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All-order o/-expansion of one-loop open-string integrals
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We present a new method to evaluate the o’-expansion of genus-one integrals over open-string
punctures and unravel the structure of the elliptic multiple zeta values in its coefficients. This is
done by obtaining a simple differential equation of Knizhnik—Zamolodchikov—Bernard-type satisfied
by generating functions of such integrals, and solving it via Picard iteration. The initial condition
involves the generating functions at the cusp 7 — ico and can be reduced to genus-zero integrals.

INTRODUCTION

Elliptic analogues of polylogarithms [I}, 2] and multiple
zeta values [3] have become a driving force in higher-order
computations of scattering amplitudes in quantum field
theories and string theories. The study of their differen-
tial equations and their connections with modular forms
turned into a vibrant research area at the interface of
particle phenomenology, string theory and number the-
ory. In the same way as a variety of Feynman integrals
has been recently expressed in terms of elliptic polyloga-
rithms and iterated integrals of modular forms [4, 5], the
low-energy expansion of one-loop open-string amplitudes
introduces elliptic multiple zeta values (eMZVs) [6H8].
So far, the appearance of eMZVs in one-loop open-
string amplitudes arose from direct integration over
the punctures on a genus-one worldsheet of cylinder or
Mobius-strip topology. Although there is no conceptual
bottleneck in extending the techniques of [6HS] to arbi-
trary multiplicities and orders in the inverse string ten-
sion ¢/, in this letter we will present a new method to
evaluate these genus-one integrals which is related to el-
liptic associators [9] and Tsunogai’s derivations dual to
Eisenstein series [10]. The results are given by eMZVs in
their minimal form [3}[IT] and reveal elegant structures in
the o’/-expansions. More details will be given in a longer

companion paper [12].

OPEN-STRING INTEGRALS AT GENUS ONE

One-loop string amplitudes are described by correlation
functions of vertex operators in a conformal field the-
ory over a genus-one Riemann surface, the torus. The
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FIG. 1: We parameterize the torus through the lattice Z_;%
with identifications z & z+1 2 z+47 along the A- and B-cycle.

location of the vertex operator associated with the j*™"
external string state is parameterized by the coordinates
zj = u;T+v; with u;,v; € (0,1), where 7 is the modulus
with Im 7 > 0, see figure [1, and we define z;; = z; — 2;.
By suitable involutions of the torus [I3], one ob-
tains the surfaces describing the scattering of open-string
states, the cylinder and the Mobius strip. The two
boundaries of the cylinder will be parameterized by the
A-cycle z; € (0,1) and its displacement z; € Z+(0,1) by
half a B-cycle, i.e. u;€{0, 3} and dzj=dv;. See ﬁgure
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FIG. 2: The cylinder parameterization.

The massless n-point one-loop amplitudes of the open
superstring give rise to integrals of the form (z; = 0) [6]

/ ( dzj) fi(lkjll)fi(:jz) B <Z 519 (zij; T))’ (1)
C(*) =2 i<J

with differing integration domains C(x) for the cylinder
and the Mobius strips. For planar cylinders, we set « —
1,2,...,n and parametrize the domain as

C(1,2,...,n) = {zj=2,..n €R, 0<2<...<2,<1}, (2)

see figure[2|and [12] for the non-planar analogue with * —

1TJ§137; Furthermore, in the integrand of (), fi(f) =
f¥) (25, 7) denote the Laurent coefficients of the doubly-

periodic Kronecker—Eisenstein series defined by [2] [14]

_Imz\ 65(0,7)01 (2 +n,7)
Q = 2 L : :
(2,1,7) exp( mnImT) 01(z,7)01(n,7)

Qzyn,) =D 0" W (). (4)

k=0

3)



The simplest examples of the coefficient functions are
fO(z,7) = 1 and fV(2,7) = 0. logbi(2,7) + 27rz%$i,
and higher f%*22)(z, 1) do not have any poles in z.
Finally, exp(Z?q 5:;G(25,7)) in is the Koba—
Nielsen factor written in terms of dimensionless Man-
delstam invariants s;; = —2a/k; - k; and Green functions
G(z,7) subject to the universal differential equation

00,G(2ij,7) = —f D (zi5,7) (5)
2777;87—g(2ij77') = _f(2) (Zij77—) - 2C2 5

where 0,, is the derivative along the cylinder boundary,
and (,= >~ | 7= with n>2 denote Riemann zeta values.

A. Generating functions: Instead of handling the
o/-expansion of the individual integrals as in the
method of [6H8], we will evaluate the following generating
function of integrals (with ne3 . = m2+n3+ ... +15)

/Hdzjexp(ZSUQ Zij, T )()

C(x) j=2
X Q(212,M23..n, T) (223,030, T) - - -

The integrands f“kjll) fl(f; -+ in relevant to n-point
open-superstring amplitudes have k1+ko+ ... = n—4 and
reside at the order of nj_g of @ Moreover, (n>8)-
point integrands additionally involve holomorphic Eisen-
stein series Gys4(7) = —f((0,7) [6] multiplying (T) at
ki+ko+ ... =n—4—/{ as seen at the 77;3_é—order 0
Although the cylinder contribution to one-loop open-
string amplitudes is localized at purely imaginary 7 as
drawn in figure [2|, we will define and evaluate the in-
tegrals @ for generic 7 in the upper half plane with
ReT # 0. In view of the parental torus, Z%(l, 2,...,n|)

and Z7( 1557 |-) will be referred to as planar and non-
planar A-cycle integrals, respectively.

Mobius-strip integrals can be reconstructed by spe-
cializing planar A-cycle integrals to Ret = 2, and the
cancellation of tadpole divergences from one-loop open-
superstring amplitudes can be analyzed as in [15].

The A-cycle integrand @ at m points involves n—1
factors of the Kronecker—Eisenstein series at different
arguments. The second entry Z7(+[A) specifies permu-
tations A = ajas...a, € S, of these arguments, and
Q(...) at different z,,, 7,4, are related by the Fay identity

Zz(+[1,2,...,n)

Q(anl,ru Tn, T) .

Q(Zla m, T)Q(Z27 2, T) = Q(zh 771+7727 T)Q(Z2_zl7 n2, T)
+ 22, m+m2, T)QU21—22,m,7) . (7)

Repeated use of @ and imposing n; = — Z? 515 only
leaves (n—1)! independent permutations of the integrand

in (6)), and we will use a basis of ZZ (|1, B) with permu-
tations B € S,,_1 acting on 2,3,....,n

B. The differential equation: As will be derived in
[12], the 7-derivatives of (6)) can be written as
2mi0. Z%(A|l,B) = Y DL(B|C)ZE(A|1,C), (8)
ceSnp_1

where the (n—1)! x (n—1)! matrix D} is a differential
operator w.r.t. n;. Its detailed form will be exemplified
in the next section and follows from the properties ()
of the Green function, the vanishing of boundary terms
[ dv; 8, (...) and the mixed heat equation (u,v € R)

210 Qur+v,n,7) = 0,0, Q(ur+v,n,T). (9)

Most importantly, the form of D%(B|C) does not depend
on the planar or non-planar integration cycle A, and its
entries are linear in the dimensionless Mandelstam in-
variants s;; and therefore in o',

Hence, the o’-expansion of the genus-one integrals Z%
follows from the solution of (8)) via Picard iteration,

> 1 \k [T T1 Th—1
= Z (—) / dTl/ dry .. / d7y,
2mi 100 100 100

x Y (DI*-....DF-DR)(B|C) Z§* (AL, C) (10)
CeSn_1

Z3(AlL, B)

with matrix products D%’“ Ca D%z D%l. As an initial
value, the degeneration Z:® at the cusp 7—ioco will be
expressed in terms of disk integrals with two additional
punctures from the pinching of the A-cycle in figure
As will be detailed in [12], the entire T-dependence of

D7 is carried by Weierstrass functions (with Gog = —1)

o) = —20 LS (k-1 2G(r). (1)
n k=4

This allows us to decompose

o0

7= (1=k)Gi(r)ry(er) (12)

k=0

where 7(e) are (n—1)!x(n—1)! matrices whose entries
are independent of 7, rational functions of 7;, linear in
s;; and may involve second derivatives 0,,0,,. Note that
ri(€2) =0 and ri(ezp—1) =0V p € N by (11).

C. The main result: Based on , the open-string
integrals can be expressed in terms of iterated Eisen-
stein integrals

00 d,r/

ki, ko, ...k = —
’Y( 1, 2, ) T|T) /7— 27i
subject to v(f|7) = 1 and tangential-base-point regu-
larization [16], e.g. 7(0|7) = 3%. As the main result
of this work, we can therefore bring the open-string /-

expansion into the following elegant form:

Gkr(T/) V(kh ceey k

7’—1|7J)

(13)

ZiALB) =Y > bkl 04
r=0 k1,k2,...,
:0,4,68
X H Z rﬁ(ekr ..€k2€k1)BCZ%OO(A|1,C),
cesSn_1



where 75(€k, ... €x, €k, )=Ti(€x,.) - - Ti7(€Ry )Ti7(€x, ). Since
each order in o is expressible in terms of eMZVs [6H8],
the 75(er) should be matrix representations of Tsuno-
gai’s derivations €, dual to Eisenstein series [I0]. In
particular, brings the differential equation of
Z into the same form as that of the elliptic Knizhnik—
Zamolodchikov—Bernard associator [9], where the deriva-
tions € act on its non-commutative arguments.

The decomposition of eMZVs into iterated Eisenstein
integrals automatically incorporates all their relations
over the rational numbers [I1]. Moreover, the deriva-
tion of does not rely on any relation among the
Mandelstam invariants. The n-point results of this work
are valid for $n(n—1) independent s;;, and one can still
impose momentum conservation when applying the o/-
expansion of Z% to string amplitudes.

EXAMPLES FOR DIFFERENTIAL OPERATORS

In this section, we present (n<4)-point examples of
the matrix-valued differential operators D% in @j and
the four-point case is relegated to the appendix. All-
multiplicity expressions as well as detailed derivations of
the differential equations can be found in [12].

A. Two points allow for a single planar and non-
planar A-cycle integral @ each,

1

Z;2(1,2|1,2):/0 dva Q(vig, 12, 7) €129 (V12:7) (15)
1 T

ZJZ(%H’Q) :/0 dvy Q(U12+%7772,7')esl2g(vl2+§»7).

Their 7-derivatives resulting from , @ and integration
by parts w.r.t. vy take the universal form

1
210, 25, (+]1,2) = 12502

508 =02 7) =262 ) 27, (+[1.,2),

(16)

so one can read off the scalar differential operator in
and the resulting representation of the derivations,

D7 (2]2) = 312(18

9 M2 @(77277_) - 2(2) ) (17)

Fnfeo) = sia (5426508 ) . Tip(erza) = sian .

Note that various combinations of iterated Eisenstein in-
tegrals drop out from the two-point instance of (14)) since
commutators [1p, (€x, ), Tn, (€k, )] With k1, ke > 4 vanish.

B. Three points give rise to A-cycle integrals

Zy, ns(*¥[1,2,3) = / dze dz3 Q(z12, m2+m3,7)  (18)
C(x)

% 9(223 13 7—)6312g(21277')"!‘3139(21377')"1‘5239(22377')
b b)

that mix under 7-derivatives (s12.., = Zfﬂq 5i5),

2mid. 77, . (%]1,2,3) = (f 2as123 (19)
+ S12 [537272 — @(n2+n3, T)} + 513 [%833 — p(n3, T)]
+ 5255 (0= 00, )? = 913, 7)] ) Z7, 1 (311,23
+ s13[p(n2+m3,7) — (N3, )}Z,T,z s (%11, 3,2) .

The resulting matrix entries of the 2 x 2 differential op-

erator in read

D7, 1(2,3]2,3) = —2(25123 + s12[ 507, —0(n2413, 7)]

+ 523 [ 5 (Ony =0y )* —p(n3, 7)] + s13[302, —p(ns, 7))

D7, 15(2,3[3,2) = s13[p(na+ns, 7)—p(ns, 7)), (20)
and the first row is always sufficient to generate the re-
maining entries via permutations of s;; and 7;, e.g.

Dy . .(3,2[3,2) = D], (2,3]2,3) 127 (21)

12,M3 12,73 N24+N3
512¢*513
D], ,..(3.22,3) =D . (2,3]3,2) |nmg

One can read off the 2 x 2 matrix representations of the
derivations (k # 2),

1
Tna.ms (ek) = 51@70 (2C23123 - 5523(877278713)2 - 512852

2
1 2 k—2( s12 —si:
- 58138773) 12)(2 + 7723 (j;?z Siéd > (22)
k— k—
+ 12 2(5(1)2 S12+823 ) +3 2(8133523 S(1)3> )
where [ry, n, (€x,>4)s Ty ms (€ky>4)] O longer vanish indi-

vidually, and relations in the derivation algebra [10] 1T,
17] hold non-trivially.

EXAMPLES FOR INITIAL VALUES

This section is dedicated to the degeneration of A-cycle
integrals (6) at the cusp 7 — ioo which enters the «'-
expansion (14) as an initial value.

A. Generalities: The behaviour of A-cycle integrals
at the cusp is most conveniently studied in the variables

cr,—l-aj

Gy = 2mi 700 (23)

0;—0j

where the planar Green function and Kronecker—
Eisenstein series degenerate to (0;; = 0;—0;)

lim Q(vij,n,7) = weot(mn) + Gij (24)
T*)ZOO
1 1
Tl_l}rlnoo G(vij,7) = 3 log(o;) + 5 log(o;) — log(oj;) .

Their non-planar analogues take an even simpler form,

hm Q(Uzj+27777 )_

T—100

lim G(vij+35,7) =0.

Sin(ﬂ'T]) ’ T—100
(25)



Since string-theory applications of involve the coef-
ficients w.r.t. n;, we will need the expansions

1
meot(mn) = = —2) Copn? ! (26)
= Z
7 1 22k 1 »
: = -+ S
sin(rn) o A 2%K2

As will be detailed in [12], the o;-integration in n-point
Z%OO lines up with explicitly known combinations of N =
(n+2)-point disk integrals [I§]

Ztree(m,ag,...,aN|1,2,...,N) =

—00<0q) <Oay <...<0g 5 <OO

Hz<] ‘O—'L]| %ii

0120923 ...

doidos ... don
vol SLa(R)

The two extra punctures n+1 — + and n+2 — — are
associated with Mandelstam invariants

1 n n
3 E Sij 5 - = E Sij -
1<it] 1<i<j

The o’-expansion of 1) and therefore Z %OC involves mul-
tiple zeta values (MZVs) which can be systematically
generated from the all-multiplicity methods of [I9] 20].

.20
ON—-1,NON,1

Sj+ = Si- =

B. Two points: Planar initial values at two points
descend from four-point tree-level integrals,

Z1%°(1,2|1,2) = 7 cot(mn,) 2i sin (“;2)
/1 dO’Q

X —

0 27TZO-2

F(]. — 812)

T - s)]*

0322 (1= op) ™12 (29)
= 7 cot(mn2)

The factor of 2isin(™52) and similar trigonometric func-
tions below stem from contour deformations detailed in
[12]. The gamma functions with standard o/-expansion

1—‘(1—812)2 :eXp(ZC:(l

_ 9l—kygk
(1 - )] = 2 ) 0

19
1605124224‘0(0/5)

do not appear in the non-planar counterpart of (29))

=1+- 312@"‘ 512C3+

™

100 [ 2 _
2 (102) = ey

(31)

C. Three points: Degenerate A-cycle integrals at
three points introduce five-point disk integrals,

Zi%® (1,ay,a3)1,2,3) (32)

72,13
— 72 cot(mnas) cot(mng) + 2 ) 1"°°(1, a3, as1)
23

s
+ ’/T(COt(TF?]gg) + 52 cot(wng))ftree(l, az,a3|Gas) ,
12

where

ree 1 .
It (1, az, CL3|1) 2 Py |:SlIl (g(81a2+823)) Sin (gslag)

% (27(+,02,a3,1,~1+,2,3,—, 1)

+ 27 (4 a2,a3,1,-4,3,2, -, 1)) + (2 6 3)]
ree 1 . ™ e
It (1, a2, a3|Ga3) = o [sm (§(sla2+323)) cos (531(13)
% (27(+,02,a3,1,~1+,2,3,—, 1) (33)
— Z%°(+,az,as, 1, —|+,3,2, — )) +(2 (—)3)] .
Their leading low-energy orders read [12]
1 .
152(1,2,31) = - + (Rt shy o) +O(0) (34
1
Itree(172’3|G23) = — + C (512+813+523)2+O(OL,2)
S23 482

and exemplify that integrals over k factors of G;; in
may have up to k kinematic poles.

Non-planar three-point initial values in turn boil down
to four-point disk integrals with o/-expansions in 7

n2cot(mnez) T(1 — s12)
sin(mns) [T(1 - =12 }
2 -

sin(723) sin(7ns) [F(l )]2 .

ZZOO (1:,32|172a3) =

n2,73 (35)

Z;;C,,B(f’Q 1,3,2) =

CONCLUSIONS AND FURTHER DIRECTIONS

In this letter we presented a method to expand a gen-
erating series of genus-one integrals @ relevant to one-
loop open-string amplitudes. At each order in the inverse
string tension a’, our main result pinpoints the ac-
companying eMZVs in their minimal and canonical rep-
resentation via iterated Eisenstein integrals.

Genus-zero integrals relevant to open-string tree am-
plitudes obey Knizhnik—Zamolodchikov equations with
a characteristic linear factor of o’ on their right-hand
side [I9]. This structure is analogous to the e-form
of differential equations among Feynman integrals with
dimensional-regularization parameter e [5 2], suggest-
ing a correspondence between o and e. By the linear-
ity of the differential operators Dﬁ in s;; = —2a'k; - kj,
the Knizhnik—Zamolodchikov—-Bernard-type equation
also becomes linear in o’. So our results generalize this
intriguing correspondence to genus one and provide the
string-theory analogue of the e-form for differential equa-
tions of elliptic Feynman integrals [5].

The generating functions ZZ are expected to comprise
any moduli-space integral in massless one-loop ampli-
tudes of open bosonic strings and superstrings upon ex-
pansion in 7;. Accordingly, they are proposed to gener-
alize the universal disk-integrals that appear in the



double-copy representation of string tree-level amplitudes
[18, 22]. Hence, the study of the genus-one integrals Z7
is an essential step towards universal double-copy struc-
tures in one-loop amplitudes of different string theories
that generalize those of the superstring [23].

The generating functions ZZ can be adapted to a
closed-string context, encoding the integrals over torus
punctures in one-loop amplitudes of type-II, heterotic
and closed bosonic string theories. Closed-string ana-
logues of ZZ will be shown [24] to obey similar differen-
tial equations and to shed new light on the properties of
modular graph forms [25] including their relation with
open-string amplitudes [20].

Moreover, the method of this work to infer moduli-
space integrals from differential equations should be ap-
plicable at higher loops. In the same way as disk integrals
were used as the initial value for our one-loop results,
higher-genus integrals in string amplitudes are expected
to obey differential equations w.r.t. complex-structure
moduli such that their separating and non-separating de-
generations set the initial conditions. It would be inter-
esting to explore a differential-equation approach of this
type to the higher-genus modular graph functions of [27].

In summary, our new approach to one-loop open-
string amplitudes via differential equations connects with
state-of-the-art techniques in particle phenomenology
and provides explicit matrix representations of profound
number-theoretic structures. As will be elaborated in
[12], our results manifest important formal properties
of string amplitudes such as uniform transcendentality,
coaction formulae and the dropout of twisted eMZVs
from non-planar open-string amplitudes.

Acknowledgements: We are grateful to Johannes Broedel,
Jan Gerken, Axel Kleinschmidt, Nils Matthes and Fed-
erico Zerbini for inspiring discussions and collaboration
on related topics. Moreover, Claude Duhr, Hermann
Nicolai, Albert Schwarz and in particular Sebastian Miz-
era are thanked for valuable discussions, and we are
grateful to Sebastian Mizera for helpful comments on
a draft. We would like to thank the organizers of the
programme “Modular forms, periods and scattering am-
plitudes” at the ETH Institute for Theoretical Studies in
Ziirich for providing a stimulating atmosphere and finan-
cial support. CRM is supported by a University Research
Fellowship from the Royal Society. OS is grateful to the
organizers of the workshop “Automorphic Structures in
String Theory” at the Simons Center in Stony Brook and
those of the workshop “String Theory from a Worldsheet
Perspective” at the GGI in Florence for setting up inspir-
ing meetings. OS is supported by the European Research
Council under ERC-STG-804286 UNISCAMP.

APPENDIX: FOUR-POINT EXAMPLES

This appendix provides further details on the expansion
(14) of four-point A-cycle integrals @

A. Differential equation: The 6 x 6 differential op-

erator D = Dy, . in is determined by
4 4
D3(2,3,412,3,4) = > %83“ + Y %(am—amf
j=2 2<i<]

— 5120(1234, 7) — (513+523) (134, T)

— (s1a+s24+534) (14, T) — 2¢251231  (36)
D7(2,3,4(2,4,3) = (s1a+s24) [p(34,7) — p(14,7)]
:7(2 3,413,2,4) = 513[ (1234, T) — @(773477)}

:7(2 3,413,4,2) = [ (17234, 7) — @(7734,7')}
D7(2,3,4/4,2,3) = S14[ (134, 7) — (12, 7)]
D7(2,3,4[4,3,2) = s14[p(n34,7) — 9(n234, 7)]

with 7;;.. p = n;+n;+ ... +np. The corresponding matrix
representations of the derivations (k # 2)

4
ri(er) = mosarieass) + > My raleis) +Z77] ri(e;)

2<i<j
i 1,
+ 6k,0 (2@81234—2 % i Z 7J )16><6 (37)
2<i<j j=2
can be assembled from (S123.4 = S14+S24+534)
S12 0 —s13 —s13 0 814
0 S12 0 S13 —S14 —S14
_ | —s12 —s12 s13 0 S14 0
rlezss) = 0 si2 0 s13 —sia —su (38)
—812 —S12 513 0 S14 0
512 0 —s13 —s13 0 814
513+823 —S14—S24 S13  S13 —S14 —S14
—813—823 S14+8524 —S13 —S13 S14  S14
0 0 0 0 0 0
ri(ess) = 0 0 0O 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
S123,4 S14+S24 0 0 s14 0
0 0 0 0 0 O
_ 0 0 S123,4 S1atsss 0 s1s
ri(es) = 0 0 0 0 0 0
0 0 0 0 0 O
0 0 0 0 0 O

and relabellings.

B. Initial values: The four-point integrals in massless
one-loop string amplitudes descend from orders of Z%

with odd homogeneity degree in 7;. Since the derivations
(37) do not mix odd and even functions of 7;, we only
ell out the odd part of the planar initial value

odd r
= 7 cot(mnza) 1" (|G 12G34)

planar *

Z:°(%]1,2,3,4) |

+ mcot(mn) (834Itmc(*|G12G34) — 814Itmc(*|G14G23))

S123
t ree ree
-I--ZEEEL(Z?‘@%‘)'(812]t (*|(?12(;34)-— 814[t (*\(;14(;23))
5234
+6@Gwmwm%—f+ﬂwﬂmmﬂj )ﬁm(ﬂ)
234
+ 7% cot(mn234) cot(mnza) cot (mna) 177 (x[1) . (39)



Similar to , I***® denote combinations of six-point
disk integrals which no longer depend on 7;, see
section 5.5 of [I2] for further details.

Non-planar four-point initial values reduce to four- and
five-point disk integrals, e.g.

73 cot(mnes4) cot(mny)
sin(7134)
(1 — s12)T(1 — s34)
[P(1— %2)T(1 - *2)]”

——————7,%,.(2,3,4(2,3,4
Sin(ﬂ'n234) 772-,773(’ ) | 5 Oy ),

Z%m(§;;*|1,2,3,4) =

(40)
Zie(P341,2,3,4) =

see 1' for Z;‘;?%(Q, 3,4|2,3,4). By extracting the order

of Nyzanziny - from , we have checked , and
(40) to reproduce the «o'-expansions of [6l [7] to the or-

ders of &’? and '3 in the planar and non-planar sectors,
respectively.
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