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Abstract  
In post-amputation rehabilitation, a common goal is to return to ambulation using a prosthetic limb, 

suspended by a customised socket. Prosthetic socket design aims to optimise load transfer between the 

residual limb and mechanical limb, by customisation to the user. This is a time consuming process 

and with the increase in people requiring these prosthetics it is vital that these personalised devices 

can be produced rapidly whilst maintaining excellent fit, to maximise function and comfort.  

Prosthetic sockets are designed by capturing the residual limb’s shape, and applying a series of 

geometrical modifications, called rectifications. Expert knowledge is required to achieve a 

comfortable fit in this iterative process.  A variety of rectifications can be made, grouped into 

established strategies (e.g. in transtibial sockets: patellar tendon bearing (PTB) and total surface 

bearing (TSB)), creating a complex design space. To date, adoption of advanced engineering solutions 

to support fitting has been limited. One method is numerical optimisation, which allows the designer a 

number of likely candidate solutions to start the design process. Numerical optimisation is commonly 

used in many industries but not prevalent in the design of prosthetic sockets.  

This paper therefore presents candidate numerical optimisation methods which might benefit the 

prosthetist and the limb user, by blending the state-of-the-art from prosthetic mechanical design, 

surrogate modelling and evolutionary computation. The result of the analysis is a series of prosthetic 

socket designs that preferentially load and unload the pressure tolerant and intolerant regions of the 

residual limb. This spectrum is bounded by the general forms of the PTB and TSB designs, with a 

series of variations in between that represent a compromise between these accepted approaches. This 

results in a difference in pressure of up to 31 kPa over the fibula head and 14 kPa over the residuum 

tip.  

The presented methods would allow a trained prosthetist to rapidly assess these likely candidates and 

then to make final detailed modifications and fine-tuning. Importantly, insights gained about the 

design should be seen as a compliment, not a replacement, for the prosthetist’s skill and experience. 

We propose instead that this method might reduce the time spent on the early stages of socket design, 
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and allow prosthetists to focus on the most skilled and creative tasks of fine-tuning the design, in face-

to-face consultation with their client. 

 

NOTE: 

This paper continues from another submission to the same Special Issue, entitled “Predictive 

Prosthetic Socket Design. Part 1: population-based evaluation of transtibial prosthetic sockets 

by FEA-driven Surrogate Modelling” [0], and refers back to it for several basic methodological 

details, which are built upon. The Part 1 paper has been accepted for publication at BMMB subject to 

minor corrections.  



Introduction  
Approximately 40 million people globally require access to prosthetic or orthotic services [1]. 

Prosthesis-human interface design aims to maximise comfort and functionality for people with 

amputations, towards ambulatory rehabilitation. This is commonly provided through a prosthetic 

socket, which is designed through geometric modifications to the captured shape of the residual limb, 

known as rectifications, to create a desired pattern of load transfer. This is currently an iterative 

process performed by a highly skilled prosthetist, who manages the residuum’s changing size, shape, 

soft tissue healing and biomechanical adaptation. Indeed, due to these factors, the development of a 

definitive socket takes a considerable period of time. Prosthetic limb users require life-long access to 

prosthetics services, and in the UK the annual cost of prosthesis provision and care is over £2,800 per 

patient [2]. This includes the replacement of prosthetic limb components typically every two to five 

years. Skilled prosthetists take many years to train to a high standard and often prosthetic users 

develop relationships with their preferred clinician to maintain socket comfort. However, there are 

limited numbers of these highly skilled individuals and practice efficiencies are required in the face of 

growing clinical demand. Researchers have considered mechanisms for employing quantitative 

prediction in the socket design process [3, 4]], although at present these work to a single design target 

for a single individual, and have not entered conventional clinical use.  

In Part One of this study [0], a Kriging-based surrogate model was generated for a parametric FE 

model of a population-based transtibial residual limb and accompanying total surface bearing (TSB) 

socket design. This enabled the prediction of biomechanical relationships between the residual limb 

morphology and prosthetic socket design, while reducing the computational cost of each new 

prediction by six orders of magnitudes (1.6 ms vs 30 minutes). The simplified total surface bearing 

socket design was defined parametrically from the limb’s neutral shape, by reducing the cross-

sectional area along its length with three points at the proximal, mid and distal regions of the socket. 

However, within a clinical setting, the socket design process is substantially more nuanced. There are 

several different design philosophies, all with different intended residual limb load transfer 

mechanisms. The classic patella tendon bearing (PTB) socket design was developed in 1957, and is 

still commonly used in-clinic today [5]. This socket design aims to apply pressure over load-tolerant 

areas of the limb such as the patella tendon, and off-load pressure sensitive regions such as the 

anterior tibia, fibula head and residuum tip. Other sockets include the Kondylen-Bettung Münster 

(KBM) which provides supracondylar suspension in addition to features consistent with the patella 

tendon bearing  design [6], and hydrostatic sockets [7] such as the PCAST system [8–12] which uses 

a pressurised fluid as a medium to form the shape of the socket with the aim of achieving minimal 

residuum surface pressure gradients with less manual intervention. More recently total surface bearing 

sockets, which were proposed in 1987, are used to generate near-total contact in between the residual 

limb and the socket [13, 14]. In theory, this should maximise the contact area between the residual 

limb and prosthetic socket and the uniformity of pressure across the surface of the residual limb, 

thereby minimising potentially harmful pressure gradients [14]. 

Despite the fundamental differences in the load distribution between these socket designs, they can 

potentially all deliver satisfactory outcomes for prosthesis users [15]. There is substantial research 

into quantifying the biomechanical differences between these socket designs, which is 

comprehensively reviewed by Safari and Meier in 2015 [16]. Their systematic review concluded that 

“the included studies only had low to moderate methodological rigour”, thus demonstrating the 

difficulties in defining biomechanical guidelines for the highly dynamic environment of the residual 

limb – prosthetic socket system, or selection of the preferred socket type for a particular individual or 

situation. One possible reason for the difficulty in establishing the definitive guidelines of these 

different socket types is that they are defined primarily by design intent, rather than quantitative rules. 

This effect has been illustrated for a simple total surface bearing socket using parametric FEA [0], and 

it is almost certain the within-type variability would be increased for more complex designs. We 



propose that there is a large potential to enhance the evidence base behind this clinical challenge, 

allowing prosthetists to develop, critique and share their own expertise and decision making, making 

more effective use of their valuable design and consultation time. A key and relatively unexplored 

possibility is to apply automated search algorithms to explore designs prior to optimisation for the 

individual.  

Optimisation algorithms are common in many areas of engineering to reduce design time. They are 

commonly used as concept design methods, providing an initial product which engineers can use as a 

starting point and to increase the proportion of their time spent on creatively solving complex 

problems. In addition, they provide a visualisation for how these changes will affect the final 

product’s performance, allowing a greater understanding of the design space which can be put to use 

in the more detailed stages of the process. A choice of potential candidate designs can be provided to 

the decision maker, which weight the objectives differently, for example putting more load on the 

residuum tip and removing it from the fibular head, and therefore give a range of performances. This 

requires algorithms capable of multi-objective optimisation that provide a rapid convergence on the 

global optimum while retaining a high diversity of the search, to ensure that the entire search space is 

investigated and that the focus is not upon local optima. Many methodologies have been developed 

and state-of-the-art research focuses on improvements in diversity or convergence.  

This paper aims to apply optimisation algorithms to prosthetic socket design for the first time. This is 

applied to the transtibial case, which is the most common major lower limb amputation and where 

most clinical success has been achieved with associated CAD/CAM socket design and fabrication 

tools. The aim is to determine a suitable initial method for this type of study, collating the state-of-the-

art in biomechanical analysis of prosthesis-limb interfaces, surrogate modelling and optimisation. 

Genetic Algorithms are chosen due to their ability to effectively search large and complex design 

spaces, which is the problem presented by the continually variable distribution of possible limb-socket 

shape rectifications. These methods rely on thousands of function calls, and using FE models would 

not be feasible beyond single cases due to the time required for each simulation. However, by 

leveraging the speed increases of the surrogate model [0], automated socket optimisation for multiple 

individuals becomes a technical possibility. This provides the motivation for the current study, to 

perform a first-of-kind, subject-specific, multi-objective design optimisation of the prosthetic socket 

using the previously reported surrogate model.  The result will be a series of personalised concepts for 

transtibial prosthetic sockets, which provide the starting point for a prosthetist. Finally, equipped with 

these results, a prosthetist would then further refine these concepts to achieve a desired pattern of 

prosthesis-limb load transfer, by using these designs to augment their experience-based decision 

making,. 

Optimisation of transtibial prosthetic sockets 

Population-based surrogate model 
A detailed description of the population-based surrogate model has been reported previously [0]. In 

short, a generic residual limb was generated by producing a volume mesh from an MRI scan and 

imposing radial basis function mesh morphing to apply parametric variation in residuum length and 

profile (conical to bulbous) obtained from principal modes of variation from a population of 3D 

surface scans. These were varied by ±1 𝜎 (standard deviation) about the mean length and profile in the 

statistical shape model (SSM). Furthermore, internal parametric variation of the relative tibia length 

(i.e. distal soft tissue coverage) from -15% to +30% of the tibia length from the MRI scan,  and soft 

tissue stiffness between stiff, flaccid muscle and contracted muscle [17–19] was applied. The present 

surrogate model implementation investigates the effects of socket design variation for four synthetic 

‘virtual’ people sequentially by selecting exemplar values for the model’s residuum variability 

parameters (Table 1, Figure 1). These cases were chosen as being close to the models’ population 



extremes whilst remaining within the bounding box of the sampling plan, to avoid extrapolating 

beyond the surrogate.  

 

Table 1: Parameters of the four cases extracted from the parametric residual limb model 

Virtual 

Person 
Residuum length, 𝑣1 Residuum Profile, 𝑣2 Tibia Length, 𝑣3 Tissue stiffness, 𝑣4 

A −0.8 𝜎 (Short) −0.8 𝜎 (Bulbous) +20% (Long) 40 𝑘𝑃𝑎 (Soft) 

B −0.8 𝜎 (Short) +0.8 𝜎 (Conical) −5% (Short) 50 𝑘𝑃𝑎 (Stiff) 

C ∓0.8 𝜎 (Long) −0.8 𝜎 (Bulbous) +20% (Long) 40 𝑘𝑃𝑎 (Soft) 

D ∓0.8 𝜎 (Long) +0.8 𝜎 (Conical) −5% (Short) 50 𝑘𝑃𝑎 (Stiff) 

 

    

Figure 1: Sagittal sections through equivalent residuum FE models for the four virtual people. 

 

Parametric socket design  
In the preceding work [0], a simplified, 3-parameter total surface bearing socket design was used. 

This model enabled control of the socket press-fit by reducing its cross sectional area through a B-

spline function with proximal, mid and distal control points. The three variables were constrained 

between -1% and 3% by cross-sectional area reduction [Part 1]. The present study’s socket design was 

extended to include the localised rectifications observed in patella tendon bearing sockets. Control 

points were generated over the fibula head, patella tendon and either side of the tibial crest (Figure 2). 

These localised rectifications were applied using the same radial basis function mesh morphing 

algorithm detailed in Part I by radially displacing the control points between 0 - 6 mm.  

 

Table 2: Parameters and limits of the parametric socket design 

Socket rectification variable name Lower bound Upper bound 

Proximal press fit -2 % +6% 

Mid press fit -2 % +6% 

Distal press fit -2 % +6%  

Patella tendon bar 0 mm 6 mm 

Fibula head relief 0 mm 6 mm 

Tibial crest 0 mm 6 mm 



 

 

 

Figure 2: Rectification maps of the patella tendon bearing socket design at the maximum values of patella tendon bar (PTB), 

fibula head (FH) relief and tibial crest (TC) rectifications  

Optimisation via genetic algorithms 
Genetic algorithms (GA) are population-based multi-objective solvers inspired by the principles of 

Darwinian evolution.  In a simple Genetic Algorithm a set of potential solutions, called individuals, 

reproduce via an evolutionary-like process. Each individual contains set of decision variables, called 

chromosomes, with an initial population with variables that are usually assigned randomly. The 

fitness of each individual can be evaluated according to some predefined objectives. After this step 

individuals are then chosen for reproduction and, according to the principles of natural selection, the 

fitter individuals have significantly higher chances of reproducing than those with a low fitness. 

Offspring are generated from the selected parents using crossover and mutation processes. During 

crossover the chromosomes of the offspring are produced by mixing the genes of the parents, 

providing convergence and diversity. In the mutation step the offspring’s genes have a small chance 

to be randomly modified, improving the population diversity. Finally, the old population becomes 

extinct and is replaced by the new generation, with the new generation being fitter, on average, than 

the parent generation. This process continues until the predefined termination condition is met, often 

specified as a maximum number of objective functions calls or total calculation time. 

Many competing genetic algorithms have been developed, each introducing novel mechanisms to 

increase the convergence rates and diversity of the search. In the current state-of-the-art of GAs there 

is particular emphasis on specialist-solvers. According to the “no free lunch” theorem [20], a 

specialist-solver exhibits high performance on a narrow set of problems but its performance will 

rapidly decline when outside of this set. Therefore, a suitable methodology has to be selected with 

respect to the particular problem’s characteristics in order to avoid poor performance. The 

optimisation problem characteristics and their difficulty are defined by the topology of the search and 

objective spaces, number of local optima and the applied constraints. If the problem characteristics are 

not known then more than one GA methodology should be applied as their performance can differ 

drastically. This will  provide more reliable results and allow an evaluation of the problem’s difficulty 

and its dominant characteristics [21]. In the case presented in this paper, no knowledge about the 

characteristic of the problem are available a priori, except that no constraints are used. However, this 

is not sufficient to choose a single properly adjusted optimiser. Therefore, 5 different Genetic 



Algorithms are compared: NSGA-II as the most commonly utilised Genetic Algorithm which retains a 

high diversity of search and has had much success in the applied literature [22]; MOEA/D as the most 

proficient algorithm for unconstrained problems [23]; MTS as an aggregation of a Genetic Algorithm 

and a local-search method which provides improved convergence [24]; cMLSGA and HEIA as the 

general-type GAs that exhibit high performance across wide range of problem types and therefore 

higher robustness [25, 26]. HEIA is more dominant in scenarios where convergence is more important 

and cMLSGA provides a higher diversity of search. The detailed principles of working and parameter 

settings of each methodology can be found in their respective publications4. All the tests are 

performed over 30 separate runs, with 50,000 fitness function evaluations as a termination criterion. 

Multiple runs must be performed in order to assure the robustness of the method and the best 

likelihood of identifying the true Pareto Front. Different population sizes have been tested and 600 

individuals is utilised as the best for NSGA-II, MTS, MOEA/D and HEIA, while cMLSGA utilises 

1800 as it requires significantly higher population sizes [27]. 

The socket design process presented in our prior work [0] can be framed as a formal engineering 

design optimisation problem. In this case the individual socket rectifications function as design 

parameters across a multi-dimensional input space, and the resultant pressure, shear and soft tissue 

strain fields are formulated as the objective functions. It was predicted that the introduction of a 

peripheral press-fit around the main body of the residuum will allow load transfer through the 

longitudinal shear forces and thus reduce the residuum tip pressure, at the expense of pressure 

concentrations over the bony prominences of the tibial tuberosity and fibula head. Four state variables 

were defined: the pressure over the residuum tip (𝑓1), the tibial tuberosity (𝑓2), the fibula head (𝑓3), 

and the soft tissue strain around the distal tibia (𝑓4). These model outputs can be described as 

competing fitness functions, indicating proximal and distal loading, defined as 𝐹𝐹1 = 𝑓1 + 𝑓4 and 

𝐹𝐹2 = 𝑓2 + 𝑓3. These were evaluated using the surrogate model developed previously [0] for the four 

synthetic people defined in Table 1.  

One of the issues with multi-objective optimisation is the comparison of the results obtained by 

different methods. The visual comparison is limited, only providing useful information when the 

performance of two solvers differs drastically. Otherwise the points will overlap making objective 

comparison near impossible. Therefore, multiple quality indicators have been developed [28]. Most of 

them are able to indicate the performance in both convergence and diversity of the solutions. 

However,  each of them have certain drawbacks or biases and it is common practice to utilise more 

than one indicator [28]. In this paper the Inverted Generational Distance (IGD) and Hyper Volume 

(HV) were chosen as indicators. IGD measures the average Euclidean distance between each point in 

a real Pareto Optimal Front (POF) and the closest solution in the obtained set. Lower values indicate 

better convergence and uniformity of the points, and are calculated according to eq. 1: 

𝐼𝐺𝐷(𝐴, 𝑃∗) =
∑ 𝑑(ν,A)ν∈𝑃∗

|𝑃∗|
, 

where P∗ is a set of uniformly distributed points along the true PF, A is the approximate set to the 

POF, which is being evaluated and d(ν, A) is the minimum Euclidean distance between the point ν 

and points in A. 

However, this IGD shows poor performance in determining the diversity of a population when the 

Pareto Front population is small. HV is calculated as the volume of an objective space between a 

predefined reference point and the obtained solutions where higher values are preferred [28]. This 

indicator has a stronger focus on the diversity and boundary points. Most indicators require a 

predefined reference Pareto Optimal Front that illustrates the ideal set of solutions. However, in cases 

where the optimal answer is not known the utilisation of these indicators can be problematic. A 
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solution is to calculate a reference Pareto Optimal Front using the non-dominated selection of Pareto 

Optimal Fronts achieved by every algorithm when performing multiple runs, or performing a few test 

runs with significantly higher numbers of iterations than that utilised for comparison [21]. In this 

paper both are applied, and a combined non-dominated front obtained by brute force from all 6 

Genetic Algorithms after 300,000 fitness function evaluations was used to determine the success of 

the algorithm. 

 

Results 
A single Genetic Algorithm run with a maximum of 50,000 function calls was computed in 

approximately 30 minutes, where Figure 3a shows the individuals evaluated over this lifetime and the 

final Pareto Front. Comparing the different genetic algorithms, it was observed that the shape of the 

Pareto Optimal Fronts remains consistent. Therefore, visual comparison only shows that all of the 

methodologies exhibit similar performance and it is not possible to unanimously choose the best 

methodology (Figure 3b). The bias between Fitness Functions FF1 and FF2 along the normalised 

Pareto Optimal Front is visualised in Figure 3c. The reason the no-bias point is not in the middle of 

the front is due to the longer ‘tail’ when minimisation is biased towards FF2 (minimising proximal 

bony prominence loading), compared with bias towards FF1 (minimising distal tip loading). It was 

also observed that while the minima of FF1 for all individuals plateaued at just below 20 (unitless), 

the minima of FF2 were different for all of the virtual people (Figure 3d). The minima of the short, 

conical limb of person B and the long, bulbous limb of person C plateaued at FF2 = 55 kPa and 40 

kPa respectively.  

 



 

Figure 3: Analysis of the Pareto fronts from the multi-objective optimisation. a) Individuals from a single run of the HEIA 

optimisation for Person A, with all individuals plotted in blue and Pareto front in red. b) Comparison of the generated PFs 

for the six different GAs tested on Person A. c) Bias along the Pareto front between the two fitness functions, with ‘no bias’ 

defined as the minimum distance from the origin to the normalised Pareto Optimal Front, with blue indicating bias towards 

FF1 and red towards FF2. d) Comparison of the Pareto Fronts for the four different People when using HEIA  

From visualisation of the sockets at either end of the Pareto Front, as well as the neutral case, 

consistencies in design emerged across the four people (Figure 4). When the optimiser was biased 

towards FF1 (minimising tip loading), designs of higher press fit which off-loaded the residuum tip 

emerged from the Genetic Algorithm. For person B (Figure 4b) and person D (Figure 4d) pressure 

hotspots were generated where there was little soft tissue coverage over the proximal bony 

prominences. When the model was biased towards FF2, sockets with higher fibula head relief evolved 

in order to off-load over this region.  



 

Figure 4: Optimal socket designs and corresponding predicted pressure maps for the four different virtual people at the two 

ends of the POF, i.e. biased towards minimising distal tip loading (top two rows) and minimising proximal bony prominence 

loading (bottom two rows), and the design with no bias (centre two rows). 



 

Figure 5: Comparison of how the socket design changed between the four cases along the Pareto Optimal Front. Blue 

denotes a bias towards FF1 (distal loading) while red denotes bias towards FF2 (proximal loading).  

Trends in the designs can be observed between the competing fitness functions by visualising how the 

optimal socket designs change along the Pareto Optimal Front (Figure 5). Across all virtual people, 

the patella tendon bar variable converged at the constraint maximum of 6 mm for almost all of the 

points along the Pareto Optimal Front. The exception was in Person D, with the longest and thinnest 

residual limb. When the optimiser was biased towards FF1, a few designs evolved with the patella 

tendon bar rectification at the 0 mm lower limit. This was offset by removal of the fibula head relief 

to ensure that the pressure over the residuum tip is still minimised. A clear trend for all virtual people 

was in the mid reduction in the socket, where the press-fit decreases along the Pareto Optimal Front 

from FF1 (with the aim of minimising the distal loading) to FF2 (with the aim of minimising the 



proximal loading). By reducing the press-fit, the pressure over the bony prominences and the 

peripheral shear both decreased, resulting in an increase in distal tip pressure and soft tissue strain.  

The performance of different methodologies was evaluated using the proposed indicators, IGD and 

HV, and presented in the form of rankings with average values and standard deviations (Table 3). In 

this case the algorithms all performed in the same manner for IGD and HV.  HEIA and cMLSGA 

were the best performing algorithms and MOEA/D and MTS performed the worst. However, the 

relatively similar performances of all five algorithms indicates that the complexity of the presented 

cases are low. The final Pareto Front was continuous and there were no constraints, which led to 

convergence-dominated HEIA having the best performance, over cMLSGA and NSGA-II. MOEA/D 

and MTS perform less well. However, this may be due to a lack of hyperparameter tuning to the 

particular problem. These two algorithms are dependent on a number of parameters which must be 

optimised for each problem, and in the present work the authors used default values described in the 

algorithms’ original papers. The MOEA/D and MTS algorithms may perform better once tuned, now 

that a priori knowledge has been developed, but the present results indicate the caution with which 

these algorithms should be used. 

Table 3: Ranking of different genetic algorithms using HV and IGD as the performance indicators. * indicates if the results 

are significantly different to the next lowest rank, using the Wilcoxon’s rank sum with a 0.05 confidence. 

 Rank 1 2 3 4 5 

IGD 

Algorithm HEIA* cMLSGA* NSGA-II* MOEA/D* MTS 

Average 0.029349 0.057565 0.1384 0.281601 0.590279 

(S.D.) (0.001741) (0.001553) (0.139218) (0.158822) (0.049102) 

HV 

Algorithm HEIA* cMLSGA NSGA-II* MOEA/D MTS 

Average 0.174846 0.174475 0.174461 0.174094 0.168158 

(S.D.) (0.000027) (0.000039) (0.000288) (0.000214) (0.000464) 
 

 

Figure 6: a) The comparison of Pareto Fronts from Virtual Person 1, achieved using HEIA over 50,000 iterations 

(‘achieved’) and 300,000 iterations (‘real’). B) The performance of HEIA over 300,000 iterations on Person 1. 0 is the 

starting population, and 1 is the best attainable set of solutions, based on the IGD values, and the red line indicates the 

number of function calls utilised in this study. 

 



In order to better understand the complexity of the problem, and to check if the best possible set of 

solutions has been found, a set of 5 runs with 300,000 total iterations was conducted on each virtual 

person, utilising HEIA. In this case hardly any difference was observed between 50,000 and 300,000 

iterations. Figure 6a shows some very slightly higher uniformity and diversity of the points in the high 

FF1 bias region with 300,000 iterations. When comparing the performance over the number of 

generations in Figure 6b, virtually no improvement in performance can be seen after 50,000 

generations and the highest performance gain occurred before 25,000 iterations. The low possible 

performance increase beyond 50,000 iterations in this case would not justify conducting optimisation 

of this problem with higher values, unless the virtual person is suspected to benefit from an extreme 

reduction in pressure over the residuum tip and the soft tissue strain around the distal tibia (FF1 bias).  



Discussion 
This study aimed to explore a range of potential concepts for transtibial socket design using FE 

modelling, surrogate modelling and GA-based optimisation techniques, to provide a quantitatively-

informed starting point for the prosthetist when designing a bespoke prosthetic socket.  

Exploring the parametric socket design space demonstrates that biomechanical objective functions are 

in competition, and illustrates the challenges associated with defining the ‘best’ socket design 

solution. As explored in our previous work [Part 1], by increasing the socket press fit, particularly in 

the mid-section, an increase in longitudinal shear around the main body of the residual limb was 

predicted. This resulted in a pressure reduction at the residuum tip coupled to a reduction in the 

internal strain around the distal tibia. By oversizing the socket (i.e. negative press-fit) these peripheral 

shear forces were not generated, thereby increasing the distal pressure and soft tissue strain. These 

represent the competing fitness functions inherent in prosthetic socket design.  

Introduction of the patella tendon bar and tibial crest rectifications provided an alternative method of 

off-loading the residuum tip beyond a uniform press-fit. Fibula head relief is predicted to be effective 

in reducing the high pressure that was observed over this bony prominence for the total surface 

bearing socket designs, thus reiterating the importance of localised shape change beyond applying 

gross scaling to the limb shape [29].  

The sockets that emerged from the Genetic Algorithm exhibited features of both total surface bearing 

(TSB) and patella tendon bearing (PTB) manual socket design philosophies. One consistent feature 

along the Pareto Front for all virtual people was the patella tendon bar rectification variable, which 

saturated at its maximum limit. This is because no optimisation cost was associated with applying 

pressure over this region, which the Genetic Algorithm exploited to off-load the high-cost residuum 

tip region. This effect is observed clinically for the patella tendon bearing socket where prosthetists 

produce a marked rectification over the patella tendon to leverage its load bearing capacity. Although 

load tolerant, there clearly would be a load threshold for injury at the patella tendon, so with enhanced 

spatial data of load tolerance across these key residuum locations [30] an additional constraint of 

maximal patellar tendon pressure could be included in the optimisation problem.  

Along the Pareto Front of the best solutions, trends were predicted as the bias of the optimised socket 

varied between the two fitness functions. When fitness function 1 was dominant and the Genetic 

Algorithm aimed to minimise pressure and soft tissue strain at the residuum tip, sockets with high 

levels of mid-height press-fit emerged from the model. Conversely, when fitness function 2 was 

dominant and the Genetic Algorithm aimed to minimise pressure over the proximal bony 

prominences, the global press-fit was reduced and local relief over the fibula head was increased. The 

sockets which minimised residuum tip pressure (FF1-biased) exhibited characteristics associated with 

a total surface bearing socket design, whilst the patella tendon bearing rectifications were dominant 

when minimising pressure over bony prominences (FF2-biased). While it is difficult to validate these 

findings from the current literature, a systematic review of transtibial prosthetic socket designs by 

Safari and Meier concluded that TSB sockets exhibited improved weight-bearing, greater suspension 

and reduced pistoning, which may be, in part, due to the increased peripheral shear from the TSB 

socket [15]. However, extensive experimental data collection is required to validate such a hypothesis.  

Differences in the Pareto Front were observed between the virtual people. While the minimum value 

of fitness function 1 was consistent across the cases at just below 20, the minima of fitness function 2 

varied substantially. This result was to be expected based upon the results of the population model 

where residuum morphology, in particular the residuum profile, had a substantial effect on the 

pressure over the bony prominences. 

A range of genetic algorithms proved effective in performing multi-objective design optimisation of 

the socket by handling the complex task of simulating the interplay between rectifications on the 



competing objective functions of the residual limb across the presented design space. In this case the 

performance of all methodologies was comparable and it could be concluded that the utilisation of 

several GAs was unnecessary. However, in this case the problem is rather simple to optimise, as 

50,000 fitness function calls are sufficient to provide good approximation of the best Pareto Front, and 

in some cases 20,000 was adequate. The problem has continuous search and objective spaces which 

further indicates its simplicity [31]. However, as the importance of utilising multiple methodologies 

has been shown by previous researchers [21], it is strongly advised here to follow this procedure as 

good practice until the design space for transtibial prosthetic sockets is better understood.  In the 

future, as more variables and objectives are added to the search space, it is expected that the topology 

of the design space will change and therefore provide an increasing challenge to resolve the optimal 

points.  

The presented multi-objective design optimisation provides an early demonstration of how the speed 

increases achieved by surrogate techniques enable the socket design process to be framed as an 

engineering design problem. There are several potential improvements that could be implemented 

within this process. One such approach may be a dual-level solver where the solver starts with no 

data, runs a full simulation on a limited population of designs, creates a surrogate from these designs 

and evaluates the fitness of a substantially larger group across the surrogate. The elite individuals, the 

fittest individuals in the population which are often defined as the top 10%, would be retained for the 

next generation and the process repeated. This approach would enable the GA to ignore regions which 

are clearly sub-optimal, and instead prioritise expensive FE analyses in regions where the minima of 

the fitness function is more likely to be found. As an alternative approach, to prevent overfitting, the 

surrogate might be used to generate initial generations, and more expensive FE analyses used at the 

end to select a preferred design from the options along the Pareto Front.  

Limitations  
User satisfaction with the socket is ultimately a subjective measure dependent upon a range of human 

factors such as comfort, pain thresholds, and proprioception arising from a firm, functional prosthesis-

skeletal coupling. This means that the predictions of pressure, shear stress and soft tissue strain are not 

directly related to comfort [32]. Furthermore, the model would not account for local tissue 

sensitivities associated with neuromata and soft tissue injuries which could only be identified in limb 

assessment by the prosthetist. This process might therefore be enhanced by surveying functional and 

user-reported outcome measures across a population of socket designs. 

No direct experimental validation of the underlying relationships between socket design and load-

transfer predicted by the model in this study has been performed, and such validation evidence must 

be obtained prior to any clinical evaluation. Pressure and shear sensors [33] and lab-based residuum-

socket simulators [34] measure the interaction between the residual limb and socket, and could be 

used to reinforce the findings of this study. As the model uses invented residual limb shapes with 

thousands of socket designs, it is clearly infeasible to perform experimental validation upon any more 

than a limited subset of data points in this model. However, in future, a limited number of key socket 

designs should be tested to validate the conclusions of this model. Some confidence is provided by 

corroboration with literature reports of pressure predictions across the limb between 30-100 kPa 

during gait for TSB sockets [35–38] and 25-320 kPa for PTB [38–40], which is consistent with the 

range of predicted pressures for the FF1-biased sockets in this study. 

As the study is an initial investigation into the methods and potential it forms the basis for further 

investigations that provide a more complex design. In increasing this complexity a number of 

elements will change. First, the kriging model itself will become more complex providing some 

challenges in the use of this model which must be investigated. Second, the design space will change 

and this will provide a different set of optimisation challenges. In both instances the methods used 

will need to be evaluated carefully. In the case of more complex design spaces, other surrogates might 



become more appropriate, such as Deep Reinforcement learners. These are subject to a disadvantage 

of requiring more input data. For the optimisation, it is likely that the space will become more 

discontinuous [41], similar to other more complex applications, and this will require algorithms with 

stronger diversity [21]: NSGA-II and cMLSGA, there is also likely to be a greater separation between 

specialist, which will have even further reduced performance compared to the general solvers: NSGA-

II, cMLSGA and HEIA. 

Clinical applications  
Attempting to use simulations to inform clinical decision-making requires extreme caution, especially 

when applied to devices which depend upon personalised design to ensure comfort and functional 

efficacy, as comfort and proprioception are difficult to quantify. Crucially, in prosthetic limb design 

we would argue that these techniques should not be used in isolation, or substituted for human-facing 

clinical practice. The expert prosthetist must retain control over socket design, and the presented 

optimisation approach could be used to provide a ‘first-guess’ rectification map. The prosthetist 

would then modify this design according to their own clinical reasoning which combines palpation, 

user feedback and re-evaluation. Other technologies such as real-time pressure measurements and 

predictions from the previously reported PCA-Kriging model [0I], incorporated with their skill and 

experience could provide a technology-enhanced limb assessment. This approach will help the 

community to test the key translational research question in this field: can the clinical application of 

FEA support the prosthetist’s evidence-base and enable delivery of comfortable, highly functional 

prosthetic limbs to users in a more timely and efficient manner? 

Conclusion  
This paper provides a first assessment of the use of multi-objective optimisation in the design of 

prosthetic socket design. The experiential judgement and skill-based process of prosthetic socket 

design is framed as a multi-objective engineering design problem. This is achieved by developing 

parametric models of the residual limb informed by statistical shape modelling techniques and the 

prosthetic socket incorporating both total surface bearing and patella tendon bearing rectifications, 

which allow the underlying biomechanical relationships between the residual limb and prosthetic 

socket to be predicted. In line with experimental data to allow detailed biomechanical validation, the 

developed methods show substantial potential to be used as part of a more informed socket design 

process, and provide clinicians with support for selecting from the range of candidate design 

approaches. The resulting designs replicate the general forms of the two most popular designs: patella 

tendon bearing and total surface bearing sockets, at the extremes with a series of variations that result 

in designs that are a compromise between both in the centre. This results in a difference in pressure of 

up to 31 kPa over the fibula head and 14 kPa over the residuum tip.  
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