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Abstract. A finite element (FE) model for analyzing slender reinforced high-strength concrete (HSC) 

columns under biaxial eccentric loading is formulated in terms of the Euler-Bernoulli theory. The cross 

section of columns is divided into discrete concrete and reinforcing steel fibers so as to account for 

varied material properties over the section. The interaction between axial and bending fields is 

introduced in the FE formulation so as to take the large-displacement or P-delta effects into 

consideration. The proposed model aims to be simple, user-friendly, and capable of simulating the 

full-range inelastic behavior of reinforced HSC slender columns. The nonlinear model is calibrated 

against the experimental data for slender column specimens available in the technical literature. By 

using the proposed model, a numerical study is carried out on pin-ended slender HSC square columns 

under axial compression and biaxial bending, with investigation variables including the load 

eccentricity and eccentricity angle. The calibrated model is expected to provide a valuable tool for 

more efficiently designing HSC columns. 
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1. Introduction 

 

Nowadays, as the global population has been increasing considerably, the demands for 

high-rise buildings become more and more urgent. This suggests a great potential for using 
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high-strength concrete (HSC) to achieve light-weight concrete elements by reducing the 

cross-section dimension (Jumaa and Yousif 2019). Moreover, a reduced cross section also suggests 

a less demand for concrete material, an easier construction because of the light-weight merit, and a 

reduced consumption of embodied energy achieving one step forward towards low impact 

buildings. On the other hand, however, a reduced cross section further deteriorates the impact of 

slenderness on HSC columns, i.e. P-delta effects (Diniz and Frangopol 2003, Hung and Hu 2018). 

These effects have been demonstrated to be crucial to both the instantaneous and time-dependent 

response of a slender column (Lou et al. 2015a).  

Despite the brittleness of HSC, HSC members with appropriate reinforcement were shown to 

exhibit favorable ductile behavior (Bouzid and Kassoul 2016, 2018, Lee 2013, Lou et al. 2015b, 

2017, Ma et al. 2016, Teixeira and Bernardo 2018). Over past years, many works have been 

reported on the analysis and design of HSC short columns (Bai and Au 2013, Campione et al. 

2012, Diniz and Frangopol 1998, Ho et al. 2010, Saatcioglu and Razvi 1998). In these columns, 

the P-delta effects were negligible and the inelastic behavior was identified by means of the 

material nonlinear analysis of a single cross-section. Some research has been conducted to 

simulate the behavior of slender HSC columns, mostly under the uniaxial loading condition, by 

performing geometric and material nonlinear analysis. Diniz and Frangopol (1997) outlined a 

simplified analytical approach to analyze the strength as well as interaction diagram of axial force 

and bending moment of uniaxially loaded slender HSC columns. Kim and Yang (1995) proposed a 

finite element (FE) method to predict the buckling behavior of slender HSC columns subjected to 

axial compression and uniaxial bending. Claeson and Gylltoft (1998) conducted a parametric study 

using the software ABAQUS on the performance of uniaxially loaded slender HSC square 

columns, focusing on the effects of concrete strength, slenderness and load eccentricity. 

Nevertheless, few efforts have so far been made to analyze the performance of HSC slender 

columns under biaxial eccentric loads. Pallarés et al. (2009) performed a numerical investigation, 

using a nonlinear model validated against their own tests (2008), on the behavior of slender HSC 

columns under axial compression and biaxial bending. The emphasis of their study was placed on 

the effect of the weak axis on the member performance. Bouchaboub and Samai (2013) described 

a nonlinear model for biaxially loaded HSC slender columns. Their model was developed based on 

the moment-curvature-thrust relationships and by applying the finite difference method. However, 

the overall performance of slender HSC columns was not numerically investigated in their work. 

The FE method offers a powerful technique to simulate the real structural performance of 

different types of concrete members. Although commercial FE software is capable of analyzing the 

inelastic behavior of HSC columns (Teng et al. 2015), there are still demands for self-developed 

FE models to further aid the design of column preventing a vast investment on the software license. 

However, the studies with an emphasis on developing such FE models considering both axial and 

biaxial impacts are currently few in number. This paper presents the development of a FE model 
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for slender reinforced HSC columns subjected to axial compression and biaxial bending. The 

method is formulated based on the spatial Euler-Bernoulli theory, taking into account geometric 

and material nonlinearities. The model predictions are compared with the experimental results 

available in the literature. A numerical investigation is performed by using the proposed model to 

increase the depth of understanding of the inelastic response of slender HSC columns under 

eccentric end axial loads causing biaxial bending. 

 

2. Material models 

 

The stress-strain relationship for unconfined concrete in compression recommended in 

Eurocode 2 (CEN 2004) has been proved to be suitable for nonlinear analysis of both NSC and 

HSC members. The stress-strain equation is expressed by 
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where 0/c c   ; c  and c  are the concrete stress and strain, respectively; cmf  is the 

mean compressive strength (in MPa), and 8cm ckf f  ; ckf  is the characteristic cylinder 

compressive strength (in MPa); 01.05 /c c cmk E f ; 0.31
0 ( ) 0.7 2.8c cmf  ‰ ; cE  is the 

modulus of elasticity of concrete (in GPa), and 0.322( /10)c cmE f . Eq. (1) is valid for c u  , 

where u  is the ultimate compressive strain. ( ) 3.5u ‰  for NSC; and 
4( ) 2.8 27[(98 ) /100]u cmf   ‰  for HSC. 

An elastic and linear tension-stiffening law is adopted for concrete in tension. The tensile 

strength tf  is determined by 

 2/30.3t ckf f  for NSC  (2a) 

 2.12 ln(1 /10)t cmf f   for HSC (2b) 

The reinforcing steel is assumed to be elastic and perfectly plastic, i.e. 

At elastic range,               s s sE   (3a) 

After yielding,                 s yf   (3b) 

where s  and s  are the steel stress and strain, respectively; sE  and yf  are the steel 

modulus of elasticity and yield strength, respectively. 
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3. FE method 

 

Consider a two-node space beam element in the local coordinate system (x, y, z), as shown in 

Fig. 1(a). Each node has five degrees of freedom, namely, x-displacement u, y-displacement v, 

z-displacement w, rotations about y-axis θy and z-axis θz. The element nodal displacements may be 

written as 

 re = {u1, v1, w1, θy1, θz1, u2, v2, w2, θy2, θz2}
T  (4) 

 

 

 

 

 

 

 

 

 

 

         (a) Space beam element                     (b) Cross section divided into fibers 

Fig. 1 Computational model 

 

Assuming that u is a linear function whereas v and w are both a cubic polynomial of x, these 

displacements are then related to the element nodal displacements by 

 1 1 6 2
e eu N u N u    (5a) 

 2 1 5 1 7 2 10 2
e e e e

z zv N v N N v N       (5b) 

 3 1 4 1 8 2 9 2
e e e e

y yw N w N N w N       (5c) 

in which 1 1N   ; 2 3
2 1 3 2N     ; 3 2N N ; 2 3

4 ( 2 )N l      ; 5 4N N ; 

6N  ; 2 3
7 3 2N    ; 8 7N N ; 2 3

9 ( )N l     ; 10 9N N ; /x l   where l is the 

element length. 

At any point on an element, the axial strain O  can be expressed by 

 ' ' 2 ' 2( ) / 2 ( ) / 2O u v w      (6) 

in which a superimposed prime represents differentiation with respect to x. The second and third 
terms of the right-hand side of the preceding equation represent the large displacement effects. On 

the other hand, by assuming negligible shear deformation, the curvatures about y axis y  and z 
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axis z  can be expressed as 

 "
y w   ; "

z v     (7) 

Combining Eqs. (4) through (7), the axial strain and biaxial curvatures are related to the 

element nodal displacements, in a matrix form, by 

  / 2 e
l n E B B r   (8) 

where 

  
T

O y z  E   (9) 

 

' '
1 6

" " " "
2 5 7 10

" " " "
3 4 8 9

0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
l

N N

N N N N

N N N N

 
 

     
     

B   (10a) 

    1 1 2 21 0 0
T eT T T

n  B r J J J J   (10b) 

 ' ' ' '
1 2 5 7 100 0 0 0 0 0N N N N   J   (11a) 

 ' ' ' '
2 3 4 8 90 0 0 0 0 0N N N N   J   (11b) 

It is noted that lB  is a linear matrix whereas nB  is a nonlinear matrix. Hence the variational 

form of Eq. (8) can be written as 

       1 1 2 2 1 1 2 2

1 1
1 0 0 1 0 0

2 2

T Te eT T T e eT T T e
l       E B r r J J J J r r J J J J r  

   1 1 2 21 0 0
Te eT T T e

l   B r r J J J J r  

  e
l n  B B r   (12) 

To take into account varied material properties across a cross section that is subjected to axial 

force and biaxial bending, the cross section is divided into concrete and reinforcing steel fibers as 

shown in Fig. 1(b). The strain in each fiber is assumed to be uniformly distributed. The 

equilibrium of axial force and biaxial bending moments can then be expressed as follows: 

 ci ci sj sj
i j

P A A      (13a) 

 y ci ci ci sj sj sj
i j

M A z A z      (13b) 
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 z ci ci ci sj sj sj
i j

M A y A y      (13c) 

where P is the axial force; My is the bending moment about the y-axis and Mz is the bending 

moment about the z-axis; The symbol A represents the area and σ represents the stress; The 

subscripts ci and sj represent the ith concrete fiber and jth steel fiber, respectively. The tangential 

force-strain equations are 

 tci ci ci tsj sj sj
i j

dP E A d E A d      (14a) 

 y tci ci ci ci tsj sj sj sj
i j

dM E A z d E A z d      (14b) 

 z tci ci ci ci tsj sj sj sj
i j

dM E A y d E A y d      (14c) 

in which Et represents the tangential modulus of materials and ε represents the strain. 

Based on the plane section assumption, the axial strain ε at any fiber of a cross section is given 

by 

 O y zz y        (15) 

Differentiating the preceding equation with respect to O , y  and z  gives 

 O y zd d zd yd        (16) 

Substituting Eq. (16) into Eq. (14) yields section tangential stiffness equations: 

 d dS Q E   (17) 

  
T

y zP M MS   (18) 

 

11 12 13

21 22 23

31 32 33

q q q

q q q

q q q

 
   
  

Q   (19) 

 11 tci ci tsj sj
i j

q E A E A     (20a) 

 12 21 tci ci ci tsj sj sj
i j

q q E A z E A z      (20b) 

 13 31 tci ci ci tsj sj sj
i j

q q E A y E A y      (20c) 

 2 2
22 tci ci ci tsj sj sj

i j

q E A z E A z     (20d) 
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 23 32 tci ci ci ci tsj sj sj sj
i j

q q E A y z E A y z      (20e) 

 2 2
33 tci ci ci tsj sj sj

i j

q E A y E A y     (20f) 

Based on the principle of virtual work, the equilibrium equations for a beam element are 

expressed by: eT e T

l
dx  r R E S , where eR  is the element equivalent nodal loads. 

Substituting Eq. (12) into the preceding virtual work equations yields 

 ( )e T T
l nl

dx R B B S   (21) 

The differential form of Eq. (21) with respect to er  can be written as follows: 

 ( )e T T T
l n nl l

d d dx d dx   R B B S B S   (22) 

Substituting Eqs. (17) and (12) sequentially into Eq. (22), and rearranging the resulting equation, 

the element tangential stiffness equations can be obtained: 

 1 2 3( )e e e e ed d  R K K K r   (23) 

 1
e T

l ll
dx K B QB   (24a) 

 2
e T T T

l n n l n nl l l
dx dx dx    K B QB B QB B QB   (24b) 

 3 1 1 2 2( )e T T

l
P dx K J J J J   (24c) 

where 1
eK  is the small displacement stiffness matrix; 2

eK  is the coupling stiffness matrix; and 

3
eK  is the geometric stiffness matrix. 

After assembling the structure equilibrium equations in the global coordinate system, a load or 

displacement control incremental method combined with the Newton-Raphson iterative algorithm 

is applied for the numerical solution. The iterative procedure for each increment is summarized as 

follows: 

 Form or update element tangential stiffness matrices, and assemble them into the structure 

tangential stiffness matrix. 

 Solve equilibrium equations for displacement increments. 

 Add displacement increments to the previous total to obtain the current nodal displacements. 

 In the local coordinate system, compute the axial strain O  and biaxial curvatures y , z  

using Eq. (8). 

 Calculate the strain   in each concrete or steel fiber using Eq. (15), and substitute it into the 

stress-strain relationship to get the material stress  . Compute the axial force P and biaxial 

moments My, Mz using Eq. (13). 
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 Compute the element end forces using the right-hand side of Eq. (21) and then assemble them 

into the internal resisting forces. 

 Compute the out-of-balance loads by subtracting the internal resisting forces from the current 

nodal loads. 

 Repeat the above steps until the out-of-balance loads are within the permissible tolerance. 

A computer program implementing the present numerical procedure has been developed. The 

program needs the input of material properties, column length, cross-sectional dimensions, 

boundary conditions and load pattern. At any particular load level, the output includes nodal 

displacement and rotation, moment and curvature, stress and strain in concrete and reinforcing 

steel. The program is able to simulate the behavior of slender HSC columns under biaxial eccentric 

loads throughout the elastic, inelastic and ultimate limit states. In the following sections, the 

proposed analysis is used to reproduce the experimental results of slender column specimens 

available in the technical literature and to perform a numerical investigation into the inelastic 

behavior of HSC slender columns under biaxial bending. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) Column details                      (b) FE model 

Fig. 2 Test columns and FE model 

 

 

4. Comparisons with experimental data 

 

Kim and Yang (1995) tested a series of NSC and HSC slender square columns up to failure. 
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The test variables included the span length, concrete strength and longitudinal steel ratio. The 

structure details and cross section of the test columns selected for the present analysis are shown in 

Fig. 2(a). These columns had a span length of 1440 mm, reinforcing steel ratio of 1.98% and three 

different levels of concrete strength fcm, namely, 25.5 (Columns 60L2-1 and 60L2-2), 63.5 

(Columns 60M2-1 and 60M2-2) and 86.2 MPa (Columns 60H2-1 and 60H2-2). The yield strength 

and elastic modulus of reinforcing steel were 387 MPa and 200 GPa, respectively. The load 

eccentricity was 24 mm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Comparison of predicted load-deflection curves with experimental results for the test columns 

 

 

Table 1 Comparison with experimental data for the test columns 

Maximum load Deflection at maximum load 

Column 
Concrete 

strength (MPa) 
Test 

(kN) 

Analysis 

(kN) 

Error 

(%) 

Test 

(MPa) 

Analysis 

(MPa) 

Error 

(%) 

60L2-1 63.7 67.2 5.49 14.88 16.84 13.17 

60L2-2 
25.5 

65.7 67.2 2.28 16.20 16.84 3.95 

60M2-1 102.8 105.6 2.72 20.32 14.92 -26.57 

60M2-2 
63.5 

113.5 105.6 -6.96 18.08 14.92 -17.48 

60H2-1 122.1 119.2 -2.38 15.40 14.55 -5.52 

60H2-2 
86.2 

123.7 119.2 -3.64 16.72 14.55 -12.98 

 

The column is divided into 18 beam elements, and the cross section is divided into 10 × 10 

concrete fibers and 4 steel fibers, as shown in Fig. 2(b). The predicted load versus midspan lateral 
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deflection curves are compared with the experimentally obtained data in Fig. 3. It is generally 

observed that the proposed analysis reproduces the entire load-deflection response characteristics 

for the test columns with good accuracy. A comparison of the test and calculated values of the 

maximum load and corresponding deflection is given in Table 1. The correlation coefficient 

between the values of the maximum load is 0.992, and the average discrepancy is -0.41%, with a 

standard deviation of 4.67%. The correlation coefficient between the values of the lateral 

deflection at the maximum load is -0.429, and the average discrepancy is -7.57%, with a standard 

deviation of 14.53%. The proposed model appears to overestimate the maximum load for the NSC 

columns while underestimate the maximum load for the HSC columns. This may be attributed to 

the difference in the actual and reported concrete strengths for the column specimens. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Cross section of columns used for numerical investigation 

 

 

5. Numerical application 

 

The HSC column (i.e., Column 60H2-1 or 60H2-2) tested by Kim and Yang (1995) is selected 

herein as a reference column for the investigation. A numerical study is carried out to evaluate the 

inelastic behavior of biaxially loaded slender HSC columns with investigation variables including 

the load eccentricity e and eccentricity angle α (see Fig. 4). Two eccentricity levels are used, 

namely, e = 24 and 48 mm; and three different eccentricity angles are considered, namely, α = 0°, 

30° and 45°. The four steel bars are designated as s1-s4, and the concrete fibers at four vertices of 
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the cross section are represented by c1-c4, as shown in Fig. 4. 

 

5.1 Moment-curvature behavior 

 

Fig. 5 shows the moment-curvature curves at midspan for the HSC columns with different load 
eccentricities and eccentricity angles. Both the biaxial moment-curvature diagrams with respect to 

y and z-axes (i.e. yM - y  and zM - z ) as well as section moment-curvature diagrams with 

respect to the neutral axis (i.e. M -  ) are illustrated, where 2 2
y zM M M  , and 

2 2
y z    . 

 

 

 

 

 

 

 

 

 

 

 

 
 

(a) Moment-curvature about y and z-axes            (b) Moment-curvature about neutral axis 

Fig. 5 Moment-curvature behavior 

 

It is seen that for the columns under uniaxial eccentric loading (α = 0°), the moment-curvature 

curve consists of three distinct stages with two turning points corresponding to concrete cracking 

and steel yielding. When the tensile steel yields, the moment reaches a plateau, which is much 

longer for e = 48 mm than for e = 24 mm. For the columns under biaxial eccentric loading (α = 30° 

and 45°), on the other hand, there is no distinct yielding plateau because either the tensile steel 

does not yield or only one steel bar has yielded at failure as stated previously. From Fig. 5(b), it is 

seen that, at a given curvature level, the values of section moment for different eccentricity angles 

appear to be rather close. For e = 24 mm, the moment capacity developed by uniaxial eccentric 

loads is much higher than that by biaxial eccentric loads. This is attributed to the fact that at failure, 

all the reinforcing steels in the columns under biaxial eccentric loading are still in their elastic 

range and develop stress levels far below their yield strength. On the other hand, for e = 48 mm, 
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uniaxial eccentric loading leads to a little lower moment capacity than biaxial eccentric loading, 

partly attributed to heavier P-delta effects. It is also seen that a larger load eccentricity causes a 

much lower ultimate moment capacity and a significantly higher ultimate curvature. 

 

5.2 Load-deflection behavior 

 

Fig. 6 shows the load versus midspan lateral deflection curves for the HSC columns with 

different load eccentricities and eccentricity angles. The development of biaxial deflections ( y  

and z ) is demonstrated in Fig. 6(a) while total lateral deflection ( 2 2
y z     ) in Fig. 6(b). It 

is seen that a column under uniaxial eccentric loading exhibits structural softening behavior (i.e., 
the load decreases with increasing deflection) after yielding of tensile steel. This softening 
characteristic is particularly notable for a higher load eccentricity of 48 mm. However, for a 
column under biaxial eccentric loading, yielding of tensile steel does not result in structural 
softening. This can be explained by the fact that, unlike the column under uniaxial loading where 
all the tensile steels yield simultaneously, on yielding of the tensile steel (Bar s2) in a biaxially 
loaded column, all the other reinforcing steels are still in the elastic range and contribute 
significantly to the structural stiffness. In addition, due to smaller deflection at yielding, the 
P-delta effect for a column under biaxial loading is less pronounced than that for a column under 
uniaxial loading. It is also seen that the eccentricity angle appears to have no noticeable influence 
on the maximum load attained and that a higher eccentricity leads to a much lower ultimate load 
but a significantly higher ultimate deflection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) Development of biaxial deflection             (b) Development of total lateral deflection 

Fig. 6 Load-deflection behavior 
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Fig. 7 Development of concrete strains 

 

 

5.3 Development of concrete strains 

 

The development of concrete strains in typical concrete fibers (c1, c2, c3 and c4) at midspan 

for the HSC columns with different load eccentricities and eccentricity angles is shown in Fig. 7. 

For the columns under uniaxial eccentric loading, c1 and c2 are the extreme tensile fibers while c3 

and c4 are the extreme compressive fibers. For the columns under biaxial eccentric loading, c2 and 

c3 are the extreme tensile and compressive fibers, respectively. Failure of all the analyzed columns 

takes places when concrete in the extreme compressive fiber reaches its ultimate compressive 

strain, which is 0.0028 for HSC with a compressive strength of 86.2 MPa according to Eurocode 2 

(CEN 2004). At failure, uniaxial eccentric loading mobilizes significantly higher concrete strain in 

the extreme tensile fiber than biaxial eccentric loading; and the higher the load eccentricity, the 

larger the value of the tensile strain in the extreme concrete fiber. This observation indicates that 

uniaxial eccentric loading or a higher load eccentricity leads to a larger cracking width at failure 

compared to biaxial eccentric loading or a lower load eccentricity. 

 

5.4 Development of reinforcing steel stresses 

 

Fig. 8 displays the evolution of stresses in steel bars (s1, s2, s3 and s4) at midspan for the HSC 

columns with different load eccentricities and eccentricity angles. For uniaxial loading, the stress 

in tensile steel (Bars s1 and s2) increases very slowly with increasing load up to cracking. After 
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that, the tensile steel stress develops rapidly and soon reaches its yield strength of 387 MPa. 

Meanwhile, the stress in compressive steel (Bars s3 and s4) develops in nearly a linear manner 

with the applied load. After yielding of tensile steel (structural softening stage), the stress in 

compressive steel for e = 240 mm continues to increase but, for e = 480 mm, it turns to quickly 

decrease. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Development of steel stresses 

 

For biaxial loading, Bar s2 is subjected to tension while Bar s3 is under compression 

throughout the loading process. Bars s1 and s4 are under compression at first but may transit 

towards tension during loading, depending on the location of the neutral axis. For e = 240 mm, all 

the steel bars in the columns under biaxial loading have never yielded. For e = 480 mm, the tensile 

steel bar s2 has yielded under biaxial loading; the steel bar s4 in the column with an eccentricity 

angle of 30° reaches a tensile stress very close to its yield strength at failure. 

 

5.5 Variation of neutral axis depth 

 

Fig. 9 shows the variation of neutral axis depth at midspan with the applied load for the HSC 

columns with different load eccentricities and eccentricity angles. The neutral axis depth c is 

calculated from: 

 
2 2

cc cc

y z

c
 

  
 


  (25) 

where cc  is the concrete strain at the extreme compressive fiber and   is the section curvature. 
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Fig. 9 Variation of neutral axis depth 

 

It is commonly known that in a reinforced concrete member under pure bending, the neutral 

axis initially locates at the centroidal axis of the transformed section and remains unchanged 

before cracking (Lou et al. 2014, 2015c). For a reinforced concrete column under eccentric 

compression, however, the location of the initial neutral axis is dependent on both the eccentricity 

and eccentricity angle of the applied loads, as can be observed in Fig. 9. The shift of neutral axis 

during loading is influenced by some typical phases such as cracking and yielding. The decrease in 

neutral axis depth is slight in the elastic range but becomes crucial after concrete cracking and 

steel yielding (if any). At the ultimate limit state, uniaxial eccentric loading mobilizes significantly 

lower neutral axis depth than biaxial eccentric loading. For biaxial eccentric loading, the neutral 

axis depth by an eccentricity angle of 45° is a bit higher than that by an eccentricity angle of 30°. 

In addition, a smaller value of e results in a much higher value of c. 

 

6. Conclusions 

 

A nonlinear FE method for reinforced HSC slender columns subjected to biaxial eccentric 

loading has been developed by applying spatial Euler-Bernoulli theory. The material nonlinearity 

is taken into consideration by introducing the nonlinear constitutive laws of materials and by 

integrating the discretized concrete and reinforcing steel fibers. The geometric nonlinearity or 

P-delta effect is taken into account by introducing the interaction between axial and bending fields 

in the FE formulation. The derived stiffness matrix is composed of three components, i.e., the 

small displacement stiffness matrix which represents the material nonlinearity, the coupling 
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stiffness matrix which represents the coupling between geometric and material nonlinearities and 

the geometric stiffness matrix representing the large displacement (P-delta) effects. The proposed 

model is able to predict the inelastic response of slender HSC columns throughout all ranges of 

loading until failure. 

The accuracy of the proposed nonlinear analysis is validated through comparisons between 

numerical predictions and experimental results for slender HSC test columns available in the 

literature. A numerical investigation is carried out by using the proposed model to illustrate the 

inelastic behavior of biaxially loaded slender HSC square columns, focusing on the effect of load 

eccentricity and eccentricity angle. Results of some important aspects of behavior are presented, 

including the moment-curvature and load-deflection responses, the development of concrete 

strains and steel stresses, and the variation of neutral axis depth. The results demonstrate that both 

the load eccentricity and eccentricity angle influence remarkably the structural performance of 

reinforced HSC slender columns. 
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