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Abstract Often because of limitations in generation capacity of power sta-
tions, many developing countries frequently resort to disconnecting large parts
of the power grid from supply, a process termed load shedding. This leaves
households in disconnected parts without electricity, causing them inconve-
nience and discomfort. Without fairness being taken into due consideration
during load shedding, some households may suffer more than others. In this
paper, we solve the fair load shedding problem (FLSP) by creating solutions
which connect households to supply based on some fairness criteria (i.e., to
fairly connect homes to supply in terms of duration, their electricity needs,
and their demand), which we model as their utilities. First, we briefly describe
some state-of-art household-level load shedding heuristics which meet the first
criteria. Second, we model the FLSP as a resource allocation problem, which
we formulate into two Mixed Integer Programming (MIP) problems based on
the Multiple Knapsack Problem. In so doing, we use the utilitarian, egalitarian
and envy-freeness social welfare metrics to develop objectives and constraints
that ensure our FLSP solutions results in fair allocations that consider the
utilities of agents. Then, we solve the FLSP and show that our MIP models
maximize the groupwise and individual utilities of agents, and minimize the
differences between their pairwise utilities under a number of experiments.
When taken together, our endeavour establishes a set of benchmarks for fair
load shedding schemes, and provide insights for designing fair allocation solu-
tions for other scarce resources.
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1 Introduction

Energy is the key driver for growth in developing countries. However, many
such countries face significant challenges in providing enough energy to power
their industries and communities [20]. To put this into perspective, the United
Kingdom generates over 30 GW of electricity [49] for a population of around
65 million people. Comparatively, Nigeria, a developing country, generates un-
der 8 MW for a population of over 170 million people [34]. Furthermore, the
demand for electricity is steadily growing in developing countries, due to an
increase in population, the modernization of poorer areas and an increase in
the number of digital appliances and devices using electricity within these
countries. In addition, while many of these countries do not have the means to
channel the required investment into developing their energy sectors, it is also
generally cumbersome and time consuming to increase the generation capac-
ity of electric grids. As a result of these, the energy challenges in developing
countries will be ongoing for the near future.

Although there is a wide gap between the demand on the grid and its sup-
ply capacity (or generation) in many developing countries, there is also the
need to constantly maintain the alternating current frequency of the power
system at its operational value (50 Hz or 60 Hz). The consequence of this in
developing countries is that large parts of their electric networks are repeatedly
disconnected from supply. This measure of disconnecting parts of a grid net-
work from supply is termed load shedding. Load shedding reduces the strain
on the grid and prevents it from collapsing. However, while load shedding re-
sults in the stability of grid operation, it also results in many homes within
parts of the network being left without electricity. The effect of this is that
the occupants of these homes are seriously discomforted and inconvenienced.
Furthermore, some homes bear the brunt of these effects because standard
load shedding techniques do not focus on fairly allocating electricity to homes,
as much as they do on maintaining a demand-supply balance. As such, while
load shedding will remain a common practice in developing countries for the
near future, it is absolutely necessary to develop solutions which reduce un-
fairness in the system. Such solutions will improve the general availability of
electricity, present a better platform for fighting poverty, increase the welfare
of individuals and enhance societal development.

Against this background, this paper presents load shedding solutions that
consider the heterogeneous electricity needs of households and uses these to
fairly connect households to supply. The solutions build on existing research in
two key areas, which we discuss in detail in Section 2. The first is in the area
of resource allocation,1 where solutions which fairly allocate resources within
dynamic settings have been proposed. The second culminated in the design
and development of cheap smart meter retrofits specifically for use in develop-
ing countries [3,21]. The retrofits provide functionalities upon which the load
shedding problem can be modelled into a resource allocation problem that

1 A resource allocation problem is a fair division problem whose solution involves finding
an allocation of limited resources between a number of interested entities, subject to the
availability of the resource and how interested the entities are in the resource [7].
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implements load shedding at the household level, such that their electricity
needs at different times can be taken into account.

On account of this, we present a novel approach to load shedding. Firstly,
we execute load shedding at the household level, so that the electricity needs
of households can be considered in designing fair load shedding solutions. In
addition, household-level load shedding reduces waste and increases revenue
by mitigating against overshedding that may arise when load shedding is im-
plemented at network level.2 We develop two sets of household-level solutions.
The first considers the length of time individual households are connected
to electricity, with the aim to keep these households connected to supply as
equally as possible. The second uses the agent model of households to formu-
late the fair load shedding problem into Mixed Integer Programming (MIP)
problems. The MIP models are designed to maximize different requirements,
while minimizing pairwise differences between the duration agents are con-
nected to supply, the level of satisfaction of their individual electricity needs,
and the level of supply to them. It is noteworthy that all our solutions ensure
demand is as close to supply as possible.

It should also be mentioned that this paper presents an approach that
can be exploited when simulating datasets in future. Our approach involves
analyzing the factors which affect the consumption of electricity in households,
then using these to adapt a publicly available, verifiable dataset of household
consumption (for households in a developed country) to our use case.3 We
take this approach because we need a dataset to implement and evaluate our
load shedding solutions, as no dataset of household electricity consumption for
developing countries currently exists.

In addition, as will be seen in this paper, our approach presents a framework
upon which other fairness problems involving constrained utility maximization
(or resource allocation) may be generalized. Specifically, our approach dissects
the general fairness problem in terms of modelling user utilities, preferences
or comfort levels, and using these utilities within a constraint optimization
solution that maximizes the utilities allocated to users (independently and
collectively) and minimizes the differences between their individual alloca-
tions. In order to do so, we model some appropriate social welfare metrics
into constraints which we use within mathematical programming models of
the fairness and efficiency (allocation) problem.

The rest of the paper is organized as follows. In Section 2, we explore
the bodies of work related to our research problem. We show how we create
a relevant dataset and model households into agents in Section 3. We also
describe our setting for the load shedding problem and discuss our key as-
sumptions therein. In Section 4, we present and evaluate four household-level
load shedding heuristics against some standard social welfare metrics. We also
identify the shortcomings of these heuristics within the same section. To over-
come these shortcomings, we model the fair load shedding problem into a

2 Conventional load shedding approaches implement load shedding by disconnecting the
supply to whole buses or substations on the power network. This is always likely to result
in more load than is required being disconnected from supply.

3 We discuss this in detail in Section 3.
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constrained optimization problem in Section 5. Using the same social welfare
metrics (employed in Section 4), in Section 6, we evaluate and compare the
results of all our solutions. We conclude in Section 7.

2 Related Work

A number of fair network-level load shedding techniques have been proposed
[35]. The first was a simple technique that focused on reducing the same per-
centage of load on all buses of a power system (i.e., parts of a power system
that are each made up of multiple households) at the event of an overload.
As such, when there is a grid deficit, their solution executes load shedding by
disconnecting equal amounts of load from all buses of the system in a sim-
ple and fast manner. However, it also results in too much electric load being
disconnected from the grid. To mitigate against this, they proposed a more
efficient technique that disconnects the same percentage of load on only a sub-
set of buses on the grid. The set of affected buses includes all buses within a
tree whose root is the bus of the initially failed line, and leaf is a generator,
a peripheral bus or a sink bus. In comparison with their first approach, this
results in more efficient load shedding, but reduces the size of the system be-
ing affected by the measure. However, the implication is that, firstly, only the
bus on which an overload occurs, and some others around it, will always be
affected by load shedding. As such, some buses which constitute small loads
around the overloaded bus may be affected. Secondly, load is disconnected
from overloaded buses at periods when they need electricity the most. The
consequence of this is that the cost of load shedding to homes running critical
activities within an overloaded bus (or buses around it) increases. As such,
it is important to consider electricity needs when developing load shedding
solutions.

In line with this, the electricity needs (or preferences) of buses on the power
system were considered in [46]. In so doing, they designed a solution where
load shedding depends on interactions between intelligent agents, each repre-
senting a bus on the system. The agents communicate with their neighbours
and work out how much they can contribute to load shedding exercises, based
on their electricity needs. They also determine the associated compensations
for their contribution towards load shedding. In their solution, they minimize
both the amount of load disconnected from supply and the aggregate costs of
load shedding to the buses that participate in load shedding. Note that their
solution is applicable to electric grids where power buses are able to communi-
cate and interact with each other, as is the case in a smart grid. In addition, to
be relevant to developing countries, there is a need to develop solutions with
lower complexities, as are atypical of solutions which deal with user-determined
(or dependent) preferences, incentives and non-compliance (as in [46]). This
is because preferences may vary over time significantly, models of incentives
are not always linear utility functions and consumers may not always behave
rationally, thus increasing the complexity of solutions.

Nonetheless, each bus on the network is made up of lines, while each line
is made up of multiple individual consumers (same in [35] above). As such,
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Table 1 Summary of capabilities of a smart retrofitted meter [21].

Capabilities

1 Two-way communication via GSM
2 Secure transmission of energy consumption data
3 Display of usage statistics
4 Remote connection and disconnection
5 Tamper proof mechanism
6 Power quality measurements (such as voltage and phase angle)
7 Setting of thresholds
8 Outage notifications and tariff updates

each bus is representative of a collection of individual consumers which all have
heterogeneous electricity needs. A fair load shedding solution should take these
heterogeneous needs into account in fairly implementing load shedding, as in
a resource allocation problem.

Thereupon, we first propose that the needs of households within buses
or substations should be considered when developing fair load shedding solu-
tions. This is now possible because of recent advancements in the design of
smart retrofits specifically for use within developing countries [3,21]. These
retrofits employ Global System for Mobile Communications (GSM) technol-
ogy for connecting individual meters and utilities, such that households can
be remotely disconnected from and reconnected to supply. In addition, as a
benefit of other capabilities of the retrofits, the consumption history of house-
holds can be used to analyze the needs of individual households, as well as to
plan for load shedding ahead. Table 1 displays a summary of the capabilities
of the designed retrofits, all of which present a foundation upon which electric
grids in developing countries can evolve into smart grids.

Given this, in [33], we presented four heuristic algorithms an operator can
employ to fairly disconnect households from supply during load shedding in
developing countries. Our selection process was centred around ensuring that
households are connected to electricity as equally as possible, in terms of num-
ber of hours. We employed the utilitarian, egalitarian and envy-freeness social
welfare metrics in assessing the performance of these solutions. Together with
our proposal for executing load shedding at the household level, our solu-
tions also present an avenue for maximizing revenue and in effect, minimizing
waste and utilizing electricity better. However, apart from providing solutions
that connect households to electricity as equally as possible, we failed to take
into account the heterogeneous needs of individual customers. As such, our
solutions would, time and again, result in homes being disconnected from
electricity when they need it the most (as in [35] above).

On account of this, the household-level Fair Load Shedding Problem (FLSP)
can be mapped to a fair resource allocation problem (defined in Section 1)
where the resource that needs to be divided among entities (i.e., households)
is grid supply. Different resource allocation problems have been solved on elec-
tric grids using the multiagent system (MAS) approach. For example, in [5],
the MAS approach was used to solve the resource allocation problem of trad-
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ing electricity within the smart grid. They showed that this approach produces
better results (in terms of fairness and efficiency) than other traditional (non-
MAS-based) resource allocation methods. In addition, a resource allocation
problem, where charging slots were allocated to electric vehicles (EVs) based
on reports4 submitted by agents representing owners of EVs, was solved in
[15]. This particular problem was solved in order to prevent overloading the
network when charging the EVs. The problem was extended in [48] by con-
sidering EVs which have preferences that the system commits to fulfilling
to an extent. Additionally, agent-based coordination algorithms were used to
solve the optimal dispatch problem of allocating power outputs of intermittent
power generators in [25], such that the electricity generated by these renewable
sources is optimally utilized. Note that there is a necessity for self-interested
participants to behave rationally and truthfully report their preferences in all
of the studies. However, in our FLSP, we centrally generate these preferences
in order to reduce the complexities and cost (in relation to those used in [15,
48,25]) of eliciting the information from household agents.

To solve the FLSP, we use insights from the knapsack packing problem.
A knapsack problem is one where a fixed-capacity knapsack is to be fitted
with a set of items, each with its weight and value (or profit), in such a way
that the knapsack holds the items with the highest values within its capacity
[24]. This is often modelled as an optimization problem and solved using linear
programming (or MIP), where a combination of items are selected to maximize
the value of items packed into the knapsack, subject to the knapsack’s capacity
constraints. In this regard, the electric grid is analogous to a knapsack with a
fixed supply capacity at a given time and agents with varying electricity needs
and usage values.

To solve the FLSP over different allocations, we consider another variant
of the knapsack problem, namely the multiple knapsack problem (MKP). A
MKP differs from the classic knapsack problem in that it has m bins or knap-
sacks (where m > 1) [6]. The number of periods in which our FLSP will be
solved is likened to the number of knapsacks within the MKP. However, other
considerations are necessary before a suitable MKP representation of the fair
load shedding problem can be developed. These considerations involve the
introduction of constraints that ensure fairness when solving the FLSP as a
MIP. Before we describe how we make these considerations, we first describe
the methodology employed to generate a dataset applicable to the problem in
the section that follows.

3 Modelling Household-level Load Shedding for Developing
Countries

We focus on developing load shedding solutions for households. We do this
because the residential sector constitutes a large percentage of the demand on

4 These reports indicate the periods within which the EVs will be available for charging.
As such, they represent user preferences.
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the grid. An example is in Nigeria,5 where the residential sector accounts for
51.3% of grid demand [30]. As such, effective household-level load shedding
solutions will improve grid conditions and energy situations. We simulate a
dataset that will be used to solve the household-level load shedding problem
in the next section.

3.1 Simulating Developing Country Energy Consumption Data

Our solutions need to be simulated, implemented and evaluated using a rele-
vant real-world household-level electricity consumption dataset of households
in a developing country. However, to the best of our knowledge, no such dataset
exists.6 Now, instead of creating or simulating an entirely artificial dataset, we
consider collecting verifiable, authenticated, readily available household con-
sumption data of homes in developed countries, then adapting the data to one
representative of a developing country.7 This is because an adapted real-word
dataset will preserve some of the consumption signatures and features typical
to households.

A number of real-world household-level consumption datasets from devel-
oped countries exist. However, we consider those collected from a multiple of
households. As such, in Table 2, we present a few of the datasets collected
from over 20 households [27,51].

Our fair load shedding solutions should result in fair allocations over time.
Therefore, a suitable dataset for implementing and evaluating our fair load
shedding solutions should cover long periods. For this reason, the Tracebase
[51,27] and PLAID [14] datasets are inadequate. Consequently, we are left
with other datasets which cover a month and over. In further examining the
remaining datasets, we consider a number of factors which affect the consump-
tion of electricity in households. These include appliance usage, temperature
and consumption habits. We discuss how these factors are used to determine
our source of data and simulation approach in the sections that follow.

3.1.1 Appliance Usage

Homes in developing countries do not have as many appliances as those in
developed countries. To illustrate this, in 2010, the average consumption of

5 We take Nigeria to be our representative developing country in this paper.
6 There is the iAWE dataset from India [51]. However, the dataset is collected from

only one house. Only a dataset collected from multiple households is useful for simulating,
implementing and evaluating our fair load shedding solutions.

7 We considered running a field trial to gather data of household consumption in Lagos,
Nigeria. We had two options in mind. The first option was to deploy the retrofit smart
meters we described in Section 2 within a network made up of a data collection centre and
multiple households. Our data collection centre will then receive data from these households
using a GSM receiver module, and store the data on a memory. The second option was to
connect data collection kits to electric meters in multiple homes. These kits would collect
the electricity consumption data for such households using non-invasive AC current sensors,
and store these on micro-SD cards. We decided against the field trial majorly due to cost
and time restrictions.
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Table 2 Publicly available household electricity consumption datasets of 20 or more house-
holds [27,51]

.

Dataset Number Data Point Location Data Length
of Houses

1 Dataport Over 1200 Appliance USA Over 4 years
2 HES 251 Submeter United Kingdom 12 months (26 houses) &

1 month (225 houses)
3 Tracebase 158 Appliance Germany 1 day
4 RBSA 101 Submeter USA 27 months
5 PLAID 55 Appliance USA 5 seconds
6 OCTES 33 Submeter Finland, 4 to 13 months

Iceland &
Scotland

7 EEU data 23 Submeter Canada 27 months
8 REFIT 20 Submeter United Kingdom 24 months

an electrified household in Nigeria was 570kWh [55]. In contrast, 11, 698kWh
of electricity was consumed by an electrified home in the USA in the same
year [55]. A reason for this is that, on average, homes in Nigeria are poorer
than those in the USA, which directly impacts on the appliances used within
a typical home in the country.

For this reason, any dataset adapted to the developing country context
should be one from which the consumption data of appliances commonly used
in developing countries can be extracted. Consequently, the HES [9], RBSA
[51], OCTES [27,51], EEU (known as the Electrical-end-use data) [19] and
REFIT [28] datasets are inadequate as they were collected at the submeter
level. This leaves us with the dataset from Pecan Street Inc’s Dataport [37].
Thankfully, Dataport is the largest provider of disaggregated (i.e., appliance-
level) customer energy data [36], as seen from Table 2. In Figure 1, we show the
number of occurrences of individual appliances on Dataport [36]. Therefore,
we collect the time-series appliance-level data from Dataport for the period of
a year. We point out that the dataset on Dataport is collected from households
in the USA.

Thereafter, we discover from multiple studies that the appliances typically
available in a home in Nigeria include lighting, televisions, electric fans, DVD
players, washing machines, electric irons, air conditioners, refrigerators, sewing
machine and water pumps [31,45,11,26,32]. Hence, we extract the consump-
tion data from the appliances which are common to both countries from our
Dataport dataset. These include the consumption data of air conditioners,
washing machines, lighting and refrigerators. In the next section, we discuss
how we consider temperature in simulating our representative dataset.

3.1.2 Temperature

In simulating our representative dataset, in this section, we consider the effect
which temperature has on the electricity consumed within a household. This
consideration is one of the reasons for the wide contrast between the electricity
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Fig. 1 Number of appliance occurrences in households on Dataport (reproduced from [36])

consumed in the USA and in Nigeria (as stated above). Now, the location of
a household determines the external temperature the household becomes sub-
jected to, while the external temperature influences the electricity consumed
in the home. Consequently, the temperature in the USA is such that a typical
home in the country spends energy on heating. For instance, in 2010, 41.5%
of the average electricity consumed within a home in the USA was spent on
heating, while 17.7% was spent on water heating. In turn, about 16% of the
average electricity consumed within homes in Nigeria is spent on cooling [56].
To factor this in, we consider the similarities between the monthly temperature
of Texas, USA and Lagos, Nigeria. We do this because many of the households
whose appliance usage data is collected from Dataport are situated in Texas,
while Lagos is largest city in Nigeria (and one of the largest in sub-Saharan
Africa). Figure 2 shows how the average monthly temperature of Lagos and
Texas [16,17] are similar during summer in Texas. On this ground, from our
Dataport dataset, we extract the data from appliances used within households
in Texas during the 13 weeks of summer. By so doing, it is reasonable to as-
sume that the consumption of appliances extracted from our Dataport dataset
will resemble those typical of Lagos homes (particularly the air conditioning).

3.1.3 Consumption Patterns

Furthermore, we consider the consumption patterns within typical households
in both countries by examining their typical load profiles. To derive the typical
load profile of a home in the USA, we aggregate the data originally collected
from Dataport and compute the average hourly consumption of a household.
We derive the typical load profile of a home in Nigeria from [38]. Thereafter,
we compute the load profile of our representative dataset (i.e., the Dataport
dataset adapted so far) and present it in Figure 3. Following these, we discover
that the average load profiles for the USA and Nigeria are similar to that in
Figure 3. This depicts that occupants of households in both countries tend
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Fig. 2 Average monthly temperature in Texas and Lagos

Fig. 3 The average load profile computed from our representative dataset. It shows that
consumption reduces overnight, increases through the day and peaks in the evening.

to consume less during hours of the night (i.e., from 12AM to 6AM). It also
suggests an increase in activities that require electricity in the mornings (i.e.,
from 7AM onward). In addition, it suggests that consumption peaks between
6PM and 8PM in both countries. Given this similarity, we aggregate the appli-
ance consumption data of our representative dataset for each household. This
makes up the overall household electricity consumption of the households. In
so doing, we end up with a dataset that is representative of the household
consumption of 367 typical Nigerian homes. Note that our approach to the de-
velopment of this dataset is similar to that in [12], where demographics data
was used for data transformation. Having described how we created a rep-
resentative home consumption dataset for Nigeria, we will use it to formally
model individual homes as agents, and to express a generic model of the FLSP.
First, we formally model individual homes as agents in the next section.

3.2 Modelling Households as Agents

In this section, we model each household as an agent using the household
consumption data developed above. We take the following steps in doing this.
First, we collect the actual hourly consumption data for each household for up
to four previous weeks, if the data is available. In this regard, we end up with
a vector of 168 (i.e., from 24 hours × 7 days) values for each week’s worth
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of data. We define this vector as Cw
i = (ct=1

i , . . . , ct=168
i ), where ci ∈ R>0

is the consumption of household i at the hour (t) during the week (w). Al-
though no vector is available during the first week, C1

i becomes available af-
ter the first week (i.e., on the second week). In the same manner, (C1

i , C
2
i ),

(C1
i , C

2
i , C

3
i ) and (C1

i , C
2
i , C

3
i , C

4
i ) become available on the third, fourth and

fifth weeks respectively. From this point on, four vectors will provide a moving
window over four weeks of data for each household. For example, the vectors
(C4

i , C
5
i , C

6
i , C

7
i ) will make up the consumption data over four weeks on the

eighth week. Note that we consider weekly periods based on the assumption
that the correlation between the electricity consumed on the same day of a
week over weeks (e.g., between Sundays) is likely to be higher than those be-
tween different days of the week (e.g., between Sundays and Mondays). As
such, the consumption patterns of a typical household will likely differ on dif-
ferent days of the week [52,10], as their activities may differ and be particular
to these days. Consequently, when computing the consumption profile of a
household, it becomes necessary to consider its typical consumption pattern
during each day of the week [52]. Figure 4(A) shows an example of the data
collected for a household over all 168 hours on the fifth week.

Second, we model each household’s consumption profile using the electric-
ity it consumes in each hour of the week. We do this by computing the average
hourly consumption and the standard deviation from this average over all 168
data points in the available vectors. Then, for each household i, the con-
sumption profile is modelled as a vector, ζi, of values drawn from the normal
distribution of the mean and variance as shown in Equation 1.8

ζi =
(
N (µt=1

i , σt=1
i ), . . . ,N (µt=168

i , σt=168
i )

)
(1)

where ζi is the vector of the hourly consumption of i over the week, with
the consumption for each hour drawn from a normal distribution of mean µt

i

(i.e., µt
i =

∑4
w=1 c

w,t
i ) and variance σt

i (i.e., σt
i =

(∑4
w=1(cw,t

i − µt
i)

2
)
/4).

We show the consumption profile of our example household in Figure 4(B).
Note that, as a result of replacing the oldest vector used in calculating the
168 hourly averages with the newest (when available), we are able to capture
any changes in the consumption patterns of a household. In other words, our
vector of averages take into account the effects of changes in season, appliance
usage or habits.

Finally, we normalize the vector ζi, so that the consumption profiles of all
households fall within the range (ε, 1), where ε ∈ R>0 is a very small number.
With this, we create a vector of comfort for each household, and finalize the
modelling of households as agents. We define this comfort vector, ∆i, for an
agent i, as:

∆i =
ζi

max
t
{ζi}

=
(
δt=1
i , . . . , δt=168

i

)
(2)

8 By drawing from this normal distribution of our hourly consumption values over weekly
periods, we may end up with a negative value of consumption. To avoid this (as it is unrealis-
tic to have a negative consumption), we take an absolute value of any negative consumption
value that is drawn from the distribution.
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Fig. 4 Weekly consumption data of four prior weeks (A), hourly averages and errors of
four-week data (B), and comfort (C).

where ∆i is a vector of values δti ∈ R>0. Consequently, ∆i represents the
preference agent i has for electricity during all hours in a week. A value close
to 1 within the vector represents an hour during which an agent has a high
need for electricity in the week. On the other hand, a value close to ε reflects
the agent’s low need for electricity at that hour of the week. The comfort
profile of our example agent is shown in Figure 4(C).

Our formulation provides two benefits. (i) It represents a vector of utili-
ties9 of each agent in terms of the electricity needs of agents. This vector is
formulated in such a way that the utility of an agent is the highest during
the hour it needs electricity the most, and the lowest during the hour it needs
electricity the least. As such, an agent receives higher comfort utilities if it
is connected to electricity at hours it needs more electricity. (ii) With this
formulation, the electricity needs of agents can be uniquely quantified and
interpersonally compared10 at the same time, without considering how much
electricity the agents consume with respect to others. For example, values of
1 within the comfort vectors of two different agents represent the hours in a
week that both agents need the most electricity. It is worthy of mention that
we use the term “comfort” to qualify this vector because, the more an agent
is connected to supply during hours with higher δt values, the more it benefits
(or derives comfort) from electricity.

Note that our comfort formulation: (i) is an independent, linear utility
function for each agent, (ii) is one that is relevant to developing countries

9 The utility of an agent is a numerical value that is used to represent the preference of
the agent for the resource, such that agent i receives a utility of ui(P ) from an allocation P
[7]. This utility is a mapping from the consumption of agents.
10 Comparison between agents is possible because all agents’ comfort values are on the

same scale of ε to 1, not minding how much the electricity they demand (or consume) differ.
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where, in reality, there is limited information (such as appliance-level consump-
tion, internal and external temperature data, occupancy information from sen-
sors etc.) that can be used to formulate comfort with more sophisticated ap-
proaches, and (iii) can be used to design our fair load shedding solutions to
provide results similar to those of incentive compatible mechanisms.11 In mak-
ing our solutions incentive compatible, agents can receive their highest utilities
by consuming electricity in their usual manner.12 We express the FLSP in the
next section.

3.3 The Fair Load Shedding Problem (FLSP)

Herein, we formally define the load shedding problem, based on the data and
comfort model above. Our definition will be applicable to the rest of this paper.

We define I as a set of n agents, where each agent is denoted as i. Also,
we derive the hourly estimated consumption (or demand) of each agent, c̃ti, at
hour (t) from the representative data, as would be necessary when planning
load shedding ahead. We do so by drawing from the normal distribution c̃ti ∼
N (cti, 0.05).13 The aggregated hourly estimated demand of the set of agents
represents the hourly load on the system. We denote this hourly load as lt ∈
R>0, where lt =

∑n
i=1 c̃

t
i. Similarly, the hourly estimated supply capacity

available for meeting the demand of agents in I is represented as gt ∈ R>0.14

Now, in a developing country, it is often the case that lt is greater than gt.
In this event, there is a deficit, dt (i.e., dt = lt − gt), on the system and the
demand of all agents cannot be met. System operators then have to resort to
load shedding in order to maintain a balance between demand (lt) and supply
(gt) and keep the system in operation (as discussed in Chapter 1). In executing
load shedding, we define a piece-wise variable Λt

i, which takes the value 1 if
i is connected to electricity at t, and 0 otherwise. As such, an agent is either
connected to supply or not. Now, we briefly discuss the assumptions upon
which our pre-planned solutions are based.

3.4 Key Assumptions

In solving the fair load shedding problem, we use day-ahead hourly estimates
of demand and supply to plan for load shedding a day ahead. Our solutions
result in the selection of households to be disconnected from supply in a way
that ensures fairness and grid stability. As such, we classify our solutions as

11 Incentive compatible mechanisms are known to reward agents which act according to
their preferences with the best outcomes for such actions [43].
12 We design our fair load shedding solutions in this manner in Section 5.
13 We state later in Section 3.4 that we use accurate predictions of household consumption

to solve the FLSP. For this reason, we specifically take σ as 0.05 to produce consumption
estimates that are close to the actual consumption of homes. However, we evaluate our
solutions under higher levels of uncertainty in Section 6.4.
14 For our purposes, we take the value of gt for each day ahead as the average of the sum

of hourly household consumption estimates for that day (i.e., gt = (
∑24
t=1

∑n
i=1 c̃

t
i)/24).
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Fig. 5 Load shedding as implemented by the city of Johannesburg, indicating there is
emergency reserve power [8]
.

planned, day-ahead, household-level load shedding options. We make the fol-
lowing assumptions in solving our problem in this manner:

1. Household-level load control: We assume that the retrofits which pro-
vide the means for household-level load control are generally available in
homes within distribution networks in developing countries. This is neces-
sary because our solutions warrant the execution of load shedding at the
household level. We can make this assumption because household-level load
control is possible with the smart meter retrofits discussed in Section 2.

2. Household consumption estimates: We assume that we receive (or
compute) near-accurate estimates from homes (hence the level of uncer-
tainty in deriving c̃ti). We can make this assumption because it is possible
to receive (or estimate) near-accurate household consumption estimates
using elicitation approaches such as prediction-of-use games (see [54]) and
scoring rule-based mechanism (see [42]), and with the tools (such as in [44])
and techniques (such as in [50]) for estimating household demand.

3. Spinning reserve: We assume that the sum of available supply and emer-
gency power will always suffice for any uncertainties in demand estimates.
We can make this assumption because generators ensure that they have a
spinning reserve available, as they are unable to always predict consump-
tion. This is the case in South Africa, another developing country, as de-
picted by the “reserve margin” shown in Figure 5. In addition, while some
households may consume more than their estimates, others may consume
less than their estimates. Such estimation errors may cancel themselves
out. Furthermore, we assume that the spinning reserve will cater for any
power flow concerns (e.g., transmission losses).

4. Comfort vector: We assume that comfort is independent of load shedding
events. Although we design solutions which are able to factor in the effect
of load shedding on consumption after supply is restored (i.e., the rebound
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effect)15 in Section 5.2.2 and Section 5.2.3, it is necessary to assume that
consumers may not know in advance when load shedding events will hap-
pen and so do not preemptively run some activities. As such, our comfort
formulation in this paper embodies the preference of agents for electricity,
even when they may be arbitrarily subjected to load shedding.

Based on these assumptions, in the next section, we first develop a number
of heuristics that disconnect households from supply during load shedding.
Our heuristics are designed with the objective to connect agents to supply
for a similar number of hours, while ensuring that demand matches supply.
We also assess the performance of these heuristics and analyze their results
therein.

4 Household-Level Load Shedding Heuristics

In this section, we briefly summarize and evaluate the solutions presented in
[33].16 In [33], four heuristics (i.e., GA, CSA1, RSA and CSA2) which focus on the
single objective to minimize the maximum difference in the number of hours
agents are connected to supply (i.e., to minimize envy in terms of connections
as specified in Section 3.3) were presented. This objective is formulated as:

min{maxi,j(|Ni −Nj |)} (3)

Specifically, GA tries to simulate the response of an operator to load shed-
ding. It does so by creating a few groups of agents, such that the sum of the
estimated demand of the agents in each group is enough to offset the deficit.
Thereafter, it sums up the number of hours all agents in each group have been
connected to supply, then disconnects the group of agents that have been con-
nected to supply the most. The other heuristics (i.e., the CSA1, RSA and CSA2)
use a round-robin scheme to select agents in rounds over all load shedding
events. In this manner, when an agent is disconnected from supply, it will not
be disconnected again until all agents have been disconnected in that round.17

The CSA1 disconnects agents in each round based on their consumption, the
CSA2 disconnects agents in each round based on their comfort, and the RSA

is designed to be agnostic of the consumption or comfort of agents, so that it
randomly disconnects agents in each round.

In order to re-assess18 the performance of these heuristics, we point out
that q is 2184 hours (as the representative dataset of hourly consumption

15 The rebound effect, illustrated in [39], is the reaction of consumers to load management
measures by shifting their consumption to periods when electricity is more available.
16 Please see [33] for a more in-depth description of these solutions.
17 A round is completed when each agent has been disconnected once. Depending on the

deficits, a round may either span over different load shedding implementations or terminate
within the implementation it begins.
18 The performance of the heuristics were assessed in terms of connections and comfort in

[33], as in a chore division setting. However, to conform with the results to be evaluated
later in this paper, we reproduce the results in [33] in terms of connections and comfort, as
in a cake-cutting setting.
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Table 3 Utilitarian, egalitarian and envy-freeness results in terms of the number of hours
agents are connected to supply

Heuristic Utilitarian Egalitarian Envy-freeness

GA 631498 1607 697
CSA1 646971 1766 1
RSA 640233 1758 1
CSA2 640651 1745 1

developed in Section 3 is for a period of 13 weeks). In evaluating these heuris-
tics, we use the utilitarian, egalitarian and envy-freeness metrics to evaluate
these heuristics. The utilitarian criterion, as defined in [23], is the sum of the
individual utilities of all agents in a system. We adopt this definition, and
consequently adopt the utilitarian criterion as the total number of hours all n
agents are connected to electricity within q hours (i.e.,

∑n
i=1Ni). In addition,

[23] also defines the egalitarian criterion as the utility of the agent that is
currently worst off. In our domain, we adopt the egalitarian criterion as the
number of hours the agent connected to electricity the least within q hours
was connected for (i.e., mini{Ni}). Finally, envy-freeness is a criterion of fair
division that allocates resources to agents in such a way that no agent envies
the allocation of another. However, we define this criterion differently. This
is because, in our case, agents do not have information of the allocation of
others, making it impossible for the standard definition of envy-freeness to be
adopted. Instead, we define envy-freeness in terms of the highest difference
between the utilities of all pairs of agents, such that if the agents were aware
of their utilities, the overall envy within the agent-population will be minimal.
As such, the envy-freeness criterion is defined as maxi,j{|Ni−Nj |}, represent-
ing the maximum difference between the number of hours all pairs of agents
are connected to supply for within q. We present the results based on these
social welfare metrics in Table 3.19

Table 3 shows how the four heuristics achieve a somewhat similar perfor-
mance in terms of how they connect agents to supply over the entire period that
results from the data, as seen in the Utilitarian column. However, the perfor-
mance of CSA1 is better than those of others. The same can be said of results
shown in the Egalitarian column, where CSA1 connects the least connected
agent to supply the highest number of times. However, in the Envy-freeness
column,20 CSA1, RSA and CSA2 all achieve a difference of one connection be-
tween the agents they connect the most and least to supply. This is due to the
round-robin scheme they employ.

Nonetheless, although three of our algorithms achieve their objective, some
questions arise. What if agent i is mostly connected to supply when the occu-
pants are home (and, as such, need electricity the more) but agent j is mostly
connected to supply when they are away (and, as such, need electricity the
less)? Would an agent prefer to be connected to supply when it needs electric-

19 Note that the results presented in Table 3 are obtained from solving the fair load shed-
ding problem once.
20 Note that the smaller the number is, the better the result in this column.
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ity the more, even if it ends up being connected to supply for a fewer hours?
We believe the fairness scenarios posed by these questions are not addressed by
these heuristics. Therefore, to better achieve fairness, it is important that we
model the FLSP as a resource allocation problem that considers the electricity
needs of agents. We do this in the next section.

5 Optimizing Fair Load Shedding

With the notion of comfort, we now have a number of objectives to work
with, vis-à-vis the number of hours agents are connected for, the comfort
delivered to agents and the demand of agents. Upon this background, in this
section, we use the consumption and comfort values of agents to model the
FLSP as a constrained optimization problem.21 In so doing, we adapt the
utilitarian, egalitarian and envy-freeness social welfare metrics in terms of
comfort, demand and connections as objectives and constraints, and use these
to design an MIP that allocates electricity to individual households over a
period.

5.1 The Knapsack MIP Formulation

We first model the objective of the fair load shedding problem with insights
gained from the knapsack problem for an hour (see Section 2). We take the
values of the items in a knapsack problem to be the comfort values of the
agents. In addition, we take the weights of these items to be the consumption
(or demand) of each agent. As such, the capacity of the knapsack is taken as
the supply capacity of the grid. With these, we formulate FLSP for an hour,
t, as:

max

n∑
i=1

δtiΛ
t
i,

s.t.:

n∑
i=1

c̃tiΛ
t
i ≤ gt

(4)

where δti is the comfort value of i at t and Λt
i connects i to supply at t (i.e.,

Λt
i = 1) or otherwise. This is an implementation of the utilitarian criterion

in terms of comfort, in that the summed utility of all agents is maximized
[29]. It is subjected to the constraint that limits the total electricity supplied
to the available supply capacity, thereby implementing load shedding. With
this formulation, the comfort of all agents is maximized at t while keeping the
electricity supplied within the supply capacity. As such, the MIP ensures that

21 We believe the consumption and comfort values of agents provide the tools upon which
our solutions can become an algorithmic framework and methodology which may be gener-
alized to other problems involving constrained utility maximization, where the utilities can
be suitably modelled (as we did with comfort) and where the constraints involve notions of
fairness.
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electricity is supplied to agents that need it more at t. However, this in no way
considers fairness. Instead, fairness considerations can only be incorporated
into this problem when it is solved over a number of hours [13]. For this
reason, we extend this into a Multiple Knapsack Problem (MKP) formulation
in the next section.

5.2 The MKP MIP Formulation

Herein, each hour is modelled as a knapsack in the MKP formulation. With
each agent having different demands and different comfort values for different
hours in a period made up of p hours, the formulation in Equation 4 becomes:

max

p∑
t=1

n∑
i=1

δtiΛ
t
i (O1),

s.t.:

n∑
i=1

c̃tiΛ
t
i ≤ gt ∀ t ∈ {1, . . . , p} (C1),

β2 ≥
p∑

t=1

Λt
i ≥ β1 ∀ i ∈ I (C2),

p∑
t=1

δtiΛ
t
i ≥ β3 ∀ i ∈ I (C3),

p∑
t=1

c̃tiΛ
t
i ≥ β4 ∀ i ∈ I (C4)

(5)

As such, the comfort of all agents is maximized over p22 hours. The ob-
jective is also an implementation of the utilitarian social welfare metric that
is subjected to a number of constraints. Constraint C1 ensures that the sup-
ply capacity is not exceeded for every hourly solution to the MIP problem.
C2 to C4 are constraints which we formulate to fulfill some fairness criteria
using the egalitarian and envy-freeness metrics. We describe these criteria and
constraints in the sections that follow.

5.2.1 Fairness Criterion Based on Number of Hours of Connection

We begin by discussing a fairness criterion based on the number of hours
individual agents are connected to supply (one of the utilities of agents), as
was the focus of our heuristics in Section 4. This criteria is formulated as a
constraint, C2. The constraint is constructed using the egalitarian and envy-
freeness metrics.

The egalitarian metric is described as the number of hours which the agent
least connected to supply is connected for. As such, we constrain our FLSP

22 It is noteworthy that, because we look to plan for load shedding a day ahead, we take
p to be 24 (hours).
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Algorithm 1: Deriving an upper bound and a lower bound for the num-
ber of hours all agents should be connected to supply the day ahead

Data: The number of agents in I, n; the hourly consumption of each agent, c̃ti; the
hourly supply capacity, gt; the hourly deficit, dt = lt − gt

1 F ⊆ t ∈ {1, . . . , 24} ∀ dt > 0 // Hours load shedding is necessary, F

2 cfµ =
(∑n

i=1 c̃
f
i

)
/n // Average hourly demand of agents in f ∈ F

3 πf = gt/cfµ // Estimated number of households connected in F

4 Π =
∑
f∈F π

f // Total estimated households connected hourly in F

5 N i
µ = Π/n // Estimated average connections per agent in F

6 β1 =
⌊
N i
µ

⌋
+ 24− |F | // Round down average day ahead connections per agent

7 β2 =
⌈
N i
µ

⌉
+ 24− |F | // Round up average day ahead connections per agent

to ensure that there is a lower bound, β1 ∈ {0, . . . , 24}, to the number of
hours every agent will be connected to supply within 24 hours. The egalitarian
criterion can be satisfied in terms of connections in that a high value for β1
will ensure all agents are connected to supply for a minimum number of hours
within the day ahead.

In order to satisfy the envy-freeness criterion, we specify an upper bound,
β2 ∈ {0, . . . , 24}, on the number of hours every agent will be connected to
supply within 24 hours. Thereupon, we are able to limit the differences between
the number of hours all pairs of agents are connected to supply within 24 hours.
Furthermore, we use the hourly supply capacity (gt) and the demand of all
agents (

∑n
i=1 c̃

t
i) for each hour within the day-ahead to derive the values for

parameters β1 and β2. We do this using the set of computations shown in
Algorithm 1.

Algorithm 1 first finds the hours within the day ahead in which load shed-
ding is necessary (Line 1 ). For each of these hours, it then computes the
average hourly estimated demand of agents (Line 2 ). Thereafter, it divides
the hourly supply capacity by the average hourly estimated demand of agents
during load shedding hours. This provides what we say is an estimate of the
total number of agents which can be connected to electricity in these hours
(Line 3 ). Next, it sums up these hourly estimates (Line 4 ). Thereafter, it di-
vides this total number of connections by the total number of agents, to obtain
an average number of hours each agent can be connected to supply during load
shedding hours (Line 5 ). To compute an exact number of whole hours agents
can be connected to supply in the day ahead, it rounds down (Line 6 ) and up
(Line 7 ) the number computed in Line 5 plus the number of hours no load
shedding is necessary.

β1 and β2 are used in C2 to determine the number of hours which agents
will be connected to supply the day ahead. It should be noted that the values
of these parameters are absolutely dependent on the data used in solving the
FLSP (i.e., the consumption of agents and the supply capacity from our repre-
sentative dataset). However, the above steps have generated parameters that
result in feasible solutions in this case and can be used in different scenarios
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(i.e., for different datasets or system characteristics) as we show in Section 6.6.
We discuss C3 and its associated fairness criterion in the next section.

5.2.2 Fairness Criteria Based on Comfort

Next, we consider the comfort of each agent over each day’s period (another
of the utilities of agents, as we have previously mentioned). We use this con-
sideration in formulating another constraint, C3, based on the egalitarian and
envy-freeness metrics. However, we do not have a comfort capacity for com-
puting bounds (as we did in Section 5.2.1, where bounds which determine the
number of hours that agents will be connected to supply daily are derived from
supply capacity). In addition, we do not have a single yardstick that we can
equally base the comfort of all agents on (as we did in Section 5.2.1, where
all agents had the same 24 hours in which they can be connected to supply).
Furthermore, the comfort of each agent for each hour is a function of their
consumption over 168 hours of a week. By this, we mean that the comfort
enjoyed by two agents which consume the same amount of electricity in a day
is unlikely to be the same because we derive their comfort from their weekly
historical consumption data (as described in a Section 3.2). For this reason,
we do not have the adequate information to analytically determine lower and
upper bounds for implementing the egalitarian and envy-freeness metrics in
terms of comfort.

To remedy this, we define a factor (or parameter), β3, which represents
the percentage of the summed comfort of each agent within a day as β3 =
α3

∑p
t=1 δ

t
i ∀ i ∈ I. We set β3 as a lower bound of the comfort that must

be delivered to every agent daily. We do not select an upper bound because
the constraint C2 already ensures the solution to the MIP does not result in
any agent being connected to supply all hours of the day. As such, there is
no day an agent enjoys all of its summed comfort.23 To this end, our MIP
produces solutions that satisfy the egalitarian and envy-freeness metrics as a
result of the lower bound. With respect to the egalitarian metric, the lower
bound ensures all agents are delivered a minimum level of their comfort daily.
Whereas, the envy-freeness metric is satisfied with respect to the value of
parameter α3 which limits the difference between the comfort enjoyed by all
agents.

In arriving at a value for α3, we provide a grid of values in the range
0 < α3 < 1 to our solver.24 Using a binary search algorithm, we find values
which result in feasible solutions within the range. From these values, we then
select a value, α3, which maximizes the solution to the MIP.

In addition, we attempt to factor in the rebound effect (described in Section
3.4) herein. It is necessary to do so because if i is disconnected from supply
at t, it is likely to need electricity more (than it would have if it was not

23 Although this is dependent on data, our representative dataset (in Section 3.1) and
problem formulation (in Section 3.3) are such load shedding will be necessary during a
number of hours daily and no agent is connected to supply all hours of the day.
24 We use the standard mixed integer linear programming solver CPLEX to solve this

constrained optimization problem.
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disconnected) in the next hour, t + 1. This is because some activities which
consumers may have been deprived of at t are likely to become more important
at t + 1. In this regard, we take δt+1

i as a value randomly selected between
the computed comfort value for that hour and the maximum comfort value of
the week (i.e., δt+1

i = {δt+1
i , 1}). We discuss an additional fairness criterion,

modelled as constraint C4, in the next section.

5.2.3 Fairness Criteria Based on Electricity Supply

We begin by pointing out that if an agent is delivered a certain level of its
summed comfort over a particular day, there is no guarantee that the agent
will be supplied the same level of its total demand that day. This is because
comfort is derived from historical consumption while demand is estimated. In
addition, as stated in Section 5.2.2, comfort is derived from weekly consump-
tion. Therefore, it is necessary to also formulate another constraint, C4, that
delivers a minimum percentage of each agent’s daily demand (the third of the
utilities of agents). We formulate this lower bound as a percentage because all
agents have different demands over different hours such that no single amount
of electricity supply will equally satisfy them. In addition, as in Section 5.2.2,
we do not have enough information from which we can analytically determine
this lower bound. Likewise, we do not compute an upper bound because our
constraint in Section 5.2.1 already ensures that no agent is connected to supply
all 24 hours of a day as an effect of load shedding.

A lower bound presents a basis for which our MIP formulation can conform
to the egalitarian and envy-freeness metrics. With respect to the egalitarian
metric, the lower bound ensures all agents are supplied a minimum level of
their demand daily. It also determines the maximum difference between the
pairwise percentages of the daily total demand that is supplied to the agents,
such that the envy-freeness metric is satisfied to a degree determined by the
lower bound. We define this lower bound as β4 = α4

∑p
t=1 c̃

t
i ∀ i ∈ I. On this

ground, our FLSP is subjected to the constraint C4 in Equation 5. As such, a
minimum level of demand is supplied to each agent daily and the differences
between the supply shares of all agents are reduced.

Similar to parameter α3, our solver arrives at a value for parameter α4

within the range, 0 < α4 < 1, such that the solution to the MIP is maximized.
Also, α4 determines the value of β4 (see above), and depends on the demand
and supply capacity of the system. We attempt to factor in the rebound effect
herein also, because if i is disconnected from supply at t, it is likely to consume
electricity more (than it would have if it was not disconnected) in the next
hour, t + 1. This is due to appliances like refrigerators cycling on and home
occupants possibly running activities they were deprived of at t. In this regard,
we take c̃t+1

i as a value randomly selected between the computed consumption
value for that hour and the maximum consumption value in its consumption
profile (i.e., c̃t+1

i = {c̃t+1
i ,max

t
{ζi}}).

When taken together, the solution of the FLSP MIP selects the agents
to be connected to supply at each hour within a day, such that comfort is
maximized over the day. It ensures that the electricity supplied to agents
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(being a function of comfort) is as high as possible without exceeding the
hourly supply capacity. It also ensures that the number of hours each agent is
connected to supply within the day, the percentage of the daily total comfort
of each agent and the percentage of the daily total consumption of each agent
all satisfy the egalitarian and envy-freeness metrics.

5.3 Maximizing Supply: An Optional MIP Objective

Next, we consider the FLSP in the context of revenue maximization (instead
of comfort maximization). Hence, we formulate an objective which maximizes
supply below:

max

p∑
t=1

n∑
i=1

c̃tiΛ
t
i (O2) (6)

The objective is likewise subjected to all constraints C1 to C4 to form
another solution to the FLSP.

Consequently, we offer a pair of solutions to the FLSP. These solutions
present options that can be utilized in different conditions and environments,
depending on the desired objectives and requirements. In highlighting these
objectives and requirements, we describe these solutions as:

1. The Comfort Model (CM): We present Equation 5 as CM, being a solution
that maximizes the comfort objective (or utility). In so doing, we think of
an environment which places a premium on supplying electricity to house-
holds based on their needs. The key objective within this environment
would be to maximize comfort. A consideration may be that, if a house-
hold has access to electricity when it needs it more, the household is likely
to maintain its consumption patterns. As a consequence, the feasibility of
day-ahead fair load shedding schemes is increased.

2. The Supply Model (SM): Likewise, we present Equation 6 as the objective
of SM, being a solution that maximizes the supply objective (or utility). In
so doing, we think of an environment that places a premium on maximizing
revenue. The objective within the environment would be to maximize the
access of households to electricity. A consideration may be that a scheme
such as this will result in the least waste and the highest revenue, as we
highlighted above.

We highlight that since both comfort (as in CM) and demand (as in SM)
are related, each of the models above maximizes the objective of the other
to an extent. This is the sort of compromise that exists when solving multi-
objective problems. In addition, while both of the models are individually less
complex than a multi-objective model, they may produce results which Pareto
dominated those of their multi-objective counterpart. We evaluate the results
of these constrained optimization models in the section that follows.
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Table 4 Results of MIP models and heuristics in terms of hours of connection to supply
on the average, along with their standard deviations (SD) within parenthesis

Solution Utilitarian (SD) Egalitarian (SD) Envy-freeness (SD)

CM 717031 (3950) 1920 (3.24) 123 (2.09)
SM 709676 (3878) 1922 (3.41) 71 (2.04)
GA 629534 (4178) 1609 (4.69) 695 (3.28)
CSA1 647439 (3063) 1764 (2.27) 1 (0.00)
RSA 643504 (4094) 1753 (4.33) 1 (0.00)
CSA2 641002 (3154) 1746 (2.38) 1 (0.00)

6 Evaluation of Results

We assess the performance of our solutions in this section. In the case of our
MIP solutions, as previously stated, parameters α3 and α4 are derived using
grid search within the ranges 0 ≤ α3 ≤ 1 and 0 ≤ α4 ≤ 1 respectively. This
results in parameters the α3 = 0.78;α4 = 0.75 for CM, and α3 = 0.8;α4 = 0.8
for SM. On this ground, CM aims to supply 78% of agents’ daily comfort and
75% of agents’ daily demand to the agents daily. Furthermore, SM is designed
to supply 80% of agents’ daily comfort and 80% of agents’ daily demand to
the agents daily. In addition, β1 and β2 are 21 and 22 respectively within both
models. We run nine independent simulations of our models to consider how
they perform on the average. We present these average results under different
experiments in the sections that follow.

6.1 Fairness and Efficiency in terms of Connections

In this section, we evaluate the performance of all our load shedding solutions
with respect to the number of hours they connect agents to supply individually
(i.e., the egalitarian and envy-freeness social welfare metrics) and collectively
(i.e., the utilitarian social welfare metric) on the average herein over q (i.e.,
2184) hours. We present the average results obtained by each solution after a
number of independent implementations, along with their standard deviations
(in parenthesis) in Table 4.

Within the Utilitarian column in Table 4, we see that CM connects the
entire population of agents to supply more hours than the other solutions on
the average. Its performance is 1.04% better than that of SM, which performs
second best. The performances of the heuristics under this consideration are in
line with our discussions in Section 4, but we highlight that the best performing
heuristic under this consideration (i.e., CSA1) connects agents to electric supply
10.75% less than CM on the average. Whereas, RSA, CSA2 and GA obtain results
that are 11.43%, 11.86% and 13.90% worse than that of CM respectively

As seen in the Egalitarian column, CM and SM result in every individual
agent being connected to supply for longer periods. As such, they connect the
worst off agents to supply for longer than the heuristics do. This is so because
of constraint, C2, which ensures every agent is connected to supply for at least
21 hours daily.
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Furthermore, because of the round-robin scheme utilized by CSA1, RSA and
CSA2, they connect agents to supply with pairwise differences that are lower
than those of CM and SM, as shown within the envy-freeness column. However,
the effect of this is that CSA1, RSA and CSA2 connect the agents most connected
to supply for 1765, 1754 and 1747 hours respectively (i.e., the egalitarian value
added to the envy-freeness value). These are all much lower than the number
of hours which the MIP models connect the worst off agents to supply (1920
for CM and 1922 for SM). On account of this, although the MIP models result in
the difference between the utilities (in terms of hours of connection) obtained
by agents being higher, they also result in all agents obtaining higher utilities
all round (i.e., they Pareto dominate the heuristics under this consideration).
Next, we evaluate the performance of our solutions in terms of comfort.

6.2 Fairness and Efficiency in terms of Comfort

We developed the notion of comfort in order to consider the preference (or
electricity needs) of agents when allocating electricity. Now, we evaluate the
results obtained by all our load shedding solutions using the utilitarian, egal-
itarian and envy-freeness social welfare metrics. On the one hand, the results
obtained by our MIP model under the utilitarian metric can be directly pre-
sented in this evaluation, being an addition of the comfort delivered to all
agents during q hours. On the other hand, their results under the egalitarian
and envy-freeness metrics are dependent on the comfort delivered to individual
agents in q hours. These results should not be presented without first devel-
oping a unifying scale for all agents, since the total comfort values of agents
within q hours are different.25 It was why we defined β3 as a lower bound of
percentages of each agent’s summed comfort to be delivered to the agent within
a period in Section 5.2.2, as opposed to specifying a single value of comfort to
be delivered to all agents. Therefore, we provide a unifying scale for assessing
the results of our solutions. In so doing, we define the Agent Comfort Share
(ACS), δ∗i , as the total comfort enjoyed by each agent in q hours, divided by
its total comfort over q hours (i.e., δ∗i =

∑q
t=1 δ

t
iΛ

t
i/
∑q

t=1 δ
t
i). To this end,

we present the results obtained by each solution after a number of indepen-
dent implementations, along with their standard deviations (in parenthesis)
in Table 5.

The Utilitarian column shows the sum of the comfort enjoyed by all agents
within q hours. Of all fair load shedding solutions, CM delivers the maximum
comfort to all agents under this metric. This is as expected, with the objective
of the model being to maximize comfort. The next best performing solution
in this category is SM, with CSA1 and GA also performing well.

It is under the egalitarian and envy-freeness metrics that our MIP solutions
are expected to obtain results which are in line with their purpose. We begin
with the egalitarian metric, where the Egalitarian column displays the ACSs of
the agents with the minimum ACSs. Table 5 shows how SM delivers the highest

25 As such, any solution that delivers an equal amount of comfort to all agents does not
necessarily distribute comfort evenly.
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Table 5 Results of MIP models and heuristics in terms of comfort delivered on the average,
along with their standard deviations (SD) within parenthesis

Solution Utilitarian (SD) Egalitarian (SD) Envy-freeness (SD)

CM 303217 (3447) 0.81 (0.01) 0.13 (0.02)
SM 292135 (3802) 0.83 (0.01) 0.09 (0.02)
GA 291021 (5198) 0.38 (0.04) 0.56 (0.03)
CSA1 291909 (3201) 0.67 (0.02) 0.25 (0.02)
RSA 268564 (5106) 0.65 (0.04) 0.28 (0.03)
CSA2 270262 (3112) 0.64 (0.02) 0.28 (0.02)

ACS to the worst off agent (in terms of their ACSs) after all load shedding
periods. In turn, the result obtained by CM is only 2.47% worse than that of
SM. It is worse because its comfort constraint factor is lower than that of SM

(α3 is 0.78% for CM and 0.80% for SM). Nonetheless, CM and SM deliver 81%
and 83% of the ACSs of the agents with the minimum respectively, so that
they both satisfy constraint C3. However, CSA1, which performs better than
other heuristics, only delivers 67% of its ACS to the worst off agent. These
results show that our MIP solutions both consider and satisfy the individual
electricity needs of agents by supplying electricity to them when they need it
the most.

Next, we assess the results of the fair load shedding solutions under the
envy-freeness metric. Notably, even though CSA1, RSA, and CSA2 heuristics
connect agents to electric supply a very even number of hours, they still fail
to distribute comfort as evenly as any of the MIP models. Instead, SM evenly
distributes comfort the best, with the maximum difference between the ACR
delivered to all agents only 0.09. In turn, the best performing heuristic (i.e.,
CSA1) obtains a result that is 177.78% worse than SM’s. Contrariwise, the result
obtained by CM, is 5.92% worse than SM’s, owing to CM’s weaker constraint.

In summary, CM and SM both outperform the four heuristics under the
utilitarian metric, deliver more comfort to all agents than any of the heuristics
with respect to the egalitarian metric, and distribute comfort more evenly than
any of the heuristics, with respect to the envy-freness metric. We show in the
next section how our MIP models compare to the heuristics when considering
the amount of electricity supplied to individual agents.

6.3 Fairness and Efficiency in terms of Supply

We assess the performance of all fair load shedding solutions based on the
amount of electricity supplied in this section. In the Utilitarian column, we
show the sum of electricity (in kWh) supplied to all agents within q hours.
However, as with the egalitarian and envy-freeness results presented in Sec-
tion 6.2, we formulate a basis upon which the electricity supplied to meet
the heterogeneous demand of each agent can be compared. This is because
the sum of electricity supplied to agents within q hours are different, being
the reason for defining β4 as a lower bound of percentages of each agent’s



26 Olabambo Ifeoluwa Oluwasuji et al.

Table 6 Results of MIP models and heuristics in terms of electricity supplied on the average,
along with their standard deviations (SD) within parenthesis

Solution Utilitarian (SD) Egalitarian (SD) Envy-freeness (SD)

CM 1340015 (8299) 0.78 (0.01) 0.17 (0.02)
SM 1347801 (8304) 0.83 (0.01) 0.11 (0.02)
GA 1297020 (11264) 0.35 (0.04) 0.58 (0.03)
CSA1 1296939 (7564) 0.66 (0.02) 0.28 (0.02)
RSA 1344945 (11284) 0.68 (0.03) 0.25 (0.03)
CSA2 1345537 (7388) 0.63 (0.03) 0.30 (0.02)

summed demand. We formulate our basis for comparison as the Agent Sup-
ply Rate (ASR), c∗i , which we define as the summed electric demand supplied
to each agent in q hours, divided by its total electric demand over q hours
(i.e., c∗i =

∑q
t=1 c

t
iΛ

t
i/
∑q

t=1 c
t
i). We present the average results obtained by

each solution following a number of independent simulations, along with their
standard deviations (in parenthesis) in Table 6.

The Utilitarian column in Table 6 shows how SM supplies the most elec-
tricity to all agents over q hours. This is expected as the objective of the
model is to maximize electric supply. In fact, both MIP models outperform all
heuristics under the utilitarian metric. However, the results of the heuristics
are between 3.63% (for CSA2) and 3.92% (for CSA1) worse than that of SM on
the average.

It is under the other metrics that our MIP solutions are expected to obtain
results which are in line with their purpose. We begin with the egalitarian
metric, where the Egalitarian column displays the ASSs of the worst off agents
(in terms of their ASSs). The column shows that SM delivers the most ASS of
all worst off agents, due to its higher supply constraint factor (i.e., α4). RSA,
being the best performing heuristic, performs 22.01% worse than SM. In turn,
the result obtained by CM is only 6.41% worse than that of SM. CM performs
this worse because its supply constraint factor is much lower than that of SM

(α4 is 0.75% for CM and 0.80% for SM). Nonetheless, CM and SM deliver 78% and
83% of the ASSs of the worst off agents respectively, so that they both satisfy
constraint C4. In turn, RSA only delivers 68% ASS to the worst off agent. This
shows that our MIP solutions both consider and satisfy the individual demand
of agents by supplying electricity to them based on their demand.

Finally, we assess the results of the fair load shedding solutions under the
envy-freeness metric. It is noteworthy that although the round-robin heuristics
connect agents to electric supply a very even number of hours, they still fail
to meet the demand of agents as evenly as any of the MIP models. Instead, SM
evenly distributes comfort the best, with the maximum difference between the
ASR delivered to all agents only 0.11. In turn, the best performing heuristic,
RSA, obtains a result that is 127.27% worse than SM’s. Contrariwise, the result
obtained by CM is 54.55% worse than SM’s, owing to CM’s weaker constraint.

In summary, the MIP models outperform the four heuristics under the
utilitarian, egalitarian and envy-freeness metrics in terms of electricity supply.
These MIP models specifically fulfill their purpose by meeting the demand of
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Table 7 MIP constraint factors under different levels of uncertainty in prediction of con-
sumption, and constant supply capacity

±3σ ±2.5σ ±2σ ±1.5σ ±σ ±0.5σ σ = ±0.5

CM β1 21 21 21 21 21 21 21
β2 22 22 22 22 22 22 22
α3 0.78 0.78 0.78 0.78 0.78 0.78 0.78
α4 0.67 0.69 0.70 0.71 0.74 0.75 0.75

SM β1 21 21 21 21 21 21 21
β2 22 22 22 22 22 22 22
α3 0.80 0.80 0.80 0.80 0.80 0.80 0.80
α4 0.71 0.73 0.74 0.77 0.79 0.79 0.80

each agent more than any of the heuristics, with respect to the egalitarian
metric. They also satisfy the demand of all agents more evenly than any of the
heuristics, with respect to the envy-freness metric. To show how our models
react to poorer estimates of demand, we solve the FLSP using the data of
consumption with different levels of uncertainty and evaluate the results in
the section that follows.

6.4 Implementation with Different Levels of Uncertainty

We have so far evaluated our solutions based on accurate estimates of con-
sumption (where σ = ±0.5). Although we assume that these accurate esti-
mates are available, we yet evaluate their performance under different levels
of uncertainties in our estimates of consumption. For this reason, we run sim-
ulations using six additional levels of uncertainty, by drawing from each of the
normal distributions26 c̃ti ∼ N (cti, 3σ),27 c̃ti ∼ N (cti, 2.5σ), c̃ti ∼ N (cti, 2σ),
c̃ti ∼ N (cti, 1.5σ), c̃ti ∼ N (cti, σ) and c̃ti ∼ N (cti, 0.5σ) for each level of uncer-
tainty. We also keep the supply capacity constant (as in Section 3.3) through
all simulations. Note that for all these levels of uncertainty, we compute dif-
ferent constraint factors (i.e., different values for β1, β2, α3 and α4) for our
MIPs, which we show in Table 7. Now, we briefly evaluate the performance of
our solutions under these different levels of uncertainty with respect to how
they connect agents to supply, the comfort they deliver, and the electricity
they supply to agents against their actual demand.

6.4.1 Connections to Supply under Different Levels of Uncertainty

We display the average number of hours our solutions connect agents to supply
individually (with respect to the egalitarian and envy-freeness metrics) and
collectively (with respect to the utilitarian metric) under different levels of
uncertainty in Figure 6.

26 Note that whenever we draw a negative value of consumption from the distribution, we
take an absolute value of that value.
27 This is our highest level of uncertainty, being that we expect 99.73% of consumption

values to lie within three standard deviations from cti.
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Fig. 6 Average number of connections to supply under different levels of uncertainty

Figure 6 shows how our solutions produce results that are increasingly in-
consistent as more uncertainties are introduced into consumption. However,
the number of agents they connect to supply does not show any consistent
pattern. This is because the errors in consumption (predicted during our simu-
lations) seem to cancel themselves out, such that the average number of agents
our solutions connect to supply do not change in any pattern over all levels
of uncertainty. These hold under the utilitarian, egalitarian and envy-freeness
considerations.

6.4.2 Comfort Delivered under Different Levels of Uncertainty

We display the average comfort our solutions deliver to agents individually
(with respect to the egalitarian and envy-freeness metrics) and collectively
(with respect to the utilitarian metric) under different levels of uncertainty in
Figure 7.

As in Section 6.4.1, Figure 7 shows how our solutions produce results
that are increasingly inconsistent as more uncertainties are introduced into
consumption, due to more varied consumption data being generated under
higher levels of uncertainty. This holds under the utilitarian, egalitarian and
envy-freeness considerations. Furthermore, the comfort our solutions deliver
to agents collectively (under the utilitarian considerations) does not show any
particular trend. This is due to comfort being formulated from historical (ac-
tual) consumption and not predicted consumption. However, our MIP models
deliver slightly higher levels of comfort to the worst of agents as uncertain-
ties reduce. This is so because the supply constraint factors they compute
(see Table 7) are lower under higher levels of uncertainty, such that they im-
pact on their egalitarian-comfort results. Contrariwise, our heuristics do not
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Fig. 7 Average comfort delivered under different levels of uncertainty

show any particular pattern under the egalitarian consideration. While the
differences between the comfort delivered to the worst and best off agents by
our MIP solutions slightly reduce with uncertainties (under the envy-freeness
consideration), the results produced by our heuristics show no such patterns.

6.4.3 Electricity Supplied under Different Levels of Uncertainty

We display the average amount of electricity our solutions supply to agents
individually (with respect to the egalitarian and envy-freeness metrics) and
collectively (with respect to the utilitarian metric) under different levels of
uncertainty in Figure 8.

Herein also, Figure 8 shows how our solutions produce results that are
increasingly inconsistent as more uncertainties are introduced into consump-
tion, due to more varied consumption data being generated under higher levels
of uncertainty. This holds under the utilitarian, egalitarian and envy-freeness
considerations. Furthermore, the electricity our solutions supply to agents col-
lectively (under the utilitarian considerations) does not show any particular
trend. This is due to the errors in predicted consumption which seem to cancel
themselves out, such that the average sum of electricity supplied to agents fail
to display any particular pattern over all levels of uncertainty. However, our
MIP models supply higher amounts of electricity to the worst of agents as
uncertainties reduce. This is mainly due to the supply constraint factors they
compute as in Table 7. Contrariwise, our heuristics do not show any particu-
lar pattern under the egalitarian consideration. While the differences between
the electricity supplied to the worst and best off agents by our MIP solutions
consistently reduce with uncertainties (under the envy-freeness consideration),
the results produced by our heuristics show no such patterns. To show that
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Fig. 8 Average electricity supplied under different levels of uncertainty

our models can be used within different settings, we show the results obtained
by solving the FLSP on other datasets in the next section.

6.5 Implementation with other Datasets

To show further that our solutions generalize within the load shedding setting
(and may generalize within other constrained utility maximization settings),
we now show results of solving the FLSP with two other datasets: (i) the orig-
inal dataset of homes in the USA (see Section 3) in Section 6.5.1, and (ii)
a simulated dataset of 1000 homes based on the dataset of homes in Nigeria
(see Section 3) in Section 6.5.2. Note that we return to computing predicted
consumption from the normal distribution c̃ti ∼ N (cti, 0.05), as in all our eval-
uations.

6.5.1 Dataset of USA Homes

In this section, we show the results of solving the FLSP with the original
dataset of household consumption of homes in the USA (from which we sim-
ulated the dataset in Section 3). This Pecan Street dataset is for 414 homes
over 13 weeks (i.e., Q hours). We model all homes as agents by formulating
their comfort profiles as we did in Section 3.2. Thereafter, we find parameters
β1, β2, α3 and α4 to be 21, 22, 0.78 and 0.72 respectively for CM. We also find
parameters β1, β2, α3 and α4 to be 21, 22, 0.79 and 0.78 respectively for SM.
We solve the FLSP and show the results in Table 8.

Table 8 shows how our solutions perform in line with our evaluations in
Section 6.1, Section 6.2 and Section 6.3, albeit under a different setting. This
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suggests that our solutions are applicable within other applicable settings with
unique characteristics.

6.5.2 Dataset of Multiple Homes in Developing Countries

Herein, we show the results of solving the FLSP with the dataset of 1000 homes
in developing countries. In Section 3, we generated the hourly consumption
data of 367 homes in developing countries over three months. In order to see
how our solutions scale and generalize, we generate the data of 1000 homes
from the dataset for the same duration.28 Thereafter, we model all homes as
agents by formulating their comfort profiles as we did in Section 3.2. Then,
we find parameters β1, β2, α3 and α4 to be 21, 22, 0.80 and 0.76 respectively
for CM. We also find parameters β1, β2, α3 and α4 to be 21, 22, 0.82 and 0.82
respectively for SM. We solve the FLSP and show the results in Table 9.

As in Section 6.5.1, Table 9 also shows how our solutions perform in line
with our evaluations in Section 6.1, Section 6.2 and Section 6.3 under a dif-
ferent setting. This suggests that our solutions are applicable within other
applicable settings with unique characteristics. We conclude this section by
discussing the time complexities of all load shedding solutions in the next
section.

6.6 Computation Complexities of Load Shedding Solutions

Our heuristics are polynomial time algorithms that mainly depend on the num-
ber of agents (i.e., O(n) for GA, O(n log n) for CSA1, O(n) for RSA and O(n log n)
for CSA2, where n is the number of agents). In turn, our MIP solutions are
built upon a MKP formulation that has a non-polynomial time complexity.
However, we solve our MIP using the CPLEX optimization package within the
Python environment. CPLEX solves integer programming problems using effi-
cient algorithms and relaxations.29 We illustrate this by solving the FLSP for
different populations of agents drawn from our main evaluation dataset,30 and
with other test datasets (i.e., datasets used in Section 6.5.1 and Section 6.5.2).
We show the time taken to arrive at all solutions. It should be noted that,
for all these datasets (with c̃ti ∼ N (cti, 0.05)), our solver arrives at different
factors (i.e., different values for β1, β2, α3 and α4) for both MIPs. This fur-
ther suggests that our approach is applicable within many cases (i.e., different
dataset or environments) with different system characteristics.31 We imple-
ment all load shedding solutions with these datasets and show their average
execution times in Figure 9.

28 We do this by drawing from a normal distribution with the consumption of homes in
the dataset of Section 3 as the mean.
29 Refer to the CPLEX Optimization Studio User’s Manual [18].
30 These populations (or datasets) are taken from the original developing country dataset

simulated in Section 3.
31 By this we mean that, for each dataset, we take the steps in Section 3.3 to compute the

hourly supply capacities and estimates of agent demands. As such, we develop a number of
applicable settings, each with its unique characteristics.
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Fig. 9 The average runtimes of all load shedding solutions after nine executions

Table 10 MIP constraint factors under different settings (i.e., different population of
agents)

30 60 90 120 150 180 210 240 270 300 330 367 414 1000

CM β1 20 20 21 21 21 21 21 21 21 21 21 21 21 21
β2 21 21 22 22 22 22 22 22 22 22 22 22 22 22
α3 0.70 0.71 0.72 0.74 0.75 0.75 0.76 0.75 0.76 0.79 0.80 0.78 0.78 0.80
α4 0.73 0.73 0.74 0.74 0.74 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.72 0.76

SM β1 20 20 21 21 21 21 21 21 21 21 21 21 21 21
β2 21 21 22 22 22 22 22 22 22 22 22 22 22 22
α3 0.72 0.72 0.74 0.75 0.75 0.76 0.77 0.78 0.79 0.79 0.80 0.80 0.79 0.82
α4 0.77 0.78 0.79 0.80 0.79 0.81 0.80 0.80 0.80 0.79 0.80 0.80 0.78 0.82

As can be seen in Figure 9, the execution time of the MIPs grow poly-
nomially and does not entirely depend on the population of agents. This is
depicted by results which show that some MIPs with higher agent population
are solved in less time than others (e.g., CM with 240 and 367 agents that have
lower runtimes than the MIPs with 210 and 330 respectively, and SM with
150 and 210 agents that have lower runtimes than the MIPs with 120 and
180 respectively). To understand why this may have occurred, we present the
constraint factors used to solve our MIPs in Table 10.

Table 10 suggests that the periods taken to execute our MIPs were also af-
fected by their constraints (notably because the constraint factors used within
the settings of 240 and 367 agents are lower than those used within the set-
tings of 210 and 330 agents respectively by CM, and the constraint factor used
within the settings of 150 and 210 agents are lower than those used within the
settings of 120 and 180 agents respectively by SM). As such, the runtimes of
our MIP solutions depend on their constraints. Additionally, their complexities
will increase with the number of hours we optimize over (which we maintain
as 24 hours in solving the FLSP a day ahead in this paper), and the number
of variables in our formulation.
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7 Conclusion

We summarize this paper in this section and discuss the open challenges that
still exist. Specifically, in Section 7.1, we summarize the main body and results
of this report while, in Section 7.2, we discuss the future lines of work that
build on our solutions.

7.1 Summary of Work

In this paper, we introduced, formulated and provided a number of solutions
to the load shedding problem. To implement our proposal, we simulated data
that was representative of households in developing countries. We did this from
publicly available datasets of electricity consumed by households in developed
countries. Specifically, we collected appliance-level consumption data of house-
holds in the USA from Pecan Street Inc’s Dataport. Then, based on findings
about appliances commonly used in both Nigeria (a typical developing coun-
try) and the USA [31,45,11,26,32], the temperature in cities of both countries
and their consumption patterns [16,17,38], we developed the appliance-level
data into household consumption data for households in a developing country.
Thereafter, we modelled households into agents, each with its preference (or
need) for consuming electricity. In so doing, we created a notion of comfort
that resulted in some computed values which embody the electricity needs of
households.

Following this, we developed four heuristic algorithms that considered dif-
ferent criteria for disconnecting agents from supply. All heuristics had the
objective to connect agents to supply as evenly as possible, in terms of num-
ber of hours. We evaluated their results using the utilitarian, egalitarian and
envy-freeness social welfare metrics. Thereafter, we highlighted the shortcom-
ing of the heuristics, in that they fail to consider the agents’ preference (or
needs) for electricity.

On this ground, we modelled the fair load shedding problem (FLSP) as two
mixed integer programming (MIP) problems built upon a multiple knapsack
problem formulation. The first had the objective to maximize the overall com-
fort of agents and the other had the objective to maximize overall supply to
agents (both with respect to the utilitarian metric). Using the egalitarian and
envy-freeness metrics, we developed a number of constraints which ensure that
the number of hours individual agents are connected to supply, and the com-
fort delivered and electricity supplied to these individual agents, are as high
and as equal as possible. We also included another constraint that executed
load shedding when necessary, thus resulting in a balance between supply and
demand.

Following this, we evaluated the performance of all six load shedding solu-
tions (i.e., the four heuristics and the two MIPs). We performed the evaluations
with respect to the number of hours agents were connected to electricity, the
comfort delivered to agents individually and collectively, and the electricity
supplied to agents individually and collectively. We showed how the MIP so-
lutions outperformed the heuristics under these three key evaluations.
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When taken altogether, our approach presents a framework upon which
other fairness problems involving constrained utility maximization (or resource
allocation) may be generalized. Our solutions also serves as benchmarks for
designing future load shedding solutions, as well as solutions for allocating
other scarce resources (e.g., water allocation problems addressed by [41,47]).

7.2 Future Work

We made some assumptions in developing our household-level fair load shed-
ding solutions. One of these is that we receive near-accurate estimates from
homes, based on which we took the estimates of household consumption as
values drawn from a normal distribution of the electricity they actually con-
sume. However, it will be useful to design solutions which incorporate the
computation of these estimates in the future.

In addition to this, cost effective elicitation mechanisms applicable to de-
veloping countries may be designed to improve the accuracy of our comfort
formulation. Such an elicitation mechanism may consider the needs of indi-
vidual consumers in homes. An example is an occupant who needs an electric
respiratory aid in the home for managing and treating sleep apnea or an-
other who needs electricity to prepare for an upcoming examination. To be
cost effective and applicable, such may elicit information (maybe through text
messages) from homes in a bother-free manner (as has been studied in [53,
22]). this case, it is necessary to appropriately incentivize the true reporting
of the information.

Furthermore, approaches like “soft load shedding” (see [2]) are being devel-
oped to mitigate against the rebound effect (described in Section 3.4), and may
be incorporated into our solutions in the future. In addition, it is important
to consider that households which are arbitrarily subjected to load shedding
may advance their consumption to periods when electricity is available. As
such, future fair load shedding solutions should also consider the effect load
shedding has on prior consumption. Although we made the attempt to con-
sider the rebound effect in this work, our comfort formulation may be further
improved to ensure it still embodies the preference of agents for electricity,
even after load shedding influences their consumption.

We produced hourly solutions which are applicable because electricity
billing is on an hourly basis (i.e., in kWh). Additionally, many energy, re-
source allocation and scheduling problems are solved in hourly or half-hourly
time slots (e.g., in [1]). Likewise, RTPs are hourly (or half-hourly) pricing
schemes that contribute to grid stability. However, in the future, our solution
can be implemented using per minute data. This will be more computationally
intensive, as suggested in Section 6.6. Nonetheless, to ensure the computational
cost of using per minute data remains tractable, future solutions may solve the
FLSP incrementally (e.g., one hour at a time), and employ approximation and
relaxation techniques. Note that the computation complexity of such FLSP
solutions is not a deterring factor, as they are not designed to be implemented
at real-time. In addition, solutions that use per minute data should produce
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more accurate results (from using more accurate comfort values and estimates
of consumption).

Finally, our work can be designed to fit alongside other load management
measures such as demand side management (DSM) (read more about DSM in
[39]). As such, it is necessary to design incentives that encourage consumers
to manage their consumption appropriately, and to have an understanding of
how they will react to such incentives. In addition, with the right coordination
mechanisms, our work can cope with the introduction of distributed renewable
sources and storage on the grid [4]. However, it will be necessary to accurately
predict demand (and supply, especially in the case of distributed renewable
sources and storage) before our solutions can be effective when incorporated
with these smart grid technologies [40].
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