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Abstract:  Demography – the scientific study of populations – has had a long 

relationship with statistical methods. In particular, the last 30 years have witnessed an 

increasing number of applications of Bayesian statistics. At present, the main areas of 

interest of Bayesian demography include population forecasting, dealing with 

inadequate data, and small area estimation, with a few studies on demographic 

impacts. However, the current gaps in demographic literature, including a lack of 

theoretical foundations, challenges related to the management of different sources of 

uncertainty, and the use of new sources of data are also well suited for applications of 

Bayesian methods. This is where we predict that the next developments will be 

concentrated, especially if the current challenges, such as those related to 

computations, can be overcome. 

1  Introduction 

Demography can be seen as the “study of human populations with respect to their size and structure and of 

the components of population change” (after: stat06091). Its key components include fertility, mortality, 

migration, as well as auxiliary processes, such as marriage and union dynamics, or health transitions (→ 

stat00041). Formal mathematical description in demography has a long history (→ stat00095), dating at 

least to John Graunt’s (→ stat04443) Bills of Mortality, a 17th-century precursor to contemporary life table 

analysis (Graunt 1662, see also stat00010). Almost as long-lived are the two-way links of demography with 

probability theory and statistical thinking, such as the 1778 work of Pierre Simon de Laplace (→ stat01315, 

→ stat00207.pub2) on sex ratios at birth for Paris and London (Courgeau 2012).  

Since the 1990s, Bayesian statistical demography has emerged as a distinct methodological thread within 

the discipline of demography. The current article outlines the history of this dynamically-developing area of 

population studies, presents some key applications, and makes some forecasts about future developments. 

  



2 

 

Statistics Reference Online, © 2014–2019 John Wiley & Sons, Ltd. 

This article is © 2019 John Wiley & Sons, Ltd. 

DOI: 10.1002/9781118445112/stat08273 

2  From Political Arithmetick to Statistical Demography 

Since its inception, demography has had strong links with statistical and other mathematical methods, 

developed for studying human and non-human populations (→ stat00139, stat07462). The relationships 

with probability theory (→ stat03979) were particularly dynamic. Early methods for analysing population 

questions (then referred to as ‘Political Arithmetick’) were probabilistic, only to be superseded by 

deterministic approaches in the 19th and first half of the 20th century, with statistical methods making a 

comeback in the late 20th century, aided by the proliferation of survey data (see Courgeau 2012 for a 

discussion). Contemporary statistical demography can be seen as a branch of applied social statistics (→ 

stat00125.pub2), although one with a long tradition and distinct features: precise description of processes, 

and strong empirical foundations (Xie 2000). A review of traditional, largely likelihood-based statistical 

methods (or frequentist, → stat07913, see also stat05859) used in demography, is provided by Alho and 

Spencer (2006).  

Demographic processes, as any social processes, are characterised by high levels of uncertainty (see 

stat02675), although the fact that many of the people who will be alive in 25 or even 50 years’ time are 

already alive today, and that important demographic variables such as country of birth or age are fixed or 

evolve deterministically, means that demographic processes are somewhat more predictable than other 

social and economic phenomena. Population dynamics are described by a cohort-component mechanism of 

population renewal (→ stat06091, for matrix population models in general, see stat07481). Typically, 

uncertainty is lowest for mortality, which has very high biological component (→ stat06105), and highest 

for migration, which is responsive to a vast array of drivers and involves high levels of human agency (→ 

stat00098), with other components falling in-between (see stat00041). 

The ability of Bayesian methods (→ stat00207.pub2) to cope with complex models and integrate 

different sources of uncertainty, have made them increasingly attractive to statistical demographers. 

Contemporary statistical demography is becoming increasingly Bayesian, aided by the developments in 

numerical methods (such as stat00212, including stat00211.pub2). A recent review of the contemporary 

literature in Bayesian demography, focusing on forecasts, limited data, and complex models, has been 

provided in Bijak and Bryant (2016), and a general framework for Bayesian demographic estimation and 

forecasting is presented in Bryant and Zhang (2018). Selected examples are summarised next. 

3  Contemporary Examples 

3.1  Population Forecasting: World Population Prospects 

Population projections (→ stat00109) are demography’s most prominent output, and the World Population 

Prospects, a set of projections for 235 countries and areas published by the United Nations Population 

Division, are the world’s most prominent population projections. Since 2014, the UN Population Division 

has produced these projections using Bayesian methods (Raftery et al. 2014), with the underlying open 

source software published in a series of R packages (Ševčíková and Raftery 2016). 

The probabilistic UN method derives parametric decline or increase curves for fertility and life 

expectancy using Bayesian hierarchical models (→stat00232, stat08140). For most countries, there are only 

a handful of data points available for estimation. If each country’s curve was estimated using only data for 

that country, the estimates would be unstable. The Bayesian hierarchical model avoids this instability by 
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sharing information (‘borrowing strength’) across countries, so that each country’s curve is a compromise 

between data for that particular country, and the typical profile across all countries. 

The new methods provide much more comprehensive, internally consistent, and interpretable measures of 

uncertainty, in the form of quantiles and prediction intervals, than the fertility variants previously used by 

the UN (Fosdick and Raftery 2014). At each step in the development process, held-back data were used to 

test the accuracy of the point estimates and uncertainty measures, including the calibration of errors 

(predictive intervals). This approach has now become standard in demographic forecasting of whole 

populations, as well as individual components of change, where elements of Bayesian time series analysis 

are also used (→ stat00219.pub2, stat06763; see Bijak and Bryant 2016). 

3.2  Incomplete and Noisy Data 

Much of the data that demographers work with is incomplete and subject to measurement error (→ 

stat04144). Problems occur in custom-designed data sources such as censuses and surveys, and also in 

administrative databases (→ stat05227.pub2) and big data (→ stat07979). When asked about births, for 

instance, mothers may only include children who are still alive. Population registers that in principle contain 

only residents of the country, may in practice include people who have emigrated but failed to notify the 

authorities. Demographers have long emphasised the importance of diagnosing, and correcting for, flaws in 

their input data, and have developed many techniques for doing so (Moultrie et al. 2013). Bayesian 

demographers are reformulating many of these methods in statistical terms. 

Bayesian statistics is well-suited to dealing with incomplete and noisy data. From a Bayesian perspective, 

missing data is just another type of unknown quantity, to be modelled and estimated in much the same way 

as any other. Informative prior distributions (→ stat00243.pub2) can be used to capture substantive 

knowledge about errors in datasets. When a statistical model is already hierarchical, as it generally is in 

Bayesian statistics, adding one more layer representing measurement processes is natural and convenient. 

Markov chain Monte Carlo methods (→ stat07189) provide a powerful set of tools for fitting such models. 

Recently, Bayesian hierarchical models have been used, for instance, to estimate maternal mortality rates 

with uncertainty measures (→ stat06103) for 183 countries in a way that carefully accounts for likely errors 

in the input data (Alkema et al. 2016). In countries with little or no good data, the final estimates lean on 

results from the theoretical model; in countries with good data, they are close to country-specific 

observations, incorporating a substantive knowledge about reporting systems (→ stat00019).  

Similarly, Schmertmann and Hauer (2019) build on a decades-old technique where the total fertility rate 

(→ stat03412) is estimated from the ratio between children and women in a population. By setting up a 

probabilistic model that brings in information on age patterns for fertility and mortality, and that allows for 

random variation in numbers of births, they are able to produce accurate estimates of total fertility rates, 

with realistic uncertainty measures. These methods apply to other mammalian species as well as humans. 

Subject matter experts who know about data collection can also offer insights into likely errors in data. 

The weaker the data are, the more valuable these insights become. Bayesian methods allow demographers to 

include them in their models in a transparent and rigorous way, as informative priors. Techniques exist for 

eliciting these priors so that they reflect the beliefs of the experts (→ stat00231.pub2, stat03871). The 

IMEM (Integrated Model of European Migration) project, which produced a migration flow matrix for 31 

European countries based on inconsistent and incomplete data, exemplifies this approach (Raymer et al 

2013). Similarly, Azose and Raftery (2019) use migrant stocks data to reconstruct global flow matrices. 

  



4 

 

Statistics Reference Online, © 2014–2019 John Wiley & Sons, Ltd. 

This article is © 2019 John Wiley & Sons, Ltd. 

DOI: 10.1002/9781118445112/stat08273 

3.3  Disaggregated Estimates 

Although most of the academic literature on demographic estimates and projections has focused on the 

national level, most potential applications for demographic estimates and projections require numbers at the 

local level. When planning a school, a highway, or a supermarket, for instance, local-level detail is essential. 

Moreover, users typically require the same level of age-sex detail as they get at the national level, with other 

variables such as ethnicity or education, also being in high demand. 

Bayesian hierarchical models are well-suited to disaggregated estimates and projections. With data 

classified by dimensions such as age, sex, region, and time, demographers have traditionally calculated 

demographic rates directly, by dividing the number of events by the population at risk (→ stat04534). 

Within a statistical model, the rates can be also predicted based on age, sex, region, time, and other 

covariates such as income. An estimate from the Bayesian hierarchical model is a compromise between the 

direct estimate, which plays the role of the data, and the prediction, which plays the role of the prior. The 

more data are available for a particular cell within the classification, the further the estimate is pulled 

towards the direct one; the less data are available, the more the estimate relies on predictions. This is an 

effective way to smooth, allowing sensitivity to local variation when there is enough data to support it, yet 

giving reasonable answers elsewhere. 

Amongst recent examples, Alexander et al. (2017), present a Bayesian hierarchical model for estimating 

subnational mortality rates by age, sex, and small area. The model improves on the direct estimates by 

pulling the results towards overall means. New Zealand’s national statistical office, has, since 2015, used 

Bayesian hierarchical models to construct its life tables (→ stat06037; see Statistics New Zealand 2015). 

Zhang and Bryant (forthcoming) present an extreme example of modelling with sparse data by 

constructing estimates and forecasts of origin-destination mortality rates, by sex and single year of age, for 

eight regions in Iceland. Excluding structural zeros, 66% of cells in the migration data have counts of zero. 

The model is nevertheless able to extract a strong enough signal to produce sensible migration rates, for past 

and future years, and held-back data suggest that the model is reasonably well calibrated, indicating that 

demographers may need to revise their rules of thumb on how much disaggregation is too much.  

Besides the key areas of application listed above, Bayesian methods are also successfully used in a vast 

array of specific applications, from event history analysis (→ stat06013, see also → stat06060), to actuarial 

analysis focusing on life insurance (→ stat06074), to disease mapping (→ stat06102.pub2), and 

paleodemography (→ stat03399) – see Bijak and Bryant (2016) for specific examples. 

4  Knowledge Gaps and Current Developments 

One important gap of contemporary demography is its lack of theoretical foundations: historically, the 

discipline has been largely data-driven, with theoretical developments lagging behind (Xie 2000, Burch 

2018). Filling this gap can be achieved in different ways, not least, as suggested by Burch (2018), by 

employing formal analytical and computational models. Such models, including microsimulations and 

agent-based models (→ stat07981) would enable making greater use of demographic and wider social 

theory, while maintaining empirical rigour. Bayesian methods can help with the design, construction and 

analysis of such models, by providing tools for uncertainty quantification (→ stat07205). 

Another gap is linked to description and management of uncertainty of population forecasts across a 

spectrum of temporal horizons, depending on the particular user or policy needs. The perspectives can range 

from very short-term, akin to early warnings in finance (→ stat04323), to long-range, secular trends, 

enabling making high-level statements about population developments a few generations ahead (→ 
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stat00109), for example to provide input to climate models or similar endeavours. The challenges of 

describing uncertainty are particularly acute in the case of migration, with its high volatility in the short 

term, and long-range uncertainty being difficult to assess (Bijak 2010; although see Azose et al. 2016 for a 

recent attempt). In such cases, additional knowledge, for example elicited from experts, can be incorporated 

in the Bayesian models via informative prior distributions (→ stat05938).  

Another area of demography and population statistics where Bayesian methods have a large and still 

underutilised potential, especially in official statistical agencies, is related to harnessing the opportunities 

offered by new data sources (such as stat07979), as well as new ways of dealing with existing data, 

including administrative sources and vital registers (→ stat05227.pub2, stat00019). In official statistics, 

this would require a shift of perspective, from a traditional, largely design-based approach to population 

statistics, to model-based inference, the latter typically associated with the Bayesian paradigm (→ 

stat01616). One especially promising example are methods for combining different data sources (→ 

stat03679) which in the Bayesian paradigm come with inevitable statements about measurement uncertainty 

(→ stat04144). Further development of such tools will help address the methodological challenges of the 

emerging field of data science (→ stat08150). 

Computational challenges remain one of the main barriers to wider use of Bayesian methods in 

demography. Bayesian methods are almost always slower than traditional frequentist methods and they 

require applied demographers to learn about algorithms and diagnostics. The explosive growth in the 

number of packages implementing Bayesian methods, and the development of modern and efficient 

modelling languages, such as Stan (Carpenter et al. 2017) are, however, increasingly leading to faster and 

more user-friendly software. 

Besides computation, there are also other impediments to a wider uptake of Bayesian methods in 

demography and official population statistics. They include insufficient statistical training amongst the users 

and producers of demographic research, and challenges related to communicating uncertainty to the users 

and other stakeholders (Bijak and Bryant 2016). Some of the possible solutions come from applying the 

statistical decision theory in this context (→ stat00215), and from ensuring that the robustness of the results 

is thoroughly checked, especially with respect to the choice of priors, but also other elements of inference, 

such as the likelihood or model choice (→ stat00210).  These challenges notwithstanding, Bayesian 

approaches help demography maintain formal statistical rigour, for which it is renowned, while allowing the 

discipline to address modern, increasingly complex research challenges which are beyond the reach of 

traditional statistical methods. 
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