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1. Introduction

The objective of this paper is to examine to what extent option-implied information

provides better out-of-sample performance in optimal asset allocation for individuals ex-

hibiting minimum-variance preferences. The empirical evidence in the existing literature

supporting option-implied measures of volatility is mixed. Jiang and Tian (2005) and

Kostakis et al. (2011), among others, find that there is more information content in option-

implied volatility measures than in historical volatility measures. These authors show this

result for a range of popular volatility forecast models. Baker and Wurgler (2006) and

Chau et al. (2016) examine the role of option-implied volatility in stock markets and show

that investors utilize the information extracted from option-implied measures to inform

investment decisions. Other studies evaluate portfolio performance using option-implied

information and find that forward-looking volatility measures outperform investment port-

folios constructed from historical volatility measures in-sample and out-of-sample, see for

instance, Buss and Vilkov (2012), DeMiguel et al. (2013) and Kempf et al. (2014).

The current study aims to investigate further the topic of portfolio performance evalu-

ation using implied information obtained from option prices. We contemplate two related

hypotheses on the performance of implied variance/volatility measures. First, we study

whether these measures outperform forecasts of the future variance based on historical

information. Second, we use these forecasts to compute economic performance measures

of different investment portfolios constructed from historical and implied variance mea-

sures, and a portfolio that combines both approaches. To the best of our knowledge, the

empirical finance literature has not studied yet the suitability of investment portfolios that

partially incorporate option-implied information in sophisticated portfolios comprised by

very different asset types. This study contributes to the literature by filling this gap. In

particular, we propose a conditional covariance matrix that relies on a mixture of option-

implied and historical data. Option-implied information is exploited for those assets that

also trade in the derivatives market for options and for which implied variance measures

are available. For those assets for which option-implied information is not available we

approximate the conditional variance using estimates of the historical variance constructed

over rolling windows. The correlation between asset returns in the portfolio is also esti-

mated using historical information.
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The problem of combining information for forecasting the conditional variance-covariance

matrix of asset returns is of major relevance for large portfolios comprising different asset

types and for which option-implied information is not a viable alternative. We analyze the

suitability of our variance-covariance matrix using statistical and economic measures. We

consider a portfolio comprised by nine assets including equities, fixed income, alternative

securities and cash, varying exposures to countries, sectors, and risk levels. Four of these

asset categories representing equities from US, UK, Europe and Japan have option-implied

information available. For the remaining asset categories, for example, world corporate

bonds and commodity funds, option data are not available. In these cases historical in-

formation is the only reliable source of information. We aim to investigate whether it is

more informationally efficient to combine option-implied information from equity markets

and historical information for the remaining asset classes.

Embedding option-implied information into portfolio optimization problems is not

trivial. Standard implied variance (IV) measures extracted from option prices are un-

der risk-neutral expectations. By construction, these IV measures differ from the true

(but unknown) future variance which is the variable of interest for portfolio managers.

The difference between implied variance and future variance is the variance risk premium

(VRP). Hence, in order to use implied variance measures as unbiased estimates of the

conditional asset variance the variance risk premium needs to be corrected. To do this,

we follow DeMiguel et al. (2013) and conduct an interpolation exercise for obtaining unbi-

ased option-implied variances that incorporate the variance risk premium by filtering out

the historical risk premium (up to time t − 1) and keeping only the current period t risk

premium embedded in implied volatility measures. By doing so we incorporate investors’

perspective of future market uncertainty in our forecasts of the conditional variance.

In the empirical application we construct two estimates of the conditional variance

that make use of option-implied information: one is the model-free option-implied vari-

ance without risk premium adjustment and the second one is an option-implied measure

that incorporates a correction using historical risk premium. To compare the empiri-

cal results, we also consider the historical variance of asset returns obtained from rolling

windows. We compare the performance of these measures using out-of-sample portfo-

lio performance metrics including portfolio return, volatility, Sharpe ratio and maximum
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drawdown, and apply Diebold and Mariano (1995) predictive ability test to attach statis-

tical significance to the results. We also consider statistical performance measures such

as the root mean squared prediction error (RMSPE) and the mean absolute prediction

error (MAPE). To assess the robustness of our empirical results, we repeat these exer-

cises to monthly, quarterly and semi-annual rebalancing portfolios. Our empirical results

show that option-implied variance, especially the risk-premium-corrected implied variance,

exhibits superior out-of-sample forecasting ability than the realized variance measure con-

structed from historical information. In particular, for a reduced portfolio comprised by

equities from the US, UK, Europe and Japan, we find strong empirical evidence suggesting

that risk-premium-corrected implied variance outperforms other estimators with regards

to economic performance when we consider a global minimum-variance objective func-

tion. More importantly, the analysis of sophisticated portfolios comprised by various asset

categories for which option data is only available for a subset of them reveals that incor-

porating risk-premium-corrected implied variance improves portfolio performance. This

finding provides strong empirical support to our proposed methodology for forecasting the

conditional variance-covariance matrix using a mix of historical and implied information.

These results are robust across rebalancing periods.

The remainder of the paper is organised as follows. Section 2 introduces the portfolio

optimization problem for our empirical exercise. Section 3 introduces our novel variance-

covariance matrix based on a mixture of implied and historical information. Section 4

presents the performance measures. We divide the section into a variance forecasting

comparison exercise and a comparison of portfolio performance using standard perfor-

mance metrics in terms of portfolio return and volatility, Sharpe ratio and maximum

drawdown. These comparisons are done in an out-of-sample context. Section 5 provides

descriptions of the investment portfolios, portfolio optimization exercise under different

portfolio constraints, and a comparison of the forecasting performance for the different

conditional variance matrices discussed in the methodology section. Section 6 concludes

the study.
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2. Methodology

This study examines whether forecasts of the conditional variance of asset returns

obtained from forward-looking information in option prices improve the prediction and

portfolio performances of sophisticated investment portfolios managed by financial prac-

titioners. We consider an investment portfolio with multiple security segments including

equities, fixed-income, cash and other alternative securities. Due to the availability of op-

tion data, option-implied variances can only be applied to equity assets. For the remaining

asset categories, we estimate the conditional variance of returns and the corresponding

correlations using historical data.

Let Rt+1 be the return on a portfolio defined as

Rt+1 =
K∑
i=1
witri,t+1, (1)

with ri,t+1 the return on the assets comprising the portfolio at time t+1 and wit the portfo-

lio weights denoting the allocation of wealth to the risky assets. Let w = (w1t, . . . , wK,t)
′ ,

the conditional mean portfolio return is Et[Rt+1] = w′tEt[rt+1], with Et[·] denoting the

expectation conditional on the information available to the individual at time t. The

conditional variance of the portfolio is Vt[Rt+1] = w′tΣtwt, where Σt is a K × K matrix

with diagonal elements σ2
i,t that denote the conditional variance of each asset ri,t+1 in the

portfolio, and off-diagonal elements σij,t which are the conditional covariances of assets i

and j for all i 6= j and i, j = 1, . . .K.

Rational investors prefer a portfolio with high mean return and low variance. The

finance literature has formalized this type of preferences using a mean-variance utility

function. In this scenario an investor chooses the optimal portfolio weights from maximiz-

ing the following objective function

max
wt

w′tEt[rt+1]− 1
2γw

′
tΣtwt, (2)

where γ > 0 denotes the degree of investor’s risk aversion.

The linear combination of portfolio mean and variance is maximized subject to a

set of equality, inequality and boundary constraints imposed in the portfolio selection.

The solution to the mean-variance portfolio requires an estimate of the conditional mean
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return for each asset in the portfolio inducing, in turn, the presence of model risk and

measurement error. To account for this, we consider, instead, a global minimum-variance

portfolio with optimal weights obtained from minimizing the overall portfolio variance as

min
wt

w′tΣtwt, (3)

subject to the constraints
K∑
i=1
witri,t+1 ≥ ¯̄R, with ¯̄R the target return imposed on the

portfolio, and
K∑
i=1
wit = 1. We do not allow for short positions on the assets such that the

optimal weights are bounded between zero and one, 0 ≤ wit ≤ 1 for i = 1, . . . ,K.

In the empirical application, we consider an unconstrained version of the minimum

variance portfolio and constrained versions given by different values of ¯̄R varying from

4% to 10%. We will also consider a further classification into two types of portfolios: i)

an equity portfolio for which implied information from option markets is available for all

assets, ii) a sophisticated portfolio that extends the preceding portfolio by considering five

more assets without access to implied information.

2.1. Conditional variance forecasts

The conditional covariance matrix is an essential input for portfolio optimization. Sam-

ple counterparts of the variance and covariance between asset returns provide consistent

estimates of the population parameters. We introduce dynamics by estimating the condi-

tional variance using rolling windows. For instance, the conditional covariances at month

t are estimated by the sample historical covariances over the last m months as

σ̂ij,t = 1
m− 1

m∑
s=1

(ri,t−s+1 − ri,t)(rj,t−s+1 − rj,t) for all i, j ∈ K, (4)

where ri,t = 1
m

∑m
s=1 ri,t−s+1 denotes the sample mean asset return of asset i over the last

m months. The structure of rolling windows allows us to drop the oldest observation and

incorporate the newest one into the sample for calculating the sample estimate of historical

covariances1.

1The above sample estimates assume that the return variation in each period is equally important
over the last m months, which is usually not the case. Moving average methods for variance forecasting
extend these methods and provide an effective way of estimating the conditional variance over time. In
this approach past observations decay logarithmically such that recent data contributes to the sample
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An alternative to the use of historical information is to exploit information from option

markets. The latter approach introduces investors’ forward-looking views on the price

formation process. Implied variance from option prices subsumes the historical variance

of the underlying asset and provides a more efficient forecast of the future variance. This

study focuses on model-free implied variance measures to estimate the future variance of

asset returns. These measures do not rely on traditional option valuation models such

as Black and Scholes (1973) and, hence, are free of model risk. The model-free approach

can be interpreted as a nonparametric estimator of the risk-neutral conditional variance

of the stock return until expiration of the stock option. We consider the nonparametric

method introduced by the Chicago Board Options Exchange® (CBOE) in 1993 based on

the seminal work of Whaley (1993). The CBOE Volatility Index® (VIX) is designed to

measure market’s expectation of 30-day volatility implied by the out-of-the-money S&P

500 option prices2. The CBOE model-free implied volatility is calculated based on a

weighted average of SPX call and put option prices over a wide range of strike prices3.

The generalised formula for calculating the squared VIX (implied variance) is

VIX2 = 100× 2
T̄

∑
n

∆Kn

K2
n

erf T̄Q(Kn)− 1
T̄

[ F
K0
− 1

]2
, (5)

where T̄ is the time to expiration, F is the forward price for the same underlying asset

and same maturity, K0 is the first strike below the forward price, Kn is the strike price

of the nth out-of-money option, ∆Ki = Kn+1−Kn−1
2 is the interval between strike prices on

either side of Kn, Q(Kn) is the midpoint of the bid-ask spread for each option with strike

price Kn, and rf is the risk-free rate to expiration.

Many studies, see for example, Poon and Granger (2003) and Kostakis et al. (2011),

show that the predictions of option-implied variance measures such as equation (5) provide

better forecasts than estimators based on historical sample data. Other related studies,

see for example, Jorion (1995), Fleming (1998) and Neely (2009) find that implied variance

is a biased forecast of future variance and contains incremental information beyond the

estimate more than older data, see RiskMetrics technical document by Longerstaey and Spencer (1996)
for the exponential moving average (EWMA) effective variance estimate.

2The original measure of volatility index is based on at-the-money S&P100 option prices. CBOE
updated the VIX to reflect S&P500 (SPX) from 2003.

3See the CBOE (2009) white paper for the detailed illustration of VIX calculation.
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future variance measure. For instance we may have

V RPt ≡ IVt −RVt, (6)

where IVt denotes the implied-variance measure and RVt is the realized variance obtained

from asset returns at higher frequencies. Realized variance measures are shown to be

consistent estimates of the future variance, see Andersen et al. (2003, 2001) and Barndorff-

Nielsen and Shephard (2002). The variance risk premium at time t is the difference between

the ex-ante risk-neutral expectation of future variance over the period t to t+1 and the ex-

post realized variance computed over the period t− 1 to t. For estimation and forecasting

purposes, the measure in (6) is replaced by the following forward-looking measure given

by the expected variance risk premium, defined as

EV RPt ≡ IVt − Et[RVt+1]. (7)

The quantity Et[RVt+1] is computed using time series forecasts. For example, under the

assumption that the realized variance is a martingale process, realized variance at time t

is the best predictor for realized variance at t+1, then equations (6) and (7) are the same.

3. A novel variance-covariance matrix

The conditional variance-covariance matrix Σt is the main variable of interest in the

portfolio optimization problems in (2) and (3). It is a symmetric positive semi-definite

matrix which can be decomposed into a diagonal matrix of conditional variances Dt and

a matrix of conditional correlations Ωt such that

Σt = D
1/2
t ΩtD

1/2
t . (8)

We propose to estimate the covariance matrix Σt by exploiting a mixture of implied and

historical information on the variability of asset returns in the portfolio. More specifically,

under the limitation that information from option prices is only available for a subset of

8



the asset categories, we estimate the diagonal matrix Dt by the empirical counterpart

D̂t =

σ̂2
iv,t 0

0 σ̂2
h,t

 (9)

with σ̂2
iv,t ≡ IVt a k1 × k1 diagonal matrix containing the conditional variance of those

k1 assets for which option-implied information is available. For those assets, we construct

option-implied variance measures using the nonparametric model-free measures discussed

in the previous section. Similarly, σ̂2
h,t denotes a (K−k1)× (K−k1) diagonal matrix that

contains the historical variance measures of the remaining K − k1 assets in the portfolio.

The conditional correlation matrix Ωt is estimated from historical data. Those measures

constructed from historical data are estimated using expression (4) and updated using

rolling windows.

The presence of a variance risk premium in option-implied variance measures inflates

the overall portfolio variance a shown in (8). Figure B.1 illustrates this stylized fact and

shows how the implied variance tends to exceed the historical variance over the entire

sample period.

[Insert Figure B.1 about here]

As mentioned above, we can construct conditional variance estimates obtained from

option-implied data by correcting the variance risk premium. We follow the risk premium

correction proposed in DeMiguel et al. (2013) and assume that the magnitude of the

volatility risk premium is proportional to the level of conditional volatility under the true

probability measure. Following these authors, we estimate the monthly historical volatility

risk premium, denoted HV RPt, as the ratio of monthly average implied volatilities over

the corresponding historical volatilities for the past m periods4. More formally,

ĤV RP t =

m∑
s=1

σ̂iv,t−s

m∑
s=1

σ̂h,t−s

, (10)

4DeMiguel et al. (2013) use volatilities instead of variances for correcting the risk premium. The
correction for the risk premium term is based on the ratio of the average implied and historical volatilities
instead of their difference to avoid potential negative risk premium estimates.
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where σ̂iv,t−s is the option-implied volatility of asset i over the past trading dates between

t−m and t− 1, and σ̂h,t−s denotes the estimates of conditional volatility using historical

information. Then, assuming that in the next period, from t to t + 1, the prevailing

volatility risk premium can be well approximated by the historical volatility risk premium

(10), one can obtain the prediction of the future realized volatility, (RVt+1)1/2, which

we call the risk-premium-corrected implied volatility and denote as σ̃ivc,t. Hence, the

risk-premium-corrected conditional volatility is given by

σ̃ivc,t = σ̂iv,t

ĤV RP t
. (11)

We define a new quantity D̃t to replace D̂t in the estimation of variance-covariance

matrix Σt in (8). This matrix is defined as

D̃t =

σ̃2
ivc,t 0

0 σ̂2
h,t

 . (12)

This matrix only aims to adjust the historical risk premium which does not contain

forward-looking information from t to t + 1. The forward-looking information is still

embedded in the risk premium component presented in the option-implied volatility σ̂iv,t

in (11).

4. Performance measures

In this section we analyze different measures of performance that are used to com-

pare the gains of implied information against historical information. We first compare

implied variance measures against historical variance measures using statistical loss func-

tions including the RMSPE and MAPE. Next we assess the gains of using implied versus

historical information from a portfolio performance perspective in terms of portfolio re-

turns and volatility, Sharpe ratio and maximum drawdown.

4.1. Variance forecasting performance: implied vs historical

The inherent problem of conditional variance in a portfolio optimization is that it is

unobservable at time t. One can calculate realized variance based on high frequency data

which asymptotically converges to the integrated variance defined over the low-frequency
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interval of interest. If further assumes that realized variance follows a martingale, the

variance at time t is the best predictor for the variance at time t+1. Therefore, one might

use realized variance to approximate the conditional variance of returns one period ahead

(see for instance Andersen et al., 2003 and Bollerslev et al., 2011).

To assess the predictability of the mentioned variance estimators in the previous sec-

tion we consider realized variance as a benchmark to compare the prediction power. We

compute the absolute and relative distance between each of the three mentioned variance

estimators and the realized variance obtained from high-frequency data. The expressions of

the realized variance, absolute and relative prediction errors for each asset in the portfolio,

the aggregate portfolio prediction error, and the prediction criteria (MSPE and MAPE)

are explained below.

In our analysis, the monthly realized variance for each stock is constructed based on

daily equity prices5. The realized variance for a generic asset in a portfolio at month t is

RV
(m)
t =

m∑
j=1

r2
t−1+j∆, t = 1, ..., T, (13)

where rt−1+j∆ is the continuously compounded return from time t − 1 + (j − 1)∆ to

t − 1 + j∆ in which ∆ is the fraction of a trading session associated with the monthly

sampling frequency and m is the number of sampled observations per trading session. For

instance, m is number of trading days in a month for the realized variance measure based

on daily data.

The absolute prediction error is defined as the difference between the benchmark re-

alized variance which is a proxy of the underlying conditional variance measure and the

variance estimate. For the historical variance measure the absolute prediction error is as

eh,t ≡ RV
(m)
t − σ̂2

h,t, and for the implied variance measure the corresponding prediction

error is as eiv,t ≡ RV (m)
t − σ̂2

iv,t. It may be also of interest to measure the prediction error

as a fraction of the realized variance. We define these relative measures as uh,t ≡
eh,t

RV
(m)

t

and uiv,t ≡ eiv,t

RV
(m)

t

and capture the relative prediction error with respect to the realized

variance measure. As an additional measure of variance forecasting performance we in-

5Theoretically, the higher frequency improves the accuracy of realized variance estimation. However,
due to data availability, daily data is used to estimate the realized variance.
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troduce an aggregate portfolio prediction error. This is defined as the sum of the absolute

prediction error of each asset i compounded by the square of the corresponding portfolio

weight wi. More formally, let vt ≡
∑K
i=1w

2
i ei,t where ei,t denotes the absolute prediction

errors computed from different variance forecast measures, and K is the number of assets

in the portfolio. For each variance measure we will compute a different aggregate portfolio

prediction error.

Using these error measures, suitable loss functions for comparing the forecasting per-

formance of the different variance forecasts are the root mean square prediction error

(RMSPE) and the mean absolute prediction error (MAPE). These loss functions are

constructed as

RMSPE =

√√√√ 1
T

T∑
t=1

e2
t , and (14)

MAPE = 1
T

T∑
t=1
|et|, (15)

where et denote the prediction errors of both implied and historical variance forecasts. We

also compute the same loss functions for the relative prediction errors ut and the aggregate

portfolio error vt.

4.2. Portfolio performance measures

The performance of the various portfolios obtained under different sets of constraints

and choices of variance measures is evaluated using statistical and economic measures. In

particular, we choose four criteria which are widely used in the empirical finance literature.

These metrics are the 1) portfolio return; 2) portfolio volatility; 3) Sharpe ratio; and 4)

maximum drawdown. All these performance metrics are considered in an out-of-sample

setting. When implementing the out-of-sample procedure with monthly updates, one

needs to form an optimal portfolio on a particular month, say time t, and then compute

the portfolio return from holding that portfolio for one month, i.e., until time t + 1.

Next, in order to demonstrate the flexibility and robustness of our analysis, portfolios

are rebalanced using monthly, quarterly, and semi-annual intervals. All the performance

metrics at different rebalancing frequencies are reported at a monthly interval to provide
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meaningful comparisons.

The out-of-sample portfolio return from time t to t+ 1 is computed as

R̂t+1 = w′trt+1, (16)

where wt is the vector of optimal weights from the portfolio strategy at time t, and rt+1

denotes the vector of realization of the asset returns at time t+1. In the empirical applica-

tion we construct the out-of-sample portfolio returns using dynamic portfolio weights that

are obtained from the investor’s optimal portfolio allocation problem using information

computed over rolling windows. For the sake of consistency with the estimation of the

historical conditional variances and covariances, we consider rolling windows comprised

by m = 60 months.

[Insert Figure B.2 about here]

As illustrated by a time-line in figure B.2, the optimal weights are updated every month

with the same window length for the entire observation period T . The first set of optimal

weights is calculated using the sample from t = 1 to t = 60 for t ∈ T 6. After computing

the rolling optimal weights for T − m − 1 periods, the rolling portfolio returns can be

calculated by equation (13) for each period over time t+ 1 to T .

The average out-of-sample portfolio return among the entire out-of-sample period is

R = 1
T −m

T−1∑
t=m

R̂t+1. (17)

The out-of-sample portfolio volatility is given by the sample standard deviation of the

portfolio returns over the entire out-of-sample period:

σ̂R =
[ 1
T −m

T−1∑
t=m

(R̂t+1 −R)2
]1/2

, (18)

6The choice of window size corresponds to five years of observations and conforms with standard practice
in the investment industry. The empirical results are not very sensitive, though, to the specific choice of
the window size.
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such that the out-of-sample portfolio Sharpe ratio (SR) is equal to

ŜR =
R− rmf
σ̂R

, (19)

where rmf denotes the monthly risk-free rate that is assumed to be constant over the

out-of-sample evaluation period.

Finally one might be also interested in the measure of portfolio drawdown which is a

measurement of decline in portfolio value from a peak to its trough over a period of time.

Consider the out-of-sample period from t = T −m + 1 to T , the portfolio drawdown at

time t over the out-of-sample period is defined as

Dt = max
{

0, max
u=m+1,...,t−1

( u∑
i=m+1

R̂i
)
−

t∑
i=m+1

R̂i
}
, (20)

where
∑u
i=m+1 R̂i is a sequence of partial sums of the out-of-sample portfolio returns from

time m+ 1 to t.

4.2.1. Other rebalancing intervals

To demonstrate the robustness of the portfolio performance results, we consider other

rebalancing intervals that include quarterly and semi-annual holding periods. Typically,

for quarterly and semi-annual holding periods, the portfolio return is calculated by multi-

plying the optimal weights on a particular day by the cumulative returns over the following

3 months and 6 months, respectively. However, this method raises at least two concerns:

1) the performance of a portfolio will depend on the particular starting month chosen for

forming the optimal portfolio, and 2) the length of the out-of-sample period for quarterly

and semi-annual holding periods is dramatically reduced by three and six times, respec-

tively. This has major implications for the statistical ability of the above performance

measures to provide meaningful results.

To address these issues, we adopt DeMiguel et al. (2013)’s rebalancing method to

produce a series of overlapping portfolio returns. This method exploits more efficiently

the available information set. In this setting, the investor holds the portfolio for l months,

for instance, l = 3 for a quarterly rebalancing period and l = 6 for semi-annual rebalacing

periods. For each month of the out-of-sample period one needs to calculate the monthly
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optimal weight and then hold that portfolio for l months. By doing this, there is a set

of overlapping portfolio returns with T − m − l number of out-of-sample observations,

where T is the total number of observations and m is the size of rolling horizon. Then,

the standardised monthly portfolio return computed from an l-month rebalancing scheme

is obtained by averaging the overlapping portfolio returns over the out-of-sample period.

This quantity is further divided by l in order to obtain a monthly measure. The formal

definitions for these quantities follow.

The out-of-sample portfolio return from t to t + l is computed by multiplying the

optimal set of weights at time t by the cumulative returns on each asset over l months, as

R̂lt+l = w′t

l∑
τ=1

rt+τ , (21)

where wt is the vector of optimal weights from the portfolio strategy at time t, rt+τ

denotes the out-of sample asset returns at time t + τ for τ ≤ l ∈ N . For instance, our

analysis considers τ = 1, 2, 3 for quarterly and τ = 1, 2, ..., 6 for semi-annual intervals.

After collecting the T −m − l + 1 periods of overlapping portfolio returns, the monthly

standardised out-of-sample mean and standard deviation are, respectively,

R
l = 1

T −m− l + 1

T−l∑
t=m

R̂t+l,

σ̂lR =
[ 1
T −m− l + 1

T−l∑
t=m

(R̂t+l −R
l)2
]1/2

.

(22)

The monthly portfolio Sharpe ratio (SRl) for a l-month rebalancing scheme is

ŜR
l =

R
l − rmf
σ̂lR

, (23)

where rmf denotes the monthly risk-free rate. The portfolio drawdown for the l-month

rebalancing scheme is constructed on the same basis as for the monthly rebalancing scheme

introduced above. One only needs to divide each element in the partial sum sequence of

portfolio return by l months to calculate the average overlapping returns. Consider the

out-of-sample period from t = m+ l to T , the drawdown for l-month rebalancing at time
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t is given by

Dt = max
{

0, max
u=m+1,...,t−1

(1
l

u∑
i=m+l

R̂li

)
− 1
l

t∑
i=m+l

R̂li

}
, (24)

where 1
l

∑u
i=m+l R̂

l
i is a sequence of partial sums of the out-of-sample overlapping portfolio

returns averaged by l months from time m+ l to t.

5. Empirical Analysis

The empirical application mimics a realistic investment portfolio managed by financial

practitioners. The portfolio description and implied variance data collection are described

in Section 5.1. The three different methods to calculate portfolio variances based on option

data and historical data discussed in previous sections are considered now as inputs in the

portfolio optimization problem. In Section 5.2, we compare the predictive performance

of these variance measures using RMSPE and MAPE measures. In Section 5.3, we carry

out an out-of-sample portfolio performance comparison for different types of portfolios in

terms of asset composition, portfolio constraints and rebalancing schemes.

5.1. Data

Our data consists of nine asset categories in four different market segments, including

equities, fixed income, alternative securities and cash, varying exposures to countries,

sectors and risk levels. We aim to derive an easily implementable portfolio for small scale

investors and we do not consider currency hedging7. To convert index levels from different

currencies into one common currency, we use Pound Sterling (GBP) denominated indices

extracted from Bloomberg. The list of assets in the proposed portfolio is found in table

A.1.

[ Insert Table A.1 about here ]

When implementing portfolio optimizations we use monthly log-returns to compute

the monthly rebalancing portfolios. The dataset covers the period from January 2001 to

7For professional or large scale practitioners, it is reasonable to manage the currency risk by using
currency futures or investing in currency markets.
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December 2017, with a total of 204 monthly observations available. The first estimation

window for the estimates of covariance matrices is from January 2001 to December 2005,

with a window size of 60 months8. The out-of-sample period is from January 2006 to

December 2017. For every month in the out-of-sample period, the optimal weights are

recalculated by obtaining the rolling estimates of the covariance matrices. There are 144

out-of-sample months for the comparison of portfolio performances. The option-implied

volatility index captures the annualised risk-neutral implied volatility (standard deviation)

in percentage terms, thus the implied variance series IVt is obtained by the square root

of implied volatility index. When calculating the monthly implied variance (IV m
t ), one

needs to transform the value of implied variance by

IV m
t = 1

12
( IVt

1002

)
. (25)

5.2. Variance forecasting performance

As a preliminary exercise we investigate the forecasting performance of the historical

variance, risk-premium-corrected implied variance and the unadjusted implied variance

among four equity markets, including US S&P 500, UK FTSE 100, European STOXX

50, and Japanese NIKKEI 225. The variance forecasting performance is carried out in

terms of absolute, relative and aggregate prediction errors and assessed by computing the

RMSPE and MAPE loss functions. The results are presented in table A.2. The magnitude

of the loss functions is very small for all of the variance predictors individually, which

suggests that all of them forecast realized variance reasonably well. Nevertheless, there

is clear evidence of an outperformance of implied variance measures (with and without

risk premium adjustment) as the values of the RMSPE and MAPE are smaller than for

the historical variance estimates. We also look at the relative prediction criteria in order

to compare if the magnitudes of the prediction errors are relatively sizeable among the

different variance estimators.

[ Insert Table A.2 about here ]

8Option-implied data on the selected assets are only available from Bloomberg from January 2001. This
fact conditions the start date of our portfolio that contains both stock prices and options data. Our choice
of rolling window is driven by standard practices in the financial industry.
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Panel A in table A.2 presents mixed evidence. The raw implied variance measures

outperform the other forecasting methods for the MAPE in most cases. For the Nikkei

index, though, the risk-premium-corrected implied variance is the best performer. The

results in Panel B are more robust. In this case we find that the risk-premium-corrected

implied variance has smallest RMSPE among all the equity markets. Moreover, the value

of these loss functions for the aggregate prediction errors demonstrates that aggregation

of errors across assets in the portfolio does not cancel out the prediction error of each

other. In this case the implied variance still outperforms the historical variance in terms

of aggregate forecasting performance. This suggests that the improvement in forecasting

ability of the implied variance measures is robust across assets with implied information.

5.3. Out-of-sample portfolio performance

The analysis of portfolio performance is divided into two parts. First, our discussion

starts with an equity portfolio which contains only four equity indices in UK, US, Europe

and Japan. It aims to examine the direct effect of using implied variance for equity

portfolios, without mixing (diluting/amplifying) the effect from historical information.

Second, to assess this effect on a portfolio that also contains other asset categories for

which there is no derivatives market, we also entertain the full portfolio comprised by nine

assets. The optimal portfolio allocation in both portfolios is obtained by minimizing the

portfolio variance. For each portfolio, we solve two different optimal portfolio allocation

problems. First, we entertain a minimum-variance portfolio that is determined by a target

expected portfolio return. In order to assess the sensitivity of the results to the choice of

the target return in the portfolio allocation problem, we repeat the optimization exercise

for values of the target portfolio return given by 4%, 6%, 8% and 10%. We also include a

cash liquidity restriction that ranges within 5%-20%, that is, we impose that the minimum

cash holdings in the optimal portfolio are in this range. As an additional exercise, we also

obtain the optimal portfolio allocation of the unconstrained minimum variance portfolio

exercise. Finally, for each portfolio, we derive the optimal portfolio weights using three

different types of conditional covariance matrices Σt in the investor’s objective function

(2). One of these matrices is constructed only using historical data and the other two are

based on a mix of implied and historical information.

In summary, optimization results are reported in terms of two different asset compo-
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nents (equity-only vs. full assets), for a constrained and unconstrained minimum-variance

objective function and using three different methods for forecasting the conditional vari-

ance. Lastly, as a robustness exercise, we repeat the empirical analysis for quarterly and

semi-annual rebalancing intervals.

Performance of the equity portfolio

The average monthly out-of-sample performance metrics over 2006 to 2017 for the equity

investment portfolio comprised by the four financial indices are reported in Panel A of

table A.3, where the best performance metrics for among different variance estimates are

indicated in bold style. We apply Diebold and Mariano (1995) tests to assess statistically

the significance of our results. In particular, we report two sets of p-values in parenthesis.

The top p-values correspond to the null hypothesis that the portfolio performance is not

better than those calculated using the realized variance. The bottom p-values correspond

to the null hypothesis that the portfolio performance is not better than for the method

using the historical variance. In both cases a small p-value suggests rejecting the null

hypothesis that the portfolio being evaluated is not better than the benchmark9.

The optimal weights obtained from the different methods to forecast the variance and

under different sets of portfolio constraints10 are illustrated in figure B.3. On average,

over the entire out-of-sample period, the use of implied variance (with and without risk

premium correction) provides better portfolio returns and Sharpe ratio with at least 10%

significant p-values. In contrast, the optimal portfolio weights obtained under the historical

variance approach yield investment portfolios with lower out-of-sample volatility. The out-

of-sample maximum drawdown metric provides mixed results across portfolios.

[ Insert Panel A of Table A.3, Figure B.3 about here ]

Performance of the full portfolio

The average out-of-sample performance metrics for the entire investment portfolio are

reported in Panel B of table A.3. The optimal weights obtained from the different variance

9We acknowledge that these p-values could be improved by providing a single p-value obtained from
a test comparing multiple forecasting models, see White (2000) and Hansen (2005). However, by doing
so we would not be able to obtain evidence of the pairwise superior predictive ability across forecasting
methods, which is the object of interest in this paper.

10For illustration purpose, we only report the figures of the optimal weights for the unconstrained
global minimum-variance portfolio and the constrained version of the portfolio obtained imposing a target
portfolio return of 4%.
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estimates under different sets of portfolio constraints11 are illustrated in figure B.4. The

implied variance with risk premium correction outperforms other variance estimates across

the different performance metrics: portfolio return, volatility and Sharpe ratio, although

the gains are not as sizeable as for the equity-only portfolio. This can be observed in

the statistical significance of Diebold and Mariano (1995) p-values. This is an interesting

observation that highlights the effect of mixing implied variance and historical information

in the covariance matrix of the full portfolio. As we increase the number of assets in the

portfolio without implied information we need to rely more on historical information. Our

results suggest that this circumstance has a negative effect on the overall statistical and

economic portfolio performance.

[ Insert Panel B of Table A.3, Figure B.4 about here ]

Portfolio performance for other rebalancing intervals

In tables A.4 and A.5 we report the performance of both the equity and full portfolios

for quarterly and semi-annual rebalancing intervals. The improvement in portfolio perfor-

mance obtained by using implied variance with risk premium correction is remarkable and

robust across different rebalancing frequencies. In addition, it is noticeable that all the

variance estimators exhibit larger portfolio variance than under the one-month rebalancing

scheme.

[ Insert Tables A.4 and A.5 about here ]

6. Conclusion

We analyze the forecasting and portfolio performance of option-implied variance mea-

sures in sophisticated portfolios comprised by different asset categories involving equity,

corporate bonds, commodity funds and cash. The advantages of using option-implied in-

formation in portfolio optimization have been examined in literature. However, in this

paper we introduce a novel strategy to forecast the variance-covariance matrix when there

is no option-implied information on all of the assets in the portfolio. We propose a variance-

covariance matrix that combines forward-looking information from option markets with

11See footnote 10.
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historical information on the asset returns. More specifically, we forecast the conditional

variance of those assets for which there are option prices using model-free estimates of the

implied variance. For those assets for which this information is not available we rely on

estimates of the conditional variance using historical data computed over rolling windows.

In the empirical analysis for two investment portfolios characterized by different sets

of constraints, we find that option-implied variance, especially the risk-premium-corrected

one, exhibits superior forecasting ability than historical measures of the conditional vari-

ance. These results are confirmed for an analysis of portfolio performance out-of-sample.

We find strong empirical evidence suggesting that the risk-premium-corrected implied vari-

ance outperforms other estimators among most of the scenarios characterized by different

portfolio constraints and rebalancing frequencies. We also find that for the equity only

scenario, the implied variance with variance-risk-premium correction consistently improves

the other investment portfolios with regards to the portfolio returns and Sharpe ratio.

We assess these gains in portfolio performance for a sophisticated portfolio that not

only contains equities but also other asset categories such as corporate bonds and com-

modity funds for which there is no options data. In this case we replace the fully implied

variance approach by the mixed approach that combines implied variance with historical

variance. Our results also confirm the outperformance of optimal portfolio allocations

obtained from the mixed approach compared to simply using historical information. In

particular, we find superior out-of-sample portfolio returns, portfolio volatility and Sharpe

ratio for the covariance matrix that exploits estimates of the implied variance measure us-

ing a variance risk premium correction.
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Appendix A. Tables

Table A.1: The composition of assets in the portfolios.

Asset category Asset Benchmark Local currency

Equities US Equity S&P 500 USD

European Equity STOXX 50 EUR

UK Equity FTSE 100 GBP

Japanese Equity NIKKEI 225 JPN

Fixed Income Government Bonds FTSE Russell World Government Bond Index multi-currency

Corporate Bonds FTSE Russell US Broad Investment-Grade Bond Index USD

High Yield Bonds FTSE Russell US High-Yield Market Index USD

Alternatives Commodities S&P Commodity Index (GSCI) USD

Cash Cash LIBOR GBP 3 Month GBP

Table 1 summarises the composition of assets in the portfolios. We consider a sophisticated portfolio which contains
nine assets in four different sectors, including equities, fixed income, alternative securities and cash. The selection
of assets is diversified across different regions, sectors and risk levels. The end-of-month prices of each benchmark
asset is collected from Bloomberg database terminal. To convert the indices at different local currencies to one single
currency, we consider the GBP-denominated prices. The sample period covers 204 months from January 2001 to
December 2017. In the empirical analysis, the equity-only portfolio considers four equity assets in the equity category;
while the full-asset portfolio considers all the assets stated above.
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Table A.2: Variance forecasting performance in terms of RMSPE and MAPE loss functions.

Panel A. Absolute Prediction Error Criteria εt.

Historical variance Implied variance (adj.) Implied variance

S&P500 RMSPE 0.0068 0.0065 0.0048

MAPE 0.0026 0.0024 0.0022

STOXX50 RMSPE 0.0064 0.0059 0.0049

MAPE 0.0030 0.0028 0.0028

FTSE100 RMSPE 0.0055 0.0053 0.0042

MAPE 0.0022 0.0020 0.0020

NIKKEI225 RMSPE 0.0094 0.0090 0.0093

MAPE 0.0033 0.0032 0.0038

Panel B. Relative Prediction Error Criteria ut.

Historical variance Implied variance (adj.) Implied variance

S&P500 RMSPE 1.6991 1.0911 1.9520

MAPE 1.1912 0.7581 1.3549

STOXX50 RMSPE 1.3989 0.7608 1.2993

MAPE 0.8518 0.6010 0.9529

FTSE100 RMSPE 1.7130 0.8009 1.4932

MAPE 0.8688 0.5968 1.0399

NIKKEI225 RMSPE 1.1311 0.9576 1.3176

MAPE 0.7677 0.6207 0.9571

Panel C. Aggregate Prediction Error Criteria vt.

Historical variance Implied variance (adj.) Implied variance

Aggregate RMSPE 0.0067 0.0063 0.0048

MAPE 0.0025 0.0023 0.0023

Table 2 compares the forecasting performance by different variance estimators in predicting
realized variance. Since the sample period between January 2001 and December 2005 is the
first rolling window (6o months) in the historical variance, the average prediction performance
for each variance estimate are analyzed from January 2006 to December 2017. The numbers
in bold style illustrate the best forecasting performance. Panel A and B of table 2 respectively
reports the absolute and relative prediction errors among the historical variance, implied
variance with risk premium correction and implied variance corresponding to individual
equity markets. Panel C of table 2 reports the aggregate prediction error of each variance
estimate at the portfolio level, by taking the weights of the corresponding equity assets into
account. This aggregate prediction result is based on the optimal weights obtained from the
global minimum-variance equity portfolio under different variance estimates.
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Appendix B. Figures

Figure B.1: Plots of monthly historical variances (the solid lines) against implied variances (the dotted
lines) over January 2006 - December 2017. The historical variance at each period is calculated by rolling
window with a sample size of 60 months. The implied variance is calculated by converting the (annualised)
model-free implied volatility index into monthly value as monthly implied variance = 1

12 ( implied volatility
100 )2.

month t = 1
Entire observed data sample T

  t = 1
First estimation window

  t = 2
Second estimation window

.

.

.

Last estimation window

     T

t=60   

   t=61

   t = T-1  t = T-61

Figure B.2: The out-of-sample rolling horizons with a window size of 60 months. In our empirical exercise,
denote T = 204 as the entire observation period from January 2001 to December 2017. Assume that the
width of window is m = 60 months (5 years), the optimal weights are calculated from t = 60 to t = 203,
there are 144 sets of optimal weights over the sample period. Hence, the out-of-sample portfolio metrics
(returns, volatility, Sharpe ratio and drawdown) can be calculated over time t = 61 to t = T = 204.
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(a) Historical: unconstrained
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(b) Historical: target return = 4%
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(c) Implied with VRP correction: unconstrained
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(d) Implied with VRP correction: target return = 4%
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(e) Implied: unconstrained
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(f) Implied: target return = 4%

Figure B.3: Rolling optimal weights based on different variance estimators for equity portfolios under minimum-variance pref-
erence. Figure 3(a), (c), (e) illustrate the optimal weights from equity portfolio based on historical variance, implied variance
with VRP correction and implied variance, respectively. Figure 3(b), (d), (f) illustrate the optimal weights from equity portfolio
with 4% expected portfolio return based on historical variance, implied variance with VRP correction and implied variance,
respectively. The dynamics of optimal weights over time based on historical variance seem to be less fuzzy.
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(a) Historical: unconstrained
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(b) Historical: return = 4% and cash liquidity 5-20%
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(c) Implied with VRP correction: unconstrained
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(d) Implied with VRP correction: return = 4%
and cash liquidity 5-20%
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(e) Implied: unconstrained
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(f) Implied: return = 4% and cash liquidity 5-20%

Figure B.4: Rolling optimal weights based on different variance estimators for full-asset portfolio under minimum-variance
preference. Figure 4(a), (c), (e) illustrate the optimal weights from an unconstrained full-asset portfolio based on historical
variance, implied variance with VRP correction and implied variance, respectively. Figure 4(b), (d), (f) illustrate the optimal
weights from full-asset portfolio with 4% expected portfolio return and cash liquidity at 5-20% based on historical variance,
implied variance with VRP correction and implied variance, respectively. Based on the minimum-variance strategy in the
unconstrained portfolio, all the variance estimators consistently suggest allocating wealth to cash deposit in order to minimize
portfolio risk. By imposing a limited amount of cash liquidity (5-20%) and an expected portfolio return at 4%, a significant
amount of wealth is reallocated to other asset categories such as bonds and equities.
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