bridging (as observed in [1, 22, 24-32, 34]). Veil fibres

with a higher adhesion deflect crack propagation away from the veil, which may leave
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the baseline Gj¢ unaffected [29]. Finally, some authors report a mixture of
interlaminar and interfacial crack growth [27, 30-32, 35].

The Gy¢ of a given interleaved system improves by increasing veil fibre areal weight
(i.e. weight per unit area of veil) [23, 26, 32, 35]. For example, Beylergil et al. [32]
reported a Gic improvement of 231% and 737% by interleaving 17 or 50 g/m?
polyamide veils. However, in materials science, every enhancement has an associated
cost, in particular toughness and strength are mutually exclusive [36]. Beylergil et al.
[32] characterised the tensile and compressive properties of a carbon/epoxy [0°]4
laminate interleaved with the 17 or 50 g/m? PA veils in every interface. Both the
tensile and compressive moduli decreased with improved veil fibre areal weight (Eq;
by up to 34%, Eg by up to 23.70%, G5 by up to 21% and the compressive modulus
by up to 13%), and likewise the tensile and compressive strength (by up to 41% and
13%). The authors attributed the reduction of tensile properties to the increase in
laminate thickness brought about by the veils (both veils increased nominal thickness
by up to 38%), which also agrees with the tendencies reported elsewhere [24, 34, 37].

Based on the observations, a practical balance between laminate thickness, mode-I
interlaminar fracture toughness and in-plane mechanical properties should rely on
veils with relatively low fibre areal weight. This study interleaved two types of light
co-polyamide veils into a thin-ply quasi-isotropic baseline laminate. Both veils had a
fibre areal weight of 4 g/m? which, according to the author’s knowledge, is the lightest
reported for interlaminar fracture toughness testing (values range from 7 to 50 g/m?
[1, 22-32, 34, 35, 37]). Sub-micron resolution X-ray tomography (uCT) provided
comprehensive insight into the after-manufacturing state of the veil fibres as well as
into the fracture process zone of the double cantilever beam (DCB) specimens. One of
the interleaved configurations enhanced the baseline Gi¢ with no associated reduction
of the tensile properties. Besides this, a previous study demonstrated a compression

after impact (CAI) strength improvement of up to 28% for impact at 14 J [38].
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2. Materials and Methods

2.1. Materials

The materials used in this experimental program were the (0°/45°) and (0°/—45°)
warp-knitted non-crimp fabrics (NCFs) made of T700 GC carbon and 35 dtex
polyester yarns, commercialized by Chomarat under the brand name C-PLY™. The
fibre areal weight of the NCFs was 134 g/m?, corresponding to 67 g/m? per
unidirectional ply. NCFs reduce labour costs because they lay several layers at the
same time, which is ideal for handling thin-plies [39].

Two types of CoPA non-woven veils were investigated: V; and V,. Both veils had a
similar fibre areal weight (4 g/m?) but different veil fibre melting temperature and veil
fibre diameter. The melting point of V, was higher than the curing temperature and
slightly lower than the laminate’s post-curing temperature (the curing and post-curing
temperatures were 170 °C and 180 °C, respectively). In contrast, the melting point of
V, was significantly higher than 180 °C. The fibre diameter of V; and V, was 37+4
pm and 1142 pm, respectively, where + means standard deviation (at least 50 fibres
were measured using an optical microscope). For a given veil fibre areal weight, the
veil fibre diameter is the parameter that intuitively controls the surface area covered
by veil fibres (the thinner the fibres, the more closely packed the network and the
higher the surface area covered by veil fibres is [23]). This tendency was verified using
an optical microscope. First, different regions of V; (i = 1,2) were inspected under
similar magnification (at least 15 areas of 1 cm? were observed per veil). Then, the
fibres were segmented from the background using Image J [40]. Finally, the
percentage area covered by Vi and V, fibres was calculated: 2242% and 654+5%. No
further details of the veils can be disclosed due to confidentiality.

Laminates were manufactured by resin transfer moulding using HexFlow® RTMG6
epoxy resin. The infusion temperature and pressure were 120 °C and a maximum of 8
bars, respectively. After infusion, the laminates were cured at 170 °C for 90 min and,

once cooled, post-cured at 180 °C for 120 min. (For further details of the



O JoyUdbd WM

OO O OO U U OO BB DRSS DNWWWWWWWWWWNDNDNDNDNDNDNDMNNNMNNNNRERERRRRRRERRRE
GO WNRPFPOWOWOJOOUDd WNEFEFOWOW-TOOUP WNRPFPOWO®JIOHUDWNREPOOWOJOUd WNE OWOWIO U D WNDEFE O W

manufacturing process refer to [38]). Two types of quasi-isotropic baseline laminate
were designed. For in-plane testing, a [(45°/0°)/(—45°/90°)]4s laminate approximately
2.2 mm thick. For mode-I fracture toughness testing, a [(45°/90°)/(—45°/0°)]ss
laminate of approximately 3.7 mm thickness. The former is the stacking sequence
used for the CAI study [38] (which is also compatible with standards for tension and
compression testing [41, 42]). The latter is in agreement with interlaminar fracture
toughness standards [43, 44]. Both configurations were interleaved with a different
number of veils. For mode-I testing, a single veil was placed at the centre of the stack.
For in-plane testing, a single veil was incorporated into every interface. Table 1
defines the notation and stacking sequence of the laminates. The fibre volume
fractions of LTHINp, LV1p and LV2;p in-plane laminates were 53.50£1.60%,
53.50+1.70% and 53.70+1.30%, respectively (five samples were measured per
laminate following the standard EN 2564:1998 [45]). The average thicknesses of tested
specimens were 2.3040.20, 2.20 and 2.20 (the standard deviations of LV1p and LV2ip
were negligible and therefore were not reported). The fibre volume fractions of
LTHINg,., LV1g,, and LV24,, mode-I laminates were 50.30£1.90, 49.70£1.60 and
53.3040.20, respectively (three samples were measured per laminate following the
standard EN 2564:1998 [45]), where the higher fibre volume fraction of LV2,,
resulted in the lowest laminate thickness (the average thicknesses of tested specimens
were 3.8040.20, 3.90 and 3.50+0.20 mm). Finally, based on the density values
calculated using the Archimede’s principle [45], the increase of weight brought about

by V; veils (i = 1,2) was in all the cases lower than 0.5%.

2.2. Experimental tests

Compression tests were performed using an electromechanical MTS INSIGHT®100
testing machine (MTS systems corporation, USA) with a 100 kN load cell. 12.70 x
140 mm (width and length) specimens were tested using a compression fixture in
accordance with the ASTM D6641/D6641M-14 standard [41]. The cross-head

displacement rate was 1.3 mm/min. The compression strength was calculated by
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dividing the maximum load to failure by the specimen’s cross-sectional area measured
at the gage region. A minimum of 6 specimens were tested per material system.

Tensile tests were carried out using a servo-hydraulic MTS INSIGHT®?250 testing
machine (MTS systems corporation, USA) with a 250 kN load cell. 25 x 210 mm
(width and length) specimens were tested in accordance with the ASTM
D3039/D3039M-14 standard [42]. 50 mm long glass fibre/epoxy tabs were bonded to
the coupon ends. The cross-head displacement rate was 2 mm/min. To monitor for
undesirable bending (in all the experiments less than 3%), two strain gauges were
affixed on opposite faces of each specimen. The tensile strength was calculated by
dividing the maximum load to failure by the specimen’s cross-sectional arca measured
at the gage region. The elastic modulus was estimated from the slope of a linear
regression in the elastic regime of the stress strain curve (in the range of 0.10-0.30%
strain), where the strain was calculated as the average reading of the two strain
gauges. A minimum of 8 specimens were tested per material system.

Mode-I interlaminar fracture toughness experiments were performed using an
electromechanical MTS INSIGHT®?5 testing machine (MTS systems corporation,
USA), a 5 kN load cell and the side clamped beam hinge system designed by Renart
et al. (2011) [46]. The width and length of the DCB specimens were 25 and 250 mm.
The length and thickness of the teflon insert were approximately 70 mm and 15 pm.
Specimens were pre-cracked and subsequently loaded following the methodology
described in the ASTM D5528/D5528-13 and ISO 15024 standards [43, 47]. The only
deviation from the standards was the use of the side clamped beam hinges instead of
loading blocks (the hinges are suggested by AITM1-0005 Airbus Internal Test Method
[48]). The loading and unloading rates were 5 and 25 mm/min. Crack propagation
was recorded using an optical system consisting of a high-resolution video camera
(EOS REBEL t2I/EOS 550D, Canon Inc, Japan) and a long distance microscope
(Questar QM 100 MK III, Questar Corporation, USA). Data were reduced using the
modified compliance calibration method [43, 47]. Mode-I initiation interlaminar

fracture toughness (Grpit) was computed using the force and displacement measured
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at the 5% /max point after pre-cracking [43, 47]. Mode-I propagation interlaminar
fracture toughness (Giprop) Was the average toughness of the propagation increments
between 20 and 40 mm (where the R-curves were consistently flatter in all of the
batches, Fig. 6).

The entire testing matrix was performed at 2342 °C and 50+5% humidity in the
mechanical testing laboratory at the University of Girona. The laboratory holds

[SO17025 and NADCAP (Non-Metallic Materials) accreditations.

2.3. X-ray tomography inspection

To gain understanding into the after-manufacturing state of veil fibres (including
the potential debonding between veil fibres and the surrounding resin), LTHINp,
LV1p and LV2;p were inspected using sub-micron resolution pCT (LV1p and LV2;p
incorporate one veil into every interface). Inspections were performed with the Zeiss
160 kVp Versa 510 scanner at the pu-VIS X-ray Imaging Centre, Faculty of
Engineering and Physical Sciences, University of Southampton (the equipment has a
2000 x 2000 pixels detector). The scan set-up was altered to use a 20X magnifying
lens. Prior to inspection, 1 x 1 mm (width and thickness) rectangular parallelepipeds
were cut/polished from pristine laminates (high-resolution tomography requires
inspecting small volumes and yet, ideally, the object should rotate fully within the
field of view FOV [49]). The scanning parameters were 60 kV, 83.30 pA, 5 W, 7 s
exposure time, 4001 projections and 783 nm pixel size, corresponding to an FOV of
approximately 800 nm (to reduce noise and inspection time, the detector was used in
the 2 x 2 binning mode). The source to detector and source to object distances were
16.85 and 9.92 mm, respectively, and the specimens were rotated through 360° during
the acquisition of the 4001 projection images. It is worth noting that the incident
energy was relatively low (60 kVp) in order to enhance the contrast between the CoPA
veil fibres and the epoxy matrix (the linear attenuation coefficient of the constituents
increases with decreased incident energy [49]), which reduced the flux of photons in

the detector and, consequently, increased the inspection time (around 10 h per scan).
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The fracture process zone (FPZ) of the DCB specimens was inspected “ex-situ”
using the Versa system. Prior to inspection, 2 x 2 mm (width and thickness)
rectangular parallelepipeds were cut/polished from the DCB samples (away from the
specimens’ free-edges). A fast “scout” low-resolution inspection was performed to
identify the location of the FPZ (the shape of the matchsticks and the location of the
FPZ are sketched in Fig. 1). Once the region of interest had been identified, the scan
set-up was altered to use a 4X magnifying lens and a higher-resolution scan was
performed. The scanning parameters were 80 kV, 87.5 uA, 7 W, 2 s exposure time,
2001 projections, 1.22 um pixel size and 1.24 mm FOV (the detector was used in the
2 x 2 binning mode). The source to detector and source to object distances were 82.35
and 14.90 mm, respectively, and the specimens were rotated through 360° during the
acquisition of the 2001 projection images. Each inspection lasted for approximately 2
h. In total, at least 3 different LTHIN¢,, and LV1g,, specimens (some of them in
several positions through the width) as well as all of the LV24,, DCB samples (two of
them in multiple locations) were inspected.

During the microstructure assessment, the contrast between V; fibres and the
epoxy resin was less satisfactory than expected (despite the low incident energy,
polyamide and epoxy have similar chemical constituents, plus the veils being very
light). To unambiguously observe V; fibres, one tested DCB LV1g,, specimen was
impregnated with a staining agent and subsequently scanned with the European
Synchrotron Radiation Facility’s ID19 Beamline (ESRF, Grenoble). The aim was that
the contrast agent would impregnate and reveal the V; fibres interacting with the
crack tip. The inspection parameters were 26 keV X-ray energy, 90 ms exposure time,
3001 projections, 650 nm pixel size, approximately 2 mm FOV and roughly 5 min
total inspection time (the specimens were rotated through 360° during the acquisition
of the 3001 projection images).

To facilitate the understanding of the images, some of the uCT stacks were
post-processed using “Trainable Weka Segmentation” (a machine learning plugin from

Image J [50]). The purpose was to classify the constituents of each material using a
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consistent colour code (Fig. 2): yellow for the 0° carbon fibres, cyan for the £45°
carbon fibres, orange for the 90° carbon fibres, green for the NCF stitching yarn
fibres, purple for the V; veil fibres, red for the V, veil fibres and black for the cracks
within the DCB specimens. It is worth noting that, despite their uCT low contrast,
the shape of the V, fibres could be recognised because of the unequivocal debondings
between the V; fibres and the resin, which were also painted in black (compare Figs.

5 and A.1).

3. Results

3.1. Microstructure

The purpose of NCF stitches is not structural but rather to hold two layers
together. However, the stitching yarns cause deviation of the fibres from their
unidirectional orientations. During resin infusion, the fibre-free regions provide
preferential flow paths, resulting in the so-called “resin pockets” after laminate
consolidation [51]. Fig. 3 describes the types of resin pockets induced by the 33 dtex
polyester (PE) yarns that, using a warp-knitting pattern, stitch together the layers of
the (0°/445°) C-PLY™ NCFs. For clarity, pCT images were taken from a
[(45°/0°)/(—45°/90°)]4s laminate made with standard-ply C-PLY™ NCFs (the size of
the resin pockets increases with increased ply-thickness [19]). The orientation of the
resin pockets follows the fibre orientation of the stitched ply forming, in the £45°
layers, a “resin ellipsoid” (also known as “fish eye” [52]). In the 0° ply, the
overlapping of several distortions creates a “resin channel” that separates the 0° tows.

Figs. 4-8 illustrate the post-processed uCT inspections of the pristine LTHINp,
LV1p and LV2;p specimens (for comparative purposes, the corresponding raw images
are included in Appendix A). The tomographies revealed no evidence of porosity in
any of the laminates. Away from resin pockets, LTHINp presented a closely packed
microstructure (Fig. 4). In contrast, interleaving V; (the veil with a higher fibre
diameter and a more “open” architecture) increased the thickness of the resin rich

interfaces (Fig. 5). V; fibres consistently displayed debonding with the surrounding

9
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matrix (refer to the black decohesions in Fig. 5). In addition, some of the V; fibres
deformed the adjacent carbon plies (Fig. 6) —the fibre is visible because it was
impregnated with a contrast agent. Interleaving Vo (the veil with the thinner fibres
and a more packed architecture) only impaired the interface thickness in regions
where the V fibres agglomerated (refer to the red fibres in Fig. 7a). Contrary to the
V fibres, the Vs fibres did not present debonding with the surrounding resin (refer to
the red fibres in Fig. 8b). Despite the melting point of Vy being slightly lower than
the laminate’s post-curing temperature, most of the V, fibres conserved their initial
shape after manufacture (Fig. 8b). However, the Vj fibres lying close to a carbon ply
displayed multiple cracks (Fig. 8a). Finally, it is worth noting that, regardless of
which material system was inspected, the stitching yarn fibres also featured debonding

with the surrounding resin (for an example, refer to the green fibres in Fig 8b).

3.2. Structural response

Fig. 9 summarizes the tensile and compressive properties of LTHINp, LV1p and
LV2;p laminates. The maximum tensile loads experienced were 4941.40, 46.60+1.90
and 48.60+1.90 kN, respectively (where £+ means standard deviation). LV2jp
displayed a similar tensile strength, strain-to-failure and longitudinal modulus as that
of LTHINp. In contrast, LV1ip decreased the elastic modulus and ultimate strength
by 4% and 5%. LV2;p and some of the LV1p tensile specimens changed the failure
mode from a single crack to several cracks propagating across the width of the
non-tabbed region. Regarding the compressive test, the maximum loads experienced
by LTHINp, LV1p and LV2;p batches were 15.204+1, 14+0.90 and 13.104+1 kN,
respectively. Interleaving both types of veil deteriorated the average compressive
strength by up to 9% in the case of LV2p (and yet most of LV2ip values lay within
the scatter of LTHIN;p).

Fig. 10 presents the force response and average R-curves of the LTHINg, ., LV1g,,
and LV24,, DCB specimens. Fig. 11 includes the average mode-I initiation (Grinit)

and propagation (Giprop) interlaminar fracture toughness values. The load

10
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displacement curves of LI'HIN¢,, displayed a range of shapes and propagation forces;
the curves with a lower maximum force exhibited a jagged shape (i.e. with multiple
load drops), whereas those with higher propagation forces were smoother. The curves
of LV1g,, featured a similar tendency to those of LTHIN,, albeit with higher
variation and more intensified load oscillations. The force response of LV24, .
evidenced less variation and smaller load drops than those of LTHIN¢,, and LV1g,,
resulting in the highest Griniy and Grprop 0f all the systems. LV2¢,, enhanced Grinie and
Giprop by 101% and 43% compared to LTHINg,.. LV1g,, only improved Gt by 12%.

3.3. Fracture process zone

Figs. 12-13 illustrate the post-processed pCT inspections performed in the FPZ of
the LTHINg,., LV1g,, and LV24,, DCB specimens (for the sake of comparison, the
corresponding raw images are included in Appendix A). The crack grows towards the
reader. In particular, Figs. 12a and 13 summarize the mode-I propagation
mechanisms of LI'HINg,, when inspected in the different y-positions of the same
specimen (refer to the coordinate system defined in Fig. 1). In Fig. 12a, the crack
propagates across the 0°/0° interface (the 0° carbon fibres and the crack are coloured
yellow and black, respectively). In Fig. 13, the crack deviates from the 0°/0° interface
through the debonding of the stitching yarn fibres (the yarn fibres are coloured green).
The right part of Fig. 13 displays how the unbalanced crack preferred to propagate
inside a 0° carbon tow rather than continuing to face the stitching yarn fibres of the
0°/0° interface. Regarding LV1g,., the crack interacted with both V; fibres and
stitching yarn fibres and yet it was confined to the interfaces (Fig. 12b). (V; fibres are
coloured purple). In contrast, the crack of LV2¢,, propagated inside the 0° layers
(Fig. 12¢) —except when it interacted with the NCF yarn fibres.

4. Discussion

The laminates interleaved with V; or Vy veils presented no evidence of porosity as

well as the same nominal thickness and fibre volume fraction as the non-interleaved

11
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baseline laminate (e.g. the average thicknesses of LTHINp, LV1ip and LV2p tested
specimens were 2.3040.20, 2.20 and 2.20, and their average fibre volume fractions
were 53.504+1.60%, 53.50+1.70% and 53.70+1.30%, respectively). Laminate thickness
was preserved because of the combination of low veil fibre areal weight (4 g/m?) and
RTM manufacturing: all of the laminates fitted within the same mould. Incorporating
the same amount of carbon fibre within a fixed volume results in a similar fibre
volume fraction as measured by acid digestion methods [45]. The lack of porosity is
also attributed to the low fibre areal weight of the veils (light veils allow
through-thickness resin infusion [34, 53]).

Interleaving V; increased the thickness of the resin interfaces. In contrast,
interleaving Vs only increased interface thickness in regions where Vy fibres
agglomerated (compare Figs. 4-5 and 7). Despite the melting temperature of V, being
slightly lower than the laminate’s post-curing temperature, most of the Vj fibres
maintained their original shape after manufacture (refer to the red fibres in Fig. 8b).
However, Vs fibres lying close to a carbon tow displayed multiple cracks (Fig. 8a).
LV1p accumulates resin in the interfaces because the fibre diameter of Vi (37 pm) is
much higher than the interface thickness of LTHIN;p (approximately 10 pum). V,
fibres conserve their inital shape because of the competition between fibre melting and
resin gelification (when Vj fibres start to yield, the resin is viscous enough to lock in
the position of the fibres [21]). The cracks in veils Vy develop because the stiff carbon
tows provide extra-stiffness to the system and constraint further the thermal
expansion of Vy fibres (thermal stresses dissipate in the form of cracks). Therefore,
the only possible movement is V, fibres diffusing along with resin infusion (before
curing [21, 22]), which would explain the agglomerations observed in LV2jp (Fig. 7a).

V, fibres consistently displayed debonding with the surrounding matrix (refer to
the purple fibres in Figs. 5-6). The same observation applied for NCF stitching yarn
fibres (e.g. the green fibres in Fig. 8b). In contrast, the V, fibres displayed almost no
debonding with the resin (e.g. the red fibres in Fig. 8b). Based on the observations, it

is clear that V, fibres display a qualitatively higher adhesion with epoxy than V; or
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stitching yarn fibres do.

LV2ip displayed a similar tensile strength, strain-to-failure and longitudinal
modulus as that of LTHINp. In contrast, LV1;p reduced the tensile modulus and
ultimate strength by 4% and 5% (Fig 9). The tendencies observed are connected to
the microstructure of the materials. The tensile properties of LV2;p are similar to
these of LTHINp because both laminates have a similar nominal thickness, fibre
volume fraction and (overall) interface thickness, which is not the case of LV1p (the
thick V; fibre increase significantly interface thickness, Figs. 5-6).

Both LV1p and LV2;p decreased the compressive strength of the baseline laminate
(Fig. 9). The compressive strength depends on the ability of the matrix to prevent
fibre buckling [34]. Compressive loads rotate the carbon fibres and generate shear
stresses that, in turn, further kink the fibres until catastrophic buckling occurs [54].
Therefore, interleaving thermoplastic veils likely decreased the pristine shear strength
of the matrix at the low strain rates of the test [38, 55]. However, it is worth noting
that LV2p enhanced CAI strength by up to 28% for impact at 14 J [38]. The effect
interleaving has on matrix shear strength will be addressed in further investigations.

LTHINg

o LV1g,, and LV2q,, featured different crack propagation mechanisms
(Figs. 12-13). Mode-I crack growth is mainly governed by the adhesion between the
fibres (the stitching yarn fibres, the V, fibres or the Vs fibres) and the matrix [33].
Fibres with a suspected low adhesion (the yarn fibres and the V, fibres) promote
crack propagation by fibre-resin debonding [56]. Fibres with a suspected higher
adhesion (the Vj fibres) avoid interacting with the crack [29, 56]. Therefore, it seems
logical that the crack of LTHIN,, interacts with the yarn fibres (the green fibres in
Fig. 13), the crack of LV1g,, interacts with the V; fibres (the purple fibre in Fig.
12b) and the crack of LV2¢,, deflects away from the veil (particularly into the 0°
layers, Fig. 12c). As a result of these interactions, the crack of LV1g,., confines itself
to the 0°/0° interface (Fig. 12b), the crack of LV24,., propagates across the 0° plies
(Fig. 12c) and the crack of LTHIN,, meanders among the 0°/0° interface and the 0°

layers (some of the stitching yarns diverted crack propagation from the resin interlayer
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into the 0° plies, Figs. 12a and 13).

LV2¢, enhanced Grini and Giprop by 101% and 43% compared to LTHINg,,,
whereas LV1¢,, only enhanced Gy by 12% (Fig. 11). The FPZ observations suggest
that V; fibres dissipate fracture energy as they interact with the crack (Fig. 12b).
Dissipation mechanisms probably include fibre deformation and fibre pull-out from
the matrix [33]. However, LVl did not affect the the baseline Grpyy,p because of the
low number of V; fibres interacting with the crack (the surface area covered by V;
was only 22%) [23]. The 101% Grinit improvement displayed by LV2,, is explained if,
during initiation, the crack required extra energy to circumvent Vj fibres and
penetrate into the 0° plies. This explanation correlates with the observations of the
FPZ and would justify why the improvement of Grpop is smaller than that of Gripit
(43% versus 101%): intralaminar crack propagation is independent of Vs fibres (Fig.
12¢).

The tendencies observed in LV2¢,, are contrary to standard-ply studies where the
veil fibres with higher adhesion provide the lower Gjc values. Saz-Orozco et al. [29]
reported that a 45 g/m? polyethylene terephtalate veil deflected crack initiation from
the resin interlayer (full of veil) to the interfacial region between resin and structural
fibres (depleted of veil), which had no effect on Giprop and decreased Grinit by 32%.
The difference is that LV2,, deviated crack propagation not to the interfacial but to
the intralaminar region (i.e. the 0° plies in Fig 12c), which increased the initiation
energy. This could be the consequence of several factors such as the smaller interface
thickness of thin-plies, the shape distortions induced by NCF stitches and the low
fibre areal weight and fibre diameter of V, preventing resin accumulation in the
interfaces (there is no such resin layer depleted of veil).

Overall, interleaving the veil with lower fibre diameter (Vy) resulted in a reasonable
trade-off between Gic and in-plane mechanical properties —together with an increase
of the baseline CAI strength [38]. Tsotsis [21] reasoned that, for a given veil fibre
areal weight, reducing veil fibre diameter increases the surface area covered by veil

fibres, which potentially increases the veil’s performance (there is a higher number of
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veil filaments interacting with crack propagation). This is in line with the promising
results displayed by the increasingly attractive “nano-fibre” veils: a new generation of
thermoplastic reinforcements whose fibre diameter is approximately 1000 times
smaller than that of Vo [57-61]. For an example, the PA nano-fibre veils used by
Beckermann [58] or Beylergil et al. [59] improved interlaminar fracture toughness and
several mechanical properties with no significant increase of laminate thickness (veil
fibre diameter was not reported for Beckermann and 87 nm for Beylergil). On the
negative side, the main factor limiting the use of nano-veils on an industrial scale is
their cost [60]. The price of the polypropylene micro-fibre veils used by Zhu [62] was
around 7 €/Kg. In contrast, the PA nano-fibre veil recently developed by
Beckermann [58] would have raised the costs by three orders of magnitude
(approximately 7000 €/Kg [63]). In this sense, V5 micro-fibre veil offers the perfect
balance between price, mechanical properties, commercial availability and ease of
manufacture, ideal to toughen aeronautical thin-ply laminates —for further
information regarding the mechanical response of thermoplastic nano-fibre veils, the

reader is referred to the following references [60, 64-74].

5. Conclusions

This study interleaved two different types of 4 g/m? co-polyamide veils (named V
and V,) into a thin-ply quasi-isotropic baseline laminate. The combination of the low
veil fibre areal weight and a resin transfer mould was crucial to preserve laminate
thickness and fibre volume fraction: baseline and interleaved configurations fitted
within the same mould. None of the laminates displayed porosity, evidencing that
light veils allow through-the-thickness resin flow.

Given the similar laminate thickness, the veil fibre diameter was the key parameter
in determining the tensile properties. The veil with thicker fibres (V;) increased the
thickness of the resin interfaces and reduced the tensile properties (elastic modulus
and ultimate strength were reduced by 4% and 5%). In contrast, the veil with the

thinner fibres (Vy) avoided resin accumulation in the interfaces and displayed the
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same tensile strength, strain-to-failure and longitudinal modulus as the baseline
laminate did. Both types of veil decreased compressive strength by up to 9% because
of an increase in the ductile phase surrounding the carbon plies, which favours fibre
buckling.

Mode-I interlaminar crack propagation was mainly controlled by the adhesion
between fibres (the non-crimp fabric yarn fibres, the V; fibres and the Vj fibres) and
the resin. Fibres with a suspected low adhesion (the yarn fibres and the V; fibres)
promoted crack growth by debonding from the resin. Fibres with a higher adhesion
(the Vj fibres) deviated crack growth away from the veil. In the non-interleaved
laminate, the crack deflected from the 0°/0° interface through debonding of the
stitching yarn fibres. In the laminate interleaved with Vi, the crack confined into the
0°/0° interface through interaction with the V, fibres (fracture toughness was not
improved because the veil V; contained few fibres). In the laminate interleaved with
Vs, the crack deviated from the 0°/0° interface to the surrounding 0° plies which, in
the material system studied, resulted in the highest mode-I initiation and propagation
interlaminar fracture toughness (101% and 43% increase compared to the

non-interleaved laminato).
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Appendix A

For comparative purposes, Figs A.1-A.5 illustrate several unprocessed uC'T images.
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Figure 1: 2 x 2 mm (width and thickness) matchsticks cut from LTHIN¢, ., LV1g,, and LV2,, double
cantilever beam (DCB) specimens. The circle indicates the location of the fracture process zone (FPZ).
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Figure 2: Colour legend of the post-processed X-ray tomography (uCT) images. NCF means non-
crimp fabric. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article).
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Figure 5: puCT cross-section depicting the microstructure of LV1ip. V; fibres are coloured purple.
Debondings between V; fibres and resin are coloured black. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article).

100 um

Figure 6: V; fibre observed with a synchrotron X-ray source. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article).
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Figure 7: pCT cross-section depicting the microstructure of LV2ip. Vo fibres are coloured red: a) is
the accumulation of Vg fibres, b) is the single Vy fibre. Stitching yarn fibres are coloured green. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article).
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Figure 8: XY cross-sections depicting the microstructure of LV2p: a) are the Vs fibres laying close to
a carbon tow b) are the Vs fibres laying in a resin rich area. Debonding between stitching yarn fibres
and resin is coloured black. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article).



O JoyUdbd WM

OO O OO U U OO OO D DD DDDDDEDNDDWWWWWWWWWWNhNDNdNDNDNNNMdMNMdDNNSNRERRRERERRRRRRE
GO WNRPFPOWOWOJOOUDd WNEFEFOWOW-TOOUP WNRPFPOWO®JIOHUDWNREPOOWOJOUd WNE OWOWIO U D WNDEFE O W

FIGURES

10001~

[Yo)
o
o

800
700
600
500
400
300
200
100
0

50
45
40
35
30
25
20
15
10
5
0

Tensile strength (MPa)

Longitudinal modulus (GPa)

Figure 9: Tensile and compressive properties of LTHINp, LV1p and LV2p.

g6 g, 801 LILTHIN
B o Ell—V1|p
[ 2= =
i LV2|P
i 512
i 492 467

' T =E

- 45 a4 ;115 1851.1861'190
LTI
L , /

100

- 800

700
600

- 500

400
300
200
100
0

2
1.8
1.6
14
1.2

1
0.8
0.6
0.4
0.2

0

o

(edIAl) yr8uauis aAlssaidwo)

(%) uress arewn|n



O JoyUdbd WM

OO O OO U U OO OO D DD DDDDDEDNDDWWWWWWWWWWNhNDNdNDNDNNNMdMNMdDNNSNRERRRERERRRRRRE
GO WNRPFPOWOWOJOOUDd WNEFEFOWOW-TOOUP WNRPFPOWO®JIOHUDWNREPOOWOJOUd WNE OWOWIO U D WNDEFE O W
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Figure 10: Force response and average R-curves of the LTHINg,,, LV1g,, and LV24,, DCB speci-
mens. The shaded area illustrates the standard deviation between the tests. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article).
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Figure 12: pCT cross-sections depicting the FPZ of the LTHINg,,, LV1g,, and LV24,, DCB speci-
mens. The mode-T crack (coloured black) grows towards the reader. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of this article).
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(®Crack direction 200 pm

Figure 13: Interaction between the mode-I crack of LTHINg,, and the stitching yarn fibres. The
mode-I crack (coloured black) grows towards the reader. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article).
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250 um

Figure A.1: uCT cross-section depicting the microstructure of LV1jp. Despite the low-contrast of Vy
fibres, their geometry can be deduced from the unequivocal shape of the debondings (in black).

250 um

Figure A.2: pCT cross-section depicting the microstructure of LV2p.
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Figure A.3: XY cross-sections depicting the microstructure of LV2ip: a) are the Vs fibres laying close
to a carbon tow b) are the Vy fibres laying in a resin rich area.
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Figure A.4: uCT cross-sections depicting the FPZ of the LTHINg,., LV1g,, and LV24,, DCB speci-
mens. The mode-I crack (in black) grows towards the reader.
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Figure A.5: Interaction between the mode-I crack of LTHIN¢,
mode-I crack (in black) grows towards the reader.

and the stitching yarn fibres.
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Table 1: Laminates devised for in-plane (tension and compression) and mode-I interlaminar fracture
toughness experiments. Non-crimp fabrics are indicated with parenthesis. The $ sign means only one

veil in the symmetry plane.

Laminate  Stacking sequence

Purpose

LTHIN;p  [(45°/0°)/(—45°/90°)]4s

LV1p [(45°/V1/0°)/V1/(=45°/V1/90°) /Vilag

LV2p [(45°/V2/0°)/Va/(=45°/V2/90%) / Va]a

In-plane testing

LVlg [(45°/90°)/(—=45°/0°)/Vi]es

(
(
(
LTHING,. [(45°/90°)/(—45°/0°)]ss
(
(

LV2¢,. [(45°/90°)/(—=45°/0°)/ V]es

Mode-I interlaminar
fracture toughness
testing
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