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We describe a large family of nonequilibrium steady states (NESS) corresponding to forced flows
over obstacles. The spatial structure at large distances from the obstacle is shown to be universal,
and can be quantitatively characterised in terms of certain collective modes of the strongly coupled
many body system, which we define in this work. In holography, these modes are spatial analogues
of quasinormal modes, which are known to be responsible for universal aspects of relaxation of time
dependent systems. These modes can be both hydrodynamical or non-hydrodynamical in origin.
The decay lengths of the hydrodynamic modes are set by ⌘/s, the shear viscosity over entropy density
ratio, suggesting a new route to experimentally measuring this ratio. We also point out a new class
of nonequilibrium phase transitions, across which the spatial structure of the NESS undergoes a
dramatic change, characterised by the properties of the spectrum of these spatial collective modes.

Equilibrium many-body systems are known to exhibit
universal behaviour, as famously exemplified by their
critical phenomena near second-order phase transitions.
These are characterised by a small number of universal
modes that scale according to computable critical expo-
nents and leave their imprint on macroscopic physical
properties of the system.

This state of a↵airs contrasts with the situation when
such systems are not in equilibrium [1], with universal re-
sults are few and far between. Determining the physical
characteristics of such a system is typically strongly sit-
uation dependent. A notable exception is the dynamical
crossing of a second-order phase transition at a finite rate
⌧Q. As proposed by Kibble [2] and Zurek [3], the number
of topological defects that form in the broken symme-
try phase is given in terms of a scaling law, depending
on a small set of universal modes. The exact details of
the quench through the transition are unimportant, only
the rate of approach to the critical point enters into the
scaling law [3].

Given the success of the KZ mechanism [4], and the
recent experimental interest it has created, for example
[5, 6], one may ask whether other scenarios exist that are
able to strongly constrain out of equilibrium dynamics
using a small set of universal collective modes, leaving
an imprint on the macroscopic spatial structure of the
system.

In this work we consider a large class of nonequilibrium
steady states (NESS), are set up as follows: consider a
many body system forced to flow over an obstacle. This
gives rise to a strong non-linear disturbance in the vicin-
ity of the obstacle, while the flow far from it on either side
is simple with a constant velocity vL on the left and vR on
the right (see Fig. 1). One then wants to know what the
steady state looks like at large distances, in other words
how the strongly non-linear behaviour around the obsta-
cle relaxes spatially toward its asymptotic values. This
is a di�cult problem, in general out of technical reach of
current methods. The AdS/CFT correspondence gives
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FIG. 1. Schematic representation of the NESS considered,
showing the imprint of spatial collective modes which describe
the return to equilibrium far from an obstacle. The vertical
axis, f , refers to a quantity of interest, such as the expectation
value of the stress tensor, with a value fL on the left and fR
on the right.

rise to a powerful computational framework particularly
in the nonequilibrium setting. Indeed this approach has
been used to elucidate the temporal equilibration1 of
strongly coupled plasmas [13, 14] and superfluids [15]. In
each case, the late-time behaviour is very accurately pre-
dicted by the spectrum of low-lying quasinormal modes
(QNM) [16], whose relevance to thermalization was first
pointed out in [17].

In this paper we use holography to explicitly find the
full non-linear solution for certain strongly coupled theo-
ries, whose dual solutions are black holes without Killing
horizons. The spatial structure is indeed universally
characterised by a stationary version of QNMs2, which
we define and obtain in a few illustrative examples. For
a given choice of asymptotic flow velocity, v = vL or
vR, these modes form a discrete set of purely imaginary
wavenumbers k(v) and the leading mode, i.e. the one
with the smallest |Imk| can be hydrodynamical or non-

1 Furthermore, previous studies of holographic NESS include cur-
rent driven [7–10] as well as heat-driven [11, 12] cases.

2 Modes of this kind have been studied in holography in a variety
of other contexts [18–22].
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hydrodynamical, and will be denoted k⇤. The relaxation
towards the asymptotic flow happens at the exponential
rate / e�Imk⇤x, so that the relaxation towards the right
boundary value corresponds to a mode with Imk⇤ > 0,
while the left mode has Imk⇤ < 0. A drastic reorganisa-
tion of the spatial structure of the NESS occurs whenever
a dominant mode crosses the real axis for a certain crit-
ical velocity vc. In this case, as v ! v�

c the downstream
spatial relaxation rate will tend toward zero, only to be,
for v > vc, dominated by the previously subleading mode.
The upstream spatial relaxation rate undergoes a similar
transition as v is decreased through vc. This constitutes
a new nonequilibrium phase transition, and we conjec-
ture that transitions of this form exist in systems outside
of holography. Indeed we provide examples of such tran-
sitions purely from the point of view of hydrodynamics.

The physical setup considered in this work should be
regarded as a spacelike version of a quench [23]. Instead
of switching on a source at some time t0 and then ask-
ing about the temporal relaxation towards a new equi-
librium, we consider an obstacle (modelled by a source)
at some spatial location x0 and asking about the spa-
tial relaxation towards the asymptotic equilibrium. In
both cases the asymptotic physics is fully universal and
determined by a spectrum of discrete collective modes
of the system. The importance of QNMs in holography
cannot be overstated, and attempts are being made to
define and explore them beyond AdS/CFT [24]. Here
we point out that an equally rich and universal story
is present when considering NESS, opening the exciting
possibility to access these modes via measurements of
the spatial structure of driven critical systems in the lab.
In particular, for modes which are hydrodynamic in ori-
gin the spatial decay rate (in units of the temperature)
depends directly on the shear viscosity in units of the
entropy density, ⌘/s. This applies for any system with
an e↵ective hydrodynamic description, greatly extending
the scope beyond holography and raising the possibility
of an experimental measurement of ⌘/s using the spatial
structure of NESS. To this end we note that recent exper-
iments have demonstrated the presence of hydrodynamic
electron flow in PdCoO2 [25], as well as graphene [26].

Relativistic hydrodynamics in d dimensions.
Hydrodynamics describes a wide class of systems in the
form of a universal theory which arises in a long wave-
length limit. In this section we construct the spatial col-
lective modes that appear in this e↵ective theory. We
stress that whilst hydrodynamics does contain certain
spatial collective modes, there can be additional ‘higher’
modes in a more complete theory that do not exist in
the hydrodynamic limit. This is the case for holography,
discussed in the next section.

To first order the Landau frame stress tensor is

Tµ⌫ = "uµu⌫ + p�µ⌫ � ⌘�µ⌫ � ⇣�µ⌫@ · u + O(@)2 (1)

subject to the conservation equations, @
µ

Tµ⌫ = 0. uµ is

a timelike unit-normalised d-velocity field, while �µ⌫ =
⌘µ⌫ + uµu⌫ projects orthogonal to uµ. ⌘ and ⇣ are the
shear and bulk viscosities. The shear tensor is given by

�µ⌫ ⌘ 2�µ⇢�⌫�

⇣
@(⇢u�) � 1

d�1⌘
⇢�

@ · u
⌘
.

To find the collective modes, we solve the conserva-
tion equations for linear perturbations about a long-
range equilibrium state characterised by ", p and a (d �
1)-velocity, v, such that uµ = �(1,v) where � =
1/

p
1 � v · v. The perturbations we seek are of the form,

"(xµ) = " + �" eik�x

�

with similar expressions for p(xµ)
and uµ(x⌫), all of which are time independent in the lab-
oratory frame, i.e. k

µ

= (0,k). Energy conservation
immediately gives �" = �(" + p)k · �u/(k · u), and for a
speed of sound c

s

we also write �p = c2
s

�". Thus, the re-
maining unsolved conservation equations determine �uµ,
which are either transverse or longitudinal with respect
to the obstacle. Transverse perturbations, k · �u

T

= 0 ,
obey the dispersion relation

k = �i
" + p

⌘ c2
v cos ✓ + O(k2), (2)

where we denote v = |v|, k =
p
k · k, and v ·k = vk cos ✓,

obtained by solving for v order-by-order in small k, and
then inverting. Despite being time independent, this
mode is related to the usual shear di↵usion pole. Specif-
ically, if we perform a Lorentz transformation to the rest
frame of the fluid where the wavevector picks up a fre-
quency kµ = (!,q), at this order these quantities obey a
dispersion relation of the form ! = �iDq2 with di↵usion

constant D = ⌘ c

2

"+p

.3 Note however that q here is imag-
inary. Next the longitudinal sector, �uµ = �u

L

�µ⌫k
⌫

,
has a dispersion relation,

k = �i
" + p

d�2
d�1⌘ + 1

2⇣

1

c2

q
1 �

�
v0
c

�2
cos ✓

⇣
1 �

�
v0
c

sin ✓
�2⌘2 (v ⌥ v0) + O(k)2,

(3)

where v0 ⌘ c
s

sec ✓/

q
1 +

�
cs
c

tan ✓
�2

and again we have
reintroduced the speed of light, c. Similarly this mode is
related to sound; in the rest frame of the fluid it obeys

the dispersion relation ! = ⌥c
s

q � i

2

d�2
d�1 2⌘+⇣

"+p

c2q2, but
again note q is imaginary.

The appearance of ⌘, ⇣ in k(v) suggests a new route
to their measurement (as well as other transport coe�-
cients which appear at higher orders in k)– by measuring
the long range spatial structure of NESS in the labora-
tory. Specifically, using " + p = Ts we see that k/T
in (2) depends only on ⌘/s and parameters of the flow
(v, ✓), whilst (3) depends additionally on ⇣/s and c

s

. The

3 The transformation between the fluid rest frame quantities !,q
and the laboratory frame quantities, k,v is given in (supplemen-
tal material (5)).
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preceding analysis relies only on universal properties of
hydrodynamics, and is thus independent of holographic
duality.

Holography for CFT3. Moving to a complete theory
allows us to construct a complete spectrum – hydrody-
namic and otherwise – as well as demonstrate its role in
explicitly constructed NESS.

As before we construct the spectrum of spatial collec-
tive modes by linearly perturbing the equilibrium solu-
tion reached far from the obstacle. In this case the equi-
librium configuration is given by the Schwarzschild black
brane metric, boosted along a planar horizon direction by
uµ.4 The computation is reminiscent of a QNM calcula-
tion where the boundary condition at the event horizon is
ingoing. Here the spatial collective modes are time inde-
pendent by construction, so an ingoing condition cannot
apply. We define the modes to be those which are regu-
lar on the future event horizon. Further technical details
can be found in the supplemental material.

The leading (i.e. longest range) parts of the result-
ing spectrum are displayed in Fig. 2. We also show
the modes obtained in the first-order hydrodynamic ap-
proximation, with appropriate transport coe�cients ⌘ =
s/(4⇡), ⇣ = 0 and c

s

= 1/
p

2. All modes found have
Rek = 0. As previously advertised the holographic the-
ory contains additional modes that are not present in
hydrodynamics and for some v these non-hydrodynamic
modes give the dominant long distance contribution.

A new nonequilibrium phase transition is also visi-
ble in Fig. 2. In the longitudinal channel, as v is in-
creased through c

s

, there is a sudden change in the dom-
inant mode, k⇤, on either the upstream or downstream
side. For instance, on the downstream side the hydro-
dynamic mode decay length becomes ever longer as v is
increased, and becomes suddenly dominated by a short
non-hydrodynamic mode once v > c

s

.
Holography for CFT2 and CFT1. In low and

high spacetime dimension analytic treatment of the spa-
tial collective modes becomes possible. For d = 2 equilib-
rium is given by the BTZ black brane. For a scalar field
perturbation about the zero velocity background there is
a discrete set of modes labelled by n 2 Z, with dispersion
relations ! = ±q � i4⇡T (�

2 + n) [27, 28] where T is the
Hawking temperature of the black hole and � is the di-
mension of the dual operator. Exploiting Lorentz invari-
ance to reach the modes of interest,we pick ! = ��kv,
q = �k, obtaining

k = i
4⇡T

�(v ± 1)

✓
�

2
+ n

◆
, (4)

where Rek = 0 and – comparing to (2), (3) – a suggestive
factor of 4⇡T , despite ⌘ not being defined in d = 2. In

4 One could also consider di↵erent equilibrium states, for instance
those with charge, superconductors, insulators, etc.
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FIG. 2. The discrete spectrum of spatial collective modes
as a function of asymptotic flow velocity, k(v), for a CFT3,
computed holographically using stationary perturbations of
boosted Schwarzschild-AdS4. Here we show the case of flow
incident angle ✓ = 0 (black). There is a (v, k) ! (�v, �k)
symmetry which connects some of the modes shown through
v = 0. Also shown is the conformal relativistic hydrodynamic
spectrum (red dashed) valid to first order in small k. All
modes found have Rek = 0. On the downstream side, for
some flow velocities v there are no modes of hydrodynamic
origin (blue shaded region). In the longitudinal channel there
is a phase transition as the velocity is increased through cs
(arrows) giving rise to discontinuities in k⇤.

the limit d ! 1 there is a decoupled sector of perturba-
tions which are supported in a near horizon region, corre-
sponding to modes with !, q ⇠ d0 [29–31]. These can be
constructed analytically [32]. Once more using Lorentz
invariance an appropriate choice of !, q gives Rek = 0.
For small k these modes match the large d limit of the
hydrodynamic modes computed earlier.
Nonlinear holographic NESS construction. In

the previous sections we constructed individual spatial
collective modes. Here we show that these modes govern
the behaviour the NESS far from the obstacle by explicit
construction and checking the asymptotics. These are
given holographically by families of black branes with
non-Killing horizons, in which the obstacle is provided
by x-dependent deformations of the CFT metric, �

µ⌫

,
i.e.

�
µ⌫

= ⌘
µ⌫

+ s
µ⌫

(x). (5)

We consider sources whose components are Gaussian cen-
tred, on x = 0. The details of the obstacle are not impor-
tant, as the spectrum of collective modes is a property
of the theory itself. We only have to ensure that the ob-
stacle excites the part of the spectrum we are interested
in. The source terms in (5) can act as a source for shear,
and we allow for velocity components transverse to the
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obstacle.
Our construction proceeds numerically based on the

method of [23] which formulates the stationary gravita-
tional problem such that the bulk coordinates penetrate
the future event horizon.5 As emphasised in [23], one
must supply enough data in the form of boundary con-
ditions to fix all the moduli of the corresponding flow.
In addition to ", v of [23], we fix a third modulus, ✓, the
asymptotic incident angle of the flow. In general there is
refraction and ✓

L

6= ✓
R

.
We have constructed solutions which are asymptot-

ically subsonic-to-subsonic, as well as supersonic-to-
supersonic, with and without transverse flow. For these
solutions we seek local fluid variables by using the field
theory stress tensor, hT

µ⌫

i [37]. We solve the following
eigenvalue problem at each point on the boundary,

hT
µ⌫

i Uµ = �"U
⌫

, �
µ⌫

UµU⌫ = �1 (6)

for the three undetermined pieces of ", Uµ. Asymptoti-
cally on the left or right these are the moduli of the so-
lution, i.e. asymptotically Uµ = �(v)(1, v cos ✓, v sin ✓).

To check for the presence of the collective modes we
note some quantity f in the channel of interest will take
the form f = C + A

k

e�Imk x. To numerically extract the
value of k we then compute


f

(x) = � 1

"1/3

@2
x

f

@
x

f
(7)

and then Imk/"1/3 = lim
x!±1 

f

(x). To illustrate we
use an example where a mode of non-hydrodynamic ori-
gin is dominant. One place this occurs is in the trans-
verse channel, downstream in a subsonic flow (as we may
predict from the spectrum of Fig. 2). We give an ex-
ample of this flow in Fig. 3 where we show 

"

and 
v

y

where vy = Uy/U t. These quantities display excellent
agreement with the longest range spatial collective mode
obtained by direct construction, confirming the expecta-
tion that the spatial collective modes determine the long
distance behaviour of the nonlinear NESS.

Finally, we turn to a demonstration of the pro-
posed nonequilibrium phase transitions in the longitu-
dinal channel at v = c

s

. In Fig. 4 we consider the
downstream, right hand side of a NESS in two cases,
v

R

< c
s

and v
R

> c
s

. In each case we show the spatial
decay of " and the longitudinal collective mode spectrum
on the complex-k plane. Beginning with v

R

< c
s

, the
long range behaviour is governed by the smaller Imk > 0
mode, as the plot of " indicates. As v

R

is increased, this
mode descends down the imaginary-k axis and crosses
the real axis at v

R

= c
s

. For v
R

> c
s

this mode is in

5 See the supplemental material for details, which includes Refs.
[33–36].
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FIG. 3. Asymptotically subsonic-to-subsonic NESS, with fi-
nite transverse velocity. We show (with black circles) " for
the longitudinal channel (upper panel) and vy for the trans-
verse channel (lower panel), as defined in (7). Also shown are
the values of Imk/"1/3 for the spatial collective modes, com-
puted directly given the left or right moduli of the asymptotic
equilibrium. The red solid lines are continuously connected to
the hydrodynamic modes labelled, whilst the blue solid line
is a non-hydrodynamic mode.

the lower half plane, no longer decays as x ! +1, and
so it can no longer appear on the right hand side of a
regular NESS. The behaviour of " is thus suddenly dom-
inated by the second, non-hydrodynamic mode which is
now the longest range contribution.
Discussion. We have defined and constructed ‘spatial

collective modes’ which, as we have argued, describe the
universal spatial relaxation to equilibrium at large dis-
tances in a wide class of NESS. In the hydrodynamic limit
the decay length of the modes, L ⌘ |Im k|�1, depend di-
rectly on ⌘/s, suggesting a new route to its experimental
measurement. For example, for flows at standard tem-
perature with ✓ = 0 and v = � m · s�1, the decay lengths
in the transverse sector are L� ' 7.46mm for graphene6

(L ' 7.46nm at v = v
F

) and L� ' 200m for N = 4
SYM plasma.

The often delicate issue of heating in NESS (e.g.
[40, 41]) here is sidestepped, since the spatial pattern
of the heat flow itself is universal and predicted by our
mechanism. We have constructed explicit examples of
non-Killing black holes in holography which confirm the

6 Taking c = vF from [38] and ⌘/s from [39].
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FIG. 4. Demonstration of the new nonequilibrium phase tran-
sition on the downstream, right hand side of a NESS, from
vR < cs (left column) to vR > cs (right column). Top row:
locations of the spatial collective modes at these vR in the
complex k plane, displaying one mode of hydrodynamic ori-
gin (red x) and one non-hydrodynamic mode (blue circle).
Bottom row: Spatial profile of " on the right hand side of a
NESS (black circles) together with an amplitude-fit collective
mode from the spectrum above with the longest decay length
(solid lines).

role played by these modes, and demonstrated novel
nonequilibrium phase transitions resulting from a reor-
ganisation of their spectrum. It is our hope that these
modes, which may be viewed as the spatial analogues of
QNMs, provide fruitful targets for further theoretical and
experimental work on NESS.
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SUPPLEMENTAL MATERIAL

Spatial collective modes of Schwarzschild

We adopt ingoing Eddington-Finkelstein coordinates,
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The conformal boundary is located at z = 0 and the
metric function f(z) = 1 � z
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vanishes at z = z

h

, the
black hole event horizon.

The spatial collective modes are linear perturbations
of this metric. We work with the gauge-fixed ansatz for
perturbations,
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which give rise to a set of coupled ODEs in z for the
Einstein equations. We first form an orthogonal ba-
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with some normalisation N . We then write
the metric perturbations in this basis, i.e.
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where the coe�cients are functions of z. The equations
of motion then naturally separate by odd or even parity
under n ! �n, corresponding to transverse and longitu-
dinal channels with respect to the obstacle.

To complete the holographic prescription for the modes
we must specify boundary conditions. At z = 0 we re-
quire that no external sources are turned on. We define
the modes to be those which are regular on the future
event horizon.[1] In addition we must select the mode
which is regular at infinity, so that on the right hand
side of the obstacle we require Imk � 0, and on the left,
Imk  0. Of course, a right hand side mode in isolation
is not regular because it blows up as x ! �1, but such
modes can appear on the right hand side of a regular
NESS.

It is convenient to consider an explicit frame of refer-
ence. In the laboratory frame we have purely spatial

k
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µ = 1p
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2 (1,v). In the fluid rest frame we have
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(5)
with q = |q|. We find the equations to be more manage-
able when expressed in fluid rest frame variables !,q. In
the odd (transverse) sector we have equations of motion,

q

2(f@

z

+ i!)h
kn

= (!@

z

+ iq

2)h
un

,

(zf@

2
z

+ (f + 2i!z � 3)@
z

� 2i!)h
kn

= i(z@

z

� 2)h
un

.

Near the horizon at z = z

h

the solution takes the follow-
ing general form,
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with three undetermined pieces of data a, b, c. The el-
lipses denote terms of higher order in (z � z

h

) which are
completely determined once the data here are specified.
For generic v · k the c-terms are not regular at the hori-
zon, and so we set c = 0. This coincides also with an
ingoing boundary condition in the fluid rest frame. Near
the boundary, once sources are turned o↵, the fields take
the following form
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with a single undetermined piece of data A. The ellipses
denote additional powers of z with coe�cients that con-
tain no new data. Without loss of generality we may fix
z

h

= 1, and we may set one of a, b, A by linearity, say,
b. We have a system of equations with total di↵erential
order 3 and for fixed v and ✓ we have the remaining three
parameters (a, A, k). Thus we expect to find discrete so-
lutions at fixed v and ✓. These solutions are constructed
numerically using a standard shooting method.

A similar analysis applies to the (lengthier) equations
in the longitudinal sector, which we omit here.

Numerical construction of non-Killing black branes

Black branes with non-Killing horizons dual to the
NESSs are constructed following the method outlined in
[2], where the Einstein-DeTurck equations [3, 4]

R
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ab
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are solved with a coordinate system specified by a ref-
erence metric that penetrates the future event horizon.
These equations of motion can be obtained in a consis-
tent truncation from supergravity, e.g. of the dual of the
M2-brane theory. The vector ⇠

a ⌘ g

bc(�a
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Now u

µ is given by the 2 parameters �

i (instead of v

i).
Our method di↵ers in places from that given in [2] be-
cause we include flow transverse to the obstacle and cases
which are asymptotically supersonic. Because of these
di↵erences we go into some detail of the method in this
section. See also [5] for other non-Killing black hole con-
structions. A NESS corresponding to a CFT flowing over
a step function obstacle was studied in ideal hydrody-
namics by [6].

The obstacle is provided by gradients in the bound-
ary metric. We consider sources of the form, s
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=
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µ
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= 0. For concreteness we
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. A Gaussian source has been chosen
here primarily to ensure that its long-range spatial tail
decays much faster than the spatial collective modes of
interest, which fall o↵ as ⇠ e

�Imk x, thus ensuring that
in the region of interest the solutions are unforced. We
again emphasise that the details of the source cannot in-
fluence the spectrum of spatial collective modes and thus
the precise nature of the source is not important. For
the physical metric we factor out a boundary-divergent
term,

ds
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ab
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and since we also consider the case of shear flow we keep
all 10 metric components.

The system is extended and inhomogeneous in the x

direction, and so we compactify it using instead a coor-
dinate ⇢,

x =
⇢/`

1 � ⇢

2
(9)

where ⇢ goes from �1 to +1 and where ` is a parameter
which will allow the stretching of the coordinates relative
to any characteristic feature size. We adopt a regular
grid taking N

z

points in the z coordinate and N

⇢

= 4N

z

points in the ⇢ coordinate. The radial coordinate goes
from z = 0 at the boundary to z = 1 which we demand
is situated behind an event horizon. We utilise sixth-
order finite di↵erences for both the z and ⇢ derivative
operators.

At ⇢ = ±1 we impose Neumann boundary condi-
tions on all variables. At z = 0 we impose Dirich-
let boundary conditions on all variables, specifically we

fix each component in terms of the reference metric,
(h

ab

)
z=0 = (z2

ḡ

ab

)
z=0. This Dirichlet boundary condi-

tion fixes the boundary metric but it does not fix enough
data to uniquely specify a solution, since there is a moduli
space of flowing solutions where one can vary the energy
density and velocity. Thus, following [2] we fix further
data using points at z = 1, behind the event horizon. All
other points evolve freely according to the equations of
motion. For the solutions with transverse flow we have
three moduli, and so we equate g

ab

to ḡ

ab

at three further
points behind the event horizon at z = 1. This prescrip-
tion varies depending on whether the flow is asymptot-
ically subsonic or supersonic. In detail, the pattern of
moduli fixing is performed as follows,

asymptotic v vx = �1 vx = +1
subsonic g
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thereby ensuring that the parameters of the reference
metric (�

x

, �

y

, z

h

) determine the eventual moduli of the
solution, (", v, ✓)

L,R

. Note that the supersonic case cor-
responds to a complete specification of these moduli on
the upstream side. The result is a set of boundary condi-
tions – and correspondingly a set of solutions – which are
completely specified by the parameters in the reference
metric, i.e. �

x

, �

y

, z

h

, together with the source function.
The discretised equations with boundary conditions

as described, are iteratively solved using the Newton
method which is continued until a threshold residual is
met everywhere on the grid. An initial guess metric for
this iterative process is ḡ. Initially low resolution solu-
tions are constructed, around N

z

= 20 and these are then
used as an initial guess for a higher resolution solution,
with sixth-order interpolation used to generate values at
the new grid points. Typically only 1-2 Newton steps are
required in this process to meet the residual threshold,
making it very e�cient for reaching higher resolutions.
We check convergence of the ⇠

µ vector to zero with in-
creasing resolution. We use binary64 floating-point for-
mat for our numerics.

The solutions used in the main text correspond to the
following parameter sets,

(a) Fig. 3 main text, subsonic-to-subsonic with trans-
verse flow: z

h

= 0.975, �

x

= 0.15, �

y

= 0.15, A =
1.0, B = 3.0, ` = 0.5.

(b) Fig. 4 main text, lower left panel, subsonic-to-
subsonic without transverse flow: z

h

= 0.975, �

x

=
0.6, �

y

= 0.0, A = 0.1, B = 2.9618, ` = 0.5.

(c) Fig. 4 main text, lower right panel, supersonic-
to-supersonic without transverse flow: z

h

=
0.975, �

x

= 0.8, �

y

= 0.0, A = 0.1, B = 3.0, ` = 0.5.

For each of these solutions the convergence of ⇠

µ towards
zero is shown in Fig. 1. We find approximate fourth-
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FIG. 1. Convergence of ⇠µ, towards zero in the continuum
limit, for a grid of size Nz ⇥ 4Nz. We show the maximum
absolute value of |⇠| on the numerical grid, excluding z = 1
points behind the horizon. Power-law convergence is given
by straight lines on this log-log plot with best fits given by
the dashed lines (using the six largest Nz points). For the
solutions as labelled we have approximately fourth-order con-
vergence, with the best fit rates: (a) 4.4, (b) 4.2, (c) 4.2.

order convergence, consistent with the overall conver-
gence of the solutions found in [2] which also used sixth
order finite di↵erences.

Near the AdS boundary at z = 0 we may relate the co-
e�cients of the expansion of the various metric functions
to one-point functions of the stress tensor in the dual field
theory. In particular we solve the Einstein equations in a
near-boundary Fe↵erman-Graham gauge, where we may
read o↵ the dual one-point functions after holographic
renormalisation [7]. We then convert to the coordinates
used defined by ⇠

µ = 0, used in this paper. The stress
tensor can be extracted by taking three z-derivatives of
various metric functions. For instance,
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2
@
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��
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+
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z

3
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(10)

where the hT
µ⌫

i denotes the expectation value of the CFT
stress tensor, and V

µ⌫

is a set of terms, included in our
analysis, but which we have omitted for this presenta-

tion. Furthermore these vanish when @

x

s

µ⌫

= @

2
x

s

µ⌫

=
@

3
x

s

µ⌫

= 0. Such terms could be omitted outside the
source region when looking to extract the modes of in-
terest. The di↵eomorphism Ward identity ensures that
energy is conserved, with the relativistic energy flux on
the left matching that on the right. We note that it is
sometimes not possible to solve the eigenvalue problem
((6), main text) everywhere along the flow, depending
on how strongly the obstacle deforms the flow. However
solutions to ((6), main text) always exist at large enough
distances since the flow returns to equilibrium.

Finally we note that , defined in ((7), main text) be-
comes precision limited for larger values of |x|, as ex-
pected due to the exponential decay of the mode ampli-
tudes with |x|.
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