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Abstract

We present two modifications to the standard connected component labeling

techniques, or painter’s algorithm, that remove the algorithm’s bias when iden-

tifying components with spacing on the order of a grid size. Unlike the painter’s

algorithm, this Informed Component Labeling (ICL) algorithm incorporates

additional knowledge of the field variable by using multilevel thresholding and

surface normal information to establish and refine connectivity decisions. Using

Volume-Of-Fluid (VOF) data as an example, we show that the ICL algorithm

accurately predicts the connectivity of components with spacing on the order

of the grid. Although our immediate objective is to identify entrained bubbles

and spray droplets in VOF schemes, ICL applies to any Eulerian field variables

where accurate Lagrangian information is desired.

Keywords:

1. Introduction

A critical research area in the study of air entrainment due to breaking waves

is measuring and understanding the bubble-size distribution and bubble statis-

tics during and after the breaking event. Obtaining this type of Lagrangian

information accurately from simulations that rely on Eulerian interface cap-5

turing methods (such as Volume-of-Fluid and level set) is challenging. Recent
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application of the so-called ‘painter’s algorithm’ to identify connected regions

of air has enabled Eulerian-based methods to identify and quantify individual

entrained air bubbles [1, 2, 3] . The algorithm, which shares a pedigree with the

connected component labeling (CCL) in pattern recognition and computer vi-10

sion techniques [4, 5], translates the interface variable into a binary field (0 in air

and 1 in water) and then sweeps through the domain point-by-point, determin-

ing paths of connectivity. The technique identifies components not connected

to the bulk air field as bubbles and records information about their location,

volume, etc.15

This binary-based painter’s algorithm suffers a distinct weakness when bub-

bles are within a grid point of each other in that it can misidentify them as a

single larger bubble. A extreme but not infrequent example would be a chain

of individual bubbles that the algorithm identifies as long ligaments. While the

measurement of entrained air is technically accurate, the painter’s algorithm20

biases distribution data towards larger bubbles.

This paper describes modifications to the original CCL algorithm [4] to cor-

rectly identify bubbles with spacing on the order of the grid size, removing

this bias. This Informed Component Labeling algorithm (ICL) incorporates

knowledge of the field variable and modifies the CCL algorithm using two main25

strategies. The first employs multilevel thresholding of the original field variable

within the sweeps of the CCL algorithm. Retaining the field variable informa-

tion (instead of binarizing it as in the painter’s algorithm) allows us to establish

and refine the connectivity of the components with greater accuracy. The sec-

ond strategy incorporates the gradient of the field variable to further establish30

connectivity. The ICL algorithm applies for any Eulerian field variable where

Lagrangian information is desired. For illustration in this paper, we assume

the field variable is the Volume-of-Fluid (VOF) function f that represents the

normalized volume of water in a given cell. The surface normal information

originates from the gradient of f or its linear reconstruction.35

This paper is organized as follows. §2 defines the original CCL/painter’s

algorithm and details the modifications that then form the ICL algorithm. §3
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provides two detailed examples of how ICL resolves connectivity of components

with spacing on the order of the grid. §4 provides verification tests and §5

concludes the paper.40

2. Methodology

For simplicity of discussion, our field variable is the VOF function f(i, j, k)

that represents the volume of water in a given cell: 1, 0.5, or 0 if respectively

full, half full, or empty (for example in [6]). The field resides within a three-

dimensional “IJK” domain sized Ni ×Nj ×Nk. The surface normal vector for45

the fluid within the cell ~n(i, j, k) results from the linear reconstruction within

VOF. We desire to know the set blob that contains a listing of every connected

component within the domain. For each connected component, we require its

volume V , centroid location (iC , jC , kC), and minimum and maximum extent

(xi, xj , xk) in each direction. We note that including additional mean velocity50

or other quantities is straightforward. Without loss of generality, we assume

that the grid is Cartesian and has the same number of points in each direction.

For the CCL (and ICL) algorithms, let v(i, j, k) ≥ 0 be the field information

to assess (within the same IJK domain). Any point i, j, k is connected to another

point i′, j′, k′ providing that a path exists between the two points that satisfies55

a given mask m. All of the points along a given path are thus part of the same

component and share the same label l. The size of the set blob is the number of

unique labels L. For our version of the CCL, an additional array `(i, j, k) stores

the label for each point in the domain. For simplicity of notation, we present

the following algorithms in two dimensions on a Cartesian grid. We also note60

that ICL can apply to data with domain decomposition [7].

2.1. Standard CCL Algorithm

The basis for our algorithm is a pixel-based label-equivalent-resolving two-

scan method, or the standard connected-component label (CCL) algorithm.

The first scan assigns and resolves an equivalent label for each component and65
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the second scan replaces the equivalent label and records the blob information.

Section 3.3 of [5] provides an in depth overview of the state-of-the-art algorithms

that is summarized here in our simplified form. The method is similar to other

methods that arise from the need to (re-)assemble narrow bands around level

sets [8, 9].70

Scan 1: Equivalent label assignment:. Initialize the unique label l and specify

a threshold t. For each point i, j, identify the current field value v(i, j). The

standard CCL algorithm proceeds as follows using a backward-looking mask

m={(i− 1, j), (i, j − 1)}:

Algorithm 1. Standard CCL(v(i,j),t)

1. if v(i, j) > t

(a) for each point p in mask m that has a label `(p) 6=0 assign

`(i, j)←

 Union(`(p), `(i, j)) `(i, j) 6= 0

`(p) otherwise

(b) if no label is yet to be assigned, l← l + 1, `(i, j)← NewTree(l)

Step 1.1a uses a union-find-tree strategy to assign a provisional label using75

the neighboring cells. Step 1.1b assigns a new label if there is no result from

step 1.1a. At the end of this first scan, all equivalent labels of a connected

component are nodes in the corresponding tree (resulting from the union-find-

tree strategy). The CCL performs a sweep of the labels (or flattening of the

tree) to ensure each node in a tree directly points at its root. For brevity, we80

do not include here the details for the union-find-tree strategy or the flattening

step as they are standard and refer the readers to [5, 10] for details.

Scan 2: Assign the representative label and collect data. For each point i, j, if

`(i, j) 6= 0, assign the representative label (or the root of the tree) and collect

the information about the components. The act of adding the information to85

the set blob(`) through the AddInfo routine is as follows:
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Algorithm 2. AddInfo(S,v,i,j)

1. S[V ]← S[V ] + v

2. S[ic, jc]← S[ic, jc] + v ∗ [i, j]

3. S[imax, jmax]← max(S[imax, jmax], [i, j])

4. S[imin, jmin]← min(S[imin, jmin], [i, j])

Note that for each component the extent (xi, xj) = (S[imax]−S[imin], S[jmax]−

S[jmin]) from algorithm steps 2.3 and 2.4.

The painter’s algorithm is equivalent to this CCL algorithm with a threshold

value t=0. As we will show in §3, the reduction of information caused by the90

binarization of the field data (especially the VOF function f) is the primary

reason for the bias in the painter’s algorithm to connect components that are

spaced near each other.

2.2. Informed Component Labeling Algorithm (ICL)

Unlike the image data that formed the basis of the CCL algorithm, the95

field variable being processed has information that can aide the algorithm in

determining connectivity. The ICL algorithm retains this valuable data and

modifies the standard CCL algorithm to incorporate it using two main con-

cepts: multilevel thresholding and utilizing additional (gradient) information.

These straightforward modifications create a robust and accurate algorithm for100

identifying connected regions.

2.2.1. Multilevel Thresholding

The ICL algorithm incorporates multilevel thresholding by sweeping over

the CCL algorithm for a number of Θ thresholds thr = (tΘ, tΘ−1, . . . , t1) in the

first scan. The full algorithm is:105

Algorithm 3. ICL (v,thr)

1. for each threshold t← thr[θ], θ ← Θ to 1
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(a) for all points (i, j) in the domain, call OCL(v(i,j),t)

2. for all points in the domain where `(i, j) 6=0

(a) `(i, j)← Root(`(i, j))

. . . relabel with sequential labeling, if desired.

(b) collect the data in set blob by calling AddInfo(blob[`(i, j)], v(i, j), i, j)

Unlike the application of image processing, the inherent knowledge of what

the field variable v(i, j) represents guides the number of levels and our selection

criteria. Returning to our VOF example, we define the first threshold level with

half-full cells f=0.5. The first pass through the domain with tΘ=0.5 determines

the initial connectivity of the components using only cells that are at least half110

full. Successive passes through the domain with reduced threshold levels (Θ ≤3

is sufficient for VOF) either adds to the connectivity for existing components

or identifies smaller components. To label all of the components (and conserve

volume), the last threshold sweep must use t1=0. We found that Θ=3 produces

an algorithm insensitive to the value of the threshold levels providing tΘ=0.5115

and t1=0. The effectiveness of this modification is detailed in section 3.

2.2.2. Incorporating Additional Field Information

We assume there exists an accurate normal vector ~n(i, j) at every point

in the domain that represents the normal (or gradient) associated to the field

function. In our VOF example, ~n represents the surface normal to the interface120

and is obtained from the VOF linear reconstruction. Incorporating the normal

vector into the standard CCL algorithm (algorithm step 1.1.a), allows further

discrimination of connectivity. The CCLN algorithm now reads as:

Algorithm 4. CCLN(v(i,j),~n(i,j),t)

1. if v(i, j) > t

(a) for each point p in mask m that has a label `(p) 6=0 assign

`(i, j)←

 Union(`(p), `(i, j)) `(i, j) 6= 0 and np(p) · np(i, j) ≥ 0

`(p) `(i, j) = 0 and np(p) · np(i, j) ≥ 0
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(b) if no label is yet to be assigned, l← l + 1, `(i, j)← NewTree(l)

Algorithm step 4.1.a essentially allows connectivity only if the normals at

the point of interest align with normals of the mask point (in the direction of the125

mask). We note here that the inclusion of the normal information can remove

the bias of the painter’s algorithm (see section 4.1).

2.3. ICL and various field functions

The ICL algorithm can identify Lagrangian information from any Eulerian

field data. A simple example is the level set method, used in simulating mul-130

tiphase flows, crack growth in extended finite element methods [11] and shape

detection in computer graphics. In typical level set methods, the function φ

is a signed distance function with φ =0 the interface of interest and ~n ∼ ∇φ.

Sample test 1 (see §4.1) shows that the CCL algorithm (a single threshold of

t =0) easily establishes the connectivity and the normal information (CCLN)135

improves the estimate. However, the ICL/ICLN algorithm can identify and

tracking the band region (as well as its edges) within the domain, which is

necessary for narrow-banded level set methods. Within the context of vortex

tracking in fluid dynamics with Eulerian methods, the ICL/ICLN method can

provide Lagrangian information through connected components of the scalar140

λ2, Qc and ∆ criteria, where a range of isovalues represent an estimate of the

location and orientation of a vortex [12].

3. Effectiveness of ICL

We present two detailed examples of how the ICL performs compared to

the painter’s algorithm when identifying components that are near each other.145

For notation, we call the painter’s algorithm CCL and consider two cases that

originate in the context of multiphase flows: drops with spacing h ∼ ∆ (both

large and small). For this section, we focus solely on the CCL and the multilevel
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threshold ICL algorithms. Further verification and validation of the algorithm

(including CCLN and ICLN) is in §4.150

First, consider two large drops spaced near each other . Figure 1a shows the

raw field information v = f . The algorithm performance is equivalent to that

of two bubbles if v = 1 − f . The CCL algorithm identifies the field as a single

connected cavity (labeled 1 in figure 1b) using points a-d,f-g,i-l. In contrast to

this, the ICL algorithm identifies two connected cavities (see figure 1d).155

To understand the root cause of the differences, consider the first threshold

level of the ICL algorithm tΘ = 0.5. It identifies two initial connected regions

(labeled as 1 with points j-l and 2 with points b-d, as seen in figure 1c). With

these two components identified, the remaining thresholds will incorporate into

one of these two components. For example, consider i and f for t1=0. For i, no160

point in the mask m is labeled and it is also not currently labeled, thus a new

tree is created with label 4 via algorithm step 1.1.b. When the sweep reaches j,

it will merge i into the same tree through the Union operation (algorithm step

1.1.a).

For f at t1=0, b lies within the mask m and has an existing label and f is165

not currently labeled so it will receive the label of b (algoirthm step 1.1.b). We

note here that the connection of f (and also g) into either of the components

depends upon the direction of the overall scans and the mask.

The next example uses multiple smaller drops near (and offset) from each

other. Figure 2a shows the raw field information (again, v = f) for multiple170

small drops with spacing h ∼ ∆, offset vertically from each other a distance

∼ ∆. The CCL algorithm identifies two connected components in figure 2b: (1)

using e,i-j,m-n,r and (2) using a,f-g,k. Because g is not within the mask of

m, these are not connected per our definition of connectivity.

The ICL after tΘ=0.5 identifies 3 cavities in figure 2c: (1) using f ; (2) using175

j; and (3) using m-n. As j does not lie within the mask of n and v(i) < tΘ,

these points are not within the same path and not connected at tΘ=0.5. The

additional ti levels connects the remaining points to the established components

(see figure 2d).
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Figure 1: Example of CCL and ICL algorithms for a test with two drops with spacing h ∼ ∆.

(a) raw field data, arrows represent ~n; (b) CCL identified information; (c) ICL identified after

tΘ=0.5; (d) ICL identified after t1=0.
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Figure 2: Example of CCL and ICL algorithms for a test with three small drops with spacing

and offset ∼ ∆. (a) raw field data, arrows represent ~n; (b) CCL identified information; (c)

ICL identified after tΘ=0.5; (d) ICL identified after t1=0.
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4. Verification & Validation180

This section identifies three tests that establish the robustness and effec-

tiveness of the modifications. We compare the modified algorithm (ICL) to the

original painter’s algorithm (CCL) as in §3 and include two additional vari-

ants: CCLN and ICLN. The ‘N’ designates the use of the normal information

to inform decisions on connectivity on both the CCL and ICL algorithms.185

For all of the tests below, we define a distance function φ based on the geom-

etry of drops, calculate an initial volume fraction f̂ from the distance function

and pass it through the reconstruction scheme to create the field function f and

its normal ~n to be consistent with simulated data. The field function to identify

the drops is v = f . In all cases, the domain is a unit square and ∆ = 1/32 un-190

less otherwise noted. In our sample tests, three-level thr = (0.5, α, 0) thresholds

provide consistent results with ICL/ICLN, regardless of the choice of α. Thus,

in these results ICL/ICLN use three threshold levels: thr = (0.5, 0.25, 0).

4.1. Test 1: Two drops r � ∆, spacing h ∼ ∆

Test 1 defines two drops placed such that their centers are vertically aligned195

and the minimum spacing between the two drops is ∆. Specifically: drop 1

r1=0.13, (x0, y0)1=(0.575, 0.33875) and drop 2 r1=0.25, (x0, y0)2=(0.575, 0.75).

This test provides the raw field data in figure 1.

Table 4.1 shows location and radius of the drops identified by the four algo-

rithms. As discussed in §3, CCL only identifies a single drop where ICL labels200

two drops. Of note, the CCLN algorithm also identifies two drops as the normals

between points j-k and f -g do not align vertically (see figure 1a). Inspection of

the resulting label field shows that CCLN and ICLN assign f to drop 1 and g to

drop 2, which results in the small error in y0 from the prescribed value for drop

2. Overall, the three modified algorithms (CCLN, ICL and ICLN) identify two205

drops with radius and location within an error � ∆.

Also included in table 4.1 are two additional applications of the CCL/ICL

algorithm. The first is CCL-H, which uses the single threshold algorithm with
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Algorithm Drop 1 Drop 2

CCL 0.2824; (0.5781, 0.5938) –

CCLN 0.1313; (0.5781, 0.3438) 0.25; (0.5781; 0.7344)

ICL 0.1313; (0.5781, 0.3438) 0.25; (0.5781, 0.75)

ICLN 0.1313; (0.5781, 0.3438) 0.25; (0.5781, 0.7344)

CCL-H 0.1277; (0.5781, 0.3438) 0.2454; (0.5625; 0.75)

CCL-LS 0.1661; (0.5781, 0.3438) 0.3315; (0.5625, 0.75)

ICL-LS 0.1661; (0.5781, 0.3438) 0.3315; (0.5625, 0.75)

Table 1: Drop information r; (x, y) reported by algorithm for Test 1.

t = 0.5 to establish connectivity. The second is CCL-LS and ICL-LS, which use

v = |φ| (the initial distance function) using thr = 0 and thr = [0,∆/2,∆]. All210

of these applications identify two drops and determines their locations and radii

within O(∆), as expected.

4.2. Test 2: Multiple subgrid drops, spacing h ∼ ∆

Test 2 defines a chain of subgrid drops r = 0.6∆ that have a horizontal

spacing between their centers of 2.2∆. The drop locations are (xi, yi(n)), i =215

1 . . . Nb, where n is the iteration step. The vertical drop location for bubble i is

yi(n) =

 0.375− n∆ i even

0.25 i odd
.

The horizontal location of the first drop x1=0.1+x′, where x′ < 0.5∆ to allow

variability in the drop position within a cell. We prescribe the horizontal lo-

cation of the remaining i = 2 . . . Nb drops from x1. At step n=4 (see figure

4c), the drops are in line with each other with horizontal spacing between the220

interfaces ∆. For this test, we ran n = 1 . . . 10 with 6 different realizations of

x′.

Figure 3 shows contours of the volume fraction at select iterations for a single

realization x′. For steps n =3 and 5, the drops are near each other but offset

vertically (see figure 4b). Depending on the location of the drop with the cell,225
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Figure 3: Contours of VOF function f at different steps (a) step 0; (b) step 3; and (c) step 4;

for a single realization x′.

the resulting reconstructed f can indicate a single drop or a drop with radius

larger than the cell (e.g. figure 3c). Thus, the solution Nb varies with each

realization and is determined visually from f .

Figure 4 shows a bar chart of the error in the number of drops found Ñb

at each step, e(Ñb) = Ñb − Nb. The different bars for each step represent the230

different realization of x′. As discussed in §3, CCL under predicts the number

of drops, especially for steps 3-5 when the spacing between drops is the smallest

(see figure 4a). ICL also incurs small error for steps 3 and 5, depending on

the realization. However, the *N algorithms never under predict the number of

drops, regardless if it is the single or multilevel threshold algorithm. In fact, it235

over predicts the number of subgrid-size drops because the algorithm depends

on a normal that changes sign across a cell. This artifact fragments subgrid-size

drops, shifting the error from r > ∆ (due to merging of smaller drops into larger

ones) to r < ∆. As will be shown in Test 3, this fragmentation behavior only

occurs for sub-grid components where the normals change sign across a cell (or240

drops with radius . ∆). Tests with ligaments with thickness less than ∆ do not

get fragmented by CCLN/ICLN.

4.3. Test 3: Prescribed distribution, random placement

We designed the preceding tests to focus on the weakness of the painter’s

algorithm: identifying components placed near each other. Test 3 represents a245

“real world” problem with a known answer. To form the known solution, we
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(c) (d)

Figure 4: Error in drops e(Ñb) = Ñb−Nb at each iteration n identified by the four algorithms

for Test 2. (a) CCL; (b) CCLN; (c) ICL; (d) ICLN.
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Figure 5: (a) f = 0.5 contour of the prescribed distribution of drops on the solution grid

(∆s = 1/512) and (b) resulting distribution of drops on the solution grid found by the four

algorithms. ◦ CCL; � ICL; O CCLN; 4 ICLN; and−r−1.

prescribe a distribution of drops N(r) = 0.3r−1, with 7 radii equally spaced be-

tween r = [0.1, 0.003125] or specifically r = (0.1, 8.385E-2, 6.771E-2, 5.156E-2,

3.542E-2, 1.927E-2, 3.125E-3) and place them randomly within the domain.

Limits on the placement ensure: (1) every drop is fully inside the unit domain250

and (2) the distance between the interface of two drops must be greater than

hmin. We use a highly resolved grid ∆s=1/512 as the known solution and a test

grid of ∆=1/64. We set the minimum gap hmin=1/64 such that the spacing of

the drop on the test grid is resolvable. For this test, we constructed 10 different

realizations of the spatial distribution for the solution, matching it on the test255

grid for each realization. As a reference, figure 5 shows an individual realization

on the solution grid identified by all four algorithms.

Figure 6a shows the mean drop distribution (error bars are standard devi-

ation σN (r)) identified for each of the four algorithms on the test grid. All of

the algorithms predict the general trend of the number distribution. For clar-260

ity, figure 6b plots the standard deviation as a function of radius σN (r). The

original painters algorithm (CCL) has σN (r) >0 above the test grid size, or in

other words biases the distribution data for r > ∆. The CCLN, ICL and ICLN

algorithms, which represent all of the modifications developed here, have zero
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Figure 6: (a) Comparison of the mean distributions N(r) for ∆ to the solution on ∆s �, error

bars represent a standard deviation. (b) Standard deviation of the distribution σN (r). ◦ CCL;

� ICL; O CCLN; and 4 ICLN. Filled symbols represent r < ∆.
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error for r & 1.927E-2 ≈ 1.2∆. The error is confined to distribution data for265

r ≤ ∆, which is the desired result.

5. Conclusions

We present a multilevel thresholding connected component labeling algo-

rithm, Informed Component Labeling (ICL), that removes error and bias (to-

wards larger components) encountered when using the standard connected com-270

ponent labeling (CCL) algorithms, or painter’s algorithm. Rather than bina-

rizing the field variable (as in the painter’s algorithm), the ICL incorporates

knowledge of the field variable and modifies the CCL algorithm using two main

strategies.

The first uses multilevel thresholding to establish and refine the connectivity275

of the components. Unlike in computer vision and image processing applications

where the number and levels of the thresholding are still an active area of

research, we establish that the number of thresholds necessary is only three

when the field information is the Volume-of-Fluid function f . We also note

that, provided that the first level is 0.5 and the last level is that of the bulk280

fluid, ICL conserves volume and is insensitive to the value of the middle level.

The second modification incorporates the surface normal to further inform

connectivity. Our tests show that this single modification applied to the original

painter’s algorithm improves accuracy in connecting nearby components, which

is useful if the field function is the level set variable. This modification also285

inherently shifts any error in connectivity to sub-grid components due to the

normal changing sign across the mask direction. This is critical in determining

connectivity (or lack thereof) when many sub-grid components lie near each

other.

The ICL/ICLN algorithm provides a robust and effective method of extract-290

ing Lagrangian information from an Eulerian field data. This applies to any

application involving level sets (e.g. multiphase flows, crack growth and shape

detection) and scalar fields (e.g. vortex identification and tracking and scalar

17



variables). When combined with the Volume-of-Fluid function and the surface

normal, the ICL/ICLN algorithm forms a powerful analytic technique for deter-295

mining bubble- (and drop-) size distribution and statistics in multiphase flow

simulations.
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