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Abstract

We develop a phenomenological, physically motivated, model for the effective tidal deformability

of a neutron star binary, adding the frequency dependence (associated with the star’s fundamental

mode of oscillation) that comes into play during the late stages of an inspiral. Testing the model

against alternative descriptions, we find that it provides an accurate representation of the tidal

deformability. The simplicity of the model makes it an attractive alternative for a gravitational-

wave data analysis implementation as it facilitates an inexpensive construction of a large number

of templates covering the relevant parameter space.
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I. INTRODUCTION

The inspiral and merger of binary neutron stars has long been considered a bread-and-

butter source for advanced gravitational-wave detectors. Hence, the release of pent-up ex-

citement following the spectacular GW170817 event [1, 2] came as no surprise. After all,

these events have the potential to unlock scientific mysteries from astrophysics (confirming

binary mergers as the origin of short gamma-ray bursts and explaining the cosmic gener-

ation of heavy materials) and cosmology (through inferred values of the Hubble constant)

through to nuclear physics (as the imprint of matter on the gravitational-wave signal helps

constrain the equation of state relevant to the extreme conditions represented by neutron

stars). Remarkably, the GW170817 event led to progress in all these directions [3–7] and the

number of relevant analyses and discussions is already overwhelming (and hence impossible

to do justice in a limited space).

The analysis of the GW170817 data has led to a surprisingly tight constraint on the neu-

tron star tidal deformability, commonly expressed in terms of the dimensionless parameter

[8, 9]

Λl =
2

(2l − 1)!!

kl
C2l+1

(1)

where l is the relevant multipole and C = GM?/Rc
2 is the (dimensionless) compactness of the

star (M? is the mass and R the radius and in the following we use geometric units where c =

G = 1). Given that the tidal imprint enters, formally, at the 5th post-Newtonian order [8],

the mass of the two binary partners can be inferred from lower order post-Newtonian terms in

the signal. A constraint on Λl can then be turned into a constraint on the neutron star radius

[7]. The recent analysis of [10] suggests 400 . Λ̃2 . 800 (for a suitably averaged quadrupole

tidal deformability Λ̃2, depending on the mass ratio, and with the lower limit somewhat

model dependent). These results provide the context for this brief paper. We outline a

phenomenological (yet, physically motivated) model for the effective tidal deformability,

adding frequency dependence that comes into play during the late stages of an inspiral. The

simplicity of the model makes it an attractive alternative for a data analysis implementation,

which requires inexpensive construction of a large number of templates covering the relevant

parameter space.
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II. A SIMPLE PHENOMENOLOGICAL MODEL

We take as our starting point the discussion in [11], where the tidal response of a star is

expressed in terms of the star’s normal modes of oscillation. The original analysis aimed to

provide an idea of the systematic “error” associated with the assumption that a deformed

neutron star is described by a barotropic (essentially chemical equilibrium) matter model

rather than a model in which the matter composition is frozen as the system spirals through

the sensitivity band of a gravitational-wave detector (as the timescale associated with nuclear

reactions is much longer than that of the inspiral). The results demonstrate that, for a

simple polytropic model in Newtonian gravity, the dynamical contribution to the tide is

dominated by the excitation of the fundamental mode (the f-mode) of the star. This result

was established a long time ago [12, 13] in work aimed at quantifying the role of mode

resonances on the gravitational-wave signal, but the discussion in [11] adds a twist to the

story. The results demonstrate that the sum over modes converges to the usual Love number

in the static limit. Again, this result could have been anticipated. As long as the modes

form a complete set, they can be used as a basis to describe any dynamical response of the

star.

Let us now make pragmatic use of the results from [11] and build a simple model for the

effective tidal deformability. The basic idea is to include only the f-mode contribution to

the mode sum and accept the contribution from other modes as a systematic error. Based

on the stratified Newtonian models considered in [11] we expect this systematic error to be

below the 5% level. This level of uncertainty is much smaller than our ignorance of (say)

the neutron star equation of state, so the relation we write down should be precise enough

for a “practical” construction of gravitational-wave templates.

In essence, we start from a parameterised version of the Newtonian result [11]

keff
l = −1

2
+

Af

ω̃2
f − ω̃2

[
1− ω̃2Bf

] [
1− ω̃2

fBf

]−1
(2)

where Af depends on the overlap integral between the f-mode and the tidal driving, while

Bf involves the ratio of the horizontal and radial mode eigenfunctions at the star’s surface.

The scaled (see below) f-mode frequency is ω̃f while ω̃ is the similarly scaled frequency

associated with the Fourier transform (see [11] for discussion) . In order for the relation (2)
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to return the usual Love number, kl, in the static, ω̃ → 0, limit we must have

Af

[
1− ω̃2

fBf

]−1
= ω̃2

f

(
kl +

1

2

)
(3)

This may not seem very helpful, but, in fact, it is. We know from the work in [14] (see also

[15, 17]) that there exists a robust universal relation between the f-mode frequency and the

tidal deformability1

ω̄f = a0 + a1y + a2y
2 + a3y

3 + a4y
4 (4)

where ω̄f ≡ M?ωf and y = ln Λ (and the ai parameters are listed in table I). The scaling

with the mass is different from that in [11] but this is easily addressed, since

ω̃2
f =

R3

GM?

ω2
f =

R3

GM?

(
c3

GM?

)2

ω̄2
f =

(
Rc2

GM?

)3

ω̄2
f =

ω̄2
f

C3
(5)

(and similar for ω̃). Given (1) and (4) we can express the right-hand side of (3) in terms

of kl (or, equivalently, Λ) and C. However, another robust relation (equation (4) in [19])

connects the compactness C to the tidal deformability;

C ≈ 3.71× 10−1 − 3.91× 10−2y + 1.056× 10−3y2 (6)

so we actually have a one-parameter expression for the combination of the coefficients on

the left-hand side of (3). This is the key step, leading to

keff
l ≈ −

1

2
+

ω̄2
f

ω̄2
f − ω̄2

(
kl +

1

2

)[
1− ω̄2

C3

ε

l

]
(7)

where we have used Bf = ε/l (motivated by the fact that Bf = 1/l for a homogeneous stellar

model, and it is worth noting that ε ≈ 0.9 for the polytropic models considered in [11]).

l a0 a1 a2 a3 a4

2 1.820× 10−1 −6.836× 10−3 −4.196× 10−3 5.215× 10−4 −1.857× 10−5

3 2.245× 10−1 −1.500× 10−2 −1.412× 10−3 1.832× 10−4 −5.561× 10−6

TABLE I: The coefficients required for the empirical formula (4) for l = 2 and l = 3 (reproduced

from [14]) .

1 The use of this relation should be “safe”, but one must be aware that it involves a conservative view of the

equation of state, e.g. the absence of sharp phase transitions [18]. However, if this relation breaks then so

do related assumptions, like the I-Love-Q relations [15] that are used to break degeneracies in gravitational

inspiral waveforms. In this case, one might be able to make progress by separately constraining the tidal

deformability and the f-mode frequency [16].
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We now have an explicit analytic formula for the effective Love number in terms of the

result in the static limit, kl, the frequency ω and the (to some extent) free parameter ε.

Moreover, even though the result was based on a Newtonian analysis, it makes use of fully

relativistic relations for the static Love number and the mode frequency.

In order to make a connection with the gravitational-wave signal, we need to relate ω to

the gravitational-wave frequency. This step is, inevitably, phenomenological (at this point).

Intuitively, it would make sense (based on the usual logic that the gravitational waves are

emitted at twice the orbital frequency) to try the replacement ω → 2Ω. We can test this

idea against the results for the dynamical tide from [20, 21], which are similar in spirit as

they introduced the notion of an effective tidal deformability. However, the main focus of

[20, 21] was to extend the effective-one-body framework to account for the dynamical tide.

In addition to this, [21] provides an approximate analytical formula based on a two-timescale

analysis. This result has been tested against numerical relativity simulations (most recently

in [22]) and it appears to perform well in these comparisons [23]. Hence, it provides a natural

benchmark against which to test our closed-form expression.

In order to carry out this comparison, we focus on the example used in [21]; an equal

mass neutron star binary with M? = 1.350M� and R =13.5 km, leading to C = 0.148 and

Λ2 = 1111. This comparison, illustrated in figure 1, shows that (7) predicts a faster than

expected rise towards the mode resonance.

It turns out that the replacement ω → Ω fares slightly better, suggesting that we may be

able to make progress by introducing a second free parameter, δ, such that we have

keff
l ≈ −

1

2
+

ω̄2
f

ω̄2
f − δ(2Ω̄)2

(
kl +

1

2

)[
1− (2Ω̄)2

C3

ε

l

]
(8)

Tuning the two parameters, δ and ε, we can obtain an accurate representation of the results

from [21] throughout the relevant frequency range (up to close to merger, see below). This

is also illustrated in figure 1. Given the simplicity of (8), this is promising and it would

be interesting to explore to what extent the parameters of the model depend on the stellar

parameters (and the matter equation of state). Progress in this direction could be made by

testing (8) against numerical merger simulations (along the lines discussed below).

However, it turns out that we can reduce the freedom of the model by removing one of the

two parameters. We do this by accounting for the redshift of the mode frequency. In order

to do this, we note that, the results used in (4) incorporate the gravitational redshift (for a
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FIG. 1: Comparing the effective Love number keff
l from (8) to the results of [21] for l = 2 .The

dashed horizontal line represents the static Love number (keff
l in the Ω → 0 limit). The results

of [21] are shown as a (blue) solid curve. Estimates from (8) corresponding to the replacement

ω̄ → 2Ω̄ and ω̄ → Ω̄ (as discussed in the main text) are shown as dashed curves, while a (rough) fit

to the data from [21] is shown as a solid (black) curve (corresponding to taking δ = 0.8 and ε = 1.05

in (8)). Finally, we indicate the region beyond the (approximate) merger frequency, ΩM & 0.057

in this case, by the coloured region in the figure.

non-rotating star) at infinity, but in the tidal problem we need the frequencies to be related

at a finite orbital separation (and this should impact on the value of, in particular, the δ

parameter). Somewhat simplistically (we are, after all, only outlining the idea here), the

correction we are interested in should have two terms. First of all, we need the gravitational

redshift (for a non-rotating star) at a given distance. Secondly, we need to account for the

fact that the star is orbiting its companion. We estimate the first term by recalling the

text-book result for a signal emitted at r0 and observed at r1

ω1

ω0

=

(
1− 2M?/r0

1− 2M?/r1

)1/2

(9)
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leading to the usual redshift for a mode “emitted” at R and observed at infinity

ω2
f = (1− 2C)ω2

0 (10)

where ω0 is the mode frequency as measured close to the star. This factor is (implicitly)

incorporated in (4).

Connecting to the tidal problem, we need the mode oscillation frequency as viewed by

an observer at a distance corresponding to the orbital separation a, such that

Ω2 =
GM

a3
−→ a =

(
GM

Ω2

)1/3

(11)

where M is the total mass of the system. Taking r1 = a we get

ω1

ω0

=

(
1− 2GM?

Rc2

)1/2
[

1− 2GM?

c2

(
Ω2

GM

)1/3
]−1/2

= (1− 2C)1/2

[
1−

(
2M?

M

)1/3 (
2Ω̄
)2/3

]−1/2

(12)

and it follows that

ω1 =

[
1−

(
2M?

M

)1/3 (
2Ω̄
)2/3

]−1/2

ωf (13)

The second factor follows from the usual Lorentz factor. We need(
1− v2

c2

)−1/2

=

[
1−

(
Ωa

c

)2
]−1/2

=

[
1−

(
M

2M?

)2/3

(2Ω̄)2/3

]−1/2

(14)

Notably, the two factors are the same in the case of equal masses (when M = 2M?).

Assuming for simplicity (although the results are easy to extend to the general case) that

the masses are equal, we have the overall factor

γ =
[
1−

(
2Ω̄
)2/3
]−2

(15)

which, when combined with (7), leads to the final result (assuming ω → Ω, as in the previous

argument and leaving out the unknown parameter δ in favour of the “known” redshift factor

γ)

keff
l ≈ −

1

2
+

ω̄2
f

ω̄2
f − γΩ̄2

(
kl +

1

2

)[
1− Ω̄2

C3

ε

l

]
(16)

This is the final result.
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FIG. 2: Comparing the effective Love number keff
l from (16) to the results of [21], for both l = 2

and l = 3 (with the redshift factor included). The dashed horizontal lines represent the static

Love number (keff
l in the Ω → 0 limit). The results of [21] are shown as solid curves (blue for

l = 2 and red for l = 3). Estimates from (16) are shown for the range ε = 0.5 − 1 with the latter

representing the lower edge of the filled band in each case. Finally, we indicate the region beyond

the (approximate) merger frequency, ΩM & 0.057 in this case, by the shaded region in the figure.

The effective Love number obtained from (16) is compared to the results from [21] in

figure 2, for both l = 2 and l = 3. As our formula (16) leaves ε as a free parameter,

we show results for the range ε = 0.5 − 1. From the Newtonian calculations one would

expect ε to lie closer to the upper end of this range and, as is clear from the result in the

figure, the corresponding curve provides an excellent match to the result from [21] below

ΩM = 2Ω̄ ≈ 0.03. Above this orbital frequency, the effective Love number from [21] rises

faster than ours, almost reaching the ε = 0.5 curve as the system is near merger. The essence

of the comparison is that (16) performs remarkably well. It may be phenomenological in

origin, but there can be little doubt that (16) (and, indeed, the less constrained model (8))

provides an effective (and very simple) representation of the required behaviour.

It is worth pointing out that, while the two sets of results diverge for larger values of ΩM
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in figures 1 and 2, the corresponding frequencies are close to (or indeed above) the merger

frequency. As the picture of two separate, tidally deformed, bodies breaks down there is no

reason to expect the model to make sense beyond this point. The merger region is indicated

by the shaded region in figure 2. In order to estimate the merger frequency, we have simply

take the corresponding orbital separation to be the sum of the neutron star radii. That is,

we need a = R1 +R2 = 2R for equal mass systems. Then we have

ΩM ≈
(
M

a

)3/2

≈
(
M?

R

)3/2

= C3/2 (17)

For the model used in figure 2 the estimated merger frequency would then be ΩM ≈ 0.057.

A more precise estimate could be obtained from the results of [24] but this would not change

our conclusions.

III. THE STATE OF PLAY

The favourable comparison to the results from [21] suggest that our simple relations for

the effective tidal deformability provide useful alternatives. In fact, the evaluation of the

large set of results required to span the parameter space relevant for gravitational-wave

searches should not be computationally costly. In particular, it ought to be straightforward

to combine (16) with any current waveform model that implements the static tide. As we

reflect on the options, it is relevant to consider the status of other efforts in this direction. In

particular, the all-important benchmarking of phenomenological (computationally efficient)

models against (computationally costly) nonlinear numerical simulations. This is relevant for

many reasons. Perhaps most importantly, while an absolute requirement for a description

of the complex merger dynamics, numerical simulations are unlikely to be able to track

the many thousand binary orbits required to model a system that evolves through the

detector sensitivity band [25]. This will always require an approximate description. For well-

separated binaries, this need is satisfied by post-Newtonian (essentially point particle) results

but this description becomes less reliable during the late stages of inspiral. This is largely

due to the emergence of finite size effects, like the tidal deformability. The importance of the

problem, both for signal detection and the extraction of parameters from an observation,

has driven the development of reliable alternatives, like the effective-one-body framework

that forms the basis for the work in [20, 21].
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An important point, which appears to be commonly overlooked, involves the natural

parameters to use in a phenomenological model. The typical approach connects with post-

Newtonian logic by expressing the results in terms of the dimensionless parameter

x = (ΩM)2/3 (18)

This is an obvious choice for the main contribution to the gravitational-wave signal, which

depends on the orbital motion (and involves higher order “corrections” to the quadrupole

formula). It is not so obvious that this parameter “makes sense” during the late stages

of inspiral, for which numerical simulations are viable (recall that it is rare that binary

neutron star simulations are carried out for more than the last 10-20 orbits and it is only

very recently that such simulations have been carried out with sub-radian precision in the

accumulated gravitational-wave phase [22, 26–28]). There is no reason whatsoever that the

matter effects would be naturally expressed in terms of a parameter based on the orbital

dynamics. This point is illustrated by (16) which encodes the matter dynamics (for each

binary companion) in terms of the f-mode oscillation frequency. The dimensionless variable

ω̄f = ωfM? appears naturally in the model. It is not at all clear that it “makes sense” to

expand the result in powers of x. It is worth keeping this point in mind.

As a measure of the current level of uncertainty, it is useful to compare different suggested

models for the tidal deformability. This kind of comparison is straightforward, as several

proposed models are given in closed form. However, one has to be careful because the

associated assumptions may impact on the result. Basically, we need to compare apples

with apples. As will soon become clear, this turns out to be less straightforward.

A relevant comparison, with immediate implication for gravitational-wave astronomy,

involves the accumulated phase associated with the tide. Roughly speaking, one would

expect to be able to distinguish between models that differ by at least half a cycle (one

radian) in the inspiral signal. Effectively, for the quadrupole contribution to an equal mass

binary signal we need to integrate an expression of form [9, 25]

dΦT

dx
= −65

25

k2

C5
x3/2f(x) (19)

for the tidal contribution to the phase, ΦT . The Newtonian prefactor is the same for all

models, but the factor f(x) differs. Since the models we are considering can be described

analytically, it is easy to work out the required integrals. This yields the phase ΦT as a

10



0 0.05 0.1 0.15
x

0

1

2

3

4

5

6

7

|Φ
T

 /π
|

0.13 0.14 0.15
x

4

5

6

7

|Φ
T

 /π
|

FIG. 3: Comparing the impact of the tidal deformability in different approximate models (all

for l = 2), essentially summarising the current state of the art. From top to bottom the curves

represent: The post-Newtonian model from [29] (dashed black curve), the fit to the numerical data

from [27] (solid black curve), the range obtained using ε = 0.5 − 1 in (16) (red solid lines, grey

filled region), the fit to numerical data from [28] (solid blue curve) and the result obtained ignoring

the dynamical contribution to the tide (black dotted line). The right panel provides a zoomed in

version for the final stages of inspiral.

function of x (say) which provides some idea of the difference between tidal prescriptions.

Figure 3 provides such a comparison, for the same stellar model as in figure 2.

The results in figure 3 provide a useful illustration of several key issues. First of all,

we can compare the impact of the effective tidal deformability from (16) to the static tide.

This is fairly straighforward, and figure 3 provides indicative results. The effective tide

leads to a slight (sub-radian) change in the gravitational-wave phasing. This would be a

small effect, possibly distinguishable by high signal-to-noise detections. The comparison

with other models in the literature is slightly more involved as we have to make choices.

In principle, it is useful to implement as much “known” post-Newtonian information as

possible. In practice, this involves deciding which post-Newtonian model we should take as

our baseline. The problem is that one would expect post-Newtonian estimates to lead to

larger neutron stars and hence an enhanced tidal effect [30]. This expectation is illustrated

by the results from the post-Newtonian model from [29] (see their equation (31)), which

differ dramatically from fits based on numerical simulations for x & 0.1. Still, the numerical
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fits from [27] and [28] (see also [30, 31]) are based on different choices at low frequencies.

The former limit to the results from [29] while the latter limit to the integrated version of

(19) with a fixed k2 and an f(x) such that the relevant factor in the phase is (1 + c1x)

with c1 = 1817/364 (in agreement with the post-Newtonian correction from [32]). In our

comparison, we have taken this as our baseline and simply replaced the fixed k2 with keff
2

from (16). As is clear from the figure, this leads to a predicted gravitational-wave phase

which compares well with the fits to simulations during the late stages of inspiral. Moreover,

we know that the recent numerical simulations of [22] suggest a good agreement with the

effective tidal formulation from [21] (and by implication from figure 2, our expression). Of

course, the issue of the “correct” form for f(x) requires further thinking. It may need

some care, as one would anticipate numerical dissipation to enhance the energy loss in the

system, leading to a faster inspiral in simulations and this may (to some extent) mimic the

tide. It could be that the simulations do not yet have the level of precision we need for a

true comparison. The results from [22] would seem to support this. However, one has to be

careful. It is notable that, even though the two numerical-relativity inspired descriptions in

figure 3 agree to sub-radian precision, the formulas from [27] and [28] are made to match

different models in the low-frequency limit. Keeping in mind that the simulations involve

only 10-20 orbits, one should really focus on the region above x ≈ 0.1 in the figure. This

brings us to a key point, where further thinking may also be needed. A given numerical

simulation does not automatically represent the past history of a binary inspiral. The initial

data does not have the required “memory” (and may, for example, involve some level of

unwanted eccentricity [23, 33]). As simulations become more precise (with differences at the

sub-radian level required for the results to be reliable enough for gravitational-wave data

analysis) the matching to the low-frequency part of the inspiral signal inevitably comes to

the fore. A better understanding of the physics associated with tidal response should be

valuable for this effort.

IV. FINAL REMARKS

We have introduced a phenomenological, physically motivated, model for the effective

tidal deformability of a neutron star binary, adding frequency dependence that comes into

play during the late stages of inspiral. A comparison against alternative descriptions (like
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the results from [21]), suggests that we have at hand a simple, yet accurate, description of

the tidal imprint (similar in spirit, but distinct from the recent effort in [34]). This should

make the model an attractive alternative for an implementation of the matter effects in

gravitational-wave data analysis algorithms. At the same time, the (somewhat) unexpected

robustness of the model (recall that the free parameter ε has hardly any influence on the

gravitational-wave phasing) suggests interesting avenues for further exploration. For ex-

ample, it ought to be straightforward to extend the logic to rotating systems by making

use of the phenomenological relations from [35] which encode the effect that spin has on

the fundamental mode. Of course, in doing this it is worth keeping in mind that merging

neutron star binaries are likely to be old enough that the stars will have had plenty of time

to spin down. The merger of neutron stars with significant spin would likely have to result

from some alternative formation scenario. Regardless, this extension of the model should

be straightforward.

At a more formal, and much more challenging level, it would be relevant to extend the

mode-sum approach from [11] to general relativity. This would be important, as it should

allow an actual derivation of a result along the lines of (16) (rather than the present argu-

ment, which was based on analogy). However, the problem is technically difficult because

the relativistic modes are now quasi-normal (with inevitable damping due to gravitational-

wave emission) and they are known not to be complete (as the scattering of waves by the

spacetime curvature will lead to a late-time power-law tail [36]). This should still be a

priority effort as one would also arrive at a description for the detailed role of mode res-

onances, for which a relativistic description is required in order for the use of a realistic

matter description to make sense. The importance of this kind of development is clear, but

the technical challenge should not be underestimated.
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