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Steel reinforcement bars (rebars) are vital to the strength of reinforced concrete (RC)1

structures, but can become damaged due to corrosion. Such damage is generally2

invisible and non-destructive testing methods are needed to assess their integrity.3

Guided wave methods are popular because they are capable of detecting damage4

using sensors placed remotely from the damage site, which is often unknown. This5

paper predicts free wave propagation in RC beams from which the concept of a guided6

wave based damage detection method emerges. The wave solutions are obtained7

using the wave finite element (WFE) framework where a short section of the beams8

cross section is modelled in conventional FE and periodic boundary conditions are9

subsequently applied. Reinforcement elements are used in the FE model of the cross10

section as a neat and efficient means of coupling the concrete to the rebars and11

imposing prestress. The results show that prestress, important for static behaviour,12

has a negligible effect on wave dispersion. An RC beam with a damaged section is13

modelled by coupling three waveguides, the centre waveguide being identical to the14

outer ones except for a thickness loss in one rebar. Only small differences in cut-on15

frequencies are observed between the damaged and undamaged sections. However,16

these small differences give rise to strong reflection of some waves at frequencies17

close to cut-on. Below cut-on, most incident power is transmitted but experiences18

wave mode conversion whereas above cut-on most power is transmitted to the same19

wave type. These observations form the basis for ongoing work to develop a damage20

detection technique premised on wave reflection near cut-on.21
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I. INTRODUCTION22

Reliable, cost effective and more widespread nondestructive inspection of concrete struc-23

tures is needed to reduce the occurrence of catastrophic failures. Vibration based methods24

have proved popular, particularly since they are potentially global, i.e. the effects of damage25

on vibration can be observed away from the damage site. A key limitation is the need to26

have either an accurate physical model of the undamaged structure or a reference set of27

measurements in the undamaged state. A comprehensive review by (Wang et al., 2010)28

covered modal based approaches (natural frequency, mode shapes, modal strain energy and29

dynamic flexibility considerations) as well as non-physical models comprising Artificial Neu-30

ral Networks (ANN) and time domain analysis of actual structural response measurements.31

Guided wave based methods, by contrast, do not typically require a reference state and are32

also independent of the often unknown boundary conditions. Modelling is, however, still33

essential to develop or tailor guided wave techniques for particular applications. Since RC34

beams are composite structures, analytical wave solutions do not exist and a numerical ap-35

proach is needed. The Wave Finite Element method (WFE) is well suited to this scenario,36

whereby a short segment of the beam is initially modelled via FE. By applying periodicity,37

its free and forced wave propagation solutions can be obtained.38

(Duhamel et al., 2003) developed the WFE method for simple homogeneous one-39

dimensional waveguides including flexure of beams. This formulation involved the derivation40

of a Dynamic Stiffness Matrix for one segment of the waveguide that is then used in the41

derivation for the transfer function of the variables comprising the nodal displacements and42
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forces across the segment, which in principle can be obtained from either an analytical43

model or a FE model realization. Subsequently, (Mace et al., 2005) presented the flexural44

wavenumbers, energy and wave group velocity for structures comprising a beam, a simply45

supported plate strip and a viscoelastic laminate. Issues related to waves containing coupled46

displacements in more than one component direction were obtained as well as numerical ill47

conditioning issues were addressed. For each wave type, there is a corresponding displace-48

ment field or wave mode over the cross section. This can be used to discriminate between49

which free wave is propagating and its corresponding wavenumber at each frequency.50

WFE is not restricted to structures composed of one material, as demonstrated by (Men-51

cik and Ichchou, 2007) who formulated and solved wave propagation in guided elastodynamic52

structures filled with acoustic fluid. Free and forced frequency responses of the waveguide53

were presented, and comparisons between the proposed method and classical theories were54

formulated showing that this method is not limited to low frequencies. In a later application,55

(Waki et al., 2009b)expressed free and forced vibrations and experimental validation for a56

tyre using WFE. Numerical issues were considered (Waki et al., 2009a), and a robust nu-57

merical solution procedure was proposed which is used herein. It showed that it was possible58

when formulating the Dynamic Stiffness Matrix to use dynamic condensation, not Guyan59

Reduction, of the internal degrees of freedom for the modelled segment without introducing60

significant errors and so keeping the numerical size of the model determined by the number61

of degrees of freedom on the cross section of the segment.62

In practice, continuous waveguides comprise only part of a complex structure and there is63

a need to model typically joints, attachments, interfaces, etc., which can result in scattering64
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as well as being necessary for any finite structural frequency response calculation. For65

coupling of waveguides, a WFE-FE-WFE coupling approach was developed (Ichchou et al.,66

2009). For a damage scenario, a diffusion matrix prediction model (DMM) was used to couple67

damaged and undamaged waveguides, where higher modes showed greater sensitivity to68

damage modelled as a through thickness notch in the section modelled by FE and coupled to69

the waveguides. In this application, when the wave modes across the section which propagate70

and incident onto the notch possess a characteristic length scale across the thickness similar71

to the notch depth then significant reflection can occur, whilst lower frequency wave modes72

pass across the notch section with small reflection. Therefore, the identification by reflected73

waves will be depth of notch and selected wave mode dependent. (Zhou and Ichchou, 2010b)74

subsequently extended the work to plates and expressed wave excitation and scattering75

using the WFE eigensolutions of the coupled structures as well as time domain predictions76

simulating scattered effects and subsequent spectrogram illustrating the significant reflection77

of incident A0 mode Lamb waves.78

Another method, applicable for certain types of damage located in one section of a waveg-79

uide which still exhibits wave guide behaviour, is to model each waveguide via WFE. The80

approach is then to couple damaged and undamaged sections by coupling of the different81

waves, i.e. a WFE-WFE-WFE coupling model methodology. For instance, (Harland et al.,82

2001) elegantly presented the reflection and transmission coefficients of wave modes com-83

prising both displacement and force vector descriptions passing through two different beam84

waveguides. By considering the continuity and equilibrium equations at the junctions, the85

incident, reflected and transmitted waves can be related through WFE solutions in each86

5



waveguide. Finite ends and boundary conditions were also formulated, but no finite lengths87

were considered. The later study by (Lee et al., 2007), which is applicable as background88

for this current paper, is the introduction of both the reflection and transmission calculation89

through a finite length connector separating two beams. An example considered the effect of90

a tapered length joining two rectangular cross section beams of different constant thickness91

producing results that are in good agreement to an exact solution. The wave propagation92

in the intermediate section involves both reflection and transmission matrices at the two93

interfaces in addition to propagation matrices for the wave amplitudes along its length. The94

concise formulation retains the physics with efficient and accurate computational solutions,95

involving wave conversion as well as power balance. This last papers focus was primarily96

introducing the methodology and wave conversion. It did not attempt to unravel the cut-on97

effect that could exist within the intermediate section, and what happens for waves already98

cut on in the first section that are then incident upon the intermediate section.99

Mode conversion, providing subsequent reflection and transmission coefficients have also100

been used to localize damaged portions in a curved beam (Zhou and Ichchou, 2010a) and101

again this considered a notch type form of damage as considered by (Ichchou et al., 2009).102

(Kharrat et al., 2011) ) also proposed the identification and sizing of defects in pipelines by103

WFE, using torsional guided waves with reflections proposed as a methodology to identify104

cracks represented by rectangular defects through the thickness and over a rectangular area105

and represented by a cylindrical section using an FE model. It again was a WFE-FE-106

WFE model, but the dynamic condensation for the FE modelled length was by Component107

Mode Synthesis (CMS) rather than condensation of the dynamic stiffness matrix, say, which108
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would need to be performed at every frequency. Later work (Kharrat et al., 2014)used109

WFE to extend the torsional wave model to construct a numerical database of reflection110

coefficients by varying the dimensions of the pipeline damage. This work also included111

experimental validation, showing the additional complication of attenuation in a complex112

pipework system. The experimental results for the reflection coefficient for the lowest order113

torsional mode on a single pipe are in good agreement with the WFE predictions over a range114

of frequencies. However, on a complex pipework system, with results only at three particular115

frequencies and no clear attempt to interpret what wave types were involved, it offers limited116

validation for a practical solution. (Renno and Mace, 2013) subsequently calculated the117

reflection and transmission coefficients for very general joints with multiple connected one-118

dimensional wave guide systems at one point using a hybrid FE/WFE approach, where119

again the joint was modelled via FE and a small portion of each waveguide is described via120

a corresponding WFE model. Comparison against analytical simplified models and full solid121

element FE models highlighted the need for a sufficiently accurately refined FE mesh using122

solid elements, which has been adopted herein.123

A number of experimental studies in the literature use guided waves to detect damage124

in RC beams, e.g. (Amjad et al., 2015). However, numerical characterization of free wave125

propagation in RC beams is limited. (Zima, 2019) contrasted the dispersion curves of a single126

rebar in vacuo with one embedded in a square concrete section, using the semi-analytical127

finite element (SAFE) method. (Yamakawa and Murakami, 1997) predicted the dispersion128

curves and wave mode shapes of a cylindrical concrete column with longitudinal rebars129

by applying Floquet boundary conditions to a unit cell modelled in finite elements. Tie130
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bars were also included but found to be negligible. However, to the authors knowledge no131

wave based models have been developed that account for both the composite and preloaded132

nature of RC beams. The WFE methodology is directly applicable, but an accurate FE133

model of the section is first required. Modelling is complicated by pretension in the steel134

reinforcement bars (rebars) that prestress the concrete and by periodically placed vertical135

rebars (stirrups). In commercial software, such as ANSYS, concrete is typically modelled136

using solid (SOLID65) elements and the steel reinforcements represented via link (LINK8 or137

LINK180) elements (Badiger and Malipatil, 2014) (Jnaid and Aboutaha, 2015). Coupling138

is required between the solid and link elements to transfer prestress. (Li and Zhang, 2011)139

validated this approach through measured natural frequencies published in (Saiidi et al.,140

1994). An alternative modelling approach has recently been implemented by (El Masri,141

2018) using 3D discrete reinforcing elements, REINF264 (ANSYS, 2013). This obviates the142

need for coupling elements, reduces the number of degrees of freedom (DOFs) and produces143

comparable results to those published by (Li and Zhang, 2011).144

In this paper, free wave propagation is studied in uniform and non-uniform prestressed145

reinforced concrete (RC) beams using the WFE method. Sec. (II) provides a brief synopsis146

of the WFE method and describes its implementation for RC beams. Dispersion curves147

are presented, which are subsequently validated experimentally in Sec. (III). Sec. (IV) de-148

scribes how three waveguides obtained by WFE can be coupled to model a piecewise uniform149

waveguide where the centre section may, for example, represent damage. It is verified that,150

for the case when loss of thickness is applied to one rebar, the reflection coefficients are151

identical to those obtained by the established approach of coupling in an FE model of the152
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discontinuity. However, the former approach is more conducive to physical interpretation of153

the wave behaviour. In Sec. (V), the model is used to study wave scattering in the case of154

an RC beam with a local loss of thickness in one rebar. Some wave modes exhibit strong155

reflection in a narrow frequency band where a wave starts to propagate in the undamaged156

section but is still evanescent in the damaged section. Conclusions are drawn in Sec. (VI)157

which are related to ongoing research activities to develop a damage detection method for158

RC beams based upon this behaviour.159

II. WFE MODELLING OF RC BEAMS160

The WFE method is an established method for computing free wave propagation in161

uniform or periodic waveguides which can be represented by a chain of identical cells, as162

shown in Fig. 19. An FE model is created of one cell such that the nodes and their associated163

DOFs are ordered identically on the left and right sides. In the case of a uniform waveguide164

the cell is typically just one element long. Nodal forces and displacements on one side of165

the cell are related to those on the other side by a transfer matrix that is a function of166

frequency and the global FE mass and stiffness matrices. The propagation of a wave of167

wavenumber k along a cell invokes a phase shift of k∆ between the left and right nodal168

forces and displacements. An eigenvalue problem is obtained for each frequency, where169

the eigenvalues relate to wavenumber solutions of right and left propagating waves and the170

eigenvectors are the associated force and displacement wave mode shapes. An outline of the171

method is given in an appendix, and the interested reader is referred to (Duhamel et al.,172

2006) for further details.173174
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FIG. 1. Structure with periodic elements: the cell N with segment length ∆ is shown with the

vectors for the internal forces and displacements.

The evolution with frequency of individual waves can be tracked, and hence dispersion175

curves drawn, by pairing similar wave mode shapes between one frequency and the next.176

In this paper similarity is quantified using the Wave Assurance Criterion (Houillon et al.,177

2005):178

WAC(u, v) =
(tu.v̄)(tv.ū)

(tu.ū)2(tv.v̄)2
. (1)

where two complex eigenvectors u and v are associated with two distinct eigenvalues,179

and t is the transpose formation.If the WAC number is close to the unity, then the two180

eigenvectors u and v at two consecutive steps correspond to the same eigenvalue.181

The WFE methodology is used here to compute the dispersion curves and associated182

wave mode shapes of a uniform deep RC beam, as shown in Fig. 2, with and without183

prestress. The reinforced concrete section is modelled using 16 SOLID65 elements, as shown184

in Fig. 3(a), using the properties listed in Table I. The horizontal rebars are modelled via185

the embedded approach using REINF264 elements. The vertical stirrups are neglected. The186

length ∆ of the segment is set equal to 0.01 m, the total number of DOFs n, is 150, and187

10



a hysteretic damping value η of 0.004 is chosen. A second damaged model was created in188

which the bottom right rebar was reduced in thickness by 36%, as shown in Fig. 3(b).189

FIG. 2. Cross section details of the RC beam reinforcement.

TABLE I. Material properties for concrete and steel.

Material properties Concrete Steel

Young Modulus E (Pa) 40× 109 200× 109

Poisson ratio υ 0.18 0.3

Density ρ (kg/m3) 2400 7850

Prestress is modelled via an initial strain in the rebars in a preliminary load stage. The190

initial static strain value is then calculated based on the steel reinforcement material prop-191

erties and the prestress force applied. It is assumed that the tensile prestress force of the192
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b

(a) (b)

FIG. 3. FE mesh of RC sections (a) undamaged and (b) damaged with a rebar diameter reduction

of 36%. Dimensions in mm.

steel reinforcement is equal to 70 percent of its ultimate tensile strength (0.4 × 109 Pa).193

This force is used to prestress both the damaged and undamaged rebars. Thus the stress194

value used to calculate the initial strain for the damaged rebar is higher than that for the195

undamaged one, since the cross sectional area is smaller for the same amount of prestress196

force. Subsequently, ε1 = 0.0014 and ε2 = 0.0036 are the initial longitudinal strain values197

for the original and reduced diameter rebars respectively.198

The dispersion curves for an undamaged RC beam with and without prestress are shown199

in Fig. 4. The effect of prestress is to shift the curves slightly to the right owing to a small200

increase in stiffness. Hereafter, prestress is omitted from the model.201

The dispersion curves for the RC beam with and without the rebar loss of thickness are202

shown in Fig. 5 (fundamental modes 1 to 4) and Fig. 6 (cut-on waves, denoted here by their203

cut-on frequency prefixed by E). Only slight changes are apparent between the behaviour204
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FIG. 4. Dispersion curves for the real part of the wavenumbers. RC section (—), prestress RC

section (−−−).
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FIG. 5. Dispersion curves for the real part of the wavenumbers for propagating wave modes in

an RC beam. Original RC section (—), reduced rebar section (- - -): mode 1 axial (-), mode 2

torsional (−), mode 3 bending (−) and mode 4 transverse bending (−).

of damaged and undamaged RC beams, from which it is concluded that dispersion curve205

measurement is not a suitable basis for damage detection. The cut-on frequencies are shifted206
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FIG. 6. Dispersion curves for the evanescent wave modes of an RC beam. Undamaged section

(—), damaged section (- - -): E4200 (-), E5000 (−), E6300 (−), E8700 (−), E11700 (−), E12500

(−). E denotes an evanescent wave with its associated cut-on frequency in Hz.

slightly to the right due to reduction of rebar thickness, the loss of steel mass being more207

influential since the overall stiffness is dominated by the concrete.208

In-plane modal displacements corresponding to the fundamental modes at 1kHz are shown209

in Fig. 7, and evanescent waves at their respective cut-on frequencies are shown in In-plane210

modal displacements corresponding to the fundamental modes at 1kHz are shown in Fig. 8.211

Mode 1 is associated with axial motion, mode 2 with torsional displacements around the212

x-axis, and modes 3 and 4 with bending in the vertical and transverse directions. Initially213

evanescent modes E5000, E8700, E11700 and E 12500 feature deformation in the plane of214

the cross section whereas modes E4200 and E6300 are predominantly axial owing to the215

small value of Poisson ratio used for concrete.216
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FIG. 7. Nodal displacements in the plane of the cross section (Y and Z directions) for selected

propagating wave modes in an undamaged RC section. Undeformed section (—), deformed section

(−−−) at 1000 Hz.

FIG. 8. Nodal displacements in the plane of the cross section (Y and Z directions) for selected

evanescent wave modes in an undamaged RC section. Undeformed section (—), deformed section

(−−−). E denotes an evanescent with its associated cut-on frequency.
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III. EXPERIMENTAL VALIDATION OF WAVES IN RC BEAMS217

The experimental validation comprised testing three RC beams of dimensions 0.2m×0.3m×2m;218

one had intact reinforcements and the other two had a 200 mm long section where the di-219

ameter of one rebar had been reduced. Grade 60 steel reinforcements were used for each220

beam, which were separated into horizontal and vertical (stirrup) rebars as illustrated in221

Fig. 8. The undamaged horizontal rebars are uniform and 25 mm in diameter whilst the222

damaged ones show a reduction to 16 mm and 10 mm respectively, as shown in Fig. 9. The223

horizontal and vertical reinforcements were tied together using steel fibres.224

FIG. 9. Details of the damaged (reduced rebar) steel reinforcements.

After forming and curing, cylindrical concrete samples were crushed to identify the con-225

crete’s compressive strength f ′c. The average strength was found to be 70 MPa. One can226

relate the concrete’s compressive strength f ′c to its Young’s Modulus Ec in MPa using (ACI,227

1995)228

Ec = 4700
√
f ′c. (2)

16



The associated Young’s Modulus of concrete at 28 days was found to be approximately 38.9229

GPa.230

Roller boundary conditions were realized at both ends of the RC beams, see Fig. 10. An231

instrumented force hammer (PCB 086C03) was used to excite the structure in the vertical232

plane of symmetry, at a point 0.3 m from the left hand end. A hard tip was chosen to233

maximize bandwidth of the input. A roving miniature ICP accelerometer (PCB 352C22) was234

used to measure the vertical transient response at 20 positions from 0.5 to 1.5 m (including235

the damaged region), and transfer accelerances were computed.236

FIG. 10. RC beam roller boundary details.

Assuming a single wave type to be dominant at any one frequency, then an approximately237

harmonic spatial variation in response is expected along the beam. Its correlation to a238

sinusoid of trial wavenumber kt can be estimated by (Ferguson et al., 2002),239

Ŵ (kx, ω) ≈
N∑
i=1

w(xi, ω)e−ikxxi . (3)

where Ŵ (ktx, ω) ) is the frequency response at frequency omega and position xi. The value240

of trial wavenumber that gives the highest correlation coefficient is selected as a point in the241

wavenumber-frequency plane. The trial wavenumber was selected within the range of 0 to242

50 rad/m with a step size of 0.2 rad/m.243

17



Fig. 11 shows the dispersion curves estimated from measurements of both the undamaged244

and damaged beams. The inclusion of some transducer measurements in the damaged region245

of two of the beams has not adversely affected estimation of the dispersion curves. The246

correlation technique successfully extracts multiple branches which are in close agreement247

with WFE predictions, also shown. Axial, torsional, transverse bending, and some higher248

order modes are not observed given the positions and orientations of the input and response249

sensors.250
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FIG. 11. Predicted and estimated wavenumbers for the damaged and undamaged RC beams after

28 days . WFE predicted wavenumbers (−), undamaged original beam (+), reduced rebar with

36% diameter reduction (+) and 60% diameter reduction (+).

Accelerance measurements were also taken at five points across the top and five points251

down one side of the cross section of the undamaged RC beam at a single position along252

its length. The operating deflection shapes at the cut-on frequencies of three of the wave253

modes are illustrated in Fig. 12 and Fig. 13. Good agreement is seen between these and the254

predicted wave mode shapes shown in Fig. 8.255
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E8700 E11700 E12500

FIG. 12. Nodal displacements on the top surface in the Z direction for selected evanescent wave

modes at cut-on frequencies of undamaged RC beam. Undeformed section (—), WFE deformed

section (−−−), experimental deformed section (∗). E denotes evanescent with its associated

cut-on frequency.

IV. COUPLING OF WAVEGUIDES256

The WFE method has been used previously to model semi-infinite waveguides joined by257

a discontinuity which is modelled in FE, referred to here as the WFE-FE-WFE method.258

The system is then coupled using continuity and equilibrium conditions (Ichchou et al.,259

2009). The advantage of this approach is that discontinuities of arbitrary geometry can be260

accommodated. However, when the discontinuity can itself be approximately represented as261

a uniform waveguide then it is more computationally efficient and physically insightful to262

couple three waveguides which are all similarly modelled in WFE, denoted WFE-WFE-WFE263

here, as shown in Fig. 14. Analysis for this original approach is derived as follows.264265

In Fig. 14, waveguides 1 and 3 represent identical beams whereas waveguide 2 is of266

finite length and different materially or geometrically due to damage, for example. Each is267
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E8700 E11700 E12500

FIG. 13. Nodal displacements in the Y direction of selected evanescent wave modes at cut-on

frequencies on the side surface of undamaged RC beam. Undeformed section (—), WFE deformed

section (−−−), experimental deformed section (∗). E denotes evanescent with its associated

cut-on frequency.

Propagation Direction 

Junction1 

Waveguide 1 
Coupling Joint 

(") 

C 
0 

Junction2 

Waveguide 3 

FIG. 14. The interface between wave finite elements waveguides: Sections 1, 2 and 3.

modelled in WFE using a segment of length ∆i ). In order to obtain the scattering matrix268

due to the finite section, one should first obtain the scattering matrices for the two junctions.269

At junction 1, define a− and b+ as the amplitudes of the wave modes scattered by the270

coupling element interface. a+ and b− are the amplitudes of the wave modes incident onto271

the coupling element interface. Furthermore, Φ+ and Φ− are matrices of right eigenvec-272
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tors, where each wavemode is divided into displacement q and force f sub-vectors. The273

displacements and forces in waveguides 1 and 2 are given by274

q1 = Φ+
q1
a+ + Φ−q1a

− ; f 1 = Φ+
f1
a+ + Φ−f1a

−. (4)
275

q2 = Φ+
q2
b+ + Φ−q2b

− ; f 2 = Φ+
f2
b+ + Φ−f2b

−. (5)

where Φ+ and Φ− are matrices of right and left propagating waves, and are partitioned into276

displacements and forces as eigenvectors pertaining to Eq. (A.8).277

Continuity of displacements and equilibrium of forces at junction 1 can then be expressed278

by279

q1 = q2 ; f 1 = f 2. (6)

The amplitudes of incident and scattered waves can be related by substituting Eq. (4) and280

Eq. (5) into Eq. (6) to give281 
−Φ−q1

Φ+
q2

−Φ−f 1
Φ+

f 2



a−

b+

 =


Φ+

q1
−Φ−q2

Φ+
f 1
−Φ−f 2



a+

b−

 . (7)

The scattering matrix S1 at Junction 1 is defined as282 
a−

b+

 = S1


a+

b−

 . (8)

Then,283

S1 =


−Φ−q1

Φ+
q2

−Φ−f 1
Φ+

f 2


−1 

Φ+
q1
−Φ−q2

Φ+
f 1
−Φ−f 2

 . (9)
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The scattering matrix S1 is a block matrix where the diagonal matrices comprise the reflec-284

tion coefficients, and the off-diagonal matrices contain the transmission coefficients. Subse-285

quently, the scattering matrix S1 is defined as286

S1 =


R12 TM21

TM12 R21

 . (10)

where R and TM are the reflection and transmission matrices at the junction. In addition,287

the subscripts 1 and 2 are used to indicate the reflection and transmission matrices when288

the wave is incident from waveguide 1 to 2 respectively. Using the same procedure and289

definitions, the scattering matrix S2 at Junction 2 is defined as290

S2 =


−Φ−q2

Φ+
q3

−Φ−f 2
Φ+

f 3


−1 

Φ+
q2
−Φ−q3

Φ+
f 2
−Φ−f 3

 . (11)

with291

S2 =


R23 TM32

TM23 R32

 . (12)

After solving for the scattering matrices at each junction, the total scattering matrix due292

to the finite length coupling element is derived based on the reflection and transmission293

matrices of each junction and the coupling joint propagation matrix. It is assumed that d−,294

the incident waves from the right, is zero since it is a semi-infinite beam (the Sommerfeld295

radiation condition). Using Eq. (8), and Eq. (10)296

a− = R12a
+ + TM21b

−. (13)
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Let F be the propagation matrix between the two edges of the coupling element of length297

h, and let ki be the wavenumbers associated with it. Then,298

F =



e−i(k
+
1 )h · · · 0

...
. . .

...

0 · · · e−i(k+n )h


. (14)

Hence b− and b+ are related as follows,299

b− = FR23Fb+. (15)

with300

b+ = TM12a
+ + R21b

−. (16)

Then,301

b− = FR23F[I−R21FR23F]TM12a
+. (17)

Substituting Eq. (17) into Eq. (13) gives302

a− = RTa
+ ; RT = R12 + TM21FR23F[I−R21FR23F]TM12. (18)

Subsequently, RT is the net reflection matrix due to the full finite length of the coupling303

element. Using Eq. (12), the net transmission matrix TMT can be similarly derived as304

d+ = TMTa
+ ; TMT = TM23F[I−R21FR23F]TM12a

+. (19)

Subsequently, the full scattering matrix of the coupling element is given by305 
a−

d+

 =


RT

TMT


{
a+

}
. (20)
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The WFE-WFE-WFE approach is first verified against the WFE-FE-WFE method for306

the case of an RC beam with 36% loss of thickness in one rebar considered previously in307

Sec. (II) and Sec. (III). Fig. 15 shows the magnitudes of all diagonal elements of the reflection308

coefficient matrix, i.e. pertaining to no wave mode conversion.309
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FIG. 15. Magnitude of the reflection coefficients due to simulated damage in RC beam. 36%

reduction of one of steel diameter over a length h = 0.2 m and element size of 0.01 m. WFE-FE-

WFE approach (—), WFE-WFE-WFE approach (∗).
310

311

Whilst the two methods give apparently identical results, different numerical issues may312

arise.313

1. The WFE-FE-WFE approach requires dynamic condensation to eliminate internal314

nodes which can cause ill-conditioning errors as the number of degrees of freedom315

increases, although conditioning can be improved by exploiting orthogonality of the316

left and right eigenvectors (Renno and Mace, 2013). The WFE-WFE-WFE approach,317

by contrast, does not require condensation since there are no internal nodes for a cell318

that is one element in length.319
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2. The WFE-WFE-WFE approach requires selection of an appropriate segment length,320

which is not to be too small with respect to the shortest wavelength to avoid round-off321

errors, nor too large to reduce discretization errors.322

The WFE-WFE-WFE approach is chosen here for convenience since the length of the inter-323

mediate section can be changed without remodelling it in FE analysis.324

V. WAVE SCATTERING DUE TO SIMULATED DAMAGE IN RC BEAMS325

In this section, wave scattering is considered in detail for an RC beam with loss of rebar326

thickness over a finite length. Both undamaged and damaged RC sections are modelled327

and coupled together as described in Sec. (III) and Sec. (IV). Two lengths of damaged328

section were considered, h = 0.05 m and 0.2 m, for rebar diameter reductions of 36% and329

60%. Fig. 16(a) to (d) show the magnitude of the reflection coefficients for all four damage330

permutations. The multiple curves in each subfigure correspond to different waves that cut-331

on below 15kHz. For each wave, reflection is negligible except at a narrow frequency band332

around cut-on. This is due to the wave propagating in the undamaged section but being333

evanescent in the damaged section. The peak reflection coefficient is wave dependent and is334

as high as 0.5 for the least damaged case Fig. 16(a) and 0.9 for the most severe damage in335

Fig. 16(d).336337

Of the waves whose mode shapes are shown in Fig. 8, E5000, E8700 and E11700 feature338

the most cross sectional deformation and exhibit prominent peaks in reflection coefficients339

in Fig. 16(d). By comparison, Fig. 17 shows the magnitude of the reflection coefficients for340

the fundamental wave modes (axial, torsional, bending and transverse bending) for the most341
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FIG. 16. Magnitude of the reflection coefficients due to simulated damage in RC beam.(a),(b)

36% reduction of one of steel diameter over a length h = 0.05 and 0.2 m,respectively; (c),(d) 60%

reduction of one of steel diameter over a length h = 0.05 and 0.2m, respectively.

severe damage case. The coefficients are more than an order of magnitude smaller for these342

waves since they do not exhibit cut-on.343
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FIG. 17. Magnitude of the reflection coefficients of fundamental wave modes in an RC section with

a 60% single rebar diameter reduction damage over a length h =0.2 m. Axial (—), torsional (- -

-), bending(. . .), bending transversal (x.).

Power flow calculations were performed, using the analysis reported in (Mitrou et al.,344

2017), to ascertain the extent of wave mode conversion both at and either side of wave345

cut-on.346
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FIG. 18. Area plot of power scattering coefficients for incident wave E8700.

Fig. 18 shows an area plot of the power scattering coefficients for an incident wave E8700,347

which is typical of other wave types that cut-on in the frequency range of interest. The348

powers are partitioned as follows:349

– Transmitted power to E8700350

– Transmitted power converted to all other modes351

– Reflected power to E8700352

– Reflected power converted to all other modes353

At cut-on, about 60% of the power is reflected into the same wave mode, which is poten-354

tially useful for damage detection purposes. Below cut-on, most power is transmitted but355

converted to other wave modes. Above cut-on, power is predominantly transmitted into the356

same wave mode, i.e. the rebar damage is reasonably transparent.357

VI. CONCLUSIONS358

Guided waves have proven an effective basis for long range detection of defects in many359

types of structure. This paper is motivated specifically by corrosion detection of rebars in360

27



reinforced concrete beams using guided waves, for which a physical understanding of the361

waves borne by the composite structure is essential. The WFE method has been used to362

model free wave propagation in RC beams. The FE model of the cross section, which forms363

the basis of the WFE model, uses embedded reinforcing elements to couple the concrete364

and rebar elements by which prestress is transferred to the concrete. Dispersion curves365

and associated wave mode shapes have been computed and successfully validated through366

measurements on laboratory samples. The effect of prestress on wave dispersion is shown367

to be negligible.368

A new formulation has been presented to couple three waveguides which have been mod-369

elled using WFE. The analysis was used to predict wave scattering due to a uniform but370

damaged section of beam joined at both ends by undamaged sections. Damage was simu-371

lated by a loss of thickness of one of the rebars. It was found that, whilst the dispersion372

curves of the damaged and undamaged lengths are very similar, the slight difference in cut-373

on frequencies give rise to significant reflection of some waves which is potentially useful for374

the purpose of damage detection. The reflection occurs when a wave is able to propagate in375

the undamaged section of the beam but is evanescent in the damaged section, or vice versa.376

Powerflow analysis reveals that wave mode conversion is significant only below wave cut-on.377

Above cut-on, waves are unimpeded by the damage scenarios considered.378

Ongoing work is focusing on methods to quantify wave reflection in the vicinity of wave379

cut-on but without any prior knowledge of the cut-on frequencies. An important practical380

constraint is that both actuation and sensing of guided waves must be performed on the381

accessible surfaces of the beam, .e.g. by means of an instrumented force hammer and382
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accelerometer(s). An understanding of the wave mode shapes is useful for informing the383

placement and orientation of transducers, as well as identifying the particular wave modes384

of interest.385
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APPENDIX: DERIVATION OF WAVE FINITE ELEMENT METHOD389

Consider a short length ∆ of a uniform waveguide as shown schematically in Fig. 19 which390

is modelled using FE analysis such that the nodes and their associated DOFs are ordered391

identically on the left and right sides.392

NN-3 N-2 N-1 N+1 N+2 N+3

N

q

f

q

f

L

L

R

R

FIG. 19. Structure with periodic elements: the cell N with segment length ∆ is shown with the

vectors for the internal forces and displacements.
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Time harmonic motion eiωt is implicit throughout this paper and suppressed for brevity.393

The nodal displacements q and forces f are related as follows (Duhamel et al., 2006)394

Dq = f . (A.1)

Where the dynamic stiffness matrix395

D = K− ω2M. (A.2)

ω is circular frequency, and n is the number of DOFs on each side of the segment. Matrices396

K and ω is circular frequency, and n is the number of DOFs on each side of the segment.397

Matrices K and The periodic conditions for the displacements and the equilibrium condition398

at the junction of two successive elements are are the stiffness and mass matrices of the399

segment as obtained from the FE model. Hysteretic damping can be introduced through400

complexity of the stiffness matrix. are the stiffness and mass matrices of the segment as401

obtained from the FE model. Hysteretic damping can be introduced through complexity of402

the stiffness matrix.403

The dynamic stiffness matrix can be partitioned according to the left and right nodes of404

the segment so that Eq. (A.1) can be expressed as405 
DLL DLR

DRL DRR



qL

qR

 =


f L

f R

 . (A.3)

The subscripts L and R are designated for the left and right sides of the segment. Consider406

a series of segments of the waveguide as shown in Fig. 19. Continuity of displacement and407
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force equilibrium of adjacent sections give408 
qN+1
L

f N+1
L

 =


qN
R

−f N
R

 . (A.4)

For each segment, the transfer matrix T can then be defined as409

T


qN
L

f N
L

 =


qN+1
L

f N+1
L

 . (A.5)

The periodic conditions for the displacements and the equilibrium condition at the junction410

of two successive elements are qR = λ qL and f R = - λ f L where the propagation constant411

f L where the propagation constant412

λ = e−ik∆. (A.6)

relates the right and left displacements and forces where k is the unknown wavenumber.413

Eq. (A.3) can be rearranged in the form of an eigenvalue problem (Duhamel et al., 2006)414

T


qL

f L

 = λ


qL

f L

 . (A.7)

The transfer matrix eigenvalue problem is solved at each frequency step to yield 2n solu-415

tions for the propagation constants and the corresponding wavenumbers as in Eq. (A.6). The416

wavenumber can be purely real, purely imaginary or complex, associated with a propagating,417

a nearfield (evanescent) or an oscillating decaying wave respectively.418

(Zhong, 1995) has shown that that the eigenvalues of the transfer matrix occur in recip-419

rocal pairs as λ+
j and λ−j = 1/ λ+

j . The corresponding wavenumbers are k+
j and k−j = - k+

j ,420

representing the positive and negative going waves respectively. Furthermore, Φ+
j and Φ−j421
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are the associated right eigenvectors, where each wavemode is divided into displacement q422

and force f sub-vectors, i.e.423

Φj =


Φq

Φf


j

. (A.8)

The positive-going waves are characterized by | λ+
j | < 1 and the negative going waves424

by | λ+
j | > 1. However, for | λ+

j | = 1, the associated waves are considered positive-going if425

they fulfil the condition Re
{
f H
L q̇L

}
= Re

{
iωf H

L qL

}
< 0 ¿ that determines the direction of426

powerflow. Evanescent waves contribute to the input response at discontinuities/boundaries427

but do not transfer energy (Mace, 1984).428

Subsequently, the eigenvectors of the form of Eq. (A.8) are grouped into positive and429

negative going waves430

Φ+ = [Φ+
1 · · ·Φ+

n ] ; Φ− = [Φ−1 · · ·Φ−n ] ; Φ = [Φ+ Φ−]. (A.9)

The transformations between the physical domain, where the motion is described in431

terms of q and f , and the wave domain, where the motion is described in terms of the432

wave amplitudes a+ and a− travelling in the positive and negative directions respectively,433

are accomplished via434 
qL

f L

 =


Φ+

q Φ−q

Φ+
f Φ−f




a+

a−

 . (A.10)

Rapidly decaying wave modes are removed due to their negligible contributions to the435

far field response, which can otherwise cause ill-conditioning problems. Thus, only m pairs436
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of positive and negative going waves are retained based on a user-defined criterion. As a437

result, the size of the model will be smaller and the calculation time reduced.438
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