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Abstract 

In order to describe the dynamic behavior of magnetorheological elastomers 

(MREs) for the realization of vibration control, this study proposes a constitutive model 

containing a fractional element and nonlinear springs attributed to the viscoelastic and 

the rheological properties, respectively. The viscoelastic behavior in various magnetic 

fields was studied experimentally to develop this fractional-order nonlinear model, and 

the model parameters were identified through experimental data fitting of dynamic 

modulus in frequency domain. The model predictions were subsequently obtained with 

the predictor-corrector approach to validate the proposed model by comparing with the 

experimental results on the stress-strain hysteresis. In addition, the efficiency of the 

proposed model of MRE was also evaluated by comparing the numerical solution with 

the results of the revised Bouc-Wen model. 
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1. Introduction 

Magnetorheological elastomers (MREs) are a class of composite materials that 

consist of magnetizable particles suspended in an elastomer matrix with low 

permeability. Anisotropic MREs have a directed particle orientation as a result of the 

presence of a magnetic field during the solidification, and isotropic MREs can be 

characterized with a random distribution of magnetic particles attributed to the curing 

progress without any magnetic fields[1,2]. However, with the application of an external 

field even isotropic MREs become anisotropic materials[3].  

There has been increasing research on MRE for reduction of undesired 

vibrations[4,5]. As a combination of the versatility of active control and the reliability of 

passive control, the semi-active (adaptive-passive) vibration control devises have 

attracted considerable intention over the past decades and the increasing effort has been 



devoted to the possibility of employing smart materials for semi-active vibration 

control[6,7]. Among these suited smart materials, MRE is promising in practice due to 

the controllable rheological property[3,8,9], which has been applied in varies fields, such 

as the automotive industry[10,11] and civil engineering[12].  

Because MREs have been applied broadly for semi-active control, and the dynamic 

mechanical properties can be influenced by not only the components and the fabrication 

but also by the in-service condition[13,14,15]; how to develop a quality constitutive model 

of MRE is a foremost problem for the further application on semi-active control. Since 

Jolly et al. developed a dipole model which is basically one-dimensional and quasi-

static to describe the field-induced modulus of MRE, chain models and column models 

have been proposed to deduce the field-induced shear modulus and the optimum 

particle volume fraction[16,17,18]. Their research has focused on the dependence of the 

dynamic modulus on magnetic fields, and besides that as a viscoelastic material, the 

dynamic mechanical properties are also affected by temperature[19,20], frequency and 

deformation. Based upon the Kelvin-Voigt model and the Maxwell model for 

viscoelastic materials, three-parameter models and four-parameter models were 

respectively developed to describe the creep and the relaxation phenomena[21,22]. As the 

deformation of viscoelastic materials is dependent on time, the classical viscoelastic 

model cannot work well. Bouc-Wen model and Ramberg-Osgood model were 

employed in parallel with viscoelastic model to describe the hysteresis behavior[23,24]; 

and the disadvantage of classical viscoelastic model can be also remedied with 

fractional elements, in which the stress-strain relation is expressed by fractional 

derivatives[25,26,27]. Recently, an optimal fractional rheological model was constructed 

for MREs, and the interaction between the viscoelastic properties and the magnetic field 

was analysed in terms of fractional element order parameters[28,29]. Such constitutive 

models can be further developed by integrating the MR effect[30,31,32]. The research on 

constitutive models of MREs has made progress, however, as an essential step to 

achieve the great potential of MRE for vibration control, mathematical models with a 

great efficiency to describe the dynamic mechanical behavior deserve more effort. 

In this study, based upon the experimental results of mechanical property 

characterization, a fractional-order nonlinear model is developed to describe the 

dynamic mechanical behavior of MREs. The experimental data of dynamic modulus in 

shear mode is obtained by performing the (dynamic mechanical analysis) DMA tests, 

and a constitutive model of MRE is developed with the incorporation of the rheological 



behavior and the viscoelastic behavior. By optimizing errors with the genetic algorithm, 

the model parameters are identified through data fitting of dynamic modulus in 

frequency domain. The numerical solutions of the constitutive equation are obtained 

through the predictor-corrector approach, and the model predictions are compared with 

the experimental results on the stress-strain hysteresis. Eventually, the accuracy of this 

proposed model is evaluated by comparing with both the experimental data and the 

result of the revised Bouc-Wen model[31] in time domain. 

2. DMA experiments 

The anisotropic MRE samples in this study were comprised of the micron-sized 

iron particles (Sigma-Aldrich, US) and the silicone rubber (Wacker Chemie AG, 

Germany). The manufacturing procedure can be illustrated by three steps: firstly, there 

were two components Elastosil A and Elastosil B mixed for silicone rubber with a ratio 

of 10:1 by volume, and the carbonyl iron powders sized up to 9 μm were added to the 

mixture with a volume concentration of 30%, which is considered to be able to generate 

an obvious MR effect[16,17,18]; secondly, the mixture was blended thoroughly and then 

placed in a vacuum chamber for 20 minutes for removing air bubbles trapped inside; 

finally, the mixture was put into square aluminum moulds 21.8 × 21.8 × 6.5 mm³ and 

cured for 16 hours at room temperature for solidification with a magnetic field, which 

was of 290 mT with air-dielectric and was produced by cylindrical grade N42 

neodymium permanent magnets (E-magnets, UK). 

According to the BS ISO 4664-1:2011 for shear modes, the DMA tests of MRE 

samples were performed using Instron Electropuls E1000, which is able to apply and 

control the harmonic shear strain, as shown in Figure 1. The influence of magnetic field 

on the dynamic properties was also obtained by the use of cylindrical grade N42 

neodymium permanent magnets, meanwhile the force and the displacement were 

tracked by Instron Electropuls E1000 during tests. The dynamic mechanical behavior 

of MRE were measured with varying frequencies from 1 Hz to 50 Hz, strain amplitudes 

from 1% to 5%, and magnetic fields from 0 to 500 mT. And all the sets of tests were 

carried out with three independent pairs of samples at room temperature (about 25oC). 



 
(a) 

 

(b) 

Figure 1 Experimental setup for DMA tests of MRE in shear mode (a) schematic and (b) photograph. 

When the applied loads are sinusoidal, the strain of MRE materials has the 

following form:  

e t( ) =e
0
sinwt

               (1) 

where  = 2f; 0,  and f are the strain amplitude, the angular frequency and the 

frequency, respectively. Because of viscoelasticity the response will not be 

instantaneous, the resulting stress will lag behind the input load by an angle  called 

loss angle whose range is 0<<90. For viscoelastic materials, some of the deformation 

energy can be stored and recovered, whilst the remainder is dissipated as heat during 

each cycle. The storage modulus M contributes to the material stiffness and represents 

the ability of storing the energy due to deformation; and the loss modulus M" indicates 

the ability of viscoelastic material to dissipate the energy of deformation. They can be 

defined as: 

0
( sin cos )M t M t                                   (2) 



where  denotes the stress; the modulus M can be either the Young’s modulus E and 

the shear modulus G. Because the dependence of the in-phase and out-of-phase stress 

on the strain is conveniently expressed by a complex modulus, the modulus M* is 

usually presented as a complex quantity: 

M M iM
                                  

(3)
 

The ratio between the loss modulus M" and storage modulus M is introduced as a 

widely used term for viscoelastic materials: 

tan
M

M





                                      (4) 

where tanφ is called the loss factor using for describing the efficiency of damping 

caused by the viscoelastic material.  

According to the DMA directions in this study, the complex modulus M* can be 

calculated as the ratio of the stress range to the strain range. The loss angle  is relevant 

to the energy dissipation within an oscillatory cycle, which is the area enclosed by the 

hysteresis loop and can be calculated by the numerical integration. The storage modulus 

M', loss modulus M" and loss angle  can be defined as: 

¢M =M * cosj                (5) 

¢¢M =M * sinj                   (6) 

j = arcsin
E
loop

pA
strain
A
stress              (7) 

where Astrain and Astress denote the strain amplitude and the stress amplitude, respectively; 

and Eloop indicates the energy enclosed by the hysteresis loop where the numerical 

integration can reduce the effects of measurement noise and take into account 

waveform distortion. 

3. Constitutive model of MRE 

The dynamic mechanical behavior of MRE under harmonic loads can be described 

by the constitutive equation of viscoelastic materials. Evidently, the viscoelastic 

phenomenon can be observed in typical situations, such as sinusoidal dynamic loading, 

creep and relaxation. With a spring and a viscous dashpot arranged in parallel, simple 

Voigt elements are mostly used to describe the creep, where deformation increases 

along time at imposed stress; while the relaxation where stress changes along time at a 



constant deformation can be depicted by simple Maxwell elements, which consists of 

a spring and a viscous dashpot arranged in series. 

Based on the two classic models above, a fractional element is introduced to 

describe the characteristics of viscoelastic materials, which perform between viscous 

and elastic behaviors[33]. The relationship between stress and strain can be expressed in 

the following form, 

t
v
=G

1
t

0

aDa g
n
t( )é

ë
ù
û 0 <a <1

            (8) 

where G1, τv and γv are the shear modulus, the shear stress and the shear strain of the 

fractional element, respectively; τ0 denotes the relaxation time constant; D denotes the 

derivative operator; α is a fractional-order. In the extreme cases of α=1 and α=0, the 

fractional element turns into a Newton dashpot and a linear spring, respectively.  

As the external magnetic field applies, the interaction between magnetized particles 

within MREs will generate a field-induced modulus. Therefore, the magnetic field-

induced modulus can be described by a nonlinear spring in parallel with a viscoelastic 

model. Since the first dipole model, chain models and column models have been 

developed to investigate the field-induced shear modulus and predicted the optimum 

particle volume fraction. The field-induced shear modulus is commonly expressed as a 

quadratic function of the magnetic flux density until the saturation of 

magnetization[16,17,18], and can be calculated with the following expression[18]:  

G
m

=
m
P

-m
V( )H0

2 sing cosg

g                            

(9) 

where H0 is the applied magnetic field intensity; μP and μv are the permeabilities of the 

block parallel and perpendicular to the column axes, respectively. In this equation, it is 

obvious that the magnetic field-induced modulus Gm is a nonlinear function of not only 

the magnetic field but also the strain. 

In the constitutive model of MRE, as shown in Figure 2, the Zener rheological 

model is improved with the substitution of classical springs and dashpots. A spring and 

a fractional element are arranged in series to describe the dominant elasticity and the 

viscoelasticity. Because the damping characteristic of MREs can be hardly influenced 

by field-induced modulus, another spring is arranged in parallel in the constitutive 

model to describe the field-induced modulus. As illustrated preciously the stiffness of 

the two springs herein depends on magnetic field, frequency and deformation, and the 

field-induced shear stress can be expressed as: 



t
m
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m
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                                   (10) 

where γ is the total shear strain of this constitutive model. 

 

Figure 2 Constitutive model of MRE. 

Subsequently, the shear strain and the shear stress in the constitutive model can be 

expressed as: 

g t( ) =g
e
t( ) +g

v
t( )

               (11) 

t = t
v
+t

m                 (12) 

where γe is the shear strain of the linear spring. 

The relationship between the shear stress and the shear strain in the constitutive 

model can be derived in time domain as: 
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With the Taylor series expansions of sine and cosine, the magnetic field-induced 

modulus Gm can be rewritten from Equation (9). 
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When the shear strain γ is sinusoidal and smaller than 6%, the influence of 

infinitesimal of higher order on the magnetic field-induced modulus Gm in Equation 

(14) will be very limited in short periods. Because the vibration periods of sinusoidal 

cyclic loads in this study are not more than 1 second, it is assumed that the MR effect 

is a mean performance during a period with definite vibration amplitudes. Therefore, 

considering in steady-state magnetic fields the MR effect varies with the vibration 

amplitude, the magnetic field-induced modulus Gm can be simplified as a function of 

the magnetic field and the strain amplitude. The response of MREs to sinusoidal cyclic 

loads can be also studied by converting viscoelastic problems into elastic problems with 

transform methods.   
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In general, a dynamic shear modulus G* can be defined as a complex function of 

the frequency. 

G* w( ) =
t w( )
g w( )

= ¢G w( ) + i ¢¢G w( )
                         

(16) 

Applying the Fourier transform and substituting iα = cos(/2) + isin(/2) into 

Equation (16), the storage modulus (real component) G can be readily found in the 

frequency domain: 
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The loss modulus (imaginary component) G can be also derived: 
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4. Parameter identification 

The hysteresis loops and dynamic moduli of MRE have been measured by 

performing DMA tests of samples within small strain range in shear mode. Figure 3 

shows the deformation, frequency and magnetic field dependent hysteresis loops of 

MRE with frequency of 10 Hz, magnetic flux density of 0 and strain amplitude of 1%. 

The hysteresis loop is approximately elliptical in shape, and the slop of the main axis 

of hysteresis loop indicates the dynamic modulus of the MRE sample. It is obvious that 

the dynamic modulus is reduced by the increasing strain amplitude, and the dynamic 

modulus exhibits increases as the frequency or the magnetic flux density increases. 

The experimental data of storage and loss moduli can be obtained by data 

processing with Equations (6)-(8), and the dynamic moduli can be also predicted by 

calculating with Equations (18) and (19). With the use of genetic algorithm (GA) in 

MATLAB for optimization, the model parameters G0, G1, Gm, τ0 and α can be identified 

by minimizing the sum of square of error between the experimental data and fitted 

results of storage modulus and loss modulus. 



 
(a) 

  
 (b) 

 
(c) 

Figure 3 Dependence of hysteresis loop on (a) strain amplitude, (b) frequency and (c) magnetic field. 

The fitting results can be evaluated by measuring the goodness-of-fit. The standard 

error of deviation (Sy
2), the standard error of estimation (Se

2) and the coefficient of 

determination (R2) are expressed respectively in the following forms[34], 

S
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where n is the number of data samples; yexp and yfit are the experimental data and fitted 

results of modulus, respectively; yexp denotes the average of experimental data. The data 

samples (y) can be both storage modulus G and loss modulus G. 

From Figure 4, it can be observed that the storage modulus and loss modulus of 

MRE decrease with the strain amplitude, and increase with the magnetic flux density 

until the saturation of magnetization and remain constant afterwards. As for the 

dependence on frequency, the storage modulus increases as the frequency increases, 

and the dependence of loss modulus on frequency is determined by the matrix material, 

that means the shape of curve is inherited from the matrix material. 

In Figure 4, an excellent agreement can be observed between the fitted results and 

the experimental data in the frequency domain. The model parameters G0, G1, Gm, τ0 

and α can be identified simultaneously by the experimental data of dynamic moduli in 

frequency domain, and the results are listed in Table 1. Comparing with the storage 

modulus G', the curve of loss modulus G'' is more complex and the value is smaller, so 

the initial identification is carried out with the experimental data of loss modulus G''. 

By adjusting the obtained model parameters G0, G1, τ0 and α; the parameter Gm can be 

further identified with the experimental data of storage modulus G'. As a result, a set of 

model parameters G0, G1, Gm, τ0 and α can be identified for both storage G' modulus 

and loss modulus G'' with a certain amplitude in steady-state magnetic fields. These 

model parameters can be expressed as functions of magnetic field and strain amplitude, 

which is also why we choose nonlinear springs in this constitutive model. The 

coefficient of determination R2 and the standard error ratio Se/Sy can be calculated based 

on Equations (19)-(21), and the results are listed in Table 2 where the quality of curve 

fitting is illustrated in detail. Because the values of the two dynamic muduli differ by 

an order of magnitude, the standard errors of estimation (Se
2) will also be very different, 

but the standard error ratio Se/Sy can not be affected in dimensionless form. According 

to the criteria when the coefficient of determination R2 > 0.90 and the standard error 

ratio Se/Sy < 0.35, the goodness-of-fit can be accepted to be excellent. 

  



Table 1 The results of parameter identification. 

Magnetic 

intensity 

Strain 

amplitude 

G0  G1 Gm τ0  α 

 

0 mT 

1% 1.4048 1.3884 0 1.6671 0.3416 

3% 1.3161 1.2692 0 1.4872 0.4482 

5% 1.1354 1.1528 0 1.5291 0.3089 

 

160 mT 

1% 1.5804 1.4774 1.1131 1.5577 0.3222 

3% 0.9042 0.8546 1.0549 1.5947 0.3796 

5% 0.8243 0.7984 1.3559 0.9871 0.4169 

 

260 mT 

1% 1.6615 1.5959 1.6441 1.5808 0.3129 

3% 1.0759 1.2471 1.4177 1.5369 0.3483 

5% 0.8817 0.8257 1.4802 1.2148 0.3857 

 

450 mT 

1% 1.7916 1.7747 1.9306 1.5184 0.4009 

3% 1.1523 1.4280 1.6254 1.9595 0.3619 

5% 0.9913 1.0391 1.5971 1.6490 0.3388 

 

500 mT 

1% 1.8656 1.7994 1.9820 1.4458 0.3054 

3% 1.2721 1.0461 1.7264 2.3952 0.3409 

5% 1.1167 1.1100 1.6488 1.9202 0.3174 

Table 2 The goodness of fit. 

Strain amplitude (%) 1 3 5 

Dynamic moduli G G G G G G 

0 mT Se／Sy 0.0547 0.1791 0.0387 0.0768 0.0185 0.1367 

R2 0.9982 0.9825 0.9991 0.9968 0.9974 0.9898 

160 mT Se／Sy 0.0728 0.1158 0.0624 0.0017 0.0316 0.1578 

R2 0.9968 0.9927 0.9977 0.9998 0.9994 0.9864 

260 mT Se／Sy 0.0860 0.1326 0.0316 0.0332 0.0854 0.2054 

R2 0.9956 0.9904 0.9994 0.9994 0.9956 0.9770 

450 mT Se／Sy 0.0574 0.1449 0.1416 0.1077 0.0916 0.1500 

R2 0.9980 0.9886 0.9929 0.9937 0.9949 0.9877 

500 mT Se／Sy 0.0728 0.0787 0.0479 0.0911 0.0282 0.0842 

R2 0.9968 0.9966 0.9986 0.9955 0.9995 0.9961 



 
(a)                                    (b) 

 
 (c)                                     (d)  

 
 (e)                                     (f) 

Figure 4 Comparison between experimental data and fitted results of storage modulus with strain 

amplitude of (a) 1%, (c) 3%, (e) 5%; and loss modulus with strain amplitude of (b) 1%, (d) 3%, (f) 5%. 

5. Numerical solution and validation 

When we look at a differential equation of fractional-order, equipped with suitable 

initial conditions, such as 
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where α>0 and [α] is the value α rounded up to the nearest integer. There is a close 

connection between the types of the initial condition and the fractional derivative. The 

initial conditions for Caputo derivative cases can be initial values, function values 

themselves and integer-order derivatives. Because these data can be measured in 

practice and have well understood physical meanings, commonly we choose Caputo 

derivative to deal with concrete physical applications.  

According to the predictor-corrector approach for the numerical solution of Caputo 

fractional differential equations[35,36]. The function f is assumed to be a unique solution 

exists on an interval [0, T], and this technique is working on a uniform grid {tn = nh: n 

= 0,1,…,N} with some integer N and h = T/N. The predicted value is 
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And the corrector formula is 
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Then Equation (13) can be rewritten in form of Caputo fractional differential 

equations. With the use of identified parameters in Table 2, the numerical solutions can 

be taken as predictions of this constitutive model. 
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Figure 5 demonstrates the experimental data and the numerical result of this 

constitutive model. When sinusoidal loads are applied to MRE samples, the response 

stress will lag behind the input strain by a loss angle. That is why the relationship 
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between the shear stress and the shear strain seems to be approximately elliptical in 

shape. The slop of the main axis of hysteresis loop shows that the dynamic modulus 

decreases with the increasing strain amplitude, and increases with the frequency and 

the magnetic flux density. Consequently, the comparison under varying frequency, 

strain amplitude and magnetic field indicates that the predictions of this constitutive 

model describe the hysteresis loop well, and the experimental results support the model 

predictions. 

In Figure 6, the numerical results of this fractional-order nonlinear model and the 

revised Bouc-Wen model (refered to Appendix A[31]) are compared with the 

experimental results. It can be seen that the resulting stress lags slightly behind the input 

strain, and the loss angle is deduced to be very small. Because the fractional-order 

nonlinear model can make predictions closer to the experimental data than the revised 

Bouc-Wen model, the comparison displays that this fractional-order nonlinear model 

owns a better efficiency from the prospect of precision accuracy. It can be observed 

from the Equation (20) that the square of the standard error of estimation is the mean 

squared error, and for the two models the mean squared errors Se
2 are presented in 

Figure 7. The comparison also supports this fractional-order nonlinear model with a 

much higher precision accuracy. 

6. Conclusion 

In this work, a fractional-order nonlinear model was proposed and validated for 

MREs to describe the dynamic mechanical behavior. The model parameters were 

identified through the experimental data fitting of dynamic modulus, and the numerical 

solution of this proposed model was obtained with the predictor-corrector approach. 

Subsequently, the comparisons of the stress-strain hysteresis and the response stress 

exhibited an excellent agreement between the model predictions and the experimental 

results, which supports the description of dynamic mechanical behavior in various 

magnetic fields both in time and frequency domains. Finally, this fractional-order 

nonlinear model proved to own a better efficiency from the prospect of precision 

accuracy by comparing with the results of the revised Bouc-Wen model. The identified 

model parameters in this piece of work can be further expressed as functions of 

magnetic field and strain amplitude to facilitate the dynamic analysis in vibration 

control systems. 
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Figure 5 Comparison between the experimental results and the model predictions of hysteresis loop 

with 0 mT at (a) 1 Hz, (c) 10 Hz, (e) 50 Hz; and with 500 mT at (b) 1 Hz, (d) 10 Hz, (f) 50 Hz. 
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Figure 6 Comparison of the predicted response stress between the proposed fractional-order model and 

the revised Bouc-Wen model at 10 Hz with the strain amplitude of 1% (a) 0 mT (b) 260 mT (c) 500 

mT. 
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Figure 7 The comparison of Se
2 of the proposed fractional-order model and the revised Bouc-Wen 

model. 
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Appendix A 

We are using the revised Bouc-Wen model proposed by Wang et al.[31]. The constitutive equations 

of the revised Bouc-Wen model of the MREs can be expressed by 

             (A1) 

           (A2) 

where τ and γ are the shear stress and shear strain, respectively; A, β, γbw and n are the non-dimensional 

parameters to regulate the shear stress-shear strain hysteresis loop; parameters c0 and k0 are the 

coefficients of the Kelvin-Voigt model; and z is the evolutionary variable. All of the parameters are 

identified with the experimental data using GA. 
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Figure A1. Schematic of the revised Bouc-Wen model. 

 


