Optical valley Hall effect for highly valley-coherent exciton-polaritons in an atomically thin semiconductor
Optical valley Hall effect for highly valley-coherent exciton-polaritons in an atomically thin semiconductor
Spin–orbit coupling is a fundamental mechanism that connects the spin of a charge carrier with its momentum. In the optical domain, an analogous synthetic spin–orbit coupling is accessible by engineering optical anisotropies in photonic materials. Both yield the possibility of creating devices that directly harness spin and polarization as information carriers. Atomically thin transition metal dichalcogenides promise intrinsic spin-valley Hall features for free carriers, excitons and photons. Here we demonstrate spin- and valley-selective propagation of exciton-polaritons in a monolayer of MoSe2 that is strongly coupled to a microcavity photon mode. In a wire-like device we trace the flow and helicity of exciton-polaritons expanding along its channel. By exciting a coherent superposition of K and K′ tagged polaritons, we observe valley-selective expansion of the polariton cloud without either an external magnetic field or coherent Rayleigh scattering. The observed optical valley Hall effect occurs on a macroscopic scale, offering the potential for applications in spin-valley-locked photonic devices.
770-775
Lundt, Nils
192da811-f24c-41b4-bb6d-d68e2d72c27f
Dusanowski, Łukasz
c13ae645-9878-4b05-b035-53fd3df943ab
Sedov, Evgeny
09ed8f98-fb1e-44d5-a192-10b0c6541cd9
Stepanov, Petr
4f8403bb-ccc6-402b-af7d-bc153a01865e
Glazov, Mikhail M.
04281e0f-c6f1-4713-ad5f-b990e37eb54e
Klembt, Sebastian
35a73c43-ac9d-4727-b802-f19a262210d3
Klaas, Martin
c418ef44-ce6c-461c-a04e-f60eb1e5bfd0
Beierlein, Johannes
5512bbc8-eac5-4b01-908a-a99d3361e973
Qin, Ying
888f78ed-aa42-4451-adea-58b3115998de
Tongay, Sefaattin
08a1239d-3add-43db-996e-fc80e9f55a58
Richard, Maxime
4d0be246-1577-47d2-bc55-d9d31b5af720
Kavokin, Alexey V.
70ffda66-cfab-4365-b2db-c15e4fa1116b
Höfling, Sven
2a16646f-d627-42d2-9242-9632f8e93558
Schneider, Christian
a0763548-1c6b-4a22-9c47-0c92e77b58a7
1 August 2019
Lundt, Nils
192da811-f24c-41b4-bb6d-d68e2d72c27f
Dusanowski, Łukasz
c13ae645-9878-4b05-b035-53fd3df943ab
Sedov, Evgeny
09ed8f98-fb1e-44d5-a192-10b0c6541cd9
Stepanov, Petr
4f8403bb-ccc6-402b-af7d-bc153a01865e
Glazov, Mikhail M.
04281e0f-c6f1-4713-ad5f-b990e37eb54e
Klembt, Sebastian
35a73c43-ac9d-4727-b802-f19a262210d3
Klaas, Martin
c418ef44-ce6c-461c-a04e-f60eb1e5bfd0
Beierlein, Johannes
5512bbc8-eac5-4b01-908a-a99d3361e973
Qin, Ying
888f78ed-aa42-4451-adea-58b3115998de
Tongay, Sefaattin
08a1239d-3add-43db-996e-fc80e9f55a58
Richard, Maxime
4d0be246-1577-47d2-bc55-d9d31b5af720
Kavokin, Alexey V.
70ffda66-cfab-4365-b2db-c15e4fa1116b
Höfling, Sven
2a16646f-d627-42d2-9242-9632f8e93558
Schneider, Christian
a0763548-1c6b-4a22-9c47-0c92e77b58a7
Lundt, Nils, Dusanowski, Łukasz, Sedov, Evgeny, Stepanov, Petr, Glazov, Mikhail M., Klembt, Sebastian, Klaas, Martin, Beierlein, Johannes, Qin, Ying, Tongay, Sefaattin, Richard, Maxime, Kavokin, Alexey V., Höfling, Sven and Schneider, Christian
(2019)
Optical valley Hall effect for highly valley-coherent exciton-polaritons in an atomically thin semiconductor.
Nature Nanotechnology, 14 (8), .
(doi:10.1038/s41565-019-0492-0).
Abstract
Spin–orbit coupling is a fundamental mechanism that connects the spin of a charge carrier with its momentum. In the optical domain, an analogous synthetic spin–orbit coupling is accessible by engineering optical anisotropies in photonic materials. Both yield the possibility of creating devices that directly harness spin and polarization as information carriers. Atomically thin transition metal dichalcogenides promise intrinsic spin-valley Hall features for free carriers, excitons and photons. Here we demonstrate spin- and valley-selective propagation of exciton-polaritons in a monolayer of MoSe2 that is strongly coupled to a microcavity photon mode. In a wire-like device we trace the flow and helicity of exciton-polaritons expanding along its channel. By exciting a coherent superposition of K and K′ tagged polaritons, we observe valley-selective expansion of the polariton cloud without either an external magnetic field or coherent Rayleigh scattering. The observed optical valley Hall effect occurs on a macroscopic scale, offering the potential for applications in spin-valley-locked photonic devices.
This record has no associated files available for download.
More information
Accepted/In Press date: 3 June 2019
e-pub ahead of print date: 22 July 2019
Published date: 1 August 2019
Identifiers
Local EPrints ID: 435704
URI: http://eprints.soton.ac.uk/id/eprint/435704
ISSN: 1748-3387
PURE UUID: 5460619f-a413-463e-9fa3-2e695fcb0d03
Catalogue record
Date deposited: 18 Nov 2019 17:32
Last modified: 05 Jun 2024 18:25
Export record
Altmetrics
Contributors
Author:
Nils Lundt
Author:
Łukasz Dusanowski
Author:
Evgeny Sedov
Author:
Petr Stepanov
Author:
Mikhail M. Glazov
Author:
Sebastian Klembt
Author:
Martin Klaas
Author:
Johannes Beierlein
Author:
Ying Qin
Author:
Sefaattin Tongay
Author:
Maxime Richard
Author:
Sven Höfling
Author:
Christian Schneider
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics