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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

Aerodynamics and Flight Mechanics

Doctor of Philosophy

ON THE SENSITIVITY AND EFFICIENCY OF AERODYNAMIC SHAPE

OPTIMISATION

by Guangda Yang

Computational fluid dynamics (CFD) has become the method of choice for aerodynamic shape

optimisation of complex engineering problems. To date, however, the sensitivity of the optimal

solution to numerical parameters has been largely underestimated. Meanwhile, aerodynamic

shape optimisation based on high-fidelity CFD remains a computationally expensive task. The

thesis consists of two research streams aimed at addressing each of the challenges identified,

namely revisiting the optimal solution and developing an efficient optimisation framework. This

work primarily focuses on the assessment of optimal design sensitivity and computational effi-

ciency in gradient-based optimisation of aeronautical applications.

Two benchmark cases for NACA0012 and RAE2822 aerofoil optimisation are investigated us-

ing the open-source SU2 code. Hicks–Henne bump functions and free-form deformation are

employed as geometry parameterisation methods. Gradients are computed by the continuous

adjoint approach. The optimisation results of NACA0012 aerofoil exhibit strong dependence on

virtually all numerical parameters investigated, whereas the optimal design of RAE2822 aerofoil

is insensitive to those parameter settings. The degree of sensitivity reflects the difference in the

design space, particularly of the local curvature on the optimised shape. The closure coefficients

of Spalart–Allmaras model affect the final optimisation performance, raising the importance of

quantifying uncertainty in turbulence modelling calibration. Non-unique flow solutions are found

to exist for both cases, and hysteresis occurs in a narrow region near the design point.

Wing twist optimisations are conducted using two aerodynamic solvers of different levels of

fidelity. A multi-fidelity aerodynamic approach is proposed, which contains three components: a

linear vortex lattice method solver, an infinite swept wing solver, and a coupling algorithm. For

reference, three-dimensional data are obtained using SU2. Two optimisation cases are considered,

featuring inviscid flow around an unswept wing and viscous flow around a swept wing. A good

agreement in terms of lift distribution and aerodynamic shape between the multi-fidelity solver

and high-fidelity CFD is obtained. The numerical optimisation using the multi-fidelity approach

is performed at a negligible computational cost compared to the full three-dimensional CFD

solver, demonstrating the potential for use in early phases of aircraft design.
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Chapter 1

Introduction

1.1 Background and motivation

In recent years there has been a rapid and steady growth in the volume of air traffic,

especially for commercial air transportation. This trend is anticipated to continue in

the foreseeable future. According to the latest Airbus’ Global Market Forecast1, the

air traffic is predicted to grow at an annual rate of 4.4% and more than double in the

next 20 years. Meanwhile, there will be a demand for around 37, 400 new passenger and

freight aircraft as shown in Figure 1.1.

Figure 1.1: Forecast of deliveries of new aircraft within 2018-2037 (Source:
Airbus Global Market Forecast 2018).

Continuing growth in the aviation industry has led to carbon dioxide (CO2) emissions

from aircraft becoming a significant contributor to the climate change, raising public

concern. In order to address the impact of aviation greenhouse gas emissions on the

global climate, the International Civil Aviation Organisation (ICAO) has adopted a

new standard for aircraft CO2 emissions. The International Air Transport Association

1https://www.airbus.com/aircraft/market/global-market-forecast.html [retrieved 2019]

1

https://www.airbus.com/aircraft/market/global-market-forecast.html
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(IATA)2 has also adopted a set of targets to mitigate the carbon emissions from air

transport, including setting a limit on net aviation CO2 emissions from 2020 (i.e. carbon-

neutral growth) and achieving a reduction in carbon emissions of 50% by 2050 (relative

to 2005 levels). As such, many aircraft and jet engine companies are making efforts

to deliver innovative fuel reduction technologies for next generation aircraft. Moreover,

as fuel costs account for around 20% of flight operating expenses, oil price variability

reduces profit margins of airlines. The uncertainty in fuel price therefore forces airlines to

purchase the most efficient aircraft to remain competitive. It is the presence of these two

factors, environmental goals and economic considerations, that aircraft manufacturers

must continue to push technological boundaries to reduce fuel burn.

To address the challenge of reducing fuel consumption, designers are devoted to develop-

ing new techniques and methodologies in diverse fields, such as employing more efficient

jet engines and applying composite materials more widely. Of the various considerations,

one key aspect is to improve the aerodynamic efficiency by redesigning the aerodynamic

shape of aircraft.

The endeavours towards aerodynamic design generally fall into two categories: exploita-

tion and exploration. Exploitation represents the common practices existing in the

iterative design process of an aircraft, and it seeks to make improvement and refinement

for the conventional tube-and-wing aircraft configurations. Two typical examples of this

type are shown in Figure 1.2. The Airbus A350 XWB integrates state-of-the-art aero-

dynamics, including a unique morphing technology that continuously tailors the wing

profile during different phases of flight to reduce the drag. This aircraft also adopts

a blended winglet instead of traditional wingtip fence, which reduces interference drag

at the seams between the wing and the winglet. An outstanding feature of the Boeing

777X is the design of folding wingtips. When the wingtips are fully extended in flight,

the increased span reduces induced drag and maximises fuel efficiency. On the ground,

the aircraft can maintain gate compatibility by retracting the wingtips.

(a) Airbus A350 XWB (b) Boeing B777X

Figure 1.2: Examples of state-of-the-art aircraft representing exploitation.

2https://www.iata.org/policy/environment/Pages/climate-change.aspx [retrieved 2019]

https://www.iata.org/policy/environment/Pages/climate-change.aspx
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On top of exploiting the full potential of tube-and-wing configuration, researchers are

also exploring new regions that go beyond the limits of conventional designs. Preliminary

studies and wind tunnel tests have shown that some proposed designs are promising for

achieving fuel burn reduction. Figure 1.3 shows the view of a blended wing body (BWB)

concept, which merges efficient high-lift wings with a wide aerofoil-shaped body, allowing

the entire aircraft to generate lift and minimise drag. The BWB airframe can produce

a significantly high lift-to-drag ratio and thus improve the fuel economy.

Figure 1.3: BWB concept proposed by Boeing/NASA.

With the rapid development of computer technology and computational fluid dynam-

ics (CFD), numerical optimisation has shown the potential to be a powerful tool in

fulfilling the task of fuel burn reduction. By integrating a CFD solver with an optimisa-

tion algorithm, geometry parameterisation and grid deformation techniques, designers

are enabled to perform aerodynamic shape optimisation (ASO) with ease. A robust ASO

framework allows both exploitation and exploration: exploitation of the design space for

traditional aircraft configurations as well as exploration of unconventional designs with

the potential for bigger improvements in aerodynamic performance.

A number of ASO frameworks and packages have been developed in the research com-

munity over the past years. Various approaches and tools have been used for each

component of an ASO framework. For benchmarking purposes, the AIAA Aerodynamic

Design Optimisation Discussion Group (ADODG)3 has established a set of aerodynamic

optimisation problems with increasing complexity, ranging from single-point aerofoil op-

timisation to multi-point wing-body-tail optimisation. Many research groups have exer-

cised the benchmark problems, presented the optimisation results, and highlighted their

own contributions.

As with any optimisation problem, following CFD-based aerodynamic optimisation, two

questions would naturally arise: a) Is the optimal solution obtained from an ASO frame-

work truly optimal? b) Can the aerodynamic optimisation be performed more efficiently,

especially for aeronautical applications with relatively more complexity? These two ques-

tions reflect the common interest of how to obtain the best aerodynamic design within

3https://info.aiaa.org/tac/ASG/APATC/AeroDesignOpt-DG/default.aspx [retrieved 2016]

https://info.aiaa.org/tac/ASG/APATC/AeroDesignOpt-DG/default.aspx


4 Chapter 1 Introduction

a restricted optimisation budget. Despite a great deal of research into these two areas,

some problems still remain unsolved and warrant further study.

With respect to the first question of optimality, much effort has been put into finding

the global optimum so as not to get trapped in the local optima. However, for a given

optimisation framework, the numerical parameters existing in each constitutive part

may potentially affect the final results. Thus, there is the need to revisit the optimal

solution by tuning the numerical parameters involved in optimisation.

Regarding the second question of optimisation efficiency, the computational efficiency of

the numerical optimisation can be improved in several aspects. For instance, the grid

regeneration can be a time-consuming process, and therefore it is usually replaced by ro-

bust grid deformation techniques. For gradient-based optimisation cases with large num-

bers of design variables, the gradient evaluation using finite difference method (FDM)

is computationally expensive. The recent applications of adjoint approach have sig-

nificantly eased the burden of gradient computation as it overcomes the “curse of di-

mensionality”. Nonetheless, the computational cost of CFD simulations for complex

aerodynamic geometries remains expensive even with high-performance computing ca-

pability. This prohibits the routine use of high-fidelity CFD solvers in industry, as a large

amount of repetitive aerodynamic evaluations are required in the early phases of aircraft

design. Although a surrogate model can provide a good approximation, there is still the

need to develop physics-based aerodynamic approaches with high efficiency. Recently

the multi-fidelity aerodynamic models, particularly the quasi-three-dimensional (Q3D)

approach, gain popularity in aerodynamic analysis and design optimisation due to their

ability to capture the flow physics and to perform rapidly the aerodynamic analysis.

1.2 Research objectives

This research focuses on the assessment of sensitivity and efficiency in gradient-based

ASO for aeronautical applications, addressing the two issues existing in ASO, namely

revisiting the optimal solution and improving optimisation efficiency. The primary aim of

this research is two-fold: to establish the sensitivity of the optimal solution to numerical

parameters, particularly those in geometry parameterisation, and to demonstrate the

efficiency of a multi-fidelity aerodynamic solver in wing twist optimisation. The key

objectives of this work are summarised as follows.

1. Drag minimisation of two-dimensional aerofoils

Two-dimensional (2D) aerofoils represent the cross-sections of a wing, and the design

of the aerofoil is crucial for the aerodynamic performance of an aircraft. The two

benchmark cases of aerofoil optimisation defined by the AIAA ADODG are studied

using the SU2 solver. The first case is the drag minimisation of the NACA0012 aerofoil
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in transonic, inviscid flow, with a minimum thickness constraint; the second case is the

drag minimisation of the RAE2822 aerofoil in transonic, viscous flow, subject to lift,

pitching moment and area constraints. The Hicks–Henne bump function (HHBF) and

free-form deformation (FFD) are employed as geometry parameterisation methods.

This part of the work aims to investigate:

(a) The influence of the geometry parameterisation method on the optimisation

performance.

(b) The sensitivity of the optimal solution to numerical settings in geometry param-

eterisation.

(c) The impact of closure coefficients of Spalart–Allmaras (SA) turbulence model

on the optimisation results.

(d) The impact of design variable dimensionality on the optimal solution.

(e) The robustness of the optimal solution at conditions around the design point.

2. Twist optimisation of three-dimensional wings

Three-dimensional (3D) wings are the primary lifting surfaces of an aircraft. The

finiteness of the span causes lift-induced drag due to the pressure difference between

the lower and upper surface. Minimisation of the induced drag can be achieved by

tailoring the wing twist distribution in the spanwise direction. This research firstly

studies the AIAA ADODG benchmark case of twist optimisation of an unswept wing

in inviscid flow, and then extends to twist optimisation of a swept wing in viscous

flow. Two aerodynamic solvers are employed in this work. The first solver is the

high-fidelity SU2 code, and the second is the multi-fidelity FALCon solver. In this

part of research, the main objectives are to:

(a) Develop an optimisation framework based on the multi-fidelity FALCon solver.

(b) Verify the computational accuracy of FALCon and its effectiveness in wing twist

optimisation.

(c) Demonstrate the high computational efficiency of FALCon relative to that of

SU2.

(d) Investigate the impact of design variable dimensionality on the optimal solution.

(e) Investigate the influence of twist interpolation and geometry control methods

on the optimisation results.

1.3 Original contributions

The contributions of this thesis are centred around two research streams. The first part

investigates the sensitivity of optimal solution to a series of numerical parameters for

both 2D aerofoil and 3D wing aerodynamic optimisations. It employs a high-fidelity
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computational aerodynamic approach based on full 3D Euler/Navier–Stokes equations

utilising high-performance computing facility. The second part focuses on the develop-

ment, implementation, and application of an efficient multi-fidelity aerodynamic solver

to wing twist optimisation problems. Some parts of the work in this thesis have been

published as conference proceedings and journal articles, and some are also intended for

publications. The contributions of this research are summarised as follows:

1. Drag minimisation of two-dimensional aerofoils

The influence that numerical parameters have on the optimisation results for two aero-

foil problems (NACA0012 and RAE2822) in transonic flow is investigated. Gradient-

based numerical optimisations are performed using the open-source tool SU2, and

gradients are computed using the continuous adjoint method. The optimisation re-

sult of NACA0012 aerofoil exhibits strong dependence on all numerical parameters

investigated, whereas the optimal design of RAE2822 aerofoil in insensitive to those

numerical settings. The degree of sensitivity reflects the difference in the design space,

particularly of the local curvature on the optimised shape. The closure coefficients of

the SA turbulence model affect the final optimisation performance, raising the need

for a good calibration of the turbulence model. Non-uniqueness of flow solutions

for optimised aerofoil geometries is found, and a hysteresis loop of the drag coeffi-

cient exists around the design point, indicating the need for a robust aerofoil design

procedure.

Guangda Yang, Andrea Da Ronch, Jernej Drofelnik, and Zheng-Tong Xie, “Sen-

sitivity Assessment of Optimal Solution in Aerodynamic Design Optimisation us-

ing SU2”, Aerospace Science and Technology, vol. 81, pp. 362-374, 2018, DOI:

10.1016/j.ast.2018.08.012.

Guangda Yang, Andrea Da Ronch, “Aerodynamic Shape Optimisation of Bench-

mark Problems Using SU2”, in AIAA SciTech, Kissimmee, United States, AIAA

2018-0412, 2018.

2. Twist optimisation of three-dimensional wings

An efficient optimisation framework based on a multi-fidelity aerodynamic solver,

FALCon (Fast Aircraft Load Calculations) [1], is developed and applied to wing

twist optimisation. The multi-fidelity aerodynamic approach consists of three main

components: a linear vortex lattice method (VLM) solver, an infinite swept wing

(ISW) solver of steady/unsteady Reynolds-averaged Navier–Stokes (RANS) equa-

tions, and a coupling algorithm. For reference, 3D data are obtained from SU2. Two

test cases are considered featuring inviscid flow around an unswept wing and viscous

flow around a swept wing. An overall good agreement in terms of lift distribution

and aerodynamic shape between the multi-fidelity solver and 3D CFD is obtained.

The optimisation using the multi-fidelity aerodynamic approach is performed at a

negligible computational cost compared to that using the full 3D CFD solver. The
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optimal twist distribution shows sensitivity to the number of design variables, twist

interpolation methods as well as the geometry control approach. As demonstrated in

this study, the multi-fidelity solver finds easy application to other areas by a straight-

forward extension and coupling of the three constitutive blocks.

Guangda Yang, Daniel Kharlamov, Andrea Da Ronch, Jernej Drofelnik, and Zheng-

Tong Xie, “An Efficient Multi-fidelity Aerodynamic Approach for Wing Twist Opti-

misation”, AIAA Journal (under revision).

Guangda Yang, Andrea Da Ronch, Daniel Kharlamov, and Jernej Drofelnik, “Wing

Twist Optimisation Using Aerodynamic Solvers of Different Fidelity”, in 31st Congress

of the International Council of the Aeronautical Sciences, Belo Horizonte, Brazil,

ICAS 2018-0440, 2018.

Data supporting this thesis are openly available from the University of Southampton

repository at https://doi.org/10.5258/SOTON/D1113.

1.4 Thesis outline

The remainder of the thesis is organised in the following manner. Chapter 2 gives an ex-

tensive review of the previous work related to ASO. Chapter 3 details the computational

methodology involved in the numerical optimisations. Chapter 4 and Chapter 5 present

the optimisation results for NACA0012 aerofoil and RAE2822 aerofoil, respectively.

Chapter 6 investigates wing twist optimisation using aerodynamic solvers of different

fidelity. The conclusions and findings in this research are provided in Chapter 7 with

recommendations for future work.

https://doi.org/10.5258/SOTON/D1113




Chapter 2

Literature Review

2.1 Overview of design optimisation

2.1.1 Introduction

Many engineering design problems seek to maximise some measure of performance, such

as minimising the aerodynamic drag or structural weight of an aircraft. With the advance

of computer technology and optimisation techniques, it is of significant benefit to use

numerical optimisation in design. Mathematically, numerical optimisation consists in

the use of algorithms to minimise or maximise a given function by varying a number

of variables. The problem may or may not be subject to constraints. Generally, an

optimisation problem can be formulated as

Minimise: f(x)

w.r.t: x

Subject to: g(x) ≤ 0,

h(x) = 0

where x is the vector of design variables, f(x) is the objective function to be minimised,

g(x) and h(x) represent the inequality and equality constraint functions, respectively.

In the case of any maximisation problem, a minus sign can be added to the objective

function so as to transform the maximisation problem into a minimisation one.

A design optimisation process follows a similar iterative procedure to that of the con-

ventional design process, with a few key differences. The comparison is illustrated in

Figure 2.1. For both approaches, the baseline design could be the result of a previous

design process or an initial idea derived from an engineer’s experience and knowledge.

In the conventional design process, the design may be analysed by numerical modelling

or experimental tests, and then evaluated based on the results. The designer decides

9
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whether or not the design performance is satisfactory. If not, likely in early iterations,

the designer needs to change the design based on intuition and experience. The final

design is reached when the design is satisfactory. For design optimisation, the analysis

step is performed numerically without input from the designer. The evaluation of the

design is strictly based on numerical values for the objective to be minimised and the

constraints that need to be satisfied. An optimisation algorithm is used to automatically

make changes to the design variables, avoiding the intervention of the designer. The de-

cision to terminate the iterative process is made by the optimisation algorithm when the

current design satisfies the necessary optimality conditions, ensuring the current design

is superior to others in the vicinity of the design space.

In the design optimisation process, the designer needs to specify in advance the param-

eters that can be changed and their lower and upper bounds. The constraints and their

limits also need to be defined prior to optimisation. It is crucial that the optimisation

problem is well-formulated, otherwise the mathematical optimum obtained from numer-

ical optimisation may not be the engineering optimum. This problem becomes more

prominent for engineering systems with increasing complexity, where there are multiple

levels and thus more cycles in the design process.

Figure 2.1: Conventional (left) versus optimal (right) design process [2].

Optimisation problems are classified based on various characteristics. A typical clas-

sification of optimisation problems is shown in Figure 2.2. As algorithms for solving

optimisation problems are tailored to a particular type of problem, it is worth noting

that restricting the optimisation to certain types and using appropriate optimisation

algorithms can result in a dramatic improvement in the capacity to solve a specific

problem.
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Figure 2.2: Classification of optimisation problems [2].

2.1.2 Multidisciplinary design optimisation

Multidisciplinary design optimisation (MDO) is the application of numerical optimisa-

tion techniques to the design of engineering systems that involve multiple disciplines.

Aircraft design was one of the first applications of MDO because there is much to be

gained by simultaneous consideration of the various disciplines (aerodynamics, struc-

tures, propulsion, stability and controls, etc.) that are involved and tightly coupled.

For example, the reduction in the structure weight will eventually result in much lower

overall weight of the aircraft due to the inner-dependencies among multiple disciplines,

leading to the well-known “snowball effect” of weight reduction. On the contrary, design

optimisation of the aircraft with one single discipline involved will likely deteriorate the

performance in other disciplines. Figure 2.3 gives an illustration of how the aircraft

looks like if each of these disciplines works strictly to attain their own requirements.

Since none would fulfil all requirements at the same time, there is necessity to tune the

needs of various disciplines together and make trade-off amongst them.

In 1977, Haftka [3] published one of the first MDO papers in aircraft wing design,

where the disciplines of aerodynamics, structures and controls are coupled. Following

the success of its initial application, MDO emerged in the 1980s within the aerospace

community and has prospered since. Meanwhile, MDO has been extended to complete

aircraft [4, 5, 6] and a wide range of other engineering systems, such as automobiles [7],

rotorcraft [8], and wind turbines [9, 10, 11].

There have been a number of surveys of MDO over the past two decades. In 1997, So-

bieski and Haftka [12] carried out a review of MDO developments up to that time. Two
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Figure 2.3: Ideal aircraft from the perspective of different disciplines [2].

main challenges addressed in that review were computational expense and organisational

complexity. Previous efforts put emphasis primarily on approximation and decompo-

sition strategies to deal with these challenges. Since this exhaustive review, MDO has

continued to be an active area of research. More recently, the rapid development of

computational capacity has eased the high computational demands to some extent, and

some new MDO methodologies have been proposed and developed. In 2013, Martins

and Lambe [13] published a comprehensive survey of existing MDO architectures in the

literature. A summary and classification of MDO architectures were presented in a uni-

fied notation, facilitating the understanding of the various architectures and enabling

the comparisons between them. This survey also pointed out the need to benchmark

the existing MDO architectures and to develop new architectures.

Nowadays, MDO technologies have reached a maturity level that enables their widespread

implementation and use in an industrial environment. Various successful applications

of MDO have taken place in both research institutes and industry [14, 15, 16, 17, 18].

Brezillon et al. [17] described the ongoing development conducted at DLR, German

Aerospace Centre, toward MDO capabilities based on high-fidelity methods. The MDO

framework involved several disciplines, including aerodynamics, structures, aeroelastic-

ity, and acoustics. Three representative optimisation scenarios were defined to tackle

specific challenges: tightly or loosely coupled multidisciplinary problems, single or multi-

objective problems, problems with reduced or large shape variations, etc. All three MDO

problems were solved to demonstrate the benefits and limitations of the capabilities de-

veloped, providing indications for future work, such as robust and efficient grid defor-

mation techniques in aerodynamics, a dynamic model in structure for fast identification

of critical load cases, and suitable MDO architecture, etc. As an example from industry,

Piperni et al. [18] presented the deployment of MDO technologies within the engineering
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organisation at Bombardier Aerospace. As shown in Table 2.1, a multi-level framework

in line with the aircraft design stages was developed. At every design stage, the ap-

propriate problem formulation, level of fidelity, analysis tools, and optimisation strategy

were implemented to meet the design objectives within the design-cycle time frame. The

MDO technologies were deployed incrementally as an evolution of existing engineering

methods for the three MDO levels, which correspond to conceptual, preliminary, and

detail design stages.

Table 2.1: MDO levels and tool sets in Bombardier Aerospace (Source: [18]).

Recently, an open-source MDO framework, OpenMDAO [19], was developed and released

by the NASA Glenn Research Centre. OpenMDAO is a high-performance computing

platform for system analysis and multidisciplinary optimisation. It is designed to take

advantage of state-of-the-art algorithms to solve coupled models efficiently. OpenMDAO

allows the users to combine the analysis tools from multiple disciplines, at multiple

levels of fidelity, and to manage the interaction between them, which enables diverse

applications in engineering analysis and design.

2.1.3 Aerostructural design optimisation

One of the most common applications of MDO techniques is aerostructural design opti-

misation, because of the strong interactions between aerodynamics and structures. Much

effort has been put into aerostructural optimisation, aiming to optimise the aerodynamic

shape and structural sizing simultaneously. Compared with single-disciplinary aerody-

namic optimisation, aerostructural optimisation needs to consider the data transfer (i.e.

aerodynamic loads and structural displacements) between the two disciplines. The treat-

ment of geometry is also different: a rigid geometric model is considered in aerodynamic

optimisation, whereas a flexible model is used for aerostructural optimisation.

One of the earliest studies of aerostructural optimisation was undertaken by Haftka [3],

who combined a lifting-line aerodynamic model with structural finite-element analysis



14 Chapter 2 Literature Review

to minimise the wing structural weight subject to drag and stress constraints. Gross-

man et al. then performed the aerostructural optimisation of a sailplane wing [20] and

a transport wing [21]. They found that the designs generated from integrated optimisa-

tion were superior in terms of either aerodynamic performance or structural weight to

those obtained from sequential optimisation (i.e. aerodynamic optimisation followed by

structural minimisation). This fact was also confirmed and further explained by Chittick

and Martins [22]. The sequential optimisation fails to achieve the true aerostructural

optimum because of its inherent flaw that the sequential formulation is an incomplete

consideration of the disciplinary interactions. The aerodynamic optimisation does not

account for the structural benefit of shifting the lift distribution inboard, and the struc-

tural optimisation does not tailor the sizing to produce a deflected wing that is aerody-

namically favourable. As a result, the sequential method fails to see the broader picture

afforded by the fully-coupled design space.

With the advent of higher fidelity modelling in both structures and aerodynamics, nu-

merical optimisation has been extensively applied to each of the disciplines separately.

Since Schmit [23] pioneered structural optimisation in 1960, increasingly detailed finite-

element models have been used in wing structural sizing optimisation [24, 25]. The

development of CFD as well as adjoint method has made it possible to optimise an aero-

dynamic shape with respect to hundreds of design variables using both Euler [26, 27, 28]

and Navier–Stokes models [29, 30, 31]. Aerodynamic and structural solvers with differ-

ent levels of fidelity have been used for wing aerostructural optimisation. Elham and

van Tooren [32] provided a review of the aerodynamic methods used for aerostructural

optimisation. Given the importance of coupling the structures and the aerodynamics in

wing design, various techniques have been proposed over the years for coupling CFD to

computational structural mechanics solvers, with contributions in load and displacement

transfer schemes [33, 34, 35, 36] and solution techniques for solving the coupled system

of equations [37, 38].

Maute et al. [39] pioneered high-fidelity aerostructural optimisation by coupling an Euler

flow solver with a linear finite-element structural model. However, this application was

limited to only a few design variables because the cost of gradient computation using

the direct analytical approach (as shown later in Section 3.2.5) is proportional to the

number of design variables. To take advantage of high-fidelity models, it is desirable to

optimise with respect to large numbers of design variables. In order to handle the large

numbers of design variables, some researchers employed gradient-based optimisation al-

gorithms together with adjoint methods to compute the required gradients efficiently.

Martins et al. [40] proposed the use of a coupled adjoint method for aerostructural op-

timisation using Euler CFD and linear finite-element analysis. They then applied this

method to the aerostructural design of a supersonic business jet [41]. To make this ap-

proach truly scalable and practical, Kenway et al. [42] made some developments and then

demonstrated high-fidelity aerostructural optimisation of the NASA common research
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model (CRM) using Euler [43] and RANS [44] aerodynamic analysis. Figure 2.4 shows

the geometric and structural design variables used for the aerostructural optimisation

of the NASA CRM. Some other researchers also implemented coupled adjoint method

for the aerostructural equations. Zhang et al. [45] demonstrated high-fidelity aerostruc-

tural optimisation with an integrated geometry parameterisation and grid movement

strategy. Ghazlane et al. [46] presented the latest developments at ONERA, French

Aerospace Lab, on flexible wing optimisation via the aerostructural adjoint method.

The aerodynamic shape and structural geometry were optimised simultaneously for the

Airbus XRF1 wing-body configuration, where a weighted sum of aerodynamic drag and

structural weight was used as the objective function in both single and multi-point op-

timisation processes.

Figure 2.4: Aerostructural design variables of the NASA CRM. Structural de-
sign variables grouping (left) and geometric design variables (right). [43]

Aerostructural optimisation using higher-fidelity solvers, especially for aerodynamics, en-

ables better representations of the wing model and thus provides more accurate results.

However, high-fidelity wing aerostructural optimisation requires high-performance, par-

allel computing systems and leads to high computational cost. To address this chal-

lenge, some researchers employed a quasi-three-dimensional (Q3D) approach for wing

aerodynamic analysis and optimisation. The Q3D approach, which combines 2D viscous

aerofoil data with 3D inviscid wing data, computes the wing aerodynamic forces with

sufficient level of accuracy and low computational cost. Examples of aerostructural op-

timisation using Q3D aerodynamic approach can be found in the works of Willcox and

Wakayama [14], Jansen et al. [47], Mariens et al. [48], and Elham and van Tooren [32, 49].

In particular, Elham and van Tooren [32] performed gradient-based optimisation of a

transport aircraft wing using the coupled adjoint method to compute the gradients.

Compared with fully 3D CFD methods, Q3D approaches can rapidly compute the aero-

dynamic loads and are suitable for use in early phases of MDO. Nonetheless, Q3D ap-

proaches are limited to applications of wings in clean configuration and can not model



16 Chapter 2 Literature Review

the effects of a nacelle or an engine pylon. For a complete aircraft, Q3D approaches are

not able to model the effects of the fuselage and hence may have discrepancies (compared

to 3D CFD data or experimental measurements) in the surface-pressure distributions

near the fuselage [50].

In recent years, the trend of aircraft wing design has been towards enlarging the aspect

ratio and using light-weight structures, which increases the wing flexibility. It is therefore

essential to include aeroelastic considerations into the design and optimisation process.

Kenway et al. [44] conducted gust simulations in the post-optimisation analyses, indi-

cating further study to properly constrain the aerostructural design space. Elham and

van Tooren [32] considered the index of aileron effectiveness as a constraint in order to

satisfy the requirements of manoeuvrability. Variyar et al. [51] included the constraint

of flutter speed into the early design loop of a strut-braced wing configuration, ensuring

the aeroelastic stability. Kontogiannis et al. [52] used first bending mode frequency as

an additional constraint to make the aerostructural optimisation of the NASA CRM

wing more industrially relevant.

More recently, an open-source low-fidelity aerostructural analysis and optimisation tool,

OpenAeroStruct [53], was developed within NASA’s OpenMDAO framework. Ope-

nAeroStruct combines VLM and finite-element analysis using a 3D beam model to sim-

ulate aerodynamic and structural analyses for lifting surfaces, and it uses the coupled

adjoint method to compute the aerostructural derivatives. OpenAeroStruct serves as a

hands-on learning tool for educators as well as a benchmarking platform for researchers.

2.1.4 Aerodynamic shape optimisation

Aerodynamic shape optimisation, or aerodynamic design optimisation, consists in max-

imising the performance of a given body (such as an aerofoil or a wing) by changing its

shape. The aerodynamic performance is usually evaluated using CFD and the optimi-

sation can be done using a number of algorithms. As described earlier in Section 2.1.1,

the aerodynamic optimisation process is iterative: it starts with a given shape and then

changes that shape to improve the performance while satisfying the specified constraints.

Over the past years, extensive research has been undertaken in the field of ASO, which

has become an indispensable component and a powerful tool for effective and robust

aerodynamic design in many applications. In this context, we focus on the application

of ASO to aeronautical design. As various ASO frameworks have been developed in

the research community, the AIAA ADODG was formed to address the need for ASO

benchmarks that can be used to compare the methods between different researchers.

The series of benchmark cases defined by ADODG are suitable for exercising ASO in a

constrained design space and are diverse enough in searches for both global and local

optima for both single- and multi-point optimisations.
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Given that ASO is widely investigated across the community, it is impractical to thor-

oughly review the progress and current status. Therefore, some representative research

groups are selected, and their activities and contributions toward ASO are briefly re-

viewed and introduced as follows.

1. University of Toronto

A high-fidelity gradient-based ASO framework, Jetstream, was developed by Hicken

and Zingg [54]. Jetstream features integrated geometry parameterisation and grid

movement using the control points of B-spline surface. Gagnon and Zingg [55] ad-

dressed the shortcomings of direct surface-based geometry control, and they then

implemented into Jetstream the new feature of volume-based geometry control using

FFD technique. Lee et al. [56] applied both B-spline surface and FFD geometry con-

trol methods to several ASO problems and compared the optimal shape performance.

Lee et al. [57] and Koo and Zingg [58] presented the results from the application of

Jetstream to the ADODG benchmark cases. Chernukhin and Zingg [59] investigated

the issue of multi-modality (i.e., multiple local optima) in high-fidelity ASO by apply-

ing both gradient-free and gradient-based optimisation algorithms to a number of 2D

aerofoil and 3D wing problems. Koo and Zingg [60] performed ASO of both planar

and nonplanar wings, demonstrating the robustness and ability of the methodology

used by Jetstream to handle optimisation problems involving substantial geometric

freedom.

2. University of Michigan

The MDO lab focuses on high-fidelity gradient-based optimisation using the adjoint

method for computing derivatives. Mader et al. [61] presented an approach to develop

discrete adjoint solvers using automatic differentiation selectively. Lyu et al. [62]

developed a discrete adjoint solver for the RANS equations and SA turbulence model.

They then solved a series of ASO problems [30] based on the CRM wing benchmark

case defined by ADODG. Figure 2.5 shows a detailed comparison of the baseline wing

and the optimised wing. Kenway and Martins [63] created multi-point optimisation

cases of the CRM wing for ADODG. Chen et al. [64] investigated the full aircraft

(i.e. wing–body–tail) configuration case of the CRM with the consideration of trim

effect on the wing design. In addition, the approach to ASO has also been employed

to study other configurations, such as a BWB aircraft [65] and a morphing wing [66].

More recently, Kenway and Martins [67] enforced buffet margin constraints into ASO

at transonic conditions and investigated its impact on the optimal designs.

3. University of Bristol

Efforts have been made toward developing new geometry parameterisation approaches

and grid deformation methods. Morris et al. [68] developed a novel domain element

shape parameterisation method using radial basis functions (RBFs) and applied this

approach to 2D aerofoil [68] and 3D wing [69] optimisation problems. Poole et al. [70]
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Figure 2.5: Comparison of the baseline wing and optimised wing of the NASA
CRM. The optimised wing is shock-free and has 8.5% lower drag. [30]

presented a novel proper orthogonal decomposition (POD) approach using singular

value decomposition (SVD) to derive orthogonal aerofoil design variables from a li-

brary of training data. The effectiveness of the developed method was then demon-

strated through aerodynamic optimisation of 2D aerofoils [71] and 3D wing [72] in

transonic flow. Masters et al. [73] proposed a multi-level aerofoil parameterisation

scheme that uses subdivision curves. More recently, Payot et al. [74] presented a novel

parameterisation approach, named the restricted snakes volume of solid, for topology

optimisation. Kedward et al. [75] presented an efficient grid deformation method

using multi-scale RBF interpolation. In addition, Poole et al. [76] investigated the

issue of multi-modality existing in Case 6 of the ADODG benchmarks.

4. University of Sheffield

The research activities cover several aspects of ASO. Le Moigne and Qin [77] presented

a variable-fidelity ASO methodology based on a discrete adjoint solver for turbulent

flows. The optimisation method was then employed for a systematic aerodynamic

study of a BWB aircraft [78], including inverse design of the spanwise lift distri-

bution [79], aerofoil and sweep optimisation [80], and deployment of shock control

bumps [81]. Liu et al. [82] proposed an efficient dynamic grid deformation technique

based on Delaunay graph mapping (DGM) method. This approach was further im-

proved by Wang et al. [83, 84], who employed either RBF method [83] or inverse

distance weighting method [84] to provide better control of the near-surface grid

quality while maintaining the advantage of the efficiency of DGM grid deformation.

Vavalle and Qin [85] presented a response surface based optimisation scheme for aero-

foil design at transonic speed. Zhu and Qin [86] proposed an intuitive class shape
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transformation (CST) method for aerofoil parameterisation. More recently, some

work [87, 88, 89] was undertaken to study the grid sensitivity in a discrete adjoint

optimisation framework.

5. Queen Mary University of London

The research work primarily focuses on the development and application of adjoint

CFD solvers and shape parameterisation methods, particularly computer aided design

(CAD)-based parameterisation methods, into engineering design problems. Two flow

solvers, namely incompressible GPDE [90] and compressible STAMPS [91], were de-

veloped to perform flow analysis and provide sensitivities using the algorithmic differ-

entiation (AD) tool Tapenade. An in-house CAD kernel, termed non-uniform rational

B-spline (NURBS)-based parameterisation with continuity constraint (NSPCC) [92,

93], was developed to parameterise the geometry. Yu et al. [94] demonstrated the de-

veloped method for a 2D aerofoil optimisation. Xu et al. [95] applied the CAD-based

parameterisation approach to ASO of a wing–body configuration of the DLR-F6

model. Zhang et al. [96] performed adjoint-based ASO for the ONERA M6 wing

using both B-spline and NURBS parameterisations.

6. University of Southampton

Considerable research has been carried out in the field of surrogate modelling [97] and

other model order reduction techniques in the design and optimisation of engineering

systems. With the aim of reducing the optimisation cost, Toal et al. [98, 99, 100] con-

ducted extensive investigation into kriging, including investigating hyperparameter

tuning strategies [98], applying an adjoint of the likelihood function [99], and present-

ing a variable reduction technique using POD [100]. Forrester et al. [101] presented a

multi-fidelity optimisation methodology using co-kriging. Toal and Keane [102] then

applied a multilevel co-kriging model for multi-point design optimisation. Toal [103]

also defined a set of guidelines regarding the use of multi-fidelity kriging. Viswanath

et al. [104, 105] proposed a dimension reduction method called generative topographic

mapping to facilitate the optimisation process. Parr et al. [106, 107] presented a new

infill sampling criterion for surrogate-based constrained optimisation. Sóbester [108,

109] investigated concise parametric aerofoil formulations using NURBS and Kul-

fan’s CST parameterisation respectively. Sóbester et al. [110] also demonstrated the

surrogate-based optimisation techniques to engineering design applications, such as

a regional airliner wing. More recently, Kontogiannis et al. [111] investigated the

efficient handling and parameterisation of waverider geometries.

While some literature [112, 113, 114] summarised the state-of-the-art in ASO, the ma-

jority of review articles target at one specific area within ASO. Forrester and Keane [115]

reviewed the advancement of constructing surrogate models and their use in optimisation

strategies, and they also provided guidance regarding the strengths and weaknesses of

each method. Lian et al. [116] reviewed the progress in aerodynamic design optimisation
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using evolutionary algorithms. Han [117] conducted a review of the theory, algorithms

and recent progress with respect to the kriging surrogate model and its application to

ASO and MDO. Masters et al. [118] presented a comprehensive review of aerofoil shape

parameterisation methods used for ASO, and also compared their efficiency with respect

to the coverage of aerofoil design space. Zhao et al. [119] provided a review of robust

ASO methodologies, highlighting the key techniques and primary challenges.

Recently, the open-source SU2 code [120, 121] has gained popularity in the aerospace

community due to its capability of solving engineering problems through adjoint-based

optimisation. The SU2 suite employs the state-of-the-art numerical methods to perform

CFD analysis for a range of flow problems. With the aid of an adjoint method, the

gradient information can be computed efficiently, enabling powerful analysis and design

optimisation for complex engineering systems. In this thesis, SU2 is used to perform

adjoint-based ASO of both 2D aerofoil and 3D wing geometries [122, 123, 124].

2.1.5 Section summary

In this section, an overview is provided regarding the recent development, current sta-

tus, and future trends of design optimisation within the aeronautical community. The

mathematical formulation, design process and taxonomy of numerical optimisation was

firstly introduced. The literature review was then carried out, starting from MDO, mov-

ing on to aerostructural optimisation, and finally narrowing down to ASO. In particular,

instead of conducting an exhaustive review of ASO, some representative research groups

were chosen and their research activities were reviewed, highlighting their contributions

to the research community. A brief summary is given in Table 2.2. In addition, some

open-source optimisation frameworks were introduced, which are of interests and use for

many researchers.
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Table 2.2: Summary of ASO studies from a selection of research groups.

Institution Principal Investigator Research Areas

University of Toronto Prof. David Zingg
High-fidelity gradient-based ASO [54]; Integrated geometry

parameterisation and grid movement [55]; B-spline and FFD [56];
ADODG benchmarks [57, 58]; Multi-modality [59]

University of Michigan Prof. Joaquim Martins
High-fidelity gradient-based ASO [62]; Discrete adjoint [61, 62];

ADODG CRM benchmark [30, 64]; Multi-point CRM ASO [63]; Novel
configurations [65, 66]

University of Bristol Prof. Christian Allen
Novel geometry parameterisation methods [68, 70, 72, 74]; Aerofoil

parameterisation [73, 118]; Grid deformation [75]; ADODG
benchmarks [76, 125]; Multi-modality [76]

University of Sheffield Prof. Ning Qin
Variable-fidelity ASO [77]; BWB studies [78, 79, 80, 81]; Grid

deformation [82, 83, 84]; Intuitive CST parameterisation; Discrete
adjoint [86]; Grid sensitivity [87, 88, 89]

Queen Mary University of London Dr. Jens Müller
CAD-based parameterisation using NURBS [92, 93]; Discrete adjoint

solvers [90, 91]; Automatic differentiation [92, 93]; Aeronautical
applications [94, 95, 96]

University of Southampton Prof. Andy Keane
Surrogate modelling [97]; Kriging [98, 99, 100]; Infill sampling

criteria [106, 107]; Multi-fidelity ASO [101, 102, 103]; Dimension
reduction [104, 105]; Geometry parameterisation [108, 109]
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2.2 Computational techniques in ASO

ASO can be dated back to the 16th century, when Newton used calculus of variations

to minimise the fluid drag of a body of revolution with respect to the body’s shape.

Although there were many significant developments in optimisation theory after that,

it was only in the 1960s that numerical optimisation emerged to be a feasible tool for

routine applications due to both the theoretical advancements and exponential develop-

ments in computer hardware. In this section, the state-of-the-art and commonly-used

computational techniques are summarised and reviewed for each constitutive part of

ASO framework.

2.2.1 Aerodynamic solver

In an ASO framework, the prediction of aerodynamic properties of a given body requires

the numerical analysis of an aerodynamic solver. Over the years, various aerodynamic

methods of different levels of fidelity have been developed, suitable to different flow

regimes and different phases of the aircraft design process [18].

Early studies rely on empirical methods, such as Engineering Science Data Unit (ESDU)

and Data Compendium (DATCOM), but the quest for more efficient aircraft make these

methods too inaccurate. Panel methods are slightly more costly approaches, which solve

incompressible potential flow over 2D and 3D geometries. XFOIL 1 is an open-source

software developed by Drela at MIT. It can model the flow around any 2D aerofoil using

panel methods, and it can also perform corrections for viscosity and compressibility. A

solution for 3D wings of any general form can be obtained by using a vortex lattice

method (VLM) [126]. The wing is modelled as a set of lifting panels, and each panel

contains a single horse-shoe vortex. Extensions have been made for unsteady flow. For

the case of harmonically oscillating surfaces, Albano and Rodden [127] developed the

doublet lattice method (DLM) by augmenting the vortex with an oscillating doublet.

DLM is formulated in the frequency domain and it reduces to VLM for steady cases.

Both VLM and DLM are widely used in the early stages of aircraft design, however,

they are limited to the linear flow regime. Kennedy and Martins [128] combined the use

of panel method for induced drag estimation and semi-empirical methods for viscous

and wave drag estimation. Piperni et al. [15] used a 3D transonic small disturbance

code coupled to boundary layer calculations for aerodynamic analysis in the transonic

regime. However, transonic small disturbance codes are suitable for drag estimation at

transonic conditions with relatively weak shock and attached flow. Drela [129] developed

a 3D integral boundary layer formulation to enable rapid viscous analysis of 3D aero-

dynamic flows via strongly-coupled viscous/inviscid solution methods. The correctness

1http://web.mit.edu/drela/Public/web/xfoil/ [retrieved 2019]

http://web.mit.edu/drela/Public/web/xfoil/
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and accuracy of the approach were demonstrated on a number of test cases of general

configurations.

In later stages of aircraft design, the importance of the accuracy of drag prediction be-

comes prominent. According to industry criteria [130], the accuracy of drag prediction

by numerical methods should be within one drag count (i.e. one ten thousandth of the

drag coefficient). Therefore, high-fidelity solvers are required for aerodynamic analy-

sis and optimisation in order to correctly predict the drag, particularly for the design

of transonic aerofoils and wings where strong nonlinearity exists due to viscous and

compressibility effects. A number of high-fidelity aerodynamic codes that solve Euler

and RANS equations have been developed and used for ASO, such as Jetstream [57],

SUmb [30], STAMPS [91], etc. Some software packages were also developed within the

research institutes, such as ONERA elsA flow solver [131] and DLR-TAU code [17]. In

addition, the open-source CFD software, such as SU2 [120] and OpenFOAM 2, are also

extensively used to perform high-fidelity analysis for complex aeronautical configura-

tions.

Although it produces numerical results with sufficient accuracy, the use of a high-fidelity

aerodynamic model in aircraft design also poses a challenge of computational cost even

with high-performance computing facilities. Various approaches have been employed

to address this issue. For example, Kenway and Martins [43] used the Euler equations

to model the flow over the aircraft, and the viscous drag was estimated by empirical

equations. However, the uncertainty of total drag calculation due to the skin friction

estimation outweighs the cost saving brought by the Euler solver instead of a Navier–

Stokes solver. Recently, the development of reduced-order modelling techniques, such as

Q3D aerodynamic solvers, has eased this problem to some extent. More details about

Q3D solvers and their application in ASO are discussed in Section 2.4.

2.2.2 Geometry parameterisation

Geometry parameterisation, also known as shape or surface parameterisation, concerns

how the geometry is represented and perturbed during optimisation process, and it de-

fines a design space by a number of design variables. For any ASO framework, geometry

parameterisation is a critical aspect as the ability for the optimiser to fully explore the

design space is driven by the ability for the degrees of freedom adopted to represent any

shape within the design space. Therefore, the choice of parameterisation scheme has sig-

nificant impact on the design space and thus the final optimisation result. Typically, an

effective parameterisation method is characterised as being: 1) flexible enough to allow

sufficient design space investigation; 2) robust enough to be applicable to any geometry

or design surface; and 3) efficient enough to cover the design space with a small number

of design parameters [70].

2www.openfoam.org [retrieved 2019]

www.openfoam.org
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Over the past several decades, numerous geometry parameterisation and surface control

techniques have been developed and implemented for shape optimisation of aerospace

applications. Based on whether the CAD model is involved or not, shape parameterisa-

tion methods can be divided into two kinds, namely CAD-based and CAD-free methods.

Similarly, the parameterisation methods can also be categorised as either constructive or

deformative depending on whether the geometry creation and perturbation are separated

or not. Following the latter taxonomy approach, examples of constructive methods are

CST [132] and parametric section (PARSEC) [133]; and deformative methods include

discrete [26], analytic [134] and FFD [135], etc. In terms of 2D aerofoil parameterisa-

tion, constructive methods represent an aerofoil shape purely from a series of parameters

specified, whereas deformative methods take an existing aerofoil and then deform it to

create a new shape.

With the continuous development and application of geometry parameterisation and

shape control methods, some studies have also been undertaken to provide a survey of

available techniques and to compare their effectiveness in ASO. Reviews of a range of

parameterisation methods were presented in the work of Samareh [136], Castonguay

and Nadarajah [137], Mousavi et al. [138] and Masters et al. [118]. In particular,

Samareh [136] and Poole et al. [70] provided a table summary, detailing the relative

merits and features of each approach. In this context, a selection of parameterisation

methods are introduced and discussed as follows.

Parametric section

The PARSEC method, originally developed by Sobieczky [133], is a specific 2D aerofoil

parameterisation method. It targets at representing subsonic and transonic aerofoils

based on meaningful properties, such as leading edge radius, maximum thickness, and

trailing edge angles, etc. The upper and lower surfaces are firstly described by six-order

polynomials; and the resulting 12 coefficients are then obtained by solving a system of

linear equations, subject to 12 intuitive parameters (as shown in Figure 2.6) that define

the geometric characteristics of the aerofoil. An advantage of the PARSEC method

is that it uses geometric parameters as design variables, allowing direct and intuitive

control over the shape of the aerofoil. However, as this method is limited to only 12

design variables, it does not provide the range of fidelity made available by many of

the alternative methods. Moreover, the PARSEC method can allow large-scale surface

changes, and therefore alter the global family of the aerofoil; however, it is unable to

provide high flexibility, especially in inverse design problems, as it is difficult to make

detailed minor local surface changes.

Hicks–Henne bump function

The HHBF approach was initially used by Hicks and Henne [134] to represent the aero-

foil shape at different spanwise stations of a wing. The HHBFs were applied to modify
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Figure 2.6: A geometric representation of the parameters used for PARSEC
method [133].

the baseline aerofoil by adding linearly a series of shape functions. HHBFs recently be-

came popular for modelling small or moderate perturbations of baseline aerofoil shapes

for solving various optimisation problems. For instance, Toal et al. [98] investigated an

inverse design problem (i.e. recreating the surface pressure distribution of the RAE2822

aerofoil via the modification of the baseline NACA0012 aerofoil) by employing multiple

HHBFs to produce geometry parameterisations of varying complexity while maintaining

a level of continuity. The HHBF approach is employed as one of the two shape parame-

terisation methods in this study. More technical details are provided in Section 3.2.6.1.

Class shape transformation

The CST method was first proposed by Kulfan [139] to express a wide range of aerofoils

with relatively few numbers of variables, and it was then extended to more general 3D

applications such as aircraft wing, body, and nacelles [132]. Mathematically, the CST

method describes geometries as a product of a class function defining the fundamental

baseline geometry profile and a shape function defining the variation or deviation from

the baseline geometry. The shape function is formulated with a linear combination of

Bernstein polynomials, of which the weighting coefficients are employed as the design

variables.

In recent years, the CST method has been extensively used as shape parameterisation

scheme in ASO owing to its capability to meet the desirable criteria such as smooth-

ness, mathematical efficiency, size of design space, and ability to handle constraints.

Some researchers have made further improvement and enhancement to the CST method.

Straathof and van Tooren [140] proposed the class shape refinement transformation

method by using a combination of Bernstein polynomials and B-splines to allow for

both global and local control of a shape. In addition, the use of B-splines enables the

capability to handle volume constraints efficiently. However, by adding the refinement

function, the class shape refinement transformation method requires a higher number of

design variables compared to the original CST method, which contributes to the com-

plexity of the design problem. Zhu [141] presented a rational CST method by employing

rational Bernstein polynomials instead of the standard ones. The rational CST method

was shown to increase the fitting accuracy of the original CST method with fewer design
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variables. Moreover, Zhu and Qin [86] proposed the intuitive CST method for aerofoil

parameterisation, which combines the flexibility and accuracy of Kulfan’s CST method

and the intuitiveness of Sobieczky’s PARSEC method.

Polynomial and spline

The polynomial and spline representations, such as Bézier, B-spline, and NURBS, are

powerful tools for geometry parameterisation and are well-suited for shape optimisa-

tion. The Bézier form, which is based on Bernstein polynomials, is an effective and

accurate representation for simple curves and surfaces. However, it does not have the

property of local control, i.e. the manipulation of one control point will influence the

entire geometry. This flaw can be overcome by the B-spline form, which relies on a set

of basis functions and can be viewed as a composite of low-degree Bézier segments. The

B-spline form can represent complex geometries efficiently and accurately. However, it

is unable to accurately represent implicit conic sections. The more general NURBS form

can represent most parametric and implicit curves and surfaces without loss of accuracy.

Generally, the polynomial and spline representations can describe a geometry in a very

compact form with a small set of design variables, showing a significant advantage over

the discrete approach, in which the grid nodes directly define the geometry and are

the design variables. In addition, the polynomial and spline methods have the flexibil-

ity to cover the potential optimal solution in the design space and can guarantee the

smoothness of a shape.

The polynomial and spline techniques have been widely used within the research commu-

nity. Nemec and Zingg [142] and Hicken and Zingg [54] applied B-spline surface control

in conjunction with an efficient grid movement technique to 2D and 3D aerodynamic

optimisation problems, respectively. Lee et al. [57] and Bisson et al. [143] employed

B-spline parameterisation for the optimisation of the ADODG benchmark cases.

CAD-based approach

The CAD-based parameterisation method allows the CAD description of the shape to be

maintained inside the automated design loop. This approach avoids the need to develop

a separate parameterisation method to describe the degrees of freedom of the design.

This approach can import the boundary representation from CAD and produce the

optimal shape in the CAD format. Two European Commission projects, About Flow3

and IODA4, aim to advance with the systematic integration of adjoint-based design

optimisation with CFD into the regular design chains. One key aspect of the projects

focuses on the development of CAD-based parameterisation to link the optimisation

directly with CAD geometries. Robinson et al. [144] and Agarwal et al. [145] presented

an efficient optimisation process, where the parameters defining the features in a CAD

model, such as sketch-based and dress-up features in CATIA V5, are used as design

3http://aboutflow.sems.qmul.ac.uk/ [retrieved 2019]
4https://ioda.sems.qmul.ac.uk/ [retrieved 2019]

http://aboutflow.sems.qmul.ac.uk/
https://ioda.sems.qmul.ac.uk/


Chapter 2 Literature Review 27

variables. In the research group led by Dr. Jens Müller, Xu et al. [95] used B-spline

surfaces to model the wing–fuselage configuration of the DLR-F6 aircraft, and Zhang

et al. [96] performed aerodynamic optimisation of the ONERA M6 wing using both

B-spline and NURBS parameterisation approaches.

Free-form deformation

The FFD algorithm, first formally described by Sederberg and Parry [146], is a subset

of the soft object animation algorithms used in computer graphics for morphing images

and deforming models. The FFD technique is based on the idea of enclosing an object of

interest within a flexible volume, and transforming the object by deforming the lattice

of the volume. It enables a smooth and continuous deformation through perturbation

of the control points of the control volume.

The FFD approach has been extensively employed as geometry parameterisation method

to a range of shape optimisation problems [30, 55, 56, 65, 147], including morphing

aircraft, NASA CRM wing, BWB, and winglets, etc. The FFD approach parameterises

the geometry changes rather than the geometry itself, resulting in a more efficient and

compact set of design variables, and thus making it easier to handle complex geometries.

The FFD algorithm can also relate the deformation to aerodynamic design variables,

such as thickness, camber, twist, and planform, by manipulating groups of control points.

Moreover, since the FFD volumes are trivariate Bézier, B-spline or NURBS volumes,

the sensitivity derivatives of any point inside the volume can be easily computed. The

FFD technique is employed as one of the two shape parameterisation approaches in this

study. More technical details are provided in Section 3.2.6.2.

Proper orthogonal decomposition

POD is a method to obtain a low-dimensional approximation to a high-dimensional

space by the derivation of dominant components, or modes, and can be done by principal

component analysis, Karhunen–Loeve decomposition, or SVD [148]. This mathematical

decomposition approach can be used to derive design variables in aerodynamic optimi-

sation, particularly for the case of aerofoils. The POD method takes a large library of

aerofoils, termed the training data, and extracts a set of orthogonal shape modes. New

aerofoil shapes can then be constructed as a linear combination of these modes. The

fidelity of the construction is determined by the number of modes used, though a small

set of the most dominant modes are sufficient to have a good design space coverage.

With respect to ASO, the POD technique was initially employed by Toal et al. [100],

who showed that the design space of the 2D aerofoil could be reduced to a few principal

modes. Ghoman et al. [149] then showed that POD could be used to derive aerofoil

design variables that represent a specific aerofoil family. Poole et al. [70] further showed

that the extracted geometric modes from POD could represent a wide variety of aero-

foil shapes given a broad range of training data. Poole et al. [71] and Allen et al. [72]
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applied this mathematical approach based on SVD to 2D aerofoil and 3D wing optimi-

sation problems, respectively. Furthermore, Masters et al. [118] showed that the SVD

technique outperforms other commonly-used parameterisation schemes when considering

an inverse design problem of a 2D aerofoil.

2.2.3 Grid deformation

In the process of ASO, the boundary surface is perturbed to reflect the changes in the

shape design variables. As a result, a new grid has to be generated at each design

iteration to fit the deformed surface, or the existing grid has to be allowed to move with

the computational domain. Allowing the existing grid to evolve with the computational

domain is generally more efficient than generating a new grid. In shape optimisation,

the boundary surface undergoes many small changes; it would be too time-consuming

to regenerate the grid in response to these deformations. Regenerating grids usually

requires manual adjustments for complex geometries and the projection of the solution

from the old grid to the new one, because the new grid may not have the same number

of nodes and connectivity. Grid deformation, on the other hand, will inherently preserve

the original grid connectivity, hence ensuring the consistency of any grid-induced errors

in the flow solution (i.e., due to discretisation error) between the initial and deformed

grid, provided that a consistent grid quality is maintained. It also ensures continuity

in the sensitivity derivatives. The robustness and efficiency of the grid deformation

tool is particularly important in gradient-based optimisation because any changes in

the grid quality can have significant effects on these derivatives. Most importantly,

grid movement algorithms have the potential to significantly reduce engineering cost by

allowing the design process to be automated.

Grid deformation techniques can be generally classified into two main categories based

on either physical analogy or interpolation. A physical analogy approach, normally

requiring connectivity information of the grid, uses certain physics processes to propagate

the grid perturbation from the boundary to the entire computational domain, whereas

an interpolation approach directly obtains the displacement or the new coordinates of

each grid node by applying some interpolation schemes. Some representative methods

of both types are introduced and discussed herein.

Transfinite interpolation

Transfinite interpolation (TFI) was first described by Gordon and Hall [150] in 1973,

and it has the advantage of providing complete conformity to boundaries in the physical

domain. In the early 1980s, Eriksson [151] applied TFI to grid generation for CFD.

TFI is essentially a multivariate interpolation procedure, and it can efficiently generate

the grid from the boundaries to the interior region of the domain. The choice of blend-

ing functions has a considerable influence on the quality and robustness of the grid.
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Soni [152] has proposed a set of blending functions based on arc length that is very

effective and robust. By the mid-1990s, the algebraic grid generation technique based

on TFI had been widely used for grid regeneration and deformation in ASO [153] and

MDO [154]. A number of variations of TFI have also been proposed to deal with com-

plicated geometric perturbations. However, the efficiency and robustness of this method

are limited to applications with structured grids.

Spring analogy method

The spring analogy method, firstly presented by Batina [155], models the grid as a net-

work of linear springs and solves the system of static equilibrium equations to determine

the nodal displacements due to a given boundary movement. The spring stiffness is

assumed to be inversely proportional to the edge length. This approach has been em-

ployed for aerodynamic optimisation [156]. Although it is found to be fairly efficient and

applicable to unstructured or structured grids, the spring analogy method can produce

negative volumes for grids with large deformations [157]. Farhat et al. [158] improved

the robustness of the method by incorporating nonlinear torsional springs. This was

later extended to 3D applications [159].

Another approach is to model the grid as a continuum of elastic solid whose proper-

ties are defined by the modulus of elasticity and the Poisson’s ratio. Nodal movements

are governed by the equations of linear elasticity, and grid distortion can be controlled

through the elements in the elastic matrix. Johnson and Tezduyar [160] demonstrated

that this approach can be used to achieve robust grid movement, even for large shape

changes. Nielsen and Anderson [157] extended the linear elasticity theory by assuming

an isotropic material and using a spatially varying value of Poisson’s ratio. The approach

was also found to be more robust than the spring analogy method, although relatively

inefficient due to that the equations of linear elasticity are typically less diagonally dom-

inant than the spring analogy equations. Figure 2.7 shows the grids resulting from the

two deformation methods, and illustrates the advantage of elasticity method over the

spring analogy method. The linear elasticity approach has been used successfully for

aerodynamic optimisation [157, 161]. Dwight [162] further augmented the robustness of

this method by modifying the equations of linear elasticity. This approach was imple-

mented in the SU2 code and was thus employed in this work. The governing equations

and more details of this approach can be referred to Section 3.2.7.

It should be noted that all the physical analogy based methods for grid deformation

require iterative solution of the governing equations to determine the grid displacements

for every design step. Hence, these methods tend to be more computationally expensive

than the interpolation methods.

Delaunay graph mapping
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(a) (b) (c)

Figure 2.7: Near-field view of grids with flap deflection on a multi-element aero-
foil [157]. (a) Baseline grid; (b) Grid after applying distance function/tension-
spring analogy method; (c) Grid after applying modified linear elasticity
method.

In 2006, Liu et al. [82] introduced an algebraic grid deformation method based on DGM.

The proposed DGM method can be viewed as a fast interpolation scheme, and it maps

the grid of any topology to a Delaunay graph, which can be moved easily with the

geometric shape perturbation. The DGM method is comparable to the spring analogy

method in robustness but surpasses it in efficiency, as it is non-iterative and uses signif-

icantly less memory. On the other hand, compared to the TFI technique that is limited

to structured grids, the DGM method is independent of the grid topology and can be

applied to arbitrary types of grids. Despite the efficiency and flexibility of the DGM

approach, the grid quality near the boundaries may deteriorate after large deformation.

In particular, if the deformation involves large rotation, the Delaunay graph may lose

its topology and thus become invalid. To address this problem, Wang et al. [83] de-

veloped a novel technique based on a combination of the DGM method with the RBF

method. The new algorithm maintains the high efficiency of the original DGM method

and also improves the grid quality near the boundaries, which is crucial for applications

with high Reynolds number. By separating interpolations for translation and rotation

motion, the proposed method significantly improves the robustness of the original DGM

method, especially for cases with large rotational deformation. More recently, Wang

et al. [84] presented a new grid deformation method based on the combination of the

DGM method and the inverse distance weighting interpolation. Similar as the approach

in Reference [83], this approach can also preserve the near-wall grid quality after large

rotation deformation while maintaining the efficiency of the DGM method.

Radial basis function

RBF interpolation is a popular tool for general multivariate interpolation and is able to

operate on scattered data sets in any multi-dimensional space. RBF methods have been

used across a wide variety of disciplines because of its flexibility and generality. Recently

there has been interest in using RBF interpolation for grid deformation [163, 164] owing
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to its robustness and ability to preserve grid quality. Moreover, RBF methods do not

require grid connectivity information and hence are independent of grid types. However,

the RBF method in its full form is prohibitively expensive for grids with a large size,

as the computational cost scales with the number of control points (i.e., the size of the

surface grid). Thus, the full RBF method is impractical to be implemented and used,

particularly for 3D applications such as wing.

To address this problem, Wang et al. [83] developed a hybrid method combining the ad-

vantages of the efficiency of DGM scheme and the grid quality control from RBF interpo-

lation. Alternatively, the efficiency of RBF interpolation can be improved by using ap-

proximation techniques with data reduction algorithms. Jakobsson and Amoignon [165]

tackled the size of the problem by applying a simple grid coarsening method, in which

the control points were reduced to a small, evenly distributed subset of the surface

points. Rendall and Allen [166] proposed an approximate RBF method in which only a

subset of the surface grid points were used as control points and greedy algorithms were

employed to minimise the interpolation error for non-control points. This method was

extended [167] by adding a correction step to recover exact surface displacements for

all other points once the selected surface points have been moved. Moreover, a number

of further improvements were proposed and a series of different data reduction schemes

were developed [168, 169, 170, 171], primarily focusing on efficient point selection al-

gorithms and alternative error correction methods. More recently, Kedward et al. [75]

presented a multi-scale RBF interpolation method, in which all surface points are used

to ensure an exact surface representation, but only a single interpolation is required to be

built. The multi-scale method outperforms the previous RBF method in Reference [166]

in terms of both grid quality and efficiency; and the multi-scale point selection is based

purely on geometry, and hence is decoupled from deformation.

The RBF interpolation method for grid deformation has been used in ASO applications.

Jakobsson and Amoignon [165] performed gradient-based ASO of the ONERA M6 wing

and analysed the grid quality and interpolation error with respect to the parameters

of the RBF method. Zhu [141] studied a series of 2D and 3D optimisation problems

using RBF grid deformation method that is embedded in DLR-TAU solver. Poirier

and Nadarajah [171] demonstrated the proposed RBF-based grid deformation scheme

through several 3D cases within an adjoint-based ASO framework, in which the grid

sensitivity is based on a combination of both the primary and secondary grid movement

algorithms. In addition, Morris et al. [68, 69] and Allen and Rendall [172] presented an

integrated approach for geometry parameterisation, surface control, and grid deforma-

tion; and they also applied this approach to shape optimisation of aerofoils [68], aircraft

wings [69], and rotor blades [172]. Poole et al. [125] further demonstrated this unified

approach through investigating ADODG benchmark problems.



32 Chapter 2 Literature Review

2.2.4 Optimisation algorithm

The optimisation of any engineering design problem usually begins with an initial de-

sign point and is then driven by an optimisation algorithm to find the optimum point.

Generally, the numerical optimisation algorithms can be classified into two categories:

gradient-based and gradient-free, alternatively deterministic and stochastic. Both kinds

of optimisation algorithms have been extensively used within the field of ASO; how-

ever, gradient-based approaches are more popular compared to gradient-free methods,

primarily due to that gradient-based algorithms show fast convergence and require a

reasonably low number of function evaluations (i.e., CFD simulations).

Recently, an open-source software package, pyOpt [173], was developed to formulate

and solve nonlinear constrained optimisation problems in an efficient, reusable, and

portable manner. A range of optimisation algorithms, including both gradient-based

and gradient-free methods, are integrated in pyOpt and can be accessed through a

common interface. This flexible framework serves as a platform for practitioners and

developers to solve their optimisation problems or develop and benchmark their own

optimisation algorithms.

In this section, the commonly-used optimisation algorithms of both types are presented

and discussed, although the gradient-based algorithms are used in this thesis.

2.2.4.1 Gradient-based algorithms

For large numbers of variables, gradient-based methods are usually the most efficient

optimisation algorithms. This class of methods uses the gradient (also known as sensi-

tivity) of the objective function to determine the most promising search direction. Most

algorithms for unconstrained gradient-based optimisation can be described as shown in

Algorithm 1. The outer loop represents the major iterations (i.e., design iterations).

The design variables are updated at each major iteration k using

xk+1 = xk + αkpk︸ ︷︷ ︸
∆xk

(2.1)

where pk is the search direction for the k-th iteration, and αk is the accepted step

length from the line search. It is worth noting that the line search usually involves

multiple iterations that do not count towards the major iterations. The two iterative

loops represent the two subproblems in this type of algorithm: 1) the computation of

a search direction pk; and 2) the search for an acceptable step size αk. The various

types of gradient-based algorithms are classified based on the method that is used for

computing the search direction (the first subproblem).
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Algorithm 1 General gradient-based optimisation algorithm for smooth functions.

1: Input: Initial guess, x0

2: k ⇐ 0
3: while Not converged do
4: Compute a search direction pk
5: Find a step length αk, such that f(xk + αkpk) < f(xk)
6: Update the design variables: xk+1 ⇐ xk + αkpk
7: k ⇐ k + 1
8: end while
9: Output: Optimum, x∗

With respect to unconstrained optimisation, one of the most basic algorithms is the

steepest descent method, which uses the gradient vector at xk as the search direction

for the major iteration k. Although a substantial decrease may be observed in the first

few iterations, the method “zigzags” in the design space and is usually very slow to

converge to a local minimum. A small modification to the steepest descent method is

the conjugate gradient method, which computes the descent direction by adding a con-

tribution from the previous direction. Compared to steepest descent method, conjugate

gradient method takes into account the history of the gradients and performs much bet-

ter in terms of convergence. Unlike these methods that use first-order information to

obtain a local model of the function, Newton’s method uses a second-order Taylor series

expansion of the function about the current design point (i.e., a quadratic model). For a

general nonlinear function, Newton’s method converges quadratically if x0 is sufficiently

close to x∗ and the Hessian matrix (containing the second-order partial derivatives) is

positive definite at x∗. As an alternative to Newton’s method, quasi-Newton methods

use first-order information only, but build second-order information, i.e., an approximate

Hessian, based on the sequence of function values and gradients from previous iterations.

The various quasi-Newton methods differ in how they update the approximate Hessian,

and the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method has shown to be the most

effective and popular quasi-Newton method. One of the primary advantages of quasi-

Newton methods over Newton’s method is that the Hessian matrix does not need to be

inverted, hence significantly reducing the computational cost.

Trust region methods, on the other hand, can be viewed as a reversal of the rules

in the line search approaches. A maximum step size (i.e., the size of trust region)

is firstly determined, and an approximate minimisation is then performed within that

region. This minimisation ultimately allows us to choose the direction and step size

simultaneously. Trust region methods generally require fewer iterations than quasi-

Newton methods but each iteration is more computationally expensive because of the

need for at least one matrix factorisation. Compared to line search methods, trust region

methods are more strongly dependent on accurate Hessians.
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In most real world, engineering design optimisation problems are very rarely uncon-

strained. Moreover, the constraints that appear in these problems are typically non-

linear. The simplest method is to try and eliminate constraints by reconstructing the

optimisation problem, i.e., transforming design variables using constraints. A more di-

rect approach to dealing with constraints is by adding a penalty function to the objective

function that depends on the value of the constraints. There are two main types of pe-

nalisation methods: exterior penalty functions, which impose a penalty for violation of

constraints; and interior penalty functions, which impose a penalty for approaching the

boundary of an inequality constraint. However, more efficient approaches involve solving

the Karush–Kuhn–Tucker (KKT) conditions [174, 175], which are the necessary condi-

tions for the optimum of a constrained problem. Allowing for inequality constraints, the

KKT approach to nonlinear programming 5 generalises the method of Lagrange multi-

pliers, which allows only equality constraints. Sequential quadratic programming (SQP)

is one of the most effective methods for local minimisation of nonlinearly-constrained

smooth problems. The SQP methods solve a sequence of subproblems, each of which

optimises a quadratic model of the objective function subject to a linearisation of the

constraints. To some extent, SQP represents the application of Newton’s method to the

KKT optimality conditions.

SQP methods have been implemented in numerous software packages (SNOPT, SLSQP,

NLPQL, FSQP, etc.) and are widely adopted within the ASO community. SNOPT [176]

is a sparse nonlinear optimiser that is particularly useful for solving large-scale con-

strained problems with smooth objective functions and constraints. The algorithm con-

sists of a SQP algorithm that uses a smooth augmented Lagrangian merit function

and approximates the Hessian using a limited-memory quasi-Newton method. SNOPT

has been applied successfully to a variety of optimisations, including aerofoils [57, 143],

wings [30, 54], and full aircraft [55, 65]. SLSQP [177] optimiser is a sequential least

squares programming algorithm which uses the Han–Powell quasi-Newton method with

a BFGS update of the Hessian matrix. SLSQP is available in the open-source pyOpt

and SciPy 6 package, and is also the default optimiser in the SU2 framework. In this

work, SLSQP is used as the gradient-based optimiser to produce optimisation results

for 2D [123] and 3D [124] aerodynamic shapes.

For gradient-based optimisation, efficient and accurate gradient evaluation is essential

to ensure robust and efficient convergence, especially for problems with large numbers of

constraints. Martins and Hwang [178] presented an overview of all the existing methods

for computing the derivatives of computational models within a unified mathematical

framework. Some representative and commonly-used approaches are briefly introduced

herein.

5In mathematics, nonlinear programming is the process of solving an optimisation problem where
some of the constraints or the objective function are nonlinear.

6https://www.scipy.org/ [retrieved 2019]

https://www.scipy.org/
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The most straightforward method of computing gradients is by means of finite differ-

ences. Although the FDM has the advantage of simple implementation, it has limited

accuracy due to truncation error for large step sizes and subtractive cancellation error

for small step sizes. Additionally, the time required is long when compared with the flow

solution, and the total time scales linearly with the number of design variables. The

subtractive cancellation errors can be eliminated by using the complex step method,

which computes derivatives of real functions using complex variables. The theory for

this method was laid out by Squire and Trapp [179], and its implementation was dis-

cussed by Martins et al. [180]. It allows very small step sizes to be used, thereby almost

eliminating truncation error. However, the gradient calculation time is similar to that

of finite differences.

Algorithmic differentiation (AD), also known as automatic differentiation or computa-

tional differentiation, is a well-known method based on the systematic application of the

differentiation chain rule to computer programs [181]. This method can easily produce

differentiated codes since the implementation can be done automatically in either the

forward or reverse modes. In the forward mode, the differentiated code must be run

once for each design variable; but in the reverse mode, the code must be run once for

each objective, and so it has a run time that is independent of the number of design

variables. The main advantage of AD is that it can provide derivatives with accuracy

of machine precision. However, the speed and accuracy advantages of AD, especially

in the reverse mode, are offset by a very large memory requirement: the intermediate

values of each variable must be stored.

There are two main approaches to implementing AD. The source code transformation

approach intersperses lines of code that compute the derivatives of the original code,

whereas in the operator overloading approach, the original code does not change, but

the variable types and the operations are redefined. In addition, there are a variety of

AD tools available for most programming languages. They have been extensively used

to obtain the gradients in numerical optimisation. For instance, Jones et al. [90] and

Müller et al. [91] developed discrete adjoint CFD solvers using the AD tool Tapenade 7,

and these solvers were then applied to aerodynamic optimisation of multiple geometric

shapes [94, 95, 96].

Alternatively, the gradient can be computed analytically. Analytic methods are the

most accurate and efficient methods available for computing derivatives; however, they

are much more involved than the other methods, as they require a detailed knowledge

of the computational model and a long implementation time. There are two forms

of the analytic method: the direct and the adjoint forms. As will be shown later in

Section 3.2.5, the computational cost when using the adjoint method is independent of

the number of design variables, and instead proportional to the number of quantities

of interest. Therefore, for practical engineering problems with large numbers of design

7https://www-sop.inria.fr/tropics/tapenade.html [retrieved 2019]

https://www-sop.inria.fr/tropics/tapenade.html
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variables, the adjoint method is much more efficient than the direct method and hence is

preferable to be used. Moreover, the adjoint method is able to compute gradients with

a cost that is comparable to the cost of solving the corresponding model.

Adjoint methods have been known and used for over three decades. They were originally

introduced to ASO by Pironneau [182]. The method was then extended by Jameson to

perform aerofoil shape optimisation [26], and since then, it has been extended to 3D prob-

lems and has been widely adopted within the community, leading to applications such as

ASO of complete aircraft configurations [64, 65] and aerostructural optimisation [41, 43].

The adjoint method has also been generalised for multidisciplinary systems [40]. Con-

ventionally, adjoint methods are divided into continuous and discrete. In the continuous

adjoint approach, the adjoint equations are derived from the governing PDEs and then

subsequently discretised, whereas in the discrete approach, the adjoint equations are

directly derived from the discretised governing equations. Both continuous and discrete

adjoint methods have their own merits. For instance, the continuous approach minimises

the memory requirements and the CPU cost per iteration, whereas the discrete approach

enables a more straightforward process for code development. Regarding the discrete

approach, Giles et al. [183] presented a number of algorithm developments concerned

with the formulation and solution of adjoint Euler and Navier–Stokes equations. In

the SU2 framework, the adjoint method is used to provide gradient information, which

can be used for optimal shape design [184], uncertainty quantification (UQ) [185], and

goal-oriented adaptive grid refinement [121]. In this work, gradient-based aerodynamic

optimisations are performed for both 2D aerofoil [123] and 3D wing [124] geometries

with the aid of the adjoint capability within the SU2 suite.

In general, gradient-based algorithms are efficient at finding local minima for high-

dimensional, nonlinearly-constrained convex problems; however, most gradient-based

algorithms have problems dealing with noisy and discontinuous functions, and they are

unlikely to locate the global optimum for multi-modal problems unless the optimisation

is started in the region of that optimum. Some approaches can be used to find the global

optimal solution in the complete design space. One option is to choose multiple starting

points for the gradient-based optimiser. Alternatively, the gradient-free optimisers can

be used, which are discussed in the following section.

2.2.4.2 Gradient-free algorithms

Generally, gradient-free algorithms rely purely on the evaluation of the objective function

and do not require the computation and use of gradient information. Therefore, the key

strength of gradient-free methods is their ability to solve problems that are difficult to

solve using gradient-based methods. Many gradient-free algorithms mimic mechanisms

or behaviour observed in nature or use heuristics, such as evolution in genetic algorithm

(GA) [186], cooling in simulated annealing [187], ant colony food searching in ant colony
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optimisation [188, 189], swarm behaviour in particle swarm optimisation (PSO) [190],

etc. Unlike gradient-based algorithms in a convex search space, most gradient-free algo-

rithms are designed as global optimisers, and they are able to find multiple local optima

while searching for the global optimum. Of the various gradient-free algorithms that

have been developed, some representative and commonly-used algorithms are briefly

introduced and discussed as follows.

Nelder–Mead simplex

The simplex method of Nelder and Mead [191], also known as nonlinear simplex, per-

forms a search in n-dimensional space using heuristic ideas. A simplex is a structure

in n-dimensional space formed by n + 1 points that are not on the same plane. For

example, a triangle is a 2D simplex, and a tetrahedron forms a simplex in 3D space.

The Nelder–Mead algorithm starts with a simplex (n+ 1 sets of design variables x) and

then modifies the simplex at each iteration using four simple operations (as illustrated

in Figure 2.8): reflection, expansion, outside/inside contraction, and shrinking. Each of

these operations generates a new point (or points in the case of shrinking). The sequence

of operations performed in one iteration depends on the value of the objective at the

new point relative to the other key points. The algorithm moves the simplex in the

design space and automatically shrinks the size of simplex, which can be used as the

convergence criterion. Note that the simplex method is a local search algorithm.

Figure 2.8: Operations performed on the simplex in Nelder–Mead’s algorithm
for n = 2. (Source: [2])

The main strengths of the simplex method are that it requires no derivatives to be

computed and it does not require the objective function to be smooth. It has been

successfully used in ASO, such as the work done by Widhalm et al. [192]. However, the

weakness is that it is only efficient for problems with a small number of design variables;

otherwise the computational cost for constructing the initial simplex model is expensive,

and the convergence becomes increasingly difficult.

Genetic algorithms
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The GA is one of the most popular gradient-free optimisation methodologies. Initially

developed by Holland [186], GAs are inspired by the process of natural selection, whereby

desirable or advantageous traits become more common as a population reproduces and

undesirable or disadvantageous traits die out. Like other stochastic optimisation tech-

niques, GAs employ a population which gradually evolves over the course of a number

of generations. In the search for a global optimum, GAs are based on three essential

components:

1. Selection: survival of the fittest;

2. Crossover: reproduction processes where genetic traits are propagated;

3. Mutation: random operation performed to change the genetic information.

For every component, many different methods and strategies exist. For instance, the

popular selection approaches include elitism, tournament selection, and roulette wheel

selection, and they have the same idea that individuals with higher fitness have higher

chances of being selected into the mating pool. Furthermore, although crossover and

reproduction effectively recombine the existing information, some useful genetic informa-

tion might occasionally be lost. Therefore, the mutation operation is needed to protect

against such irrecoverable loss, and it also introduces additional diversity into the pop-

ulation. Generally, the performance of GAs is governed by four important factors: the

size of the population, the probability of crossover, the probability of mutation, and the

number of generations that the algorithm is run for. The selection of appropriate values

of these parameters greatly affects the convergence of an optimisation. In addition, as

GAs are probabilistic methods (due to the initial population and mutation), it is crucial

to run the optimisation problem multiple times when studying its characteristics.

GAs are radically different from the gradient-based methods. Instead of starting from

one point at a time and stepping to a new point for each iteration, GAs attempt to

move a population of members away from the undesirable regions of the design space and

towards the optimum. Compared to the gradient-based algorithms, the main advantages

of GAs are:

• The basic algorithm works on a coding of the design variables (e.g. binary bit

string representation) instead of the design variables themselves; consequently, the

algorithm can handle mixed continuous, integer, and discrete design variables.

• The population can cover a large range of design space and thus explore multiple

local minima simultaneously; as a result, the algorithm increases the likelihood of

finding the global optimum by avoiding getting stuck in local minima.

• The implementation is straightforward and easily parallelised.
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• GAs can easily be used for multi-objective optimisation. As opposed to gradient-

based algorithms that perform multi-objective optimisation through a composite

weighted function or by making of the objectives a constraint, GAs determine the

fittest population members using the concept of dominance and rank. A Pareto set

is generated by collecting the solutions of rank one. The graphical representation

of a Pareto set is called a Pareto front, an example of which is shown in Figure 2.9.

Figure 2.9: An example of Pareto front in aircraft design. (Source: [2])

Despite the merits mentioned above, a typical GA has some drawbacks as well. The main

issue is that the GAs are computationally expensive when compared to gradient-based

algorithms, especially for problems with large numbers of design variables. The GAs

may also suffer from poor exploitation capabilities and premature convergence. Poor

exploitation is primarily due to the nature of the encoding for population members,

which may prohibit the necessary changes to the variables. Premature convergence can

occur due to a lack of population diversity, but can be overcome by adjusting the degree

and probability of mutation.

GAs have been successfully applied to ASO problems because of its ease of use, broad

applicability, and global perspective. The applications cover a range of topics, including

aerofoils [193, 194], wings [194, 195], rotor blades [196], and rocket turbo pumps [197],

etc. There are also a number of GA variants such as NSGA-II [198], and the reader is

referred to Reference [114] for more discussions.

As a global search method, GAs usually locate the general region of the global optimum

but not the precise answer. GAs also exhibit a slow convergence due to the lack of
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gradient information. In order to increase the accuracy of the optimum as well as

improve the efficiency of optimisation, one common approach is to hybridise a stochastic

GA with a deterministic gradient-based method or other local search techniques. Such

examples of the hybrid strategy exist in the literature with conjugate gradient [199],

quasi-Newton [200], and Nelder–Mead simplex [201] algorithms all employed. All of

these hybrid strategies work on the same principle: the GA is used to locate regions of

optimal design and the local search method is used to further exploit these regions. The

only differences between these strategies are the local search method used and when it is

involved during the course of an optimisation. Some hybrid strategies use a local search

method to improve on the best member of population at each generation [200]; while

others start from the best point of the final generation [201].

Particle swarm optimisation

PSO is a stochastic, population-based optimisation method. It was originally developed

by Eberhart and Kennedy [190] after they adopted simulations of simple social behaviour

for use in optimisation. Like the GA, the PSO is also inspired by nature; though instead

of modelling the evolutionary processes, the PSO models the collective behaviour of

a population of animals, such as birds, fish, and insects. The basic PSO formulation

contains the following two core points:

• A swarm of agents (or particles) represents a group of potential solutions and

moves in n-dimensional design space looking for the best solution.

• Each agent adjusts its movement according to the effects of cognitivism (self expe-

rience) and sociocognition (social interaction). In other words, each agent remem-

bers the location where it found its best result so far, and it exchanges information

with the swarm about the location where the swarm has found the best result so

far.

Mathematically, PSO can be viewed as an iterative process. As shown in Equation (2.2),

at each time step a particle adjusts its velocity with an inertial component (a continu-

ation of its previous direction), a weighted random component toward its personal best

location, and a weighted random component toward the swarm’s best location.

vik+1 = wvik + c1r1(pik − xik) + c2r2(pgk − x
i
k) (2.2)

With the new velocity, particle i simply updates its position as

xik+1 = xik + vik+1 (2.3)

Note that the artificial time dependence ∆t is eliminated for convenience. The parame-

ters in the equations are explained as follows:
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• pik is particle i’s best position so far, and pgk is the swarm’s best particle position

so far.

• c1 and c2 are the cognitive parameter (confidence in itself) and social parameter

(confidence in the swarm), respectively. Both parameters are in the interval [0, 2]

and typically close to 2.

• w is the inertia parameter in the interval [0, 1.2]; typical inertial coefficients are

between 0.8 and 1.2. A lower value of w dampens the particle’s inertia and tends

toward faster convergence to a minimum. A higher value of w accelerates the par-

ticle’s inertia and tends toward increased exploration to potentially help discover

multiple minima.

• r1 and r2 are random numbers in the interval [0, 1].

Compared to other global optimisation approaches, PSO has several outstanding char-

acteristics. Firstly, PSO is a simple algorithm and is easy to implement. Secondly, PSO

is still a population-based algorithm; however, it works well with few particles (usu-

ally 10 to 40) and directly updates the design variables, unlike using the generations in

the evolutionary approaches. Thirdly, PSO has both global and local search behaviour

that can be directly adjusted as desired using the cognitive c1 and social c2 parame-

ters. Moreover, PSO allows for convergence balance thorough the inertial weight factor

w. In addition, the basic PSO algorithm is inherently an unconstrained optimiser and

can include constraints through the use of penalty methods or augmented Lagrangian

function.

PSO has grown in popularity since its inception by Eberhart and Kennedy. Based on

the original formulation, Shi and Eberhart [202, 203] further improved the performance

of the algorithm by adjusting parameters in Equation (2.2). PSO is one of the most

widely-used agent-based optimisation algorithms, and has been applied in MDO of an

aircraft wing [204] and the conceptual design of aircraft [205]. In the case of aerofoil

optimisation, PSO outperforms evolutionary algorithms in terms of efficiency [206] and

exploration ability [207], indicating that the PSO algorithm designed for continuous

optimisation is more effective.

Although gradient-free optimisation methods can be relied upon to reach a global opti-

mum, they typically require a very large number of evaluations of the objective function

to do so. In the scenario of ASO, the objective function evaluation usually involves a

high-fidelity CFD simulation, and the computational time required by a gradient-free

method can be much higher than that of a gradient-based approach. Even with the

parallel computing capability it may be infeasible to use gradient-free method of opti-

misation for some complex problems.
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Surrogate modelling [97], also known as response surface modelling or meta-modelling,

aims to facilitate optimisation but with a reduced number of objective function evalua-

tions. It can be viewed as a nonlinear inverse problem with the purpose of determining

a continuous function that relates the design variables to output responses from limited

data. The surrogate-assisted aerodynamic optimisation alleviates the computational

burden by defining a simplified mathematical relationship allowing for fewer numerical

simulations to be performed. In recent years, numerous surrogate models have been

developed, including polynomial response surface model (RSM) [208], kriging [209, 210],

RBFs [211], neural network [212], support vector regression [213], and polynomial chaos

expansion [214], etc. Queipo et al. [215] and Forrester and Keane [115] provided com-

prehensive overview and discussions of the surrogate modelling methods and their use in

optimisation strategies. In terms of generating initial sample points in the design space,

Giunta et al. [216] provided an overview of modern design of experiments (DoE) tech-

niques (such as quasi-Monte Carlo sampling, Latin hypercube sampling, and orthogonal

array sampling) that can be applied in computational engineering design studies.

Kriging is a statistical interpolation method proposed by Krige [209] in 1951, and was

first used by geologists to estimate mineral concentrations within a particular region. It

has since been adapted by Sacks et al. [210] for use in the creation of surrogate models of

deterministic computational experiments. Among the various types of surrogate mod-

elling techniques, the kriging method has gained increasing popularity due to its unique

ability to model complicated responses based on sampled data whilst also providing an

error estimation (indicating the uncertainty of prediction). Since its initial application

to surrogate modelling, kriging has been successfully applied to a variety of engineering

problems. Meanwhile, there have been further developments with the aim of improving

the efficiency and accuracy of the kriging method. Representative examples of such ad-

vancements include gradient-enhanced kriging [217, 218, 219], cokriging [101, 102, 220],

and hierarchical kriging [221]. The reader is referred to Reference [117, 221] for more

discussions of the kriging method.

The use of surrogate models has helped to reduce the computational cost of optimisa-

tion. However, they only work well with a small number of variables. This is because

the sample size required to accurately construct the surrogate model is often exponential

to the dimensionality of the design space. For 3D wing or more complex problems with

large numbers of design variables, a significant amount of sample points are therefore

needed to represent the high-dimensional design space, and the high-fidelity simulations

at these sample points would pose a computational challenge. As the dimensionality

of a design space increases so does the complexity of the optimisation. Eventually the

surrogate itself becomes intractable and the surrogate-based optimisation falls into the

so-called “curse of dimensionality”. Moreover, in a real world engineering environment,

there are limited computational resources and time constraints due to the integration

of optimisation within a much larger design process. The time limit may have a serious
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impact on the performance of the resulting design. Given a restricted simulation budget,

the computational expense of generating the surrogate model is increased as the dimen-

sionality is enlarged; as a result, the number of available evaluations is reduced and

may become insufficient to optimise the problem effectively. The insufficiency to fully

explore the expanded design space would counteract the increased flexibility of shape

parameterisation. Consequently, the optimisation with an increased dimensionality may

produce poorer designs than at lower dimensions even though the increased flexibility

can theoretically produce a better design. The issue of dimensionality remains to be

addressed to improve the efficiency of surrogate-based optimisation.

2.2.5 Section summary

In this section, a review is provided regarding the constitutive computational techniques

within an ASO framework. An aerodynamic solver is able to model the flow physics

around an aerodynamic body. Over the past decades, a number of aerodynamic codes

and software with increasing level of fidelity have been developed in the research com-

munity. Recently the efficient Q3D aerodynamic approach has also gained popularity

to solve 3D wing problems. Geometry parameterisation has a significant impact on the

design space and hence the optimisation result. The need for flexible, robust, and effi-

cient parameterisation methods has motivated researchers to develop various approaches

originating from different concepts. Once a geometry has been perturbed, the surface

and volume grids must also be moved or updated. An efficient and robust grid de-

formation scheme is essential for aerodynamic optimisation. Various grid deformation

techniques have been proposed, based on either interpolation or physical analogy. An

optimiser updates the design variables and drives the design loop toward the optimum.

For gradient-based optimisation algorithms, adjoint method is able to compute the gra-

dients accurately and efficiently, particularly for problems with large numbers of design

variables; for gradient-free optimisation methods, the use of surrogate modelling such as

kriging can significantly reduce the computational cost.

2.3 Sensitivity assessment

Sensitivity analysis is the study of how the outputs of a model change in response to

changes in its inputs. It plays a key role in gradient-based optimisation, UQ, error analy-

sis, and computational model-assisted decision making. In the engineering literature, the

term “sensitivity analysis” is often used to refer to the computation of derivatives [178].

In this context, we use “sensitivity assessment” to distinguish from sensitivity analysis,

and to refer to the influence of a specific parameter (or approach) on the optimal solution

obtained from ASO.
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As discussed in the previous section, there are a variety of methods and techniques for all

of the constituent parts of an ASO framework. Each of these methods has its own merits

and drawbacks, and may be suitable for a particular type of problems. Due to this fact,

the quality and applicability of results gained by numerical optimisation are inherently

dependent on a large range of factors, such as the fidelity of the analysis tool used,

the flexibility of the shape parameterisation, and the complexity of the optimisation

scheme. It is therefore necessary to isolate the contribution of a single component and

investigate the influence of different approaches on the optimisation result. Moreover,

it is also crucial to assess the sensitivity of the optimal solution with respect to key

parameters of the optimisation framework. Much effort has been made in the previous

studies toward the sensitivity assessment, and a brief review is provided in this section.

Geometry parameterisation is undoubtedly one of the most critical factors that have a

large impact on the optimal solution. Song and Keane [222] studied the effect of two

parameterisation approaches, B-spline and orthogonal basis function, on inverse fitting

of different aerofoils. It was shown that the B-spline approach produced results with

higher accuracy while the basic function approach was more efficient. Castonguay and

Nadarajah [137] compared using grid points, B-spline curves, HHBFs, and the PARSEC

method for aerofoil design. For a viscous transonic inverse design case, grid points and

B-spline curves provided higher level of accuracy. B-spline curves and HHBFs approach

showed comparable performance for drag minimisation of the same case. A similar

study was presented by Mousavi et al. [138] for a wing comparing grid points, B-spline

surfaces, and CST. B-spline surfaces and grid points outperformed the CST method

for both the inviscid transonic inverse design and drag minimisation studies. Amoiralis

and Nikolos [223] conducted a comparison between FFD and B-spline surface control

for a series of inverse design optimisations. FFD was found to outperform B-spline

approach for a comparable number of design variables. However, the optimisations

conducted were 2D aerofoil inverse problems and used the low-fidelity XFOIL solver.

Sripawadkul et al. [224] employed several desirable metrics to compare five aerofoil pa-

rameterisation techniques: Ferguson’s curves, HHBFs, B-splines, PARSEC, and CST.

The results suggested that the metrics can provide a basis for objective comparison,

allowing the designers to select the proper parameterisation according to the problem at

hand. Zhu et al. [225] investigated aerofoil inverse fitting problems using PARSEC, CST,

and MACROS dimension-reduction method. It was shown that MACROS dimension-

reduction method produced results with relatively higher accuracy while the CST and

PARSEC method provided a design space with higher flexibility.

More recently, Masters et al. [226] investigated the influence of shape parameterisation

and dimensionality on the optimisation of a benchmark problem described by ADODG

(Case 1: drag minimisation of the NACA0012 aerofoil in inviscid transonic flow). The

six parameterisation methods used were: Bézier surface FFD, B-splines, CST, HHBFs, a

RBF domain-element method, and SVD. It was found that the ability to ensure smooth
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geometries is a key requirement for the robustness and fast convergence of the optimi-

sations, and the B-spline approach was shown to achieve the lowest drag. The same

methods, plus PARSEC, were compared by Masters et al. [118] for geometric shape

recovery of a dataset of more than 2000 aerofoils. The results varied depending on

the error-tolerance values used, but considering a range of numbers of design variables,

the SVD approach provided the most efficient design-space coverage, particularly when

a tighter tolerance was used. Lee et al. [56] compared two geometry control methods,

namely B-spline surface and FFD, with respect to their effectiveness for ASO. In general,

both methods performed equally well for a range of challenging optimisation problems.

The results suggested that B-spline surface approach is better suited for simple geome-

tries, such as wings, whereas FFD is advantageous for more complex geometries, such

as unconventional aircraft, and is particularly well suited to a multi-start algorithm and

adaptive geometry control strategies. Zhang et al. [96] employed both B-spline and

NURBS parameterisation to perform ASO of the ONERA M6 wing in transonic inviscid

flow. The results showed that NURBS outperformed B-spline approach with fewer con-

trol points and produced a smoother shape with smaller variation of curvature, which

is beneficial for aerodynamic performance.

Apart from shape parameterisation, the other factors have also been shown to have a

significant impact on the optimisation. LeDoux et al. [227] studied several ADODG test

cases using various optimisation frameworks. The resulting optimised and associated

baseline geometries were cross-analysed by four well-validated CFD codes. It was shown

that, for the same geometry, different drag counts were obtained by those flow solvers.

Poole et al. [125, 228] investigated 2D aerofoil optimisation problems using two optimis-

ers, namely a gravitational search algorithm and a feasible SQP (FSQP) algorithm. The

global gravitational search algorithm was shown to outperform the gradient-based FSQP

algorithm for almost all the cases tested. Regarding the ADODG Case 1, the best solu-

tion with lowest drag was found by using a hybrid approach, where the gradient-based

method was run on the results obtained from the gradient-free optimisation. Lyu et

al. [195] evaluated a series of optimisation algorithms (embedded in pyOpt framework)

for three test cases of increasing complexity, including a multi-dimensional Rosenbrock

function and two wing ASO problems. The majority of the gradient-based optimisers

successfully solved all three test cases, while the gradient-free methods required two or

three orders of magnitude more computational cost when compared to the gradient-

based methods. A similar study was also performed by Yu et al. [229], who applied six

gradient-based algorithms and three gradient-free algorithms to ASO of the CRM wing.

The same findings were observed with the conclusion that gradient-based methods with

adjoint gradients are better suited for large-scale ASO problems. Poole et al. [230] pre-

sented a study of the formulation of the transonic aerofoil optimisation problem and its

effect on the performance over a range of operating conditions. In addition to single-

point and multi-point optimisations, an improved range-based optimisation problem was
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formulated, and it was found to be a more practical approach than drag minimisation

and also more indicative of an industrial design objective.

Given an aerodynamic optimisation framework, one can solve the optimisation problem

and obtain the optimised geometric shape. The optimisation framework typically in-

volves a large number of parameters, and the selection of appropriate values for these

parameters greatly affects the optimisation result. Although many parameters are usu-

ally set-up using rules of thumb and are generally suitable for most cases, however, we

can not guarantee the optimal solution produced is truly optimal for a specific case.

Hence, there is a need to adjust and fine-tune these parameters to gain the best optimi-

sation performance. Currently there are only a few publications regarding this issue. For

instance, Keane [231] showed that, with the appropriate choice of control parameters of

the GA, the convergence and robustness of optimisation can be significantly improved.

Toal et al. [98] assessed the performance of several different tuning strategies for the

hyperparameters of a kriging model, with the purpose of building an effective surro-

gate model of high-fidelity computational simulations. Toal [103] also provided some

guidelines for the construction of a multi-fidelity kriging model. With respect to geome-

try parameterisation, Masters et al. [232] applied a variety of different implementations

to each parameterisation method in an attempt to obtain the best possible results for

geometric shape recovery of a large dataset of aerofoils. However, the implementation

choice employed in this study may not be well-suited for a specific optimisation problem.

There is still the necessity to further quantify the effect of parameter settings in shape

parameterisation on the optimisation result for a particular case.

2.4 Multi-fidelity aerodynamic model

When it comes to 3D wing design, an accurate aerodynamic analysis depends on high-

fidelity CFD models. However, at the early stages of aircraft design, designers rely

heavily on empirical and linear correlations owing to their simplicity and low computa-

tional cost. Moreover, optimisation of an aircraft wing often requires a large number of

repetitive aerodynamic evaluations of different wing configurations, which further pro-

hibits the routine use of the high-fidelity CFD solvers from an industrial viewpoint.

Therefore, it is of great interest to find a medium-fidelity approach, which combines the

advantages from both ends of the fidelity spectrum and thus provides a trade-off between

computational efficiency and accuracy. Additionally, the involvement of physics-based

models into conceptual and preliminary design stages can effectively reduce the number

of design iterations and thus shorten the design cycle.

An interesting approach to calculation of the aerodynamic forces with sufficient accuracy

and efficiency is the so-called Q3D method, which combines 3D inviscid wing data with

2D viscous aerofoil data. The 3D wing data usually comes from the lifting-line theory
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(LLT) or the VLM, whereas the 2D aerofoil data is obtained from a 2D solution of the

Navier–Stokes equations. The resulting Q3D approach is nonlinear because the sectional

flow nonlinearities are obtained from the 2D CFD analysis. As the LLT or the VLM

is inexpensive, the overall cost of a Q3D analysis is comparable to that of a 2D CFD

analysis, which makes the Q3D method attractive for use in early phases of aircraft

design and optimisation.

Various applications of the Q3D approach have been done in the past [18, 32, 48, 233,

234]. Van Dam et al. [233] presented a high-lift system design methodology that com-

bines a modified lifting-line method and 2D viscous data. Piperni et al. [18] demon-

strated the deployment of a Q3D method in an industrial environment. More recently,

Mariens et al. [48] developed a Q3D solver for wing drag calculation using the com-

bination of the VLM and a 2D aerofoil analysis tool. The proposed Q3D solver was

then applied by Elham [234] to wing ASO and was further extended to aerostructural

optimisation [32]. It is worth observing that these references rely on a 2D flow analysis

to correct the predictions obtained from a linear 3D aerodynamic model. Flow physics

often requires treating swept wing flows. With regard to a swept wing, the aforemen-

tioned work either neglected the sweep effects or used the Kuchemann correction [235],

where the freestream Mach number is modified by a cosine law to correct 2D solutions.

However, this correction is only valid for incompressible inviscid flows. Thus, inaccu-

racies would arise because experimental results [236] show that the cross-flow effects

strongly influence the boundary layer separation as well as the position of shock waves.

It was also confirmed by numerical results [237] that the 2D data incorporating cross-flow

effects can better predict the maximum lift coefficient and the shock wave position.

The incorporation of sweep effects into 2D aerofoil characteristics results in a model

that is equivalent to an infinite-swept wing (ISW), which assumes a wing of infinite

span with a constant wing sweep angle. Regarding a wing on a typical commercial air-

craft, the solution of the ISW model is valid at a reasonable distance from the fuselage

and wing tip. For ISW, the 3D Navier–Stokes equations can be solved using a 2D for-

mulation augmented by an additional crossflow equation. As illustrated in Figure 2.10,

the inclusion of sweep effects in an ISW model can better capture the physical effects

such as the shock waves and combined streamwise/crossflow trailing-edge boundary-

layer flows. To address this issue, Bourgault et al. [238] developed an approach that

solves 3D flow problems, specifically for the ISW, using an existing 2D solver and 2D

grid. The proposed aerodynamic approach was subsequently coupled into a Q3D solver

for wing aerodynamic analysis [50] and optimisation [239]. The results show good agree-

ment with wind-tunnel experimental data or high-fidelity numerical data for swept wing

configurations; nonetheless, the applications were only limited to steady-state flow prob-

lems.

To address this challenge, Franciolini et al. [240] developed an ISW solver for both steady

and unsteady flow problems. The proposed approach solves the 3D ISW Navier–Stokes
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Figure 2.10: Physical effects captured by ISW RANS solution: i) stagnation re-
gion; ii) shock waves; iii) trailing-edge crossflow boundary-layer thickening/sep-
aration (Source: [50]).

equations using a 2D formulation augmented by an additional cross-flow equation. It is

worth noting that the ISW solver achieves a computational cost reduction by at least

75% compared with the cost required by a 3D stencil approach. A multi-fidelity Q3D

aerodynamic solver was subsequently developed in the author’s group [1, 241], which

builds upon the coupling of the ISW solver with a steady/unsteady VLM solver. The

hybrid flow solver can not only rapidly calculate the aerodynamic loads based on physical

models, but also capture the nonlinear effects and 3D phenomena on finite wings. By

far, the multi-fidelity approach has been extensively validated and successfully used for

both steady and unsteady flow problems [1, 241], and it has also been applied for the

identification of transonic buffet envelope of a 3D wing [242]. Compared to a fully 3D

aerodynamic solver, the multi-fidelity solver demonstrates a speed-up value of up to 97%

for application to geometries of industrial relevance. In this thesis, we further extend

its application to wing twist optimisation by embedding the hybrid solver into an ASO

framework. More details of the hybrid solver as well as the optimisation framework are

introduced in Section 3.3, and the optimisation results are presented in Chapter 6.

2.5 Chapter summary

ASO is a field of engineering that uses optimisation methods to solve design problems

incorporating aerodynamics. In this chapter, a comprehensive but not exhaustive lit-

erature review is provided. Firstly, the concept of design optimisation was introduced;
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the development and current status within the area of aerospace engineering were then

presented, starting from MDO, then aerostructural optimisation, and finally narrowing

down to ASO. In particular, the research works of ASO from several representative insti-

tutions were summarised, highlighting their contributions to the community. Secondly, a

detailed survey and review of the computational techniques for an ASO framework were

carried out. For each constitutive part, we outlined some commonly-used approaches

and discussed their pros and cons. Thirdly, the previous studies regarding the sensitivity

assessment were reviewed, indicating the significance and motivation for part of this re-

search work. Lastly, the development of multi-fidelity aerodynamic models, particularly

the Q3D approach, was reviewed, highlighting its computational efficiency and potential

application for shape optimisation.





Chapter 3

Computational Methodology

3.1 Introduction

Two aerodynamic solvers, SU2 and FALCon, are used to perform gradient-based aero-

dynamic optimisations in this work. Specifically, the 2D aerofoil optimisation problems

are investigated using SU2; the 3D wing twist optimisations are conducted using both

high-fidelity SU2 and multi-fidelity FALCon solvers. In this chapter, the governing equa-

tions, numerical methods, and computational approaches within these two optimisation

frameworks are presented. The parameter settings and guidelines used in the simulations

are also provided.

3.2 SU2

The open-source SU2 code [120, 121] has been developed to perform tasks related to

partial differential equations (PDE) analysis and PDE-constrained optimisation on un-

structured grids. A key feature of SU2 software suite is that each module is designed for

specific functionality and can be executed individually. Most notable is a high-fidelity

CFD solver that is capable of solving a wide range of engineering problems. By coupling

multiple modules and integrating with other packages, SU2 enables complex activities

to be performed, such as adaptive grid refinement [121], UQ [185], and optimal shape

design [184]. In the current work, the SU2 solver (v5.0 “Raven”) is employed for ASO

studies, and the simulations are performed on IRIDIS 4, which is the fourth generation

of high-performance computing cluster at the University of Southampton.

51
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3.2.1 Optimisation framework

A typical design process for aerodynamic optimisation is illustrated in Figure 3.1. A

baseline geometry and grid are taken as input to the design cycle, along with a chosen

objective function, J , to evaluate the optimisation performance and a vector of design

variables, ~x, to parameterise the shape. When the gradient of the objective function,

∇J , is obtained using the adjoint method, a gradient-based optimiser is then initiated

to drive the design cycle and guide the search for the optimum. In this work, the

SLSQP (Sequential Least SQuares Programming) optimiser is used. The optimisation

process is terminated when the convergence criteria, the Karush–Kuhn–Tucker (KKT)

conditions [174, 175], are satisfied or the number of design iterations exceeds a prescribed

maximum number.

Figure 3.1: Flow chart for gradient-based shape optimisation within SU2.

The primary modules that are called by the optimiser in the design loop are introduced

briefly as follows:

• SU2 CFD - performs direct and adjoint flow analysis by solving governing PDE

equations.

• SU2 DEF - perturbs the geometry with a chosen parameterisation and deforms the

surrounding volume grid using an approach based on the linear elasticity equations.

• SU2 DOT - computes the gradients (i.e. partial derivative of a function with respect

to the shape design variables) by projecting the adjoint surface gradients into the

design space through a dot product operation.
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3.2.2 Flow solver

In this work, the flows around aerodynamic bodies are governed by compressible Euler

or Reynolds-averaged Navier–Stokes (RANS) equations. Following the general notation

presented in Reference [120], the RANS equations are formulated as

∂U

∂t
+∇ · F c −∇ · (µvkF vk)−Q = R = 0 (3.1)

where U represents the vector of conservative variables, F c(U) and F vk(U) are convec-

tive and viscous fluxes, respectively, Q(U) is a generic source term, and R(U) denotes

the numerical residual of the governing equations. By setting the vectors Q and F vk to

zero, the Euler equations are obtained.

Specifically, the conservative variables are given by U = [ρ, ρv, ρE]T ; and the convective

fluxes, viscous fluxes, and source terms are

F c =

 ρv

ρv
⊗
v + Ip

ρEv + pv

 , F v1 =

 ·
τ

τ · v

 ,

F v2 =

 ·
·

cp∇T

 , Q =

 qρ

qρv

qρE


(3.2)

where ρ, p, and T are the density, static pressure, and temperature of the fluid, respec-

tively; I is the identity matrix; v = [u, v, w]T is the flow velocity in a Cartesian system

of reference; E is the total energy per unit mass; cp is the specific heat at constant

pressure; and the viscous stress tensor can be written as

τ = ∇v +∇vT − 2

3
I(∇ · v) (3.3)

Assuming a perfect gas with a ratio of specific heats γ and gas constant R, the pressure

is determined from

p = (γ − 1)
(
ρE − 1

2
ρ(v · v)

)
, (3.4)

the temperature is given by

T =
p

ρR
, (3.5)

and the specific heat at constant pressure is given by

cp =
γR

γ − 1
(3.6)

The governing PDE equations are numerically solved using a finite volume method

(FVM). The convective fluxes can be discretised using central or upwind methods.
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Several numerical schemes have been implemented in SU2, and the classic Jameson–

Schmidt–Turkel (JST) [243] scheme is mainly used for spatial discretisation in this

study. For steady flows, the solution of the governing equations is marched in time

until a steady state is reached. Both explicit and implicit time integration methods are

available in SU2, and the implicit Euler scheme is employed in the current work.

The steady-state RANS solver is a key component of the SU2 suite, and the flow solver

has been extensively used and rigorously validated and verified [120, 121] across many

flow regimes. In this work, the validation of SU2 is carried out for three classic test

cases, and the results are provided in Appendix A.

3.2.3 Turbulence modelling

According to the standard approach to turbulence modelling based on the Boussinesq

hypothesis [244], the total viscosity is divided into a laminar µdyn and a turbulent µtur

component. To close the system of RANS equations, the dynamic viscosity µdyn is

assumed to satisfy Sutherland’s law [245], and depends only on the temperature; the

turbulent viscosity µtur is computed via a turbulence model. The viscosity terms in

Equation (3.1) are given by

µv1 = µdyn + µtur, µv2 =
µdyn

Prd
+
µtur

Prt
(3.7)

where Prd and Prt are the dynamic and turbulent Prandtl numbers, respectively.

The turbulent viscosity is obtained from a suitable turbulence model involving the flow

state and a set of new variables. The one-equation Spalart–Allmaras (SA) [246] model is

one of the most common and widely-used turbulence models for the analysis and design

of engineering applications in turbulent flows. In this work, the SA model is used and

is briefly described in the following.

In the case of SA model, the turbulent viscosity is computed as

µtur = ρν̂fv1, fv1 =
χ3

χ3 + c3
v1

, χ =
ν̂

ν
, ν =

µdyn

ρ
(3.8)

The new variable ν̂, known as pseudo eddy viscosity, is obtained by solving a transport

equation that includes the following convective, viscous, and source terms:

F c = vν̂, F v = −ν + ν̂

σ
∇ν̂,

Q = cb1(1− ft2)Ŝν̂ − cw1fw

( ν̂
dS

)2
+
cb2
σ
|∇ν̂|2

(3.9)
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where the production term Ŝ is defined as

Ŝ = |ω|+ ν̂

κ2d2
S

fv2 (3.10)

ω = ∇× v is the fluid vorticity, dS is the distance to the nearest wall, and

fv2 = 1− χ

1 + χfv1
(3.11)

The function ft2 is

ft2 = ct3 exp(−ct4 χ2) (3.12)

and the function fw is computed as

fw = g
[ 1 + c6

w3

g6 + c6
w3

]1/6
(3.13)

where g = r + cw2(r6 − r) and

r = min

[
ν̂

Ŝκ2d2
S

, 10

]
(3.14)

Finally, the set of closure constants for the SA model is given by

σ = 2/3, cb1 = 0.1355, cb2 = 0.622, κ = 0.41,

cw1 =
cb1
κ2

+
1 + cb2
σ

, cw2 = 0.3, cw3 = 2, cv1 = 7.1,

ct3 = 1.2, ct4 = 0.5

(3.15)

The original reference [246] made use of a trip function that most people do not include,

because the model is most often employed for fully turbulent applications. The model

implementation in SU2 code also neglects the trip terms, ct1 and ct2. Herein, the SA

model includes 9 closure coefficients, which are used for both RANS simulations and

sensitivity assessment in aerodynamic optimisation (see Section 5.5.3). In this work, the

convection terms in the SA turbulence model are computed using a first-order upwind

scheme. The time advancing method for the turbulence model is the implicit Euler

method.

3.2.4 Adjoint solver

In terms of ASO, a typical problem formulation seeks to optimise an objective function

J (also termed cost function or merit function) with respect to changes in the shape of

the geometry. The objectives, as chosen by the designer, usually refer to the integrated

forces (lift, drag, etc.) and moments on the solid surface. Assuming that an infinitesimal

deformation is imposed to the surface along the normal direction, the flow state variables
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U in the domain will be perturbed and these variations in the state are constrained to

satisfy the governing equations, i.e. R(U) = 0 must be satisfied for any candidate shape.

As a result, the aerodynamic quantity that we focus on will either improve or deteriorate

due to the change of flow solutions. The surface sensitivity (or surface gradients) is a

measure of the variation of the objective function with respect to infinitesimal shape

perturbations in the local normal direction.

Gradients of a function of interest can be computed in a variety of ways. In the SU2

framework, the surface gradients are obtained using the adjoint methods due to their

ability of computing the derivatives at a cost comparable to solving the state PDEs. The

SU2 code contains both two implementations of the adjoint methodology: a continuous

adjoint by Stanford University and a discrete adjoint via AD by the Technical University

of Kaiserslautern. Since debuting in the initial public release of SU2, the continuous

adjoint solver has been extensively used and rigorously verified [247, 248, 249] for both

inviscid and viscous problems across many flow regimes. On the other hand, the discrete

adjoint formulation has been implemented but its incorporation into SU2 was ongoing

when this study was conducted. Therefore the continuous adjoint approach is used in

this work. Again, following the notation in Reference [120], the adjoint RANS equations

are given by

− ∂ΨT

∂t
−∇ΨT ·

[
∂F c

i

∂U
− µvk ∂F

vk
i

∂U

]
−∇ ·

[
∇ΨT · µvk ∂F vk

i

∂(∂jU)

]
− ΨT ∂Q

∂U
= 0 (3.16)

where Ψ are the adjoint variables that correspond to each of the conserved variables

in the direct flow problem, i, j = 1, 2, 3, and k = 1, 2. The adjoint Euler equations

can be easily obtained by removing the corresponding viscous and source terms. The

numerical discretisation and solution of Equation (3.16) follows the methods for solving

Equation (3.1). The reader is referred to Reference [247] for more details about the

continuous adjoint approach.

3.2.5 Gradient evaluation

In gradient-based optimisation, minimisation of the objective function is achieved through

an iterative process in which the gradients are used to guide the design towards the opti-

mal solution. Therefore, it is essential to compute the gradients accurately and efficiently

in each design step to provide the optimiser with a new search direction. With regard

to the SU2 optimisation framework, the gradient evaluation can be formulated as the
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following equation:
∂f
∂p1
∂f
∂p2
...
∂f
∂pn


︸ ︷︷ ︸
Gradients

=


∂x1
∂p1

∂x2
∂p1

· · · ∂xm
∂p1

∂x1
∂p2

. . .
. . .

...
...

. . .
. . .

...
∂x1
∂pn

· · · · · · ∂xm
∂pn


︸ ︷︷ ︸

Geometric gradients


∂f
∂x1
∂f
∂x2
...
∂f
∂xm


︸ ︷︷ ︸

Surface gradients

(3.17)

where n and m are the number of design variables and surface grid nodes, respectively;

f represents the function of interest, being the objective or constraint function; pi (i =

1, 2, . . . , n) are the design variables; the variables xj (j = 1, 2, . . . , m) denotes the

local surface normal displacements for each discrete grid node on the geometry surface.

The Jacobian matrix ∂x/∂p is known as geometric gradients, which measure the influ-

ence of change of design variables on the positions of surface grid nodes. The geometric

gradients are calculated using FDM, of which the computational cost is negligible as

it does not involve the solution of the governing PDE equations.Following a pertur-

bation to each of the design variables (such as the amplitude coefficients of HHBFs),

the displacement of a grid point on the surface is firstly measured. By projecting this

displacement along the normal direction of the surface, we then obtain the geometric

sensitivity. Each component of the Jacobian matrix is given by:

(
∂x

∂p

)
i, j

=
∂xj
∂pi

nx +
∂yj
∂pi

ny +
∂zj
∂pi

nz, i = 1, . . . , n; j = 1, . . . ,m (3.18)

The term ∂f/∂x, as discussed in Section 3.2.4, is called surface gradients, which repre-

sent the variation of the function of interest with respect to infinitesimal perturbations

of the geometric shape in the local surface normal direction. The surface gradients at

all grid nodes are computed by solving only once the adjoint equations, of which the

computational cost is similar to that of one flow solution. The gradients ∂f/∂p are

then computed by the SU2 DOT module through a dot product operation between the

geometric and surface gradients. Essentially, the low computational cost of gradient

evaluation is attributed to the use of the adjoint method, of which a typical derivation

is provided herein. Note that we assume the governing equations have been discretised

in the following discussion.

Consider some quantities of interest, f , that depend implicitly on the independent vari-

ables of interest, x,

f = F (x, y (x)) (3.19)
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where y represent the state variables. The relationship between y and x is defined by

the solution of a set of residual equations:

r = R (x, y (x)) = 0 (3.20)

The total derivative of f with respect to x can be calculated using the chain rule,

df

dx
=

∂F

∂x
+
∂F

∂y

dy

dx
(3.21)

and similarly for the residual equations,

dr

dx
=

∂R

∂x
+
∂R

∂y

dy

dx
= 0 (3.22)

The computation of the total derivative dy/dx in Equations (3.21) and (3.22) has a

much higher computational cost than the partial derivatives as it requires the solution

of the residual equations, whereas the partial derivatives can be computed by the FDM.

By rewriting Equation (3.22) we obtain,

dy

dx
= −

[
∂R

∂y

]−1 ∂R

∂x
(3.23)

Substituting this expression into Equation (3.21) yields,

df

dx
=

∂F

∂x ︸ ︷︷ ︸
ΨT

− ∂F

∂y

− dy
dx︷ ︸︸ ︷[

∂R

∂y

]−1 ∂R

∂x
(3.24)

Then the adjoint method is introduced to factorise the Jacobian matrix ∂R/∂y with

∂F /∂y by solving the following adjoint equations,

−
[
∂R

∂y

]T
Ψ =

[
∂F

∂y

]T
(3.25)

where Ψ is the adjoint matrix (or adjoint vector for the case where f is a scalar). The

solution of Ψ can be determined by solving the linear system and then be substituted

into Equation (3.21) to compute the total derivative,

df

dx
=

∂F

∂x
+ ΨT ∂R

∂x
(3.26)

The computational cost of evaluating gradients using the adjoint method is independent

of the number of design variables, and instead proportional to the number of quantities

of interest. This feature provides great efficiency in practical design problems, where the

number of design variables, nx, are far more than the number of functions of interest,
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nf . Figure 3.2 illustrates why the direct method is preferable when nf > nx and the

adjoint method is more efficient when nx > nf . The reader is referred to Reference [121]

for more details of the adjoint approach.

nf > nx nx > nf

df
dx

=
∂F
∂x

−

∂F
∂y

[

∂R
∂y

]

−1
∂R
∂x

= −

= −

Direct method nf > nx nx > nf

df
dx

=
∂F
∂x

+
∂F
∂y

dy
dx

−

∂R
∂y

dy
dx

=
∂R
∂x

Adjoint method nf > nx nx > nf

df
dx

=
∂F
∂x

+
df
dr

∂R
∂x

−

[

∂R
∂y

]T [

df
dr

]T

=

[

∂F
∂y

]T

= +
= +

= =− −

= +
= +

= =− −

Figure 3.2: Block matrix diagrams illustrating the direct and adjoint methods.
The matrices in blue contain partial derivatives and are relatively cheap to
compute. The matrices in pink contain total derivatives that are computed by
solving linear systems (the third and fifth rows). In both cases, it is assumed
that ny � nx, nf . [2]

3.2.6 Geometry parameterisation

The geometry parameterisation plays an important role in an ASO framework and must

be robust and efficient enough for the design process. Two commonly-used parameter-

isation methods are implemented in SU2, which correspond to HHBF and FFD. Both

approaches are employed in this work and are discussed as follows.

3.2.6.1 Hicks–Henne bump function

Hicks and Henne [134] introduced an analytical approach that takes a baseline geom-

etry and adds a linear combination of bump functions to create a new shape. For 2D
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problems, the parameterised geometry function can be expressed by:
y = ybaseline +

n∑
i= 1

bi (x)

bi (x) = ai

[
sin

(
π x

log 0.5
log hi

)]ti
, 0 ≤ x ≤ 1

(3.27)

where n is the number of bump functions, bi (x) is the bump function (or basis func-

tion) proposed by Hicks and Henne, ai represents the bump amplitude and acts as the

weighting coefficient, hi locates the maximum point of the bump, and ti controls the

width of the bump. By setting all of the coefficients ai to zero, the baseline geometry is

recovered.

By inspecting Equation (3.27), it is apparent that the bump function, bi (x), is defined

by three parameters (i.e. ai, hi, and ti). The bump amplitude coefficients, ai, are

treated as design variables and can be varied during optimisation, whereas the other

two parameters, hi and ti, are predetermined and fixed in optimisation as this ensures

the parameterisation is a linear function of the design variables.

With respect to the locations of bump peak, hi, two distribution approaches are em-

ployed in this study: a) uniform distribution along the aerofoil chordwise direction:

hi =
i

n + 1
, i = 1, . . . , n. (3.28)

and b) uneven distribution described by a “one-minus-cosine” function:

hi =
1

2

[
1 − cos

(
i π

n + 1

)]
, i = 1, . . . , n. (3.29)

Figure 3.3 gives an illustration of the two distribution approaches for HHBFs. It is

worth observing that the “one-minus-cosine” distribution provides a better clustering

of design variables at the leading and trailing edge of the aerofoil when compared with

the uniform distribution. A comparison of these two distribution approaches is further

shown in Figure 3.4, where a set of bump functions are imposed individually on the

upper surface of the NACA0012 aerofoil.

Regarding the bump width control parameter, ti, a constant value is specified for all

bump functions within SU2. In this study, in addition to the default setting t = 3,

a range of integer values are defined, and their impact on the optimisation result is

investigated. Figure 3.5 shows three sets of HHBFs with different settings of t. It is

observed that the bump width narrows down as the value of t increases, suggesting that

a relatively smaller value of t can provide more global shape control whereas a relatively

larger value of t generates more local shape control. This fact is demonstrated more

evidently in Figure 3.6, where two settings of parameter t are applied to a set of HHBFs

that are imposed on the NACA0012 aerofoil separately.
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(a) Uniform distribution (b) “One-minus-cosine” distribution

Figure 3.3: Illustration of two distribution approaches for HHBFs (n = 10) on
the NACA0012 aerofoil. Red dashed lines indicate locations of bump peak.

(a) Uniform distribution (b) “One-minus-cosine” distribution

Figure 3.4: Comparison of two distribution approaches for HHBF parameteri-
sation of the NACA0012 aerofoil (n = 5, a = 0.05, and t = 3).

(a) t = 1 (b) t = 3 (default) (c) t = 10

Figure 3.5: Three sets of HHBFs (n = 5, a = 1, and uniformly distributed in
the range of hi ∈ [0.1, 0.9]) with different value settings of bump width control
parameter.

3.2.6.2 Free-form deformation

Free-form deformation (FFD), initially proposed by Sederberg and Parry [146], is used

as the second parameterisation method. The basic FFD concept can be visualised as
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(a) t = 1 (b) t = 10

Figure 3.6: Influence of bump width control parameter on HHBF parameteri-
sation of the NACA0012 aerofoil (n = 5, a = 0.05, and uniform distribution).

embedding a flexible object inside a flexible volume and deforming both of them simul-

taneously by perturbing the lattice of the volume. The FFD control volume (or FFD

box) usually has a topology of a cube when deforming 3D objects or a rectangle for 2D

geometries, and thus can be parameterised as either a trivariate volume or a bivariate

surface. In this study, Bézier curve is used as the FFD blending function. Figure 3.7

illustrates the FFD box encapsulating a 3D wing and the 2D RAE2822 aerofoil, where

a lattice of control points are uniformly spaced on the surface of FFD box.

(a) 3D unswept wing (b) 2D RAE2822 aerofoil

Figure 3.7: View of FFD box enclosing the embedded object, including the
control points shown as red spheres.

The parameterised Bézier volume can be described using the following equation:

X (ξ, η, ζ) =
l∑

i= 0

m∑
j= 0

n∑
k= 0

Pi,j,k B
l
i (ξ) Bm

j (η) Bn
k (ζ) (3.30)

where l, m, n are the degrees of FFD blending function; ξ, η, ζ ∈ [0, 1] are the para-

metric coordinates; Pi,j,k are the Cartesian coordinates of the control point (i, j, k); X

are the corresponding Cartesian coordinates (x, y, z) for a given (ξ, η, ζ) in the Bézier

volume; Bl
i (ξ), Bm

j (η), and Bn
k (ζ) are the Bernstein polynomials, which are expressed
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as 

Bl
i (ξ) =

l!

i! (l − i)!
ξi (1 − ξ)l−i

Bm
j (η) =

m!

j! (m − j)!
ηj (1 − η)m−j

Bn
k (ζ) =

n!

k! (n − k)!
ζk (1 − ζ)n−k

(3.31)

The control points of the FFD box are defined as the design variables, the number of

which depends on the degree of the chosen Bernstein polynomials. It should be noted

that these control points are uniformly spaced in the FFD domain; otherwise the initial

geometry of the embedded object can not be recovered with the original positions of the

control points.

FFD is numerically executed in three steps. Firstly, for the embedded object, a map-

ping is performed from the physical space to the parametric space of the FFD box. The

parametric coordinates (ξ, η, ζ) of each surface grid node are determined and remain un-

changed during optimisation. Note that this mapping is evaluated only once. Secondly,

the FFD control points are moved according to a given set of design variables, leading

to the deformation of the FFD box as well as the perturbation of the embedded object.

Thirdly, once the FFD box is deformed, the new Cartesian coordinates (x, y, z) of the

embedded object in the physical space are algebraically computed using Equation (3.30).

Figure 3.8(a) shows an example of FFD shape control for the 2D RAE2822 aerofoil by

randomly perturbing several control points. One useful and commonly-used feature of

FFD technique is that multiple control points can be grouped together to perform specific

motions and thus achieve desired shape deformation. Figure 3.8(b) and Figure 3.8(c)

illustrate the parameterisation of aerofoil thickness and camber, respectively. In the case

of 2D FFD thickness, a pair of control points are moved with the same amplitude but

in opposite directions, whereas in the case of 2D FFD camber, the pair of two control

points are forced to move with the same amplitude and in the same direction. In the

scenario of 3D wing parameterisation, Figure 3.9(a) gives an example of changing wing

twist at several spanwise stations. As shown in Figure 3.9(b), the four control points

at the same spanwise location rotate simultaneously around the trailing edge of the

sectional aerofoil to perform the twist motion. Correspondingly, the local incidence for

the enclosed wing changes as well and the sectional aerofoil shape is kept the same.

The setting of FFD box is implemented as a pre-processing step prior to performing

aerodynamic optimisation. As the position settings of the FFD box are subject to the

users’ choice and may affect the final optimisation result, the impact of FFD box position

on the optimisation performance is thus investigated in this study.



64 Chapter 3 Computational Methodology

(a) FFD control point

(b) FFD thickness (c) FFD camber

Figure 3.8: Illustration of FFD shape control for the 2D RAE2822 aerofoil.
The initial aerofoil geometry is in black, the deformed aerofoil in blue, and the
perturbed control points in red.

(a) FFD box

Y X

Z

(b) Section cut

Figure 3.9: Illustration of FFD twist shape control for the 3D wing. The blue
dot indicates the rotation centre at the trailing edge.

3.2.7 Grid deformation

As the geometric shape is updated at each design step of the aerodynamic optimisa-

tion, the computational grid needs to be recomputed. Grid regeneration is often time-

consuming and may introduce additional discretisation errors. Hence, the strategy of

grid deformation with high efficiency and robustness is preferred.
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The grid deformation approach employed in SU2 framework models the computational

grid as an elastic body using the equations of linear elasticity [162], which govern small

displacements, u = [u1, u2, u3]T , of an elastic solid subject to body forces and surface

tractions. Using the summation convention, the linear elasticity equations can be written

as

∇ · σ = f in Ω (3.32)

where f is the body force, Ω is the computational domain, and σ is the stress tensor,

given in terms of the strain tensor ε by the constitutive relation

σ = λTr(ε) I + 2µε (3.33)

where Tr is the trace, λ and µ are the Lamé constants, which are expressed in terms of

Young’s modulus E and Poisson’s ratio ν as

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
(3.34)

E > 0 can be thought of as the stiffness of the material, where a large value of E

indicates rigidity. Poisson’s ratio ν is a measure of how much the material shrinks in

the lateral direction as it extends in the axial direction. The strain tensor ε is evaluated

using the linear kinematic law

ε =
1

2

(
∇u+∇uT

)
(3.35)

An advantage of applying these equations to grid deformation is that various features

required in practice can be readily and simply realised in a manner consistent with the

modelling of the grid as an elastic body. In SU2, the Young’s modulus of elasticity in

each grid cell may be treated in three ways: a) inversely proportional to the cell volume;

b) inversely proportional to the distance from the wall; and c) being a constant value. In

this study, the first option is adopted. With this strategy, near-body cells undergo nearly

rigid motion, whereas larger cells further from the body adapt to the deformation of the

surface. Moreover, regarding viscous flow, this strategy can avoid generating negative

cell volumes in the deformation of boundary layer grid, where there are cells with large

aspect ratio. Therefore, the grid quality can be preserved in near-wall area and regions of

high resolution with the selected implementation. More details on the grid deformation

method can be found in Reference [162].

3.3 FALCon

The hybrid aerodynamic solver, FALCon, was developed within a national project aimed

at the development, implementation and demonstration of a multi-fidelity aerodynamic
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solver for rapid load calculations. The multi-fidelity solver mainly consists of three

building blocks: a) a linear VLM solver; b) an efficient ISW solver; and c) a hybrid

coupling algorithm. The 3D effects on finite wings are modelled by the VLM solver,

which is corrected by an ISW RANS/URANS solver to capture sectional viscous flow

effects. The coupling algorithm combines two fidelity levels in flow predictions to obtain

fast estimates of aerodynamic loads in subsonic and transonic regimes for both steady

and unsteady problems. The hybrid solver is also integrated with the open-source opti-

misation package pyOpt to formulate an ASO framework.

3.3.1 Vortex lattice method

The implementation of the VLM closely follows the description of Katz and Plotkin [126].

As shown in Figure 3.10, the thin wing planform is divided into a lattice of panels

containing vortex ring elements. The leading segment of the vortex ring is placed on the

panel’s quarter-chord line and the collocation point is at the centre of the three-quarter-

chord line, where the normal vector is defined as well.

Figure 3.10: Vortex ring model for a thin lifting surface. (source: [126])

The linear system of equations is solved for each collocation point:

A · Γ = R (α) (3.36)

where A is the aerodynamic influence coefficient (AIC) matrix representing the mu-

tual influence of VLM panels, Γ is the vector of unknown circulation intensity of

wing bounded VLM panels, R (α) is the right-hand-side (RHS) vector containing non-

circulatory velocity contributions acting on each collocation point, and α is the vector

of angle of attack at each spanwise VLM panel. For steady-state calculations, the AIC

matrix A is evaluated only once and remains constant during the coupling procedure as

discussed in Section 3.3.3. It is also worth noting that, in VLM formulation, the vector
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of angle of attack α generally remains unchanged but requires modification in our work.

As described in Section 3.3.3, α is corrected at each iteration of the coupling loop to

account for the nonlinear effects introduced by the ISW solver.

Both steady and unsteady VLM solvers have been developed in the author’s group,

and only the steady-state VLM is employed in this work. The reader is referred to

Reference [1] for more details of the VLM formulation.

The VLM solves inviscid, incompressible and attached flows, limiting its validity to a very

narrow flow regime. To capture the nonlinear effects existing in viscous, compressible

flows, the VLM needs to be corrected with sectional viscous data.

3.3.2 Infinite swept wing solver

The ISW aerodynamic model is tailored for the analysis of lifting surfaces where cross-

flow effects are evident due to sweep [236, 237]. The ISW model assumes a wing of

infinite span with a moderate wing sweep angle, Λ. A schematic of an ISW is illustrated

in Figure 3.11(a). Two typical frames of reference (FoRs) are shown. Compared to the

global FoR with axes (x, y, z), the body-attached FoR with axes (x′, y′, z′) provides a

more suitable choice for the ISW model. The x′ axis is perpendicular to the quarter-

chord axis of the local chord, pointing at the trailing-edge, and the y′ axis is parallel to

the quarter-chord axis of the local chord, pointing at the wing tip. Note that the chord

lengths within the two FoRs are not the same. To keep the chord length consistent for

both FoRs, the thickness of the sectional aerofoil in the local FoR (x′-z′ plane) needs to

be scaled by the factor of 1/cos Λ, as shown in Figure 3.11(b).

(a) Schematic of an ISW model [240] (b) NACA0012 aerofoil in two FoRs (Λ = 45 deg)

Figure 3.11: Illustration of infinite swept wing and sectional aerofoil in global
and local frames of reference.
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In the body-attached FoR, we assume that the cross-flow is fully developed. Thus, the

flow has the statistical homogeneity in the y′ direction, leading to ∂(·)/∂y′ = 0. The

governing 3D Navier–Stokes equations are therefore simplified and written as

∂

∂x′
(ρu′) +

∂

∂z′
(ρw′) = 0 (3.37a)

∂

∂x′
(ρu′u′) +

∂

∂z′
(ρu′w′) = − ∂p

∂x′
+
∂τ ′xx
∂x′

+
∂τ ′xz
∂z′

(3.37b)

∂

∂x′
(ρv′u′) +

∂

∂z′
(ρv′w′) =

∂τ ′yx
∂x′

+
∂τ ′yz
∂z′

(3.37c)

∂

∂x′
(ρw′u′) +

∂

∂z′
(ρw′w′) = − ∂p

∂z′
+
∂τ ′zx
∂x′

+
∂τ ′zz
∂z′

(3.37d)

∂

∂x′
(ρhu′) +

∂

∂z′
(ρhw′) =

∂

∂x′
(u′τ ′xx + v′τ ′xy + w′τ ′xz) +

∂

∂z′
(u′τ ′zx + v′τ ′zy + w′τ ′zz)

(3.37e)

Note that dependence on time is neglected, and heat flux components are removed

herein for conciseness. Equations (3.37a), (3.37b) and (3.37d) are independent from the

cross-flow component, v′, and are equivalent to the 2D Navier–Stokes equations. Equa-

tion (3.37c) represents a transport equation for the cross-flow component v′, and can

be solved at each iteration once the flow field variables u′ and w′ are known. The cou-

pling between cross-flow and the other variables is provided by the energy conservation

equation, Equation (3.37e).

Following the same method, the equations for turbulent viscosity within a RANS scheme

can also be derived for the ISW problem. Additionally, the solution of the governing

equations requires appropriate boundary conditions to be defined. These relevant equa-

tions and derivations are not reported herein for brevity, and the reader is referred to

Reference [240] for more details.

The existing state-of-the-art approach to model the ISW involves a one-cell width 3D

stencil and can be implemented in two ways, see Figure 3.12, with periodic boundary

conditions set on both planes. These two approaches are equivalent in terms of com-

putational cost and can generate identical results. The proposed novel approach, on

the other hand, relies purely on a 2D stencil and solves the ISW problem with the

computational cost equivalent to that of a 2D analysis. The proposed methodology has

been implemented within the DLR-Tau flow solver, where it is referred to as the 2.5D+

solver [250]. The numerical solution obtained from the 2.5D+ solver has the same prop-

erties as that obtained using either the “sheared” or “beta” approach. The reader is

referred to Reference [240] for more details of the efficient ISW solver and its applications

to both steady and unsteady compressible flows around a variety of geometries.
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Figure 3.12: Summary of approaches to model the ISW problem. (Source: [240])

3.3.3 Coupling algorithm

The steady-state hybrid solver is based on the α-based coupling algorithm [50, 233, 251].

This algorithm corrects the local angle of attack, α, at every wing bounded VLM panel

along the wing span using nonlinear sectional data. The procedure of the coupling

method is described in Algorithm 2.

Algorithm 2 α-based coupling method for steady-state hybrid solver.

1: Initialise: α (j) = α∞ and ∆α (j) = 0 for all spanwise sections j = 1 , 2 , ... , Ny

2: Run linear VLM solver to calculate the sectional inviscid lift coefficient:
α ⇒ Cl, inv (j)

3: for Every spanwise section j do
4: Calculate the effective angle of attack:

αe (j) = α∞ − αi (j) =
Cl, inv (j)

2π
− ∆α (j)

5: Obtain the sectional viscous lift coefficient from 2.5D+ database at the effective
angle of attack:
αe (j) ⇒ Cl, visc (j)

6: Calculate the angle of attack correction:

∆α (j) = ∆α (j) + ν
Cl, visc (j) − Cl, inv (j)

2π
7: Update the local angle of attack:

α (j) = α∞ + ∆α (j)
8: end for
9: Repeat Steps 2-8 until |Cl, visc (j) − Cl, inv (j)| < ε for every spanwise section j

Figure 3.13 depicts the coupling process to help understand the coupling procedure.

For a typical wing, the sectional nonlinear database is either obtained from wind tunnel

experiments or pre-computed using the 2.5D+ solver at span locations that are carefully
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selected, such as the kink. It is worth noting that the database is computed once and

for all. The initialisation includes the estimation of the AIC matrix, A. In the iteration

loop, the RHS non-circulatory velocity vector in Equation (3.36), R (α), is updated at

each iteration according to the correction step, ∆α. Once the inviscid lift coefficient has

been obtained, the effective angle of attack, αe, is calculated from the following formula

Cl, inv = 2π (α∞ − αi − α0 + ∆α)

= 2π (αe − α0 + ∆α)
(3.38)

where α∞ is the freestream angle of attack at farfield, αi is the induced angle of attack

calculated from the VLM solver, and α0 is the zero-lift angle of attack.

Run linear VLM solver

Obtain viscous lift

from 2.5D+ database

Correct angle of attack

on VLM panels

Convergence?

Initialise

Finish

Yes

No

2.5D+ ISW solver

Reference wing

Figure 3.13: Steady-state hybrid coupling algorithm.

Once the effective angle of attack is known at discrete VLM panels, the sectional vis-

cous lift coefficient is interpolated from the pre-computed database, and the viscous lift

distribution along the span can be obtained using linear or higher order interpolation

methods. Once both the inviscid and viscous lift coefficients are obtained, the angle of

attack correction is calculated for every spanwise panel. An under-relaxation factor, ν,

is used to help stabilise the iteration, especially at high angles of attack close to stall

where nonlinear behaviour becomes dominant. The relaxation factor typically has a

default value of 0.5. As there is only one physical model for the coupling system, the

calculation steps need to be iterated to obtain a converged solution. The iteration loop

proceeds until the gap between the inviscid and viscous sectional lift for every VLM

panel is within a prescribed tolerance ε.

The unsteady hybrid coupling approach is based on the steady-state coupling algorithm

and extends it with an outer time-marching loop. The reader is referred to References [1,
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241] for more details of the unsteady coupling methodology and validation of the hybrid

solver.

3.3.4 Forces calculation

The aerodynamic forces are obtained as a post-processing operation once the hybrid

coupling iterations are completed. The total lift is calculated by summing the individual

panel contributions using the Kutta–Joukowski theorem:

L =

N∑
k= 1

ρ V∞ Γk ∆yk (3.39)

where N is the total number of vortex ring elements, V∞ is the freestream flow velocity,

Γk is the circulation around an incremental vortex, and ∆yk is the panel bound vortex

projection normal to the freestream. The total drag of a wing is decomposed into two

components, induced drag and viscous drag.

D = Dind + Dvisc (3.40)

Generally there are two methods for calculating the induced drag of a wing: near field

analysis and far field analysis, alternatively surface integration method and wake inte-

gration method. It should be noted that the induced drag is included in the pressure

drag in a 3D wing drag decomposition using near field analysis. However, in 2.5D+ drag

analysis, the sectional pressure drag does not include the induced drag. Therefore, the

near field approach can not be used for the hybrid solver. In this work, the induced

drag is evaluated in the VLM code through the Trefftz plane analysis [126], which is a

type of far field analysis method. The induced drag can be obtained by integrating the

kinetic energy on the Trefftz plane (see Figure 3.14), which is far behind the trailing

edge and normal to the freestream. Moreover, because of the symmetry of the induced

velocity above and under the vortex sheet, the surface integral on the Trefftz plane can

be reduced to a single spanwise line integral over the wake trailing vortices, which can

be further discretised as follows

Dind = − ρ
2

∫ bw/2

−bw/2
Γ(y)wdy

= − ρ
2

NW∑
k= 1

Γk windk ∆yk

(3.41)

where bw is the local wake span, NW is the number of trailing vortex lines, and wind is

the wake-induced downwash at the trailing vortex line.

The viscous drag, which includes the friction and pressure drag, is calculated from the

pre-computed sectional database. For each spanwise section, the viscous drag coefficient,
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Figure 3.14: Trefftz plane used for the calculation of induced drag [126].

Cd, visc, is interpolated from the available tabulated dataset at the corresponding effective

angle of attack. Afterwards, the total viscous drag is obtained by applying a spanwise

integration

Dvisc =
1

2
ρ V∞

2

∫ b/2

−b/2
Cd, visc c dy (3.42)

where b is the wing span and c is the local chord length.

3.3.5 Optimisation framework

An aerodynamic optimisation framework, as shown in Figure 3.15, is formulated to

tackle wing twist optimisation problems. A more detailed description is given in Algo-

rithm 3. The multi-fidelity FALCon solver is used to provide aerodynamic forces for

evaluation of the objective function and constraints. As the twist design variables are

linked to the local angle of attack for VLM panels, there is no need for geometry param-

eterisation method. Moreover, the angle of attack correction ∆α and the twist angle θ

of the VLM panels are artificial concepts in the FALCon solver, and only have impact

on the VLM solution of Equation (3.36); during the iterative process the wing geometry

is not perturbed and the VLM grid remains unchanged. Therefore the grid deformation

technique is also not required. In this study, the SLSQP algorithm is employed as the

gradient-based optimiser, and is easily accessible through the common interface within

the open-source pyOpt package. As the multi-fidelity aerodynamic solver is computa-

tionally efficient, the gradients are computed using FDM.

It is worth noting that, for every design iteration of the optimisation loop, the design

variables of geometric twist need to be mapped onto the twist angles of wing-bound

panels, as shown in Figure 3.16. This can be done using interpolation or other fitting

techniques. In this study, a simple linear interpolation is used unless otherwise stated.
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Run hybrid solver

(refer to Algorithm 1)

Gradient analysis

Convergence?

Initialise

Finish
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No

Update wing twist 

design variables

Map discrete design 

variables onto VLM panels

Correct local angle of 

attack for VLM panels

SLSQP optimiser

Figure 3.15: Wing twist optimisation framework based on hybrid solver.

Algorithm 3 Wing twist optimisation using hybrid solver.

1: Initialise: α (j) = α∞ and ∆α (j) = 0 for all spanwise sections j = 1 , 2 , ... , Ny

2: Run hybrid solver for aerodynamic analysis (Step 2-8 in Algorithm 2)
3: Compute gradients via FDM
4: Update wing twist design variables γ (i) where i = 1 , 2 , ... , Ndv

5: Map twist design variables onto VLM spanwise sections:
γ (i) ⇒ θ (j)

6: Update the local angle of attack:
α (j) = α∞ + ∆α (j) + θ (j)

7: Repeat Steps 2-6 until convergence criteria are met

Figure 3.16: Schematic of twist mapping on VLM panels.
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3.4 Chapter summary

This chapter details the methodology for two aerodynamic solvers, namely SU2 and

FALCon, and the associated optimisation frameworks that are employed in this research.

The numerical methodologies and computational techniques for SU2 are provided first,

including the governing equations for flow and adjoint solver, turbulence modelling,

gradient evaluation, geometry parameterisation and grid deformation. The multi-fidelity

aerodynamic solver FALCon consists of three building blocks: a VLM solver, an ISW

solver and a coupling algorithm. Concerning the FALCon solver, the forces calculation

methods and the optimisation structure are also provided.



Chapter 4

Two-dimensional NACA0012

Aerofoil Optimisation

4.1 Introduction

The wing is the primary lifting surface of an aircraft, and it is built with aerofoil-shaped

cross sections. As such, aerofoil design and optimisation remains a critical area of re-

search for aerodynamic optimisation. Of the benchmark problems defined by AIAA

ADODG, the first case specifies the drag minimisation of a NACA0012 aerofoil in a

constrained design space. This optimisation case has been widely exercised by a number

of researchers. Various optimised shapes were obtained with very different parameter-

isation types, flow solvers, optimisation algorithms, and number of design variables.

For example, methods of choice for geometry parameterisation were FFD [57], Bézier

curves [131], B-splines [57, 131, 143], RBFs [143, 252], CST [253], and SVD [125], among

others. Masters et al. [226] selected six shape parameterisation techniques and investi-

gated their impact on the optimisation results. The choice of flow solver [227] or opti-

misation algorithm [125] has also been shown to have influence on the optimal solution.

In addition, Méheut et al. [254] and Destarac et al. [255] carried out a cross-validation

of different optimal shapes obtained from several participants. The assessment process

is identical for all the optimised aerofoils.

It should be noted that the available methodologies for each constituent of an ASO

framework have their own merits and drawbacks. Thus, the most appropriate set of

methods for a specific optimisation case may not be suitable for another case. More

importantly, for a given ASO framework, there are a number of parameters that affect the

final optimal solution. It requires fine-tuning of those parameters in order to achieve the

best optimisation performance for a specific case. To date, however, many parameters

have been largely neglected in practice, and their effects on the optimal solution are

therefore unknown.

75
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In this chapter, gradient-based optimisations are performed using SU2 for the benchmark

NACA0012 case. Several key parameters are carefully selected, particularly in geometry

parameterisation, which formulates the design space and provides design variables as

input for optimisation. Instead of using the default (or common) value, a range of

settings are specified and applied. The primary aim is to investigate the sensitivity of

optimal solution to these parameters and gain the best practice from the sensitivity

assessment, which can provide suggestions of parameter settings for future aerodynamic

design and optimisation.

This chapter is organised in the following manner. The optimisation problem is firstly

described in Section 4.2. The computational grid and optimisation set-up are then

given in Section 4.3 and 4.4, respectively. Section 4.5 provides a detailed sensitivity

assessment. The optimisation results are presented in Section 4.6. Section 4.7 finally

summarises the key findings in this chapter.

4.2 Optimisation problem

The optimisation problem is the drag minimisation of a modified NACA0012 aerofoil

in inviscid, transonic flow. The freestream Mach number, M , is 0.85, and the angle of

attack, α, is fixed at 0 degree. The thickness is constrained to be greater than or equal

to that of the initial aerofoil along the entire chord. The optimisation problem is written

as

Minimise: Cd

w.r.t: y

Subject to: y (x) ≥ ybaseline (x),∀x ∈ [0, 1]

where Cd is the drag coefficient, x is the coordinate along the aerofoil chord, and y is

the coordinate describing the thickness of the symmetric aerofoil.

The optimisation case is based on the work by Vassberg et al. [256]. Differing from

the reference paper, a modified NACA0012 aerofoil with zero-thickness trailing edge is

defined as

y = ±0.6(0.2969
√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1036x4) (4.1)

where x ∈ [0, 1]. The zero-thickness trailing edge is achieved through a modification of

the x4 coefficient.
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4.3 Computational grid

As the flow is symmetric around the aerofoil at the prescribed flow conditions, only

the upper aerofoil surface is modelled unless otherwise stated. The structured O-grid

was generated using Pointwise grid generator and is shown in Figure 4.1. The farfield

boundary is located at a distance of 50 chord lengths from the aerofoil. The grid is

clustered towards the leading and trailing edge in order to accurately represent the

aerofoil geometry. The coarse grid has 129 points in the circumferential direction and 65

in the normal direction. To establish grid convergence, four levels of grid are considered,

and the key parameters are summarised in Table 4.1.

(a) Far view (b) Near view

Figure 4.1: Computational domain and coarse grid (129 × 65) for the
NACA0012 aerofoil.

Table 4.1: Grid parameters for the NACA0012 aerofoil grid convergence study.

Grid Level Grid Size Grid Points LE/TE Spacing

Coarse 129 × 65 8, 385 1.0 · 10−3

Medium 257 × 129 33, 153 5.0 · 10−4

Fine 513 × 257 131,841 2.5 · 10−4

Superfine 1025 × 513 525,825 1.25 · 10−4

An inviscid flow analysis was carried out on the baseline aerofoil, and the drag results

are listed in Table 4.2. Note that the drag values correspond to the complete aerofoil

geometry and 1 drag count is equal to a Cd of 1 · 10−4. The convergence history and

the resulting pressure distribution are also shown in Figure 4.2. The coarse grid was

found adequate to provide flow solutions with sufficient accuracy, and was thus used for

optimisation.

4.4 Optimisation set-up

The open-source code SU2 is used to perform flow analysis and gradient-based optimisa-

tion for the NACA0012 case. A summary of the computational methods and numerical
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Table 4.2: Drag results for the NACA0012 aerofoil grid convergence study (M =
0.85, α = 0 deg).

Grid Level Cd (Counts)

Coarse 468.0
Medium 469.0
Fine 469.3
Superfine 469.4

(a) Convergence history (b) Pressure coefficient distribution

Figure 4.2: Grid convergence study for the baseline NACA0012 aerofoil (M =
0.85, α = 0 deg).

settings is given in Table 4.3.

Table 4.3: Computational methods and numerical settings for the NACA0012
optimisation.

Parameter Methodology or Value

Geometry parameterisation HHBF/FFD
Grid deformation Linear elasticity equations

Flow governing equations Euler
Spatial discretisation 2nd order JST
Time discretisation Euler implicit
CFL number 5

Optimiser SLSQP
Gradient evaluation Continuous adjoint
Scaling factor for objective function 0.001
Maximum number of iterations 100
Tolerance of KKT conditions 1 · 10−6

Two types of shape parametrisation, HHBF and FFD, are employed for the NACA0012

case. Prior to optimisation, a number of parameter values need to be determined. The
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HHBF has two coefficients that need to be specified. For locations of bump peak, hi,

two distribution approaches are employed. For bump width control coefficient, t, a range

of integer values are used. In terms of FFD, various settings of FFD box position are

defined. Additionally, the number of design variables, Ndv, is varied within a reasonable

range to perform the dimensionality study. The main numerical parameters used in this

case are summarised in Table 4.4.

Table 4.4: Numerical parameters for two geometry parameterisation methods;
the values in square brackets indicate the range for a specific parameter.

Parameter Methodology or Value

HHBF
Distribution approach Uniform/One-minus-cosine
Bump width control parameter [1, 15]
Number of design variables [5, 40]

FFD
FFD box: upper/lower [±0.0601, ±0.3]
FFD box: left [-0.01, -0.0001]
FFD box: right [1.0001, 1.01]
Number of design variables [5, 40]

For the NACA0012 aerofoil, an example of the commonly-used FFD control point pa-

rameterisation is illustrated in Figure 4.3(a). The control points on the upper surface

of FFD box are specified as the design variables, whereas those on the lower surface are

held fixed during optimisation because only the upper half aerofoil geometry is used.

Due to the symmetric characteristic of the flowfield, the FFD thickness approach is also

employed for this optimisation problem, which is illustrated in Figure 4.3(b). It should

be noted that, for FFD thickness approach, the whole aerofoil geometry as well as cor-

responding computational grid are used. The thickness at specific chordwise location of

the aerofoil can be modified by manipulating a pair of control points, which move with

the same magnitude but in opposite directions. For both FFD methods, the thickness

constraint in this optimisation problem can be satisfied implicitly by allowing the control

points to move only in the outward direction as shown in Figure 4.3.

4.5 Sensitivity assessment

This section contains results obtained from the sensitivity assessment for the NACA0012

optimisation case. This work primarily focuses on investigating the sensitivity of the

optimal solution to a series of model parameters, with the purpose of finding a suite of

parameter values that can produce the best optimisation result.
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(a) FFD control point method (b) FFD thickness method

Figure 4.3: Two FFD parameterisation approaches for the NACA0012 aerofoil
optimisation case. Baseline aerofoil is shown in black colour and deformed
aerofoil in red.

4.5.1 Impact of parameter settings in HHBF

The design variables (i.e. bump amplitude coefficients ai) are restricted to have non-

negative values in this case. Consequently, the deformed aerofoil is guaranteed to have

a larger thickness along the chord than the initial aerofoil. Therefore, the constrained

optimisation problem is transformed into an unconstrained one by satisfying the thick-

ness constraint implicitly. Optimisations were carried out using the parameter settings

as shown in Table 4.4. A 3D carpet plot of drag coefficient versus Ndv and t for both

uniform and “one-minus-cosine” distributions can be obtained. Some sections are ex-

tracted from the 3D plot, and the corresponding optimisation results are shown and

discussed as follows.

By applying two HHBF distribution approaches, the final drag results are plotted ver-

sus the number of design variables in Figure 4.4(a). Note that the presented results

correspond to the setting of t = 8. With respect to other values of t, the results

show a similar pattern and are not reported herein for brevity. It is apparent that the

“one-minus-cosine” distribution outperforms the uniform distribution by producing sig-

nificantly lower drag values, suggesting a large dependence of the optimal solution on the

distribution of the bump functions. As shown later, the geometric shape deformations

are mainly concentrated in the fore and aft section of the aerofoil, indicating that the

“one-minus-cosine” distribution is preferably used for the NACA0012 optimisation case.

The exception only occurs at Ndv = 5, where the uniform distribution method performs

better. It was found that the optimised geometry exhibits a flatter aft section when using

the uniform distribution and a weaker shock is generated. Nonetheless, the number of

design variables in this case is too small to fully cover the design space. This exception

is thus not representative of the overall trend.
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As the number of design variables is increased, the drag coefficient exhibits a convergence

feature, especially for “one-minus-cosine” distribution, which suggests the design space is

gradually explored. Moreover, the gap between these two groups of drag values becomes

smaller when using more design variables. The drag difference is 39.1 counts for the case

of Ndv = 40, and the difference is further decreased to 21.6 counts when Ndv is doubled

from 40 to 80. In the context hereafter, the “one-minus-cosine” distribution approach

is used for the NACA0012 aerofoil optimisation case.

(a) Bump function distribution (t = 8) (b) Bump width control parameter

Figure 4.4: Influence of HHBF parameters on drag coefficient (M = 0.85,
α = 0 deg).

With respect to Ndv = 20 and Ndv = 30, Figure 4.4(b) shows the final drag results

plotted versus the bump width control parameter. An evident observation is that the

drag value drops sharply when t is increased from 3 to 5. Regarding the optimisation

performance, the results obtained from t = 3 and t = 6 correspond to the two ends

of the spectrum (shown as error bars in Figure 4.4(a)), where the drag difference for

Ndv = 30 is over 100 counts. This indicates that the bump width control parameter

also has a large impact on the optimal solution in this optimisation case.

To find out the cause for this fact, three representative groups of optimisation results are

compared in Figure 4.5. An evident distinction is observed in the leading edge area of the

optimised aerofoil shape: a significantly blunt leading edge is generated with setting of

t = 6 or t = 10, whereas the surface perturbation is trivial for the setting of t = 3. As

mentioned earlier in Section 3.2.6.1, when the bump width control parameter t is set up

with a larger value, more local shape control is achieved in geometry parameterisation.

This property accounts for the fact that the setting of t = 6 or t = 10 effectively deforms

the aerofoil in the narrow region near the leading edge, while the setting of t = 3 did

not exhibit the same behaviour. Consequently, a suction peak in the pressure coefficient

distribution is generated for t = 6 and t = 10, whereas the Cp distribution for t = 3

remains almost unchanged from the baseline aerofoil near the leading edge. Due to the
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existence of pressure recovery after the suction peak, the two cases with larger values

of t exhibit a weaker shock near the trailing edge and thus generate a lower wave drag.

Since the wave drag contributes most to the total drag in this optimisation problem,

it is not unexpected that the two larger values of t result in much better optimisation

performance than that of t = 3. With consideration of the fact that t = 6 produces the

lowest drag among all settings, this value is used hereafter for the NACA0012 aerofoil

optimisation case.

(a) Aerofoil shape (b) Pressure coefficient distribution

Figure 4.5: Influence of Hicks–Henne bump width control parameter on optimi-
sation results (Ndv = 30, M = 0.85, and α = 0 deg).

It is worth noting that most studies in the literature successfully perturbed both the

leading edge and aft section to minimise the wave drag while a few did not. For example,

Fabiano and Mavriplis [253] employed 10 CST design variables to perform adjoint-based

optimisation; however, the optimised aerofoil geometry near the leading edge remained

almost unchanged. As a consequence, the drag value only reduced from 467 counts

to 297 counts, which is much higher than that obtained from other participants. A

sensitivity assessment is therefore required to tune the CST implementation to obtain

the true optimal solution.

4.5.2 Impact of parameter settings in FFD

Two FFD parameterisation approaches embedded in SU2 framework are used in the

NACA0012 optimisation case, which are FFD control point and FFD thickness method.

The FFD box has a rectangular shape for the 2D aerofoil case and is defined by four

boundaries. Figure 4.6 illustrates the schematic diagram of the FFD box that encloses

the upper half of the NACA0012 aerofoil.

Optimisation can be successfully performed as long as these boundaries do not intersect

with the embedded geometry and are located not too far from the aerofoil. Nonetheless,

it was found that the drag result for the optimised aerofoil has a dependence on different

settings of the FFD box position. A combination of the four boundary positions that
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Figure 4.6: Schematic of FFD box set-up for the NACA0012 optimisation case.

can produce the best optimisation performance are listed in Table 4.5, and these FFD

box settings are used hereafter for the NACA0012 aerofoil optimisation case.

Table 4.5: Settings of FFD box position with best practice for the NACA0012
aerofoil optimisation case.

Parameterisation Bupper Blower Bleft Bright

FFD control point y = 0.2000 y = −0.2000 x = −0.0010 x = 1.0010
FFD thickness y = 0.0601 y = −0.0601 x = −0.0001 x = 1.0001

4.5.3 Dimensionality study

The dimensionality study was conducted using the best practice obtained from above

investigation. Figure 4.7 plots the aerofoil shapes and pressure distributions for the

optimised designs using HHBF parameterisation approach. As more design variables are

used, the leading edge becomes blunter and the aft section of the aerofoil gets thicker,

indicating that a flatter aerofoil surface is created. Correspondingly, a suction peak is

generated in the Cp distribution near the leading edge and becomes steeper as Ndv is

increased. The shock position moves further downstream towards the trailing edge.

Figure 4.8 displays FFD box perturbation and aerofoil deformation using FFD thickness

parameterisation method. As more control points are placed on the surface of FFD box,

the optimiser is provided with more freedom to explore the design space, and thus better

optimisation results are obtained.

The final drag results of the dimensionality study are shown in Figure 4.9. For both FFD

methods, the drag coefficient monotonically decreases as more design variables are added

into optimisation; for HHBF approach, however, the drag value initially drops sharply

and then maintains a nearly constant level. This indicates that around 15 Hicks–Henne

design variables are sufficient to cover the design space, while more FFD design variables

are needed to do so. This fact is possibly caused by the difference of design variable

distribution. The bump functions are distributed using “one-minus-cosine” function and
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(a) Aerofoil shape (b) Pressure coefficient distribution

Figure 4.7: Influence of design variable dimensionality on optimisation results
using HHBF approach (M = 0.85, α = 0 deg).

(a) Ndv = 10 (b) Ndv = 20

(c) Ndv = 30 (d) Ndv = 40

Figure 4.8: FFD box perturbation and geometry deformation for dimensionality
study using FFD thickness parameterisation method (original FFD box and
aerofoil geometry in black, deformed FFD box in red and deformed aerofoil
geometry in blue).

are clustered in the area where the surface sensitivities are relatively large. By contrast,

the control points are placed uniformly on the surface of FFD box, which means that

more design variables are needed for the optimiser to fully explore the design space. In

terms of optimisation performance, the best result for each parameterisation method

achieves drag reduction magnitudes of around 80%. Specifically, FFD control point

method produces the lowest drag with 80.5 counts in the optimisation case using 40

design variables, which corresponds to 82.8% of drag reduction.
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Figure 4.9: Drag coefficient results obtained from dimensionality study using
three parameterisation methods (M = 0.85, α = 0 deg).

For the case with 40 design variables, the optimised aerofoil shapes and pressure coeffi-

cient distributions are compared in Figure 4.10 with respect to three parameterisation

methods. It is worth observing that very similar optimisation results are obtained,

reflecting that the parameterisation methods employed in this work are equivalently

effective for this optimisation problem.

(a) Aerofoil shape (b) Pressure coefficient distribution

Figure 4.10: Case 1: comparison of optimisation results obtained from using
three parameterisation methods (Ndv = 40, M = 0.85, and α = 0 deg).

The convergence histories of the objective function are plotted in Figure 4.11. In terms

of the convergence rate of optimisation, HHBF approach performs better than two FFD

methods as it requires much less design iterations to meet the KKT conditions. This

is possibly due to the fact that HHBF places the design variables in areas with high

sensitivities through using “one-minus-cosine” distribution. For each parameterisation

method, as the number of design variables is increased, the design space is enlarged, and

more design cycles are needed for the optimiser to find the local minimum. As shown

later in Section 4.6, the existence of non-unique flow solutions causes difficulty for the
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optimiser to find the optimum, especially in the cases with more design variables, which

also leads to the slow convergence of optimisation.

Figure 4.11: Convergence histories for the NACA0012 aerofoil optimisation us-
ing three parameterisation methods.

4.6 Optimisation results

The drag reduction mechanism in this optimisation problem is to minimise the strength

of the shock wave. A representative optimisation case with 30 Hicks–Henne design

variables is taken for analysis. Figure 4.12 displays the Mach contours for both the

baseline and optimised aerofoil. An aerofoil with a flat surface is created by the opti-

miser through thickening the leading edge as well as the aft section. This is reflected

by the surface sensitivities, shown in Figure 4.13, which are computed by the adjoint

solver within SU2 and then serve as search direction information to guide the optimiser.

For the baseline aerofoil, a strong shock exists at about three quarter-chord position,

whereas for the optimised aerofoil, the shock is substantially weakened and is pushed

further downstream, locating at around 90% chordwise position. Hence, the total drag

is substantially reduced by minimising the wave drag.

Figure 4.14(a) plots the drag coefficient convergence history versus function evaluations

for the case of Ndv = 30. It is evident that the optimiser consistently produces de-

signs with sharply increased drag values, especially in late stage of optimisation process

when the optimal point is nearly reached. This behaviour is also observed from other

cases, particularly for those with large number of design variables. To understand the

cause for this phenomenon, two representative designs with different drag values were

selected, and their optimisation results were compared. It was found that the aerofoil

shapes are almost identical, however, the steady flow solutions exhibit different features.

Figure 4.14(b) shows the comparison of Mach contour results. It is apparent that the
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(a) Baseline aerofoil (b) Optimised aerofoil

Figure 4.12: Mach contours for baseline and optimised NACA0012 aerofoil using
HHBF parameterisation method (Ndv = 30, M = 0.85, and α = 0 deg).

Figure 4.13: Surface sensitivity for the baseline NACA0012 aerofoil.

primary difference between these two flow solutions is the shock wave structure near

the trailing edge. One flow solution shows a single shock, whereas the other solution

demonstrates double shock structure. This indicates that non-unique flow solutions exist

with respect to the optimised NACA0012 aerofoil, which accounts for the convergence

difficulty shown in Figure 4.11. In addition, the presence of non-unique solutions in this

ADODG optimisation case has also been reported by other researchers [57, 226, 227, 255].

Note that a symmetry boundary condition was applied in this case for the half model

of the aerofoil geometry. As a result, the flowfield solution is symmetric as well, as

shown in Figure 4.14(b). However, by using the whole aerofoil geometry, the flowfield

solutions obtained from other references [57, 227] are asymmetric, generating a single

shock on one side and a double shock on the other side. The reason was explained

by Ou et al. [257], who states as follows: for a symmetric aerofoil in critical transonic
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flow, a small disturbance in angle of attack increases the Mach number on one side and

reduces the Mach number on the other; consequently, a single shock is formulated on

one side with increasing speed and a double shock on the other side; a lift force is thus

generated following the perturbation, and a circulation is generated around the aerofoil,

which reinforces the initial local speed perturbation and stabilises the mechanism.

(a) Convergence history (b) Mach contour comparison

Figure 4.14: Non-unique flow solutions for the NACA0012 optimised aerofoil
using HHBF parameterisation method (Ndv = 30, M = 0.85, and α = 0 deg).

Figure 4.15(a) plots pressure coefficient distributions on the optimised aerofoil for the

two flow solutions. It is apparent that the difference mainly exists for the shock topology

near the trailing edge. An inspection of the flowfield is provided in Figure 4.15(b), dis-

playing supersonic iso-Mach number line patterns. Solution 1 shows a single supersonic

area (for a half-aerofoil), and solution 2 shows a double supersonic area. Specifically,

solution 1 produces a supersonic/subsonic shock at a distance in the field; and near the

aerofoil, a more complex structure is formulated, consisting of a supersonic/supersonic

shock followed by a short supersonic expansion and ending with a supersonic/subsonic

shock. Solution 2 produces an extended supersonic/subsonic shock in the field and a

subsonic-to-supersonic expansion leading to a second less extended supersonic/subsonic

shock. The shock structure is closely related to drag production with aerofoils and hence

explains the drag difference observed between the two flow solutions.

To further investigate the issue of non-uniqueness, a series of flow analysis were con-

ducted on the optimised aerofoil. The Mach number was swept up and down in a small

range around the design point (M = 0.85), and each flow simulation was initialised

using the converged solution obtained from the previous simulation. The drag results

are then shown in Figure 4.16. It is worth observing that hysteresis behaviour occurs

for Mach sweeps, and the drag coefficient results exhibit bifurcation in a narrow re-

gion. As the design point falls into this bifurcation zone, two distinct flow solutions are

thus expected. The single-shock solution was generated with relatively lower drag in
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(a) Pressure coefficient distribution (b) Supersonic iso-Mach number lines (∆M = 0.025)

Figure 4.15: Comparison of non-unique flow solutions for the NACA0012 opti-
mised aerofoil (Ndv = 30, M = 0.85, and α = 0 deg).

downward Mach sweep, whereas the double-shock solution was produced with relatively

higher drag in upward Mach sweep. These results may indicate that the NACA0012

optimised aerofoil is ill-posed in inviscid transonic flow. Moreover, it was found by

Jameson et al. [258] and Ou et al. [257] that, for aerofoil geometries with a nearly flat

section, non-unique transonic flow solutions not only exist for steady Euler flows but

also for unsteady RANS flows.

Figure 4.16: Drag coefficient hysteresis for Mach sweep analysis on the
NACA0012 optimised aerofoil (Ndv = 30, α = 0 deg). Arrows indicate the
sweep direction.
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4.7 Chapter summary

In this chapter, the benchmark NACA0012 aerofoil optimisation case was investigated

using SU2. Three shape parameterisation methods are employed in this study, which are

HHBF, FFD control point and FFD thickness approach. The aim is to investigate the

sensitivity of the optimal solution to a number of model parameters. The key findings

of the numerical optimisations are summarised as follows:

1. Optimised geometric shape

The optimised aerofoil exhibits a blunter leading edge and a thicker aft section com-

pared with the baseline geometry. The strong shock wave at about three quarter-

chord location is substantially weakened and pushed further downstream toward the

trailing edge.

2. Sensitivity assessment

The optimal solution shows sensitivity to several parameters in Hicks–Henne and

FFD parameterisation methods, such as bump function distribution, bump width

control parameter and FFD box position. For this optimisation problem, the “one-

minus-cosine” distribution for bump functions outperforms the uniform distribution

approach, and the setting of t = 6 produces the lowest drag results among a range

of values.

The impact of design variable dimensionality on optimisation performance is investi-

gated. It was found that 15 HHBFs are sufficient to cover the design space, whereas

more design variables are needed for FFD approaches. Each parameterisation method

achieves approximately 80% of drag reduction with respect to the baseline value, and

HHBF outperforms FFD approaches in terms of optimisation convergence speed.

3. Non-uniqueness for optimal solution

Non-unique flow solutions were found to exist on the optimised aerofoil, which demon-

strate single-shock and double-shock structure, respectively. In Mach number sweep

analysis, hysteresis behaviour of the drag coefficient occurs in a narrow region around

the design point, indicating that the optimisation problem is in fact ill-posed.



Chapter 5

Two-dimensional RAE2822

Aerofoil Optimisation

5.1 Introduction

Nowadays, most commercial aircraft fly at transonic speed during the cruise stage. As

the flow speed of the aircraft approaches the speed of sound, the air accelerating around

the wing reaches Mach 1 and shock waves begin to form, which produces wave drag and

thus deteriorates the overall aerodynamic performance. Supercritical aerofoils are de-

signed specifically to delay the onset of shock wave in the transonic speed range and are

commonly used in modern aircraft. Compared with the conventional aerofoils, super-

critical aerofoils are characterised by the flattened upper surface and highly cambered

aft section.

The RAE2822 aerofoil, shown below in Figure 5.1, is a supercritical aerofoil [259], which

has become a standard test case for turbulence modelling validation. This aerofoil is

made up with a max camber of 2%, camber position of 80%, and maximum thickness-

to-chord ratio of 22%. The RAE2822 aerofoil is often used in CFD in order to model

shock waves and other phenomena in 2D transonic flow.

Figure 5.1: Schematic of RAE2822 aerofoil (Source: [259]).

91
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The second case of AIAA ADODG benchmark problems is the drag minimisation of the

RAE2822 aerofoil subject to several constraints of geometric and aerodynamic quanti-

ties. This optimisation case has previously been investigated by a number of partici-

pants [57, 125, 131, 143, 227], and various methodologies and tools have been applied

to each component of the ASO framework. Differing from the first case of NACA0012

optimisation, which is more of an academic problem, the RAE2822 optimisation is a

case of more practical value and considers realistic constraints.

In this chapter, gradient-based numerical optimisations are performed using SU2 for

the benchmark RAE2822 optimisation. Similar to the NACA0012 case, two types of

geometry parameterisation, HHBF and FFD, are employed for the RAE2822 case, and

the influence of several key parameters on the optimal solution is investigated. In ad-

dition, two sets of parameter values in turbulence modelling are used for the viscous

optimisation case.

This chapter is structured in the following manner. The optimisation problem is firstly

described in Section 5.2. The computational grid and optimisation set-up are then

given in Section 5.3 and 5.4, respectively. Section 5.5 provides a detailed sensitivity

assessment. The optimisation results are presented in Section 5.6. Section 5.7 finally

summarises the key findings in this chapter.

5.2 Optimisation problem

The optimisation problem is the drag minimisation of the RAE2822 aerofoil in viscous,

transonic flow. The freestream Mach number is 0.734, and the Reynolds number, Re,

is 6.5 · 106. The lift coefficient is constrained to 0.824, the pitching moment coefficient

(evaluated at the quarter-chord) must be no less than −0.092, and the aerofoil area must

be greater than or equal to the initial aerofoil area. The optimisation problem is written

as

Minimise: Cd

w.r.t: y

Subject to: Cl = 0.824

Cm ≥ −0.092

S ≥ S0

where Cd, Cl and Cm are the drag, lift, and pitching moment coefficients, respectively;

and S and S0 are the optimised and initial aerofoil areas, respectively. The coordinates

of the RAE2822 aerofoil are obtained from the UIUC Aerofoil Coordinates Database1.

1https://m-selig.ae.illinois.edu/ads/coord_database.html [retrieved 2019]

https://m-selig.ae.illinois.edu/ads/coord_database.html
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In order to satisfy the lift constraint, the angle of attack is set up as an additional design

variable in this optimisation case.

5.3 Computational grid

For the RAE2822 aerofoil, the structured C-grid was generated using Pointwise grid

generator and is shown in Figure 5.2. The computational domain is bounded by a

no-slip aerofoil surface and a farfield located at a distance of 20 chord lengths from the

aerofoil. The coarse grid consists of 385 × 65 grid points in the wrap-around and normal

directions respectively, where 257 points are distributed along the aerofoil and 65 points

in the grid cut. The off-wall spacing was also set to ensure that the y+ 2 is smaller

than 1. To establish grid convergence, four levels of grid were generated with the same

topology, and the key parameters are summarised in Table 5.1.

(a) Far view (b) Near view

Figure 5.2: Computational domain and coarse grid (385 × 65) for the RAE2822
aerofoil.

Table 5.1: Grid parameters for the RAE2822 aerofoil grid convergence study.

Grid Level Grid Size Grid Points LE Spacing TE Spacing Off-wall Spacing

Coarse 385× 65 24,960 2.0 · 10−4 1.0 · 10−2 1.0 · 10−5

Medium 549× 93 50,964 1.4 · 10−4 7.1 · 10−3 7.1 · 10−6

Fine 769× 129 99,072 1.0 · 10−4 5.0 · 10−3 5.0 · 10−6

Superfine 1097× 185 202,760 7.1 · 10−5 3.5 · 10−3 3.5 · 10−6

For the baseline aerofoil, the compressible RANS simulation was conducted using the

standard single-equation SA turbulence model. In order to meet the lift target, the angle

2The non-dimensional off-wall distance y+ is given by y+ = uτy
ν

, where uτ =
√
τ/ρ is the friction

velocity at the wall, τ = µ ∂u
∂y

is the wall shear stress, y is the distance to the wall, and ν is the local

kinematic viscosity of fluid. Typically, the y+ value is required to be smaller than 5 for SA turbulence
model in order to resolve the viscous sublayer in the RANS simulations.
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of attack was iteratively updated during the flow analysis using the following formula

α(i+ 1) = α(i) +
Cl, target − Cl(i)

dCl / dα
, i = 0, 1, 2 ... (5.1)

where α(0) = 3 deg, Cl, target = 0.824, and dCl / dα = 0.2 [deg−1] for this case. Figure 5.3

shows an example of the convergence history for the CFD simulation. It is evident that

the angle of attack was updated 8 times to obtain the desired lift coefficient.

(a) Lift coefficient (b) Density residual

Figure 5.3: Convergence history for CFD simulation of the baseline RAE2822
aerofoil on coarse grid (385 × 65).

The aerodynamic results of the baseline aerofoil are listed in Table 5.2. The initial

aerofoil area was evaluated to be 0.07787. The pressure distributions for grid convergence

study are plotted in Figure 5.4. A shock wave is located at approximately 57% chordwise

position on the upper surface of the aerofoil. The coarse grid was found adequate to

guarantee grid independent solutions, and was thus used for optimisation.

Table 5.2: Aerodynamic results for the RAE2822 aerofoil grid convergence study
at M = 0.734 and Re = 6.5 · 106.

Grid Level Cl Cd (Counts) Cm α [deg]

Coarse 0.82400 241.24 -0.089 3.1848
Medium 0.82400 236.35 -0.091 3.1071
Fine 0.82400 232.27 -0.092 3.0654
Superfine 0.82400 228.81 -0.093 3.0450

5.4 Optimisation set-up

The SU2 suite is used to perform flow analysis and gradient-based optimisation for the

RAE2822 case. A summary of the computational methods and numerical settings is
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Figure 5.4: Pressure coefficient distributions on the baseline RAE2822 aerofoil
in the grid convergence study (M = 0.734, Cl = 0.824, and Re = 6.5 · 106).

given in Table 5.3.

Table 5.3: Computational methods and numerical settings for the RAE2822
optimisation.

Parameter Methodology or Value

Geometry parameterisation HHBF/FFD
Grid deformation Linear elasticity equations

Flow governing equations RANS
Turbulence model SA
Spatial discretisation 2nd order JST
Time discretisation Euler implicit
CFL number 5

Optimiser SLSQP
Gradient evaluation Continuous adjoint
Scaling factor for objective function 0.001
Scaling factor for constraint functions 0.001
Maximum number of iterations 100
Tolerance of KKT conditions 1 · 10−6

Two types of shape parametrisation, HHBF and FFD, are employed for the RAE2822

optimisation. Same with the NACA0012 case, a number of parameter values need to

be defined prior to optimisation. In addition, two sets of closure coefficients for SA

turbulence model are used for the RAE2822 case. The main numerical parameters used

in this case are summarised in Table 5.4.
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Table 5.4: Numerical parameters for two geometry parameterisation methods;
the values in square brackets indicate the range for a specific parameter.

Parameter Methodology or Value

HHBF
Distribution approach Uniform/One-minus-cosine
Bump width control parameter [1, 10]
Number of design variables [5, 40]

FFD
FFD box: upper/lower [±0.08, ±0.4]
FFD box: left [-0.01, -0.0001]
FFD box: right [1.0001, 1.01]
Number of design variables [5, 40]

Turbulence model Standard SA/Calibrated SA

5.5 Sensitivity assessment

This section contains results obtained from the sensitivity assessment for the RAE2822

optimisation case. This work primarily focuses on investigating the sensitivity of the

optimal solution to a series of model parameters, with the purpose of finding a suite

of parameter values that can produce the best optimisation result. Additionally, the

influence of SA turbulence model coefficients on the flow solution and optimisation

performance is also investigated.

5.5.1 Impact of parameter settings in geometry parameterisation

Both the HHBF and FFD control point approach are employed for geometry parameter-

isation. The impact of parameter settings within HHBF on optimisation performance

is firstly investigated. The final drag results are shown in Figure 5.5. It is apparent

that the same level of optimisation performance is achieved using different parameter

settings, implying that the optimal solution in this case is insensitive to the settings

of both bump function distribution and bump width control parameter. In this study

hereafter, the uniform distribution is selected and the default setting of t = 3 is used.

With respect to FFD parameterisation, the FFD box is defined by four boundaries and

has a rectangular shape, as illustrated in Figure 5.6. A number of control points are

placed on the upper and lower surfaces of the FFD box, and their movement is restricted

in the y-direction. Different settings of the FFD box position are applied. Nonetheless,

the optimisation performance shows independence of FFD box position, and the results

are not reported herein for brevity. In this work hereafter, the FFD box settings listed

in Table 5.5 are used.
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(a) Bump function distribution (t = 3) (b) Bump width control parameter

Figure 5.5: Influence of HHBF parameters on drag coefficient (M = 0.734,
Cl = 0.824, and Re = 6.5 · 106).

Figure 5.6: Schematic of FFD box set-up for the RAE2822 optimisation case.

Table 5.5: Settings of FFD box position for the RAE2822 aerofoil optimisation
case.

Parameterisation Bupper Blower Bleft Bright

FFD control point y = 0.100 y = −0.100 x = −0.001 x = 1.001

5.5.2 Dimensionality study

The effect of dimensionality on the optimal solution is then investigated, and the final

drag results are shown in Figure 5.7. It is observed that the drag values vary in a

very small range and the optimisation performance does not improve when using more

design variables. Figure 5.8 displays FFD box perturbation and aerofoil deformation.

The design space is easily explored in this case as only 5 design variables are sufficient

to locate the optimum. Additionally, HHBF and FFD control point methods are found

to be equivalently effective for this optimisation problem, achieving a drag reduction of

approximately 38% in both cases.
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Figure 5.7: Drag coefficient results obtained from dimensionality study using
two parameterisation methods (M = 0.734, Cl = 0.824, and Re = 6.5 · 106).

(a) Ndv = 5 (b) Ndv = 10

(c) Ndv = 15 (d) Ndv = 20

Figure 5.8: FFD box perturbation and geometry deformation for dimensionality
study using FFD control point parameterisation method (original FFD box and
aerofoil geometry in black, deformed FFD box in red and deformed aerofoil
geometry in blue).

The convergence histories of the objective function are shown in Figure 5.9. The drag

coefficient drops substantially in the first few design iterations, and then reduces slowly

until the required KKT conditions are met. The RAE2822 optimisation converges faster

when using HHBF parameterisation method over the FFD approach.
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Figure 5.9: Convergence histories for the RAE2822 aerofoil optimisation using
two parameterisation methods.

5.5.3 Impact of turbulence model closure coefficients

For the RAE2822 aerofoil, the solution of the RANS equations employs the SA turbu-

lence model, and the closure coefficients are set to standard values. However, there is

no guarantee that standard values are universal for all test cases. Da Ronch et al. [260]

recently revisited the calibration of the SA closure coefficients for the RAE2822 aerofoil

in transonic flow. The calibration was performed with the aid of machine learning and

adaptive DoE techniques by minimising the deviation of numerical pressure coefficient

results from available experimental data. Both standard and calibrated values of SA

closure coefficients are listed in Table 5.6. It is worth noting that the last five parame-

ters (cw2 through ct4) were kept at their nominal values in the case tested as they have

nearly zero influence on the outputs. The reader is referred to Reference [260] for more

details about the calibration process.

Table 5.6: Standard and calibrated values of SA turbulence model closure co-
efficients; data from [260].

Parameter Standard value Calibrated value

κ 0.4100 0.3600
cv1 7.1000 7.5000
σ 0.6667 1.0030
cb1 0.1355 0.1400
cw2 0.3000 0.3000
cb2 0.6220 0.6220
ct3 1.2000 1.2000
cw3 2.0000 2.0000
ct4 0.5000 0.5000

The above two sets of parameter values for SA turbulence model were employed in the

RAE2822 optimisation case. The HHBF was used as the parameterisation approach.



100 Chapter 5 Two-dimensional RAE2822 Aerofoil Optimisation

Since the design space is easily explored in this case, the number of Hicks–Henne design

variables ranges from 5 to 10 herein. Optimisations were then carried out using both

standard and calibrated SA models, and the corresponding drag results are shown in

Figure 5.10. Regarding the case with 10 design variables on each surface, the drag

gradients on the baseline geometry are shown in Figure 5.11.

(a) Drag coefficient (b) Percentage of drag reduction

Figure 5.10: Comparison of drag results obtained from optimisation using two
sets of SA turbulence model closure coefficients (M = 0.734, Cl = 0.824 and
Re = 6.5 · 106).

Figure 5.11: Drag gradients on the baseline geometry using both the standard
and calibrated SA turbulence models.

For the baseline RAE2822 aerofoil, it is observed from Figure 5.10(a) that the drag re-

sults obtained from using the standard and calibrated SA model differ by approximately

15 counts, which is close to the value reported in Reference [260]. This is indicative of a

certain sensitivity of the RANS solution on the SA turbulence model coefficients. Fig-

ure 5.12 shows the difference in the flowfield solutions obtained using the standard and

calibrated SA model. The differences mainly exist at the shock region. The reason is
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attributed to the fact that the pressure coefficient distribution obtained with calibrated

SA model improves the agreement with the experimental data, particularly near the

leading edge and at the shock front. Concerning the drag gradient, the results obtained

from using calibrated coefficients match closely with those obtained from standard co-

efficients, and the largest difference is approximately 7% compared to the peak value of

gradients. This fact indicates that the calibration process has trivial impact on the drag

reduction mechanism for this case.

(a) Pressure coefficient (b) Mach number

Figure 5.12: Difference in baseline RAE2822 flowfield solutions obtained using
standard and calibrated SA turbulence model (M = 0.734, Cl = 0.824 and
Re = 6.5 · 106).

For the optimised RAE2822 aerofoil, the drag results obtained when using calibrated

SA model are, on average, 12 counts lower than those obtained when using the standard

model. As shown in Figure 5.10(b), the drag reduction is, on average, 1.1% higher when

replacing standard SA model by calibrated model. In the area of aircraft design, a high

level of accuracy with respect to drag prediction is required, and this need is confirmed by

Meredith [261], who showed that one drag count is equal to the weight of one passenger

in a long-haul aircraft. This highlights the importance of turbulence modelling, and

the need for more extensive calibration campaigns to reduce modelling uncertainties.

It is worth noting that although the calibration of SA coefficients was carried out on

the RAE2822 aerofoil using the DLR-Tau solver, the calibrated SA turbulence model

slightly outperforms the standard version in analysing the complex flow features around

the ONERA M6 wing; and the expected prediction accuracy holds across different flow

solvers [260]. A further dependence of the optimal solution would be on the turbulence

model, which is not done in this work, but the reader may have an indication of its

importance by looking at other references [262, 263].

5.6 Optimisation results

The optimisation case selected for analysis has 20 Hicks–Henne design variables and uses

standard SA turbulence model. For both the baseline and optimised design, the Mach

contour results are shown in Figure 5.13. The strong shock wave on the upper surface
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of the baseline aerofoil is eliminated after optimisation. The total drag is thus reduced

by removing the component of wave drag. The drag reduction is achieved through

generating a flat fore section on the upper surface, which is also reflected by the surface

sensitivity, as shown in Figure 5.14.

(a) Baseline aerofoil (b) Optimised aerofoil

Figure 5.13: Mach contours for baseline and optimised RAE2822 aerofoil using
HHBF parameterisation method (M = 0.734, Cl = 0.824, Re = 6.5 · 106, and
Ndv = 20).

Figure 5.14: Surface sensitivity for the baseline RAE2822 aerofoil.

In order to further understand the drag reduction mechanism, the aerofoil shapes, pres-

sure distributions as well as surface curvature distributions are plotted in Figure 5.15

for comparison. It should be noted that the curvature of aerofoil surface, κ, is defined

to be the reciprocal of the local radius r, and is expressed as

κ =
1

r
=

x′y′′ − y′x′′

(x′2 + y′2)
3
2

=
y′′

(1 + y′2)
3
2

(5.2)

The geometry deformation largely occurs in the fore section of the aerofoil. On the

upper side, the curvature is reduced to create a relatively flat surface, which alleviates
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the flow acceleration and hence delays or eliminates the formulation of shock wave;

whereas on the lower side, the aerofoil becomes thicker, which is primarily to satisfy the

area constraint. Correspondingly, the pressure discontinuity at around 56% chordwise

position is replaced by a smooth pressure recovery, thus eliminating the shock wave and

reducing the drag. Additionally, the surface curvature near the trailing edge is enlarged

after optimisation, and the local camber is increased accordingly.

(a) Aerofoil shape (b) Pressure coefficient distribution

κ

(c) Surface curvature

Figure 5.15: Comparison of optimisation results for the RAE2822 aerofoil op-
timisation using HHBF parameterisation method (M = 0.734, Cl = 0.824,
Re = 6.5 · 106, and Ndv = 20).

We have further investigated the impact that the optimal shape has on the aerodynamic

derivatives. Results are summarised in Table 5.7. It was found that the influence on

the drag and pitching moment curve slopes, Cdα and Cmα respectively, is minimal but

significant on the lift curve slope, Clα . This may potentially affect the aerodynamic

performance such as the gust response of the aerofoil.

Table 5.7: Aerodynamic derivatives of the RAE2822 aerofoil at the design point
(M = 0.734, Cl = 0.824, Re = 6.5 · 106, and Ndv = 20).

Clα Cdα Cmα
Baseline 0.0806 0.01500 0.0022
Optimal 0.1241 0.01474 0.0021

For this optimisation case, the convergence histories of several constraints are plotted

in Figure 5.16. Firstly, the lift coefficient initially deviates from the value of 0.824

because the shape deformation is mainly performed in the first few design steps. The lift

coefficient then gradually recovers to the target value and finally satisfies the constraint.

Secondly, despite an initial decrease of the pitching moment coefficient, the optimisation

seeks to generate aerofoils with higher Cm values in the following design cycles, which

leaves more margin for this constraint. Thirdly, the aerofoil area basically remains

the same value throughout the optimisation process, and hence does not violate the

area constraint. Therefore, the optimisation provides a feasible design that meets the

requirement of this benchmark problem.
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(a) Lift (b) Pitching moment (c) Surface area

Figure 5.16: Convergence histories of several constraints in the RAE2822 op-
timisation using HHBF parameterisation method (Ndv = 20). Dashed line
indicates the desired value for a specific constraint.

The convergence history of the objective function versus function evaluations is plotted

in Figure 5.17(a). After decreasing significantly in the early few evaluation steps, the

drag coefficient in the RAE2822 optimisation case starts to exhibit oscillatory behaviour,

and designs with abruptly increased drag values are constantly generated, which is very

similar to the NACA0012 case. Two representative designs with different drag values

are then selected for result comparison. It was again found that the aerofoils have nearly

identical geometries but the flow solutions are different. Figure 5.17(b) shows comparison

of the Mach contour results for these two steady solutions. The discrepancy occurs in the

mid-section area and is localised. One solution exhibits single pressure recovery feature,

whereas the other solution displays double pressure recovery. Consequently, the presence

of non-unique flow solutions results in a design space that is not smooth. This, in turn,

causes difficulty for gradient-based optimisation to search for the local minimum.

(a) Convergence history (b) Mach contour comparison

Figure 5.17: Non-unique flow solutions for the RAE2822 optimised aerofoil using
HHBF parameterisation method (M = 0.734, Cl = 0.824, Re = 6.5 · 106, and
Ndv = 20).
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For the two selected flow solutions, chordwise pressure coefficient distributions on the

aerofoil are plotted in Figure 5.18(a). The primary difference exists in the mid-sectional

area where pressure recovery occurs. To compare the flowfield, the supersonic iso-Mach

number lines are displayed in Figure 5.18(b). Solution 1 has a single supersonic zone,

whereas solution 2 shows two supersonic zones, with a large one in the front section fol-

lowed by a small one in the mid-section. The difference of flowfield structure contributes

significantly to the drag production of the optimised aerofoil. The fact that two aero-

foils with nearly identical geometries have very different drag values further explains the

oscillations in the optimisation process, which have a negative effect on the convergence

of the optimisation algorithm.

(a) Pressure coefficient distribution (b) Supersonic iso-Mach number lines (∆M = 0.02)

Figure 5.18: Comparison of non-unique flow solutions for the RAE2822 opti-
mised aerofoil (M = 0.734, Cl = 0.824, Re = 6.5 · 106, and Ndv = 20).

Further investigations were undertaken where angle of attack, instead of Mach number,

was chosen as the perturbation factor. In Figure 5.19, the hysteresis loop is shown for

the RAE2822 optimised aerofoil. The angle of attack was swept up and down in a small

range with an increment of 0.01, and each simulation was restarted from the previous

converged solution. Since the design point for the optimised aerofoil (α = 3.1848 deg)

falls into the drag bifurcation zone, two distinct flow solutions are thus obtained. The

flow solution with single pressure recovery feature was generated in downward sweep

and corresponds to relatively lower drag; whereas the flow solution with double pressure

recovery feature was produced in upward sweep and corresponds to relatively higher

drag. The non-uniqueness in the RAE2822 optimisation case was also documented by

Lee et al. [57] and LeDoux et al. [227]. However, the reference [57] hypothesized that the

occurrence of non-unique solutions was triggered by the treatment of block interfaces of

computational grid. The hypothesis is disproved in this study by finding a hysteresis loop

around the design point. Nonetheless, the cause and mechanism for this phenomenon

are not fully understood and thus require further study. The reader may also refer
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to the work of Jameson et al. [257, 258] and Kuzmin [264, 265] for studies of similar

phenomena, i.e. non-unique solutions in transonic flow over aerofoils with flat section.

Figure 5.19: Drag coefficient hysteresis for angle of attack sweep analysis on
the RAE2822 optimised aerofoil (M = 0.734, Re = 6.5 · 106, and Ndv = 20).
Arrows indicate the sweep direction.

5.7 Chapter summary

In this chapter, the benchmark RAE2822 aerofoil optimisation case was investigated

using SU2. Two shape parameterisation methods, HHBF and FFD control point ap-

proach, are employed in this study. For turbulence modelling, two sets of SA model

coefficients are applied. The aim is to investigate the sensitivity of the optimal solution

to a number of model parameters. The key findings of the numerical optimisations are

summarised as follows:

1. Optimised geometric shape

The aerofoil shape deformation primarily occurs in the fore section. Compared to the

baseline geometry, a relatively flat surface with smaller curvature is created on the

upper aerofoil to eliminate the shock, and the thickness on the lower side is increased

to satisfy the area constraint.

2. Sensitivity assessment

The optimal solution is insensitive to the parameter settings in both parameterisation

methods, including bump function distribution, bump width control parameter and

FFD box position. The drag coefficient for the optimised aerofoil is around 150

counts, which corresponds to approximately 38% of drag reduction.

The influence of dimensionality on optimisation performance is very trivial as the

same level of drag results are obtained using various numbers of design variables.

Moreover, as few as 5 design variables are sufficient to fully cover the design space.
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The optimisation results show sensitivity to SA turbulence model coefficients. The

drag coefficient obtained from using calibrated SA model is lower than that obtained

from using standard SA model. Consequently, the drag reduction is approximately

one percent higher when using calibrated SA model.

3. Non-uniqueness for optimal solution

Non-unique flow solutions were obtained for the optimised aerofoil, displaying both

single and double pressure recovery features. Hysteresis loop of the drag coefficient

was observed in angle of attack sweep analysis and a narrow drag bifurcation zone

exists surrounding the design point.





Chapter 6

Three-dimensional Wing Twist

Optimisation

6.1 Introduction

On top of 2D aerofoil optimisation, 3D wing shape optimisation is also of vital impor-

tance to improve the aerodynamic performance of an aircraft. A substantial amount of

research has been conducted towards wing design and optimisation for both conventional

and novel aircraft configurations. The primary goal is to minimise the drag while main-

taining sufficient lift. In particular, induced drag, as known as vortex drag, accounts

for approximately 40% of the total drag on a conventional aircraft in cruise flight [266].

Therefore, induced drag reduction remains a crucial area of research in the aerospace

community.

While retrofitting an existing wing with winglets is a common practice to reduce the

vortex drag, it also raises issues affecting other disciplines. Winglets incur a weight

penalty that requires further structural reinforcement of the wing, ultimately adding

more mass to the aircraft. The additional mass at the tip also creates more rolling

inertia and hence reduces maneuverability. One more problem for short wings with

winglets is that they are more prone to flutter. An alternative approach is to treat wing

twist as a design parameter, which is a method to tailor the local incidence to achieve the

ideal lift distribution over span. Given a specific wing planform, one can optimise the

spanwise twist, which aims to reduce the lift-induced drag by shifting the aerodynamic

loads inboard. In addition, the benefits are multi-fold by treating wing twist as a design

variable and incorporating it into optimisation. Specifically, with the built-in wing twist

in the jig shape, the aerodynamic forces can deform the wing into the desired shape in

flight. The predefined wing twist can also be used to prevent tip stall through washout.

109
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Regarding wing twist optimisation, a number of studies have been performed using

aerodynamic solvers of different levels of fidelity. Phillips [267] used a low-fidelity model

based on Prandtl’s LLT to find the optimal design for finite twisted wings, and the

optimised geometry was subsequently analysed with an Euler flow solver [268]. Similarly,

for a BWB geometry, Qin et al. [79] used a low-fidelity panel method aerodynamic model

for the inverse design optimisation. The specified lift distribution was achieved through

the variation of spanwise twist distribution on the baseline geometry. A high-fidelity

RANS model was later applied to investigate whether the targeted improvement was

achieved. Nonetheless, the aerodynamic methods used above are limited by inviscid and

incompressible flow assumptions. Recently, Hicken and Zingg [27] employed an Euler-

based optimisation to minimise induced drag on several nonplanar configurations. A

number of interesting results were produced. However, although the nonlinear impact

on induced drag was considered, the viscous and turbulence effects were missing.

In this chapter, two wing twist optimisation problems are investigated. The first case is a

benchmark problem suggested by AIAA ADODG. This case involves twist optimisation

of an unswept NACA0012 wing in subsonic, inviscid flow. A number of researchers [27,

57, 122, 124, 125, 143] have studied this case using high-fidelity CFD solvers. The second

case deals with twist optimisation of a swept NACA2412 wing in subsonic, viscous flow.

The NACA2412 case exhibits more complexity than the NACA0012 case as it involves

viscous and sweep effects on finite wings.

In this work, two aerodynamic solvers are used to perform gradient-based optimisations.

The first solver is the high-fidelity SU2 code, and the second is the multi-fidelity FALCon

solver. The primary aim is to demonstrate the applicability and efficiency of the hybrid

solver in wing twist optimisation. In addition, we further investigate the sensitivity of

optimisation results to a number of parameters, including design variable dimensionality,

twist interpolation approach, and geometry control method.

This chapter is organised in the following manner. Section 6.2 and 6.3 present the results

obtained for twist optimisation of NACA0012 wing and NACA2412 wing, respectively.

For each case, the optimisation problem is briefly introduced, following by a description

of the computational grid; a verification of the FALCon solver against SU2 is then pro-

vided for the baseline geometry; the optimisation results are finally presented, including

the dimensionality study. Section 6.4 provides a discussion revisiting the geometric twist

distribution based on the results from the two cases. Section 6.5 summarises the key

findings in this chapter.
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6.2 Case 1: Optimisation of an unswept wing in inviscid

subsonic flow

6.2.1 Optimisation problem

The optimisation problem is the induced drag minimisation of an unswept wing with

zero-thickness trailing-edge NACA0012 sections in inviscid, subsonic flow [27]. The

freestream Mach number is 0.5, and the target lift coefficient is 0.375. The design

variables are the twist of sections along the span and about the trailing edge. In this

work, the twist at the root section is allowed to vary, whereas the freestream angle of

attack is fixed under the flow conditions. The purpose of this case is to produce a lift

distribution that is close to elliptical and a span efficiency factor approximately equal

to unity. The optimisation problem is written as follows:

Minimise: CD

w.r.t: γ (y)

Subject to: CL = 0.375

where CD and CL are the drag and lift coefficients of the wing, respectively, and γ (y) is

the twist distribution along the wing span. The initial geometry is a rectangular, planar

wing with NACA0012 sections and sharp trailing edge. The semispan is 3.06c where c

is the chord length; the wing planform is rectangular over the first 3c and the last 0.06c

is enclosed by a round wing-tip cap. Note that the wing-tip cap can not be modelled in

FALCon due to its nature.

6.2.2 Computational grid

For the SU2 solver, an unstructured 3D grid was generated by Pointwise grid genera-

tor using the tetrahedral extrusion (T-Rex) technique. The computational domain is

bounded by a no-penetration wing surface, a symmetry plane, and a farfield located at a

distance of 20 chord lengths from the wing. The wing geometry as well as the grid on the

symmetry plane are shown in Figure 6.1. The computational grid points are clustered

towards the leading and trailing edge and also the wing tip to accurately represent the

geometry. To establish grid convergence, four levels of grid were generated, and the key

parameters are summarised in Table 6.1.

An inviscid flow analysis was conducted on the baseline geometry. Note that the angle

of attack was iteratively updated during the flow analysis in order to meet the lift target.

The aerodynamic results are listed in Table 6.2. The fine grid was found adequate to

guarantee grid independent results and was used for optimisation.



112 Chapter 6 Three-dimensional Wing Twist Optimisation

Figure 6.1: Case 1: SU2 computational grid for the unswept NACA0012 wing
(Fine grid: 1.27 million elements).

Table 6.1: Case 1: SU2 grid parameters for grid convergence study of the
unswept NACA0012 wing.

Grid Level Grid Elements LE Spacing TE Spacing Off-wall Spacing

Coarse 468,620 2.5 · 10−3 5.0 · 10−3 5.0 · 10−3

Medium 858,099 2.5 · 10−3 5.0 · 10−3 2.5 · 10−3

Fine 1,269,840 1.8 · 10−3 3.5 · 10−3 2.0 · 10−3

Superfine 2,291,570 1.2 · 10−3 2.5 · 10−3 1.5 · 10−3

Table 6.2: Case 1: SU2 aerodynamic results for grid convergence study of the
unswept NACA0012 wing (M = 0.5).

Grid Level CL CD (Counts) α [deg]

Coarse 0.3750 87.5 4.2930
Medium 0.3750 82.6 4.2508
Fine 0.3750 81.7 4.2580
Superfine 0.3750 81.4 4.2611

For FALCon solver, a lattice of wing bound panels is defined and shown in Figure 6.2(a).

The VLM panels are uniformly spaced in the chordwise direction and unevenly dis-

tributed in the spanwise direction using “cosine” function, which provides sufficient

resolution at the wing tip. A grid convergence study was conducted and the results

are listed in Table 6.3. For the following optimisation, the number of chordwise and

spanwise panels used are Nx = 8 and Ny = 50, respectively. As the aerofoil section

remains the same along the span, only one section is extracted to generate the database.

As shown in Figure 6.2(b), the 2D stencil on symmetry plane of the 3D SU2 grid is used

by the 2.5D+ solver. For the NACA0012 case, the 2.5D+ computation is reduced to a

pure 2D analysis as the sweep angle is zero.
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(a) VLM grid (Nx = 8 and Ny = 50) (b) 2D grid for 2.5D+ solver

Figure 6.2: Case 1: FALCon computational grid for the unswept NACA0012
wing.

Table 6.3: Case 1: FALCon aerodynamic results for grid convergence study of
the unswept NACA0012 wing (M = 0.5).

Nx × Ny CL CD (Counts) α [deg]

2 × 13 0.3750 80.6 4.2278
4 × 25 0.3750 82.1 4.2732
8 × 50 0.3750 82.9 4.3018

16 × 100 0.3750 83.3 4.3185

6.2.3 Verification

To assess the computational accuracy of aerodynamic results, the hybrid flow solver is

verified against the SU2 solver for the baseline geometry. Figure 6.3 shows the lift and

drag curves obtained from both solvers. The results obtained from a 2D simulation of

the NACA0012 aerofoil is also included for comparison. It is apparent that FALCon can

accurately predict the lift curve slope and also the drag of the wing. Note that the lift

curve is linear at low angles of attack. The difference of lift curve slope between 2D and

3D results is caused by the finite span of the 3D wing. The lift curve slope for wings of

finite span is given by

CLα =
Clα

1 +
Clα

π e1 AR

=
Clα

1 +
Clα
π AR(1 + τ)

(6.1)

where CLα and Clα are the 3D wing and 2D aerofoil lift curve slope, respectively; AR =

b2/(2S) is the wing aspect ratio, b is the span, S = cb/2 = 3c2 is the semispan area; e1

is a factor that depends on the geometric shape of the wing, including the aspect ratio

and taper ratio; τ is the lift curve slope parameter in Glauert’s formulation [269]. In
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this case, the small aspect ratio accounts for the reduction of lift curve slope from 2D

to 3D, with a ratio of CLα /Clα = 0.625.

α

(a) Lift curve

α

(b) Drag curve

Figure 6.3: Case 1: Lift and drag curves for baseline geometry (M = 0.5).

Distributions of the spanwise local lift for the various incidences are shown in Figure 6.4.

It is observed that FALCon is able to reproduce the aerodynamic loading across a range

of angles of attack. Overall, a good agreement is observed between FALCon and SU2

results, which confirms the prediction accuracy of aerodynamic properties for FALCon.

α

α

α

α

α

α

Figure 6.4: Case 1: Spanwise lift distributions for baseline geometry (M = 0.5).

6.2.4 Optimisation set-up

Both SU2 and FALCon are used to perform aerodynamic analysis and gradient-based op-

timisation for the unswept NACA0012 wing. The computational methods and numerical

settings for SU2 and FALCon are summarised in Table 6.4 and Table 6.5, respectively.

Note that the design variables are limited to the geometric twist, that is, through the
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variation of the local aerofoil section incidence along the span while maintaining the

aerofoil shape. It should also be mentioned that the discrete design variables are uni-

formly distributed along the wing span from root to tip. With regard to FALCon, a

linear interpolation method, unless otherwise stated, is adopted to map design variables

onto the twist angles of VLM panels.

Table 6.4: Case 1: Computational methods and numerical settings for SU2
optimisation.

Parameter Methodology or Value

Geometry parameterisation FFD twist
Grid deformation Linear elasticity equations
Number of design variables [3, 11]

Flow governing equations 3D Euler
Spatial discretisation 2nd order JST
Time discretisation Euler implicit
CFL number 4

Optimiser SLSQP
Gradient evaluation Continuous adjoint
Scaling factor for objective function 0.001
Scaling factor for constraint function 0.001
Maximum number of iterations 100
Tolerance of KKT conditions 1 · 10−6

Table 6.5: Case 1: Computational methods and numerical settings for FALCon
optimisation.

Parameter Methodology or Value

Solver for 2.5D+ database SU2
Governing equations 2D Euler
Range of angle of attack [deg] [-5, 10]
Increment of incidence [deg] 1 deg

Coupling relaxation factor 0.5
Tolerance of coupling convergence 1 · 10−11

Number of design variables [3, 11]
Twist interpolation method Linear (unless otherwise stated)

Optimiser SLSQP
Gradient evaluation FDM
Scaling factor for objective function 0.001
Scaling factor for constraint function 0.001
Maximum number of iterations 100
Tolerance of KKT conditions 1 · 10−6
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6.2.5 Dimensionality study

For both FALCon and SU2, the optimisations were conducted with different numbers

of design variables. The drag coefficients of the baseline and optimised geometries are

plotted in Figure 6.5. For the baseline geometry, the difference in drag between FALCon

and SU2 solver is insignificant, only about 1.3 counts. This fact again reflects that the

multi-fidelity solver can estimate drag accurately for this case with no viscous or sweep

effects. With regard to the optimised geometries, the variation of drag coefficient is

very trivial, indicating that the optimal solution is insensitive to the design variable

dimensionality. In addition, the drag reduction for both optimisation frameworks is

approximately 1 count, implying that the initial design is very close to the optimal

solution.

Figure 6.5: Case 1: Baseline and optimised drag coefficient.

When only vortex drag is present, the drag coefficient can be expressed as

CD =
C2
L

π ARe
=

CD,ellip

e
(6.2)

where CD,ellip is the minimum induced drag predicted by LLT for a planar wake; the

parameter e is the span efficiency, which is a useful and popular means of comparing the

induced drag of different configurations. Rearranging Equation (6.2) we have

e =
C2
L

π ARCD
=

CD,ellip

CD
(6.3)

This suggests that the span efficiency is 1 for an ideal wing having the same aspect

ratio and an elliptical lift distribution. As suggested in Reference [143], a modified span

efficiency is used in this study, which is defined as

e0 =
C2
L

π AR (CD − CD0)
(6.4)
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where CD0 is the zero-lift drag coefficient. The modified factor e0, also known as Oswald

efficiency, may provide a better estimate of the actual span efficiency by eliminating the

spurious drag at α = 0 deg, which is attributed to the numerics of the flow solver.

Figure 6.6 plots the span efficiency for the baseline and optimised wing geometries. It is

observed that the span efficiency for the initial untwisted geometry is over 0.9. Both SU2

and FALCon optimisations yield about 1.2% improvement, pushing wing span efficiency

closer to the theoretical optimal value of unity.

Figure 6.6: Case 1: Baseline and optimised span efficiency.

6.2.6 Optimisation results

The optimisation with 5 design variables is taken as example for further analysis. The

convergence history of the objective function is plotted in Figure 6.7. It is evident that

only a few design iterations are required to meet convergence criteria of KKT conditions,

indicating that the optimiser can easily locate the minimum point for this optimisation

problem.

The sectional lift distributions are shown in Figure 6.8. For the baseline geometry, the

load distributions generated by the two aerodynamic solvers are indistinguishable, and

they are close to elliptical, which is the theoretical optimal solution. As expected, the

lift distributions on the optimised geometry closely match the elliptical distribution, and

the sum of squared errors between the optimised result and the theoretical solution is

within the value of 3.0 · 10−4 for both solvers. The two optimisation frameworks perform

equivalently well in minimising drag for this benchmark case.

The spanwise twist distributions for the optimised design are shown in Figure 6.9. Note

that the twist values are measured relative to the freestream angle of attack. A similar

pattern is observed from the two solutions obtained from FALCon and SU2. The out-

board sections produce negative twist to reduce the vortex drag, whereas the inboard
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Figure 6.7: Case 1: Convergence history of the drag coefficient (Ndv = 5).

(a) Baseline geometry (b) Optimised geometry

Figure 6.8: Case 1: Sectional lift distributions for initial and final geometries
(M = 0.5, α = 4.258 deg, and Ndv = 5).

sections generate positive twist to increase the sectional lift and thus satisfy the equality

constraint for the total lift.

Figure 6.10 shows the FFD parameterisation, FFD box deformation as well as wing

geometry deformation within SU2 optimisation. A lattice of control points are uniformly

spaced on the surface of FFD box, and the control points located at the same spanwise

position are grouped to perform the twist motion simultaneously. Consequently, the

wing geometry encapsulated in the FFD box undergoes the twist deformation as well.

The wing surface maintains second-order derivative continuity after deformation. Note

that the twist at two ends of the FFD box are not defined as design variables in this

optimisation case.

The pressure contours on the upper surface for the baseline and optimised wings are
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γ

Figure 6.9: Case 1: Sectional twist distributions of the optimised geometry
(Ndv = 5).

Figure 6.10: Case 1: FFD parameterisation, FFD box deformation, and wing
geometry deformation (Ndv = 5).

compared in Figure 6.11. To visualise the change more straightforwardly, Figure 6.12

shows the difference of pressure coefficient, ∆Cp, between the initial and optimised

geometry. The variation of aerodynamic loading is mainly located at the leading edge

area for both inboard and outboard sections. At the wing tip, the pressure coefficient

is also different due to the decrease of vortex intensity after optimisation. The contour

lines exhibit a nearly symmetric pattern about the midspan, which is due to the fact

that the outboard wing generates less lift to reduce the vortex drag while the inboard

wing produces more lift to satisfy the equality constraint of total lift.

The aerofoils and corresponding pressure distributions at three representative wing sec-

tions are plotted in Figure 6.13. The change of aerodynamic loading is clearly found at
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Figure 6.11: Case 1: Upper-surface pressure contours for baseline and optimised
wings (Ndv = 5).

Figure 6.12: Case 1: Difference of pressure coefficient on upper surface between
baseline and optimised wings (Ndv = 5).

20% and 80% span positions by comparing the included area of pressure distribution,

whereas the loading at midspan position remains nearly the same. To further illustrate

the mechanism for drag reduction, we extracted a 2D plane of the flowfield, which is

located 0.1c behind the trailing edge, for analysis. The vorticity magnitude contours, as

shown in Figure 6.14, are compared for the baseline and optimised designs. It is evident

that the peak value at the vortex core decreases through twist optimisation, leading to

the reduction of energy loss and hence the vortex drag.

Figure 6.13: Case 1: Sectional pressure plots and aerofoil sections for baseline
and optimised wings (Ndv = 5).

In terms of computational efficiency, the CPU time for the dimensionality study is
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Figure 6.14: Case 1: Vorticity magnitude contours on extracted plane (x/c =
1.1) of the flowfield (Ndv = 5).

recorded in Table 6.6. As of FALCon, the 2.5D+ database was obtained at a range of

angles of attack from −5 to 10 deg with an increment of 1 deg. Note that the database

is pre-computed only once and used thereafter for all cases. The computational time for

optimisation increases gradually with more design variables due to the gradient evalu-

ation using FDM. It is worth noting that all optimisations complete within 1 minute,

demonstrating high efficiency of the multi-fidelity approach. With respect to SU2, the

computational cost does not scale with the number of design variables due to the merit

of the adjoint method for efficiently computing the gradient. Nonetheless, a single opti-

misation costs over 200 CPU hours to converge. Overall, FALCon costs only a fraction

of computational time compared with that of SU2, achieving a speed-up of two orders of

magnitude. Furthermore, with the 2.5D+ database at hand, one can run a parametric

study within a short space of time.

6.2.7 Case summary

The twist optimisation of the NACA0012 wing was investigated using both SU2 and

FALCon solvers. The aerodynamic results obtained from the hybrid solver are verified

against SU2 on the baseline geometry. Both optimisation frameworks perform equally

well for the benchmark case, and an elliptical loading distribution is recovered.

The optimal drag result is insensitive to the number of design variables, and approxi-

mately 1 drag count reduction is achieved. The outboard sections exhibit negative twist

to reduce the strength of tip vorticity and hence the vortex drag; the inboard sections
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Table 6.6: Case 1: Computational time

FALCon SU2
Ndv 2.5D+ Database Optimisation

(CPU hour) (second) (CPU hour)

3

1.
2

(o
n

ly
on

ce
)

13.5 220
4 19.8 235
5 23.3 235
6 25.6 235
7 28.7 235
8 32.9 235
9 38.3 235

10 39.3 235
11 41.1 235

show positive twist to maintain the required lift. In terms of computational cost, FAL-

Con shows a much higher efficiency compared to SU2, demonstrating its potential in

early stages of aircraft design and optimisation.

6.3 Case 2: Optimisation of a swept wing in viscous sub-

sonic flow

6.3.1 Optimisation problem

The second optimisation problem is the drag minimisation of a swept wing with NACA2412

sections in viscous, subsonic flow. The freestream Mach number is 0.5, the freestream

angle of attack is 3 deg, and the Reynolds number is 5.6 million based on the chord

length. The lift coefficient is constrained to be equal to the initial value. The design

variables are the twist of sections along the span and about the trailing edge. The twist

at the root section is allowed to vary, whereas the freestream angle of attack is kept

constant. Compared to the first optimisation problem, this case uses an unsymmetrical

aerofoil section and considers the sweep and viscous effects on the finite wing. The pur-

pose of this case is to minimise the induced drag out of the total drag, and to further

demonstrate the applicability of FALCon. The optimisation problem is summarised as

follows:

Minimise: CD

w.r.t: γ (y)

Subject to: CL = CL, baseline

The initial geometry is a swept, planar wing with NACA2412 sections and sharp trailing

edge. The sweep angle, Λ, is 30 deg; the semispan is 5c; and the wing planform shape

is a parallelogram. Note that the wing tip in this case has a sharp side edge.
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6.3.2 Computational grid

With respect to SU2, an unstructured 3D grid was generated using the T-Rex technique.

The computational domain is bounded by a no-slip wing surface, a symmetry plane, and

a farfield located at a distance of 100 chord lengths from the wing. The wing geometry

as well as the grid on the symmetry plane are shown in Figure 6.15. The computational

grid points are clustered towards the leading and trailing edge and also the wing tip

to accurately represent the geometry. A sufficient number of anisotropic layers were

generated surrounding the wing body to capture the boundary layer. The wall distance

for the first grid layer was set to ensure that y+ is below 1. To establish grid convergence,

four levels of grid were generated, and the key parameters are summarised in Table 6.7.

Figure 6.15: Case 2: SU2 computational grid for the swept NACA2412 wing
(Fine grid: 3.58 million elements).

Table 6.7: Case 2: SU2 grid parameters for grid convergence study of the swept
NACA2412 wing.

Grid Level Grid Elements LE Spacing TE Spacing Off-wall Spacing

Coarse 922,373 2.0 · 10−3 5.0 · 10−3 4.0 · 10−6

Medium 1,816,963 1.4 · 10−3 5.0 · 10−3 2.8 · 10−6

Fine 3,578,365 1.0 · 10−3 5.0 · 10−3 2.0 · 10−6

Superfine 6,997,485 7.1 · 10−4 2.5 · 10−3 1.4 · 10−6

The compressible RANS simulation was carried out using the SA turbulence model,

and the aerodynamic results are listed in Table 6.8. From the preliminary study, the

superfine grid was found adequate to guarantee grid independent results and was thus

used for optimisation.

A structured grid of wing bound panels for the FALCon solver is defined and shown

in Figure 6.16(a). The VLM panels are uniformly spaced in the chordwise direction

and unevenly distributed in the spanwise direction using “cosine” function, aiming to
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Table 6.8: Case 2: SU2 aerodynamic results for grid convergence study of the
swept NACA2412 wing (M = 0.5, α = 3 deg, Re = 5.6 · 106).

Grid Level CL CD (Counts)

Coarse 0.4470 176.6
Medium 0.4518 176.8
Fine 0.4424 169.8
Superfine 0.4363 165.1

provide sufficient modelling resolution at the wing tip. A grid convergence study was

conducted and the results are listed in Table 6.9. For the following optimisation, the

number of chordwise and spanwise panels used are Nx = 8 and Ny = 50, respectively.

As the aerofoil section remains the same along the span, only one section is extracted to

generate the database. In this work, the 2D stencil on symmetry plane of the 3D SU2

grid, as shown in Figure 6.16(b), is used. As the 2.5D+ solver is based on the local FoR,

a scaling transformation between the two FoRs needs to be performed for the 2D grid

using the following expression:
z
′

z
=

1

cos Λ
(6.5)

(a) VLM grid (Nx = 8 and Ny = 50) (b) 2D grid for 2.5D+ solver

Figure 6.16: Case 2: FALCon computational grid for the swept NACA2412
wing.

Table 6.9: Case 2: FALCon aerodynamic results for grid convergence study of
the swept NACA2412 wing (M = 0.5, α = 3 deg, Re = 5.6 · 106).

Nx × Ny CL CD (Counts)

2 × 13 0.4341 134.9
4 × 25 0.4296 134.7
8 × 50 0.4271 134.6

16 × 100 0.4256 134.5
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6.3.3 Verification

In terms of aerodynamic quantities, the hybrid flow solver is verified against SU2 for the

baseline geometry. Figure 6.17 shows the lift curve and drag polar obtained from both

solvers. With respect to FALCon, the 2.5D+ database, which incorporates the crossflow

effect, was obtained from an ISW model. The information related to the sweep angle,

i.e. Λ = 30 deg, is introduced as an appropriate boundary condition and imposed at

the farfield on a 2D stencil. For the purpose of comparison, a 2D database was also

generated and used, which does not consider the sweep effect. It is demonstrated that

FALCon can accurately predict the total lift coefficient using either the 2.5D+ or the

2D database. From the drag polar, a satisfactory agreement is found between FALCon

results and SU2 data. Minor difference exists at higher angles of attack, where FALCon

underpredicts the drag coefficient compared to SU2 solver. This is possibly due to that

the flow gradually loses homogeneity in the y′ direction when the angle of attack becomes

large. It is worth noting that FALCon generates very similar results using either 2.5D+

or 2D database, as the flow conditions are moderate and hence the sweep effect does not

have much influence on the integrated aerodynamic quantities.

α

(a) Lift curve (b) Drag polar

Figure 6.17: Case 2: Lift curve and drag polar for baseline geometry (M =
0.5, Re = 5.6 · 106).

The spanwise lift distributions for a range of angles of attack are shown in Figure 6.18.

Overall, a good agreement is observed, except that there is minor difference near the

wing tip. The SU2 results show an abrupt rise at the wing tip, particularly for cases

with large angles of attack. This is caused by the flow acceleration on the upper surface

due to the tip vortex. However, this phenomenon can not be captured by the multi-

fidelity aerodynamic model. In terms of 3D physics, the VLM solver only considers the

downwash velocity in the spanwise direction, which in turn affects the effective angle of

attack for the 2.5D+ database. As such, the surface flow variations are not properly

modelled by the FALCon solver, which limits its prediction accuracy. Moreover, as
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shown in Figure 6.18, the discrepancy near the wing tip becomes larger when increasing

the freestream angle of attack. This fact is due to the increased vortex intensity and

hence the pronounced 3D flow physics.

α

α

α

α

α

α

Figure 6.18: Case 2: Spanwise lift distributions for baseline geometry (M =
0.5, Re = 5.6 · 106).

6.3.4 Optimisation set-up

Two aerodynamic solvers, SU2 and FALCon, are used to perform aerodynamic analysis

and gradient-based optimisation for the swept NACA2412 wing. The computational

methods and numerical settings with respect to SU2 and FALCon are summarised in

Table 6.10 and Table 6.11, respectively. It should be noted that the twist design variables

are uniformly distributed along the wing span from root to tip. A linear interpolation

method, unless otherwise stated, is adopted by FALCon to map the discrete design

variables onto the twist angles of VLM panels.

6.3.5 Dimensionality study

The optimisations were conducted using both SU2 and FALCon with different numbers

of design variables. The drag results of the dimensionality study are plotted in Fig-

ure 6.19. For both optimisation frameworks, the optimal solution is nearly insensitive

to the number of design variables, and approximately 5.5% drag reduction is achieved.

A full drag breakdown for both solvers is provided in Table 6.12. Note that two ways

of drag decomposition are used. In the SU2 solver, a near field analysis is employed,

and the total drag is computed by integrating the pressure and the friction drag around

the body. In this way the induced drag is included in the pressure drag. Regarding the

FALCon solver, as stated earlier in Section 3.3.4, a far field analysis is used and the total

drag is decomposed into the viscous and the induced drag. It is apparent that, through
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Table 6.10: Case 2: Computational methods and numerical settings for SU2
optimisation.

Parameter Methodology or Value

Geometry parameterisation FFD twist
Grid deformation Linear elasticity equations
Number of design variables [3, 11]

Flow governing equations 3D RANS
Turbulence model SA
Spatial discretisation 2nd order JST
Time discretisation Euler implicit
CFL number 4

Optimiser SLSQP
Gradient evaluation Continuous adjoint
Scaling factor for objective function 0.001
Scaling factor for constraint function 0.001
Maximum number of iterations 100
Tolerance of KKT conditions 1 · 10−6

Table 6.11: Case 2: Computational methods and numerical settings for FALCon
optimisation.

Parameter Methodology or Value

Solver for 2.5D+ database DLR-Tau
Governing equations 2D RANS
Turbulence model SA
Range of angle of attack [deg] [-5, 10]
Increment of incidence [deg] 1

Coupling relaxation factor 0.5
Tolerance of coupling convergence 1 · 10−11

Number of design variables [3, 11]
Twist interpolation method Linear (unless otherwise stated)

Optimiser SLSQP
Gradient evaluation FDM
Scaling factor for objective function 0.001
Scaling factor for constraint function 0.001
Maximum number of iterations 100
Tolerance of KKT conditions 1 · 10−6

twist optimisation, the viscous drag in FALCon (or friction drag in SU2) remains nearly

unchanged, whereas the induced drag in FALCon (or pressure drag in SU2) undergoes

a reduction, revealing the fact that the optimisation seeks to reduce the induced drag

out of the total drag.
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Figure 6.19: Case 2: Baseline and optimised drag coefficient.

Table 6.12: Case 2: Drag breakdown (unit in drag counts)

FALCon SU2
Ndv Viscous drag Induced drag Friction drag Pressure drag

Init. Opt. Init. Opt. Init. Opt. Init. Opt.

3

93
.0

93.4

64
.8

57.7

66
.0

66.7
97

.4
86.8

4 93.4 57.7 66.7 86.8
5 93.4 57.7 66.7 86.9
6 93.4 57.6 66.7 87.0
7 93.4 57.6 66.8 87.0
8 93.4 57.7 66.8 87.0
9 93.4 57.8 66.8 87.1

10 93.4 57.8 66.9 87.1
11 93.4 57.8 66.9 87.2

6.3.6 Optimisation results

The optimisation with 6 design variables is chosen for further analysis. The convergence

history of the objective function is plotted in Figure 6.20. It is apparent that the optimal

solution is reached within a few design iterations, indicating the easiness of locating the

minimum for this optimisation problem.

The sectional lift distributions for baseline and optimised geometries are shown in Fig-

ure 6.21. As expected, the spanwise loading shifts inboard after optimisation, minimising

the induced drag at the wing tip. Note that there is no theoretical optimal solution for

this case. It is also observed that the optimised lift distributions obtained from SU2

and FALCon show a similar pattern; the minor difference is possibly due to the different

geometry control methods that are used.

Figure 6.22 shows the spanwise twist distributions. A similar pattern is found between

the two sets of results. Positive twist occurs for the inboard sections while negative twist
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Figure 6.20: Case 2: Convergence history of the drag coefficient (Ndv = 6).

Figure 6.21: Case 2: Sectional lift distributions for initial and final geometries
(M = 0.5, α = 3 deg, Re = 5.6 · 106, and Ndv = 6).

for the outboard sections. Figure 6.23 gives the illustration of FFD parameterisation,

FFD box perturbation and wing deformation in SU2 optimisation. It is worth noting

that the optimisation strategy is basically the same for both NACA0012 and NACA2412

optimisation cases.

As shown in Figure 6.24, the pressure contours on the upper surface are compared for

the initial and optimised geometries. It is apparent that the aerodynamic loading moves

inboard towards the wing root after twist optimisation. For better visualisation effect,

the difference of pressure coefficient on the wing surface is displayed in Figure 6.25. As is

the case with NACA0012 optimisation, the pressure difference is primarily concentrated

at the leading edge region for both inboard and outboard sections. The variation of tip

vortex also causes some difference at the wing tip.

Figure 6.26 shows the aerofoil sections and pressure distributions at three characteristic
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γ

Figure 6.22: Case 2: Sectional twist distributions of the optimised geometry
(Ndv = 6).

Figure 6.23: Case 2: FFD parameterisation, FFD box deformation, and wing
geometry deformation (Ndv = 6).

spanwise stations. The change of sectional twist angle as well as aerodynamic loading is

obviously found at 20% and 80% span, whilst the midspan section is almost unmoved.

In addition, two representative slices of the flowfield are extracted near the trailing

edge, and the vorticity contours are compared, as shown in Figure 6.27, between the

baseline and optimised wing. It is observed on these two slices that the peak vortex

intensity decreases and the iso-contour line of vorticity magnitude shrinks, indicating

the reduction of the vortex drag by twist optimisation.

To compare the computational efficiency between two optimisation frameworks, the

CPU time for the dimensionality study is recorded in Table 6.13. The 2.5D+ database

for FALCon is obtained at a range of angles of attack from −5 to 10 deg with an
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Figure 6.24: Case 2: Upper-surface pressure contours for baseline and optimised
wings (Ndv = 6).

Figure 6.25: Case 2: Difference of pressure coefficient on upper surface between
baseline and optimised wings (Ndv = 6).

Figure 6.26: Case 2: Sectional pressure plots and aerofoil sections for baseline
and optimised wings (Ndv = 6).

increment of 1 deg. It takes just over two hours for the computation of the database

and just one minute for the optimisation. It is apparent that the FALCon optimisations

with 6 to 11 design variables have much more computational cost than other cases,
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Figure 6.27: Case 2: Vorticity magnitude contours on extracted planes (x/c =
3.7 and x/c = 4.0) of the flowfield (Ndv = 6).

which is due to two factors. First, the optimisations, particularly with 6 to 8 design

variables, have a relatively larger number of function and gradient evaluations. Second,

the number of FALCon computations for gradient evaluation scales with the number of

design variables as FDM is used herein. Similarly, the SU2 optimisation cases with 4

to 9 design variables exhibit higher computational cost, which is primarily due to the

relatively larger number of function calls in these cases. Note that nearly 3000 CPU hours

is required for SU2 optimisation, which is a significant amount of computational effort

even with parallel computational capability. Overall, FALCon provides a physically

consistent solution when compared to SU2, but reduces the computational time from

days to only two hours, demonstrating its high efficiency and suitability for preliminary

aircraft design. Moreover, once the 2.5D+ database is available for a specific wing, one

can perform further studies within seconds, such as estimating the aerodynamic loads

for aeroelasticity analysis.

6.3.7 Case summary

The twist optimisation of the NACA2412 wing was investigated using both the SU2

and FALCon solvers. For the finite swept wing, the computational accuracy of the

multi-fidelity solver for predicting aerodynamic loads is verified against SU2. Both

optimisation frameworks perform equivalently well in this case, achieving drag reduction

of around 5.5%.
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Table 6.13: Case 2: Computational time and number of evaluations

FALCon SU2
Ndv 2.5D+ Database Optimisation F.C. G.C. Optimisation F.C. G.C.

(CPU hour) (second) (-) (-) (CPU hour) (-) (-)

3

2
.2

5
(o

n
ly

on
ce

)

13.8 6 6 2202 12 4
4 19.2 7 6 2937 16 5
5 22.9 7 6 2937 16 5
6 51.5 13 12 2937 16 5
7 60.1 13 13 2937 16 5
8 67.2 13 13 2937 16 5
9 40.7 8 7 2937 16 5

10 44.7 8 7 2202 12 4
11 48.2 8 7 2202 12 4

F.C. – Function Calls; G.C. – Gradient Calls.

The final drag result shows insensitivity to the number of design variables. The drag

reduction mechanism is same as the NACA0012 case, which is to shift the aerodynamic

loading from outboard sections to inboard sections and thus reduce the vorticity at wing

tip. With regard to computational efficiency, the advantage of FALCon over SU2 is more

apparent than the NACA0012 case, reducing the CPU hours from thousands to only a

few.

6.4 Sensitivity assessment for twist distribution

Geometry parameterisation and the set-up of design variables play an important role in

an ASO framework. The impact of shape parameterisation and its numerical settings on

AIAA ADODG benchmark problems is discussed in References [123, 226]. Recall that,

in this context, the geometric twist distribution of the wing is defined as the design

variable. In the scenario of aircraft design, this information is directly transferred from

aerodynamic engineers to structural and manufacturing departments. It is thus worth

revisiting the twist distributions for the two optimisation cases.

6.4.1 Impact of dimensionality

For both NACA0012 and NACA2412 cases, the same amount of drag reduction is

achieved in the dimensionality study, suggesting the insensitivity of optimal aerody-

namic performance to the number of design variables. However, the results of twist

distribution, as shown in Figure 6.28 and Figure 6.29, vary with increasing number of

design variables. This indicates that the optimal aerodynamic shape is not unique for

both cases. With respect to NACA0012 wing, the twist distributions, as shown in Fig-

ure 6.28, exhibit a converging tendency with more design variables, and show a shape
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similar to the sine function. For the case of NACA2412 wing, the twist angle mono-

tonically decreases from root to tip for cases with small Ndv, whereas for cases with

relatively larger Ndv, the twist shows a steady washout before experiencing an abrupt

turn close to the wing tip. Overall, the number and locations of discrete twist control

variables have an influence on the continuous twist distribution along the wing span.

γ

(a) FALCon

γ

(b) SU2

Figure 6.28: Case 1: Sectional twist distributions in dimensionality study.

γ

(a) FALCon

γ

(b) SU2

Figure 6.29: Case 2: Sectional twist distributions in dimensionality study.

6.4.2 Impact of interpolation

Recall that, within FALCon optimisation procedure, the linear interpolation method

is used to map twist design variables onto twist angles of VLM panels. The main

drawback of this approach is that the resulting twist distribution can not maintain the
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second-order continuity, which provides the smoothness on the wing surface. This is un-

favourable from aerodynamic viewpoint and will also cause difficulties for manufacturing

process. Therefore, nonlinear polynomial functions, including quadratic and cubic, are

then employed as interpolation method for optimisations with FALCon. The sectional

distribution results with respect to 11 design variables for both cases are plotted in

Figure 6.30 and Figure 6.31. It is worth noting that the same lift distribution is ob-

tained in spite of the degree of polynomials. Although the geometric smoothness of

wing surface is guaranteed when using interpolation with polynomials of high degree,

an undesirable by-product is the problem of oscillations in twist distribution, which is

observed in Figure 6.30(a) and Figure 6.31(a). For optimisation cases with more design

variables or polynomials of higher degree, the oscillations would be more apparent. As

oscillations can lead to unacceptable wing designs in reality, an alternative to polynomial

interpolation is required to overcome this shortcoming.

γ

(a) Twist distribution (b) Lift distribution

Figure 6.30: Case 1: Sectional twist and lift distributions of optimised design
using different interpolation methods in FALCon (Ndv = 11).

6.4.3 Cross validation

Within the SU2 optimisation, a Bézier curve is used as the FFD blending function to

link the perturbation of FFD box with the deformation of embedded wing geometry.

Figure 6.32(a) and Figure 6.33(a) give an illustration of the relationship between FFD

twist design variables and wing twist distribution for both optimisation problems. Note

that a fine shape control is achieved by FFD technique with a small set of design vari-

ables. The optimal twist distribution identified from SU2 optimisation is also imposed

in FALCon solver for aerodynamic analysis. As a result, the same lift distribution is

generated, as shown in Figure 6.32(b) and Figure 6.33(b). This again validates the com-

putational accuracy of FALCon compared to SU2, that is, the same lift distribution can
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γ

(a) Twist distribution (b) Lift distribution

Figure 6.31: Case 2: Sectional twist and lift distributions of optimised design
using different interpolation methods in FALCon (Ndv = 11).

be produced given a specific geometry. Furthermore, this implies the possibility of ap-

plying more practical geometry control methods in FALCon. Recently, B-spline surface

control and FFD approach have been widely used in a range of challenging optimisation

problems, and they are compared in Reference [56] in terms of their effectiveness for

ASO. This indicates a direction for future work in order to improve the robustness and

suitability of FALCon in ASO problems.

γ

(a) Twist distribution (b) Lift distribution

Figure 6.32: Case 1: Lift distributions under the geometrical twist computed
from SU2 (Ndv = 5).
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γ

(a) Twist distribution (b) Lift distribution

Figure 6.33: Case 2: Lift distributions under the geometrical twist computed
from SU2 (Ndv = 6).

6.4.4 Section summary

The optimisation results of twist distribution show sensitivity to the number of design

variables and twist interpolation method. For the NACA0012 case, the twist distribu-

tions exhibit a converging pattern with more design variables, and show a shape similar

to the sine function. For the NACA2412 case, the twist angle decreases monotonically

from root to tip when Ndv is small; whereas with relatively larger Ndv, the twist distri-

bution has an abrupt turn near the wing tip.

Three polynomial interpolation approaches were employed for twist mapping in FAL-

Con optimisation, which are linear, quadratic and cubic interpolation, respectively. The

same lift distribution is obtained despite the interpolation method. Although nonlinear

interpolations can guarantee the geometric smoothness of wing surface, they produce

the side-product of oscillations for twist distribution, which is unfavourable and im-

practical for wing design. Regarding the SU2 optimisation, FFD parameterisation is

employed and a Bézier curve is used as the FFD blending function. The resulting twist

distribution not only maintains second-order continuity but also avoids the issue of os-

cillations. By applying the twist distribution (obtained from SU2) to the wing geometry,

the same lift distribution is generated from FALCon and SU2, which further confirms

the computational accuracy of the hybrid solver.

6.5 Chapter summary

In this chapter, two wing twist optimisation problems were investigated: an unswept

wing with NACA0012 sections in inviscid, subsonic flow, and a swept-back wing with
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NACA2412 sections in viscous, subsonic flow. Two aerodynamic solvers were employed

in this study. The first solver is the high-fidelity SU2, which solves 3D Euler or RANS

equations. The second is a multi-fidelity solver, FALCon, which builds upon three

constituent parts: a VLM solver, an ISW solver and an α-based coupling algorithm.

For the multi-fidelity aerodynamic approach, the 3D effects on finite wings are modelled

by the linear VLM solver, and the sectional nonlinear effects are captured by the ISW

solver.

With respect to the baseline geometry for both optimisation cases, the aerodynamic

results are verified between FALCon and SU2 at a range of angles of attack, including

the lift and drag coefficient, and sectional lift distributions. Overall, both optimisation

frameworks perform equally well for these two cases. The key findings of the numerical

optimisations are summarised as follows:

1. Optimisation mechanism

The mechanism for drag reduction is the same for these two optimisation problems.

The spanwise loading moves from outboard to inboard sections in order to alleviate

the intensity of the tip vortex and thus reduce the lift-induced drag. For the bench-

mark NACA0012 case, an elliptical lift distribution is recovered on the optimised

geometry, which validates the effectiveness of two optimisation frameworks.

2. Efficiency assessment

Compared with SU2, FALCon demonstrates a much higher computational efficiency,

saving up to 98% of the computational cost. The advantage primarily benefits from

the high efficiency of the ISW computation on a 2D stencil.

3. Sensitivity assessment

The optimal drag coefficient in both cases shows insensitivity to the number of design

variables. Around 1 drag count is reduced in the NACA0012 case, and approximately

5.5% drag reduction is achieved in the NACA2412 case.

The number of twist design variables shows influence on the optimal twist distribu-

tion. As more design variables are used, the twist distributions in the NACA0012

case exhibit a convergence trend towards a shape similar to “sine” function. For the

NACA2412 case, a steady washout is observed with small number of design variables;

an abrupt increase of twist angle occurs near the wing tip when more design variables

are added.

The twist interpolation method within FALCon optimisation framework has an im-

pact on the optimisation results. Although the smoothness of wing surface can be

achieved by applying nonlinear polynomial interpolations, an evident side-product is

the issue of local oscillations, which is impractical for wing design.
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4. Geometry control

For the SU2 optimisation, the FFD technique has shown its advantages in geome-

try control and shape parameterisation. By imposing the optimal twist distribution

(identified from SU2) to both aerodynamic solvers, the same spanwise loading is ob-

tained, which further confirms the computational accuracy of the multi-fidelity solver.

For FALCon optimisation, polynomial interpolation methods were employed to map

twist design variables onto twist angle of VLM panels. However, these approaches

are not suitable for practical wing design. More robust and well-behaved geometry

control methods may be considered in future work, such as FFD and spline methods

that have the desirable properties of flexibility, efficiency, and smoothness.





Chapter 7

Conclusions and Future Work

7.1 Summary of findings

This research presents investigations into the assessment of optimal design sensitivity

and computational efficiency in aerodynamic shape optimisation (ASO). The research

methodology consists of gradient-based numerical optimisation using two aerodynamic

solvers of different levels of fidelity. The applications include several benchmark cases

defined by the AIAA Aerodynamic Design Optimisation Discussion Group (ADODG).

The thesis primarily focuses on two research streams. The first branch investigates

the sensitivity of optimal solution to a series of numerical parameters for both two-

dimensional (2D) aerofoil and three-dimensional (3D) wing optimisation problems. The

high-fidelity SU2 code based on full 3D Euler/Navier–Stokes equations is used to un-

dertake this study. The gradients are obtained through the continuous adjoint approach

and the simulations are performed on the high-performance computing facility IRIDIS 4.

The second is the application of an efficient multi-fidelity aerodynamic solver, FALCon,

to wing twist optimisation problems. The SU2 code is also used, with the purpose of

verifying the computational accuracy and evaluating the optimisation efficiency.

The current study includes a comprehensive overview of the existing literature con-

cerning ASO in the field of aeronautical applications, and this is carried out from two

perspectives. First, the research activities conducted from a number of representative

groups are summarised, highlighting their contributions to the community. Second, a

review is provided with respect to the constitutive computational techniques for an ASO

framework, discussing their advantages and drawbacks. Additionally, a survey is pro-

vided regarding sensitivity assessment in the previous studies, which mainly focused

on the influence of different techniques (e.g. geometry parameterisation methods) on

the optimisation results; a review is also presented concerning the development of multi-

fidelity aerodynamic models, particularly the quasi-three-dimensional (Q3D) solver, with

a focus on its efficiency in aerodynamic analysis. For a given optimisation framework,

141
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the sensitivity of the final optimal solution to numerical parameters, however, has been

largely underestimated to date, indicating the significance of this study. Moreover, cur-

rent trend of ASO includes adjoint-based large-scale optimisation utilising high-fidelity

aerodynamic solvers. However, this is impractical in the real world engineering en-

vironment, particularly in early phases of aircraft design with limited computational

resources and time budgets, raising the necessity for developing efficient computational

methodologies.

This research primarily contains two parts, addressing the two issues identified in the

area of ASO, namely revisiting the optimal solution and improving optimisation effi-

ciency. The detailed summary and conclusions have been provided earlier in Sections 4.7,

5.7, and 6.5. This section highlights the principal achievements, the major findings, and

the most significant conclusions of each part.

7.1.1 Drag minimisation of two-dimensional aerofoils

Gradient-based aerodynamic optimisations of 2D aerofoils were performed using the

open-source SU2 code, and gradients were computed using the continuous adjoint method.

Two benchmark problems defined by the ADODG were exercised. The first case is the

drag minimisation of the NACA0012 aerofoil in transonic, inviscid flow, with a mini-

mum thickness constraint; the second case is the drag minimisation of the RAE2822

aerofoil in transonic, viscous flow, subject to lift, pitching moment and area constraints.

Hicks–Henne bump function (HHBF) and free-form deformation (FFD) were employed

as geometry parameterisation methods.

In the NACA0012 case, the drag reduction mechanism is to minimise the shock wave

strength, hence the wave drag. The optimised aerofoil exhibits a blunter leading edge and

a thicker aft section compared to the baseline geometry, formulating a rather flat aerofoil

surface. As a consequence, the strong shock at around three-quarter chord position is

substantially weakened and is pushed further downstream, locating at approximately

90% chordwise position. Regarding HHBF parameterisation, the “one-minus-cosine”

distribution approach outperforms uniform distribution, and the setting of t = 6 for

bump width control parameter produces the lowest drag among a range of values. With

best practice adopted in the systematic study, the drag is reduced from 468.0 counts to

80.5 counts, which corresponds to 82.8% of drag reduction.

Differing from the NACA0012 case that is an academic problem, the RAE2822 case

reflects a more practical problem of transonic aerofoil design with realistic constraints.

The drag reduction principle is to eliminate the shock, thus removing the wave drag

from the total drag. Compared with the baseline aerofoil, the optimised shape shows a

relatively flat surface with smaller curvature on the upper aerofoil, creating a shock-free
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geometry. The drag coefficient is reduced from 241 counts to 150 counts, achieving a

drag reduction of about 38%.

The primary purpose of this part of work is to investigate the influence that numerical

parameters have on the optimisation results. The numerical parameters include: a) two

parameterisation methods, HHBF and FFD; b) numerical settings related to the tuning

of each parameterisation method; and c) closure coefficients of Spalart–Allmaras (SA)

turbulence model. Several conclusions were formulated from this study, which are listed

as follows:

1. HHBF and FFD were shown to be equivalently effective as geometry parameteri-

sation method for both optimisation problems.

2. The optimisation of the NACA0012 aerofoil exhibits strong dependency on vir-

tually all numerical parameters investigated. This dependency reflects the high

curvature observed locally on the optimised shape. Fine-tuning of these parame-

ters is thus required to provide sufficient local shape control.

3. In the RAE2822 case, the insensitivity of the optimal solution to numerical pa-

rameters arises from low to mild curvatures on the final shape. The design space

is easily explored by moderately perturbing the geometry.

4. The optimisation performance is influenced by turbulence modelling as the Reynolds-

averaged Navier–Stokes (RANS) solution shows a certain sensitivity to the closure

coefficients of SA model, raising the need for a good calibration of the turbulence

model.

Additionally, for the optimised aerofoil in both optimisation cases, non-unique flow so-

lutions were found to exist at the design point. Further investigations confirmed the

non-uniqueness by discovering the hysteresis loop of drag coefficient in a narrow region

around the design point. This may indicate that the optimisation problems are ill-posed.

Overall, although the sensitivity maps provide us with the information of key design

variables, there is no priori knowledge that we can use to know the degree of sensitivity

of the optimal design to numerical settings. This can only be estimated a posteriori by

running a number of analyses. The sensitivity assessment conducted for the two aerofoil

cases may provide guidelines of best practice for complex optimisation problems.

7.1.2 Twist optimisation of three-dimensional wings

An efficient optimisation framework based on a multi-fidelity aerodynamic solver, FAL-

Con, was developed. The multi-fidelity aerodynamic approach consists of three con-

stituent parts: a linear vortex lattice method (VLM) solver, an infinite swept wing
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(ISW) solver of steady/unsteady RANS equations, and an α-based coupling algorithm.

The 3D effects on finite wings are modelled by the linear VLM solver, and the sectional

nonlinear effects are captured by the ISW solver. The coupling algorithm combines

the two solvers to reproduce the aerodynamic loads with high computational efficiency.

Gradient-based wing twist optimisations were performed using the SLSQP optimiser

available from the open-source pyOpt package, and the gradients were computed using

finite difference method (FDM) as the aerodynamic approach has very low computa-

tional cost. Two optimisation problems were investigated to illustrate the capability

of the proposed aerodynamic model: an unswept wing with NACA0012 sections under

viscous, subsonic flow, and a swept-back wing with NACA2412 sections under viscous,

subsonic flow. For reference, 3D data were obtained from SU2.

With respect to the baseline geometry for both cases, the aerodynamic results (including

the lift and drag coefficient, and sectional lift distributions) obtained from FALCon were

verified against SU2 at a range of angles of attack. An overall good agreement was found

between these two aerodynamic solvers. However, in terms of spanwise lift distribution,

the FALCon solver is unable to predict the abrupt rise at the wing tip, which is captured

by the SU2 solver. This may limit the prediction accuracy of FALCon for flows with

strong vortex intensity and thus the pronounced 3D physics.

Regarding these two optimisation problems, the mechanism for drag reduction is the

same: the spanwise aerodynamic loading moves from outboard to inboard sections in

order to alleviate the intensity of the tip vortex and thus reduce the lift-induced drag.

For the benchmark NACA0012 case, an elliptical lift distribution, which is the theo-

retical optimal solution, is recovered on the optimised geometry, which validates the

effectiveness of these two optimisation frameworks.

The primary objective of this part of research is to analyse the computational efficiency

of the multi-fidelity solver in wing twist optimisation. Additionally, the sensitivity of

optimisation results to a number of parameters is also investigated. The key findings

and conclusions are listed as follows:

1. Both optimisation frameworks performed equally well for these two cases. In the

NACA0012 case, the analytical optimal solution was achieved with around 1 drag

count reduction; in the NACA2412 case, approximately 5.5% drag reduction was

obtained.

2. The aerodynamic optimisation using the multi-fidelity approach was performed at

a negligible computational cost compared to the full 3D SU2 solver. The advantage

primarily benefits from the high efficiency of the ISW computation on a 2D stencil.

3. Although the final drag coefficient shows insensitivity to the number of design

variables, the design variable dimensionality and the twist interpolation method

have an influence on the optimal twist distribution.
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4. Compared with the polynomial interpolation methods that are employed for twist

mapping in FALCon, the FFD technique in SU2 optimisation demonstrates its

advantages in geometry control and shape parameterisation, such as smoothness,

efficiency and flexibility, which are desirable features in practical wing design.

Overall, the proposed approach is suitable for accurate prediction of aerodynamic loads

at early stages of aircraft design. Moreover, as demonstrated in this study, the multi-

fidelity aerodynamic solver may find easy application to other areas by a straightforward

extension and coupling of the three constitutive blocks.

7.2 Future work arising from this study

There are a number of studies that can be performed following this research. This section

provides some recommendations of potential future work, which are listed as follows:

1. Sensitivity assessment regarding other techniques

In this research, initial attempts were made towards sensitivity assessment to revisit

the optimal solution in ASO. The parameters investigated mainly included the nu-

merical settings within HHBF and FFD. Since geometry parameterisation plays a

significant role in ASO and there exist a variety of parameterisation approaches as

described in Section 2.2.2, there is a need for sensitivity assessment concerning other

shape parameterisation methods, such as the commonly-used class shape transfor-

mation (CST) and non-uniform rational B-splines (NURBS). As discussed in Sec-

tion 4.5.1, the CST parameterisation in Reference [253] did not successfully increase

the leading edge bluntness of NACA0012 aerofoil and hence failed in locating the

true optimal solution. This is due to a lack of tuning of CST implementation for this

optimisation problem. Moreover, as discussed in Section 2.2.4.2, many gradient-free

optimisation algorithms, such as genetic algorithm (GA) and particle swarm optimi-

sation (PSO), contain a number of parameters, which are usually limited in a range

with lower and upper bounds and are generally used by default settings. For a spe-

cific case, the sensitivity assessment is required to adjust these parameters in order to

obtain the best optimisation performance. Additionally, an extension from sensitivity

assessment will step into the realm of uncertainty quantification (UQ), which targets

at identifying quantitatively the uncertainties from various aspects of ASO.

2. Further investigation into non-uniqueness

For both aerofoil optimisation problems in this study, non-unique flow solutions were

found to exist in a narrow band near the design point. Hysteresis was observed when

performing an upward and downward sweep of the flow condition (Mach number or

angle of attack). Although some researchers [257, 258, 264, 265] have investigated

the issue of non-unique solutions in transonic flow, the aerofoils were mainly of the
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same kind with the optimised NACA0012 aerofoil, and the studies were largely lim-

ited to steady-state simulations. The mechanism for the non-uniqueness phenomenon

remains an important question. To gain a better understanding of the evolution and

stability of these flows, unsteady simulations are required to be carried out, particu-

larly for the aerofoils similar to optimised RAE2822 geometry. Further analysis shall

not only investigate steady and unsteady methods but also in general examine the

effects of the spatial resolution and the numerical schemes (and the combination of

both).

On the other hand, the non-unique solutions may indicate the single-point optimisa-

tion problems are ill-posed. To enhance the robustness of the optimal solution and

its performance at off-design flow conditions, well-posed optimisation problems need

to be proposed, including multi-point aerodynamic optimisations and imposing more

specific design constraints such as curvature.

3. Extension of FALCon to other applications

This work demonstrated the applicability and efficiency of the multi-fidelity aero-

dynamic solver FALCon in wing twist optimisation. In this study, two subsonic

optimisation cases with clean wing configurations were considered. For commercial

aircraft with complex configurations, the fuselage has influence on the aerodynamic

loading near the wing root [50]. The fuselage contributions are not modelled in the

current framework. Further development is thus needed to appropriately take the

influence of the fuselage into account. As shown in Reference [50], the fuselage cor-

rection can be performed through the aerodynamic influence coefficients (AICs) in

the VLM instead of geometrically modelling the fuselage. Moreover, to highlight the

capability of FALCon, future studies shall consider applications to a wider range of

problems, such as commercial aircraft wings in transonic flow where the nonlinear

effects are dominant. Additionally, as discussed in Section 6.4.3, more suitable ge-

ometry control methods, such as FFD and B-spline, can be employed as the twist

mapping approach, which ensures a practical wing design.

In this research, a rigid planar wing model was used for the twist optimisation.

For flexible wings with high aspect ratio, large structural deformations may occur.

Therefore, a structural model is required to be built and coupled with the multi-

fidelity aerodynamic solver. Ongoing work in the author’s group is tackling this

problem.

Furthermore, this work illustrated the integration of FALCon into wing twist optimi-

sation, where the twist angle was treated as an additional angle of attack correction

and was embedded directly into the local angle of attack of VLM panels. FALCon

may find potential applications in other fields of ASO, such as wing planform opti-

misation as demonstrated in Reference [239].
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CFD Validation of SU2

The steady-state RANS solver of SU2 is validated against experimental measurements

for three test cases, which are NACA0012 aerofoil, RAE2822 aerofoil, and ONERA M6

wing, respectively. For reference, the CFD results obtained from the commercial software

ANSYS Fluent are also added for comparison. The freestream conditions for the three

validation cases are listed in Table A.1. The computational set-up is nearly identical for

these cases and is given in Table A.2. The computational results are presented in the

following sections. An overall good agreement is found between the CFD results and

experimental data, and the SU2 results are consistent with those obtained from Fluent.

This fact confirms the computational accuracy of SU2 in RANS simulations.

Table A.1: Freestream conditions for the three validation cases.

Test case M α [deg] Re

NACA0012 0.15 10 6.0 · 106

RAE2822 0.729 2.31 6.5 · 106

ONERA M6 0.84 3.06 11.72 · 106

Table A.2: Computation set-up for the three validation cases.

Parameter Method or value

Governing equations RANS
Turbulence model SA
Spatial discretisation 2nd order Roe
Time discretisation Implicit Euler
CFL number 5

A.1 NACA0012 aerofoil

The NACA0012 aerofoil is a classic low-speed aerofoil that has been extensively used

for CFD validation of turbulence models. In this study, a C-topology structured grid
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available from NASA website 1 is used. The computational grid, as shown in Figure A.1,

consists of 449 × 129 grid points in the wrap-around and normal directions, respectively,

where 257 points are distributed along the aerofoil and 97 points in the grid cut. The

off-wall spacing is set to ensure the y+ is below 1. Under the prescribed subsonic flow

conditions, boundary layers should be fully turbulent over most of the aerofoil. The

Mach contours of the flow field are shown in Figure A.2(a). Figure A.2(b) shows the

pressure distribution compared with the experimental data documented by Gregory and

O’Reilly [270]. Identical results are found between SU2 and Fluent, and an excellent

agreement is observed between CFD results and experimental data.

(a) Far view (b) Near view

Figure A.1: Computational grid for the NACA0012 aerofoil.

(a) Mach contour (SU2) (b) Comparison of pressure coefficient distribution

Figure A.2: Mach contours and comparison of pressure coefficient distribution
on the NACA0012 aerofoil (M = 0.15, α = 10 deg, and Re = 6.0 · 106);
Experimental data from [270].

1https://turbmodels.larc.nasa.gov/naca0012_val.html [retrieved 2019]

https://turbmodels.larc.nasa.gov/naca0012_val.html
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A.2 RAE2822 aerofoil

The RAE2822 aerofoil is a supercritical aerofoil commonly used for validation of tur-

bulence models. For this test case the flow is turbulent and transonic. Additionally,

conditions are such that no separation occurs downstream of the shock position. The

computational grid (shown in Figure 5.2) used in this work follows that in Section 5.3

and is not reported herein for brevity. The test case is based on the AGARD Report by

Cook et al. [259]. The flow field results are shown in Figure A.3(a), and the comparison

of pressure coefficient distribution is shown in Figure A.3(b). A good match is observed

between the two CFD solvers, and a good agreement is found between the CFD results

and experimental data, except at the suction peak and shock location, which is also

documented in other literature [121, 260].

(a) Mach contour (SU2) (b) Comparison of pressure coefficient distribution

Figure A.3: Mach contours and comparison of pressure coefficient distribution
on the RAE2822 aerofoil (M = 0.729, α = 2.31 deg, and Re = 6.5 · 106);
Experimental data from [259].

A.3 ONERA M6 wing

The ONERA M6 wing is a swept, semispan wing with no twist that uses a symmetric

aerofoil (ONERA D sections). The aspect ratio is AR = 3.8 and the leading edge sweep

angle is Λ = 30 deg. The Reynolds number is based on the mean aerodynamic chord,

c = 0.64607m. The ONERA M6 was tested in a wind tunnel at multiple Mach numbers

and various angles of attack, and the experimental results are documented by Schmitt

and Charpin [271]. The ONERA M6 is a commonly used validation case for external

flows because of its simple geometry combined with complexities of transonic flow, i.e.

local supersonic flow, shocks and turbulent boundary layer separation. The simulation
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in this study uses the flowfield conditions of Test 2308, where M = 0.84, α = 3.06 deg,

and Re = 11.72 · 106.

As shown in Figure A.4, the computational grid is a C-C topology structured grid

and is available from NASA website 2. Figure A.5 shows the pressure contours on the

upper surface of the wing. A key flow feature for this case is that there are two shocks

generated, which is commonly denoted as the λ shock. In Figure A.6 the comparison

with experimental data is shown for the pressure coefficient distributions at different

sections along the span of the wing. An overall good agreement between numerical

and experimental data is observed, and the SU2 results are largely in line with those

produced from Fluent. At y/b = 0.80 CFD analyses hardly capture the double shock,

which is possibly due to the coarse grid resolution. At y/b = 0.99 both flow solvers

give less accurate results due to the wingtip vortex created in this region of wing. The

rotation of the tip vortices generates strong 3D effects, making it difficult to predict

accurately the pressure coefficients in this region.

X Y

Z

Figure A.4: Computational grid for the ONERA M6 wing.

2https://www.grc.nasa.gov/WWW/wind/valid/m6wing/m6wing01/m6wing01.html [retrieved 2019]

https://www.grc.nasa.gov/WWW/wind/valid/m6wing/m6wing01/m6wing01.html
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Figure A.5: Pressure contours (obtained from SU2) on the upper surface of the
ONERA M6 wing (M = 0.84, α = 3.06 deg, and Re = 11.72 · 106).
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Figure A.6: Comparison of Cp profiles of numerical results (SU2 and Fluent) against experimental data (documented by Schmitt and
Charpin [271]) at 7 spanwise locations on the ONERA M6 wing (M = 0.84, α = 3.06 deg, and Re = 11.72 · 106).
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