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Abstract  12 

In post-amputation rehabilitation, a common goal is to return to ambulation using a prosthetic limb, 13 

suspended by a customised socket. Prosthetic socket design aims to optimise load transfer between 14 

the residual limb and mechanical limb, by customisation to the user. This is a time consuming 15 

process and with the increase in people requiring these prosthetics it is vital that these personalised 16 

devices can be produced rapidly whilst maintaining excellent fit, to maximise function and comfort.  17 

Prosthetic sockets are designed by capturing the residual limb’s shape, and applying a series of 18 

geometrical modifications, called rectifications. Expert knowledge is required to achieve a 19 

comfortable fit in this iterative process.  A variety of rectifications can be made, grouped into 20 

established strategies (e.g. in transtibial sockets: patellar tendon bearing (PTB) and total surface 21 

bearing (TSB)), creating a complex design space. To date, adoption of advanced engineering 22 

solutions to support fitting has been limited. One method is numerical optimisation, which allows 23 

the designer a number of likely candidate solutions to start the design process. Numerical 24 

optimisation is commonly used in many industries but not prevalent in the design of prosthetic 25 

sockets.  26 

This paper therefore presents candidate shape optimisation methods which might benefit the 27 

prosthetist and the limb user, by blending the state-of-the-art from prosthetic mechanical design, 28 

surrogate modelling and evolutionary computation. The result of the analysis is a series of prosthetic 29 

socket designs that preferentially load and unload the pressure tolerant and intolerant regions of the 30 

residual limb. This spectrum is bounded by the general forms of the PTB and TSB designs, with a 31 

series of variations in between that represent a compromise between these accepted approaches. 32 

This results in a difference in pressure of up to 31 kPa over the fibula head and 14 kPa over the 33 

residuum tip.  34 

The presented methods would allow a trained prosthetist to rapidly assess these likely candidates 35 

and then to make final detailed modifications and fine-tuning. Importantly, insights gained about the 36 

design should be seen as a compliment, not a replacement, for the prosthetist’s skill and experience. 37 

We propose instead that this method might reduce the time spent on the early stages of socket 38 

design, and allow prosthetists to focus on the most skilled and creative tasks of fine-tuning the 39 

design, in face-to-face consultation with their client.  40 
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Requirement of automation in design of prosthetics 41 

Approximately 40 million people globally require access to prosthetic or orthotic services [2]. 42 

Prosthesis-human interface design aims to maximise comfort and functionality for people with 43 

amputations, towards ambulatory rehabilitation. This is commonly provided through a prosthetic 44 

socket, which is designed through geometric modifications to the captured shape of the residual 45 

limb, known as rectifications, to create a desired pattern of load transfer. This is currently an 46 

iterative process performed by a highly skilled prosthetist, who manages the residuum’s changing 47 

size, shape, soft tissue healing and biomechanical adaptation. Indeed, due to these factors, the 48 

development of a definitive socket takes a considerable period of time. Prosthetic limb users require 49 

life-long access to prosthetics services, and in the UK the annual cost of prosthesis provision and 50 

care is over £2,800 per patient [3]. This includes the replacement of prosthetic limb components 51 

typically every two to five years. Skilled prosthetists take many years to train to a high standard and 52 

often prosthetic users develop relationships with their preferred clinician to maintain socket 53 

comfort. However, there are limited numbers of these highly skilled individuals and practice 54 

efficiencies are required in the face of growing clinical demand. Researchers have considered 55 

mechanisms for employing quantitative prediction in the socket design process [4, 5]], although at 56 

present these work to a single design target for a single individual, and have not entered 57 

conventional clinical use.  58 

In Part One of this study [1], a Kriging-based surrogate model was generated for a parametric FE 59 

model of a population-based transtibial residual limb and accompanying total surface bearing (TSB) 60 

socket design. This enabled the prediction of biomechanical relationships between the residual limb 61 

morphology and prosthetic socket design, while reducing the computational cost of each new 62 

prediction by six orders of magnitudes (1.6 ms vs 30 minutes). The simplified total surface bearing 63 

socket design was defined parametrically from the limb’s neutral shape, by reducing the cross-64 

sectional area along its length with three points at the proximal, mid and distal regions of the socket. 65 

However, within a clinical setting, the socket design process is substantially more nuanced. There are 66 

several different design philosophies, all with different intended residual limb load transfer 67 

mechanisms. The classic patella tendon bearing (PTB) socket design was developed in 1957, and is 68 

still commonly used in-clinic today [6]. This socket design aims to apply pressure over load-tolerant 69 

areas of the limb such as the patella tendon, and off-load pressure sensitive regions such as the 70 

anterior tibia, fibula head and residuum tip. Other sockets include the Kondylen-Bettung Münster 71 

(KBM) which provides supracondylar suspension in addition to features consistent with the patella 72 

tendon bearing  design [7], and hydrostatic sockets [8] such as the PCAST system [9–13] which uses a 73 

pressurised fluid as a medium to form the shape of the socket with the aim of achieving minimal 74 

residuum surface pressure gradients with less manual intervention. More recently total surface 75 

bearing sockets, which were proposed in 1987, are used to generate near-total contact in between 76 

the residual limb and the socket [14, 15]. In theory, this should maximise the contact area between 77 

the residual limb and prosthetic socket and the uniformity of pressure across the surface of the 78 

residual limb, thereby minimising potentially harmful pressure gradients [15]. 79 

Despite the fundamental differences in the load distribution between these socket designs, they can 80 

potentially all deliver satisfactory outcomes for prosthesis users [16]. There is substantial research 81 

into quantifying the biomechanical differences between these socket designs, which is 82 

comprehensively reviewed by Safari and Meier in 2015 [17]. Their systematic review concluded that 83 

“the included studies only had low to moderate methodological rigour”, thus demonstrating the 84 

difficulties in defining biomechanical guidelines for the highly dynamic environment of the residual 85 

limb – prosthetic socket system, or selection of the preferred socket type for a particular individual 86 
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or situation. One possible reason for the difficulty in establishing the definitive guidelines of these 87 

different socket types is that they are defined primarily by design intent, rather than quantitative 88 

rules. This effect has been illustrated for a simple total surface bearing socket using parametric FEA 89 

[1], and it is almost certain the within-type variability would be increased for more complex designs. 90 

We propose that there is a large potential to enhance the evidence base behind this clinical 91 

challenge, allowing prosthetists to develop, critique and share their own expertise and decision 92 

making, making more effective use of their valuable design and consultation time. A key and 93 

relatively unexplored possibility is to apply automated search algorithms to explore designs prior to 94 

optimisation for the individual.  95 

Optimisation algorithms are common in many areas of engineering to reduce design time. They are 96 

commonly used as concept design methods, providing an initial product which engineers can use as 97 

a starting point and to increase the proportion of their time spent on creatively solving complex 98 

problems. In addition, they provide a visualisation for how these changes will affect the final 99 

product’s performance, allowing a greater understanding of the design space which can be put to 100 

use in the more detailed stages of the process. A choice of potential candidate designs can be 101 

provided to the decision maker, which weight the objectives differently, for example putting more 102 

load on the residuum tip and removing it from the fibular head, and therefore give a range of 103 

performances. This requires algorithms capable of multi-objective optimisation that provide a rapid 104 

convergence on the global optimum while retaining a high diversity of the search, to ensure that the 105 

entire search space is investigated and that the focus is not upon local optima. Many methodologies 106 

have been developed and state-of-the-art research focuses on improvements in diversity or 107 

convergence.  108 

This paper employs optimisation algorithms to generate personalised ‘candidate’ prosthetic socket 109 

designs for the first time. This is applied to the transtibial case, which is the most common major 110 

lower limb amputation and where most clinical success has been achieved with associated CAD/CAM 111 

socket design and fabrication tools. Different design problems require different optimisation 112 

processes. The aim is therefore to determine appropriate methods for the automated application of 113 

candidate socket rectifications, collating the state-of-the-art in biomechanical analysis of prosthesis-114 

limb interfaces, surrogate modelling and optimisation. Genetic Algorithms are chosen due to their 115 

ability to effectively search large and complex design spaces, which is the problem presented by the 116 

continually variable distribution of possible limb-socket shape rectifications. These methods rely on 117 

thousands of function calls, and using FE models would not be feasible beyond single cases due to 118 

the time required for each simulation. However, by leveraging the speed increases of the surrogate 119 

model [1], it becomes technically feasible to perform automated socket optimisation based upon 120 

structural analysis of the limb-prosthesis system. This provides the motivation for the current study, 121 

to perform a first-of-kind, subject-specific, multi-objective design optimisation of the prosthetic 122 

socket using the previously reported surrogate model.  The result will be a series of personalised 123 

‘candidate’ transtibial prosthetic socket designs, to which the prosthetist would add local 124 

modifications based upon their knowledge and conventional patient consultation. Finally, equipped 125 

with these results, a prosthetist would then further refine these concepts to achieve a desired 126 

pattern of prosthesis-limb load transfer, by using these designs to augment their experience-based 127 

decision making. 128 
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Optimisation of transtibial prosthetic sockets 129 

Population-based surrogate model 130 

A detailed description of the population-based surrogate model is found in Part I of this paper [1]. In 131 

short, a generic residual limb was generated by producing a volume mesh from an MRI scan and 132 

imposing radial basis function mesh morphing to apply parametric variation in residuum length and 133 

profile (conical to bulbous) obtained from principal modes of variation from a population of 3D 134 

surface scans. These were varied by ±1 𝜎 (standard deviation) about the mean length and profile in 135 

the statistical shape model (SSM). Furthermore, internal parametric variation of the relative tibia 136 

length (i.e. distal soft tissue coverage) from -15% to +30% of the tibia length from the MRI scan, and 137 

soft tissue material properties between stiff, flaccid muscle and contracted muscle [18–20] were 138 

applied. The soft tissue was assigned a neo-Hookean material to capture the non-linear behaviour of 139 

the soft tissue. The present surrogate model implementation investigates the effects of socket 140 

design variation for four synthetic ‘virtual’ people sequentially by selecting exemplar values for the 141 

model’s residuum variability parameters (Table 1, Figure 1). These cases were chosen as being close 142 

to the models’ population extremes whilst remaining within the bounding box of the sampling plan, 143 

to avoid extrapolating beyond the surrogate. These meshes were imported into the finite element 144 

solver (ABAQUS 6.14, Dassault Systèmes, Vèlizy-Villacoublay, France). The socket was donned under 145 

displacement control and loaded uniaxially to 400N to simulate a two-leg stance. The resultant 146 

pressure and soft tissue strain outputs from 75 simulations were used to construct a kriging 147 

surrogate model for each virtual person, enabling a function call to be made in ~2ms.  148 

Table 1: Parameters of the four cases extracted from the parametric residual limb model. Soft tissue initial modulus 149 
corresponds to the initial stiffness of the applied neo-Hookean hyperelastic material model. 150 

Virtual 
Person 

Residuum length, 𝑣1 Residuum Profile, 𝑣2 Tibia Length, 𝑣3 Soft tissue initial 
modulus, 𝑣4 

A −0.8 𝜎 (Short) −0.8 𝜎 (Bulbous) +20% (Long) 40 𝑘𝑃𝑎 (Soft) 

B −0.8 𝜎 (Short) +0.8 𝜎 (Conical) −5% (Short) 50 𝑘𝑃𝑎 (Stiff) 

C ∓0.8 𝜎 (Long) −0.8 𝜎 (Bulbous) +20% (Long) 40 𝑘𝑃𝑎 (Soft) 

D ∓0.8 𝜎 (Long) +0.8 𝜎 (Conical) −5% (Short) 50 𝑘𝑃𝑎 (Stiff) 

 151 

    152 

Figure 1: Sagittal sections through equivalent residuum FE models for the four virtual people. Blue indicates the liner, red 153 
the soft tissue, and grey the bones. The prosthetic socket is not shown. 154 

 155 
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Parametric socket design  156 

In the preceding work [1], a simplified, 3-parameter total surface bearing socket design was used. 157 

This model enabled control of the socket press-fit by reducing its cross sectional area through a B-158 

spline function with proximal, mid and distal control points. The three variables were constrained 159 

between -1% and 3% by cross-sectional area reduction [Part 1]. The present study’s socket design 160 

was extended to include the localised rectifications observed in patella tendon bearing sockets. 161 

Control points were generated over the fibula head, patella tendon and either side of the tibial crest 162 

(Figure 2). These localised rectifications were applied using the same radial basis function mesh 163 

morphing algorithm detailed in Part I by radially displacing the control points between 0 - 6 mm.  164 

Table 2: Parameters and limits of the parametric socket design 165 

Socket rectification variable name Lower bound Upper bound 

Proximal press fit -2 % +6% 

Mid press fit -2 % +6% 

Distal press fit -2 % +6%  

Patella tendon bar 0 mm 6 mm 

Fibula head relief 0 mm 6 mm 

Tibial crest 0 mm 6 mm 

 166 

 167 

 168 

Figure 2: Rectification maps of the patella tendon bearing socket design at the maximum values of patella tendon bar (PTB), 169 
fibula head (FH) relief and tibial crest (TC) rectifications. The figure demonstrates the resulting socket shape change once 170 
the control nodes have been displaced, and explains the convention directions of each rectification type (FH vs. PT & TC).   171 

Optimisation via genetic algorithms 172 

Genetic algorithms (GA) are population-based multi-objective solvers inspired by the principles of 173 

Darwinian evolution [21].  In a simple Genetic Algorithm a set of potential solutions, called 174 

individuals, reproduce via an evolutionary-like process. Each individual contains set of decision 175 

variables, called chromosomes, with an initial population with variables that are usually assigned 176 

randomly. The fitness of each individual can be evaluated according to some predefined objectives. 177 

After this step individuals are then chosen for reproduction and, according to the principles of 178 
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natural selection, the fitter individuals have significantly higher chances of reproducing than those 179 

with a low fitness. Offspring are generated from the selected parents using crossover and mutation 180 

processes. During crossover the chromosomes of the offspring are produced by mixing the genes of 181 

the parents, providing convergence and diversity. In the mutation step the offspring’s genes have a 182 

small chance to be randomly modified, improving the population diversity. Finally, the old 183 

population becomes extinct and is replaced by the new generation, with the new generation being 184 

fitter, on average, than the parent generation. This process continues until the predefined 185 

termination condition is met, often specified as a maximum number of objective functions calls or 186 

total calculation time. 187 

Many competing genetic algorithms have been developed, each introducing novel mechanisms to 188 

increase the convergence rates and diversity of the search. In the current state-of-the-art of GAs 189 

there is particular emphasis on specialist-solvers. According to the “no free lunch” theorem [22], a 190 

specialist-solver exhibits high performance on a narrow set of problems but its performance will 191 

rapidly decline when outside of this set. Therefore, a suitable methodology has to be selected with 192 

respect to the particular problem’s characteristics in order to avoid poor performance. The 193 

optimisation problem characteristics and their difficulty are defined by the topology of the search 194 

and objective spaces, number of local optima and the applied constraints. If the problem 195 

characteristics are not known then more than one GA methodology should be applied as their 196 

performance can differ drastically. This will  provide more reliable results and allow an evaluation of 197 

the problem’s difficulty and its dominant characteristics [23]. In the case presented in this paper, no 198 

knowledge about the characteristic of the problem are available a priori, except that no constraints 199 

are used. However, this is not sufficient to choose a single properly adjusted optimiser. Therefore, 5 200 

different Genetic Algorithms are compared: NSGA-II as the most commonly utilised Genetic 201 

Algorithm which retains a high diversity of search and has had much success in the applied literature 202 

[24]; MOEA/D as the most proficient algorithm for unconstrained problems [25]; MTS as an 203 

aggregation of a Genetic Algorithm and a local-search method which provides improved 204 

convergence [26]; cMLSGA and HEIA as the general-type GAs that exhibit high performance across 205 

wide range of problem types and therefore higher robustness [27, 28]. HEIA is more dominant in 206 

scenarios where convergence is more important and cMLSGA provides a higher diversity of search. 207 

The detailed principles of working and parameter settings of each methodology can be found in their 208 

respective publications1. All the tests are performed over 30 separate runs, with 50,000 fitness 209 

function evaluations as a termination criterion. Multiple runs must be performed in order to assure 210 

the robustness of the method and the best likelihood of identifying the true Pareto Front. Different 211 

population sizes have been tested and 600 individuals is utilised as the best for NSGA-II, MTS, 212 

MOEA/D and HEIA, while cMLSGA utilises 1800 as it requires significantly higher population sizes 213 

[29]. 214 

The socket design process presented in our prior work [1] can be framed as a formal engineering 215 

design optimisation problem. In this case the individual socket rectifications function as design 216 

parameters across a multi-dimensional input space, and the resultant pressure and soft tissue strain 217 

fields are formulated as the objective functions. The locations across the limb for the objective 218 

functions were selected because they are known to be load-intolerant [6]. It was predicted that the 219 

introduction of a peripheral press-fit around the main body of the residuum will allow load transfer 220 

through the longitudinal shear forces and thus reduce the residuum tip pressure, at the expense of 221 

pressure concentrations over the bony prominences of the tibial tuberosity and fibula head. Four 222 

state variables were defined: the pressure over the residuum tip (𝑓1), the tibial tuberosity (𝑓2), the 223 

                                                           
1 Source codes for all methodologies can be found at: https://bitbucket.org/Pag1c18/cmlsga 



7 
 

fibula head (𝑓3), and the soft tissue strain around the distal tibia (𝑓4). These model outputs can be 224 

described as competing fitness functions, indicating proximal and distal loading, defined as 𝐹𝐹1 =225 

𝑓1 + 𝑓4 and 𝐹𝐹2 = 𝑓2 + 𝑓3. These were evaluated using the surrogate model developed previously 226 

[1] for the four synthetic people defined in Table 1.  227 

One of the issues with multi-objective optimisation is the comparison of the results obtained by 228 

different methods. The visual comparison is limited, only providing useful information when the 229 

performance of two solvers differs drastically. Otherwise the points will overlap making objective 230 

comparison near impossible. Therefore, multiple quality indicators have been developed [30]. Most 231 

of them are able to indicate the performance in both convergence and diversity of the solutions. 232 

However,  each of them have certain drawbacks or biases and it is common practice to utilise more 233 

than one indicator [30]. In this paper the Inverted Generational Distance (IGD) and Hyper Volume 234 

(HV) were chosen as indicators. IGD measures the average Euclidean distance between each point in 235 

a real Pareto Optimal Front (POF) and the closest solution in the obtained set. Lower values indicate 236 

better convergence and uniformity of the points, and are calculated according to eq. 1: 237 

𝐼𝐺𝐷(𝐴, 𝑃∗) =
∑ 𝑑(ν,A)ν∈𝑃∗

|𝑃∗|
, 238 

where P∗ is a set of uniformly distributed points along the true PF, A is the approximate set to the 239 

POF, which is being evaluated and d(ν, A) is the minimum Euclidean distance between the point ν 240 

and points in A. 241 

However, this IGD shows poor performance in determining the diversity of a population when the 242 

Pareto Front population is small. HV is calculated as the volume of an objective space between a 243 

predefined reference point and the obtained solutions where higher values are preferred [30]. This 244 

indicator has a stronger focus on the diversity and boundary points. Most indicators require a 245 

predefined reference Pareto Optimal Front that illustrates the ideal set of solutions. However, in 246 

cases where the optimal answer is not known the utilisation of these indicators can be problematic. 247 

A solution is to calculate a reference Pareto Optimal Front using the non-dominated selection of 248 

Pareto Optimal Fronts achieved by every algorithm when performing multiple runs, or performing a 249 

few test runs with significantly higher numbers of iterations than that utilised for comparison [23]. In 250 

this paper both are applied, and a combined non-dominated front obtained by brute force from all 6 251 

Genetic Algorithms after 300,000 fitness function evaluations was used to determine the success of 252 

the algorithm. 253 

Results 254 

A single Genetic Algorithm run with a maximum of 50,000 function calls was computed in 255 

approximately 30 minutes, where Figure 3a shows the individuals evaluated over this lifetime and 256 

the final Pareto Front. Comparing the different genetic algorithms, it was observed that the shape of 257 

the Pareto Optimal Fronts remains consistent. Therefore, visual comparison only shows that all of 258 

the methodologies exhibit similar performance and it is not possible to unanimously choose the best 259 

methodology (Figure 3b). The bias between Fitness Functions FF1 and FF2 along the normalised 260 

Pareto Optimal Front is visualised in Figure 3c. The reason the no-bias point is not in the middle of 261 

the front is due to the longer ‘tail’ when minimisation is biased towards FF2 (minimising proximal 262 

bony prominence loading), compared with bias towards FF1 (minimising distal tip loading). It was 263 

also observed that while the minima of FF1 for all individuals plateaued at just below 20 (unitless), 264 

the minima of FF2 were different for all of the virtual people (Figure 3d). The minima of the short, 265 

conical limb of person B and the long, bulbous limb of person C plateaued at FF2 = 55 kPa and 40 kPa 266 

respectively.  267 
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 268 

Figure 3: Analysis of the Pareto fronts from the multi-objective optimisation. a) Individuals from a single run of the HEIA 269 
optimisation for Person A, with all individuals plotted in blue and Pareto front in red. b) Comparison of the generated PFs 270 
for the six different GAs tested on Person A. c) Bias along the Pareto front between the two fitness functions, with ‘no bias’ 271 
defined as the minimum distance from the origin to the normalised Pareto Optimal Front, with blue indicating bias towards 272 
FF1 and red towards FF2. d) Comparison of the Pareto Fronts for the four different People when using HEIA  273 

From visualisation of the sockets at either end of the Pareto Front, as well as the neutral case, 274 

consistencies in design emerged across the four people (Figure 4). When the optimiser was biased 275 

towards FF1 (minimising tip loading), designs of higher press fit which off-loaded the residuum tip 276 

emerged from the Genetic Algorithm. For person B (Figure 4b) and person D (Figure 4d) pressure 277 

hotspots were generated where there was little soft tissue coverage over the proximal bony 278 

prominences. When the model was biased towards FF2, sockets with higher fibula head relief 279 

evolved in order to off-load over this region.  280 
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 281 

Figure 4: Optimal socket designs and corresponding predicted pressure maps for the four different virtual people at the two 282 
ends of the POF, i.e. biased towards minimising distal tip loading (top) and minimising proximal bony prominence loading 283 
(bottom), and the design with no bias (centre). 284 
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 285 

Figure 5: Comparison of how the socket design variables (see Table 2) changed between the four cases along the Pareto 286 
Optimal Front. Blue denotes a bias towards FF1 (distal loading) while red denotes bias towards FF2 (proximal loading).  287 

Trends in the designs can be observed between the competing fitness functions by visualising how 288 

the optimal socket designs change along the Pareto Optimal Front (Figure 5). Across all virtual 289 

people, the patella tendon bar variable converged at the constraint maximum of 6 mm for almost all 290 

of the points along the Pareto Optimal Front. The exception was in Person D, with the longest and 291 

thinnest residual limb. When the optimiser was biased towards FF1, a few designs evolved with the 292 

patella tendon bar rectification at the 0 mm lower limit. This was offset by removal of the fibula 293 

head relief to ensure that the pressure over the residuum tip is still minimised. A clear trend for all 294 

virtual people was in the mid reduction in the socket, where the press-fit decreases along the Pareto 295 

Optimal Front from FF1 (with the aim of minimising the distal loading) to FF2 (with the aim of 296 
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minimising the proximal loading). By reducing the press-fit, the pressure over the bony prominences 297 

and the peripheral shear both decreased, resulting in an increase in distal tip pressure and soft tissue 298 

strain.  299 

The performance of different methodologies was evaluated using the proposed indicators, IGD and 300 

HV, and presented in the form of rankings with average values and standard deviations (Table 3). In 301 

this case the algorithms all performed in the same manner for IGD and HV.  HEIA and cMLSGA were 302 

the best performing algorithms and MOEA/D and MTS performed the worst. However, the relatively 303 

similar performances of all five algorithms indicates that the complexity of the presented cases are 304 

low. The final Pareto Front was continuous and there were no constraints, which led to 305 

convergence-dominated HEIA having the best performance, over cMLSGA and NSGA-II. MOEA/D and 306 

MTS perform less well. However, this may be due to a lack of hyperparameter tuning to the 307 

particular problem. These two algorithms are dependent on a number of parameters which must be 308 

optimised for each problem, and in the present work the authors used default values described in 309 

the algorithms’ original papers. The MOEA/D and MTS algorithms may perform better once tuned, 310 

now that a priori knowledge has been developed, but the present results indicate the caution with 311 

which these algorithms should be used. 312 

Table 3: Ranking of different genetic algorithms using HV and IGD as the performance indicators. * indicates if the results 313 
are significantly different to the next lowest rank, using the Wilcoxon’s rank sum with a 0.05 confidence. 314 

 Rank 1 2 3 4 5 

IGD 

Algorithm HEIA* cMLSGA* NSGA-II* MOEA/D* MTS 

Average 0.029349 0.057565 0.1384 0.281601 0.590279 

(S.D.) (0.001741) (0.001553) (0.139218) (0.158822) (0.049102) 

HV 

Algorithm HEIA* cMLSGA NSGA-II* MOEA/D MTS 

Average 0.174846 0.174475 0.174461 0.174094 0.168158 

(S.D.) (0.000027) (0.000039) (0.000288) (0.000214) (0.000464) 
 315 

 316 

Figure 6: a) The comparison of Pareto Fronts from Virtual Person 1, achieved using HEIA over 50,000 iterations (‘achieved’) 317 
and 300,000 iterations (‘real’). B) The performance of HEIA over 300,000 iterations on Person 1. 0 is the starting population, 318 
and 1 is the best attainable set of solutions, based on the IGD values, and the red line indicates the number of function calls 319 
utilised in this study. 320 
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In order to better understand the complexity of the problem, and to check if the best possible set of 321 

solutions has been found, a set of 5 runs with 300,000 total iterations was conducted on each virtual 322 

person, utilising HEIA. In this case hardly any difference was observed between 50,000 and 300,000 323 

iterations. Figure 6a shows some very slightly higher uniformity and diversity of the points in the 324 

high FF1 bias region with 300,000 iterations. When comparing the performance over the number of 325 

generations in Figure 6b, virtually no improvement in performance can be seen after 50,000 326 

generations and the highest performance gain occurred before 25,000 iterations. The low possible 327 

performance increase beyond 50,000 iterations in this case would not justify conducting 328 

optimisation of this problem with higher values, unless the virtual person is suspected to benefit 329 

from an extreme reduction in pressure over the residuum tip and the soft tissue strain around the 330 

distal tibia (FF1 bias). 331 

Discussion 332 

This study aimed to explore a range of potential concepts for transtibial socket design using FE 333 

modelling, surrogate modelling and GA-based optimisation techniques, to provide a quantitatively-334 

informed starting point for the prosthetist when designing a bespoke prosthetic socket.  335 

Exploring the parametric socket design space demonstrates that biomechanical objective functions 336 

are in competition, and illustrates the challenges associated with defining the ‘best’ socket design 337 

solution. As explored in our previous work [1], by increasing the socket press fit, particularly in the 338 

mid-section, an increase in longitudinal shear around the main body of the residual limb was 339 

predicted. This resulted in a pressure reduction at the residuum tip coupled to a reduction in the 340 

internal strain around the distal tibia. By oversizing the socket (i.e. negative press-fit) these 341 

peripheral shear forces were not generated, thereby increasing the distal pressure and soft tissue 342 

strain. These represent the competing fitness functions inherent in prosthetic socket design.  343 

Introduction of the patella tendon bar and tibial crest rectifications provided an alternative method 344 

of off-loading the residuum tip beyond a uniform press-fit. Fibula head relief is predicted to be 345 

effective in reducing the high pressure that was observed over this bony prominence for the total 346 

surface bearing socket designs, thus reiterating the importance of localised shape change beyond 347 

applying gross scaling to the limb shape [31].  348 

The sockets that emerged from the Genetic Algorithm exhibited features of both total surface 349 

bearing (TSB) and patella tendon bearing (PTB) manual socket design philosophies. One consistent 350 

feature along the Pareto Front for all virtual people was the patella tendon bar rectification variable, 351 

which saturated at its maximum limit. This is because no optimisation cost was associated with 352 

applying pressure over this region, which the Genetic Algorithm exploited to off-load the high-cost 353 

residuum tip region. This effect is observed clinically for the patella tendon bearing socket where 354 

prosthetists produce a marked rectification over the patella tendon to leverage its load bearing 355 

capacity. Although load tolerant, there clearly would be a load threshold for injury at the patella 356 

tendon, so with enhanced spatial data of load tolerance across these key residuum locations [32] an 357 

additional constraint of maximal patellar tendon pressure could be included in the optimisation 358 

problem.  359 

Along the Pareto Front of the best solutions, trends were predicted as the bias of the optimised 360 

socket varied between the two fitness functions. When fitness function 1 was dominant and the 361 

Genetic Algorithm aimed to minimise pressure and soft tissue strain at the residuum tip, sockets 362 

with high levels of mid-height press-fit emerged from the model. Conversely, when fitness function 2 363 

was dominant and the Genetic Algorithm aimed to minimise pressure over the proximal bony 364 
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prominences, the global press-fit was reduced and local relief over the fibula head was increased. 365 

The sockets which minimised residuum tip pressure (FF1-biased) exhibited characteristics associated 366 

with a total surface bearing socket design, whilst the patella tendon bearing rectifications were 367 

dominant when minimising pressure over bony prominences (FF2-biased). While it is difficult to 368 

validate these findings from the current literature, a systematic review of transtibial prosthetic 369 

socket designs by Safari and Meier concluded that TSB sockets exhibited improved weight-bearing, 370 

greater suspension and reduced pistoning, which may be, in part, due to the increased peripheral 371 

shear from the TSB socket [16]. However, extensive experimental data collection is required to 372 

validate such a hypothesis.  373 

Differences in the Pareto Front were observed between the virtual people. While the minimum 374 

value of fitness function 1 was consistent across the cases at just below 20, the minima of fitness 375 

function 2 varied substantially. This result was to be expected based upon the results of the 376 

population model where residuum morphology, in particular the residuum profile, had a substantial 377 

effect on the pressure over the bony prominences. 378 

A range of genetic algorithms proved effective in performing multi-objective design optimisation of 379 

the socket by handling the complex task of simulating the interplay between rectifications on the 380 

competing objective functions of the residual limb across the presented design space. In this case 381 

the performance of all methodologies was comparable and it could be concluded that the utilisation 382 

of several GAs was unnecessary. However, in this case the problem is rather simple to optimise, as 383 

50,000 fitness function calls are sufficient to provide good approximation of the best Pareto Front, 384 

and in some cases 20,000 was adequate. The problem has continuous search and objective spaces 385 

which further indicates its simplicity [33]. However, as the importance of utilising multiple 386 

methodologies has been shown by previous researchers [23], it is strongly advised here to follow this 387 

procedure as good practice until the design space for transtibial prosthetic sockets is better 388 

understood.  In the future, as more variables and objectives are added to the search space, it is 389 

expected that the topology of the design space will change and therefore provide an increasing 390 

challenge to resolve the optimal points, and require review of the required GA parameters and 391 

convergence limits.  392 

The presented multi-objective design optimisation provides an early demonstration of how the 393 

speed increases achieved by surrogate techniques enable the socket design process to be framed as 394 

an engineering design problem. There are several potential improvements that could be 395 

implemented within this process. One such approach may be a dual-level solver where the solver 396 

starts with no data, runs a full simulation on a limited population of designs, creates a surrogate 397 

from these designs and evaluates the fitness of a substantially larger group across the surrogate. The 398 

elite individuals, the fittest individuals in the population which are often defined as the top 10%, 399 

would be retained for the next generation and the process repeated. This approach would enable 400 

the GA to ignore regions which are clearly sub-optimal, and instead prioritise expensive FE analyses 401 

in regions where the minima of the fitness function is more likely to be found. As an alternative 402 

approach, to prevent overfitting, the surrogate might be used to generate initial generations, and 403 

more expensive FE analyses used at the end to select a preferred design from the options along the 404 

Pareto Front.  405 

Limitations  406 

User satisfaction with the socket is ultimately a subjective measure dependent upon a range of 407 

human factors such as comfort, pain thresholds, and proprioception arising from a firm, functional 408 

prosthesis-skeletal coupling. This means that the predictions of pressure, shear stress and soft tissue 409 
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strain are not directly related to comfort [34]. Furthermore, the model would not account for local 410 

tissue sensitivities associated with neuromata and soft tissue injuries which could only be identified 411 

in limb assessment by the prosthetist. This process might therefore be enhanced by surveying 412 

functional and user-reported outcome measures across a population of socket designs.  413 

No direct experimental validation of the underlying relationships between socket design and load-414 

transfer predicted by the model in this study has been performed, and such validation evidence 415 

must be obtained prior to any clinical evaluation. Pressure and shear sensors [35] and lab-based 416 

residuum-socket simulators [36] measure the interaction between the residual limb and socket, and 417 

could be used to reinforce the findings of this study. As the model uses invented residual limb 418 

shapes with thousands of socket designs, it is clearly infeasible to perform experimental validation 419 

upon any more than a limited subset of data points in this model. However, in future, a limited 420 

number of key socket designs should be tested to validate the conclusions of this model. 421 

Furthermore, the population-based surrogate model only characterises a simplified representation 422 

of the variability which exists across the population. As discussed previously [1], a practical 423 

application of these tools requires further data to construct the surrogate model, for example 424 

variation in femoral or patella geometry, bone and liner material properties, as well as dynamic load 425 

cases. Some confidence is provided by corroboration with literature reports of pressure predictions 426 

across the limb between 30-100 kPa during gait for TSB sockets [37–40] and 25-320 kPa for PTB [40–427 

42], which is consistent with the range of predicted pressures for the FF1-biased sockets in this 428 

study. 429 

As the study is an initial investigation into the methods and potential it forms the basis for further 430 

investigations that provide a more complex design. In increasing this complexity a number of 431 

elements will change. First, the kriging model itself will become more complex providing some 432 

challenges in the use of this model which must be investigated. Second, the design space will change 433 

and this will provide a different set of optimisation challenges. In both instances the methods used 434 

will need to be evaluated carefully. In the case of more complex design spaces, other surrogates 435 

might become more appropriate, such as Deep Reinforcement learners. These are subject to a 436 

disadvantage of requiring more input data. For the optimisation, it is likely that the space will 437 

become more discontinuous [43], similar to other more complex applications, and this will require 438 

algorithms with stronger diversity [23]: NSGA-II and cMLSGA. There is also likely to be a greater 439 

separation between specialist, which will have even further reduced performance compared to the 440 

general solvers: NSGA-II, cMLSGA and HEIA. 441 

Clinical applications  442 

Attempting to use simulations to inform clinical decision-making requires extreme caution, 443 

especially when applied to devices which depend upon personalised design to ensure comfort and 444 

functional efficacy, as comfort and proprioception are difficult to quantify. Crucially, in prosthetic 445 

limb design we would argue that these techniques should not be used in isolation, or substituted for 446 

human-facing clinical practice. The expert prosthetist must retain control over socket design, and the 447 

presented optimisation approach could be used to provide a ‘first-guess’ rectification map. The 448 

prosthetist would then modify this design according to their own clinical reasoning which combines 449 

palpation, user feedback and re-evaluation. Other technologies such as real-time pressure 450 

measurements and predictions from the previously reported PCA-Kriging model [1], incorporated 451 

with their skill and experience could provide a technology-enhanced limb assessment. This approach 452 

will help the community to test the key translational research question in this field: can the clinical 453 
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application of FEA support the prosthetist’s evidence-base and enable delivery of comfortable, 454 

highly functional prosthetic limbs to users in a more timely and efficient manner? 455 

Conclusion  456 

This paper provides a first assessment of the use of multi-objective optimisation in the design of 457 

prosthetic socket design. The experiential judgement and skill-based process of prosthetic socket 458 

design is framed as a multi-objective engineering design problem. This is achieved by developing 459 

parametric models of the residual limb informed by statistical shape modelling techniques and the 460 

prosthetic socket incorporating both total surface bearing and patella tendon bearing rectifications, 461 

which allow the underlying biomechanical relationships between the residual limb and prosthetic 462 

socket to be predicted. In line with experimental data to allow detailed biomechanical validation, the 463 

developed methods show substantial potential to be used as part of a more informed socket design 464 

process, and provide clinicians with support for selecting from the range of candidate design 465 

approaches. The resulting designs replicate the general forms of the two most popular designs: 466 

patella tendon bearing and total surface bearing sockets, at the extremes with a series of variations 467 

that result in designs that are a compromise between both in the centre. This results in a difference 468 

in pressure of up to 31 kPa over the fibula head and 14 kPa over the residuum tip.  469 
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