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Key Point #1: Shoreline change on sandy, wave-dominated barrier islands is partially 

explained by shoreline smoothing from alongshore transport gradients. 

Key Point #2: Where shoreline stabilization is not prevalent, shoreline curvature can explain 

a significant amount of the shoreline change signal. 

Key Point #3: Correlation strength varies regionally with wave climate in ways that are 

consistent with theoretical and model predictions. 

 

Abstract 

Low-lying, wave-dominated, sandy coastlines can exhibit high rates of shoreline change that 

may impact coastal infrastructure, habitation, recreation, and economy. Efforts to understand 

and quantify controls on shoreline change typically examine factors such as sea-level rise; 

anthropogenic modifications; geologic substrate, nearshore bathymetry, and regional 

geography; and sediment grain size. The role of shoreline planform curvature, however, tends 

to be overlooked. Theoretical and numerical-model considerations indicate that incident 

offshore waves interacting with even subtle shoreline curvature can drive gradients in net 

alongshore sediment flux that can cause significant erosion or accretion. However, these 

predictions or assumptions have not often been tested against observations, especially over 

large spatial and temporal scales. Here, we examined the correlation between shoreline 

curvature and shoreline-change rates for spatially extended segments of the U.S. Atlantic and 

Gulf Coasts (~1700 km total). Where shoreline stabilization (nourishment or hard structures) 

does not dominate the shoreline-change signal, we find a significant negative correlation 

between shoreline curvature and shoreline-change rates (i.e. convex-seaward curvature 
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(promontories) is associated with shoreline erosion, and concave-seaward curvature 

(embayments) with accretion) at spatial scales of 1–5 km alongshore and time scales of 

decades to centuries. This indicates that shoreline changes observed in these reaches can be 

explained in part by gradients in alongshore sediment flux acting to smooth spatial variations 

in shoreline curvature. Our results suggest that shoreline curvature should be included as a 

key variable in modelling and risk assessment of coastal change on wave-dominated, sandy 

coastlines. 

 

1. Introduction 

Along low-lying, wave-dominated, sandy coastlines, a variety of physical processes affect 

shoreline change across a wide range of spatial and temporal scales. Despite their 

vulnerability to storms and sea-level rise – event-driven and chronic natural hazards – these 

environments tend to be intensively developed (Wong et al., 2014), motivating efforts to 

quantify present and historical rates of shoreline change and assess erosion risk, in the U.S. 

(Gornitz et al., 1994; Morton et al., 2004; Morton and Miller, 2005; Morton et al., 2005; 

Hapke et al., 2006; Hapke and Reid, 2007; Hapke et al., 2011; Fletcher et al., 2012; Hapke et 

al., 2013; Ruggiero et al., 2013; Gibbs and Richmond, 2015; Armstrong & Lazarus, 2019) 

and internationally (e.g., Shaw et al.; 1998; Coelho et al., 2006; Nicholls and Vega-Leinert, 

2008). Related to this empirical work are efforts to explain past and predict future trends in 

shoreline behavior with numerical models of coastal processes and environmental conditions 

(Ruggiero et al., 2010; Gutierrez et al., 2011; Yates and Cozannet, 2012; Hapke et al., 2013; 

Plant et al., 2016; Vitousek et al., 2017). However, modelled and observed shoreline changes 

on sandy coastlines still tend to show poor agreement over larger spatial (>101 km) and 

longer temporal (>101 yr) scales (e.g., Gutierrez et al., 2011; Yates and Cozannet, 2012; 

French et al., 2016). The number and variety of controls and processes that can affect sandy 

shoreline change, including sea-level rise (Leatherman  et al., 2000; Plant et al., 2016; Moore 

et al., 2010; Murray and Moore, 2018; Moore et al., 2018; Ashton and Lorenzo-Trueba, 
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2018); anthropogenic modifications (Johnson et al., 2015; Smith et al, 2015; Hapke et al., 

2013; Armstrong & Lazarus, 2019; Miselis and Lorenzo-Trueba, 2017; Rogers et al., 2015); 

geologic substrate (Valvo et al, 2006; Lazarus and Murray, 2011; Moore et al., 2010; Hauser 

et al., 2018; Cooper et al., 2018), nearshore bathymetry (Schupp et al., 2006; McNinch, 2004; 

Browder and McNinch 2006), and regional geography (Plant et al., 2016; Cooper et al., 

2018); wave climate (Slott et al., 2010; Antolinez et al., 2018;  Anderson et al., 2018); and 

sediment grain size (Komar 1998; Dean and Dalrymple, 2002), makes determining their 

relative contributions difficult, whether empirically or with numerical modelling. The 

influence of these factors changes with spatial scale (List et al., 2006; Lazarus et al., 2011) – 

and at regional scales, a key but commonly overlooked driver of shoreline change is planform 

curvature. 

Here, we examine a correlation between shoreline curvature and shoreline change along 

~1700 km of sandy reaches of the U.S. Atlantic and Gulf Coasts (Figure 1), over multi-

annual to centennial time scales. This analysis spans spatial and temporal scales an order of 

magnitude larger than those considered previously (Lazarus and Murray, 2007, 2011; Lazarus 

et al., 2011, 2012). Research into coastal vulnerability at large spatial scales has tended to 

focus on shoreline transgression due to sea-level rise (Gornitz et al., 1994; FitzGerald et al., 

2008; Shaw et al., 1998; Hinkel and Klein, 2009; Gutierrez et al., 2011; Plant et al., 2016). 

While sea-level rise can drive long-term coastal erosion (Leatherman et al., 2000; Pilkey and 

Cooper 2004; Moore et al., 2010; Vitousek et al., 2017), so can interactions between incident 

offshore waves and subtle changes in shoreline planform curvature (Figure 2a), by setting up 

gradients in net alongshore sediment transport that generate spatial patterns of shoreline 

erosion and accretion (Dean and Yoo, 1992; Cowell et al., 1995; Valvo et al., 2006; Lazarus 

and Murray, 2007, 2011; Lazarus et al., 2011). (In this context, "offshore waves" refers to 

waves seaward of the inner continental shelf edge.)  
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At any point along the shoreline planform, the magnitude of alongshore sediment flux can be 

related to significant wave height and relative angle between the incident offshore wave crest 

and the shoreline orientation (Falques, 2003; Ashton and Murray, 2006a). This wave-driven 

alongshore sediment flux is maximized for relative angles of ~45º. When prevailing waves 

approach from "low angles" (relative angles  less than the flux-maximizing angle), gradients 

in alongshore transport tend to diverge at convex-seaward (promontory) segments of the 

shoreline, causing erosion, and converge at concave-seaward (embayed) segments, causing 

accretion (Ashton et al., 2001; Falques, 2003; Ashton and Murray, 2006a; Arriga et al., 

2017). Conversely, under a "high angle" wave climate, these gradients in net sediment 

transport are reversed, such that large-scale coastline curvature tends to increase over time 

and emergent planform features develop (Ashton et al. 2001; Falques, 2003; Ashton and 

Murray, 2006a, 2006b; Murray and Ashton, 2013; Idier et al., 2017; van den Berg et al., 

2012). In most locations, on some days the offshore waves approach from high angles 

relative to the local shoreline orientation, and on some days they approach from low angles. 

Whether a coastline experiences net roughening or net smoothing depends on the wave 

climate; when there is a greater influence on alongshore transport from low angle offshore 

waves, a net smoothing results, and vice versa. (This distinction in terms of offshore waves 

applies in the limits of large alongshore length scales, relative to the cross-shore extent of the 

shoreface. On alongshore scales smaller than a few kilometers, for open ocean coasts, 

interactions between wave transformation and the curvature of seabed contours (Falques and 

Calvete 2005; Falques et al 2011) increase the proportion of high-angle offshore wave 

influence needed to cause coastline roughening.) Transport gradients tend to be larger 

(altering the coastline shape more rapidly) where shoreline curvature is high, but even subtle 

variations in curvature (involving a small range of shoreline angles) can drive shoreline 

change (Valvo et al., 2006; Lazarus and Murray, 2007). 
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Where shoreline planform curvature is low, long-term coastline evolution can be described 

with a diffusion equation, such that positive diffusivity corresponds to coastline smoothing 

and negative diffusivity corresponds to coastline roughening (Ashton and Murray, 2006a,b; 

Falques 2003; Ashton and Murray 2003; Ashton et al 2003). Given that extensive reaches of 

the U.S. Atlantic and Gulf Coasts feature low curvatures with local wave climates tending to 

be low-angle dominated (e.g. Ashton and Murray, 2006b; Johnson et al., 2015), a diffusive, 

smoothing signal should be apparent over large spatial and long time scales across a broad 

span of locations. In numerical modeling experiments, even where regional high-angle wave 

climates (relative to the regional coastline trend) have shaped large-scale, emergent coastline 

features, such as cuspate capes or free spits, wave-shadowing effects and local shoreline 

reorientation result in diffusive prevailing conditions everywhere but near the cape tip or spit 

terminus (Ashton and Murray, 2006a, 2006b; Ashton et al., 2016). Thus, model results and 

observations (or hindcasts) of local wave climates lead us to expect a coastline-smoothing 

signal, i.e. positive diffusivity, in almost all locations (Ashton and Murray, 2006b). On the 

other hand, how much the diffusive, low-angle waves dominate local wave climates varies 

from region to region (e.g Johnson et al., 2015), leading to the prediction that coastline 

diffusion should be more dominant in some regions than others.  

Because diffusion of large-scale coastal features theoretically occurs more slowly than for 

small-scale ones (the characteristic timescale for coastline change, T, scales with the square 

of the alongshore length scale, L; T  L2), to detect the influence of larger-scale (>  km) 

coastline curvature should require longer-term (> 101 yr) shoreline comparisons. 

Theoretical and numerical-model-based predictions for how shoreline change should be 

related to coastline curvature have not often been directly tested against observations. We 

build on work by Lazarus and Murray (2007) that identified a negative correlation between 
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shoreline curvature and shoreline change (i.e., where planform curvature was offshore 

convex, defined as positive, shoreline change was landward, defined as negative; Figure 2b) 

along ~100 km of the Northern Outer Banks of North Carolina (USA). The correlation was 

statistically significant at 102–103 m spatial scales and multi-annual time scales (Figure S1). 

Here, we identify a predominant smoothing signal (a negative correlation between shoreline 

curvature and shoreline change) on the wave-dominated, sandy shorelines of the U.S. 

Atlantic and Gulf Coasts over decadal to centennial time scales and multi-km spatial scales.  

 

2. Methods 

We analyzed shoreline curvature and change for coastal barriers along the U.S. Atlantic and 

Gulf Coasts, spanning a total of ~1700 km. 

2.1 Shoreline curvature 

To calculate shoreline curvature, we downloaded shorelines from the Geophysical Data 

System (GEODAS) Coastline Extractor v 1.1.3 

(https://www.ngdc.noaa.gov/mgg/geodas/geodas.html). Shorelines in the Coastline Extractor 

come from the Global Self-consistent, Hierarchical, High-resolution Geography (GSHHG) 

database (Wessel and Smith, 1996) and are based on the World Vector Shoreline Data. After 

importing the shorelines from the Coastline Extractor into ArcGIS, we divided them into 

sections defined by morphologic (e.g., inlets) and anthropogenic (e.g. groynes) boundaries. 

In ArcGIS, we set points at 1 m increments along each shoreline segment and created a 

reference line by linking the segment endpoints. We moved the reference line 2000–3000 m 

offshore so that the entirety of the shoreline was on the landward side of the reference line, 

which serves as an arbitrary datum for defining cross-shore positions. We assume the overall 
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curvature of each segment is low, so that the distance along the reference line (x) and the 

distance from the reference line (y) correspond to (x, y) coordinates for each point on the 

shoreline. 

To isolate signatures of alongshore sediment flux related to coastline curvature, we removed 

0.5 km from both ends of each shoreline section to reduce potential effects of inlets, which 

can cause convex bulges in the shoreline affected local changes in tidal deltas (Davis and 

Fitzgerald, 2004). However, where a jetty is present at the end of a shoreline section, we did 

not remove that terminal 0.5 km, because the shoreline curvature (concave-seaward, negative 

curvature) and shoreline change (accretion; positive change) updrift of the jetty is a result of 

gradients in alongshore transport. Groynes result in the creation of locally concave and 

accreting shorelines updrift, similar to a jetty, but wave shadowing downdrift results in 

locally concave and eroding shorelines. Rather than distinguish between these two effects, we 

treat a groyne as an inlet and remove 0.5 km from both sides in our analysis. 

We then filtered the (x, y) shoreline sections with a running average weighted by a Gaussian 

distribution with a length scale of  
𝐿

4
  (where L = 1, 3, and 5 km, respectively), to remove 

small-scale (high frequency) variations and reveal the large-scale curvature of the shoreline 

(Lazarus and Murray, 2007): 

𝑓(𝑥) =
1

𝐿

4
√2𝜋

𝑒
−
1

2
(
𝑥−𝜇
𝐿
4

)

2

      (1) 

Truncating the tails of the Gaussian yields a total sum of the weights that is slightly less than 

1 (~0.95). (The resulting shoreline positions could be multiplied by the inverse of this factor, 

to regain the full amplitude of the smoothed-shoreline undulations, although such a 

normalization would be canceled out in the correlation calculations, equation 2, and would 
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thus not affect our results.) This truncation allowed us to retain more shoreline length for 

analysis, reducing the number of points needed to calculate a single value. This method 

differs slightly from that used in previous work (Lazarus and Murray, 2007), but results in 

filters of comparable size (Figure S2). Increasing the filter size reduces the number of data 

points obtainable from a given shoreline segment (because only points greater than half a 

smoothing window from the boundaries can be used); where a shoreline segment is not long 

enough to allow for smoothing at all three length scales (1, 3, and 5 km), we only examined 

the applicable scales. We calculated curvature as the second derivative of the smoothed 

shoreline, under the assumption that local shoreline orientations deviated little from the 

average orientation of the shoreline segment (Lazarus and Murray, 2007). (See Figure S3 for 

details of the analysis for an example shoreline segment.) 

2.2 Shoreline change 

We obtained shoreline change data separately, from the USGS National Assessment of 

Shoreline Change Project (Morton et al., 2004; Morton and Miller, 2005). Mean high water 

level was used to identify the shoreline. A "long-term" (~102 yr) rate of shoreline change for 

a given shoreline segment was obtained from a linear regression of shoreline change 

spanning the late-1800s, 1920s-1930s, 1970s, and 1998–2002. A "short-term" (~101 yr) 

shoreline change rate was calculated using an end-point method, and shoreline data from the 

1970s and 1998–2002. Positive values of shoreline change represent accretion; negative 

values represent erosion (Figure 2b). Where extensive reaches of a given shoreline segment 

did not have available shoreline-change data, we removed the segment from the analysis. 

With the shoreline curvature and shoreline change data, we calculated a correlation 

coefficient (zero-lag) to determine the magnitude and sign of the relationship between 

curvature and shoreline change rate for each shoreline segment 
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𝜌(𝐴,𝐵) =
1

𝑁−1
∑ (

𝐴𝑖−𝜇𝐴

𝜎𝐴
)𝑛

𝑖=0 (
𝐵𝑖−𝜇𝐵

𝜎𝐵
)    (2) 

where 𝜇𝐴 and 𝜎𝐴 are the mean and standard deviation of A (curvature), respectively, and 𝜇𝐵 

and 𝜎𝐵 are the mean and standard deviation of B (shoreline change rate). The absolute value 

of the correlation coefficients, which are nondimensional, is bounded by 0 (indicating no 

relationship between the two signals) and 1 (indicating that all of the variance in one signal is 

related to variance in the other signal).  By our convention (Figure 2b), a negative correlation 

indicates shoreline smoothing, and a positive correlation indicates shoreline roughening. 

We also identified shoreline segments that have experienced nourishment (Miller et al., 2004; 

Miller et al., 2005). We excluded nourished segments from our analysis of North Carolina 

and Florida but have included nourished segments from Texas and the Mid-Atlantic to 

demonstrate the effects of nourishment on this type of analysis. Nourished segments included 

in our calculations are identified in Table 1. 

To provide context when analyzing the results of the correlation calculations for select 

regions (North Carolina, Texas, and Florida), we calculated an average effective diffusivity, 

representing the time-integrated effects of the high- and low-angle waves in the wave climate, 

following the methods of Ashton and Murray (2006b). Coastline diffusion can be expressed 

by: 

𝜕𝑦

𝜕𝑡
=

1

𝐷

𝜕𝑄𝑠

𝜕𝜃

𝜕2𝑦

𝜕𝑥2
      (3) 

where 𝜕𝑦 𝜕𝑡⁄  is shoreline change rate, D is shoreface depth (the depth to which erosion or 

accretion are spread), and 𝜕𝑄𝑠 𝜕𝜃⁄  is the rate of change of alongshore sediment flux as the 

relative angle between offshore wave crests and the local shoreline, 𝜃, varies—which is a 
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function of relative angle and height of offshore waves. We can define coastline diffusivity 

as: 

𝜇 =
1

𝐷

𝜕𝑄𝑠

𝜕𝜃
       (4) 

To represent the net diffusive (or antidiffusive) effects of a wave climate, we use an effective 

diffusivity (Ashton and Murray 2006b): 

𝜇𝑛𝑒𝑡=
∑ 𝜇𝑖∆𝑡𝑖
𝑛
𝑖=0

∑ ∆𝑡𝑖
𝑛
𝑖=0

       (5) 

where net has dimensions of m2/s. (Wave data are typically available as statistics such as 

significant wave height and wave direction averaged over a sampling period Δt; i is 

calculated for each data point using Equation 4.) This effective diffusivity is 0 when the 

diffusive influence of all the low-angle waves in a wave climate equals the anti-diffusive 

influence of all the high-angle waves. Greater positive magnitudes of net result from a 

greater dominance of low-angle waves, and or larger wave heights (holding the proportion of 

influences from low- and high-angle waves constant). Greater negative magnitudes of net 

result from a greater dominance of high-angle waves, and or larger wave heights (holding the 

proportion of influences from low- and high-angle waves constant). In either case, positive or 

negative, the magnitude can in principle be large (e.g. >> 1). The rate that subtle coastline 

undulations are smoothed out (or exaggerated) depends on the magnitude of net. 

2.3 Excluded reaches 

We excluded from this analysis much of the wave-dominated, sandy coastline of South 

Carolina and Georgia. This stretch of coast is characterized by a large tidal range, and 

frequent tidal inlets as well as estuaries; ocean-facing shoreline segments are therefore short, 
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and the influence of tidal inlets is strong. We also excluded segments that are extensively 

stabilized and heavily developed in North Carolina and Florida. 

 

3. Results 

The full spatial extent of our analysis is shown in Figure 1 and data are reported in Table 1. 

Here, we examine subsets of those results in detail.   

3.1 North Carolina 

3.1.1 Comparison to previous work 

Lazarus and Murray (2007) previously analyzed correlations between curvature and shoreline 

change along a section of the Northern Outer Banks of North Carolina from the Virginia state 

line to Oregon Inlet (NC P96 in this study). Because here we use a somewhat different 

method, we focused on the same section and re-analyzed the original data from that work 

(which extracted shoreline position from repeated lidar surveys) to make a direct quantitative 

comparison. Where Lazarus and Murray (2007) smoothed the calculated curvature and 

shoreline-change values, we smooth the shoreline itself. Comparing the results of smoothing 

the calculated curvature versus smoothing the shoreline, we found no difference in the final 

curvature values. Likewise, we found a negligible difference in the correlation coefficients 

for smoothing (Lazarus and Murray, 2007) or not smoothing (this study) the shoreline-change 

data. 

The smoothing filters used in the respective analyses differ slightly (Figure S2). Our results 

thus differ in local detail, but not in overall trend. When we change the shape of our Gaussian 

so that it resembles the Hanning window used by Lazarus and Murray (2007), such that the 
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sum of the weights is ~99% and the lowest weight is ~1% of the central value, the length 

scales of the respective filters differ by a factor of ~1.5: data smoothed at a 1 km scale in our 

analysis is comparable to smoothing at a ~1.5 km scale by the process in Lazarus and Murray 

(2007). We have to reduce our length scale (
𝐿

4
 in Equation 1) by ~ 

2

3
 to weight our Gaussian in 

a way that is comparable to their Hanning window. 

Our method reproduced the same relationships demonstrated by Lazarus and Murray (2007; 

Figure S2), with values within a factor of 2 of those they reported (Table S1). The correlation 

between shoreline curvature and shoreline change is strongest at longer (decadal) time scales, 

and it depends on length scale in a way that varies with time scale (Figure S2). 

3.1.2 New analysis 

We analyzed ~265 km of sandy barrier island shoreline along North Carolina’s coast – more 

than twice the reach covered previously (Lazarus and Murray, 2007, 2011; Lazarus et al., 

2011, 2012). Individual islands range in length from 2.7 to 121.44 km. We removed several 

nourished shoreline segments from the analysis (NC 77, 79, 82, 86, 93, 94, 95; Table 1) and a 

few of the shoreline reaches (NC 84, 85, 91) are too short to be analyzed at all three length 

scales. 

For context, we calculated a representative effective diffusivity of 0.992 m2/s for North 

Carolina (see Table S2 for details on shoreline sections and wave data used).  Thus, we would 

expect correlations between curvature and shoreline change to be negative, corresponding to 

coastline smoothing. At the 1 km smoothing scale, almost all (85%) of the shoreline has a 

significant correlation (using a 95% confidence interval criterion) between shoreline 

curvature and short-term shoreline change (Table; Figure 3). This percentage decreases to 

~16% at the 5 km scale. The percentage of the shoreline with a significant positive 
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correlation, indicating roughening, decreases from nearly 70% at the 1 km scale to ~5% at 5 

km. This indicates small-scale roughening and large-scale smoothing over decadal time 

scales. Approximately 50% of the shoreline has a significant, negative correlation between 

shoreline curvature and long-term shoreline change at all spatial scales considered, indicating 

long-term (century-scale) smoothing. Significant correlation coefficients range from -0.83 to 

0.55 for short term shoreline change and -0.91 to 0.59 for long-term (Table 1). Stronger 

magnitude correlations (both positive and negative) tend to occur at large spatial scales.  

Some of the significant roughening signals can be explained by local factors. For example, 

Shackleford Banks (NC 87) has a significant, positive correlation at the 3 and 5 km scales for 

both short- and long-term shoreline change (Figure 3). This apparent roughening signal likely 

arises from wave shadowing effects leading to a local gradient in wave climate where the 

western end of the island is more strongly affected by waves from the east and northeast than 

the eastern end. The resulting gradient in net alongshore sediment transport causes shoreline 

erosion creating a concave shoreline. The association between concavity and erosion 

corresponds to a roughening signal in our analysis.  

Another island with a roughening signal, Figure Eight Island (NC 80), is known to undergo 

nourishment (which we address in Section 4.3). However, because it is a private island, and 

its nourishment projects are funded privately, Figure Eight Island is not included in the 

database we used to eliminate nourished shorelines. Browns Island (NC 84), a third island 

where shoreline roughening is apparent, is occupied by Camp Lejeune, a U.S. military base, 

and shoreline stabilization data are not available. In addition, some of the short-term 

roughening signals may indicate that local wave climates were weighted toward high-angle-

wave influence over relatively short durations, possibly related to single storm events 

involving large waves approaching from high angles (Lazarus et al., 2012). Because coastline 



 

 
©2019 American Geophysical Union. All rights reserved. 

diffusion or anti-diffusion theoretically occurs more rapidly as the spatial scale is reduced, the 

fact that the short term positive correlations tend to occur at the smallest length scales is 

consistent with the theoretical framework—especially given that larger scale and longer term 

correlations strongly tend to be negative, consistent with the positive effective diffusivity 

representing relatively long-term forcing.  

3.2 Texas 

We analyzed ~575 km of sandy, barrier island shoreline along the Gulf Coast of Texas. 

Individual islands ranged in length from 10.2 to 95.9 km. The shoreline sections for TX 2 

(South Padre Island), 11, 12 and 13 (Galveston Island) have experienced nourishment but 

were included in the analysis for the sake of discussion. For context, we calculated an 

average effective diffusivity of 1.089 m2/s for Texas (Table S2); we expect to find 

correlations indicating coastline smoothing for this region. 

The percentage of shoreline with a significant correlation between curvature and short-term 

shoreline change increases from 15% to 90% with increasing spatial scale (Table 2). 

Significant correlations are almost entirely negative, indicating smoothing (Figure 4). This 

significant smoothing signal is also observed for long-term shoreline change, though for a 

smaller percentage of the shoreline (9-24%). Correlation coefficients range from -0.75 to 0.06 

for short term shoreline change, and from -0.63 to 0.1 for long-term shoreline change (see 

Table 1 for all data). The correlation coefficients increase in maximum magnitude and range 

as the spatial scale increases (Figure 4, Table 1). While smoothing occurs at all three spatial 

scales (1, 3, and 5 km), values are more negative and there are more significant values (i.e. 

the smoothing signal is stronger) at larger spatial scales.  

While a few shorelines in Texas appear to have a roughening signal, the correlations in these 

cases are much smaller in magnitude than those of the smoothing signal and are often not 
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significant (Figure 4; Table 1). In most cases, this signal can be explained by local history. 

For example, Texas 8 (Figure S3) has a positive correlation coefficient indicating roughening 

for the 3 and 5 km smoothing windows at both short- and long-time scales (this signal is 

significant only at the 5 km, long-term scale; Figure 4). Historical satellite imagery (via 

Google Earth), reveals that an inlet was formerly present in this location which has now filled 

in. Since the inlet closed during the period covered by our shoreline change data, this 

roughening signal is likely the result of the shoreline becoming locally convex in shape, 

while accreting seaward, as waves swept the relict ebb tidal delta onshore. Texas 12 also 

exhibits a significant, positive (roughening) signal on 3 and 5 km scales for short-term 

shoreline change (Figure 4a). This is likely a result of the island’s history of nourishment 

projects resulting in the creation of a shoreline convexities. The correlations for the other 

nourished shoreline sections in Texas are not significant, close to zero, and/or negative (Table 

1). 

3.3 Mid-Atlantic (New York to Virginia) 

We analyzed ~485 km of sandy, barrier island shoreline between Montauk Point, New York 

and Assateague Island, Virginia. Individual islands range in length from 9.26 to 79.86 km. 

Virtually all the shorelines along the coast of New York and New Jersey have been nourished 

or have stabilization structures such as groynes or seawalls in place; thus, all shorelines were 

included in the analysis regardless of nourishment or stabilization. 

Approximately 50% of the shoreline has a significant correlation between shoreline curvature 

and short-term shoreline change at all spatial scales considered (Table 2; Figure 5). The 

percentage of the shoreline with a significant positive correlation, indicating roughening, 

increases from 10% to 30% as spatial scale increases from 1 to 5 km. For long-term shoreline 

change, the percentage of the shoreline with a significant correlation increases from 50% to 
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70% with increasing spatial scale. Approximately 50% of the shoreline has a significant 

positive correlation between curvature and long-term shoreline change, on all spatial scales. 

These mainly positive correlations reflect the long-term roughening signal of shoreline 

stabilization and nourishment on the heavily developed barriers of the mid-Atlantic (Hapke et 

al., 2013), which obscures the smoothing signal that would be expected. The relatively few 

smoothing signals occur predominately in the short-term analysis. Correlation coefficients in 

this region range from -0.42 to 0.73 for long-term change, and from -0.83 to 0.55 for short-

term change (Table 1).  

One of the shoreline sections, NY 4 (Fire Island, Figure 5), displays a roughening signal on 

both short-term and long-term timescales despite not undergoing nourishment. This signal 

can be attributed to the presence of shoreface-attached sand ridges acting as an offshore 

sediment source (Safak et al., 2017; Section 4.3).  

3.4 Virginia 

The Virginia Barrier Islands are characterized by short, uninhabited islands with a strong tidal 

influence. Islands range in length from 3.09 to 15.69 km. Tidal and inlet effects are at least as 

important as wave influence in determining island behavior in this region. Many of the 

shorelines are too short to evaluate at greater than the 1 km length scale, and others (e.g. 

Wallops Island, a NASA flight facility) do not have historic shoreline change data available. 

In addition, the timescales of analysis in this project do not match the timescales of shoreline 

change in this region. While our shoreline change data is on decadal or centurial time scales, 

the tidal-inlet dynamics cause the Virginia Barrier Islands to rotate and shift on shorter 

timescales, so that there is little overlap between the current position (and curvature) of the 

shoreline and the position (and curvature) of the shoreline at the start of the time spanned by 

the shoreline change data. For one example, Hog Island, shoreline change rates can be higher 
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than 5 m/yr, rotating the island by accreting on the northern end of the island and eroding on 

the southern (Hayden et al., 1991) and resulting in changes in shoreline location of hundreds 

of meters over the timescales of our analysis.  

As a result of the mismatch between shoreline change rates and the duration over which 

shoreline change is calculated in this study, no clear trend can be found, and most coefficients 

are on the extreme ends of the range of correlations, signifying a strong smoothing or 

roughening signal (see Table 1 for data). Many of the islands are short enough that few points 

remained for analysis, allowing outliers to have a strong influence on the overall trend. Few 

correlations are significant, and the mismatch in timescales means it is unlikely the trends 

have any physical meaning, especially on timescales as long as 100 years. While positive 

correlations could represent curvature-related roughening resulting from locally anti-diffusive 

wave climates, the mismatch between the time scales of our analysis and those of the 

shoreline changes in this region preclude meaningful interpretation. Although we did not 

perform our analysis for the short, tidally-influenced barrier islands of South Carolina and 

Georgia, we would expect similar results for those shorelines. 

3.5 Florida 

Though characterized by long sandy barriers like the coasts of North Carolina and Texas, the 

Florida coast is also heavily developed and therefore subject to large and frequent 

nourishment projects. Due to the extent of nourishment, we analyzed only a portion of the 

Florida coast:  ~280 km of sandy barrier-island shoreline along the eastern coast of Florida. 

This included eight shorelines, ranging from 16.41 to 60.72 km in length. For context, we 

calculated a representative effective diffusivity of 2.575 m2/s for Florida (Table S2), 

corresponding to the prediction of strong smoothing signals (negative correlations between 

curvature and shoreline change). 
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Between 47–73% of the shoreline considered had a significant correlation between curvature 

and short-term shoreline change, for which smoothing signals dominate on larger spatial 

scales and roughening over smaller (Table 2; Figure 6). Less of the overall shoreline has a 

significant correlation when examining long-term shoreline change, but the correlation is 

more likely to be negative, reflecting a smoothing signal (Figure 6).  

4. Discussion 

4.1 Variability in Wave Climate and Effective Diffusivity 

Correlations between curvature and shoreline change depend on local wave climates, which 

vary alongshore. Even though the regional wave climate affecting the Carolina coast is 

marginally anti-diffusive (i.e. a negative diffusivity, giving rise to the capes and cuspate 

coastline; Ashton and Murray, 2006a), numerical modeling indicates that wave-shadowing 

effects and coastline rotation combine to produce diffusive local wave climates (Ashton and 

Murray, 2006b), tending to keep shorelines smooth in the bays between the capes. Texas (and 

Florida) are simpler in this sense, with local wave climates that are approximately the same as 

the regional wave climates. 

North Carolina and Texas have very similar local wave climates, as measured by the effective 

diffusivity for representative shoreline segments (Table S2). We might therefore expect the 

correlations between curvature and shoreline change (i.e the distribution of correlation 

coefficients) to be similar. However, even with the inclusion of nourished shorelines in Texas 

and not North Carolina, correlations are on average more negative for Texas than North 

Carolina (i.e. the distribution is shifted to the left; Figure 7). A larger percentage of the 

shoreline exhibits a smoothing signal in Texas (Table 2), and correlations tend to be stronger 

than North Carolina. When roughening signals are observed, they are less likely to be 

significant and tend to be smaller for Texas than North Carolina. 
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What might explain this difference? In terms of theoretical frameworks and numerical model 

results, the likely answer involves wave-shadow effects, which play a key role in shaping the 

coastline of North Carolina but not Texas. The gradient in net alongshore sediment transport 

associated with a wave-shadow gradient tends to produce erosion, and therefore coastline 

concavity (as with Shackleford Banks, NC 87, in section 3.1.2). However, as the concave 

curvature increases in magnitude, the component of the alongshore-transport gradient related 

to coastline curvature increases. This component of the gradient in net transport tends to 

cause accretion. In modeling studies (and likely on natural coastlines), as the curvature 

increases, the tendency to accrete (driven by coastline curvature) eventually balances the 

tendency to erode (driven by a wave-shadow gradient). Although fluctuations in wave 

climate will cause the curvature to fluctuate (Ratliff & Murray, 2014), the result is a 

background curvature in a quasi-steady state – such as the curvature observed in the cuspate 

bays between capes. (In the case of Shackleford Banks in NC, the curvature was presumably 

in quasi-steady state before Barden’s Inlet opened up in 1933, disconnecting the cape from 

Cape Lookout from the Shackleford Banks shoreline. Because of the disconnection in the 

sediment transport pathway, which changed the boundary condition at the eastern end of the 

Shackleford shoreline, over the last several decades the curvature of the shoreline has been 

decreasing as the eastern end erodes.)   

In the quasi-steady state, this background curvature theoretically does not contribute to any 

accretion, nor does it contribute to the correlation between curvature and shoreline change. 

Instead, shoreline change in this context should be correlated with deviations from the 

background curvature. Where the curvature is greater than the background, accretion should 

result, and where the curvature is smaller than the background value, erosion should result. If 

we were able to calculate the background curvature, which will vary with position within a 

cuspate bay, and subtract the background from the observed curvature, we would expect the 
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correlations to be stronger – approximately as strong in North Carolina as those in Texas. 

Calculation of background curvature is beyond the scope of this work but is a valuable topic 

for future examination. For the present, the stronger correlations on the Texas coast, despite a 

very similar effective diffusivity to that representing the Carolina coast, is consistent with the 

theoretical/modeling framework.   

 

4.2 Space and Time Scales of Relevance 

In a simple diffusional system, we would theoretically expect to be able to see relationships 

between shoreline curvature and shoreline change down to small (km) spatial scales for short 

time scales. However, the longer the span of time considered, the more likely it is that small-

scale relationships are obscured, as the memory of small-scale shoreline excursions in the 

initial coastline diffuse away and the long-term shoreline position becomes dominated by 

larger scale undulations. This is consistent with our results which involve relatively long-

timescale shoreline change data; there are stronger correlations for the larger spatial scales 

(i.e.5 km) than the smaller ones (1, 3 km) and this trend is more evident for the centurial 

timescales than the decadal ones (see Figure 7, Tables 1 and 2). 

The time and space scales over which our analysis is meaningful vary with the wide variety 

of environmental conditions and morphological processes which can affect shoreline change. 

In some cases, signals that did not fit our expectations were related to events in the history of 

a given shoreline reach, such as the creation or filling-in of an inlet. In these cases, shoreline-

change data with the same time scale but from a different time period would likely have 

resulted in a smoothing signal. In other cases, such as the Virginia Barrier Islands, the 

timescale of the shoreline-change data sets does not match the timescale for the reshaping of 

the shoreline. When the final shoreline shape differs so dramatically from the initial shape 
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(and from the shape at intermediate times), the record of cumulative shoreline change does 

not bear a strong relationship to the curvature of the final shoreline.   

If the fact that shoreline change operates on a shorter timescale than our decadal and centurial 

shoreline change timescales was the only obstacle, we could overcome it by using shorter-

term (e.g. annual) shoreline change data. However, the strong tidal influence and rotational 

nature of the short Virginia Barrier Islands means that waves are not the only strong influence 

shaping these islands. While gradients in wave-driven alongshore transport are tending to 

smooth out some portions of the coastline, tidal-inlet processes are generating or 

exaggerating shoreline bulges in other portions. This combination of smoothing and 

roughening signals means we would not necessarily expect shoreline curvature to have a 

simple relationship with shoreline change rates. These examples lead to a broader 

consideration of processes that can create shoreline curvature, in opposition to the tendency 

for alongshore-transport gradients reduce curvature. 

4.3 Nourishment and Other Complicating Factors 

Along with tidal-inlet processes, other processes can introduce shoreline change signals that 

complicate or obscure the relationship between shoreline curvature and shoreline change. 

These processes range from shoreline bulges resulting from nourishment (Dean and Yoo, 

1992; Browder and Dean, 2000; Dean 2002) to variations in underlying geology (Valvo et al., 

2006).  

In the case of nourishment, if shoreline change and curvature were analyzed during a period 

following the completion of a nourishment project and before any subsequent nourishments, 

the results would indicate smoothing, as the convex nourished beach erodes and surrounding 

convex shorelines accrete (e.g. Dean and Yoo, 1992; Browder and Dean, 2000; Dean 2002).  

However, if nourishment occurs during the period analyzed, the artificial widening of the 
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shoreline and corresponding shoreline convexity in the in final shoreline shape looks like a 

roughening signal. On the timescales considered in our analysis, multiple nourishment 

episodes can obscure diffusional signals from waves.  This result (Figure 5) resonates with 

the previous finding concerning the highly developed coasts of the mid-Atlantic: Shorelines 

which in historic times experienced shoreline erosion are now exhibiting net accretional 

shoreline change signals resulting from the cumulative impact of nourishment projects 

(Hapke et al., 2013; Armstrong & Lazarus, 2019). Over long timescales the natural erosional 

signal appears completely obscured by human activity. 

Heterogeneity in underlying geology or offshore bathymetry can also create signals of 

shoreline change. Offshore bathymetric features, such as shoreface-attached sand ridges, can 

influence both shoreline shape and shoreline change. Fire Island (NY 4), provides a clear 

example, displaying a roughening signal on scales greater than 1 km in our analysis (Figure 

5, Table 1), likely caused by the presence of shoreface-connected sand ridges offshore (Safak 

et al., 2017). These features apparently act as a cross-shore source of sediment, resulting in 

accretion and subtle convex bumps along the shoreline. In a low-angle wave climate such as 

is found here, we would expect gradients in alongshore sediment transport associated with the 

convex curvature to result in erosion. However, in this case it appears that the rate of cross-

shore sediment flux building the undulations is greater than the rate sediment is being 

removed by alongshore transport gradients related to shoreline curvature. 

Alongshore variations in the composition of underlying geology can also create persistent 

perturbations to shoreline curvature (Lazarus and Murray, 2011; Valvo et al., 2006). As an 

eroding coastline encroaches on alongshore heterogeneities in the material that the shoreface 

is eroding into, portions of the coastline that are producing less material that is coarse enough 

to stay in the nearshore system will begin to erode more rapidly, producing concave 
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curvature. Conversely, portions of the coastline where the shoreface is eroding into coarser 

material will tend to produce subtle convex bumps in the coastline (Lazarus and Murray, 

2011; Valvo et al., 2006). This curvature tends to be diffused away by the smoothing action 

of waves, but new shoreline curvature signals are introduced as the shoreline transgresses 

through alongshore-variable substrate (Lazarus and Murray, 2011). The reintroduction of 

these signals could explain why shorelines on even wave-dominated, pristine coastlines that 

are being diffused still retain curvature after millennia of smoothing (Lazarus and Murray, 

2011).  

4.4 Implications 

Our results demonstrate that shoreline curvature can correlate significantly with shoreline 

change rates over several kilometer and decade to century space and time scales. The 

presence of a significant correlation between shoreline change and shoreline curvature on 

many coastlines, however small the correlation coefficient may be, demonstrates the 

importance of this relationship in understanding shoreline dynamics. This relationship is 

strongest on wave-dominated coasts with long, sandy barriers and relatively slow rates of 

shoreline change, but can help explain shoreline behavior even on shorter islands with 

competing influences (e.g. tides) over relatively short timescales.  

The demonstrated role of shoreline curvature in determining shoreline change rates has 

implications for managing as well as for understanding sandy coasts. Large magnitude, 

significant correlations between shoreline curvature and shoreline change in some locations 

(e.g. Texas, North Carolina) suggest that considering shoreline curvature in analyses of 

historical and predicted shoreline change could help improve agreement between models and 

data on low-lying, sandy coastlines where models have historically underperformed (e.g. 

Gutierrez et al., 2011; Yates and Cozannet, 2012). Although practical application is limited to 



 

 
©2019 American Geophysical Union. All rights reserved. 

wave-dominated coastlines, this analysis is broadly applicable to many types of shoreline and 

shoreline-change data, across a range of time and space scales. Calculating shoreline 

curvature is relatively straightforward, and we show that the results of correlation analyses 

exhibit low sensitivity to variations in methodology (see Section 3.2.2). Thus, the results 

presented here suggest that correlations between curvature and shoreline change should be 

included in risk assessment and modelling efforts pertaining to sandy shorelines. 
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Table 1. Correlation coefficient data for all space and time scales for all shoreline sections. Shoreline 

sections are numbered moving from south to north (e.g. New York 1 is the southernmost section of 

New York’s shoreline). Bold shoreline section names have not experienced nourishment, unbolded 

section names have experienced nourishment. Bold values are significant at a 95% confidence 

interval. 

Shoreline 
section 

Correlation Coefficient 

Short term shoreline change Long term shoreline change 

1 km 3 km 5 km 1 km 3 km 5 km 

New York8 0.070324 -0.12827 -0.1582 -0.03502 -0.20957 -0.36577 

New York7 0.111674 0.372689 0.129199 -0.01643 -0.26676 -0.18264 

New York6 -0.16447 -0.2139 0.094883 0.072898 -0.35544 -0.41847 

New York5 -0.04217 -0.01076 0.02657 -0.01125 -0.02875 -0.08844 

New York4 -0.00042 0.026879 0.164316 -0.07888 0.202794 0.11143 

New York3 0.019078 -0.06927 -0.54342 0.027861 -0.06655 0.023931 

New York2 -0.59108 -0.69198 -0.6239 -0.1626 -0.04233 0.164476 

New York1 -0.39928 0.094831 0.309797 0.305994 0.079137 -0.23789 

New Jersey9 -0.08228 0.053764 0.205561 0.107832 0.348556 0.332377 

New Jersey8 0.145729 0.205536 -0.00939 0.045185 0.10853 0.052792 

New Jersey7 0.291612 0.552746 0.412828 0.213461 0.624899 0.515199 

New Jersey6 0.217063 0.117759 0.120676 0.17374 0.402628 0.220784 

New Jersey5 -0.2044 -0.16818 -0.48515 0.381102 0.570934 0.612524 

New Jersey4 0.102028 0.339569 0.282275 0.10447 0.008002 0.082873 

New Jersey3 -0.61737 -0.83374 -0.40891 0.415036 0.569583 0.581117 

New Jersey2 -0.06871 0.011789 0.351761 0.089031 0.353269 0.226332 

New Jersey1 -0.10345 0.105707 -0.10639 0.419118 0.726764 0.608737 

Delaware1 -0.17877 -0.4055 -0.26207 0.003589 -0.09073 -0.30117 

Maryland1 0.005773 0.073997 0.242193 -0.02634 0.017682 0.150606 

Virginia12 -0.10359 -0.16801 -0.19339 0.029798 0.059715 0.055696 

Virginia11 -0.40403 -0.14275 0.24763 -0.02237 0.520963 0.141626 

Virginia10 -0.37967 -0.34945 0.000728 -0.02503 0.257716 0.571434 

Virginia9 -0.06196 -0.00568 -0.08664 0.145887 0.238378 0.164923 

Virginia8 -0.15521 -0.36874 -0.6393 0.45665 0.42626 0.501026 

Virginia7 -0.25557 -0.74775 -0.7111 0.088547 0.106359 0.61136 

Virginia6 0.037561 0.120676 0.746808 -0.26258 -0.39069 -0.68728 

Virginia5 -0.54848 N/A N/A -0.94385 N/A N/A 

Virginia4 -0.96205 -0.66748 N/A 0.925424 0.857653 N/A 

Virginia3 0.064669 -0.21759 N/A 0.111884 0.363048 N/A 

Virginia2 0.125624 0.759211 0.803326 0.02661 0.620772 0.891446 

Virginia1 0.744398 N/A N/A -0.01646 N/A N/A 

North Carolina 
P96 0.144269 -0.10529 -0.00876 -0.10541 -0.18824 -0.13276 

North Carolina 
P92 0.349557 -0.27417 -0.31334 0.025203 -0.28839 -0.2133 

North Carolina 
P91 -0.25219 N/A N/A 0.145667 N/A N/A 

North Carolina 
P90 0.250724 0.039114 0.142102 0.017522 -0.01094 0.143771 

North Carolina 
P89 0.021587 0.218485 0.102581 -0.24125 -0.01805 -0.18751 
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North Carolina 
P88 0.079472 0.050025 0.04052 -0.06983 -0.06712 -0.06532 

North Carolina 
P87 -0.19644 0.324325 0.550742 0.027631 0.254313 0.579232 

North Carolina 
P85 -0.37264 -0.83128 N/A -0.51683 -0.91692 N/A 

North Carolina 
P84 -0.0911 0.525982 N/A 0.124373 0.591191 N/A 

North Carolina 
P83 -0.01929 -0.08488 0.122145 -0.00162 -0.25567 -0.24168 

North Carolina 
P81 -0.30684 -0.21183 -0.34157 -0.65238 -0.33897 0.316539 

North Carolina 
P80 -0.21832 0.071481 -0.06178 0.17744 0.422571 -0.12204 

North Carolina 
P78 -0.56693 -0.78673 -0.70293 -0.51285 -0.69875 -0.10446 

North Carolina 
P76 -0.09098 0.140232 -0.14015 0.067391 0.501133 0.1847 

South Carolina 
P68 -0.10677 -0.44164 -0.68018 -0.33971 -0.81407 -0.90549 

Florida P19 0.025201 0.099415 0.279159 0.054233 0.095545 0.12083 

Florida P18 0.124249 -0.04477 -0.13314 -0.04349 -0.37348 -0.55988 

Florida P17 -0.03337 0.052037 0.01319 -0.00258 0.040937 0.033951 

Florida P16_2 0.093654 0.1549 0.255917 0.005374 0.006049 -0.02489 

Florida P16_1 -0.09532 -0.11464 -0.05769 -0.08013 -0.09641 -0.0637 

Florida P15 0.021525 0.053018 -0.02001 0.020112 0.024078 0.036264 

Florida P10 -0.16552 0.161041 0.271616 -0.05879 -0.13993 -0.09773 

Florida P9 0.087139 -0.15064 -0.21389 0.299981 -0.01654 0.10858 

Texas14 -0.00358 -0.12428 -0.27463 0.035979 0.008918 0.000558 

Texas13 0.050743 0.004555 -0.04873 0.045255 0.016686 -0.00247 

Texas12 -0.04612 0.135178 0.13365 -0.04115 -0.1909 -0.575 

Texas11 -0.03796 -0.37634 -0.37393 -0.04811 0.074985 0.071233 

Texas10 -0.07537 -0.13733 -0.20475 -0.1033 -0.07987 -0.19432 

Texas9 -0.03402 -0.0859 -0.14875 -0.00463 0.021958 -0.03221 

Texas8 -0.11271 0.061099 0.044159 -0.12668 0.029944 0.104228 

Texas7 -0.06834 -0.17361 -0.28095 -0.10502 -0.18407 -0.25799 

Texas6 -0.19458 -0.5778 -0.71853 -0.19394 -0.54149 -0.66695 

Texas5 -0.05542 -0.25435 -0.43196 -0.00979 0.037675 -0.00574 

Texas4 0.009212 -0.03978 -0.05869 -0.01434 -0.06512 -0.08189 

Texas3 0.003582 -0.06113 -0.08572 0.003729 0.006362 -0.01497 

Texas2 -0.04068 -0.07482 -0.09748 -0.00601 -0.01158 0.017724 

Texas1 -0.06139 -0.58019 -0.7515 -0.13321 -0.50223 -0.63403 
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Table 2. Total length of shorelines considered and percentage of total with significant 

correlations for each study region. 

Region 
Total 

Length 
(km) 

% of shoreline 
with significant 

correlation 

Short term shoreline change Long term shoreline change 

1 km 3 km 5 km 1 km 3 km 5 km 

Mid-Atlantic 487.6 

total 48.6 55.2 54.4 50.6 68.3 70.0 

positive 10.1 19.3 29.1 46.4 52.1 52.2 

negative 38.4 35.8 25.3 4.3 16.1 17.9 

North 
Carolina 

264.9 

total 85.4 67.1 16.6 59.4 56.1 48.9 

positive 67.9 10.0 4.6 0.0 13.0 7.7 

negative 17.5 57.1 12.1 59.4 43.1 41.3 

Florida 277.9 

total 61.1 73.1 47.4 5.9 56.3 17.1 

positive 21.8 41.5 41.5 5.9 6.1 6.1 

negative 39.2 31.6 5.9 0.0 50.2 11.0 

Texas 575.1 

total 15.0 63.7 90.2 24.5 14.0 14.0 

positive 0.0 3.8 3.8 0.0 0.0 4.8 

negative 15.0 59.9 86.4 24.5 14.0 9.2 
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Figure 1. The extent of the shorelines on the A) Atlantic and B) Gulf coasts considered in our 

study. 
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Figure 2. a) A schematic of gradients in alongshore currents created by shoreline curvature. 

Reproduced from Ashton and Murray (2006a). b) Sign conventions used in this analysis. 

Convex (concave) seaward curvature is defined as positive (negative). Accretion (erosion) is 

positive (negative) shoreline change. A positive (negative) correlation represents roughening 

(smoothing) of the shoreline. 
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Figure 3. Map showing the significant correlation coefficients between shoreline curvature 

and shoreline change for the North and South Carolina coasts. A) Correlations between 

shoreline curvature and short-term (decadal) shoreline change. B) Correlations between 

shoreline curvature and long-term (century-scale) shoreline change. For both timescales, data 

is plotted in the following order: moving away from the coast, 1 km, 3 km, and 5 km 

smoothing. Stars mark shoreline sections discussed in detail in the text; NC 87 is Shackleford 

Banks, NC 84 is Browns Island, and NC 80 is Figure Eight Island. 
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Figure 4. Map showing the significant correlation coefficients between shoreline curvature 

and shoreline change for the Texas Gulf coast. A) Correlations between shoreline curvature 

and short-term (decadal) shoreline change. B) Correlations between shoreline curvature and 

long-term (century-scale) shoreline change. For both timescales, data is plotted in the 

following order: moving away from the coast, 1 km, 3 km, and 5 km smoothing. Stars mark 

shoreline sections discussed in detail in the text. 
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Figure 5. Map showing the significant correlation coefficients between shoreline curvature 

and shoreline change for the Mid-Atlantic coast (from New York to Assateague Island, 

Virginia). A) Correlations between shoreline curvature and short-term (decadal) shoreline 

change. B) Correlations between shoreline curvature and long-term (century-scale) shoreline 

change. For both timescales, data is plotted in the following order: moving away from the 

coast, 1 km, 3 km, and 5 km smoothing. Stars mark shoreline sections discussed in detail in 

the text; NY 4 is Fire Island. 
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Figure 6. Map showing the significant correlation coefficients between shoreline curvature 

and shoreline change for the Atlantic Coast of Florida. A) Correlations between shoreline 

curvature and short-term (decadal) shoreline change. B) Correlations between shoreline 

curvature and long-term (century-scale) shoreline change. For both timescales, data is plotted 

in the following order: moving away from the coast, 1 km, 3 km, and 5 km smoothing. 
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Figure 7. Distribution of correlations in terms of shoreline length for A) North Carolina and 

B) Texas. Solid boxes represent significant correlations, and shaded boxes insignificant. 

Percent of shoreline refers to the total shoreline considered, not total shoreline existing. 


