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ABSTRACT 

Background 

Early cancer recurrence after oesophagectomy is a common problem with an incidence of 

20-30% despite the widespread use of neoadjuvant treatment. Quantification of this risk is 

difficult and existing models perform poorly. This study aimed to develop a predictive model 

for early recurrence after surgery for oesophageal adenocarcinoma using a large multi-

national cohort and machine learning approaches. 

 

Methods 

Consecutive patients who underwent oesophagectomy for adenocarcinoma and had 

neoadjuvant treatment in 6 UK and 1 Dutch oesophago-gastric units were analysed. Using 

clinical characteristics and post-operative histopathology, models were generated using 

elastic net regression (ELR) and the machine learning methods random forest (RF) and XG 

boost (XGB). Finally, a combined (Ensemble) model of these was generated. The relative 

importance of factors to outcome was calculated as a percentage contribution to the model. 

 

Results 

In total 812 patients were included. The recurrence rate at less than 1 year was 29.1%. All of 

the models demonstrated good discrimination. Internally validated AUCs were similar, with 

the Ensemble model performing best (ELR=0.791, RF=0.801, XGB=0.804, Ensemble=0.805). 

Performance was similar when using internal-external validation (validation across sites, 

Ensemble AUC=0.804). In the final model the most important variables were number of 

positive lymph nodes (25.7%) and lymphovascular invasion (16.9%). 
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Conclusions 

The derived model using machine learning approaches and an international dataset 

provided excellent performance in quantifying the risk of early recurrence after surgery and 

will be useful in prognostication for clinicians and patients. 
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INTRODUCTION 

 

Oesophageal adenocarcinoma carries a poor prognosis. Of the <40% of patients who are 

candidates for curative treatment(1), the 5-year survival rate remains approximately 25-50% 

in randomised trials(2–4) and rarely in excess of 50% in case series.  

 

Early recurrence (less than 1 year) after surgery is a feared outcome with rates of 20-30%(3–

5) frequently reported, despite the increasing uptake of neoadjuvant chemotherapy (NACT) 

and chemoradiotherapy (NACRT). This is particularly concerning because recovery from 

oesophagectomy is often long and the risk of major complications (Clavien-Dindo III-V) is as 

much as 31.1%(6).  Many patients have not recovered from their primary cancer treatment 

when they experience cancer recurrence. 

 

In an ideal setting prediction of early recurrence before embarking on a multimodal surgical 

pathway would provide the most useful information for patients and clinicians. However, 

staging information correlates poorly between pre- and post-operative settings(7), and 

genomic information is not yet able to predict outcome.  Even the most robust preoperative 

models for prediction have an average performance at best(8). In contrast, postoperative 

information, although not able to influence surgical treatment decisions, is more prognostic 

and potentially informative to patients. It may also be helpful in decisions on the merits of 

adjuvant therapy, further refining the “high risk” group of patients where novel adjuvant 

treatments are currently being considered. 
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Naïve logistic regression (LR) has been the dominant approach to binary outcome prediction 

in clinical medicine for decades. Adoption of modern modified regression and ‘machine 

learning’ (ML) techniques has been limited, in part due to concerns over computational 

complexity and reliability. However, an increasing body of evidence demonstrates that they 

outperform traditional techniques in predictive performance(9,10), although this is 

debated(11). In part, the appeal of these approaches lies in their ability to model complex 

non-linear relationships which are common in cancer data, and which are challenging to 

model effectively with logistic/linear approaches. The increasing accessibility of software 

design now also allows the relatively straightforward deployment of these ‘black-box’ 

techniques. 

 

Our group has previously published a multicentre UK cohort study which assessed survival 

according to Mandard Tumour Regression Grade (TRG)(12). This study included patients 

who had undergone oesophagectomy for adenocarcinoma of the oesophagus or gastro-

oesophageal junction (GOJ) preceded by NACT as part of the Oesophageal Cancer Clinical 

and Molecular Stratification (OCCAMS) consortium. A clinically meaningful response to 

NACT was limited to TRG 1-2 only, which represented ~15% of patients. In the current study 

we set out to use this database, supplemented with an international cohort from the 

Netherlands, and machine learning techniques to develop and validate a clinically useful 

predictive model for early recurrence in oesophageal adenocarcinoma.   



 

The EROC Model 

METHODS 

Ethics 

The OCCAMS consortium is a UK-wide multicentre consortium to facilitate clinical and 

molecular stratification of oesophagogastric cancer with ethical approval for biological 

sample collection and analysis in conjunction with detailed clinical annotation (Research 

Ethics Committee number: 10/H0305/1). Data collection and participation in research was 

approved by Institutional ethics committees at each OCCAMS site and UMC Utrecht. 

 

Source of Data 

Data was sourced from 6 tertiary oesophago-gastric centres in the UK, as previously 

described(12). Briefly, the records of consecutive patients from each centre between 2000 

and 2013 who underwent a planned curative oesophagectomy for adenocarcinoma and also 

received NACT (platinum-based triplet or cisplatin and 5-Fluorouracil) were reviewed and 

collated. Treatment was decided by a Multi-Disciplinary Team in individual institutions. 

Neoadjuvant treatment was considered for patients with locally advanced (cT2+) or node 

positive disease according to local and national guidelines. Clinical, pathological, recurrence 

and survival data were recorded. Data from one of the original centres was incomplete to 

the extent that modelling could not take place and was excluded a priori. In order to include 

NACRT as a factor in the model further patients were identified from University Hospitals 

Southampton (UHS) and University Medical Centre Utrecht (UMCU), where CROSS type 

NACRT(4) has been standard of care for oesophageal adenocarcinoma for a number of 

years. Patients who were deemed irresectable at the time of surgery or who had metastatic 

disease on the postoperative histology (i.e. pM1) were excluded from analysis. 
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The primary outcome measure was early recurrence, defined as confirmed local, regional or 

distant recurrence at less than 1 year from the date of surgery(5,8,13). Missing Data was 

treated as being missing completely at random and handled by list wise deletion. Modelling 

was based on a complete case analysis.  

 

Predictor Characteristics 

Univariate statistics were calculated using Mann Whitney U and Chi-Square test for non-

parametric data. The predictive models were generated on the whole dataset (n=812).  All 

available variables were included in the analysis. The circumferential resection margin 

(CRM) was considered to be involved (and hence R1) in line with Royal College of 

Pathologists guidelines (i.e. CRM <1mm is positive)(14). Tumour grade and TRG(15) were 

assessed by dedicated gastrointestinal histopathologists who were blinded to clinical data.   

TRG was considered as responder (TRG1-2) vs non-responder (TRG 3-5) in line with our 

previous publication using this dataset(12). To increase the yield of information from lymph 

node data, both the number of positive lymph nodes and total lymph node harvest were 

considered as absolute number. For the regression model, linearity was assumed for 

continuous variables. Explicitly, the variables used to predict outcome were; gender, age, 

location of tumour, type of neoadjuvant therapy, response to neoadjuvant therapy (TRG), 

ypT, lymphovascular invasion, completeness of resection, grade of differentiation, number 

of positive lymph nodes and total number of lymph nodes examined. 

 

Model Building and Validation 

We elected to use elastic-net regularized logistic regression (ELR)(16) along with two 

machine learning techniques; Random Forest (RF)(17) and Extreme Gradient Boosting 
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(XGboost, XGB)(18). ELR applies a combination of the ‘ridge’ and ‘lasso’ penalties(19,20) 

with the benefits of both (partly minimisation of overfitting and variable selection). RF 

combines a specified number of decision trees (typically around 1000) created on random 

subsets of the dataset and is probably the most widely used machine learning approach in 

medical literature. XGB attempts to improve sequentially by generating models to explain 

where the original model fails and then repeating this process (typically around 1000 times), 

while simultaneously applying regularisation to minimise overfitting. Having generated 

individual models, we then combined them to generate overall predictions(21), an approach 

which theoretically is particularly beneficial when using diverse model types (such as those 

described above) that capture different elements of patients’ risk profiles. 

 

For ELR, the optimal alpha and lambda hyperparameters (penalty severities) were selected 

by grid-search using 10-fold cross validation with 5 repeats during model generation and 

‘log-loss’ as the metric for optimisation. The RF model was derived from 1000 decision trees 

and hyperparameter tuning was conducted in a similar fashion (for number of variables per 

tree, split rule and minimum node size). The XGB model was again derived by cross 

validation of hyperparameters (number of optimisation rounds, maximum tree depth, 

minimum weight in each child node, minimum loss reduction (gamma), regularization 

penalty (eta) and subsampling for regularization). Full details of hyperparameter tuning is 

given in the supplementary materials (S7). These three models were then combined to 

generate the final (ensemble) model by generating a linear blend of predicted probabilities 

using logistic regression. 
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Discrimination of the models was assessed using the area under the receiver operator 

characteristic (ROC) curve (AUC). In the context of this paper, if two random patients were 

selected, one with a recurrence of cancer at less than 1 year and one disease free at 1 year, 

the AUC is equivalent to the probability the model will score the patient with recurrence 

higher than the patient without. Internal validation was performed using 0.632 

bootstrapping, with 1000 resampled datasets. Bootstrapping was preferred for internal 

validation over splitting the cohort into derivation and validation sets, as this has been 

shown to reduce bias and improve overall model performance, particularly with moderately 

sized datasets(22–24). Calibration was assessed visually and formally with the Hosmer-

Lemeshow Test. As our dataset contains multiple centres with small numbers of patients, 

we also opted for an internal-external validation procedure, as advocated by Steyerberg and 

Harrell(25).  This entails generating models on all centres apart from one and validating the 

model on the remaining centre. This process is then repeated leaving each centre out 

sequentially and an average calculated. This method demonstrates how the model performs 

in external data while also allowing the whole dataset to be used for training. 

 

Unadjusted tree models (such as RF, which is included in the Ensemble) and other maximum 

margin methods typically calibrate poorly as a consequence of their methodology, with 

predicted probabilities biased towards the centre. To allow meaningful interpretation of 

probability, Isotonic regression was used to scale probabilities on the final model, as has 

been previously described(26,27).  

 

In contrast to logistic regression, assessing global variable importance is challenging using 

machine learning techniques and to an extent they are ‘black-boxes’. As coefficients, as 
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would be seen in a logistic regression, are not used an alternative method is required. We 

used the ‘VarImp’ function of the caret R package, where ROC curves are generated for the 

outcome for each individual predictor and the contribution to the global ROC curve 

calculated as a percentage. Due to the nature of higher-order interactions present in the 

model, variable importance in individual predictions must be calculated independently. We 

calculated the average marginal contribution of each variable (change from the mean 

prediction i.e. the Shapley value(28)) for individual predictions. A similar approach was used 

by Nanayakkara et al. for analysing in-hospital mortality following cardiac arrest(29). 

 

Data analysis was conducted using R (Version 3.5.3, The R Foundation for Statistical 

Computing). Models were trained using the ‘caret’(30)  and ‘caretEnsemble’(31) packages. 

Individual variable importance was calculated using ‘iml’(32). All are available at 

https://CRAN.R-project.org/. Full R code to train the models as described is given in the 

supplementary materials (S7), along with a list of packages used. 

 

The calibrated final model was designed using R Shiny(33) and is available freely at: 

https://uoscancer.shinyapps.io/EROC/. No data entered into the model is collected or 

stored. 

  

https://cran.r-project.org/
https://uoscancer.shinyapps.io/EROC/
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RESULTS 

 

A total of 812 patients from 7 centres were included in model training. A consort diagram 

detailing patient numbers and the final sample size is presented in Figure 1. 

 

Most patients were male (84.6%), with a median age of 64 years. The majority of tumours 

were at the GOJ (55.5%), with a high proportion of locally advanced (ypT3-4 – 66.8%) and 

node positive disease (61.0%). First recurrence of cancer within 1 year of surgery was 

identified in 236 patients (29.1%). The early recurrence group were significantly less likely to 

have responded to neoadjuvant treatment (8.5% vs 21.7%), and had worse ypT, ypN, 

lymphovascular invasion, R1 resection rate and grade of differentiation (all p<0.001). 

Detailed group clinicopathological data is shown in Table 1. 

 

Model performance (discrimination) 

Discrimination was assessed in the training set, internally (via bootstrapping) and internally-

externally (across centres).  ROC curves of the internal validation of each model are shown 

in Figure 2. All models demonstrated excellent discrimination on the training set (apparent 

discrimination), with the Random Forest Model performing the best (AUC 0.98), followed by 

the Ensemble model (0.90), XGB (0.85) and ELR (0.81). On internal validation, the Ensemble 

model had the best performance (AUC 0.81) and the ELR the worst (AUC 0.79). Overall 

discrimination for each model is summarised in table 2.  
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Model performance (calibration) 

 

Calibration on the training set was visually best in the ELR, and worst in the RF and 

Ensemble models (supplementary materials). This was corroborated by the Hosmer 

Lemeshow test (p value ELR=0.806, RF=<0.001, XGB=0.030, Ensemble=<0.001). Probabilities 

generated by the final model were scaled using isotonic regression. Calibration before and 

after scaling is shown in Figure 3 (shaded area represents two standard errors, calibration 

tables in supplementary materials). The Hosmer Lemeshow test before scaling gives a Chi2 

of 38.0 and p<0.001, and after gives Chi2 of 4.5 and p=0.806. Similarly, the Brier score (a 

measure of overall model performance) also improves from 0.119 to 0.114. 
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Variable Importance 

Coefficients and odds-ratios cannot be generated for these models. We therefore computed 

variable importance as a percentage contribution to the model. The results are displayed in 

Table 3.  

 

Overall the most influential predictor variable is number of positive lymph nodes (25.7%), 

followed by lymphovascular Invasion (16.9%). There is considerable variability in 

importance across models. For example, Age contributes 0.3% to the ELR model, 18.2% to 

the RF model, 10.2% to the XGB model and 9.6% to the Final model.  

 

It is important to restate that the relationships between the variables and outcome are non-

linear and their importance varies considerably according to other variables due to higher 

order interactions. As an example, even though lymph node status is the most influential 

marker overall, there are combinations of other variables that would make other variables 

most important in individual patients. To illustrate this and demonstrate how variables 

interact, three example patients are considered below. The technique used measures the 

change in the prediction from the mean prediction (27.1%) that can be attributed to each 

predictor variable. This approach (calculation of the Shapley value) originates from 

cooperative game theory. 

 

Example 1: Low Risk Patient (AJCC ypT0N0M0: Stage 1) 

50 year old Male with a GOJ adenocarcinoma who undergoes neoadjuvant chemoradiotherapy. On 

postoperative pathology he is a responder with ypT0, negative lymphovascular invasion, R0 resection and a 

well differentiated tumour. He has 0 positive lymph nodes out of 30 sampled. 
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Example 2: Medium Risk Patient (AJCC ypT3N0M0: Stage 2) 

66 year old Male, with an Oesophageal adenocarcinoma who undergoes neoadjuvant chemoradiotherapy. On 

postoperative pathology he is a non-responder with ypT3, positive lymphovascular invasion, R0 resection and a 

moderately differentiated tumour. He has 0 positive lymph nodes out of 30 sampled. 

 

Example 3: High Risk patient (AJCC ypT3N2M0: Stage 3b) 

70 year old Female with an Oesophageal adenocarcinoma who undergoes neoadjuvant chemotherapy. On 

postoperative pathology she is a non-responder with ypT3, positive lymphovascular invasion, R1 resection, 

Poor differentiation with 5 positive lymph nodes out of 30 sampled. 
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DISCUSSION 

 

In this study we have derived an easy to use and robust clinical model for predicting the risk 

of early recurrence after surgery for oesophageal adenocarcinoma. It uses routinely 

collected clinical and pathological data which should be available for every patient, which 

together allow considerably more precision in risk estimation than would be possible using 

individual variables which are known to be influential such as pathological lymph node 

involvement. The final model demonstrated excellent discrimination, and validation 

techniques supported the generalisability of the approach. 

 

In addition to prognostication, this model may be useful for planning adjuvant therapy.  

Early recurrence after oesophagectomy, often before recovery from surgery is complete, is 

a devastating outcome for patients.  Targeting existing and emerging treatment 

combinations in this patient group to prolong time to recurrence or prevent recurrence is 

vital, however can only happen with accurate predictions of the likelihood of relapse. The 

starting point for the consideration of treatment escalation or novel combinations (e.g. 

immunotherapy) after surgery is the identification of patients who are at high risk of 

recurrence. We have purposefully avoided dichotomization/stratification based on outcome 

and presented raw probability in preference to this. This will allow full discussions between 

surgeons/oncologists and patients to take place regarding the benefits of adjuvant therapy 

and tailored to individual patient’s post-operative recovery and wishes. It may also allow 

stratification of adjuvant trials based on layered levels of risk. 
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This cohort exhibited an early recurrence rate of 29.1%, which is similar to previous reports 

where this outcome was explicitly specified(3–5,8). There was also an R1 resection rate of 

29.1%, in line with previously reported data(34,35) with an RCP definition of CRM positivity 

(CRM<1mm involved). On univariate analysis all factors expected to correlate with worse 

prognosis (including ypT, ypN, lymphovascular invasion, R1 resection and grade of 

differentiation) were significantly worse in those patients who developed an early 

recurrence.  This validates our cohort as a true representation of contemporary practice and 

a sensible place to begin building more complex models. 

 

Discrimination of the different models was similar, with minimal variability of AUC between 

models on validation. However, the ensemble model consistently performed the best and is 

a suitable choice for the final model. The decline in performance from the training set to 

validation, which was particularly marked in the RF and ensemble models, is a consequence 

of the tuning process, whereby the optimum values are chosen from a grid of thousands 

after repeated tests (in this case repeated 10-fold cross validation). In this setting, the 

apparent performance of the model on the training set is over-estimated and should be 

disregarded. 

 

There was marked heterogenicity in variable importance between models. This is 

interesting, particularly in the context of the models performing so similarly overall and 

supports the idea of combining them to capture different patient information. The most 

important variables overall were number of positive lymph nodes and lymphovascular 

invasion, accounting for 42.6% of performance. This is not only biologically sensible, but the 

subject of several recent publications and ongoing translational work(12,36,37).  Although 
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not available for this study, more detail regarding lymphadenopathy – e.g. downstaging and 

anatomical location would likely be informative.  Firm conclusions regarding variables are 

difficult considering the nature of the study. However, we would draw attention to two 

facets of the model. Firstly, TRG was the least influential variable across the board, with an 

importance of almost 0%. This suggests that in itself TRG adds no information over the other 

measured variables in predicting early outcomes. This is in keeping with emerging data 

regarding the genomic disparity between primary tumours and their metastasis (lymph 

node or distant) and our previous report of the importance of lymph node downstaging to 

clinical outcome(12,38). Secondly, modality of treatment was the third most important 

determinant of outcome, with NACT conferring an advantage over NACRT. In this cohort, 

despite having considerably more favourable postoperative pathology after NACRT, the rate 

of early recurrence was no less, and borderline higher (NACRT 35.5%, NACT 27.5%, p = 

0.061, Supplement 4).  This suggests that although there is more favourable post-operative 

pathology seen with NACRT, this does not translate to better outcome(39–41) and hence a 

ypT3N1R0 after NACT does not have the same meaning as a ypT3N1R0 result after NACRT, 

at least in the early period after treatment. This is important in postoperative discussions 

with patients. As the machine learning approaches detailed here allow interactions 

between variables, the model suggests that NACRT confers a greater risk – but this 

increased risk is conditional on the other variables being static rather than an overall 

increase in risk from having NACRT.   

 

To further explore this, details of recurrence location (i.e. loco-regional vs distant) would 

be informative, however due to the historical nature of the majority of the patients (data 

collected for the first study) we were unable to reliably ascertain this for the majority of 
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the cohort. The concern with NACRT is that improved locoregional control is at the 

expense of undertreatment of microscopic distant disease, particularly where the 

radiotherapy field is limited anatomically (e.g. with GOJ tumours). The expected 

consequence of this would be fewer loco-regional recurrences and more distant 

recurrences, although this has not been demonstrated in other comparative studies and a 

recently published RCT(41).  

 

This study lacks the number of patients to discretely analyse this relationship, however 

using individual variable importance calculation (available in the web app), the relative 

negative influence of NACRT (i.e. increased risk of recurrence compared to NACT) is on the 

whole more pronounced in GOJ tumours compared to Oesophageal tumours (an example 

of a 2nd order interaction), despite the recurrence rate being higher in Oesophageal 

compared to GOJ tumours. 

 

Other risk factors for early recurrence including  perioperative blood transfusion(42), 

complications of surgery(43) and preoperative staging were not available for this study, but 

are less discriminatory. Precise neoadjuvant regimens were not available for all patients in 

this study. It is therefore unclear if these results would be influenced by completion of 

treatment as prescribed, or indeed any adjuvant therapy given. This seems to have minimal 

effect on the model and suggests a small margin of effect on outcomes. Combining these 

factors could potentially increase the performance of our model if incorporated in the 

future. Ultimately, differential gene expression and mutation(44,45) may well determine 

prognostication and treatment pathways(46), but we are likely years from this being 
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universally available. Until then clinical and histopathological data remains the gold 

standard. 

 

In that context, gains from mathematical and computer-based techniques are key to 

precision in delivery of cancer care. Here we have demonstrated several modern 

approaches that produce viable models. This study uses a dataset which is relatively small 

and simple in a ML context, and the improvement in performance over a standard LR is 

small (internal validation AUC 0.781). This is none-the-less important as this improvement is 

in effect ‘free’. The strengths of this study lie in its multi-centre nature and heterogenicity of 

the cohort. This approach should maximise the utility of the model on external populations. 

All the data points used should be collected routinely at the majority of institutions, which 

should allow uptake without change in practice. The College of American Pathologists (CAP) 

definition of CRM positivity (i.e. CRM positive if tumour at the resection margin) was 

derivable for Centre G and performance was preserved in this subgroup if used instead of 

RCP definition (AUC of 0.813 with model generated on centres A-F (n=650) and validated on 

centre G (n=162), supplementary materials 5), supporting utility in both settings. We have 

also focussed on predictive model study design and reporting as suggested by the AJCC(47) 

and TRIPOD statements(48).  

 

The training set was limited to patients undergoing neoadjuvant therapy for 

adenocarcinoma of the oesophagus. We have made no attempt to apply the model to a 

chemotherapy naïve population, and it is unlikely to calibrate well in this group due to the 

differing influence on survival of ‘yp’ compared to ‘p’ staging(49). It is also unclear if the 

model would be valid in patients with squamous cell carcinoma and we would advocate an 
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early external validation exercise using this patient group. A formal prospective 

validation/recalibration using the CAP definitions of CRM positivity would also be beneficial. 

Simulation studies have suggested that 100 – 200 cases (i.e. positives) are required for 

accurate validation(50), which assuming a stable incidence would require approximately 380 

– 760 patients. A further limitation was the significant proportion of the original cases with 

missing data, which will have introduced a degree of selection bias. Multiple imputation is 

possible as a means of addressing this, however, was felt less appropriate in this study due 

to the high proportion of missing data being in the outcome measure and the lack of an 

external validation set. 

 

Conclusion 

 

This large, multicentre cohort of patients who underwent oesophagectomy has been used 

to derive an accurate prediction model for early cancer recurrence, with excellent 

performance on validation. Machine learning techniques represent an attractive proposition 

for maximising performance of predictive models. The model is presented for use at 

https://uoscancer.shinyapps.io/EROC/. 

  

https://uoscancer.shinyapps.io/EROC/
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