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Abstract

In post-amputation rehabilitation, a common goal is to return to ambulation using a prosthetic limb,
suspended by a customised socket. Prosthetic socket design aims to optimise load transfer between the
residual limb and mechanical limb, by customisation to the user. This is a time consuming process
and with the increase in people requiring these prosthetics it is vital that these personalised devices
can be produced rapidly whilst maintaining excellent fit, to maximise function and comfort.

Prosthetic sockets are designed by capturing the residual limb’s shape, and applying a series of
geometrical modifications, called rectifications. Expert knowledge is required to achieve a
comfortable fit in this iterative process. A variety of rectifications can be made, grouped into
established strategies (e.g. in transtibial sockets: patellar tendon bearing (PTB) and total surface
bearing (TSB)), creating a complex design space. To date, adoption of advanced engineering solutions
to support fitting has been limited. One method is numerical optimisation, which allows the designer a
number of likely candidate solutions to start the design process. Numerical optimisation is commonly
used in many industries but not prevalent in the design of prosthetic sockets.

This paper therefore presents candidate numerical optimisation methods which might benefit the
prosthetist and the limb user, by blending the state-of-the-art from prosthetic mechanical design,
surrogate modelling and evolutionary computation. The result of the analysis is a series of prosthetic
socket designs that preferentially load and unload the pressure tolerant and intolerant regions of the
residual limb. This spectrum is bounded by the general forms of the PTB and TSB designs, with a
series of variations in between that represent a compromise between these accepted approaches. This
results in a difference in pressure of up to 31 kPa over the fibula head and 14 kPa over the residuum

tip.

The presented methods would allow a trained prosthetist to rapidly assess these likely candidates and
then to make final detailed modifications and fine-tuning. Importantly, insights gained about the
design should be seen as a compliment, not a replacement, for the prosthetist’s skill and experience.
We propose instead that this method might reduce the time spent on the early stages of socket design,
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and allow prosthetists to focus on the most skilled and creative tasks of fine-tuning the design, in face-
to-face consultation with their client.

NOTE:

This paper continues from another submission to the same Special Issue, entitled “Predictive
Prosthetic Socket Design. Part 1: population-based evaluation of transtibial prosthetic sockets
by FEA-driven Surrogate Modelling” [0], and refers back to it for several basic methodological
details, which are built upon. The Part 1 paper has been accepted for publication at BMMB subject to
minor corrections.



Introduction

Approximately 40 million people globally require access to prosthetic or orthotic services [1].
Prosthesis-human interface design aims to maximise comfort and functionality for people with
amputations, towards ambulatory rehabilitation. This is commonly provided through a prosthetic
socket, which is designed through geometric modifications to the captured shape of the residual limb,
known as rectifications, to create a desired pattern of load transfer. This is currently an iterative
process performed by a highly skilled prosthetist, who manages the residuum’s changing size, shape,
soft tissue healing and biomechanical adaptation. Indeed, due to these factors, the development of a
definitive socket takes a considerable period of time. Prosthetic limb users require life-long access to
prosthetics services, and in the UK the annual cost of prosthesis provision and care is over £2,800 per
patient [2]. This includes the replacement of prosthetic limb components typically every two to five
years. Skilled prosthetists take many years to train to a high standard and often prosthetic users
develop relationships with their preferred clinician to maintain socket comfort. However, there are
limited numbers of these highly skilled individuals and practice efficiencies are required in the face of
growing clinical demand. Researchers have considered mechanisms for employing quantitative
prediction in the socket design process [3, 4]], although at present these work to a single design target
for a single individual, and have not entered conventional clinical use.

In Part One of this study [0], a Kriging-based surrogate model was generated for a parametric FE
model of a population-based transtibial residual limb and accompanying total surface bearing (TSB)
socket design. This enabled the prediction of biomechanical relationships between the residual limb
morphology and prosthetic socket design, while reducing the computational cost of each new
prediction by six orders of magnitudes (1.6 ms vs 30 minutes). The simplified total surface bearing
socket design was defined parametrically from the limb’s neutral shape, by reducing the cross-
sectional area along its length with three points at the proximal, mid and distal regions of the socket.
However, within a clinical setting, the socket design process is substantially more nuanced. There are
several different design philosophies, all with different intended residual limb load transfer
mechanisms. The classic patella tendon bearing (PTB) socket design was developed in 1957, and is
still commonly used in-clinic today [5]. This socket design aims to apply pressure over load-tolerant
areas of the limb such as the patella tendon, and off-load pressure sensitive regions such as the
anterior tibia, fibula head and residuum tip. Other sockets include the Kondylen-Bettung Miinster
(KBM) which provides supracondylar suspension in addition to features consistent with the patella
tendon bearing design [6], and hydrostatic sockets [7] such as the PCAST system [8-12] which uses
a pressurised fluid as a medium to form the shape of the socket with the aim of achieving minimal
residuum surface pressure gradients with less manual intervention. More recently total surface bearing
sockets, which were proposed in 1987, are used to generate near-total contact in between the residual
limb and the socket [13, 14]. In theory, this should maximise the contact area between the residual
limb and prosthetic socket and the uniformity of pressure across the surface of the residual limb,
thereby minimising potentially harmful pressure gradients [14].

Despite the fundamental differences in the load distribution between these socket designs, they can
potentially all deliver satisfactory outcomes for prosthesis users [15]. There is substantial research
into quantifying the biomechanical differences between these socket designs, which is
comprehensively reviewed by Safari and Meier in 2015 [16]. Their systematic review concluded that
“the included studies only had low to moderate methodological rigour”, thus demonstrating the
difficulties in defining biomechanical guidelines for the highly dynamic environment of the residual
limb — prosthetic socket system, or selection of the preferred socket type for a particular individual or
situation. One possible reason for the difficulty in establishing the definitive guidelines of these
different socket types is that they are defined primarily by design intent, rather than quantitative rules.
This effect has been illustrated for a simple total surface bearing socket using parametric FEA [0], and
it is almost certain the within-type variability would be increased for more complex designs. We



propose that there is a large potential to enhance the evidence base behind this clinical challenge,
allowing prosthetists to develop, critique and share their own expertise and decision making, making
more effective use of their valuable design and consultation time. A key and relatively unexplored
possibility is to apply automated search algorithms to explore designs prior to optimisation for the
individual.

Optimisation algorithms are common in many areas of engineering to reduce design time. They are
commonly used as concept design methods, providing an initial product which engineers can use as a
starting point and to increase the proportion of their time spent on creatively solving complex
problems. In addition, they provide a visualisation for how these changes will affect the final
product’s performance, allowing a greater understanding of the design space which can be put to use
in the more detailed stages of the process. A choice of potential candidate designs can be provided to
the decision maker, which weight the objectives differently, for example putting more load on the
residuum tip and removing it from the fibular head, and therefore give a range of performances. This
requires algorithms capable of multi-objective optimisation that provide a rapid convergence on the
global optimum while retaining a high diversity of the search, to ensure that the entire search space is
investigated and that the focus is not upon local optima. Many methodologies have been developed
and state-of-the-art research focuses on improvements in diversity or convergence.

This paper aims to apply optimisation algorithms to prosthetic socket design for the first time. This is
applied to the transtibial case, which is the most common major lower limb amputation and where
most clinical success has been achieved with associated CAD/CAM socket design and fabrication
tools. The aim is to determine a suitable initial method for this type of study, collating the state-of-the-
art in biomechanical analysis of prosthesis-limb interfaces, surrogate modelling and optimisation.
Genetic Algorithms are chosen due to their ability to effectively search large and complex design
spaces, which is the problem presented by the continually variable distribution of possible limb-socket
shape rectifications. These methods rely on thousands of function calls, and using FE models would
not be feasible beyond single cases due to the time required for each simulation. However, by
leveraging the speed increases of the surrogate model [0], automated socket optimisation for multiple
individuals becomes a technical possibility. This provides the motivation for the current study, to
perform a first-of-kind, subject-specific, multi-objective design optimisation of the prosthetic socket
using the previously reported surrogate model. The result will be a series of personalised concepts for
transtibial prosthetic sockets, which provide the starting point for a prosthetist. Finally, equipped with
these results, a prosthetist would then further refine these concepts to achieve a desired pattern of
prosthesis-limb load transfer, by using these designs to augment their experience-based decision
making,.

Optimisation of transtibial prosthetic sockets

Population-based surrogate model

A detailed description of the population-based surrogate model has been reported previously [0]. In
short, a generic residual limb was generated by producing a volume mesh from an MRI scan and
imposing radial basis function mesh morphing to apply parametric variation in residuum length and
profile (conical to bulbous) obtained from principal modes of variation from a population of 3D
surface scans. These were varied by +1 o (standard deviation) about the mean length and profile in the
statistical shape model (SSM). Furthermore, internal parametric variation of the relative tibia length
(i.e. distal soft tissue coverage) from -15% to +30% of the tibia length from the MRI scan, and soft
tissue stiffness between stiff, flaccid muscle and contracted muscle [17-19] was applied. The present
surrogate model implementation investigates the effects of socket design variation for four synthetic
‘virtual’ people sequentially by selecting exemplar values for the model’s residuum variability
parameters (Table 1, Figure 1). These cases were chosen as being close to the models’ population



extremes whilst remaining within the bounding box of the sampling plan, to avoid extrapolating
beyond the surrogate.

Table 1: Parameters of the four cases extracted from the parametric residual limb model

Virtual Residuum length, v; | Residuum Profile, v, | Tibia Length, v5 | Tissue stiffness, v,
Person

A —0.8 o (Short) —0.8 g (Bulbous) +20% (Long) 40 kPa (Soft)

B —0.8 g (Short) +0.8 o (Conical) —5% (Short) 50 kPa (Stiff)

C +0.8 ¢ (Long) —0.8 g (Bulbous) +20% (Long) 40 kPa (Soft)

D +0.8 o (Long) +0.8 o (Conical) —5% (Short) 50 kPa (Stiff)

Figure 1: Sagittal sections through equivalent residuum FE models for the four virtual people.

Parametric socket design

In the preceding work [0], a simplified, 3-parameter total surface bearing socket design was used.
This model enabled control of the socket press-fit by reducing its cross sectional area through a B-
spline function with proximal, mid and distal control points. The three variables were constrained
between -1% and 3% by cross-sectional area reduction [Part 1]. The present study’s socket design was
extended to include the localised rectifications observed in patella tendon bearing sockets. Control
points were generated over the fibula head, patella tendon and either side of the tibial crest (Figure 2).
These localised rectifications were applied using the same radial basis function mesh morphing
algorithm detailed in Part | by radially displacing the control points between 0 - 6 mm.

Table 2: Parameters and limits of the parametric socket design

Socket rectification variable name Lower bound Upper bound
Proximal press fit 2% +6%

Mid press fit 2% +6%

Distal press fit 2% +6%

Patella tendon bar 0 mm 6 mm

Fibula head relief 0 mm 6 mm

Tibial crest 0 mm 6 mm
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Figure 2: Rectification maps of the patella tendon bearing socket design at the maximum values of patella tendon bar (PTB),
fibula head (FH) relief and tibial crest (TC) rectifications

Optimisation via genetic algorithms

Genetic algorithms (GA) are population-based multi-objective solvers inspired by the principles of
Darwinian evolution. In a simple Genetic Algorithm a set of potential solutions, called individuals,
reproduce via an evolutionary-like process. Each individual contains set of decision variables, called
chromosomes, with an initial population with variables that are usually assigned randomly. The
fitness of each individual can be evaluated according to some predefined objectives. After this step
individuals are then chosen for reproduction and, according to the principles of natural selection, the
fitter individuals have significantly higher chances of reproducing than those with a low fitness.
Offspring are generated from the selected parents using crossover and mutation processes. During
crossover the chromosomes of the offspring are produced by mixing the genes of the parents,
providing convergence and diversity. In the mutation step the offspring’s genes have a small chance
to be randomly modified, improving the population diversity. Finally, the old population becomes
extinct and is replaced by the new generation, with the new generation being fitter, on average, than
the parent generation. This process continues until the predefined termination condition is met, often
specified as a maximum number of objective functions calls or total calculation time.

Many competing genetic algorithms have been developed, each introducing novel mechanisms to
increase the convergence rates and diversity of the search. In the current state-of-the-art of GAs there
is particular emphasis on specialist-solvers. According to the “no free lunch” theorem [20], a
specialist-solver exhibits high performance on a narrow set of problems but its performance will
rapidly decline when outside of this set. Therefore, a suitable methodology has to be selected with
respect to the particular problem’s characteristics in order to avoid poor performance. The
optimisation problem characteristics and their difficulty are defined by the topology of the search and
objective spaces, number of local optima and the applied constraints. If the problem characteristics are
not known then more than one GA methodology should be applied as their performance can differ
drastically. This will provide more reliable results and allow an evaluation of the problem’s difficulty
and its dominant characteristics [21]. In the case presented in this paper, no knowledge about the
characteristic of the problem are available a priori, except that no constraints are used. However, this
is not sufficient to choose a single properly adjusted optimiser. Therefore, 5 different Genetic



Algorithms are compared: NSGA-II as the most commonly utilised Genetic Algorithm which retains a
high diversity of search and has had much success in the applied literature [22]; MOEA/D as the most
proficient algorithm for unconstrained problems [23]; MTS as an aggregation of a Genetic Algorithm
and a local-search method which provides improved convergence [24]; cMLSGA and HEIA as the
general-type GAs that exhibit high performance across wide range of problem types and therefore
higher robustness [25, 26]. HEIA is more dominant in scenarios where convergence is more important
and cMLSGA provides a higher diversity of search. The detailed principles of working and parameter
settings of each methodology can be found in their respective publications®. All the tests are
performed over 30 separate runs, with 50,000 fitness function evaluations as a termination criterion.
Multiple runs must be performed in order to assure the robustness of the method and the best
likelihood of identifying the true Pareto Front. Different population sizes have been tested and 600
individuals is utilised as the best for NSGA-II, MTS, MOEA/D and HEIA, while cMLSGA utilises
1800 as it requires significantly higher population sizes [27].

The socket design process presented in our prior work [0] can be framed as a formal engineering
design optimisation problem. In this case the individual socket rectifications function as design
parameters across a multi-dimensional input space, and the resultant pressure, shear and soft tissue
strain fields are formulated as the objective functions. It was predicted that the introduction of a
peripheral press-fit around the main body of the residuum will allow load transfer through the
longitudinal shear forces and thus reduce the residuum tip pressure, at the expense of pressure
concentrations over the bony prominences of the tibial tuberosity and fibula head. Four state variables
were defined: the pressure over the residuum tip (f;), the tibial tuberosity (f,), the fibula head (f3),
and the soft tissue strain around the distal tibia (f;). These model outputs can be described as
competing fitness functions, indicating proximal and distal loading, defined as FF1 = f; + f, and
FF2 = f, + f5. These were evaluated using the surrogate model developed previously [0] for the four
synthetic people defined in Table 1.

One of the issues with multi-objective optimisation is the comparison of the results obtained by
different methods. The visual comparison is limited, only providing useful information when the
performance of two solvers differs drastically. Otherwise the points will overlap making objective
comparison near impossible. Therefore, multiple quality indicators have been developed [28]. Most of
them are able to indicate the performance in both convergence and diversity of the solutions.
However, each of them have certain drawbacks or biases and it is common practice to utilise more
than one indicator [28]. In this paper the Inverted Generational Distance (IGD) and Hyper Volume
(HV) were chosen as indicators. IGD measures the average Euclidean distance between each point in
a real Pareto Optimal Front (POF) and the closest solution in the obtained set. Lower values indicate
better convergence and uniformity of the points, and are calculated according to eqg. 1:

IGD (A, P*) = Zvepl;—‘fl(v'A),

where P+ is a set of uniformly distributed points along the true PF, A is the approximate set to the
POF, which is being evaluated and d(v, A) is the minimum Euclidean distance between the point v
and points in A.

However, this IGD shows poor performance in determining the diversity of a population when the
Pareto Front population is small. HV is calculated as the volume of an objective space between a
predefined reference point and the obtained solutions where higher values are preferred [28]. This
indicator has a stronger focus on the diversity and boundary points. Most indicators require a
predefined reference Pareto Optimal Front that illustrates the ideal set of solutions. However, in cases
where the optimal answer is not known the utilisation of these indicators can be problematic. A

4 Source codes for all methodologies can be found at: https://bitbucket.org/Paglc18/cmlsga



solution is to calculate a reference Pareto Optimal Front using the non-dominated selection of Pareto
Optimal Fronts achieved by every algorithm when performing multiple runs, or performing a few test
runs with significantly higher numbers of iterations than that utilised for comparison [21]. In this
paper both are applied, and a combined non-dominated front obtained by brute force from all 6
Genetic Algorithms after 300,000 fitness function evaluations was used to determine the success of
the algorithm.

Results

A single Genetic Algorithm run with a maximum of 50,000 function calls was computed in
approximately 30 minutes, where Figure 3a shows the individuals evaluated over this lifetime and the
final Pareto Front. Comparing the different genetic algorithms, it was observed that the shape of the
Pareto Optimal Fronts remains consistent. Therefore, visual comparison only shows that all of the
methodologies exhibit similar performance and it is not possible to unanimously choose the best
methodology (Figure 3b). The bias between Fitness Functions FF1 and FF2 along the normalised
Pareto Optimal Front is visualised in Figure 3c. The reason the no-bias point is not in the middle of
the front is due to the longer ‘tail” when minimisation is biased towards FF2 (minimising proximal
bony prominence loading), compared with bias towards FF1 (minimising distal tip loading). It was
also observed that while the minima of FF1 for all individuals plateaued at just below 20 (unitless),
the minima of FF2 were different for all of the virtual people (Figure 3d). The minima of the short,
conical limb of person B and the long, bulbous limb of person C plateaued at FF2 = 55 kPa and 40
kPa respectively.
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Figure 3: Analysis of the Pareto fronts from the multi-objective optimisation. a) Individuals from a single run of the HEIA
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From visualisation of the sockets at either end of the Pareto Front, as well as the neutral case,
consistencies in design emerged across the four people (Figure 4). When the optimiser was biased
towards FF1 (minimising tip loading), designs of higher press fit which off-loaded the residuum tip
emerged from the Genetic Algorithm. For person B (Figure 4b) and person D (Figure 4d) pressure
hotspots were generated where there was little soft tissue coverage over the proximal bony
prominences. When the model was biased towards FF2, sockets with higher fibula head relief evolved
in order to off-load over this region.
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Figure 4: Optimal socket designs and corresponding predicted pressure maps for the four different virtual people at the two
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Figure 5: Comparison of how the socket design changed between the four cases along the Pareto Optimal Front. Blue
denotes a bias towards FF1 (distal loading) while red denotes bias towards FF2 (proximal loading).

Trends in the designs can be observed between the competing fitness functions by visualising how the
optimal socket designs change along the Pareto Optimal Front (Figure 5). Across all virtual people,
the patella tendon bar variable converged at the constraint maximum of 6 mm for almost all of the
points along the Pareto Optimal Front. The exception was in Person D, with the longest and thinnest
residual limb. When the optimiser was biased towards FF1, a few designs evolved with the patella
tendon bar rectification at the 0 mm lower limit. This was offset by removal of the fibula head relief
to ensure that the pressure over the residuum tip is still minimised. A clear trend for all virtual people
was in the mid reduction in the socket, where the press-fit decreases along the Pareto Optimal Front
from FF1 (with the aim of minimising the distal loading) to FF2 (with the aim of minimising the



proximal loading). By reducing the press-fit, the pressure over the bony prominences and the
peripheral shear both decreased, resulting in an increase in distal tip pressure and soft tissue strain.

The performance of different methodologies was evaluated using the proposed indicators, IGD and
HV, and presented in the form of rankings with average values and standard deviations (Table 3). In
this case the algorithms all performed in the same manner for IGD and HV. HEIA and cMLSGA
were the best performing algorithms and MOEA/D and MTS performed the worst. However, the
relatively similar performances of all five algorithms indicates that the complexity of the presented
cases are low. The final Pareto Front was continuous and there were no constraints, which led to
convergence-dominated HEIA having the best performance, over cMLSGA and NSGA-II. MOEA/D
and MTS perform less well. However, this may be due to a lack of hyperparameter tuning to the
particular problem. These two algorithms are dependent on a number of parameters which must be
optimised for each problem, and in the present work the authors used default values described in the
algorithms’ original papers. The MOEA/D and MTS algorithms may perform better once tuned, now
that a priori knowledge has been developed, but the present results indicate the caution with which
these algorithms should be used.

Table 3: Ranking of different genetic algorithms using HV and IGD as the performance indicators. * indicates if the results
are significantly different to the next lowest rank, using the Wilcoxon’s rank sum with a 0.05 confidence.

Rank 1 2 3 4 5
Algorithm HEIA*  cMLSGA* NSGA-II* MOEA/D* MTS
IGD Average 0.029349  0.057565 0.1384 0.281601  0.590279
(S.D)) (0.001741) (0.001553) (0.139218) (0.158822) (0.049102)
Algorithm HEIA* cMLSGA NSGA-II* MOEA/D MTS
HV Average 0.174846  0.174475 0.174461  0.174094  0.168158
(8.D)) (0.000027) (0.000039) (0.000288) (0.000214) (0.000464)
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Figure 6: a) The comparison of Pareto Fronts from Virtual Person 1, achieved using HEIA over 50,000 iterations
(‘achieved’) and 300,000 iterations (“real’). B) The performance of HEIA over 300,000 iterations on Person 1. 0 is the
starting population, and 1 is the best attainable set of solutions, based on the IGD values, and the red line indicates the
number of function calls utilised in this study.



In order to better understand the complexity of the problem, and to check if the best possible set of
solutions has been found, a set of 5 runs with 300,000 total iterations was conducted on each virtual
person, utilising HEIA. In this case hardly any difference was observed between 50,000 and 300,000
iterations. Figure 6a shows some very slightly higher uniformity and diversity of the points in the high
FF1 bias region with 300,000 iterations. When comparing the performance over the number of
generations in Figure 6b, virtually no improvement in performance can be seen after 50,000
generations and the highest performance gain occurred before 25,000 iterations. The low possible
performance increase beyond 50,000 iterations in this case would not justify conducting optimisation
of this problem with higher values, unless the virtual person is suspected to benefit from an extreme
reduction in pressure over the residuum tip and the soft tissue strain around the distal tibia (FF1 bias).



Discussion

This study aimed to explore a range of potential concepts for transtibial socket design using FE
modelling, surrogate modelling and GA-based optimisation techniques, to provide a quantitatively-
informed starting point for the prosthetist when designing a bespoke prosthetic socket.

Exploring the parametric socket design space demonstrates that biomechanical objective functions are
in competition, and illustrates the challenges associated with defining the ‘best’ socket design
solution. As explored in our previous work [Part 1], by increasing the socket press fit, particularly in
the mid-section, an increase in longitudinal shear around the main body of the residual limb was
predicted. This resulted in a pressure reduction at the residuum tip coupled to a reduction in the
internal strain around the distal tibia. By oversizing the socket (i.e. negative press-fit) these peripheral
shear forces were not generated, thereby increasing the distal pressure and soft tissue strain. These
represent the competing fitness functions inherent in prosthetic socket design.

Introduction of the patella tendon bar and tibial crest rectifications provided an alternative method of
off-loading the residuum tip beyond a uniform press-fit. Fibula head relief is predicted to be effective
in reducing the high pressure that was observed over this bony prominence for the total surface
bearing socket designs, thus reiterating the importance of localised shape change beyond applying
gross scaling to the limb shape [29].

The sockets that emerged from the Genetic Algorithm exhibited features of both total surface bearing
(TSB) and patella tendon bearing (PTB) manual socket design philosophies. One consistent feature
along the Pareto Front for all virtual people was the patella tendon bar rectification variable, which
saturated at its maximum limit. This is because no optimisation cost was associated with applying
pressure over this region, which the Genetic Algorithm exploited to off-load the high-cost residuum
tip region. This effect is observed clinically for the patella tendon bearing socket where prosthetists
produce a marked rectification over the patella tendon to leverage its load bearing capacity. Although
load tolerant, there clearly would be a load threshold for injury at the patella tendon, so with enhanced
spatial data of load tolerance across these key residuum locations [30] an additional constraint of
maximal patellar tendon pressure could be included in the optimisation problem.

Along the Pareto Front of the best solutions, trends were predicted as the bias of the optimised socket
varied between the two fitness functions. When fitness function 1 was dominant and the Genetic
Algorithm aimed to minimise pressure and soft tissue strain at the residuum tip, sockets with high
levels of mid-height press-fit emerged from the model. Conversely, when fitness function 2 was
dominant and the Genetic Algorithm aimed to minimise pressure over the proximal bony
prominences, the global press-fit was reduced and local relief over the fibula head was increased. The
sockets which minimised residuum tip pressure (FF1-biased) exhibited characteristics associated with
a total surface bearing socket design, whilst the patella tendon bearing rectifications were dominant
when minimising pressure over bony prominences (FF2-biased). While it is difficult to validate these
findings from the current literature, a systematic review of transtibial prosthetic socket designs by
Safari and Meier concluded that TSB sockets exhibited improved weight-bearing, greater suspension
and reduced pistoning, which may be, in part, due to the increased peripheral shear from the TSB
socket [15]. However, extensive experimental data collection is required to validate such a hypothesis.

Differences in the Pareto Front were observed between the virtual people. While the minimum value
of fitness function 1 was consistent across the cases at just below 20, the minima of fitness function 2
varied substantially. This result was to be expected based upon the results of the population model
where residuum morphology, in particular the residuum profile, had a substantial effect on the
pressure over the bony prominences.

A range of genetic algorithms proved effective in performing multi-objective design optimisation of
the socket by handling the complex task of simulating the interplay between rectifications on the



competing objective functions of the residual limb across the presented design space. In this case the
performance of all methodologies was comparable and it could be concluded that the utilisation of
several GAs was unnecessary. However, in this case the problem is rather simple to optimise, as
50,000 fitness function calls are sufficient to provide good approximation of the best Pareto Front, and
in some cases 20,000 was adequate. The problem has continuous search and objective spaces which
further indicates its simplicity [31]. However, as the importance of utilising multiple methodologies
has been shown by previous researchers [21], it is strongly advised here to follow this procedure as
good practice until the design space for transtibial prosthetic sockets is better understood. In the
future, as more variables and objectives are added to the search space, it is expected that the topology
of the design space will change and therefore provide an increasing challenge to resolve the optimal
points.

The presented multi-objective design optimisation provides an early demonstration of how the speed
increases achieved by surrogate technigues enable the socket design process to be framed as an
engineering design problem. There are several potential improvements that could be implemented
within this process. One such approach may be a dual-level solver where the solver starts with no
data, runs a full simulation on a limited population of designs, creates a surrogate from these designs
and evaluates the fitness of a substantially larger group across the surrogate. The elite individuals, the
fittest individuals in the population which are often defined as the top 10%, would be retained for the
next generation and the process repeated. This approach would enable the GA to ignore regions which
are clearly sub-optimal, and instead prioritise expensive FE analyses in regions where the minima of
the fitness function is more likely to be found. As an alternative approach, to prevent overfitting, the
surrogate might be used to generate initial generations, and more expensive FE analyses used at the
end to select a preferred design from the options along the Pareto Front.

Limitations

User satisfaction with the socket is ultimately a subjective measure dependent upon a range of human
factors such as comfort, pain thresholds, and proprioception arising from a firm, functional prosthesis-
skeletal coupling. This means that the predictions of pressure, shear stress and soft tissue strain are not
directly related to comfort [32]. Furthermore, the model would not account for local tissue
sensitivities associated with neuromata and soft tissue injuries which could only be identified in limb
assessment by the prosthetist. This process might therefore be enhanced by surveying functional and
user-reported outcome measures across a population of socket designs.

No direct experimental validation of the underlying relationships between socket design and load-
transfer predicted by the model in this study has been performed, and such validation evidence must
be obtained prior to any clinical evaluation. Pressure and shear sensors [33] and lab-based residuum-
socket simulators [34] measure the interaction between the residual limb and socket, and could be
used to reinforce the findings of this study. As the model uses invented residual limb shapes with
thousands of socket designs, it is clearly infeasible to perform experimental validation upon any more
than a limited subset of data points in this model. However, in future, a limited number of key socket
designs should be tested to validate the conclusions of this model. Some confidence is provided by
corroboration with literature reports of pressure predictions across the limb between 30-100 kPa
during gait for TSB sockets [35-38] and 25-320 kPa for PTB [38-40], which is consistent with the
range of predicted pressures for the FF1-biased sockets in this study.

As the study is an initial investigation into the methods and potential it forms the basis for further
investigations that provide a more complex design. In increasing this complexity a number of
elements will change. First, the kriging model itself will become more complex providing some
challenges in the use of this model which must be investigated. Second, the design space will change
and this will provide a different set of optimisation challenges. In both instances the methods used
will need to be evaluated carefully. In the case of more complex design spaces, other surrogates might



become more appropriate, such as Deep Reinforcement learners. These are subject to a disadvantage
of requiring more input data. For the optimisation, it is likely that the space will become more
discontinuous [41], similar to other more complex applications, and this will require algorithms with
stronger diversity [21]: NSGA-Il and cMLSGA, there is also likely to be a greater separation between
specialist, which will have even further reduced performance compared to the general solvers: NSGA-
I, cMLSGA and HEIA.

Clinical applications

Attempting to use simulations to inform clinical decision-making requires extreme caution, especially
when applied to devices which depend upon personalised design to ensure comfort and functional
efficacy, as comfort and proprioception are difficult to quantify. Crucially, in prosthetic limb design
we would argue that these techniques should not be used in isolation, or substituted for human-facing
clinical practice. The expert prosthetist must retain control over socket design, and the presented
optimisation approach could be used to provide a ‘first-guess’ rectification map. The prosthetist
would then modify this design according to their own clinical reasoning which combines palpation,
user feedback and re-evaluation. Other technologies such as real-time pressure measurements and
predictions from the previously reported PCA-Kriging model [0l], incorporated with their skill and
experience could provide a technology-enhanced limb assessment. This approach will help the
community to test the key translational research question in this field: can the clinical application of
FEA support the prosthetist’s evidence-base and enable delivery of comfortable, highly functional
prosthetic limbs to users in a more timely and efficient manner?

Conclusion

This paper provides a first assessment of the use of multi-objective optimisation in the design of
prosthetic socket design. The experiential judgement and skill-based process of prosthetic socket
design is framed as a multi-objective engineering design problem. This is achieved by developing
parametric models of the residual limb informed by statistical shape modelling techniques and the
prosthetic socket incorporating both total surface bearing and patella tendon bearing rectifications,
which allow the underlying biomechanical relationships between the residual limb and prosthetic
socket to be predicted. In line with experimental data to allow detailed biomechanical validation, the
developed methods show substantial potential to be used as part of a more informed socket design
process, and provide clinicians with support for selecting from the range of candidate design
approaches. The resulting designs replicate the general forms of the two most popular designs: patella
tendon bearing and total surface bearing sockets, at the extremes with a series of variations that result
in designs that are a compromise between both in the centre. This results in a difference in pressure of
up to 31 kPa over the fibula head and 14 kPa over the residuum tip.
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