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Abstract

In post-amputation rehabilitation, a common goal is to return to ambulation using a prosthetic limb,
suspended by a customised socket. Prosthetic socket design aims to optimise load transfer between
the residual limb and mechanical limb, by customisation to the user. This is a time consuming
process and with the increase in people requiring these prosthetics it is vital that these personalised
devices can be produced rapidly whilst maintaining excellent fit, to maximise function and comfort.

Prosthetic sockets are designed by capturing the residual limb’s shape, and applying a series of
geometrical modifications, called rectifications. Expert knowledge is required to achieve a
comfortable fit in this iterative process. A variety of rectifications can be made, grouped into
established strategies (e.g. in transtibial sockets: patellar tendon bearing (PTB) and total surface
bearing (TSB)), creating a complex design space. To date, adoption of advanced engineering
solutions to support fitting has been limited. One method is numerical optimisation, which allows
the designer a number of likely candidate solutions to start the design process. Numerical
optimisation is commonly used in many industries but not prevalent in the design of prosthetic
sockets.

This paper therefore presents candidate shape optimisation methods which might benefit the
prosthetist and the limb user, by blending the state-of-the-art from prosthetic mechanical design,
surrogate modelling and evolutionary computation. The result of the analysis is a series of prosthetic
socket designs that preferentially load and unload the pressure tolerant and intolerant regions of the
residual limb. This spectrum is bounded by the general forms of the PTB and TSB designs, with a
series of variations in between that represent a compromise between these accepted approaches.
This results in a difference in pressure of up to 31 kPa over the fibula head and 14 kPa over the
residuum tip.

The presented methods would allow a trained prosthetist to rapidly assess these likely candidates
and then to make final detailed modifications and fine-tuning. Importantly, insights gained about the
design should be seen as a compliment, not a replacement, for the prosthetist’s skill and experience.
We propose instead that this method might reduce the time spent on the early stages of socket
design, and allow prosthetists to focus on the most skilled and creative tasks of fine-tuning the
design, in face-to-face consultation with their client.
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Requirement of automation in design of prosthetics

Approximately 40 million people globally require access to prosthetic or orthotic services [2].
Prosthesis-human interface design aims to maximise comfort and functionality for people with
amputations, towards ambulatory rehabilitation. This is commonly provided through a prosthetic
socket, which is designed through geometric modifications to the captured shape of the residual
limb, known as rectifications, to create a desired pattern of load transfer. This is currently an
iterative process performed by a highly skilled prosthetist, who manages the residuum’s changing
size, shape, soft tissue healing and biomechanical adaptation. Indeed, due to these factors, the
development of a definitive socket takes a considerable period of time. Prosthetic limb users require
life-long access to prosthetics services, and in the UK the annual cost of prosthesis provision and
care is over £2,800 per patient [3]. This includes the replacement of prosthetic limb components
typically every two to five years. Skilled prosthetists take many years to train to a high standard and
often prosthetic users develop relationships with their preferred clinician to maintain socket
comfort. However, there are limited numbers of these highly skilled individuals and practice
efficiencies are required in the face of growing clinical demand. Researchers have considered
mechanisms for employing quantitative prediction in the socket design process [4, 5]], although at
present these work to a single design target for a single individual, and have not entered
conventional clinical use.

In Part One of this study [1], a Kriging-based surrogate model was generated for a parametric FE
model of a population-based transtibial residual limb and accompanying total surface bearing (TSB)
socket design. This enabled the prediction of biomechanical relationships between the residual limb
morphology and prosthetic socket design, while reducing the computational cost of each new
prediction by six orders of magnitudes (1.6 ms vs 30 minutes). The simplified total surface bearing
socket design was defined parametrically from the limb’s neutral shape, by reducing the cross-
sectional area along its length with three points at the proximal, mid and distal regions of the socket.
However, within a clinical setting, the socket design process is substantially more nuanced. There are
several different design philosophies, all with different intended residual limb load transfer
mechanisms. The classic patella tendon bearing (PTB) socket design was developed in 1957, and is
still commonly used in-clinic today [6]. This socket design aims to apply pressure over load-tolerant
areas of the limb such as the patella tendon, and off-load pressure sensitive regions such as the
anterior tibia, fibula head and residuum tip. Other sockets include the Kondylen-Bettung Miinster
(KBM) which provides supracondylar suspension in addition to features consistent with the patella
tendon bearing design [7], and hydrostatic sockets [8] such as the PCAST system [9—13] which uses a
pressurised fluid as a medium to form the shape of the socket with the aim of achieving minimal
residuum surface pressure gradients with less manual intervention. More recently total surface
bearing sockets, which were proposed in 1987, are used to generate near-total contact in between
the residual limb and the socket [14, 15]. In theory, this should maximise the contact area between
the residual limb and prosthetic socket and the uniformity of pressure across the surface of the
residual limb, thereby minimising potentially harmful pressure gradients [15].

Despite the fundamental differences in the load distribution between these socket designs, they can
potentially all deliver satisfactory outcomes for prosthesis users [16]. There is substantial research
into quantifying the biomechanical differences between these socket designs, which is
comprehensively reviewed by Safari and Meier in 2015 [17]. Their systematic review concluded that
“the included studies only had low to moderate methodological rigour”, thus demonstrating the
difficulties in defining biomechanical guidelines for the highly dynamic environment of the residual
limb — prosthetic socket system, or selection of the preferred socket type for a particular individual
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or situation. One possible reason for the difficulty in establishing the definitive guidelines of these
different socket types is that they are defined primarily by design intent, rather than quantitative
rules. This effect has been illustrated for a simple total surface bearing socket using parametric FEA
[1], and it is almost certain the within-type variability would be increased for more complex designs.
We propose that there is a large potential to enhance the evidence base behind this clinical
challenge, allowing prosthetists to develop, critique and share their own expertise and decision
making, making more effective use of their valuable design and consultation time. A key and
relatively unexplored possibility is to apply automated search algorithms to explore designs prior to
optimisation for the individual.

Optimisation algorithms are common in many areas of engineering to reduce design time. They are
commonly used as concept design methods, providing an initial product which engineers can use as
a starting point and to increase the proportion of their time spent on creatively solving complex
problems. In addition, they provide a visualisation for how these changes will affect the final
product’s performance, allowing a greater understanding of the design space which can be put to
use in the more detailed stages of the process. A choice of potential candidate designs can be
provided to the decision maker, which weight the objectives differently, for example putting more
load on the residuum tip and removing it from the fibular head, and therefore give a range of
performances. This requires algorithms capable of multi-objective optimisation that provide a rapid
convergence on the global optimum while retaining a high diversity of the search, to ensure that the
entire search space is investigated and that the focus is not upon local optima. Many methodologies
have been developed and state-of-the-art research focuses on improvements in diversity or
convergence.

This paper employs optimisation algorithms to generate personalised ‘candidate’ prosthetic socket
designs for the first time. This is applied to the transtibial case, which is the most common major
lower limb amputation and where most clinical success has been achieved with associated CAD/CAM
socket design and fabrication tools. Different design problems require different optimisation
processes. The aim is therefore to determine appropriate methods for the automated application of
candidate socket rectifications, collating the state-of-the-art in biomechanical analysis of prosthesis-
limb interfaces, surrogate modelling and optimisation. Genetic Algorithms are chosen due to their
ability to effectively search large and complex design spaces, which is the problem presented by the
continually variable distribution of possible limb-socket shape rectifications. These methods rely on
thousands of function calls, and using FE models would not be feasible beyond single cases due to
the time required for each simulation. However, by leveraging the speed increases of the surrogate
model [1], it becomes technically feasible to perform automated socket optimisation based upon
structural analysis of the limb-prosthesis system. This provides the motivation for the current study,
to perform a first-of-kind, subject-specific, multi-objective design optimisation of the prosthetic
socket using the previously reported surrogate model. The result will be a series of personalised
‘candidate’ transtibial prosthetic socket designs, to which the prosthetist would add local
modifications based upon their knowledge and conventional patient consultation. Finally, equipped
with these results, a prosthetist would then further refine these concepts to achieve a desired
pattern of prosthesis-limb load transfer, by using these designs to augment their experience-based
decision making.
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Optimisation of transtibial prosthetic sockets

Population-based surrogate model

A detailed description of the population-based surrogate model is found in Part | of this paper [1]. In
short, a generic residual limb was generated by producing a volume mesh from an MRI scan and
imposing radial basis function mesh morphing to apply parametric variation in residuum length and
profile (conical to bulbous) obtained from principal modes of variation from a population of 3D
surface scans. These were varied by +1 ¢ (standard deviation) about the mean length and profile in
the statistical shape model (SSM). Furthermore, internal parametric variation of the relative tibia
length (i.e. distal soft tissue coverage) from -15% to +30% of the tibia length from the MRI scan, and
soft tissue material properties between stiff, flaccid muscle and contracted muscle [18-20] were
applied. The soft tissue was assigned a neo-Hookean material to capture the non-linear behaviour of
the soft tissue. The present surrogate model implementation investigates the effects of socket
design variation for four synthetic ‘virtual’ people sequentially by selecting exemplar values for the
model’s residuum variability parameters (Table 1, Figure 1). These cases were chosen as being close
to the models’ population extremes whilst remaining within the bounding box of the sampling plan,
to avoid extrapolating beyond the surrogate. These meshes were imported into the finite element
solver (ABAQUS 6.14, Dassault Systemes, Velizy-Villacoublay, France). The socket was donned under
displacement control and loaded uniaxially to 400N to simulate a two-leg stance. The resultant
pressure and soft tissue strain outputs from 75 simulations were used to construct a kriging
surrogate model for each virtual person, enabling a function call to be made in ~2ms.

Table 1: Parameters of the four cases extracted from the parametric residual limb model. Soft tissue initial modulus
corresponds to the initial stiffness of the applied neo-Hookean hyperelastic material model.

Virtual Residuum length, v; | Residuum Profile, v, | Tibia Length, v;3 | Soft tissue initial
Person modulus, v,

A —0.8 o (Short) —0.8 o (Bulbous) +20% (Long) 40 kPa (Soft)

B —0.8 o (Short) +0.8 o (Conical) —59% (Short) 50 kPa (Stiff)

C +0.8 o (Long) —0.8 o (Bulbous) +20% (Long) 40 kPa (Soft)

D +0.8 o (Long) +40.8 o (Conical) —59% (Short) 50 kPa (Stiff)

Figure 1: Sagittal sections through equivalent residuum FE models for the four virtual people. Blue indicates the liner, red
the soft tissue, and grey the bones. The prosthetic socket is not shown.
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Parametric socket design

In the preceding work [1], a simplified, 3-parameter total surface bearing socket design was used.
This model enabled control of the socket press-fit by reducing its cross sectional area through a B-
spline function with proximal, mid and distal control points. The three variables were constrained
between -1% and 3% by cross-sectional area reduction [Part 1]. The present study’s socket design
was extended to include the localised rectifications observed in patella tendon bearing sockets.
Control points were generated over the fibula head, patella tendon and either side of the tibial crest
(Figure 2). These localised rectifications were applied using the same radial basis function mesh
morphing algorithm detailed in Part | by radially displacing the control points between 0 - 6 mm.

Table 2: Parameters and limits of the parametric socket design

Socket rectification variable name Lower bound Upper bound

Proximal press fit 2% +6%

Mid press fit -2% +6%

Distal press fit 2% +6%

Patella tendon bar 0mm 6 mm

Fibula head relief 0mm 6 mm

Tibial crest 0mm 6 mm
Anterior Lateral Posterior Medial

PT

S ¥ — y

' \FH/
TC/

o -
-6 -3 0 3 6
Socket Rectification, mm

\

Figure 2: Rectification maps of the patella tendon bearing socket design at the maximum values of patella tendon bar (PTB),
fibula head (FH) relief and tibial crest (TC) rectifications. The figure demonstrates the resulting socket shape change once
the control nodes have been displaced, and explains the convention directions of each rectification type (FH vs. PT & TC).

Optimisation via genetic algorithms

Genetic algorithms (GA) are population-based multi-objective solvers inspired by the principles of
Darwinian evolution [21]. In a simple Genetic Algorithm a set of potential solutions, called
individuals, reproduce via an evolutionary-like process. Each individual contains set of decision
variables, called chromosomes, with an initial population with variables that are usually assigned
randomly. The fitness of each individual can be evaluated according to some predefined objectives.
After this step individuals are then chosen for reproduction and, according to the principles of
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natural selection, the fitter individuals have significantly higher chances of reproducing than those
with a low fitness. Offspring are generated from the selected parents using crossover and mutation
processes. During crossover the chromosomes of the offspring are produced by mixing the genes of
the parents, providing convergence and diversity. In the mutation step the offspring’s genes have a
small chance to be randomly modified, improving the population diversity. Finally, the old
population becomes extinct and is replaced by the new generation, with the new generation being
fitter, on average, than the parent generation. This process continues until the predefined
termination condition is met, often specified as a maximum number of objective functions calls or
total calculation time.

Many competing genetic algorithms have been developed, each introducing novel mechanisms to
increase the convergence rates and diversity of the search. In the current state-of-the-art of GAs
there is particular emphasis on specialist-solvers. According to the “no free lunch” theorem [22], a
specialist-solver exhibits high performance on a narrow set of problems but its performance will
rapidly decline when outside of this set. Therefore, a suitable methodology has to be selected with
respect to the particular problem’s characteristics in order to avoid poor performance. The
optimisation problem characteristics and their difficulty are defined by the topology of the search
and objective spaces, number of local optima and the applied constraints. If the problem
characteristics are not known then more than one GA methodology should be applied as their
performance can differ drastically. This will provide more reliable results and allow an evaluation of
the problem’s difficulty and its dominant characteristics [23]. In the case presented in this paper, no
knowledge about the characteristic of the problem are available a priori, except that no constraints
are used. However, this is not sufficient to choose a single properly adjusted optimiser. Therefore, 5
different Genetic Algorithms are compared: NSGA-II as the most commonly utilised Genetic
Algorithm which retains a high diversity of search and has had much success in the applied literature
[24]; MOEA/D as the most proficient algorithm for unconstrained problems [25]; MTS as an
aggregation of a Genetic Algorithm and a local-search method which provides improved
convergence [26]; cMLSGA and HEIA as the general-type GAs that exhibit high performance across
wide range of problem types and therefore higher robustness [27, 28]. HEIA is more dominant in
scenarios where convergence is more important and cMLSGA provides a higher diversity of search.
The detailed principles of working and parameter settings of each methodology can be found in their
respective publications?. All the tests are performed over 30 separate runs, with 50,000 fitness
function evaluations as a termination criterion. Multiple runs must be performed in order to assure
the robustness of the method and the best likelihood of identifying the true Pareto Front. Different
population sizes have been tested and 600 individuals is utilised as the best for NSGA-II, MTS,
MOEA/D and HEIA, while cMLSGA utilises 1800 as it requires significantly higher population sizes
[29].

The socket design process presented in our prior work [1] can be framed as a formal engineering
design optimisation problem. In this case the individual socket rectifications function as design
parameters across a multi-dimensional input space, and the resultant pressure and soft tissue strain
fields are formulated as the objective functions. The locations across the limb for the objective
functions were selected because they are known to be load-intolerant [6]. It was predicted that the
introduction of a peripheral press-fit around the main body of the residuum will allow load transfer
through the longitudinal shear forces and thus reduce the residuum tip pressure, at the expense of
pressure concentrations over the bony prominences of the tibial tuberosity and fibula head. Four
state variables were defined: the pressure over the residuum tip (f;), the tibial tuberosity (f), the

1 Source codes for all methodologies can be found at: https://bitbucket.org/Paglc18/cmlsga
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fibula head (f3), and the soft tissue strain around the distal tibia (f;). These model outputs can be
described as competing fitness functions, indicating proximal and distal loading, defined as FF1 =
fi+ faand FF2 = f, + f5. These were evaluated using the surrogate model developed previously
[1] for the four synthetic people defined in Table 1.

One of the issues with multi-objective optimisation is the comparison of the results obtained by
different methods. The visual comparison is limited, only providing useful information when the
performance of two solvers differs drastically. Otherwise the points will overlap making objective
comparison near impossible. Therefore, multiple quality indicators have been developed [30]. Most
of them are able to indicate the performance in both convergence and diversity of the solutions.
However, each of them have certain drawbacks or biases and it is common practice to utilise more
than one indicator [30]. In this paper the Inverted Generational Distance (IGD) and Hyper Volume
(HV) were chosen as indicators. IGD measures the average Euclidean distance between each point in
a real Pareto Optimal Front (POF) and the closest solution in the obtained set. Lower values indicate
better convergence and uniformity of the points, and are calculated according to eq. 1:

IGD(A, P*) = %

where P+ is a set of uniformly distributed points along the true PF, A is the approximate set to the
POF, which is being evaluated and d(v, A) is the minimum Euclidean distance between the point v
and points in A.

However, this IGD shows poor performance in determining the diversity of a population when the
Pareto Front population is small. HV is calculated as the volume of an objective space between a
predefined reference point and the obtained solutions where higher values are preferred [30]. This
indicator has a stronger focus on the diversity and boundary points. Most indicators require a
predefined reference Pareto Optimal Front that illustrates the ideal set of solutions. However, in
cases where the optimal answer is not known the utilisation of these indicators can be problematic.
A solution is to calculate a reference Pareto Optimal Front using the non-dominated selection of
Pareto Optimal Fronts achieved by every algorithm when performing multiple runs, or performing a
few test runs with significantly higher numbers of iterations than that utilised for comparison [23]. In
this paper both are applied, and a combined non-dominated front obtained by brute force from all 6
Genetic Algorithms after 300,000 fitness function evaluations was used to determine the success of
the algorithm.

Results

A single Genetic Algorithm run with a maximum of 50,000 function calls was computed in
approximately 30 minutes, where Figure 3a shows the individuals evaluated over this lifetime and
the final Pareto Front. Comparing the different genetic algorithms, it was observed that the shape of
the Pareto Optimal Fronts remains consistent. Therefore, visual comparison only shows that all of
the methodologies exhibit similar performance and it is not possible to unanimously choose the best
methodology (Figure 3b). The bias between Fitness Functions FF1 and FF2 along the normalised
Pareto Optimal Front is visualised in Figure 3c. The reason the no-bias point is not in the middle of
the front is due to the longer ‘tail’ when minimisation is biased towards FF2 (minimising proximal
bony prominence loading), compared with bias towards FF1 (minimising distal tip loading). It was
also observed that while the minima of FF1 for all individuals plateaued at just below 20 (unitless),
the minima of FF2 were different for all of the virtual people (Figure 3d). The minima of the short,
conical limb of person B and the long, bulbous limb of person C plateaued at FF2 = 55 kPa and 40 kPa
respectively.
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Figure 3: Analysis of the Pareto fronts from the multi-objective optimisation. a) Individuals from a single run of the HEIA
optimisation for Person A, with all individuals plotted in blue and Pareto front in red. b) Comparison of the generated PFs
for the six different GAs tested on Person A. c) Bias along the Pareto front between the two fitness functions, with ‘no bias’
defined as the minimum distance from the origin to the normalised Pareto Optimal Front, with blue indicating bias towards
FF1 and red towards FF2. d) Comparison of the Pareto Fronts for the four different People when using HEIA

From visualisation of the sockets at either end of the Pareto Front, as well as the neutral case,
consistencies in design emerged across the four people (Figure 4). When the optimiser was biased
towards FF1 (minimising tip loading), designs of higher press fit which off-loaded the residuum tip
emerged from the Genetic Algorithm. For person B (Figure 4b) and person D (Figure 4d) pressure
hotspots were generated where there was little soft tissue coverage over the proximal bony
prominences. When the model was biased towards FF2, sockets with higher fibula head relief
evolved in order to off-load over this region.
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Figure 5: Comparison of how the socket design variables (see Table 2) changed between the four cases along the Pareto
Optimal Front. Blue denotes a bias towards FF1 (distal loading) while red denotes bias towards FF2 (proximal loading).

Trends in the designs can be observed between the competing fitness functions by visualising how
the optimal socket designs change along the Pareto Optimal Front (Figure 5). Across all virtual
people, the patella tendon bar variable converged at the constraint maximum of 6 mm for almost all
of the points along the Pareto Optimal Front. The exception was in Person D, with the longest and
thinnest residual limb. When the optimiser was biased towards FF1, a few designs evolved with the
patella tendon bar rectification at the 0 mm lower limit. This was offset by removal of the fibula
head relief to ensure that the pressure over the residuum tip is still minimised. A clear trend for all
virtual people was in the mid reduction in the socket, where the press-fit decreases along the Pareto
Optimal Front from FF1 (with the aim of minimising the distal loading) to FF2 (with the aim of

10
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minimising the proximal loading). By reducing the press-fit, the pressure over the bony prominences
and the peripheral shear both decreased, resulting in an increase in distal tip pressure and soft tissue
strain.

The performance of different methodologies was evaluated using the proposed indicators, IGD and
HV, and presented in the form of rankings with average values and standard deviations (Table 3). In
this case the algorithms all performed in the same manner for IGD and HV. HEIA and cMLSGA were
the best performing algorithms and MOEA/D and MTS performed the worst. However, the relatively
similar performances of all five algorithms indicates that the complexity of the presented cases are
low. The final Pareto Front was continuous and there were no constraints, which led to
convergence-dominated HEIA having the best performance, over cMLSGA and NSGA-Il. MOEA/D and
MTS perform less well. However, this may be due to a lack of hyperparameter tuning to the
particular problem. These two algorithms are dependent on a number of parameters which must be
optimised for each problem, and in the present work the authors used default values described in
the algorithms’ original papers. The MOEA/D and MTS algorithms may perform better once tuned,
now that a priori knowledge has been developed, but the present results indicate the caution with
which these algorithms should be used.

Table 3: Ranking of different genetic algorithms using HV and IGD as the performance indicators. * indicates if the results
are significantly different to the next lowest rank, using the Wilcoxon’s rank sum with a 0.05 confidence.

Rank 1 2 3 4 5
Algorithm HEIA* cMLSGA* NSGA-II* MOEA/D* MTS
IGD Average  0.029349 0.057565 0.1384 0.281601  0.590279
(S.D.) (0.001741) (0.001553) (0.139218) (0.158822) (0.049102)
Algorithm HEIA* cMLSGA NSGA-II* MOEA/D MTS
HV Average 0.174846 0.174475 0.174461 0.174094 0.168158
(s.D.) (0.000027) (0.000039) (0.000288) (0.000214) (0.000464)

Achieved PF 10
20 chieve
Real PF
0.8
65
8
60 g 0
o -
L [e)
5
L o4
55
0.2
50
0.0
20 30 40 0 100000 200000 300000
FF1 Iterations

Figure 6: a) The comparison of Pareto Fronts from Virtual Person 1, achieved using HEIA over 50,000 iterations (‘achieved’)
and 300,000 iterations (‘real’). B) The performance of HEIA over 300,000 iterations on Person 1. 0 is the starting population,
and 1 is the best attainable set of solutions, based on the IGD values, and the red line indicates the number of function calls
utilised in this study.
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In order to better understand the complexity of the problem, and to check if the best possible set of
solutions has been found, a set of 5 runs with 300,000 total iterations was conducted on each virtual
person, utilising HEIA. In this case hardly any difference was observed between 50,000 and 300,000
iterations. Figure 6a shows some very slightly higher uniformity and diversity of the points in the
high FF1 bias region with 300,000 iterations. When comparing the performance over the number of
generations in Figure 6b, virtually no improvement in performance can be seen after 50,000
generations and the highest performance gain occurred before 25,000 iterations. The low possible
performance increase beyond 50,000 iterations in this case would not justify conducting
optimisation of this problem with higher values, unless the virtual person is suspected to benefit
from an extreme reduction in pressure over the residuum tip and the soft tissue strain around the
distal tibia (FF1 bias).

Discussion

This study aimed to explore a range of potential concepts for transtibial socket design using FE
modelling, surrogate modelling and GA-based optimisation techniques, to provide a quantitatively-
informed starting point for the prosthetist when designing a bespoke prosthetic socket.

Exploring the parametric socket design space demonstrates that biomechanical objective functions
are in competition, and illustrates the challenges associated with defining the ‘best’ socket design
solution. As explored in our previous work [1], by increasing the socket press fit, particularly in the
mid-section, an increase in longitudinal shear around the main body of the residual limb was
predicted. This resulted in a pressure reduction at the residuum tip coupled to a reduction in the
internal strain around the distal tibia. By oversizing the socket (i.e. negative press-fit) these
peripheral shear forces were not generated, thereby increasing the distal pressure and soft tissue
strain. These represent the competing fitness functions inherent in prosthetic socket design.

Introduction of the patella tendon bar and tibial crest rectifications provided an alternative method
of off-loading the residuum tip beyond a uniform press-fit. Fibula head relief is predicted to be
effective in reducing the high pressure that was observed over this bony prominence for the total
surface bearing socket designs, thus reiterating the importance of localised shape change beyond
applying gross scaling to the limb shape [31].

The sockets that emerged from the Genetic Algorithm exhibited features of both total surface
bearing (TSB) and patella tendon bearing (PTB) manual socket design philosophies. One consistent
feature along the Pareto Front for all virtual people was the patella tendon bar rectification variable,
which saturated at its maximum limit. This is because no optimisation cost was associated with
applying pressure over this region, which the Genetic Algorithm exploited to off-load the high-cost
residuum tip region. This effect is observed clinically for the patella tendon bearing socket where
prosthetists produce a marked rectification over the patella tendon to leverage its load bearing
capacity. Although load tolerant, there clearly would be a load threshold for injury at the patella
tendon, so with enhanced spatial data of load tolerance across these key residuum locations [32] an
additional constraint of maximal patellar tendon pressure could be included in the optimisation
problem.

Along the Pareto Front of the best solutions, trends were predicted as the bias of the optimised
socket varied between the two fitness functions. When fitness function 1 was dominant and the
Genetic Algorithm aimed to minimise pressure and soft tissue strain at the residuum tip, sockets
with high levels of mid-height press-fit emerged from the model. Conversely, when fitness function 2
was dominant and the Genetic Algorithm aimed to minimise pressure over the proximal bony

12



365
366
367
368
369
370
371
372
373

374
375
376
377
378

379
380
381
382
383
384
385
386
387
388
389
390
391
392

393
394
395
396
397
398
399
400
401
402
403
404
405

406
407
408
409

prominences, the global press-fit was reduced and local relief over the fibula head was increased.
The sockets which minimised residuum tip pressure (FF1-biased) exhibited characteristics associated
with a total surface bearing socket design, whilst the patella tendon bearing rectifications were
dominant when minimising pressure over bony prominences (FF2-biased). While it is difficult to
validate these findings from the current literature, a systematic review of transtibial prosthetic
socket designs by Safari and Meier concluded that TSB sockets exhibited improved weight-bearing,
greater suspension and reduced pistoning, which may be, in part, due to the increased peripheral
shear from the TSB socket [16]. However, extensive experimental data collection is required to
validate such a hypothesis.

Differences in the Pareto Front were observed between the virtual people. While the minimum
value of fitness function 1 was consistent across the cases at just below 20, the minima of fitness
function 2 varied substantially. This result was to be expected based upon the results of the
population model where residuum morphology, in particular the residuum profile, had a substantial
effect on the pressure over the bony prominences.

A range of genetic algorithms proved effective in performing multi-objective design optimisation of
the socket by handling the complex task of simulating the interplay between rectifications on the
competing objective functions of the residual limb across the presented design space. In this case
the performance of all methodologies was comparable and it could be concluded that the utilisation
of several GAs was unnecessary. However, in this case the problem is rather simple to optimise, as
50,000 fitness function calls are sufficient to provide good approximation of the best Pareto Front,
and in some cases 20,000 was adequate. The problem has continuous search and objective spaces
which further indicates its simplicity [33]. However, as the importance of utilising multiple
methodologies has been shown by previous researchers [23], it is strongly advised here to follow this
procedure as good practice until the design space for transtibial prosthetic sockets is better
understood. In the future, as more variables and objectives are added to the search space, it is
expected that the topology of the design space will change and therefore provide an increasing
challenge to resolve the optimal points, and require review of the required GA parameters and
convergence limits.

The presented multi-objective design optimisation provides an early demonstration of how the
speed increases achieved by surrogate techniques enable the socket design process to be framed as
an engineering design problem. There are several potential improvements that could be
implemented within this process. One such approach may be a dual-level solver where the solver
starts with no data, runs a full simulation on a limited population of designs, creates a surrogate
from these designs and evaluates the fitness of a substantially larger group across the surrogate. The
elite individuals, the fittest individuals in the population which are often defined as the top 10%,
would be retained for the next generation and the process repeated. This approach would enable
the GA to ignore regions which are clearly sub-optimal, and instead prioritise expensive FE analyses
in regions where the minima of the fitness function is more likely to be found. As an alternative
approach, to prevent overfitting, the surrogate might be used to generate initial generations, and
more expensive FE analyses used at the end to select a preferred design from the options along the
Pareto Front.

Limitations

User satisfaction with the socket is ultimately a subjective measure dependent upon a range of
human factors such as comfort, pain thresholds, and proprioception arising from a firm, functional
prosthesis-skeletal coupling. This means that the predictions of pressure, shear stress and soft tissue

13



410
411
412
413

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429

430
431
432
433
434
435
436
437
438
439
440
441

442

443
444
445
446
447
448
449
450
451
452
453

strain are not directly related to comfort [34]. Furthermore, the model would not account for local
tissue sensitivities associated with neuromata and soft tissue injuries which could only be identified
in limb assessment by the prosthetist. This process might therefore be enhanced by surveying
functional and user-reported outcome measures across a population of socket designs.

No direct experimental validation of the underlying relationships between socket design and load-
transfer predicted by the model in this study has been performed, and such validation evidence
must be obtained prior to any clinical evaluation. Pressure and shear sensors [35] and lab-based
residuum-socket simulators [36] measure the interaction between the residual limb and socket, and
could be used to reinforce the findings of this study. As the model uses invented residual limb
shapes with thousands of socket designs, it is clearly infeasible to perform experimental validation
upon any more than a limited subset of data points in this model. However, in future, a limited
number of key socket designs should be tested to validate the conclusions of this model.
Furthermore, the population-based surrogate model only characterises a simplified representation
of the variability which exists across the population. As discussed previously [1], a practical
application of these tools requires further data to construct the surrogate model, for example
variation in femoral or patella geometry, bone and liner material properties, as well as dynamic load
cases. Some confidence is provided by corroboration with literature reports of pressure predictions
across the limb between 30-100 kPa during gait for TSB sockets [37—-40] and 25-320 kPa for PTB [40—
42], which is consistent with the range of predicted pressures for the FF1-biased sockets in this
study.

As the study is an initial investigation into the methods and potential it forms the basis for further
investigations that provide a more complex design. In increasing this complexity a number of
elements will change. First, the kriging model itself will become more complex providing some
challenges in the use of this model which must be investigated. Second, the design space will change
and this will provide a different set of optimisation challenges. In both instances the methods used
will need to be evaluated carefully. In the case of more complex design spaces, other surrogates
might become more appropriate, such as Deep Reinforcement learners. These are subject to a
disadvantage of requiring more input data. For the optimisation, it is likely that the space will
become more discontinuous [43], similar to other more complex applications, and this will require
algorithms with stronger diversity [23]: NSGA-Il and cMLSGA. There is also likely to be a greater
separation between specialist, which will have even further reduced performance compared to the
general solvers: NSGA-Il, cMLSGA and HEIA.

Clinical applications

Attempting to use simulations to inform clinical decision-making requires extreme caution,
especially when applied to devices which depend upon personalised design to ensure comfort and
functional efficacy, as comfort and proprioception are difficult to quantify. Crucially, in prosthetic
limb design we would argue that these techniques should not be used in isolation, or substituted for
human-facing clinical practice. The expert prosthetist must retain control over socket design, and the
presented optimisation approach could be used to provide a ‘first-guess’ rectification map. The
prosthetist would then modify this design according to their own clinical reasoning which combines
palpation, user feedback and re-evaluation. Other technologies such as real-time pressure
measurements and predictions from the previously reported PCA-Kriging model [1], incorporated
with their skill and experience could provide a technology-enhanced limb assessment. This approach
will help the community to test the key translational research question in this field: can the clinical
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application of FEA support the prosthetist’s evidence-base and enable delivery of comfortable,
highly functional prosthetic limbs to users in a more timely and efficient manner?

Conclusion

This paper provides a first assessment of the use of multi-objective optimisation in the design of
prosthetic socket design. The experiential judgement and skill-based process of prosthetic socket
design is framed as a multi-objective engineering design problem. This is achieved by developing
parametric models of the residual limb informed by statistical shape modelling techniques and the
prosthetic socket incorporating both total surface bearing and patella tendon bearing rectifications,
which allow the underlying biomechanical relationships between the residual limb and prosthetic
socket to be predicted. In line with experimental data to allow detailed biomechanical validation, the
developed methods show substantial potential to be used as part of a more informed socket design
process, and provide clinicians with support for selecting from the range of candidate design
approaches. The resulting designs replicate the general forms of the two most popular designs:
patella tendon bearing and total surface bearing sockets, at the extremes with a series of variations
that result in designs that are a compromise between both in the centre. This results in a difference
in pressure of up to 31 kPa over the fibula head and 14 kPa over the residuum tip.
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