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Abstract
The present work describes latest advancements in the context of high-fidelity nu-
merical simulations of flow through porous media in a hypersonic freestream. The
aim of this work is to find an appropriate solution to the challenging requirement
of accurately resolving complex multiscale flow features combined with minimum
computational cost, as well as to design a methodology that allows predictive ca-
pabilities for the aerothermal design of new-generation thermal protection systems
(TPS) for hypersonic vehicles. The requirement of an accurate and reliable so-
lution which captures the main physical insights of the flow is particularly strict
when dealing with hypervelocity flows, because of the dramatic consequences that
aerodynamic heating and transition to turbulence have on the vehicle structure in-
tegrity in this flow regime. A numerical study is presented which investigates,
through direct numerical simulation (DNS) of the Navier-Stokes equations, the
main characteristics of a hypersonic flow at Mach 5 over a flat plate with coolant
injection provided from a layer of distributed porosity that mimics the properties
of a real porous material sample used in a ground-test experiment. The numerical
simulations are performed using a 6th-order hybrid WENO-central scheme, with
a structured adaptive mesh refinement (SAMR) technique that provides adequate
grid resolution in the very small scales of the porous region. A regular arrange-
ment of staggered cylinders is considered to model the porous structure, and the
correlation between pressure drop and flow rate across the porous layer is simu-
lated for different cylinder diameters and at the same experimental flow conditions.
In particular, based on a former computational study available in the literature, a
multiscale numerical methodology is developed and assessed for inner particle di-
ameters from 12 µm up to 96 µm, which allows an equivalent Darcy-Forchheimer
behaviour relative to a real small-scale porous sample to be replicated by a porous
layer with significantly higher pore scales.
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1 Introduction

In hypersonic flows, where aerodynamic heating compromises the vehicle structure in-
tegrity, the film cooling technique [1, 2] represents a valid solution to suppress the heat
loads experienced by the surface material. This technique is aimed at injecting coolant
in the hot boundary layer to form a thin film of cold fluid adjacent to the wall, thus re-
ducing the wall heat flux. We can distinguish two different injection strategies, namely
effusion cooling [3, 4], and transpiration cooling [5, 6]. The former provides injection
through localised holes, and is typically used for thermal protection of turbine blades
surfaces, in which cooling occurs through a turbulent mixing layer. The latter, in con-
trast, takes advantage of the transpiration capabilities of a porous material to provide
a more uniformly distributed coolant film. Due to the enhanced heat exchange occur-
ring between the coolant and the structure through the multiple pores of micrometer
dimension [6], the transpiration cooling systems represent an efficient solution to the
aerodynamic heating.

In a supersonic-hypersonic flow, however, the wall cooling requirement combines
with the requirement of increasing the laminar run of the boundary layer, i.e. delay-
ing transition. For this reason, injection through two-dimensional slots is in general
preferred, as it reduces the 3D effects associated with hole injection [7, 8, 9]. This
suggests that for transpiration cooling systems the homogeneity of the injected flow
over the surface as well as the injection velocity, or the blowing ratio, assume a very
important role for the stability characteristics of the boundary layer, and the associated
cooling performance.

Accurate analysis and prediction of the cooling performance as well as the effects
on the boundary-layer stability are needed to enable the correct design and optimisation
of an efficient transpiration cooling system for hypersonic vehicles. This requires the
details of the flow features at the pore scale to be accurately captured by a numerical
study, without the need of simplified theoretical or empirical models that account only
for a certain number of parameters and are generally dependent on certain specified
conditions. For example, among the several models available in the literature describ-
ing the Darcy-Forchheimer drag opposed by a porous material to the traversing flow
in the presence of a pressure drop, Ergun’s empirical model [10] is known to provide
good results for certain geometrical microstructures of the porous layer, i.e. for gran-
ular media as in the case of packed beds of spheres, and dependent on the range of
porosities. The coefficients defined in the model change, in general, when different
geometries are considered. Another factor influencing the accuracy of the model is the
roughness of the solid particles, as shown by Macdonald et al. [11], in their revision
of Ergun’s equation. Several correlations between pressure drop and flow rate have
been developed by different authors, which mostly differ in the coefficients provided
to weight the two contributes of the friction drag and the pressure drag, namely the
Darcy and the Forchheimer drag, respectively. A comprehensive list of the correlation
models is provided by Erdim et al.[12], who specify also a Reynolds number range of
application of Ergun’s model [10].

The difficulty in deriving a universal model of the pressure drop - flow rate corre-
lation stands mainly in the description of the permeability (K) of the interior material
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structure. The well-known permeability model developed by Kozeny [13] correlates
the permeability to the porosity (ε) and to the specific surface area per unit volume
of the pores (S) through a dimensionless constant (c0) called Kozeny constant. If the
porosity is known for a given porous sample, an accurate estimation of the pore sur-
face area is in general very difficult, especially for complex pore geometries, as in the
case of the rocks and the porous materials studied in geological sciences. Moreover,
although a value of 1/5 is generally considered for the Kozeny constant, it is obviously
not universal, and will change for pores with different geometrical characteristics. A
numerical study of the Kozeny constant for random packings of spheres as well as for
a soil sample can be found in [14], in which it is shown that the Kozeny constant varies
with the sphere radius.

The Kozeny model was then modified by Carman [15], who provided a more gen-
eral form of the model introducing the dependence on the average path length of the
streamlines through the porous layer, i.e. the tortuosity. However, again, it is not simple
to measure the tortuosity of a material and there exists no universal law that gives the
correct tortuosity given a material with certain properties. A numerical study aimed at
evaluating the dependence of the tortuosity from the porosity was given by Matyka et
al. [16], in which the authors fitted their numerically obtained data at different porosi-
ties to four different tortuosity-porosity models provided by other authors, each one
dependent on a adjustable parameter.

Hence, due to the several parameters influencing the accuracy of a model in porous
geometries of different complexity, the capability of predicting the Darcy-Forchheimer
behaviour by directly simulating the flow through the porous structure plays an impor-
tant role, especially in the presence of the complex hypersonic flow physics interacting
with the surface of the porous material. However, the main challenges of the simulation
approach can be summarised as i) the difficulty of reproducing in the computational
mesh the exact internal geometry, and ii) the computational cost associated to the small
micrometer scales of the interior pores, in particular in the case of direct numerical
simulations. In the case of a relatively simple internal porous structure, e.g. random
packagings of spheres, different computational studies [17, 18, 19] have shown that
an arrangement of staggered cylinders with constant radius in two-dimensional (2D)
simulations provides in general good results in agreement with the empirical model of
Ergun’s model over a wide range of porosities. In the work of Lee and Yang [18], in
particular, the authors adopt a numerical model of a single pore cell in virtue of the
periodicity of the flow inside a regular bank of staggered cylinders, and obtain results
in a very good agreement with Ergun’s model for a wide range of granular Reynolds
numbers and for different porosities.

The objective of our study is to present and assess a methodology, based on Lee and
Yang’s approach [18], which allows multiscale simulations of the flow through porous
media in a hypersonic freestream. The aim of this multiscale methodology is to mimic
the Darcy-Forchheimer behaviour of a real experimental porous material, characterised
by very small pore length scales, by means of a porous layer with significantly higher
pore scales that develop an equivalent Darcy-Forchheimer drag. Such an approach
would make direct numerical simulations of the flow through porous media affordable,
thus allowing the complex flow features of injection in a hypersonic boundary layer
to be accurately resolved without the need of simplified models. A validation is first
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performed against the results of Lee and Yang [18] for a case with no crossflow on
the surface of the porous layer, then a relation for the pressure drop in function of a
characteristic Reynolds number is derived, which enables rescaling of the pore size for
an equivalent Darcy-Forchheimer bahaviour. The multiscale methodology is assessed
with application to a real reference experimental case.

2 Numerical method

2.1 Governing equations
We consider numerical solutions of the three-dimensional Navier-Stokes equations for
compressible flows, written in conservation form, under the assumption of a perfect
gas. The set of non-dimensional conservation equations in Cartesian coordinates can
be written as

∂ρ

∂t
+
∂ρuj
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The terms ρ, ρu, ρv, ρw and ρE are the conservative variables of the system of
equations, where ρ is the density, u, v and w are the velocity components respec-
tively in the x-, y- and z-direction, and E is the total energy per unit mass. In the
flux vectors, the terms p, T , τij , and µ are respectively the pressure, the tempera-
ture, the components of the viscous stress tensor, and the dynamic viscosity of the
flow. The non-dimensional quantities are obtained through normalisation of the di-
mensional variables with their freestream reference values: the velocity components
are normalised with the freestream main velocity (U∗∞), the density is normalised with
the freestream density (ρ∗∞), the viscosity is normalised with the freestream dynamic
viscosity (µ∗∞), the temperature is normalised with the freestream temperature (T ∗∞),
the total energy is normalised with the square of the freestream mean velocity (U∗2∞ ),
while the pressure and viscous stresses are normalised with the term ρ∗∞U

∗2
∞ , related

to the freestream dynamic pressure. Note that the superscript (∗) is used to denote
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dimensional values. The characteristic length chosen to normalise the length scales is
the boundary-layer displacement thickness (δ∗). The time scales are normalised with
respect to the fluid dynamic characteristic time (δ∗/U∗∞), based on the velocity of the
undisturbed flow and on the characteristic length. The terms Re, Pr, M , and γ are
respectively the Reynolds, Prandtl and Mach numbers, and the ratio of specific heats
(γ = c∗p/c

∗
v), i.e. the dimensionless parameters of the flow. The Reynolds number

is defined with respect to the boundary-layer displacement thickness of the similarity
solution, as Re = (ρ∗∞U

∗
∞δ
∗)/µ∗∞; the Prandtl number is set to 0.72 for air, and γ is

equal to 1.4, as we are considering a perfect gas model. The dynamic viscosity of the
mixture is expressed by means of Wilke’s rule as,

µ =
∑
k

Xkµk∑
lXlφkl

, (5)

and the mixture thermal conductivity as,

κ =
∑
k

Xk
µkcp,k

Prk∑
lXlφkl

, (6)

in which the viscosity of each species is computed through the power law as µ∗k =
µ∗k,∞ (T ∗/T ∗∞). In relations 5 and 6, the term Xk represents the species mole fraction,
which can be expressed as,

Xk =

ck
Mk

c1
M1

+ c2
M2

, (7)

where Mk is the molecular weight of the k-species. Note that we are considering a
mixture composed by only two species, i.e. a binary mixture, for which k = 1, 2, and
l = 1, 2. The term φkl is a function of each species viscosity and molecular weight,
which is defined as,

φkl =
1√
8

(
1 +

Mk

Ml

)−1/2
[

1 +

(
µk
µl

) 1
2
(
Ml

Mk

) 1
4

]2

. (8)

To complete the definition of the transport properties of the mixture we need to define
the mixture diffusivity, D, which is expressed as a function of the local temperature
and pressure through the relation [20],

D = D1,2 = 0.0018583

√
T 3
∑
kM

−1
k

pd2Ωd
, (9)

where the d represents the characteristic molecular diameter, which for the mixture
can be taken as an average between the molecular diameters of the single species, i.e.
d = 1/2 (d1 + d2); whereas the term Ωd represents the transport collision integral of
the binary mixture. This is a function of the reduced temperature Tred = kBT

∗/ε,
where kB = 1.3806488 × 10−23 J/K is the Boltzmann constant and ε is the mixture
attractive energy between two molecules in a binary mixture, defined as ε =

√
ε1ε2.
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The relation used for the evaluation of the collision integral for the Lennard-Jones (12-
6) potential is [21]

Ωd = Ω1,2 =
(
A/TBred

)
+ [C/exp(DTred)] + [E/exp(FTred)] + [G/exp(HTred)]

(10)
with coefficientsA,B,C,D,E, F,G,H given in [21]. The viscous stresses are defined
in terms of the velocity derivatives, under the assumption of a Newtonian fluid, as

τij = µ

[
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

]
. (11)

Finally, the system of the governing equations is closed by the relation for the total
energy,

E = cvT +
1

2

(
u2 + v2 + w2

)
, (12)

and by the equation of state,

p =
1

γM2
ρRT . (13)

The specific heats at constant volume and pressure, namely cv and cp respectively, as
well as the gas constant R, represent mixture properties, which are given as [8]

c∗v = c1c
∗
v,1 + c2c

∗
v,2 , (14)

c∗p = c1c
∗
p,1 + c2c

∗
p,2 , (15)

and

R = cp − cv . (16)

2.2 Numerical scheme
The finite-volume method used to solve numerically the governing equations consists
of a 6th-order central differencing (CD) scheme in space for both inviscid and vis-
cous fluxes, combined with a 6th-order weighted-essentially-non-oscillatory (WENO)
scheme for shock capturing, along with a 3th-order Runge-Kutta method for time in-
tegration. The so-called WENO-CD scheme is provided with a switch function that
turns on/off the shock-capturing scheme at discontinuities and in smooth flow regions,
respectively, and has been validated over the past years for several types of compress-
ible high speed flow configurations [22, 23, 24, 25, 26, 27].

A very important feature of our code that enables high-resolution in the very small
length scales of the slot/porous injector, allowing for multiscale simulations, is repre-
sented by the structured adaptive mesh refinement (SAMR) method. This technique,
decribed in [28] allows consecutive higher grid refinement levels to be dynamically
added in the high-gradient flow regions in a patch-wise fashion, thus providing higher
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numerical stability and solution accuracy in the flowfield as well as minimising the
computational cost.

2.3 SAMR approach
The key feature of our numerical method to accurately resolve all the flow regions in
a multiscale system is the SAMR strategy [28, 29]. With this approach, consecutive
higher grid refinement levels are dynamically added into the high-gradient flow regions
in a patch-wise fashion, thus providing higher numerical stability and solution accuracy
in the flowfield as well as minimising the computational cost. In the patch-wise refine-
ment strategy, the cells pertaining to high-gradient zones of some prescribed physical
quantities (e.g. density and velocity components) are flaggered by error indicators (e.g.
gradient higher than a certain imposed threshold) and clustered into rectangular boxes,
which define the regions of the computational domain requiring refinement. Subgrid
patches with a prescribed refinement factor and aligned to the coarse grid are suc-
cessively added onto the coarser level to form a hierarchy of embedded refined grid
patches.

As described in [28], the sequence l = 0, ..., lmax of successively higher refine-
ment levels of the grid hierarchy is discretised with a refined mesh width ∆xn,l, and
a refined time step ∆tl, with n = 1, ..., d defining the discretisation direction and d
the maximum dimension. Denoting with rl ≥ 2 the (integer) refinement factor at each
level, the mesh spacings of the levels l > 0 are rl-times smaller than the corresponding
sizes at level l − 1 (r0 = 1 denotes the coarsest, or base, grid level). Hence, the grid
spacings in each direction and the time step at the level l are linked to the corresponding
values at the coarser level l − 1 through the relations

∆xn,l =
∆xn,l−1

rl
, ∆tl =

∆tl−1

rl
. (17)

This means that the time-step-to-cell-size ratios in each direction remains constant be-
tween all the grid levels, i.e.

∆tl
∆xn,l

=
∆tl−1

∆xn,l−1
= ... =

∆t0
∆xn,0

, n = 1, ..., d. (18)

Hence, the Courant-Friedrichs-Lewy (CFL) condition is basically not affected, which
preserves numerical stability at all the grid levels.

The AMROC framework [28] implements the SAMR method discretisation in-
dependent in one to three space dimensions and is fully parallelized for distributed
memory systems. With its parallel distribution strategy, described in detail in [28],
the overlapping ghost-cell regions of neighboring patch blocks are synchronized over
processor borders as boundary conditions are applied. The communication between
processors is achieved through the MPI-library and a space filling curve algorithm is
used for load-balanced data distribution.
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3 Flow conditions and settings
The freestream conditions correspond to M = 5, Re = 12600, T ∗∞ = 76.6 K, and
the wall temperature is fixed to the room temperature, T ∗w = 290 K. These conditions
replicate the freestream conditions of the experimental tests made by [30]. The flow is
initialised with the laminar boundary layer from the similarity solution. Different 2D
preliminary simulations have been performed for different domain sizes. As an initial
test case, we consider a small flat-plate domain with periodic boundary conditions
in the streamwise direction, outflow condition at the top boundary, no-slip adiabatic
condition at the plate wall (y = 0) and plenum condition at the bottom boundary (y =
−2). The plenum boundary condition consists of imposing the stagnation pressure (p0)
and stagnation temperature (T0) at the bottom boundary, to simulate the presence of
an underneath plenum chamber that drives vertical fluid motion in the porous layer.
The computational domain and the corresponding mesh are shown in figure 1, with the
initial streamwise velocity field plotted in figure 1a. The base grid size is Nx ×Ny =
50 × 126, and the domain sizes in the streamwise and vertical directions are Lx = 5
and Ly = 10.5, respectively, including the porous layer thickness. These grid and
domain size settings provide cell sizes in the coarse (base) grid level of ∆x = 0.1 and
∆y = 0.083.

(a) u field at time t = 0 (b) mesh with 5 AMR levels

Figure 1: Computational domain, streamwise velocity u plotted (a), and corresponding
mesh (b)

For the present test case, the plenum pressure and temperature were set to p0 =
1.5p∞, and T0 = Tw. Thus, a pressure ratio of 1.5 is imposed between the plenum
chamber and the wall to generate the injection flow. To increase numerical stability
in the initial time steps, the plenum pressure was linearly increased with time from an
initial uniform value of p∞ to the target value of p0 = 1.5p∞. Note that the condition
p0 = p∞ corresponds to a condition without injection, due to the difference between
the pressure in the plenum chamber and the pressure at the wall being zero.

In figure 1b the different AMR levels and their localised position within the do-
main can be seen. Five overall levels are present, with the finer being concentrated in
the region of the pores. Each finer level is embedded in the next coarser one. This
arrangement of the AMR levels allow the flow features within the porous layer to be
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captured with optimised computational cost. The porous layer has a nondimensional
thickness of 1.2 and a length of 1. It consists of a regular arrangement of equally-
spaced circular elements (2D cylinders) with a radius of r = 0.078 in this example
(corresponding to 78µm), representing the solid particles. In particular, a staggered
arrangement is considered between different rows of cylinders, with a 45◦ inclination
angle for a straight line connecting two adjacent staggered cylinder centres at two dif-
ferent y-locations. The distances between two adjacent particles both along the x- and
y-directions (same distance), as well as along a 45◦ diagonal, follow from the choice
of the radius (r) and the porosity (ε). Hence, r and ε represent the main parameters of
the porous layer. In this case we set a porosity of 42 %, which is representative of the
real experimental porous samples.

(a) pressure field (b) vertical velocity (v) field

Figure 2: Instantaneous pressure field (a), and vertical velocity field (b)

By defining the distance between two adjacent cylinder centres along a 45◦ diago-
nal as ld, the minimum length scale within the porous layer is dmin = ld − 2r, which
represents the distance between the two solid surfaces of the staggered adjacent cylin-
ders. The strict positive value of this minimum distance represents a constraint for the
cylinder arrangement, which does not allow to consider small porosity levels. In fact,
below a certain porosity level, dmin becomes negative, meaning that the solid parti-
cles along the diagonal would penetrate each other, thus not allowing the fluid to flow
through.

In figure 2 instantaneous results for the pressure field and the vertical velocity field
in the porous layer are shown. After a certain time, the pressure in all the volume under-
neath the porous layer (representing the plenum chamber) reaches a uniform constant
value equal to p0. A linear pressure gradient from p0 (at the lower surface) to p∞ (at
the upper surface) is formed across the porous layer in the y-direction, which drives
the injected flow through according to the Darcy-Forchheimer relation,

∆p

δ
=

µ

K
U + CρU2 , (19)
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in which δ is the thickness of the porous layer, K is the material permeability, U is the
superficial velocity averaged through the porous layer, and C is a constant known as
Forchheimer constant. The first term at the right hand side of equation 19, i.e. the Darcy
term, represents the drag contribution related to the viscous effects and to the material
permeability. The second term, i.e. the Forchheimer term, represents the contribution
relative to the inertial effects, and is relevant for high values of the velocity and of the
solid particles size, hence high values of the local Reynolds number, as we will see in
detail later in this work.

Figure 2b shows details of the vertical velocity within the porous layer. This is
an instantaneous solution, in which the lower part of the porous layer is characterised
by higher values of the velocity, thus indicating that the flow is gradually ascending
across the thickness of the porous layer. Moreover, as can be seen, the local peak of the
vertical velocity within the pores is reached at the restriction location, i.e. at the point
of minimum distance (dmin) between two adjacent solid particles.

Figure 3 shows the face-centred cubic structure used in our computational approach
to model the porous miscrostructure of the material. By defining a side length of the
square area as l, the porosity ε, i.e. the ratio between the void space inside the square
and the total area, can be expressed as

ε =
l2 − 2πr2

l2
. (20)

Once having assigned a value for the porosity and a value for the cylinder particle
radius, the size of the square structure can be found as

l = r

√
2π

1− ε
, (21)

and the minimum distance in our porosity structure can be expressed as

dmin = l

√
2

2
− 2r . (22)

In the considered test case, with reference to figures 1 and 2, the minimum distance is
dmin = 0.025, corresponding to 25 µm.

The solid particles are simulated through an embedded boundary method, i.e. the
ghost fluid method, in which cells inside the solid surface are taken out from the CFD
domain of the interior fluid, and trated as ghost cells. A more detailed description of
the ghost fluid methodology can be found in [31].
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Figure 3: Sketch of a pore cell structure

Figure 4 shows an example of the AMR strategy applied to a generic staggered
cylinder porous structure. Solution accuracy has been obtained through the use of five
refinement levels, for a total of six grid levels. In this example test case, a high porosity
(74 %) has been considered, with the radius of each particle being 0.05 mm and the
minimum distance between two neighbour elements equal to 0.076 mm. As can be
observed, in this example the finest grid level is used around each solid particle, which
captures the boundary layer formed at the cylinder surface and provides a smoother
surface in the Cartesian mesh.

Figure 4: AMR levels distribution. Vertical velocity field plotted

With reference to the initial test case described in Section 3, with results shown in
figures 1 and 2, a grid refinement study with different AMR levels has been carried out
in order to evaluate the grid requirements for a case of equivalent porosity.

Figure 5 shows the solution sensitivity of the blowing ratio (i.e. F = ρv|inj) at the
porous layer surface (y = 0) to different AMR levels, namely four, five and six levels.
Results show that a good agreement between the different grid levels is obtained for
the blowing ratio. The grid with six levels, however, shows better details at the curve
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inflection points located at ρv = 0 in the shear layer of the vertical velocity, formed
just downstream of each injection jet.

Figure 5: Grid study, on a small porous layer sample, for different AMR levels based
on the blowing ratio at the surface of the porous layer (y = 0)

4 Results

4.1 Preliminary results
After having peformed the initial test of the boundary conditions and the grid resolution
requirements on the small flat-plate domain, representative of a small sample of the
porous layer, we now perform 2D simulations on a long flat-plate domain, which is
representative of the real experiment carried out at Oxford University on the UHTC
porous sample. The material sample used in the experiments [30] was 5 mm thick -
39 mm long, with a porosity of 42 %, as mentioned above. A generic picture of the
computational domain can be seen in figure 6, where the mean pressure field is shown,
obtained from a plenum pressure of p0 = 1.9p∞. The domain size is Lx = 150 in
the streamwise direction and Ly = 24.5 in the vertical direction. The front edge of
the porous layer is located at the position x = 38 in our computational domain, which
corresponds to a distance of 160 mm from the plate leading edge in the experiment.

The characteristic length is the boundary layer displacement thickness at the inflow
from the similarity solution, i.e. δ∗0 = 1 mm. The porous layer thickness is 5 mm
as in the experiment, and the plenum chamber is represented by an underneath region
of 1 mm thickness. In this case, due to the higher size of the computational domain
and of the porous layer compared to the previous small domain, cylinders with a larger
radius have been considered, i.e. r = 200µm, which provides a minimum interior
length scale of dmin = 0.0619 (corresponding to about 62µm). Hence, considering
that in the small-domain simulations described in Section 3 the minimum length scale
was 25µm, the grid requirements relative to the present long-domain case are about
half of the small-domain case. In fact, the base grid size is Nx × Ny = 1500 × 294,
and the corresponding spacings are the same as those used in the small-domain case,
i.e. ∆x = 0.1 and ∆y = 0.083. However, due to the higher minimum distance, only
3 overall levels are considered in the AMR framework in this case, which provide a
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resolved solution within the porous layer. An extrapolation boundary condition has
been used at the inflow of the domain, and an outflow condition at the outlet boundary.

Figure 6: Pressure field for the case of injection through a porous layer made of cylin-
ders with radius of 200µm

Figures 7, 8 show qualitative results for the density and the Schlieren image for the
considered case. The results show the physical details of the boundary layer thickening
due to the flow injection, and of a weak shock generated just upstream of the porous
layer. The plenum pressure relative to these results is p0 = 1.9p∞.

Different simulations have been performed at different plenum pressures, to ob-
serve the effect on the blowing ratio (ρv|inj) distribution along the surface, with results
plotted in Figure 9. As can be seen, the injection profile assumes a flat shape in the mid-
dle of the porous surface, while showing an increasing trend along x at the boarders
with the solid wall. In particular, an evident increase is observed near the right edge.
This is in general caused by the effect of the porous injection on the local pressure
within the boundary layer. In particular, the pronounced increase of the injection rate
observed in the downstream region of the porous surface is generated by the expansion
of the hypersonic flow outside the boundary layer downstream of the shock generated at
the beginning of the porous layer. To understand this effect we should refer to figures 7,
8. Downstream of the shock, the boundary layer is observed to increase approximately
linearly with the streamwise distance, however, near the exit of the porous layer, it as-
sumes a convex shape as its thickness converges to the value assumed at the solid wall
downstream of the porous layer. The convex shape of the boundary-layer thickness
produces the expansion of the external hypersonic flow, and, as the pressure within the
boundary layer can be in general considered constant along the y-direction, also the
fluid at the wall will experience the same expansion. An expansion at the porous layer
surface translates in a higher pressure drop across the porous layer, between the plenum
pressure and the exit pressure, which results in a higher blowing ratio.
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Figure 7: Density field for the case of injection through a porous layer made of cylin-
ders with radius of 200µm

Figure 8: Schlieren for the case of injection through a porous layer made of cylinders
with radius of 200µm

The preliminary simulations allowed a grid study to be used as a reference for the
resolution requirement in cases with different size of the computational domain, as well
as to make some initial observations about the physical features related to the blowing
ratio along the sample surface and its dependence from the plenum pressure. The cal-
ibration and validation of our porous computational model with the real experimental
injection conditions will be the subject of the next section.
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Figure 9: Blowing ratio at different plenum pressures

4.2 Multiscale approach
In order to correctly replicate the experimental conditions, we need to simulate the
experimental blowing ratio resulting from the porous injection, which, in turn, is cor-
related to the plenum pressure and to the permeability characteristics of the sample
material used in the experiment. In other words, we need to replicate the Darcy-
Forchheimer behaviour (i.e. the drag opposed by the porous layer to the injection at a
certain plenum pressure) of the material in the real experimental case. With reference
to equation 19, the Darcy-Forchheimer behaviour of the porous layer depends on two
parameters, namely the material permeability, K, and the Forchheimer constant, C. In
our case, due to the very small interior length scales of the real porous material (pore
size of about 1µm −4µm)[30], the Forchheimer effects can be considered negligible
[18], and the Darcy-Forchheimer model simplifies significantly, reducing effectively to
the Darcy term.

The material permeability depends in general on the porosity and on the geometri-
cal patterns of the interior pores. A well-known and widely used model of permeability
was developed by Kozeny [13], and is expressed as

K = c0
ε3

S2
, (23)

with the coefficient c0 typically assuming a value of 1/5. The term S represents the
superficial area of the pores per unit volume. It should be mentioned that equation 23
has been expressed in the form provided by [16], as different authors express the per-
meability relations in a different way, dependent on considering the solid mass fraction
instead of the porosity, or the coefficient at the denominator rather than at the numerator
(e.g. in [14]). Equation 23 was then modified by Carman [15] to include the effects of
the tortuosity T , i.e. the average path length of the flow streamlines within the porous
medium. In this modified form, equation 23 can be re-written as [16]

K = c0
ε3

T 2S2
. (24)
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Although the Kozeny-Carman model, equation 24, does not represent a universal law
for the permeability of a porous material, it was shown to provide good results for both
random and periodic packagings of spheres, as in the case of granular media [14, 10],
and for a large range of porosities.

Now, one (obvious) option for the correct simulation of the real Darcy-Forchheimer
behaviour consists in imposing the same plenum pressure and the same permeability
as the real experimental case to our porous structure. However, as the permeability
depends on the pore size through the term S, this would require us to design a porous
structure with the same interior length scales as in the real material sample (i.e. 1µm
−4µm). However, such small length scales would make numerical simulations unaf-
fordable. Our objective is, instead, to design a porous structure that mimics the real ma-
terial Darcy-Forchheimer behaviour, but at considerably higher interior length scales,
such to allow direct numerical simulations of the full domain.

In order to cope with the small (micrometer level) length scales within the porous
layer in comparison with the much larger length scales of the porous layer sample and
the plate size, a multiscale approach has been developed and tested, which is based on
the computational work of Lee and Yang [18], and is described as follows: i) first, the
computational approach of Lee and Yang [18] is described in details in Section 4.2.1;
then ii) we present a validation study of our computational results with respect to Lee
and Yang’s [18] model in Section 4.2.2; and iii) finally in Section 4.2.3 we present
an extension of the model that allow equivalent solutions at different pore scales to
be achieved (multiscale approach), and we validate our proposed methodology with
reference to the experimental case [30].

4.2.1 Lee and Yang’s computational model

Let us consider a 2D porous layer with periodic cell elements modelled as a regular dis-
tribution of equal-radius cylinders in a staggered position, as the face-centred structure
sketched in figure 3. As suggested by Lee and Yang[18], due to the geometrical peri-
odicity, the dimensionless steady state solution of the flowfield between two adjacent
particles along the diagonal (normalised with the pressure drop between the cylinders)
in the face-centred structure is the same for the other quarters. Hence, the reference pe-
riodic fluid-dynamic domain reduces to a single quarter of the face-centred structure,
as shown in figure 10, which can be defined as a pore cell.
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Figure 10: Periodic fluid-dynamic domain boundaries (red dashed lines) identifying a
single pore cell. The dashed line arrow represents the fluid path

A detailed sketch of a single pore cell in the periodic flow through a bed of stag-
gered cylinders is represented in figure 11, where L is the distance between the two
staggered cylinder centres, and D is the cylinder diameter. Such a configuration, along
with the 3D corresponding configuration of staggered spheres in a 3D domain, has been
demonstrated [18, 17, 19] to provide consistent results with experiments and empirical
models [10] of flow through porous samples for a wide range of Reynolds numbers.

Figure 11: Sketch of staggered cylinders model (D is the diameter of each cylinder)

The characteristic length in the reference system of the pore cell sketched in figure
11 is L. The force that drives the flow through the pore cell is the pressure drop ∆pL
between the two adjacent staggered cylinders. We can then define a characterist fluid-
dynamic velocity Uc for this flow, which is linked to the pressure drop as
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Uc =

√
∆pL
ρ

, (25)

where ρ is the density of the flow in the pore cell. In the same way, we define the
Reynolds number based on the characteristc velocity as

Rec =
ρUcL

µ
, (26)

where µ is the flow viscosity in the pore cell. When assigning a porosity level (ε), the
ratio D/L is automatically defined. Hence, the two main nondimensional parameters
of the flow are Rec and the ratio D/L (i.e. the porosity ε).

Let us consider now equation 19, which we rewrite for a single pore cell as follows,

∆pL
L

=
µ

K
U + CρU2 . (27)

Note that U is not equal to Uc, as Uc represents a characteristic velocity, whereas U is
the velocity solution of the fluid dynamic problem (as will be shown in the simulation
results of Section 4.2.2). By introducing the Reynolds number based on the cylinder
diameter,

Red =
ρUD

µ
, (28)

and the Forchheimer coefficient, F = CD, equation 27 can be rearranged as,

∆pL
L

=

(
D2

K
+ FRed

)
µU

D2
. (29)

In the above equation, D2/K represents the Darcy drag, and FRed represents the
Forchheimer drag. By following Lee and Yang’s [18] approach, the sum between the
Darcy and the Forchheimer drag, i.e. the Darcy-Forchheimer drag (D − F ), can be
expressed as, (

D2

K
+ FRed

)
= Rec

(
D

L

)2
Uc
U

= Rec

(
D

L

)2
1

q
, (30)

in which the term q represents the average velocity along the cell outlet edge (or sur-
face) normalised with the characteristic velocity (q = U/Uc), which can also be ex-
pressed in terms of the local velocity v(x) at a generic location x along the surface
as,

q =
1

UC

1

L

∫ L

0

vdx . (31)

A sketch of the velocity profile v(x) on the pore surface can be seen in figure 12.

18



Figure 12: Sketch of the v(x) velocity profile on the pore surface

By assigning the two main parameters of the simulation, namely the Reynolds
number Rec and the porosity ε, hence the geometrical factor D/L, simulations are
conducted until a steady state is reached. The normalised velocity on the pore cell sur-
face, q, represents the output of our numerical simulations, for each imposed Rec at a
fixed ε. Then, from each computed value of q, the corresponding value of Red can be
computed through the relation

Red = Rec

(
D

L

)
q . (32)

The results of Lee and Yang [18] are reported in figure 13, for different porosity lev-
els. Their numerical values of theD−F drag were compared with the empirical results
of Ergun [10] and the computational results of [17], for the same range of Reynolds
numbers (Red) and porosities. As can be seen, a very good agreement with Ergun’s
empirical results was obtained at the porosity level ε = 0.43, which is approximately
equal to our considered porosity level (42 %).

Figure 13: Result for the D − F drag at different Red, from Lee and Yang [18]

The application of the above described procedure for our considered case will be
the subject of the next sections.
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4.2.2 Validation case

First, we have validated the computational model described in the previous section
against the results of Lee and Yang [18], for different imposedRec. We adopt a config-
uration that is different to Lee and Yang’s case, and more consistent with our consid-
ered experimental case [30]. In fact, instead of considering only a unit cell domain (as
sketched in figure 11) and imposing a unit dimensionless presure drop (∆pL/p∞ = 1)
across the cell, as in Lee and Yang’s work, we consider a small flat-plate domain with
periodic boundary conditions in the streamwise direction, five rows of cylinders in the
y-direction, with imposed plenum conditions at the bottom boundary. A sketch of the
configuration can be seen in figure 14.

We consider a configuration in the absence of a hypersonic crossflow, i.e. thinking
that the plate model is at atmospheric conditions, but subject to the same pressure drop
provided in the experiments of Hermann et al. [30]. Thus we consider atmospheric
conditions outside of the porous layer in the initial state. Our dimensional reference
values for pressure and density are then ρ∗∞ = 1.225 kg/m3, and p∗∞ = 1.013×105 Pa.
We consider the normalised pressure drop measured in the experimental conditions, i.e.
∆pexp = 148.5 [30]. This corresponds to the pressure drop across the whole thickness
of the porous sample (δ∗ = 5 mm). In order to compute the corresponding pressure
drop for a unit pore cell (∆pL), we assume the pressure descreases linearly from the
plenum condition p0 to the surface condition p∞ (as sketched in figure 14), then we
multiply the whole pressure drop by the ratio between the pore cell unit length L∗ and
the thickness δ∗, as

∆pL = ∆pexp
L∗

δ∗
. (33)

The reference dimensional value considered for the pore cell length isL∗ = 9.9µm,
which corresponds to the value obtained by assuming a porosity of 42 % and a cylinder
radius of r∗ = 6µm (see Section 3). The minimum distance resulting from this pore
size is d∗min = 2µm, which is within the pore length scale range of the real porous
sample. Hence, by the knowledge of L we can compute our reference ∆pL imposed
in the simulations, which is ∆pL = 0.29. From our reference values in atmospheric
conditions, p∗∞ and ρ∗∞, and from the corresponding dimensional value of the pres-
sure drop, ∆p∗ = 0.29p∗∞, we can now compute the characteristic velocity at the
outlet of the porous layer, as U∗c =

√
∆p∗/ρ∗∞ = 154.85 m/s. A uniform tempera-

ture is imposed in the whole domain in the initial state, equal to the room temperature
T ∗∞ = 290 K. From these values of the temperature and the characteristic velocity, the
resulting Mach number of the simulation is M = 0.45. The pressure is normalised
with the Mach number as described in Section 2.1, and within the porous layer the
density follows the trend of the pressure through the equation of state, equation 13. All
the velocity components are set to zero in the initial state.

Hence, summarising from the above described settings, the nondimensional pa-
rameters of our simulations are M = 0.45, the pressure drop ∆p = 0.29, the ratio
D/L = 1.2 (from 42 % porosity), and the Reynolds number Rec, for which different
values are imposed in different runs. Moreover, the usual Prandtl number of Pr = 0.72
and ratio of specific heats γ = 1.4 for air are considered.
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It should be mentioned that, with these settings, the nondimensional value of L is 1
in our computational domain, as it is our reference length scale, and the velocity com-
ponents are all normalised with the characteristic velocity Uc, which is fixed from the
Mach number and the pressure drop, as described above. Thus, varying the Reynolds
number Rec, in our case, would correspond to varying the dimensional length scale L∗

of the pore unit cell from a simulation to another.
The Reynolds number Rec is varied from Rec = 5 to Rec = 200, to cover a

relatively wide range of conditions. At each Rec, the integral of the vertical velocity
at the pore surface (y = 0) is evaluated, as sketched in figure 12, to obtain q from
equation 31, and the corresponding granular Reynolds number Red is computed from
equation 32. Finally, the Darcy-Forchheimer drag is evaluated from equation 30.

The computational domain sizes are Lx = 4 and Ly = 14, including an overall
porous layer thickness of about 5.2. The grid size is Nx × Ny = 210 × 700, and
simulations are conducted with one grid level.

Figure 14: Sketch of the computational domain. In the initial state, atmospheric condi-
tions are considered at the top (i.e. no crossflow)

The results of the validation study are shown in figure 15, where the trend of the
computed D− F drag is plotted against different values of the Reynolds number Red.
As can be seen, our numerical results are in a very good agreement with the computa-
tional results of Lee and Yang [18] for a wide range of Reynolds numbers. A disagree-
ment is observed only at very low Reynolds numbers (Red < 1), where our numerical
results are observed to converge to results obtained from the empirical model of Ergun.
This can be checked in figure 13, which is taken from the work of Lee and Yang [18],
and that shows comparison with Ergun’s empirical model at different values of the
porosity. In our case, we consider a porosity of ε = 0.42, thus very close to the value
of 0.43 represented in the figure. The reason why our numerical model converges to
the empirical model of Ergun at the very low Reynolds numbers, disagreeing with Lee
and Yang’s computational results, is that the latter do not solve the energy equation, in
which the viscous dissipation terms play an important role at the very low Reynolds
numbers.
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Figure 15: Result for the D − F drag at different Red

Figure 16 shows results for the vertical velocity field inside and outside the porous
layer in the domain considered in the simulations performed for the validation case.
Only four rows of cylinders have been used across the porous layer, which demonstrates
to be enough for providing the correct perssure drop solution, as seen in the validation
results of figure 15. It should be mentioned that the pressure drop in relation 33 refers
to a single porous cell. Hence, once a certain value of the pressure drop ∆pL is applied
in combination with a certain L (i.e. a fixed porosity) for a single pore cell, the plenum
pressure condition at the bottom boundary is applied by multiplying the single-cell
pressure drop (∆pL) by the total number of cells (or layers) generated by the rows of
staggered cylinders (in this case four). Hence, the total pressure difference between the
plenum chamber and the surface can be expressed as

∆pplenum = p0 − p∞ = N∆pL , (34)

where N = 4 is the total number of pore cells in the vertical direction in this case
(N = n− 1, with n indicating the total number of cylinder/sphere rows).
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(a) Rec = 25 (b) Rec = 100 (c) Rec = 200

Figure 16: Instantaneous vertical velocity field for the case without surface crossflow,
at different Reynolds numbers

4.2.3 Equivalent D-F behaviour at different pore scales

After assessing the capabilities of the porous computational model, we want to develop
and test a method for rescaling the pore size L to higher scales and obtaining at the
same time an equivalent Darcy-Forchheimer drag. Each point on the D − F curve in
figure 15 corresponds to a certain Darcy-Forchheimer behaviour of the material, i.e. to
a specific overall drag opposed by the porous layer to the traversing flow. Hence, the
problem that we want to address is to increase the pore cell size of the porous structure
while staying on a certain (generic) position (Red, D − F ) on the D − F graph. We
refer to this strategy as a multiscale approach, whose relative description and validation
is the subject of this section.

By looking at equations 30 and 32 we can observe that the main quantities on the
ordinate and abscissa axes of figure 15, namely D − F and Red, are both functions of
the two parameters Rec and D/L (i.e. ε), and of the resulting normalised velocity q
(or U/Uc). We also notice that if we fix the porosity, ε, by varying the pore cell length
scale L, the ratio D/L stays constant, as the diameter D will scale with L to provide
the same porosity.

Now, in virtue of the fundamental principle of aerodynamics stating that two prob-
lems with a different scale magnitude can be considered similar, and hence share the
same nondimensional flowfield solution, if they have the same shape and the same
Reynolds number (as well as the other similarity parameters of the flow, namely M ,
Pr, γ), our considered problem reduces to keeping constant the characteristic Reynolds
number Rec. So, our assumption is that by imposing the same D/L (i.e. the shape of
the porous structure) as well as the same Rec, two problems with different pore size L
will provide the same normalised solution q, which, in turn, will give the same values
ofD−F andRed, i.e. the equivalent Darcy-Forchheimer behaviour. We want to prove
this with application to the real hypersonic experimental case of Hermann et al. [30].

Let us consider the freestream conditions described in Section 3, which represent
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the hypersonic flow conditions in Hermann et al.’s experiment [30]. We first need to
calculate the characteristic Reynolds number (Rec) representative of the flow through
a single pore cell in these experimental conditions. The reference dimensional pore-
cell size is, as mentioned in Section 4.2.2, L∗ = 9.9µm, which provides a minimum
length scale comparable with the porous microstructure of the real material sample,
i.e. d∗min = 2µm with ε = 0.42. Following the procedure described in Section 4.2.2,
we compute the dimensional characteristic velocity (U∗c ) by using the same normalised
pressure drop, but, instead of using atmospheric conditions (as made in Section 4.2.2
for a case of no external crossflow), we consider now the experimental freestream
conditions of the hypersonic crossflow [30]. The freestream conditions for density,
pressure and temperature are ρ∗∞ = 0.074 kg/m3, p∗∞ = 1.632 kPa, T ∗∞ = 76.6 K.

As already described in Section 4.2.2, we consider the experimental pressure drop
measured by Hermann et al. [30], i.e.

∆pexp =

(
∆p∗

p∗∞

)
exp

= 148.5 , (35)

for the full sample thickness of δ∗ = 5 mm. From this value and from the reference
pore-cell size L∗, we obtain the single-cell normalised pressure drop by equation 33,
which gives ∆pL = 0.29. This value corresponds to a dimensional value of ∆p∗L =
p∗∞∆pL = 0.473 kPa.

In order to compute the characteristic velocity, it is helpful to refer to the sketch
in figure 17. Contrarily to the case described in Section 4.2.2 of injection into atmo-
spheric conditions with no crossflow, in this case we consider a single pore cell on the
plate surface injecting fluid into a crossflow hypersonic boundary layer. Thus, the flow
conditions of the coolant at the pore cell outlet are those relative to the isothermal wall
conditions, which are denoted as Tw and ρw for temperature and density respectively.
We recall that the wall temperature is fixed to the room temperature, i.e. T ∗w = 290
K, thus the normalised wall temperature is Tw = 3.78. This is also the temperature
of the gas inside the plenum chamber (T0,plenum = Tw). The pressure is assumed
to be constant within the boundary layer, thus equal to the freestream conditions, i.e.
p∞ = 1/γM2 dimensionless. Due to the constant pressure within the boundary layer,
the normalised density at the wall, from the equation of state 13, is ρw = 1/Tw = 0.26.
In dimensional units, this density value corresponds to ρ∗w = 0.01924 kg/m3. Hence,
the dimensional characteristic velocity is computed as

U∗c =

√
∆p∗L
ρ∗w

, (36)

which gives a value of 156.79 m/s. The characteristic Reynolds number is then obtained
as

Rec =
ρ∗wU

∗
c L
∗

µ∗w
= 1.67 , (37)

where the dynamic viscosity µ∗w was computed from the wall temperature by using
Sutherland’s law. This value of Rec is small enough to allow the Forchheimer effects
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to be neglected, and to consider the flow through the porous medium in the Darcy
regime. This is indeed consistent with the very small length scales of the real material
sample microstructure.

Figure 17: Sketch of a single pore cell on the surface injecting fluid into a crossflow
boundary layer. The flow is at wall conditions at the injection location

Now that we have found a value of the characteristic Reynolds number representa-
tive of the inner pore length scales of the material sample, we need to find a relation
that allows to keep the Reynolds number Rec constant for increasing pore-cell length
scales L. From the definitions 25 and 26 for the characteristic velocity and the charac-
teristic Reynolds number, we can express Rec in terms of the pore-cell pressure drop
as

Rec =
ρ
√

∆pL
ρ L

µ
, (38)

from which, by rearranging, the pressure drop can be expressed as

∆pL = ρ

(
Recµ

ρL

)2

. (39)

Now, we can use equation 39 to rescale the pressure drop with L by considering
different pore sizes while keeping constant the Reynolds number Rec and the porosity,
i.e. the term D/L. We want to demonstrate that as long as we keep constant the
parametersRec andD/L the solution of the Darcy-Forchheimer behaviour (i.e. D−F
and Red) can be considered similar, thus independent on the pore size.

We then perform simulations for four different cylinder diameters (at a fixed poros-
ity of 42 %), namely D∗ = 12, 24, 48, 96 µm. The smallest diameter (D∗ = 12µm)
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corresponds to the pore length scale of L∗ = 9.9µm and the minimum length scale of 2
µm representative of the real porous sample inner scale in Hermann et al.’s experiment
[30]. The ratio D/L is equal to 1.21 for all the cases.

Figure 18 shows the geometry used for the smallest diameter case, as well as a
close-up of the qualitative solution obtained for the y-momentum within the porous
layer. The configuration is similar to that decribed in Section 3, i.e. a small flat-plate
domain with streamwise period boundary conditions, and a porous layer of a certain
thickness and length placed in the middle of the domain. The boundary conditions
are described in Section 3, with the plenum temperature set to 290 K, as the wall
temperature. The characteristic length in the simulations is the initial boundary-layer
displacement thickness of the similarity solution, i.e. 1 mm. For this case, the di-
mensionless domain sizes are Lx = 1 and Ly = 3.4. The dimensionless length of
the porous layer is 0.5, and the thickness is 0.06. The radius of the circular particles
is r = 0.006. Starting from the above-mentioned single pore cell pressure drop of
∆pL = 0.29, the overall pressure drop imposed through the whole porous layer is
computed through equation 34 with a number of pore cells equal to N = 6. The base
grid size is Nx ×Ny = 400× 1360, and three AMR levels have been used.

Figure 18: Streamwise velocity field (left) and close-up of y-momentum field in the
porous layer (right), for the case D∗ = 12µm

The computed blowing ratio (F = ρv|inj) profile along the outlet surface of a
single pore cell is plotted in figure 19. The peak is reached in the middle of the jet, and
is very close to the value of 2 × 10−3, which is, in turn, the blowing ratio measured
in the experiment of Hermann et al. [30]. Hence, this proves that the simulation with
the smallest particle diameter (12 µm), providing a minimum inner length scale (2 µm)
comparable with the real pore scale of the sample material, gives results in a good
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agreement with the experimental case. A normalised velocity q = 3.8 × 10−3 was
computed in this case, using equation 31 and the previously computed value of U∗c
using equation 36.

Figure 19: Blowing ratio profile along the outlet surface of a single pore cell

Now, we perform simulations for the larger cylinder diameters, and we compute the
value of q for each case following the same procedure described above. In each case,
a different pore-cell pressure drop (∆pL) is considered, which scales with L∗ through
equation 39. Thus, an increasing pore cell size will provide a decreasing pressure drop,
for a constant characteristc Reynolds number (Rec = 1.67). As a result of a different
pressure drop, also the characteristic velocity U∗c will be different in each case, from
equation 36. The flow conditions in the freestream and at the wall are the same in all
the cases.

Figure 20 shows the domain and the streamwise velocity field for the higher pore
size cases. The domain size and base grid size are the same in all the cases, and
have been mentioned above for the smallest diameter case. The porous layer size is
different in each case, instead. In particular, the porous layer covers the full domain
length of 1 in all the higher diameter cases. The dimensionless thicknesses of the
porous layer are 0.04, 0.08 and 0.16 for the cases D∗ = 24, 48, 96 µm respectively.
Moreover, contrarily to the lowest diameter case, for all the higher diameter cases n =
3 rows of cylinders have been used, corresponding to N = 2 pore cells across the
layer. The corresponding AMR levels are 3, 2 and 1 for the cases D∗ = 24, 48, 96 µm
respectively.
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(a)
D∗ = 24µm

(b)
D∗ = 48µm

(c)
D∗ = 96µm

Figure 20: Periodic flat plate domains with underneath porous layer of different particle
diameters. Streamwise velocity field plotted

The computed values of q for each case are listed in table 1. The good agreement
between the computed values of q demonstrate that the considered problems at different
pore sizes are similar, as they present the same solution, i.e. the equivalentD−F drag,
according to equation 30.

D∗ = 12µm D∗ = 24µm D∗ = 48µm D∗ = 96µm
q = 3.8× 10−3 q = 3.7× 10−3 q = 3.6× 10−3 q = 3.8× 10−3

Table 1: Obtained numerical values for the velocity q

Finally, figure 21 shows details of the size effect on the injection flow features at the
intake of each single pore for different pore sizes. The solution inside the porous layer
is similar between the different cases, however a difference is observed in the amplitude
of the spatial oscillations observed at the surface on the cylinder edges, representing
localised shear layers of the vertical velocity, which are more pronounced for higher
diameters of the cylinder.
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Figure 21: Vertical velocity field for the cases D∗ = 24µm (left), D∗ = 48µm (mid-
dle) and D∗ = 96µm (right)

5 Conclusion
The present work has shown results from direct numerical simulations aimed at captur-
ing the main physical features of flow injection through a porous layer over a flat plate
in a hypersonic freestream, as well as the description and assessment of a methodology
designed for the prediction of an equivalent Darcy-Forchheimer behaviour that mimics
the real experimental material sample through a porous layer with higher inner pore
length scales. The simulations have been based on experiments carried out in a hy-
personic wind tunnel at Mach 5, with air injection through a sample of porous UHTC
material, with a porosity of 42 %, and an inner pore length scale of the order of 1 to 4
µm.

A regular porous structure made of an arrangement of staggered cylinders with the
same experimental porosity has been generated via an embedded boundary method to
simulate the porous layer underneath of a flat plate, with plenum conditions imposed at
the bottom boundary of the computational domain to simulate the presence of a plenum
chamber.

Two-dimensional simulations have been performed for a porous layer made of cir-
cular particles with a diameter of 12 µm, which provides a minimum inner length scale
of 2 µm, consistent with the real sample microstructure. The results have been shown
to be in a good agreement with the experiments in terms of the blowing ratio on the
surface. Then, a methodology based on former computational studies has been consid-
ered and further extended with the intent of demonstrating the similarity between cases
with different pore size and constant characteristic Reynolds number Rec of the flow
through a single pore cell.

Results of simulations carried out for higher cylinder diameters, namely 24 µm,
48 µm and 96 µm, have shown that, by keeping constant the characteristic Reynolds
numberRec and the porosity ε, and by opportunely rescaling the pressure drop with the
imposed pore size L through a formula derived from the definitions of characteristic
Reynolds number and characteristic velocity Uc, two problems with different pore size
share the same solution in terms of the developed Darcy-Forchheimer drag. Thus, this
demonstrates that a computational model of the porous layer with a higher pore size
providing an equivalent Darcy-Forchheimer behaviour to the smaller reference exper-
imental microstructure scale can be obtained, which in turn allows the complex flow
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features of injection in a hypersonic crossflow over a porous surface to be accurately
resolved by means of computationally affordable direct numerical simulations.

The present findings are considered to be potentially of great importance for future
studies aimed at the correct design and optimisation of new-generation transpiration
cooling systems for hypersonic flight.
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