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1 ABSTRACT

2 Context: Imbalances in maternal one-carbon nutrients (vitamin B12, folate) have been shown

3 to be associated with higher offspring cardiometabolic risk markers in India.

4 Objective: We examined the hypothesis that low plasma vitamin B12 (B12), and high folate

5 and homocysteine concentrations in the mother are associated with higher hypothalamic-

6 pituitary-adrenal axis (cortisol) and cardiovascular responses during the Trier Social Stress

7 Test for Children (TSST-C) in an Indian birth cohort.

8 Methods: Adolescents (n=264; mean age: 13.6 y), whose mothers’ plasma B12, folate and

9 total homocysteine concentrations had been measured during pregnancy, completed 5-

10 minutes each of public speaking and mental arithmetic tasks in front of two unfamiliar

11 ‘judges’ (TSST-C). Baseline and post-stress salivary cortisol concentrations were measured.

12 Heart rate, blood pressure, stroke volume, cardiac output, and total peripheral resistance were

13 measured continuously at baseline, during the TSST-C, and for 10-minutes after the TSST-C

14 using a finger cuff; beat-to-beat values were averaged for these periods respectively.

15 Results: Maternal low B12 status (plasma B12<150 pmol/L) was associated with greater

16 cortisol responses to stress in the offspring (p<0.001). Higher homocysteine concentrations

17 were associated with greater offspring heart rate response (p<0.001). After adjustment for

18 multiple comparisons, there were non-significant associations between higher maternal folate

19 concentrations and offspring total peripheral resistance response (p=0.01).

20 Conclusion: Our findings suggest that maternal one-carbon nutritional status may have long-

21 term programming implications for offspring neuro-endocrine stress responses.

22


23


24

25 INTRODUCTION

26 Psychological stress is a risk factor for cardiometabolic, psychiatric and other non-

27 communicable diseases (NCD) in adults (1). Altered responses of the hypothalamic-pituitary-

28 adrenal (HPA) axis and autonomic cardiovascular systems to stress are thought to contribute

29 to the physiological changes that lead to these conditions. Indeed, studies have shown

30 increased cardiovascular disease risk in individuals with higher stress responses (2).


31 The developmental origins hypothesis proposes that impaired nutrition during fetal

32 development leads to phenotypic changes that increase vulnerability to cardiovascular disease

33 in later life (3). Maternal nutrients, specifically, nutrients associated with one-carbon (1-C)

34 metabolism play an important role in fetal neurodevelopment across the life course (4).

35 Cohort studies in India have shown that low vitamin B12 (B12) status in the face of a high

36 folate status in pregnancy may increase maternal (5) as well as offspring NCD risk (6).

37 Findings from the Pune Maternal Nutritional Study led to the “nutrient-mediated

38 teratogenesis” hypothesis which proposed that the imbalance of B12 and folate in the mother

39 may be associated with a spectrum of fetal outcomes, including cardiometabolic risk in India

40 (7). We previously tested for evidence of causality within a Mendelian randomization

41 framework, and showed that maternal 1-C metabolism (homocysteine) has a causal

42 association with fetal growth (8).


43 Recent studies using birth weight as a marker of fetal nutrition showed higher HPA axis and

44 cardiovascular sympathetic nervous system responses in relation to lower birth weight (9-12).

45 However, associations of maternal nutritional status with offspring stress responses in

46 humans have not been reported before. The Mysore Parthenon Study was established with the

47 primary aim to examine the long-term effects of maternal nutritional status on

48 cardiometabolic risk factors in the offspring (13). The study has already demonstrated

49 associations between maternal 1-C nutrients and offspring cardiometabolic outcomes,

50 showing that higher maternal folate, and homocysteine concentrations were associated with

51 higher childhood insulin resistance and glycaemia in the offspring (14). In the present study,

52 we test the secondary hypothesis that low maternal plasma B12 and high folate and

53 homocysteine concentrations predict increased HPA axis and autonomic cardiovascular

54 stress responses in the offspring.


55 METHODS

56 The Parthenon Study: During 1997-1998, 830 women booking consecutively into the

57 antenatal clinics of the Holdsworth Memorial Hospital (HMH) in Mysore, India and

58 matching our eligibility criteria (no known history of diabetes, intention to deliver at HMH,

59 singleton pregnancy) underwent detailed anthropometry and blood sampling at 28-32 weeks

60 of pregnancy (13). Plasma samples were stored. Maternal supplements during pregnancy

61 were recorded at recruitment, but not subsequently. Six-hundred and sixty-three women who

62 chose to deliver at HMH gave birth to live babies without major congenital anomalies, and

63 detailed neonatal anthropometry was carried out.


64 Offspring follow-up: The children were followed-up 6-12 monthly for detailed anthropometry

65 and cardiometabolic investigations (13). Twenty-five died in childhood and 8 developed

66 major medical conditions. At 13.5 years, 545 adolescent children were available for follow-

67 up. We administered a standard laboratory based stress-test, the Trier Social Stress Test for

68 Children (TSST-C) (15) in 273 of these adolescents representing four birth weight categories,

69 including all available offspring of mothers with gestational diabetes mellitus (GDM [n=28]),

70 selected from those living within Mysore city (N=354).


71 TSST-C: Details of the tests have been reported previously (15). The tests were conducted

72 between 2.00 and 3.30 PM, for one child at a time. A baseline (pre-test) salivary sample was

73 collected 10 minutes before the test, after the children had watched a calming video for 5

74 minutes in a standing position. They then performed 5-minutes each of public speaking

75 (imaginative story telling) and mental arithmetic tasks (serial subtraction) standing in front of

76 two unfamiliar adult judges. Further salivary samples were collected at 10, 20, 30, 40 and 70

77 minutes after stress induction (start of TSST-C) to measure the cortisol response. Systolic and

78 diastolic blood pressure (BP), cardiac output, stroke volume, heart rate and total peripheral

79 resistance (TPR) were measured continuously using a non-invasive, portable hemodynamic

80 monitoring system with appropriately sized finger cuffs (Nexfin, BMeye, Amsterdam,

81 Netherlands). The beat-to-beat values were averaged over 5 minutes for the baseline (pre-test

82 video-viewing), public speaking, mental arithmetic and immediate post-stressor periods.

83 Change in post-stress cortisol and cardiovascular parameters from baseline constituted the

84 stress response.


85 Weight (Salter, Tonbridge, Kent, United Kingdom) and height (Microtoise, CMS

86 instruments) were measured; body mass index (BMI) was calculated using the formula:

87 (weight/height2). Information was collected on recent stressful or traumatic situations that

88 might affect stress reactivity. However, none of the children reported any major traumatic

89 events in this period. Pubertal status was assessed using Tanner’s method (16), and was

90 classified as the stage of breast development (in girls) or genital development (in boys). The

91 socio-economic status of the family was determined using the Standard of Living Index

92 designed by the National Family Health Survey-2 (17). This is a standardized questionnaire-

93 based index, developed for national surveys in India, and is based on information about

94 housing, amenities and possessions. Higher score indicates higher social class.


95 The study was approved by the HMH ethics committee; informed written consent from

96 parents and assent from children were obtained.

97 Laboratory assays: Assays were carried out at the Diabetes Unit, KEM Hospital, Pune,

98 India. Maternal B12, folate and total homocysteine (tHcy) concentrations were analyzed

99 using stored plasma samples. Microbiological assays were used for B12 and folate and


100

fluorescence polarization immunoassay (Abbott) for tHcy (18-20). Intra- and inter-assay co-



101

efficients of variation were <8% for these assays.  Maternal low B12 status was defined as a



102

concentration <150 pmol/L and low folate status as a concentration <7 nmol/L.



103

Hyperhomocysteinema was defined as a tHcy concentration >10 μmol/L. Salivary cortisol



104

concentrations in children were measured using an enzyme-linked immunosorbent assay



105

method (Alpco Diagnostics, Salem, NH). The assay sensitivity was 1 ng/ml; inter- and intra-



106

assay coefficients of variation were 10.0% and 6.6% respectively.




107


Statistical methods: Children were assigned to groups on the basis of their mother’s nutrient



108

deficiency status. After log-transformation of cortisol concentrations to satisfy the



109

assumption of normality, between-group differences in cortisol and cardiovascular measures



110

at baseline were analysed using independent t-tests. Mean (SD) were presented for normally



111

distributed variables and median (IQR) for skewed variables in the tables describing these



112

analyses. Multiple linear regression models were used to adjust these associations for age,



113

sex, socio-economic status, pubertal stage, current BMI, and maternal GDM status and



114

maternal BMI during pregnancy. We performed linear mixed-model analysis to examine



115

associations of maternal B12, folate and tHcy with repeated measures of salivary cortisol and



116

cardiovascular parameters, to account for within-group correlations. Salivary cortisol



117

concentrations at all time points, and averaged cardiovascular parameters at different stages



118

of the TSST-C respectively, were included in the models to examine the change in these



119

parameters from baseline after stress-induction (stress response). All models adjusted for the



120

variables listed above, and excluded cases with incomplete data. Exposure and outcome



121

variables were converted into standard deviation scores (SDS) before analysis in order to

122

allow comparison of effects in units of SD change in the stress response per unit of SD



123

change in the maternal exposure. We corrected for multiple comparisons using the



124

Bonferroni correction which, for 52 hypothesis tests at the 5% level, yields a threshold for



125

statistical significance of P = 0.001. All analyses were performed using STATA v 15.1.




126


RESULTS



127

Maternal and offspring general characteristics are given in Table 1. Maternal B12, folate and



128

tHcy concentrations were available for 264 of the 269 children who completed the TSST-C.



129

Low B12 status was present in 46% of the mothers, while only about 3% had low folate



130

levels or hyperhomocysteinemia. There was no difference between the cohort children who



131

took part in the TSST-C and those who were not part of the study in maternal 1-C nutrient



132

status, socio-economic status or offspring BMI. Maternal BMI was significantly higher



133

among current participants compared to those who were not included in this study (24.2 vs



134

23.0 kg/m2, p<0.001).




135


Both pre- and post-test salivary cortisol measurements were available for 263 children and



136

complete cardiovascular profiles were available for 244 children. Of these 247 with complete



137

data for all covariates were included for cortisol response models and 229 for cardiovascular



138

response models.




139


Associations with cortisol responses to stress



140

Offspring of mothers with low B12 status had significantly lower cortisol concentrations at



141

baseline compared to those of mothers with normal B12 levels (median: 6.3 ng/ml [IQR 4.8-



142
8.2 
] vs 7.1 ng/ml [5.1-9.8] in the normal B12 group;, adjusted p=0.03) (Table 2). There were



143

no significant associations of maternal folate or homocysteine concentrations with offspring



144

baseline cortisol concentrations.

145

In a mixed model analysis, maternal low B12 status, as a binary outcome was associated with



146

a higher cortisol response to stress (0.36 SD [95% CI: 0.16,0.57 SD] increase from baseline



147

in peak cortisol response at 30 minutes in maternal low B12 group, compared to the normal



148

B12 group; p<0.001; Figure 1, Table 3). Maternal B12 concentration, as a continuous



149

outcome, was negatively associated with cortisol response (-0.13 [-0.22,-0.03] p=0.01),



150

although the association was non-significant when tested at the Bonferroni adjusted



151

significance level of p=0.001.




152


Maternal folate concentrations were not associated with cortisol response to stress in the



153

adolescent offspring (Table 3, Figure 1). There were no significant interactions between



154

maternal B12 and folate concentrations for these associations. Offspring cortisol responses



155

tended to increase with maternal tHcy concentrations (0.14 [0.02,0.26] p=0.03), although



156

again, the association was not significant at the Bonferroni adjusted significance level of



157

p=0.001 (Table 3, Figure 1).




158


Associations with cardiovascular responses to stress



159

Higher maternal tHcy concentration was significantly associated with greater heart rate



160

response to stress during the mental arithmetic task (0.18 [95% CI: 0.09,0.26] p<0.001)



161

(Table 4, Figure 2). Maternal B12 concentration as continuous variable was not associated



162

with offspring cardiovascular stress responses. However, there was a non-significant



163

association between maternal B12 categorised as ‘low’ status and higher diastolic BP during



164

public speaking (p=0.05) and mental arithmetic tasks (p=0.01) in the offspring (Table 4,



165

Figure 2). Offspring born to mothers with higher folate concentrations had a higher total



166

peripheral resistance response, though the association was non-significant after Bonferroni



167

correction (p=0.02 and 0.01 respectively for public speaking and mental arithmetic tasks)



168

(Table 4, Figure 2).

169

All associations were similar in boys and girls, and there were no significant sex interactions



170

for the above associations.




171


DISCUSSION



172

To our knowledge, this is the first study of offspring stress responses in relation to measures



173

of maternal nutritional status in humans. In our study lower B12 status in the pregnant mother



174

was associated with higher cortisol responses to stress in the offspring during adolescence.



175

There was also evidence of an association of higher maternal homocysteine concentrations



176

with greater offspring cardiovascular responses to stress.




177


Altered neuro-endocrine reactivity to stress is thought to increase cardiovascular and mental



178

disorders in humans (1). Impaired nutrition during fetal growth has been suggested to



179

permanently alter physiological stress responses (21). Animal studies support this (22,23).



180

Langley-Evans et al showed that protein restriction in rat dams was associated with changes



181

in several indices of HPA axis activity in the fetus (22). There was increased glucocorticoid



182

receptor binding, and elevated corticosterone-inducible enzymes in higher brain centres,



183

suggesting increased glucocorticoid sensitivity. A recent study in sheep has demonstrated



184

increased cortisol and adrenal responses in adult offspring of undernourished ewes (23). In



185

humans, studies using birth weight as a proxy for intra-uterine nutrition have shown that



186

lower birth weight was associated with higher cortisol (9,10) and cardiac sympathetic



187

responses to stress in children as well as adults (11,12). In low- and middle-income countries



188

like India, nutritional deficiencies are common in seemingly healthy pregnant women, and



189

B12 deficiency is particularly common in India, possibly because of vegetarian diets (6).



190

Studies in Pune and Mysore in India, have shown associations of maternal B12, folate and



191

homocysteine concentrations with neural tube defects (24) and neurocognitive (25,26) and



192

NCD risk factors in the offspring (6,14). The current study shows that these nutrients may



193

also predict altered offspring stress mechanisms.

194

In our study children of mothers with low B12 status had lower baseline cortisol



195

concentrations and a higher stress-induced cortisol increment than offspring of mothers with



196

normal B12 levels. Low B12 status was also associated with greater cardiovascular stress



197

responses, particularly diastolic BP. One-carbon nutrients are vital co-factors in neuro-



198

developmental processes and deficiencies have been linked to altered neuro-endocrine



199

structure and function (4). This includes abnormalities of neural cell proliferation and



200

differentiation, myelination, and synaptogenesis in brain centres associated with higher brain



201

functions (4) that could influence stress perception and reactivity. In addition, low B12 levels



202

may lead to elevated homocysteine, which may damage growing neural cells and affect



203

synaptogenesis by inducing oxidative stress (27). Consistent with this, in our study, higher



204

maternal homocysteine concentrations were also associated with higher cortisol and



205

cardiovascular responses in the adolescent offspring.




206


Folate also plays an important role in neurodevelopment. Folic acid supplementation is



207

recommended in the preconceptional period to prevent neural tube defects. Yet, in our study,



208

maternal folate concentrations tended to be positively associated with offspring



209

cardiovascular stress responses. We observed non-significant positive associations between



210

maternal folate and TPR responses. Increased TPR is one of the mechanisms for elevated BP.



211

In our cohort, mean maternal serum folate concentrations were higher than those reported in



212

other parts of the world (14), and only a few women had low folate status. Higher folate in



213

the presence of B12 deficiency may have adverse neuro-psychiatric consequences (28). There



214

is also a suggestion that high folate levels may have adverse implications for health (29).



215

Enzymes that require folate as a co-factor may be inhibited by high levels of folic acid (30).



216

We have shown earlier that higher maternal folate was associated with higher insulin



217

resistance during childhood and adolescence in the Parthenon cohort (14). While optimum



218

micronutrients during the early stages of pregnancy have beneficial effects on fetal

219

development, our findings suggest that exposure to high folate levels in late pregnancy may



220

confer future risk of hypertension in the offspring. This raises an issue for folate



221

supplementation in pregnancy, after the first trimester, especially in the background of high



222

levels of B12 deficiency.




223


We do not know whether the higher stress responses observed during the TSST-C in our



224

adolescents will increase their future disease risk, but studies in humans support this



225

possibility. A recent meta-analysis showed that greater cardiovascular reactivity, particularly



226

BP responses to laboratory-induced stress, is associated with increased future adverse



227

cardiovascular outcomes (2). Abnormal autonomic cardiac control in children may also have



228

implications for future disease risk (31). The significance of lower baseline cortisol levels in



229

association with low B12 status is less clear. An optimal HPA axis response in anticipation of



230

stress may improve resilience to stressful situations. In pre-schoolers at risk for antisocial



231

behaviour (siblings of juvenile offenders), increased family support resulted in increased pre-



232

test salivary cortisol concentrations in relation to a social challenge (32). The authors argued



233

that basal cortisol levels and cortisol responses may have differential associations with risk



234

outcomes. In this context, our results may indicate reduced anticipatory preparation for a



235

stressful challenge in offspring of low B12 mothers, which may have resulted in exaggerated



236

cortisol responses when stressed.




237


A major strength of our study was the measurement of maternal micronutrients during



238

pregnancy, which is a more robust indicator of maternal nutritional status than dietary or



239

supplement intake levels. This is the first study to use a well-established stress test to



240

examine offspring stress responses in association with maternal nutrient status in humans. A



241

comprehensive range of measurements in the mother and at later follow-up in the offspring



242

enabled relevant adjustments. As B12 concentrations are difficult to interpret in pregnancy



243

due to haemodilution and raised glomerular filtration rate, our values may not be indicative of

244

true levels. We did not measure methylmalonic acid, a specific and sensitive indicator of B12



245

deficiency, which is a limitation. However, a similar definition of low B12 status has been



246

used in other studies. Other limitations were a lack of data on maternal diet and the use of



247

folic acid and B12 supplements at 30 weeks’ gestation, when maternal nutrient status was



248

measured, and on maternal stress measures.




249


In conclusion, previous studies from India have shown consistent, though complex,



250

associations between maternal 1-C nutrients and offspring cardiometabolic outcomes during



251

childhood. These findings led to the proposal that ‘nutrient mediated teratogenesis’, in which



252

intrauterine micronutrient deficiencies program permanent structural and functional



253

aberrations, promote increased non-communicable chronic disease risk in the offspring (7).



254

The novel, though modest, associations observed between 1-C components and offspring



255

stress responses in the current study indicate a plausible mechanism for these prior



256

observations. Replication of these findings in other cohorts is paramount for conclusive



257

evidence, and our group is embarking on testing the role of maternal nutritional status on



258

offspring stress responses in other cohorts in India (33). Though their significance for future



259

disease risk is speculative, our study suggests that children of mothers with low B12 levels



260

are exposed to an increased cardiometabolic risk burden early in the life course. Although



261

long-term follow-up will be required to establish disease risk conclusively, there is some



262

evidence that exaggerated neuro-endocrine and cardiovascular responses to stress confer



263

264

greater risk of cardiovascular disease in later life (2).




265


ACKNOWEDGEMENT

266

Our sincere thanks to the participating families and Holdsworth Memorial Hospital staff, the



267

research team, and the staff of the Medical Research Council Lifecourse Epidemiology Unit



268


269

for their support. We thank Sneha-India for their support.



FINANCIAL SUPPORT



270


The study was supported by the Wellcome Trust UK as part of a personal



271

fellowship to GV Krishnaveni (095147/Z/1O/Z). The Parthenon Cohort was funded



272

by the Parthenon Trust, the Wellcome Trust, the Medical Research Council (UK)



273

and the Department for International Development (UK). Dr Krishnaveni is



274

275

currently supported by a Wellcome Trust-DBT India Alliance Senior Fellowship.



CONFLICT OF INTEREST

None


REFERENCES

1. McEwen BS. Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress mediators. Eur J Pharmacol 2008;583:174-185.
2. Chida Y, Steptoe A. Greater cardiovascular responses to laboratory mental stress are associated with poor subsequent cardiovascular risk status: a meta-analysis of prospective evidence. Hypertension. 2010;55:1026-1032.
3. Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS. Fetal nutrition and cardiovascular disease in adult life. Lancet 1993;341:938-941.
4. McGarel C, Pentieva K, Strain JJ, McNulty H. Emerging roles for folate and related B- vitamins in brain health across the lifecycle. Proc Nutr Soc 2015;74:46-55.
5. Krishnaveni GV, Hill JC, Veena SR, Bhat DS, Wills AK, Karat CL, Yajnik CS, Fall CH. Low plasma vitamin B12 in pregnancy is associated with gestational ‘diabesity’ and later diabetes. Diabetologia 2009;52:2350-2358
6. Yajnik CS, Deshpande SS, Jackson AA, Refsum H, Rao S, Fisher DJ, Bhat DS, Naik SS, Coyaji KJ, Joglekar CV, Joshi N, Lubree HG, Deshpande VU, Rege SS, Fall CH. Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune maternal nutrition study. Diabetologia 2008;51:29-38.
7. Yajnik CS. Nutrient-mediated teratogenesis and fuel-mediated teratogenesis: two pathways of intrauterine programming of diabetes. Int J Gynaecol Obstet 2009;104 (Suppl):S27-S31.
8. Yajnik CS, Chandak GR, Joglekar C, Katre P, Bhat DS, Singh SN, Janipalli CS, Refsum H, Krishnaveni G, Veena S, Osmond C, Fall CH. Maternal homocysteine in pregnancy and offspring birthweight: epidemiological associations and Mendelian randomization analysis. Int J Epidemiol 2014;43:1487-1497.


9. Jones A, Godfrey KM, Wood P, Osmond C, Goulden P, Philips DIW. Fetal growth and the adrenocortical response to psychological stress. J Clin Endocrinol Metab 2006;9:1868-1871.
10. Wüst S, Entringer S, Federenko IS, Schlotz W, Hellhammer DH. Birth weight is associated with salivary cortisol responses to psychosocial stress in adult life. Psychoneuroendocrinology 2005;30:591-598.
11. Jones A, Beda A, Osmond C, Godfrey KM, Simpson DM, Phillips DIW. Sex-specific programming of cardiovascular physiology in children. European Heart Journal 2008;29:2164-2170.
12. Feldt K, Räikkönen K, Pyhälä R, Jones A, Phillips DI, Eriksson JG, Pesonen AK, Heinonen K, Järvenpää AL, Strandberg TE, Kajantie E. Body size at birth and cardiovascular response to and recovery from mental stress in children. J Hum Hypertens 2011;25:231-240.
13. Krishnaveni GV, Veena SR, Hill JC, Karat SC, Fall CH. Cohort Profile: Mysore Parthenon Birth Cohort. Int J Epidemiol 2015;44:28-36.
14. Krishnaveni GV, Veena SR, Karat SC, Yajnik CS, Fall CH. Association between maternal folate concentrations during pregnancy and insulin resistance in Indian children. Diabetologia 2014;57:110-121.
15. Krishnaveni GV, Veena SR, Jones A, Bhat DS, Malathi MP, Hellhammer D, Srinivasan K, Upadya H, Kurpad AV, Fall CH. Trier Social Stress Test in Indian adolescents. Indian Pediatr 2014;51:463-467.
16. Tanner JM. (1962) Growth in adolescence. 2nd edition, Oxford, England, Blackwell Scientific Publications.
17. International Institute for Population Sciences (IIPS) and Operations Research Centre (ORC) Macro 2001. National Family Health Survey (NFHS-2), India 1998-1999. IIPS: Maharashtra, Mumbai.


18. Kelleher BP, Walshe KG, Scott JM, O'Broin SD. Microbiological assay for vitamin B12 with use of a colistin-sulfate-resistant organism. Clin Chem 1987;33:52-54.
19. Horne DW, Patterson D. Lactobacillus casei microbiological Assay of Folic Acid Derivatives in 96-Well Microtiter plates. Clin Chem 1988;34:2357-2359.
20. Shipchandler MT, Moore EG. Rapid, fully automated measurement of plasma homocyst(e)ine with the Abbott IMx analyzer. Clin Chem 1995;41:991-994.
21. Phillips DI, Jones A, Goulden PA. Birth weight, stress, and the metabolic syndrome in adult life. Ann N Y Acad Sci 2006;1083:28-36.
22. Langley-Evans SC, Gardner DS, Jackson AA. Maternal protein restriction influences the programming of the rat hypothalamic-pituitary-adrenal axis. J Nutr 1996;126:1578-1585.
23. Poore KR, Boullin JP, Cleal JK, Newman JP, Noakes DE, Hanson MA, Green LR. Sex- and age-specific effects of nutrition in early gestation and early postnatal life on hypothalamo- pituitary-adrenal axis and sympathoadrenal function in adult sheep. J Physio 2010;588:2219- 2237.
24. Godbole K, Gayathri P, Ghule S, Sasirekha BV, Kanitkar-Damle A, Memane N, Suresh S, Sheth J, Chandak GR, Yajnik CS. Maternal one-carbon metabolism, MTHFR and TCN2 genotypes and neural tube defects in India. Birth Defects Res A Clin Mol Teratol 2011;91:848-856.
25. Bhate V, Deshpande S, Bhat D, Joshi N, Ladkat R, Watve S, Fall C, de Jager CA, Refsum H, Yajnik CS. Vitamin B12 status of pregnant Indian women and cognitive function in their 9- year-old children. Food Nutr Bull. 2008;29:249–254.
26. Veena SR, Krishnaveni GV, Srinivasan K, Wills AK, Muthayya S, Kurpad AV, Yajnik CS, Fall CH. Higher maternal plasma folate but not vitamin-B12 concentrations during


pregnancy are associated with better cognitive function scores in 9-10 year old children in South-India. J Nutr 2010; 140:1014-1022.
27. Roy S, Sable P, Khaire A, Randhir K, Kale A, Joshi S. Effect of maternal micronutrients (folic acid and vitamin B12) and omega 3 fatty acids on indices of brain oxidative stress in the offspring. Brain Dev 2014;36:219-227.
28. Morris MS, Jacques PF, Rosenberg IH, Selhub J. Folate and vitamin B-12 status in relation to anemia, macrocytosis, and cognitive impairment in older Americans in the age of folic acid fortification. Am J Clin Nutr 2007;85:193-200
29. Sauer J, Mason JB, Choi S. Too much folate- a risk factor for cancer and cardiovascular disease? Curr Opin Clin Nutr Metab Care 2009;12:30-36.
30. Smith AD, Kim YI, Refsum H. Is folic acid good for everyone? Am J Clin Nutr 2008;87:517-533.
31. Sucharita S, Dwarkanath P, Thomas T, Srinivasan K, Kurpad AV, Vaz M. Low maternal vitamin B12 status during pregnancy is associated with reduced heart rate variability indices in young children. Matern Child Nutr 2014;10:226-233
32. Brotman LM, Gouley KK, Huang KY, Kamboukos D, Fratto C, Pine DS. Effects of a psychosocial family-based preventive intervention on cortisol response to a social challenge in preschoolers at high risk for antisocial behavior. Arch GenPsychiatry 2007;64:1172-1179.
33. Krishnaveni GV, Kumaran K, Krishna M, Sahariah S, Chandak G, Kehoe S, Jones A, Bhat D, Danivas V, Srinivasan K, Suguna Shanthi J, Karat SC, Barker M, Osmond C, Yajnik C, Fall C. Life course programming of stress responses in adolescents and young adults in India: Protocol of the Stress Responses in Adolescence and Vulnerability to Adult Non- communicable disease (SRAVANA) Study. Wellcome Open Res 2018;3:56.



Figure Legends

Figure 1: Associations of maternal low B12 status, and maternal B12, folate and homocysteine concentrations with offspring cortisol response to the Trier Social Stress Test
Graph (a): Values represent standard deviation (SD) change from baseline in log-transformed cortisol response for the maternal low B12 status group, compared to the normal B12 level group
Graphs (b), (c), (d): Values represent SD change from baseline in log transformed cortisol response per SD increase in maternal exposure variable





Figure 2: Associations of maternal low B12 status, and maternal B12, folate and homocysteine concentrations with offspring cardiovascular responses to the Trier Social Stress Test
All graphs: solid markers represent cardiovascular response during the free speech task, open markers represent cardiovascular response during the mental arithmetic task
Graph (a): Values represent standard deviation (SD) change from baseline in cardiovascular response for maternal low B12 status group, compared to normal B12 level group
Graphs (b), (c), (d): Values represent SD change from baseline in cardiovascular response per SD increase in the maternal exposure variable
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Table 1: Characteristics of mothers at 28-32 weeks’ gestation and offspring at 13.5 years

	Characteristic
	n
	Measure

	Maternal
Age (years) a
	
264
	
24.0 (21.0,27.0)

	BMI (kg/m2)
	264
	24.2 (3.7)

	Vitamin B12 (pmol/L) a
	264
	158.0 (120.5,214.5)

	Low vitamin B12 level (< 150 pmol/L) a
	120 (45.5%)
	118.0 (103.0,131.0)

	Normal vitamin B12 level a
	144 (54.5%)
	208.0 (177.5,250.5)

	Folate (nmol/L) a
	264
	34.0 (16.2,50.8)

	Low folate level (< 7 nmol/L) a
	8 (3.0%)
	5.7 (5.4,5.9)

	Normal folate level a
	256 (97.0)
	35.6 (17.5,51.0)

	Homocysteine (μmol/L) a
	264
	6.0 (5.0,7.0)

	Hyperhomocysteinemia (> 10 μmol/L) a
	9 (3.4%)
	10.8 (10.4,13.3)

	Normal homocysteine level a
	255 (96.6%)
	5.8 (5.0,6.9)

	Offspring
Age (years) a
	
264
	
13.6 (0.1)

	Male sex
	132 (50.0%)
	-

	Height (cm)
	264
	154.2 (7.1)

	BMI (kg/m2) a
	264
	17.1 (15.7,19.3)

	Socio-economic status (SLI score)
	264
	38.1 (6.6)

	Baseline salivary cortisol (ng/ml) a
	263
	6.7 (4.9,9.0)

	Baseline systolic blood pressure (mmHg)
	244
	100.7 (11.7)

	Baseline diastolic blood pressure (mmHg)
	244
	69.4 (7.8)

	Baseline heart rate (bpm)
	244
	106.4 (12.2)

	Baseline cardiac output (L/min)
	244
	4.6 (0.8)

	Baseline stroke volume (ml)
	244
	43.5 (7.9)


Baseline total peripheral resistance
(dyn.s/cm2)	244	1,489.2 (226.8)


Values presented are mean (SD) or a median (inter-quartile range /IQR)
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Table 2: Longitudinal offspring cortisol responses to the Trier Social Stress Test by maternal B12, folate and homocysteine category
Maternal category	Time after Trier Social Stress Test
Baseline	10 minutes	20 minutes	30 minutes	40 minutes	70 minutes


Vitamin B12 (pmol/L)

	Low vitamin B12 (< 150 pmol/L)
	6.3 (4.8,8.2)
	9.0 (5.9,13.3)
	12.4 (8.3,18.4)
	14.1 (8.4,21.5)
	11.9 (8.0,18.3)
	8.7 (6.0,12.0)

	Normal vitamin B12
	7.1 (5.1,9.8)
	8.8 (5.9,14.6)
	11.9 (7.9,19.5)
	12.5 (8.4,19.8)
	11.6 (8.2,19.2)
	8.7 (6.3,13.7)


Folate (nmol/L)

	Low folate (< 7 nmol/L)
	8.4 (6.4,13.5)
	11.3 (6.2,22.8)
	14.9 (7.7,27.7)
	13.4 (8.5,26.1)
	12.8 (6.4,25.9)
	8.0 (6.5,19.8)

	Normal folate
	6.6 (4.8,8.9)
	9.0 (5.9,14.0)
	12.0 (8.0,18.6)
	12.9 (8.4,20.6)
	11.9 (8.2,18.6)
	8.7 (6.2,12.3)

	Homocysteine (μmol/L)
	
	
	
	
	
	

	Hyperhomocysteinemia (> 10 μmol/L)
	7.7 (5.7,8.6)
	10.9 (9.6,14.6)
	16.2 (14.7,23.1)
	20.6 (14.3,30.6)
	20.3 (14.5,22.9)
	11.4 (9.4,15.6)

	Normal homocysteine
	6.6 (4.8,9.0)
	8.8 (5.9,14.1)
	11.7 (7.9,18.6)
	12.7 (8.3,20.4)
	11.6 (7.9,18.3)
	8.6 (6.1,12.3)



N = 264
All reported using median (IQR)






Table 3: Associations of maternal low B12 status, and maternal B12, folate and homocysteine concentrations with offspring 30 minute cortisol response to the Trier Social Stress Test

	Maternal exposure
	β (95% CI)
	p-value

	Low B12 status a
	0.36 (0.16,0.57)
	<0.001

	B12 concentrations b
	-0.13 (-0.22,-0.03)
	0.01

	Folate concentrations b
	0.02 (-0.08,0.12)
	0.69

	Homocysteine concentrations b
	0.14 (0.02,0.26)
	0.03

	
N = 247
	
	



a β represents standard deviation (SD) change from baseline in log-transformed cortisol response for maternal low B12 group, compared to normal B12 level
b β represents SD change from baseline in log transformed cortisol response per SD increase in maternal exposure variable

All models describe complete post-TSST time series (10, 20, 30, 40 and 70 minutes), and are adjusted for offspring age, sex, socio-economic status, pubertal stage, current BMI, maternal gestational diabetes mellitus status and maternal BMI during pregnancy
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Table 4: Associations of maternal low B12 status, and maternal B12, folate and homocysteine concentrations with offspring cardiovascular responses to the Trier Social Stress Test

Low B12 status a	B12 concentrations b	Folate concentration b	Homocysteine concentration b

	Outcome
	β (95% CI)
	p-value
	β (95% CI)
	p-value
	β (95% CI)
	p-value
	β (95% CI)
	p-value

	At public speaking task
Systolic BP
	
0.13 (-0.04,0.30)
	
0.13
	
-0.03 (-0.11,0.04)
	
0.38
	
0.04 (-0.04,0.12)
	
0.33
	
0.06 (-0.04,0.16)
	
0.21

	Diastolic BP
	0.17 (0.00,0.33)
	0.05
	-0.05 (-0.13,0.02)
	0.15
	0.06 (-0.02,0.14)
	0.17
	0.07 (-0.03,0.16)
	0.16

	Heart rate
	-0.01 (-0.16,0.15)
	0.94
	-0.02 (-0.09,0.05)
	0.49
	-0.04 (-0.12,0.04)
	0.31
	0.13 (0.04,0.22)
	0.003

	Cardiac output
	0.14 (-0.03,0.31)
	0.10
	-0.03 (-0.11,0.04)
	0.40
	-0.06 (-0.14,0.02)
	0.17
	0.12 (0.02,0.21)
	0.02

	Stroke volume
	0.11 (-0.04,0.27)
	0.14
	-0.00 (-0.07,0.06)
	0.90
	-0.03 (-0.10,0.05)
	0.50
	0.04 (-0.05,0.13)
	0.40

	Total Peripheral Resistance
	-0.05 (-0.25,0.15)
	0.63
	-0.02 (-0.11,0.07)
	0.62
	0.12 (0.02,0.22)
	0.02
	-0.10 (-0.21,0.02)
	0.11

	At mental arithmetic task
	
	
	
	
	
	
	
	

	Systolic BP
	0.12 (-0.05,0.29)
	0.16
	-0.03 (-0.10,0.05)
	0.51
	0.05 (-0.03,0.13)
	0.25
	0.08 (-0.02,0.17)
	0.11

	Diastolic BP
	0.22 (0.05,0.38)
	0.01
	-0.05 (-0.12,0.03)
	0.22
	0.07 (-0.01,0.15)
	0.09
	0.10 (0.00,0.19)
	0.05

	Heart rate
	0.06 (-0.10,0.21)
	0.48
	-0.02 (-0.09,0.05)
	0.59
	-0.05 (-0.13,0.03)
	0.23
	0.18 (0.09,0.26)
	<0.001

	Cardiac output
	0.13 (-0.04,0.30)
	0.12
	-0.03 (-0.11,0.04)
	0.41
	-0.07 (-0.15,0.01)
	0.10
	0.10 (0.00,0.20)
	0.05

	Stroke volume
	0.07 (-0.08,0.23)
	0.35
	-0.01 (-0.08,0.06)
	0.81
	-0.03 (-0.11,0.05)
	0.44
	-0.01 (-0.10,0.08)
	0.84

	Total Peripheral Resistance
	0.06 (-0.14,0.26)
	0.54
	-0.05 (-0.14,0.04)
	0.31
	0.14 (0.04,0.24)
	0.01
	-0.03 (-0.15,0.08)
	0.56



N = 229

a β represents standard deviation (SD) change from baseline in cardiovascular response for maternal low B12 group, compared to normal B12 level
b β represents SD change from baseline in cardiovascular response per SD increase in maternal exposure variable

All models are adjusted for offspring age, sex, socio-economic status, pubertal stage, current BMI, maternal gestational diabetes mellitus status and maternal BMI during pregnancy
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