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by Motiejus Valiunas

Solution sets of equations in groups can be thought of as group-theoretic analogues of

algebraic varieties. In this thesis we apply methods of geometric group theory to study

such solution sets in infinite groups from probabilistic and algebraic points of view.

This is a ‘three paper thesis’, the main body of which consists of the following papers:

[1] M. Valiunas, Rational growth and degree of commutativity of graph products, J. Al-

gebra 522 (2019), 309–331.

[2] A. Martino, M. Tointon, M. Valiunas, and E. Ventura, Probabilistic nilpotence in

infinite groups, preprint, available at arXiv:1805.11520 [math.GR], 2018.

[3] M. Valiunas, Acylindrical hyperbolicity of groups acting on quasi-median graphs and

equations in graph products, preprint, available at arXiv:1811.02975 [math.GR], 2018.

In [1], we study graph products of groups – a generalisation of direct and free products.

We use regularity of growth of certain graph products to establish bounds on sizes of

spheres in Cayley graphs of such groups G. We use these bounds to show that in a graph

product that is not virtually abelian, two randomly chosen elements inside a large ball

in a Cayley graph of G will ‘almost never’ commute – that is, the solution set of the

equation [X1, X2] = 1 is negligible.

In [2], we use similar methods to study higher commutators, that is, the equations

[X1, . . . , Xk+1] = 1. In particular, we show that for most classes of groups that are

not virtually k-step nilpotent, the (k + 1)-fold simple commutator of randomly chosen

elements will almost never be trivial. Here, ‘randomly chosen’ refers either to using

sequences of measures on a finitely generated group that are well-behaved with respect

to finite-index subgroups, or to looking at finite quotients of a residually finite group.

We also analyse regularity of the solution set of such an equation in virtually k-step

nilpotent groups, and produce examples of groups showing necessity of our assumptions

on finite generation or residual finiteness.

In [3], we study negative curvature in graph products of groups. We use quasi-median

graphs – a class of ‘nonpositively curved’ graphs generalising the notion of CAT (0) cube
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iv

complexes – to construct explicit acylindrical actions of graph products on spaces quasi-

isometric to trees. We use this action to show that, given a finite collection of groups Gi

with the property that any system of equations in Gi is equivalent to a finite subsystem,

certain graph products of the Gi will also satisfy this property.



Contents

Research Thesis: Declaration of Authorship vii

Notation ix

Acknowledgements xi

0 Background 1

0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Background for Paper 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background for Paper 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Background for Paper 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Bibliography 35

1 Rational growth and degree of commutativity of graph products 39

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2 Groups with rational growth series . . . . . . . . . . . . . . . . . . . . . . 43

3 Degree of commutativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2 Probabilistic nilpotence in infinite groups 63

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2 Products of measures that measure index uniformly . . . . . . . . . . . . 73

3 The algebraic structure of probabilistically nilpotent groups . . . . . . . . 74

4 Equations over virtually nilpotent groups in terms of polynomial mappings 76

5 Sparsity of roots of polynomial mappings . . . . . . . . . . . . . . . . . . 78

6 Finite quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7 Dependence on rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A Polynomial mappings into torsion-free nilpotent groups . . . . . . . . . . 97

B Hyperbolic groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3 Acylindrical hyperbolicity of groups acting on quasi-median graphs
and equations in graph products 105

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3 Geometry of the contact graph . . . . . . . . . . . . . . . . . . . . . . . . 115

4 Acylindricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

v



vi CONTENTS

5 Application to graph products . . . . . . . . . . . . . . . . . . . . . . . . . 128

6 Equational Noetherianity of graph products . . . . . . . . . . . . . . . . . 133

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144



Research Thesis: Declaration of Authorship

Name: Motiejus Valiunas

Title of thesis: Solution sets of equations in infinite discrete groups

I declare that this thesis and the work presented in it is my own and has been generated

by me as the result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree

at this University;

2. Where any part of this thesis has previously been submitted for a degree or

any other qualification at this University or any other institution, this has been

clearly stated;

3. Where I have consulted the published works of others, this is always clearly

attributed;

4. Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself or jointly with others, I

have made clear exactly what was done by others and what I have contributed

myself;

7. Parts of this work have been published as:

[1] M. Valiunas, Rational growth and degree of commutativity of graph products,

J. Algebra 522 (2019), 309–331.

[2] A. Martino, M. Tointon, M. Valiunas, and E. Ventura, Probabilistic nilpo-

tence in infinite groups, preprint, available at arXiv:1805.11520 [math.GR],

2018.

[3] M. Valiunas, Acylindrical hyperbolicity of groups acting on quasi-

median graphs and equations in graph products, preprint, available at

arXiv:1811.02975 [math.GR], 2018.

Signature: Date:

vii

https://arxiv.org/abs/1805.11520
https://arxiv.org/abs/1811.02975




Notation

N Natural numbers = {0, 1, 2, . . .}.
Cn The cyclic group of order n.

Fn The free group of rank n.

1 The identity element of a group.

G is virtually P The group G has a finite-index subgroup that has the property P.

[g, h] g−1h−1gh.

[g0, . . . , gr] left-normed (r+ 1)-fold simple commutator: inductively, for r ≥ 2,

[g0, . . . , gr] := [[g0, . . . , gr−1], gr].

Cay(G,X) The Cayley graph of a group G with respect to a generating set X.

BG,X(n) The ball of radius n in Cay(G,X).

SG,X(n) The sphere of radius n in Cay(G,X).

|g|X The word length of a group element g ∈ G with respect to a gen-

erating set X.

sG,X(z) The spherical growth series of a group G with respect to a finite

generating set X, sG,X(z) :=
∑

g∈G z
|g|X =

∑∞
n=1 |SG,X(n)|zn.

V (Γ) The vertex set of a graph Γ.

E(Γ) The edge set of a graph Γ.

v ∼ w The vertices v, w of a graph Γ are adjacent.

ΓG The graph product of non-trivial groups G = {Gv | v ∈ V Γ} over a

simplicial graph Γ.
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Chapter 0

Background

This chapter provides background on three papers included in this thesis: we will refer

to them as Paper 1 [Val19b], Paper 2 [MTVV18] and Paper 3 [Val18a]. Of these, Papers

1 and 3 are single-author papers; Paper 2 is a four-author paper, to which all four named

authors have contributed equally. Other preprints produced by the author during his

PhD studies – namely, [Val17], [Val18b] and [Val19a] – can be found on the arXiv.

0 Introduction

The overarching theme of this PhD thesis is equations over groups. We consider the

solution set of an equation or a system of equations, as introduced in Section 0.1, and

use several methods to analyse it.

In Papers 1 and 2, we take a probabilistic approach by tackling the following question:

given an equation over a group, what is the ‘probability’ that randomly chosen elements

of the group will form a solution to this equation? As almost all of the groups we consider

in this thesis are infinite, there are various ways one can define ‘probability’ here. In

Paper 1, we do this by counting elements in a Cayley graph of a (finitely generated)

group G, and try to answer the question on when a randomly chosen pair (g, h) ∈ G2

will be a solution of the equation [X1, X2] ∈ F2 with positive probability. In Paper 2,

we consider instead notions of probability that are well-behaved with respect to finite-

index subgroups, and ask the same question for the equation [X1, . . . , Xk+1] ∈ Fk+1.

Material in Papers 1 and 2 builds on the study of degree of commutativity of a finite

group, introduced by Erdős and Turán [ET68] and Gustafson [Gus73] 50 years ago and

studied ever since, as well as generalisations to infinite groups, introduced by Antoĺın,

Martino and Ventura in [AMV17], and generalisations to higher commutators.

In Paper 3 we take a more algebraic approach. Namely, we ask when a solution set of

a system of equations in a group G will coincide with the solution set of some finite

1



2 Chapter 0 Background

subsystem; G is said to be equationally Noetherian if this is always the case: see Section

0.2. The class of equationally Noetherian groups is easily seen to be closed under several

standard group-theoretic constructions (such as direct products and subgroups), but the

relationship with ‘negatively curved’ constructions (such as hyperbolic groups and free

products) is much more complicated – although the results one would naively expect in

this setting turn out to be true. We study the latter relationship, building on the work

of Sela – see [Sel10, Sel09], for instance – as well as recent work of Groves and Hull

[GH17].

While the classes or groups we study in Paper 2 are very broad – all finitely generated or

all residually finite groups, for instance – in Papers 1 and 3 we restrict our attention to

graph products of groups (see Section 0.3), a class of groups that interpolates between

direct and free products. We also introduce quasi-isometries (see Section 0.4), and use

them to describe hyperbolic spaces and hyperbolic groups (see Section 0.5) – the former

are crucial for our argument in Paper 3, while the latter appear as important examples

of groups that we study in Papers 1 and 2.

0.1 Equations in groups

Definition 0.1 (Equations, Solution sets). Let n ≥ 1 be an integer and let Fn be a free

group of rank n with free basis X1, . . . , Xn. An equation ϕ on n variables in a group G

is an element ϕ ∈ Fn ∗ G. Given an element g = (g1, . . . , gn) ∈ Gn, we may (uniquely)

define a homomorphism ḡ : Fn ∗G→ G by setting ḡ(Xi) = gi for 1 ≤ i ≤ n and ḡ(h) = h

for h ∈ G; throughout this thesis, we will write ϕ(g1, . . . , gn) for ḡ(ϕ). We then say that

g = (g1, . . . , gn) ∈ Gn is a solution of ϕ if ϕ(g1, . . . , gn) = 1, and define the solution set

of an equation ϕ as

VG(ϕ) = {g ∈ Gn | ϕ(g1, . . . , gn) = 1}.

More generally, we may call a subset Φ ⊆ Fn ∗G a system of equations, and define the

solution set of Φ to be

VG(Φ) = {g ∈ Gn | ϕ(g1, . . . , gn) = 1 for all ϕ ∈ Φ}.

We will only use Definition 0.1 in (almost) full generality for Paper 3. For Papers 1

and 2, we will concentrate on the case of a single equation. Most of the time we will be

interested when an equation is a simple commutator, defined as follows.

Definition 0.2 (Commutator). Let G be a group. For elements g0, g1 ∈ G, we define

the commutator of g0 and g1 to be [g0, g1] = g−1
0 g−1

1 g0g1. Inductively, for k ≥ 2 we

define the (left-normed) (k + 1)-fold simple commutator of elements g0, . . . , gk ∈ G to

be [g0, . . . , gk] = [[g0, . . . , gk−1], gk].
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We use simple commutators for studying nilpotent groups. Recall that a group G is said

to be k-step nilpotent (for some k ∈ N) if G has a central series of length k: that is, a

chain of normal subgroups

{1} = G0 ≤ G1 ≤ · · · ≤ Gk = G

where each Gi+1/Gi is central in G/Gi. In particular, if

G = γ1(G) ≥ γ2(G) ≥ · · ·

is the lower central series of a group G, then G is k-step nilpotent if and only if

γk+1(G) = {1}. Here, for i ∈ N, γi(G) is the subgroup of G generated by commuta-

tors [g, h] for g ∈ γi−1(G) and h ∈ G; it follows that γi(G) is generated by all i-fold

simple commutators of elements of G. In particular, a group G is k-step nilpotent if and

only if any (k + 1)-fold simple commutator of elements of G is trivial.

Given the discussion above, we expect, therefore, that if the solution set VG(c(k)) of

the simple commutator c(k) = [X1, . . . , Xk+1] ∈ Fk+1(X1, . . . , Xk+1) is ‘large’, then the

group G contains a k-step nilpotent subgroup of finite index. We study this claim in

Paper 1 for k = 1 and in Paper 2 for arbitrary k.

0.2 Equationally Noetherian groups

Definition 0.3 (Equationally Noetherian groups). A group G is said to be equationally

Noetherian if for all n ∈ N and all Φ ⊆ Fn, there exists a finite subset Φ0 ⊆ Φ such

that VΦ0(G) = VΦ(G). We say that G is strongly equationally Noetherian if this holds,

in addition, for all Φ ⊆ Fn ∗G.

The usual notion of an equationally Noetherian group – see, for instance, [BMR99, §2.2]

– coincides with the notion of a strongly equationally Noetherian group as introduced

here. However, we use the (weaker) notion of an equationally Noetherian group since it

is more susceptible to the methods of Groves and Hull used in [GH17]. It is worth not-

ing, however, that any finitely generated equationally Noetherian group is also strongly

equationally Noetherian [BMR99, §2.2, Proposition 3], and so the two concepts agree in

the class of finitely generated groups.

Example 0.4.

(i) Any abelian group is strongly equationally Noetherian [BMR99, §2.2, Theorem 1]:

this follows by an application of the Euclidean algorithm.

(ii) Any group that is linear over a field is strongly equationally Noetherian [BMR99,

§2.2, Theorem B1]: this is a consequence of the Hilbert Basis Theorem. In partic-
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ular, finitely generated free groups and, more generally, right-angled Artin groups

(see Section 0.3) are strongly equationally Noetherian.

(iii) A result of Sela states that torsion-free hyperbolic groups are strongly equationally

Noetherian [Sel09, Theorem 1.22].

(iv) It is easy to see that the classes of equationally Noetherian and strongly equation-

ally Noetherian groups are closed under taking subgroups and finite direct products.

These classes are also preserved under taking finite extensions [BMR97, Theorem 1

and its proof] and finite free products ([Sel10, Theorem 9.1], [GH17, Corollary C]).

The most general result in this direction is probably a theorem of Groves and Hull

[GH17, Theorem D], stating that a group hyperbolic relative to equationally Noethe-

rian subgroups is equationally Noetherian.

Thus, equationally Noetherian groups cover a large class of examples. An example

of a group that is not equationally Noetherian is a (permutational) wreath product

W = G oH, where G is non-abelian and H is not torsion. Indeed, if we consider the

system Φ = {[X1, X
−n
3 X2X

n
3 ] | n ∈ Z} ⊂ F3 and if Φ0 ⊂ Φ is a proper subset, then

[X1, X
−N
3 X2X

N
3 ] /∈ Φ0 for some N ∈ Z and we have (h−NkhN , g, h) ∈ VW (Φ0) \ VW (Φ)

for any g, k ∈ G with [g, k] 6= 1 and any element h ∈ H of infinite order. Consequently,

VW (Φ0) 6= VW (Φ) for any finite Φ0 ⊂ Φ.

Another class of examples of finitely generated non-equationally Noetherian groups is

given by certain Baumslag–Solitar groups. Indeed, it is known that a finitely generated

equationally Noetherian group G must be hopfian [GH17, Corollary 3.13] – that is, any

surjective homomorphism G→ G is an isomorphism. Thus, in many cases (for instance,

if |m| 6= 1 and some prime divisor of n does not divide m) the Baumslag–Solitar group

BS(m,n) is not equationally Noetherian.

0.3 Graph products of groups

This section describes a construction to build new groups out of a given collection of

groups; it generalises the construction of direct sums and free products of groups.

Definition 0.5 (Graph product). Let Γ be a simplicial graph, and G = {Gv | v ∈ V (Γ)}
be a collection of non-trivial groups indexed by the vertices of Γ. We define the graph

product of G over Γ to be the group

ΓG = ∗
v∈V (Γ)

Gv

/〈〈⋃
v∼w

[Gv, Gw]

〉〉
,

where v ∼ w denotes adjacency of two vertices v, w ∈ V (Γ), and 〈〈R〉〉 denotes the

normal closure of a subset R ⊆ ∗v∈V (Γ)Gv.
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Given a subset A ⊆ V (Γ) for a simplicial graph Γ, we denote by ΓA the full subgraph

of Γ spanned by A, and we set GA := {Gv | v ∈ A}. It is easy to see that the graph

product ΓAGA is canonically a subgroup of ΓG.

Remark 0.6. In the definition above, we lose no generality in requiring the groups Gv

to be non-trivial. Indeed, even if some of the groups in G were trivial, then ΓG would

be isomorphic to ΓAGA, where A = {v ∈ V (Γ) | Gv � {1}}. Thus, the assumption of

non-triviality of the Gv is taken only for convenience.

Example 0.7.

(i) If Γ is a discrete graph (that is, v � w for any v, w ∈ V (Γ)), then ΓG is isomorphic

to the free product ∗v∈V (Γ)Gv.

(ii) If Γ is a complete graph (that is, v ∼ w for any distinct v, w ∈ V (Γ)), then ΓG is

isomorphic to the direct sum
⊕

v∈V (Γ)Gv.

(iii) More generally, any group ‘built from’ a given collection of groups by taking direct

sums and free products can be described as a graph product. For instance, for the

graph Γ =
1

2

4

3
we have ΓG ∼= G1 × (G2 ∗ (G3 ×G4)). However, if both Γ and

its complement ΓC are connected – for instance, Γ = – then, in general,

ΓG need not be directly or freely decomposable.

(iv) If Γ is finite and Gv ∼= Z for all v ∈ V (Γ), then ΓG is the right-angled Artin

group (RAAG) on Γ. These groups have been used to produce many examples

of groups with various finiteness properties. Specifically, in [BB97] Bestvina and

Brady related the homology and homotopy groups of the flag simplicial complex

whose 1-skeleton is Γ to the finiteness properties of the Bestvina–Brady group

BBΓ – the kernel of the map ΓG → Z defined by sending the generator of each Gv

to 1 ∈ Z. This partially motivated expansive study of RAAGs over the past two

decades.

(v) If Γ is finite and Gv ∼= C2 for all v ∈ V (Γ), then ΓG is the right-angled Coxeter

group (RACG) on Γ. This is a special case of Coxeter groups – groups generated

by reflections through hyperplanes in Rn passing through the origin. In particular,

Coxeter groups – and so RACGs – are linear.

An important consequence of the last example is that RAAGs are linear. This follows

from the fact that a RAAG can be embedded into a RACG, via the following procedure.

Let ΓG be a RAAG – that is, G = {Gv ∼= Z | v ∈ V (Γ)} – and let Γ̂ be the finite sim-

plicial graph obtained by doubling the vertices of Γ. That is, let V (Γ̂) = V (Γ)× {0, 1},
and let (v, α), (w, β) ∈ V (Γ)×{0, 1} be adjacent in Γ̂ if and only if v and w are adjacent

in Γ. Then ΓG embeds in Γ̂H, where H = {Hv
∼= C2 | v ∈ V (Γ̂)}: indeed, it is easy

to see that Γ̂H ∼= ΓK, where K = {Kv
∼= C2 ∗ C2 | v ∈ V (Γ)}, and the existence of
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an injective homomorphism ΓG ↪→ ΓK follows from the existence of injective homomor-

phisms Gv ∼= Z ↪→ C2 ∗ C2
∼= Kv for every v ∈ V (Γ). In fact, we may even do better: in

[DJ00], Davis and Januszkiewitz give an embedding of any RAAG into a RACG as a

finite-index subgroup.

0.4 Quasi-isometries

An important notion in the study of hyperbolic spaces and groups (defined in Section

0.5 below), as well as finitely generated groups in general, is that of a quasi-isometry,

defined as follows.

Definition 0.8 (Quasi-isometry, Quasi-geodesic). Let (X, dX) and (Y, dY ) be metric

spaces, and fix constants λ ≥ 1 and K,C ≥ 0. A map f : X → Y is called a (λ,K)-

quasi-isometric embedding if

λ−1dX(x, y)−K ≤ dY (f(x), f(y)) ≤ λdX(x, y) +K

for all x, y ∈ X, and a (λ,K,C)-quasi-isometry if furthermore for any point y ∈ Y , there

exists some x ∈ X with dY (y, f(x)) ≤ C. We also say f : X → Y is a quasi-isometric

embedding (respectively, a quasi-isometry) if f is a (λ,K)-quasi-isometric embedding (re-

spectively, a (λ,K,C)-quasi-isometry) for some λ, K and C. A (λ,K)-quasi-geodesic in a

metric space X is (the image of) a (λ,K)-quasi-isometric embedding γ : ([0, `], dR)→ X,

for some ` ≥ 0.

Remark 0.9. In the literature, a ‘(λ,K)-quasi-geodesic’ in X often refers to a (λ,K)-

quasi-isometric embedding of a ray, γ : ([0,∞), dR) → X, or of a line, γ : (R, dR) → X.

Although we do not use this viewpoint here, this (more general) notion of a (λ,K)-

quasi-geodesic is useful as well. This also allows one to say that γ is a quasi-geodesic

(without refering to λ and K); note that, in our context, any map γ : ([0, `], dR) → X

with bounded image is a (λ,K)-quasi-geodesic for some λ and K, so the reference to

(λ,K) is essentially unavoidable.

It is easy to see that quasi-isometries define an equivalence relation between metric

spaces. In particular, if f : X → Y is a quasi-isometry, then there exists a quasi-

isometry f̄ : Y → X, and if f : X → Y and g : Y → Z are quasi-isometries, then

so is g ◦ f : X → Z. Two metric spaces are said to be quasi-isometric if there is a

quasi-isometry between them. In geometric group theory, probably the most important

examples of quasi-isometries are as follows.

Example 0.10.

(i) Any group G with a generating set S ⊆ G can be equipped with a metric (called

a word metric) dS : G × G → Z, where dS(g, h) is the smallest integer n such
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that gh−1 = s1 · · · sn for some si ∈ S ∪ S−1. If the group G is finitely generated

and S, T are two finite generating set for G, then it is easy to see that the map

(G, dS)→ (G, dT ), g 7→ g is a (λ, 0, 0)-quasi-isometry, where

λ = max({dS(1, t) | t ∈ T} ∪ {dT (1, s) | s ∈ S}).

In particular, given two finitely generated groups G and H, it makes sense to say

that G is quasi-isometric to H without refering to specific generating sets.

(ii) More generally, suppose G is a finitely generated group (with finite generating set S,

say) and H ≤ G a subgroup of finite index. Then H is also finitely generated by

Schreier’s Lemma (see [Ser02, Lemma 4.2.1]), by a finite set T , say, and the map

(H, dT ) → (G, dS), h 7→ h is a quasi-isometry. In particular, if finitely generated

groups G1 and G2 are commensurable – that is, there exist finite-index subgroups

Hi ≤ Gi such that H1
∼= H2 – then G1 and G2 are quasi-isometric.

The following result is usually useful for dealing with quasi-isometries, and signifies the

importance of properly discontinuous and cocompact group actions.

Proposition 0.11 (Švarc–Milnor Lemma; see [BH99, Proposition I.8.19]). Let a group

G act on a geodesic metric space (Y, d). Suppose that:

(i) Y is proper: for any r ≥ 0 and any y ∈ Y , the closed ball BY (r; y) = {x ∈ Y |
d(x, y) ≤ r} is compact;

(ii) G y Y is properly discontinuous: for any compact subset K ⊆ Y , the set

{g ∈ G | Kg ∩K 6= ∅} is finite; and

(iii) G y Y is cocompact: there exists a compact subset K ⊆ Y such that we have

Y =
⋃
g∈GK

g.

Then G is finitely generated, and given any finite generating set S for G and any y ∈ Y ,

the map (G, dS)→ Y, g 7→ yg is a quasi-isometry.

0.5 Hyperbolic spaces and groups

Let Y be a geodesic metric space. Given three points x, y, z ∈ Y , we may construct a

geodesic triangle ∆ by picking geodesics γx,y, γx,z and γy,z between x and y, between x

and z and between y and z, respectively. Given δ ≥ 0, we say the triangle ∆ is δ-slim if

γx,y (respectively γx,z, γy,z) belongs to the δ-neighbourhood of γx,z ∪ γy,z (respectively

γx,y ∪ γy,z, γx,y ∪ γx,z): see Figure 1.

Definition 0.12 (Hyperbolic space). Given δ ≥ 0, a geodesic metric space Y is said to

be δ-hyperbolic if all geodesic triangles in Y are δ-slim. Y is said to be hyperbolic (or
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δ

δ

x z

y

γx,z

γx,y γy,z

Figure 1: A δ-slim triangle: γx,y is in the δ-neighbourhood of γx,z ∪ γy,z.

Gromov-hyperbolic) if it is δ-hyperbolic for some δ. A group G is said to be hyperbolic

if it has a finite generating set S such that the Cayley graph Cay(G,S) is hyperbolic.

There are many alternative definitions of a hyperbolic metric space (and even more of

a hyperbolic group), all of them equivalent to Definition 0.12 – although the constant

δ ≥ 0 that makes a given space δ-hyperbolic might depend on the definition chosen. For

instance, given a geodesic metric space (Y, d) with a fixed basepoint w ∈ Y , we could

define an ‘inner product’ on Y by setting

(x · y)w =
d(w, x) + d(w, y)− d(x, y)

2

for x, y ∈ Y . Then Y is hyperbolic if and only if there exists a constant δ′ ≥ 0 such that

(x · y)w ≥ min{(x · z)w, (y · z)w} − δ′

for all x, y, z ∈ Y . These and several other definitions, as well as proofs of their equiva-

lence, can be found in [ABC+90].

Given any λ ≥ 1 and K ≥ 0, it is not difficult to show that there exists a constant

D such that any (λ,K)-quasi-geodesic in a hyperbolic metric space will be in the D-

neighbourhood of a geodesic (see, for instance, [Gro87, Proposition 7.2.A]). As a conse-

quence, any space quasi-isometric to a hyperbolic metric space will be hyperbolic itself.

In particular, given two finitely generated commensurable groups G and H, it follows

from Example 0.10 that G is hyperbolic if and only if H is. Notable examples of hyper-

bolic spaces and groups are as follows.

Example 0.13.

(i) It is easy to see that any simplicial tree will be 0-hyperbolic. Thus, any quasi-

tree – a space quasi-isometric to a simplicial tree – is hyperbolic as well. As a

consequence, a finitely generated free group, or a finitely generated virtually free

group (such as SL2(Z)), is hyperbolic.

(ii) A particular case of the previous example says that a point {∗} and the real line R
are hyperbolic. Thus, any virtually cyclic (finite or virtually Z) group is hyperbolic.

Such groups are called elementary hyperbolic groups, and usually have properties

that are vastly different from the ones enjoyed by non-elementary hyperbolic groups.
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(iii) The hyperbolic plane H2 is, as the name suggests, hyperbolic. Since H2 is the

universal cover of a compact orientable closed surface Σg of genus g ≥ 2, it follows

that π1(Σg) is hyperbolic. Indeed, a Cayley complex of π1(Σg) – a 2-complex whose

1-skeleton is a Cayley graph and 2-cells correspond to relators – can be visualised

as the order-4g 4g-gonal tiling of H2. Alternatively, we could use the fact that

π1(Σg) acts properly discontinuously and cocompactly on H2, together with the

Švarc–Milnor Lemma (Proposition 0.11), to see that π1(Σg) is hyperbolic.

In general, it is known that ‘most’ groups are hyperbolic: with a certain definition of

‘random’, Gromov showed in [Gro93, Section 9.B] that a random group will be infinite

hyperbolic with overwhelming probability.

1 Background for Paper 1

In Paper 1 we study statistical properties of Cayley graphs of certain graph products.

Our first main result, Theorem 1.4, considers groups that have rational growth (see

Section 1.1) and gives bounds on sphere sizes in Cayley graphs of such groups (see

Section 1.2). In Section 1.3, we use a Cayley graph of a finitely generated group G to

define the density of a subset A ⊆ Gr. Finally, as described in Section 1.4, we apply

Theorem 1.4 to show that in certain graph products G – for instance, right-angled Artin

or Coxeter groups – the density of the pairs (g, h) ∈ G2 such that gh = hg is non-zero if

and only if G is virtually abelian, verifying Conjecture 1.9 for these groups (with respect

to certain generating sets).

1.1 Growth series

Let G be a finitely generated group, and let X be a finite generating set for G; for

simplicity, we will always assume that X is symmetric – that is, t−1 ∈ X for all t ∈ X –

and that 1 ∈ X. We would like to study how ‘regular’ the growth of G with respect to

X is. In particular, for any n ∈ N we may define the ball BG,X(n) = Xn ⊆ G of radius

n in G with respect to X – that is, the set of elements g ∈ G that are products of ≤ n

elements of X; note that this coincides with the ball in the Cayley graph Cay(G,X) of

radius n centered at 1 ∈ G, if this Cayley graph is given the combinatorial metric. We

may also define the sphere SG,X(n) ⊆ G of radius n in G with respect to X by setting

SG,X(0) = {1} and SG,X(n) = BG,X(n) \BG,X(n− 1) for n ≥ 1.

Definition 1.1 (Rational growth). Let G be a finitely generated group, and let X be

a finite generating set for G. The spherical growth series for G with respect to X is

the formal power series sG,X(z) =
∑∞

n=0 |SG,X(n)|zn ∈ Z[[z]]. Similarly, the volume

growth series for G with respect to X is bG,X(z) =
∑∞

n=0 |BG,X(n)|zn ∈ Z[[z]]; note
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that sG,X(z) = (1− z)bG,X(z). We say that G has rational growth with respect to X is

sG,X(z) (equivalently, bG,X(z)) is a rational function, that is, a ratio of two polynomials:

sG,X(z) = P (z)
Q(z) for some P (z), Q(z) ∈ Z[z] with Q(z) 6≡ 0.

Remark 1.2. Note that we lose no generality in requiring the polynomials P (z) and

Q(z) in Definition 1.1 to have integer coefficients. Indeed, suppose sG,X(z) = P (z)
Q(z)

where P (z) ∈ C[z] has degree m ∈ N and Q(z) =
∑r

i=0 qiz
i for some q0, . . . , qr ∈ C.

Since sG,X(z)Q(z) = P (z), by comparing coefficients of zj for j large enough we see that

(x0, . . . , xr) = (q0, . . . , qr) ∈ Cr+1 is a solution to the system of equations

r∑
i=0

|SG,X(j − i)|xi = 0 for all j ≥ max{m+ 1, r}; (1)

and conversely, given any solution (q̂0, . . . , q̂r) ∈ Cr+1 of (1), the series sG,X(z)Q̂(z) is

a polynomial, where Q̂(z) =
∑r

i=0 q̂iz
i. Thus, given a polynomial Q(z) ∈ C[z], we have

sG,X(z)Q(z) ∈ C[z] if and only if the coefficients of Q(z) form a solution of (1).

But as (1) is a system of homogeneous linear equations that has a non-zero solution, it

follows that its solution space V ⊆ Cr+1 is a (linear) subspace of dimension ≥ 1. As

the equations in (1) have integer coefficients, it follows that V ∩ Qr+1 is a subspace of

Qr+1 of dimension ≥ 1, and so V ∩Zr+1 6= {0}. Thus, without loss of generality we may

assume that Q(z) ∈ Z[z]; but this then implies that P (z) = sG,X(z)Q(z) has integer

coefficients as well, as claimed. This result also appears as [Sto96, Lemma 3.1].

Example 1.3.

(i) Any hyperbolic group G is known to have rational growth with respect to any gener-

ating set X [ECH+92, Theorem 3.4.5]; this can be attributed to Cannon, Gromov

and Thurston. This follows from the fact that given any finite generating set X,

there exists a regular language (that is, a language recognised by a finite state au-

tomaton) that maps bijectively to G and consists only of geodesics in the Cayley

graph Cay(G,X).

(ii) Any finitely generated abelian group G has rational growth vith any generating set

as well: this is due to Benson [Ben83, Theorem 1.2].

(iii) The only other group that is known to have rational growth with respect to any

generating set is the integral Heisenberg group

H3(Z) =


1 a c

0 1 b

0 0 1


∣∣∣∣∣∣∣ a, b, c ∈ Z

 ≤ SL3(Z)

(Duchin and Shapiro [DS14, Theorem 1]). In contrast with hyperbolic groups,

H3(Z) cannot have a regular language consisting of exactly one geodesic word for
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each element of H3(Z) with respect to any generating set [Sto95, Theorem 1], and

so a different approach is needed to prove rationality of its growth.

(iv) There are also several classes of groups that cannot have rational growth with re-

spect to any generators. For instance, it is well-known that having a rational growth

series implies that the group has either polynomial or exponential growth, and so

groups of intermediate growth cannot have rational growth (see also Theorem 1.4

below). Also, it is easy to see that if sG,X(z) is rational then the numbers |SG,X(z)|
are computable, and so G has solvable word problem – hence groups with unsolvable

word problem cannot have rational growth.

(v) Some groups are known to have rational growth with certain generating sets – for

instance, right-angled Artin / Coxeter groups [Chi94, Proposition 1] and soluble

Baumslag-Solitar groups BS(1, n) [CEG94] have rational growth with respect to

the standard generating sets.

(vi) The 5-dimensional integral Heisenberg group,

H5(Z) =




1 a1 a2 c

0 1 0 b1

0 0 1 b2

0 0 0 1


∣∣∣∣∣∣∣∣∣∣
a1, a2, b1, b2, c ∈ Z

 ≤ SL4(Z),

has two generating sets (X and X ′, say) such that sH5(Z),X(z) is rational but

sH5(Z),X′(z) is not [Sto96, Theorems A and B]. Thus, in general, rationality of the

growth series depends on the choice of a generating set.

1.2 Estimates of sphere sizes

Having rational growth allows us to estimate the sphere sizes |SG,X(n)|. In particular, if

a group G has rational growth with respect to a finite generating set X, then the numbers

|SG,X(n)| satisfy a homogeneous linear recurrence relation with constant coefficients –

cf (1). It follows that there exist c1, . . . , cr ∈ C \ {0}, λ1, . . . , λr ∈ C and α1, . . . , αr ∈ N
such that

|SG,X(n)| =
r∑
i=1

cin
αiλni (2)

for all sufficiently large n, and hence

lim sup
n→∞

|SG,X(n)|
nαλn

≤
r∑
i=1

|ci|, (3)

where λ = max{|λi| | 1 ≤ i ≤ r} and α = max{αi | 1 ≤ i ≤ r, |λi| = λ}. The following

result says that, in addition to the upper bound for |SG,X(n)|/(nαλn) given by (3), we

have a lower bound as well.
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Theorem 1.4 (Paper 1 [Val19b, Theorem 1]). Let G be an infinite finitely generated

group with a finite generating set X. Suppose that G has rational growth with respect

to X. Then there exist constants λ ∈ [1,∞), α ∈ N and D > C > 0 such that

Cnαλn ≤ |SG,X(n)| ≤ Dnαλn

for all n ≥ 1.

Remark 1.5. An important ingredient to Theorem 1.4 is submultiplicativity of sphere

sizes in G: that is, we have |SG,X(m+ n)| ≤ |SG,X(m)| × |SG,X(n)| for every m,n ∈ N.

This follows from the fact that an element g ∈ SG,X(m+n) can be expressed as a product

g1g2 for g1 ∈ SG,X(m) and g2 ∈ SG,X(n), and so there is an injection SG,X(m + n) ↪→
SG,X(m) × SG,X(n) given by g 7→ (g1, g2). In fact, submultiplicativity and rationality

are enough: given any rational series
∑∞

n=0 anz
n such that an ∈ Z≥1 and am+n ≤ aman

for all m,n ∈ N, there exist constants α, λ, C and D as in Theorem 1.4 such that

Cnαλn ≤ an ≤ Dnαλn for all n ≥ 1: see Theorem 11 in Paper 1.

In particular, instead of considering sizes of the spheres SG,X(n) in Theorem 1.4, one

may equally well consider the sizes of balls BG,X(n) =
⋃n
i=0 SG,X(i), as they form a

submultiplicative sequence of rational growth. However, Theorem 1.4 is written in its

current form as the bounds on sizes of spheres are a stronger result than corresponding

bounds on sizes of balls. Indeed, if the conclusion of Theorem 1.4 holds, then there exist

constants D̂ > Ĉ > 0 such that

Ĉnα̂λn ≤ |BG,X(n)| ≤ D̂nα̂λn (4)

for all n ≥ 1, where α̂ = α + 1 if λ = 1 and α̂ = α otherwise. The reverse implication

can be seen to hold if α̂ = 0.

The bounds given by Theorem 1.4 appear in the literature for several classes of groups.

In particular, a result of Coornaert [Coo93, Théorème 7.2] says that if G is hyperbolic

and not virtually cyclic then the bounds on Theorem 1.4 hold, and in addition we have

α = 0. As hyperbolic groups have rational growth with respect to any generating set

[ECH+92, Theorem 3.4.5], one may deduce Coornaert’s result from Theorem 1.4: see

[Val19a]; this eliminates the need of Patterson–Sullivan measures on hyperbolic groups

to give such bounds. Similar bounds (with α = 0 as well) have also been shown to hold

for relatively hyperbolic groups [Yan13, Theorem 1.9] and right-angled Artin/Coxeter

groups that do not split as direct products, when X is the standard generating set

[GTT17, Theorem 2.2].

For groups of polynomial growth (that is, when λ = 1) – which, by Gromov’s theorem

[Gro81], coincide with the class of finitely generated virtually nilpotent groups – we have

a slightly different situation. For such groups G, Pansu [Pan83] showed that the limit

limn→∞ |BG,X(n)|/nα̂ exists for some α̂ ∈ Z≥1, and therefore (4) holds. However, this
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does not imply that the conclusion of Theorem 1.4 holds for (λ, α) = (1, α̂ − 1), and

indeed it is not known if this conclusion holds in general [Man12, Chapter 18, Problem 4].

The ‘upper bound’ part of this conclusion – that is, |SG,X(n)| ≤ Dnα̂−1 – holds for 2-step

nilpotent groups by a result of Stoll [Sto98, Theorem 5.3].

If sG,X(z) is rational, we may also extract some information about the numbers ci

and λi as above. For instance, if we write sG,X(z) = P (z)/Q(z) for polynomials

P (z), Q(z) ∈ C[z] which have no common roots, then the numbers λ1, . . . , λr ∈ C ap-

pearing in (2) may be taken to be the roots of Q(z), counted with multiplicity. In

particular, as we may take Q(z) ∈ Z[z] (see Remark 1.2), it follows that the λi are

algebraic numbers. But then (c1, . . . , cr) ∈ Cr is just a solution of a system (2) of linear

equations with coefficients in K = Q(λ1, . . . , λr), and so we have ci ∈ K: in particular,

the ci are algebraic. In fact, if λ := max{|λi| | 1 ≤ i ≤ r} = 1, then λj = 1 for some j

and we may even show that cj ∈ Q [Sto96, Proposition 3.3]. This is used to show (see

[Sto96, Theorem B]) that the growth of the 5-dimensional integral Heisenberg group

H5(Z) with respect to its standard generators is not rational.

We may deduce an even stronger conclusion when sG,X(z) is a positive rational function:

that is, sG,X(z) ∈ C+(z) where C+(z) is the smallest sub-semiring of C(z) containing

N[z] and closed under the operation f(z) 7→ (1 − zf(z))−1; for instance, this holds if

a language L ⊆ X∗ consisting of a single geodesic representing each element of G is

recognised by a finite state automaton. In this case, it follows from a result of Berstel

[Ber71, Propriété] that λi/λ is a root of unity whenever |λi| = λ. It then follows

that the numbers dn = |SG,X(n)|/(nαλn) are asymptotically periodic: that is, there

exist constants k ∈ Z≥1 and D0, . . . , Dk−1 such that dkn+i → Di as n → ∞ for all

i ∈ {0, . . . , k − 1}. However, it is not clear why we could expect sG,X(z) to be in C+(z)

whenever it is rational; in particular, the language L as above does not always exist even

if the growth is rational: see Example 1.3 (iii).

1.3 Statistical properties of Cayley graphs

Recall that a Cayley graph Γ = Cay(G,X) is a (directed) graph with vertices V (Γ) = G

and edges E(Γ) = {(g, xg) | g ∈ G, x ∈ X}. We may furthermore assume, if necessary,

that X is symmetric (that is, X = X−1), in which case we view Cay(G,X) as an undi-

rected graph by replacing each pair of directed edges
(
g xg

)
by an indirected

one
(
g xg

)
, and replacing directed loops with undirected ones. We may also

give Cay(G,X) a metric by setting each edge to have length one.

We would like to study which subsets of G (or, more generally, of Gr for some r ≥ 1)

are ‘small’ and which ones are ‘large’ in a sense of geometry of Cay(G,X). To do this,

we introduce the following definition, which generalises the definition given by Burillo

and Ventura in [BV02] to finite direct powers of a given group.
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Definition 1.6 (Negligible, Generic). Given n ∈ N, let BG,X(n) be the (vertices in the)

ball of radius n centered at 1 ∈ G in the Cayley graph Cay(G,X): that is, BG,X(n)

consists of elements of G of the form x1 · · ·xm for some m ≤ n and xi ∈ X∪X−1. Given

r ∈ N and a subset A ⊆ Gr, we define the natural density of A with respect to X to be

δX(A) = lim sup
n→∞

|A ∩BG,X(n)r|
|BG,X(n)|r

.

We say that A is negligible with respect to X if δX(A) = 0, and we say that A is generic

if G \A is negligible.

Remark 1.7. Instead of taking lim sup in Definition 1.6, one might alternatively take

lim inf or the ω-limit for a non-principal ultrafilter ω on N. We chose to work with

lim sup as being ‘negligible’ (or ‘generic’) in the sense of Definition 1.6 implies being

such in the sense of such alternative definitions. In particular, if δX(A) = 0 for some

A ⊆ Gr, then actually
|A∩BG,X(n)r|
|BG,X(n)|r → 0 as n→∞.

1.4 Degree of commutativity

Given a finite group G, one may ask what is the probability that two elements, chosen

from G uniformly and independently at random, commute. In particular, we may define

the degree of commutativity of G to be

dc(G) =
|{(g, h) ∈ G×G | gh = hg}|

|G|2
.

This was first introduced by Erdős and Turán [ET68] and widely studied ever since.

For instance, Gustafson has shown that if dc(G) > 5/8 then G is abelian [Gus73], while

Peter Neumann has shown that if, for a given α > 0, we have dc(G) ≥ α, then G is

(finite of order ≤ Nα)-by-abelian-by-(finite of order ≤ Nα) for some constant Nα ∈ N
[Neu89, Theorem 1].

One may ask if we could generalise this definition to infinite groups G. If G is finitely

generated, then one of the most natural-sounding generalisations is to consider the prob-

ability that two elements in a large ball of a Cayley graph of G commute. Thus, the

following definition was introduced by Antoĺın, Martino and Ventura in [AMV17].

Definition 1.8 (Degree of commutativity). Let G be a finitely generated group and let

X be a finite generating set for G. Then the degree of commutativity of G with respect

to X is

dcX(G) = lim sup
n→∞

|{(g, h) ∈ BG,X(n)×BG,X(n) | gh = hg}|
|BG,X(n)|2

= δX({(g, h) ∈ G2 | gh = hg}).
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Note that if G is finite then BG,X(n) = G for all sufficiently large n and so we have

dcX(G) = dc(G) for any generating set X. Generalisations of Definition 1.8 also exist:

for instance, in [Toi17], Tointon considers degree of commutativity of a group G with

respect to sequences of measures on G.

The motivating question in this area is the following: if we have a finitely generated

group G that is not virtually abelian, does it follow that dcX(G) = 0 for any finite

generating set X? This is believed to be true.

Conjecture 1.9 (Antoĺın–Martino–Ventura [AMV17, Conjecture 1.8]). Let G be a

finitely generated group, and X a finite generating set for G. Then,

(i) dcX(G) > 0 if and only if G is virtually abelian;

(ii) dcX(G) > 5/8 if and only if G is abelian.

This conjecture is true for all finitely generated residually finite groups of subexponen-

tial growth [AMV17, Theorem 1.5], hyperbolic [AMV17, Theorem 1.9] and relatively

hyperbolic [Val17, Corollary 1.5] groups, and ascending HNN-extensions of Zm (in-

cluding soluble Baumslag–Solitar groups and fundamental groups of orientable prime

3-dimensional Nil- and Sol-manifolds) [Val18b, Theorem 1.12]. Moreover, it follows

from [AMV17, Theorem 1.5] and Theorem 1.16 in Paper 2 that part (i) of Conjecture

1.9, if it is true, implies both part (ii) and independence of dcX(G) from the choice of X.

In Paper 1 we prove Conjecture 1.9 for graph products ΓG over finite graphs with a

suitable choice of a generating set. For each group Gv in G = {Gv | v ∈ V (Γ)}, we

choose a finite generating set Xv and assume that each (Gv, Xv) satisfies the following

two conditions:

(i) Gv has rational growth with respect to Xv: in this case, the graph product ΓG
has rational growth with respect to X =

⋃
v∈V (Γ)Xv (due to Chiswell [Chi94,

Corollary 1]), and so we may apply Theorem 1.4 to ΓG and its full subgroups.

(ii) There exist constants P, β ∈ N such that |CGv(g)∩BGv ,Xv(n)| ≤ Pnβ for all n ≥ 1

and all non-trivial g ∈ Gv: this allows us to control growth of centralisers in ΓG,

which were explicitly described by Barkauskas [Bar07].

Note that these two conditions are satisfied for any finitely generated virtually abelian

group (with respect to any generating set), and in particular for the cyclic groups Z
and C2. In particular, we may apply the following result to right-angled Artin / Coxeter

groups and their standard generating sets.

Theorem 1.10 (Paper 1 [Val19b, Theorem 6]). Let Γ be a finite simple graph, and let

G = {Gv | v ∈ V (Γ)} be a collection of finitely generated groups. Suppose that for each
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v ∈ V (Γ), there exists a finite generating set Xv for Gv such that (Gv, Xv) satisfies the

conditions (i) and (ii) above, and let X =
⋃
v∈V (Γ)Xv ⊆ ΓG. Then dcX(ΓG) > 0 if and

only if ΓG is virtually abelian.

2 Background for Paper 2

Paper 2 aims to characterise groups G by their degree of k-nilpotence – the probability

that the (k + 1)-step commutator of ‘randomly chosen’ elements of G is trivial. We

employ different notions of such a probability. In Section 2.1 we define what it means

for a sequence of measures to measure index uniformly – a condition that is satisfied

for measures coming from random walks or Følner sequences in amenable groups. In

Section 2.2, we introduce the degree of k-nilpotence of a finitely generated group G with

respect to such sequences of measures, which turns out to be non-zero if and only if G

is virtually k-step nilpotent (Theorem 2.4). In Section 2.3, we explain why even if G is

virtually k-step nilpotent, its degree of k-nilpotence is independent of the sequence of

measures chosen (as long as this sequence is reasonable enough): see Theorem 2.7. In

Section 2.4, we consider residually finite groups G, and obtain the analogous conclusion

for G if we define its degree of k-nilpotence to be the infimum of degrees of k-nilpotence

of finite quotients of G (Theorem 2.11).

2.1 Measures on groups

In Paper 2 we consider various ways to measure subsets of groups. To make our argu-

ments work, we usually require our measures to behave well with respect to finite index

subgroups: in particular, we expect the ‘density’ of a subgroup of index d (and any its

coset) to be 1/d. This motivates the following definition.

Definition 2.1 (Uniform measurement of index). For a group G, let µn : G → [0, 1],

n ∈ N, be a sequence of measures on G. We say that (µn)∞n=0 measures index uniformly

if µn(xH) → [G : H]−1 as n → ∞ uniformly over all x ∈ G and all subgroups H ≤ G

(here we define [G : H]−1 = 0 if H has infinite index in G). That is, (µn) measures index

uniformly if for every ε > 0, there exists N ∈ N such that
∣∣µn(xH)− [G : H]−1

∣∣ < ε for

all x ∈ G, H ≤ G and n ≥ N .

The following examples of sequences of measures measuring index uniformly are due to

Tointon [Toi17].

Example 2.2.

(i) Let G be a countable amenable group: that is, there exists a function µ : G→ [0, 1]

that is a finitely additive (µ(A t B) = µ(A) + µ(B) for all disjoint A,B ⊆ G)
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left-invariant (µ(gA) = µ(A) for all g ∈ G and A ⊆ G) probability measure

(µ(G) = 1); note that we do note require µ to be countably additive. Examples of

amenable groups include virtually solvable groups and finitely generated groups of

subexponential growth. If G is countable and amenable, then G has a sequence of

measures that measures index uniformly [Toi17, Theorem 1.13].

(ii) As a particular case of the example (i) above, note that if G is a finitely generated

group (with a finite generating set X, say) of subexponential growth, then the

sequence (µn)∞n=0, defined by µn(A) = |BG,X(mn)∩A|/|BG,X(mn)| for some strictly

increasing sequence (mn)∞n=0 ⊆ N, measures index uniformly on G. This comes

from the fact that for Fn = BG,X(mn), the sequence (Fn)∞n=0 is a Følner sequence

in G: that is, Fn ⊆ Fn+1 for all n, G =
⋃
n∈N Fn, and |gFn\Fn||Fn| → 0 as n→∞ for

all g ∈ G.

(iii) Let G be a finitely generated group (with a finite symmetric generating set X, say),

and suppose 1 ∈ X. For each n ∈ N and A ⊆ G, let µn(A) be the probability that a

random walk on Cay(G,X) starting at 1 ∈ G will end up in A after n steps. Then

(µn)∞n=0 measures index uniformly [Toi17, Theorem 1.14].

Notice that for any sequence (µn) of measures on G that measure index uniformly,

we must have µn(G) → 1 as n → ∞: in particular, the measures µn ‘converge to’ a

probability measure. Indeed, in most cases the measures on groups we consider will be

probability measures. Moreover, given any sequence (µn) of non-zero measures on G

we may ‘rescale’ these measures to make them probability measures; if these measures

measure index uniformly on G, then this will not affect the results in Paper 2. Thus,

we may assume without loss of generality that all the measures that we consider are

probability measures.

2.2 Degree of nilpotence

Given a finite group, we may generalise its degree of commutativity, introduced in Section

1.4, to higher commutators. In particular, given k ∈ Z≥1 and a finite group G we may

define the degree of k-nilpotence of G to be

dck(G) =
|{(g0, . . . , gk) ∈ Gk+1 | [g0, . . . , gk] = 1}|

|G|k+1
,

where [g0, . . . , gk] is the (k+ 1)-fold simple commutator of g0, . . . , gk: see Definition 0.2.

Notice that, for any finite group G, we have dc1(G) = dc(G), and dck(G) = 1 if and

only if G is k-step nilpotent.

Given a sequence of measures on an infinite group, we may generalise the definition of

degree of k-nilpotence as follows.
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Definition 2.3 (Degree of k-nilpotence). Let k ∈ Z≥1, let G be a group and let

M = (µn)∞n=0 be a sequence of probability measures on G. Then each µn induces a

product measure µk+1
n = µn × · · · × µn on Gk+1. The degree of k-nilpotence of G with

respect to M is

dckM (G) = lim sup
n→∞

µk+1
n ({(g0, . . . , gk) ∈ Gk+1 | [g0, . . . , gk] = 1}).

We may expect a result of a similar flavour to Conjecture 1.9 hold in this setting as well:

if dckM (G) > 0 then we may expect that G contains a k-step nilpotent subgroup of finite

index. If the sequence M ‘behaves well’ with subgroups – that is, M measures index

uniformly – then such a naive conjecture is true, and even quantitative estimates can be

given.

Theorem 2.4 (Paper 2 [MTVV18, Theorem 1.8]). Let r, k ∈ Z≥1 and let α > 0. Then

there exists a constant m = m(r, k, α) > 0 such that the following holds. Let G be a

group generated by r elements, let M be a sequence of measures that measures index

uniformly, and suppose that dckM (G) ≥ α. Then G has a k-step nilpotent subgroup of

index ≤ m.

In Paper 2, we also show that for all m, k, d ∈ Z≥1, if G is finitely generated, Γ ≤ G is

a subgroup of index ≤ m, and H C Γ is a subgroup of cardinality ≤ d such that Γ/H

is k-step nilpotent, then dckM (G) ≥ 1
mk+1d

: see Paper 2, Proposition 1.12. Combining

this with Theorem 2.4 gives the following result (although we expect this result to be

known).

Corollary 2.5 (Paper 2 [MTVV18, Corollary 1.13]). For any r, k, d ∈ Z≥1, there exists

a constant m = m(r, k, d) > 0 such that the following holds. Let G be a group generated

by r elements, and let H CG be a subgroup of cardinality ≤ d such that G/H is k-step

nilpotent. Then G has a k-step nilpotent subgroup of index ≤ m.

In Section 7 of Paper 2, we construct a sequence of finite groups showing that for any

k ∈ Z≥1, any sufficiently large d ∈ Z≥1 and any sufficiently small α > 0, the constants

m in Theorem 2.4 and Corollary 2.5 cannot be chosen to be independent of r. In fact,

by taking a direct limit of these finite groups, we can show that there exists a group G

that is not virtually k-step nilpotent but satisfies all the assumptions in Theorem 2.4

and Corollary 2.5 apart from being generated by r elements: see Proposition 1.14 in

Paper 2.

2.3 Finitely generated virtually nilpotent groups

Most of our results in Paper 2 are related to degree of k-nilpotence of infinite groups.

For finitely generated virtually nilpotent groups, our results apply in more generality. In
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particular, given a group G with a sequence M = (µn)∞n=0 of measures on G, and given

any equation ϕ ∈ Fk ∗G, we define the degree of satisfiability of ϕ in G with respect to

M as

dϕM (G) = lim sup
n→∞

µkn({(g1, . . . , gk) ∈ Gk | ϕ(g1, . . . , gk) = 1}).

Thus dckM (G) is a special case of degree of satisfiability, where we consider the equation

c(k) = [X0, . . . , Xk] ∈ Fk+1(X0, . . . , Xk) ∗G.

Remark 2.6. Since (among finitely generated groups) virtually nilpotent groups are pre-

cisely the ones of polynomial growth [Gro81], it follows that a subsequence of balls in

a Cayley graph of such a group G can be used to define a sequence of measures that

measure index uniformly: see Example 2.2 (ii). In fact, more is true in this case – it

follows from a theorem of Pansu [Pan83] that
|BG,X(n+1)|
|BG,X(n)| → 1 as n→∞, which implies

that the sequence of all balls, (BG,X(n))∞n=0, is a Følner sequence in G. In particular, for

virtually nilpotent groups G, our results in Paper 2 on sequences of measures that mea-

sure index uniformly fit in well with the setting of [AMV17] and of Paper 1, where only

‘ball counting measures’ are considered. In particular, we are able to answer Question

1.33 in Paper 2 positively when G is a virtually nilpotent group.

For the next result, note that a finitely generated nilpotent group is virtually tor-

sion free. To see this, note that such a group G is polycyclic (by [Hal79, Theo-

rem 1.8], for instance), and so a finite index subgroup H ≤ G has a subnormal series

{1} = H0 CH1 C · · ·CHr = H with Hi/Hi−1
∼= Z for each i (see [Seg83, Chapter 1,

Proposition 2]) – in particular, H is torsion free. It follows that any finitely generated

virtually nilpotent group G has a normal torsion-free nilpotent subgroup N CG of finite

index.

Theorem 2.7 (Paper 2 [MTVV18, Theorem 1.20 and Corollary 1.21]). Let G be a

finitely generated virtually nilpotent group, and let N CG be a normal torsion-free nilpo-

tent subgroup of finite index. Let ϕ ∈ Fk ∗G. Then we have a partition

{(g1, . . . , gk) ∈ Gk | ϕ(g1, . . . , gk) = 1} = A t B,

where

(i) A is a union of cosets of Nk in Gk, and

(ii) for every ε > 0, there exists a finite-index normal subgroup K C G such that

|BKk/Kk| ≤ ε|Gk/Kk|.

In particular, dϕM (G) = a|G/N |−k where a is the number of cosets of Nk contained

in A, for any sequence M of measures that measure index uniformly on G.

Remark 2.8. The main conclusion of Theorem 2.7 is algebraic, although it allows us to

deduce the probabilistic result on dϕM (G). In particular, the set A is a finite union of
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cosets of a finite-index subgroup Nk C Gk, and so it has the ‘expected’ measure with

respect to any sequence of measures that measure index uniformly, whereas the set B
has to have zero measure: see Proposition 1.18 in Paper 2. This allows us to deduce the

last statement of the Theorem.

To prove Theorem 2.7, we use the idea of polynomial mappings, introduced by Leibman

in [Lei02]. In particular, given two groups G, H and a function ϕ : G → H, we may

define the u-derivative (for u ∈ G) ∂uϕ : G→ H by setting ∂uϕ(x) = ϕ(x)−1ϕ(ux). We

then say that ϕ is a polynomial of degree ≤ d (for some d ∈ N) if ∂u0 · · · ∂udϕ ≡ 1 for

all u0, . . . , ud ∈ G.

If in addition G and H are finitely generated torsion-free nilpotent groups, then there

is an alternative description of polynomial mappings from G to H. In this case, G

and H have central series with each factor infinite cyclic: see, for instance, [KM79,

Theorem 17.2.2]. In particular, we may choose central series

{1} = G0 < G1 < · · · < Gr = G and {1} = H0 < H1 < · · · < Hs = H

where Gi+1/Gi = 〈giGi〉 ∼= Z and Hj+1/Hj = 〈hjHj〉 ∼= Z for each i and j. Then

there exist bijective coordinate mappings α : Zr → G and β : Zs → H, defined by

α(x0, . . . , xr−1) = g
xr−1

r−1 · · · g
x0
0 and β(y0, . . . , ys−1) = h

ys−1

s−1 · · ·h
y0
0 , and the following is

true.

Proposition 2.9 (Leibman [Lei02, Proposition 3.12]). A mapping ϕ : G → H is poly-

nomial if and only if the mapping β−1 ◦ ϕ ◦ α : Zr → Zs is polynomial.

Here, the notion of a polynomial mapping from Zr to Zs agrees with the usual notion

of a polynomial: that is, a mapping ψ : Zr → Zs is polynomial if and only if it is the

‘evaluation’ of an element ψ̃ ∈ (Q[X1, . . . , Xr])
s. Note that such a polynomial ψ̃ in

general does not need to have integer coefficients, as long as it attains values in Zs at

any point of Zr: for instance, the mapping Z→ Z, x 7→ x2+x
2 is polynomial.

The key idea in the proof of Theorem 2.7 is that polynomial mappings H → G for G

nilpotent form a group under pointwise multiplication [Lei02, Theorem 3.2]. Since the

maps Gk → G defined by (g1, . . . , gk)→ gi (for 1 ≤ i ≤ k) and (g1, . . . , gk) 7→ h (for some

constant h ∈ G) are clearly polynomial, it follows that, given an equation ϕ ∈ Fk ∗ G,

the map (g1, . . . , gk) 7→ ϕ(g1, . . . , gk) is also a polynomial. This can alternatively be

seen, modulo Proposition 2.9, using a result of Hall [Hal79, Theorem 6.5], which says

that the maps G2 → G, (g, h) 7→ gh and G→ G, g 7→ g−1 are polynomial mappings if G

is a finitely generated torsion-free nilpotent group.

If a group G is merely finitely generated virtually nilpotent, then it has a torsion-free

normal nilpotent subgroup N C G of finite index. Given ϕ ∈ Fk ∗ G and elements

n1, . . . , nk ∈ N and g1, . . . , gk ∈ G, note that ϕ(n1g1, . . . , nkgk) ∈ Nϕ(g1, . . . , gk), and
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so we may define a map

ϕg1,...,gk : Nk → N,

(n1, . . . , nk) 7→ ϕ(n1g1, . . . , nkgk)ϕ(g1, . . . , gk)
−1.

We then show that

(i) for each g1, . . . , gk ∈ G, the mapping ϕg1,...,gk is polynomial (Paper 2, Lemma 4.3);

and

(ii) given a polynomial mapping ψ : H → N , where H is finitely generated and N is

nilpotent, and an element x ∈ N , either we have ψ−1(x) = H, or, for each ε > 0,

there exists a subgroup Kε C H such that |ψ−1(x)Kε/Kε| ≤ ε|H/Kε| (Paper 2,

Theorem 1.29).

After noticing that

{(g1, . . . , gk) ∈ Gk | ϕ(g1, . . . , gk) = 1}

=
⊔

(t1,...,tk)∈T k
ϕ(t1,...,tk)∈N

ϕ−1
t1,...,tk

(
ϕ(t1, . . . , tk)

−1
)
· (t1, . . . , tk),

where T is a transversal for N in G, Theorem 2.7 can be deduced from the facts (i) and

(ii) above.

Remark 2.10. It is known that finitely generated virtually nilpotent groups are linear

[Jen55], and therefore strongly equationally Noetherian. However, it is easy to see how

one could use the fact (i) above to give a perhaps more direct proof that such groups

are strongly equationally Noetherian. Indeed, this conclusion follows from the fact that

there are no strictly descending infinite chains of intersections of kernels of polynomial

mappings Zr → Zs; to see this, one could use the Hilbert Basis Theorem to show that

there are no infinite strictly descending chains of algebraic varieties in Qr.

2.4 Residually finite groups

Another way to consider degree of nilpotence of an infinite group is by looking at its

finite quotients; this makes sense to consider mostly for residually finite groups. Recall

that a group G is said to be residually finite if for any non-trivial g ∈ G, there exists a

quotient π : G→ Q with Q finite such that π(g) 6= 1.

Theorem 2.11 (Paper 2 [MTVV18, Theorem 1.31]). Let G be a residually finite group,

let k ≥ 1, and suppose that there exists a constant α > 0 such that dck(G/N) ≥ α for

every finite-index normal subgroup N EG. Then G is virtually k-step nilpotent.
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This theorem generalises results of Lévai and Pyber, who prove it for k = 1 [LP00,

Theorem 1.1 (iii)], and of Shalev, who proves it when G is finitely generated [Sha18,

Theorem 1.1]. It also answers a question posed by Shalev [Sha18, Problem 3.1].

For the proof of Theorem 2.11, we use the following auxilliary result, which might

be of interest to finite group theorists. This theorem generalises results of Gallagher,

who proves it for k = 1 [Gal70], and of Moghaddam, Salemkar and Chiti [MSC05,

Theorem A], who prove it when the centraliser of each element of G is normal.

Theorem 2.12 (Paper 2 [MTVV18, Theorem 1.32]). Let G be a finite group and let

N EG. Then dck(G) ≤ dck(N) dck(G/N) for every k ≥ 1.

To prove Theorem 2.11, we assume that G is not virtually k-step nilpotent and construct

a chain G = G0 > G1 > G2 > · · · of finite-index normal subgroups of G such that

Gi/Gi+1 is not k-step nilpotent. We then use a result of Erfanian, Rezaei and Lescot

[ERL07, Theorem 5.1], stating that there exists a constant γk < 1 such that dck(H) ≤ γk
whenever H is a finite group that is not k-step nilpotent. Using Theorem 2.12, this allows

us to get the estimate

dck(G/Gn) ≤
n−1∏
i=0

dck(Gi/Gi+1) ≤ γnk ,

and so dck(G/Gn)→ 0 as n→∞. In particular, no constant α > 0 as in Theorem 2.11

can exist.

3 Background for Paper 3

In Paper 3 we study a specific action of a graph product on a hyperbolic metric space

which we use to show that certain graph products are equationally Noetherian. In Sec-

tion 3.1 we introduce quasi-median graphs, generalising the notion of a CAT(0) cube

complex – there is such a graph canonically associated to any graph product. In Sec-

tion 3.2, we study combinatorics of hyperplanes in a quasi-median graph (explored by

Genevois in his thesis [Gen17]), akin to the combinatorics of hyperplanes in CAT(0)

cube complex (explored by Sageev in [Sag95]). This allows us to define the contact

graph of a quasi-median graph, which turns out to be a quasi-tree (Theorem 3.7). In

Section 3.3, we introduce acylindrical group actions on metric spaces; it turns out that

for many groups acting on quasi-median graphs, including graph products, the induced

action on the contact graph is acylindrical (Theorem 3.13). In Section 3.4, we introduce

AH-accessibility of groups – existence of the ‘largest’ cobounded acylindrical action on

a hyperbolic space for a given group; the action of a graph product on the contact graph

can be used to show that many graph products are AH-accessible (Corollary 3.17). In



Chapter 0 Background 23

Section 3.5, we give our main application of the action of a graph product on the con-

tact graph: we explain how, using the methods of Groves and Hull [GH17], this action

can be used to show that many graph products of equationally Noetherian groups are

equationally Noetherian (Theorem 3.21).

3.1 Quasi-median graphs

Recall that a connected graph X is called median if for any three vertices x, y, z ∈ V (X),

there exists a unique vertex m ∈ V (X) such that there are geodesics in X between x

and y, between x and z and between y and z, all passing through m. The class of

quasi-median graphs, introduced here, is a generalisation of median graphs.

Definition 3.1 (Quasi-median graph). We say a connected graph X is weakly modular

if X satisfies:

triangle condition: for any k ≥ 1 and any vertices v, x, y ∈ V (X) such that dX(v, x) =

dX(v, y) = k and dX(x, y) = 1, there exists t ∈ V (X) such that dX(v, t) = k − 1

and dX(x, t) = dX(y, t) = 1; and

quadrangle condition: for any k ≥ 1 and any vertices v, x, y, z ∈ V (X) such that

dX(v, z) = k + 1, dX(v, x) = dX(v, y) = k and dX(x, z) = dX(y, z) = 1, there

exists t ∈ V (X) such that dX(v, t) = k − 1 and dX(x, t) = dX(y, t) = 1.

We say X is a quasi-median graph if it is weakly modular and does not contain induced

subgraphs isomorphic to K2,3 or K1,1,2.

v z

x

y

t

quadrangle condition

v

x

y
t

triangle condition

(a) Triangle and quadrangle conditions.

K2,3 K1,1,2

W4 W−4

(b) The graphs K2,3, K1,1,2, W4, W−4 .

Figure 2: Arrangements appearing in Definition 3.1 and Remark 3.3.

It is not hard to show that any median graph is quasi-median. More precisely, it is known

that a (simplicial) graph X is median if and only if X is quasi-median and triangle-free:

see, for instance, [Gen17, Corollary 2.92].
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We are interested in quasi-median graphs mostly due to their applications in studying

graph products. In particular, we have the following result.

Theorem 3.2 (Genevois [Gen17, Proposition 8.2]). Let Γ be a simplicial graph, and let

G = {Gv | v ∈ V (Γ)} be a collection of non-trivial groups. Let S =
⋃
v∈V (Γ)(Gv \ {1})

be a generating set for ΓG. Then the Cayley graph Cay(ΓG, S) is quasi-median.

It was shown by Chepoi [Che00, Theorem 6.1] that the class of CAT(0) cube complexes

coincides with median graphs: in particular, a graph is median if and only if it coincides

with the 1-skeleton of a CAT(0) cube complex. Thus, quasi-median graphs can be viewed

as generalisations of CAT(0) cube complexes.

Indeed, a useful way to think of a quasi-median graphX is as of a CAT(0) prism complex :

given a maximal induced Hadamard subgraph of X – that is, a cartesian product (in

the graph theory sense) of a collection of complete subgraphs – we may ‘fill it in’ with

a prism – a cartesian product (in the set theory sense) of simplices (possibly infinite-

dimensional) – in the obvious way. If we then give a metric to the resulting CW-complex

by giving each prism the usual cartesian metric, the resulting complex turns out to be

CAT(0) [Gen17, Theorem 2.120]. We also have a description of when the 1-skeleton of

a prism complex is a quasi-median graph [Gen17, Theorem 2.127], akin to the result

saying that a cube complex is CAT(0) if and only if it is simply connected and the link

of each vertex is a flag simplicial complex [Gro87, p. 122, 4.2.C].

Remark 3.3. An alternative generalisation of CAT(0) cube complexes (and their 1-

skeleta, median graphs) is given by bucolic complexes (and their 1-skeleta, bucolic

graphs), introduced in [BCC+13]. A graph is said to be bucolic if it is weakly modular

and does not contain K2,3, W4, W−4 and infinite complete graphs as induced subgraphs

(see Figure 2(b)); similarly, a prism complex is bucolic if its 1-skeleton is a bucolic graph

not containing infinite hypercubes (see [BCC+13, Theorem 1]). Although both classes –

bucolic graphs and quasi-median graphs – generalise the class of median graphs, neither

of the former two classes includes the other. Indeed, it is easy to check that the graph

K1,1,2 is bucolic but not quasi-median. Conversely, the complete graph on infinitely

many vertices, K∞, is quasi-median but not bucolic. However, it is clear that a bucolic

graph that does not have K1,1,2 as an induced subgraph is quasi-median, whereas a lo-

cally finite quasi-median graph is bucolic (as K1,1,2 is an induced subgraph of both W4

and W−4 ).

For our purposes, we found it more suitable to work with quasi-median graphs, rather

than bucolic graphs. The main reason for this is that bucolic quasi-median graphs are,

in most cases, locally finite. For example, the Cayley graph Cay(ΓG, S) introduced in

Theorem 3.2 is bucolic if and only if Γ is locally finite and all the groups in G are finite,

and so bucolic graphs would only allow us to study graph products of finite groups in

this way.



Chapter 0 Background 25

3.2 Hyperplanes in quasi-median graphs

In [Sag95], Sageev introduced a rich combinatorial theory for CAT(0) cube complexes,

notably, hyperplanes – see below. In his PhD thesis [Gen17], Genevois generalised this

theory to quasi-median graphs, and did in-depth analysis of applications of quasi-median

graphs to geometric group theory.

Definition 3.4 (Hyperplanes). Let X be a quasi-median graph. Let ∼ be an equiva-

lence relation on the edge set E(X) generated by relations e ∼ f (where e, f ∈ E(X))

whenever e and f are either opposite sides of a square
(
e f

)
or two sides of a

triangle
(
e f

)
. A hyperplane in X is just an equivalence class of edges under ∼:

that is, an element [e] ∈ E(X)/∼. If H = [e] for some e ∈ E(X), we say that H and e

are dual to each other.

Hyperplanes have proven to be a powerful tool in the study of CAT(0) cube complexes.

In particular, each hyperplane H = [e] can be thought to ‘separate’ a CAT(0) cube

complex X into two connected components, called halfspaces, obtained by removing

[e] ⊆ E(X) from the 1-skeleton of X. It is clear that the set of half-spaces can be

equipped with the structure of a pocset – a poset with an order-reversing involution –

where the order relation and the involution are inclusion and complementation, respec-

tively. And conversely, given a pocset one may build a median graph (and so a CAT(0)

cube complex) out of it – this is called cubulation of a pocset. See [Sag14] for details.

An analogous theory has been developed for quasi-median graphs X by Genevois [Gen17,

Section 2.4]. The main difference from CAT(0) cube complexes here is that a hyperplane

does not (in general) separate X into exactly two halfspaces, but rather into N ≥ 2

(possibly N =∞) sectors.

Remark 3.5. Given a quasi-median graph X, we can construct a CAT(0) cube complex X̃

out of X as follows. Consider a pocset consisting of all sectors delimited by hyperplanes

in X and their complements, with the order relation and the involution given by inclusion

and complementation, as before. We may then cubulate this pocset to obtain a CAT(0)

cube complex X̃. This complex can be also thought of as a ‘binary subdivision’ of X,

as follows. Viewing X as a prism complex, where each prism is a cartesian product

of simplices, we may replace each of these simplices by a star (the graph · · · ) by

adding an extra vertex and joining it to each vertex of the original simplex. Prisms are

then replaced by cartesian products of these stars in the obvious way.

Now let Γ be a simplicial graph, let G = {Gv | v ∈ V (Γ)} be a collection of non-trivial

groups, and let X be the quasi-median graph associated to ΓG, as given in Theorem 3.2.

Then the CAT(0) cube complex X̃ built from X as above is precisely the Davis complex

associated to the graph product ΓG: see [Dav98]. However, we find the action of ΓG
on X to be easier to study than that on X̃: for instance, unless |Gv| < ∞ for every

v ∈ V (Γ), the Davis complex X̃ will not be locally compact and will contain vertices
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with infinite stabilisers. It is therefore not immediately clear how we could weaken the

conditions in Theorem 3.13 below, say, if we require X to be a CAT(0) cube complex,

so that this result is still applicable to all graph products over finite graphs. We thus

chose to work with arbitrary quasi-median graphs instead.

It is worth noting, however, that there is a lot of similarity between X and X̃. In many

cases of interest – for instance, when X is the quasi-median graph associated to a graph

product ΓG over a finite graph Γ – X, CX and ∆X turn out to be equivariantly quasi-

isometric to X̃, CX̃ and ∆X̃, respectively. We may therefore expect that there should

be no intrinsic advantage in studying X̃ instead of X (or vice versa).

Two other objects we construct for quasi-median graphs are associated contact and

crossing graphs. Roughly speaking, vertices in the crossing graph are hyperplanes, and

two vertices are adjacent if thee corresponding hyperplanes are not separated by a third

hyperplane.

Definition 3.6 (Contact graph, Crossing graph). Let X be a quasi-median graph, let

e, e′ ∈ E(X), and let H = [e], H ′ = [e′] be hyperplanes. Suppose that e and e′ are

distinct but share an endpoint. Then we say that H and H ′ intersect if e and e′ are

adjacent edges in a square, and we say that H and H ′ osculate otherwise.

We now define the crossing graph ∆X and the contact graph CX of X, as follows. We

let V (∆X) = V (CX) = E(X)/∼, the hyperplanes of X. We let vertices H and H ′ be

adjacent in ∆X (respectively CX) if H and H ′ intersect (respectively either intersect or

osculate).

In fact, the crossing graph will in many cases be quasi-isometric to the contact graph, as

shown in Paper 3, Theorem B (i). We have decided to study the contact graph instead

of the crossing graph for two reasons: because CX, unlike ∆X, is always connected, and

(more specifically) because of the following theorem.

Theorem 3.7 (Hagen [Hag14, Theorem 4.1]; Paper 3 [Val18a, Theorem A]). Let X be

a CAT(0) cube complex, or a quasi-median graph. Then CX is quasi-isometric to a tree.

3.3 Acylindrical actions

We will be interested in group actions on hyperbolic metric spaces. In particular, we may

define acylindrical actions, generalising the notion of a properly discontinuous action on

a metric space.

Definition 3.8 (Acylidrically hyperbolic group). An action of a group G on a metric

space (Y, d) by isometries is said to be acylindrical if for any ε > 0, there exist constants

Dε, Nε > 0 such that for any x, y ∈ Y with d(x, y) ≥ Dε, there are at most Nε elements

g ∈ G such that d(x, xg) ≤ ε and d(y, yg) ≤ ε: see Figure 3. A group G that is not
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virtually cyclic is said to be acylindrically hyperbolic if G acts on a hyperbolic metric

space acylindrically and with unbounded orbits.

ε ε
≥ Dε

x y
xg yg

Y

Figure 3: Acylindricity condition.

If a group G acts on a hyperbolic metric space Y , we may introduce the following ter-

minology. We say that an element g ∈ G is elliptic with respect to G y Y if some

(equivalently, any) 〈g〉-orbit in X is bounded. We say that g ∈ G is loxodromic with

respect to G y Y if for some (equivalently, any) x ∈ Y , the map Z → Y, n 7→ xg
n

is

a quasi-isometric embedding. It is clear that an elliptic element cannot be loxodromic;

thus, the following result allows us to partition all elements of G into elliptic and loxo-

dromic.

Lemma 3.9 (Bowditch [Bow08, Lemma 2.2]). If a group G acts on a hyperbolic metric

space Y acylindrically, then every element of G is either elliptic or loxodromic with

respect to Gy Y .

Example 3.10.

(i) Any hyperbolic group G (that is not virtually cyclic) is acylindrically hyperbolic, as

it acts properly discontinuously, and therefore acylindrically, on the (locally finite)

hyperbolic Cayley graph Y = Cay(G,S), where S is any finite generating set for G.

(ii) Let G be a group which is relatively hyperbolic with respect to a collection of sub-

groups {Hλ | λ ∈ Λ}: roughly speaking, this means that G ‘looks hyperbolic’ after

we cone-off cosets of the subgroups Hλ. Then, given a finite subset S ⊆ G such

that S ∪
⋃
λ∈ΛHλ generates G, the Cayley graph Y = Cay

(
G,S ∪

⋃
λ∈ΛHλ

)
is

hyperbolic [Osi06, Theorem 1.7] and the action of G on Y is acylindrical [Osi16,

Proposition 5.2]. In particular, G is either virtually cyclic or acylindrically hyper-

bolic.

(iii) Let Σ be a compact orientable surface and suppose that 3g + p ≥ 5, where g and

p are the genus and number of boundary components of Σ, respectively. Let Y

be the curve complex of Σ – a simplicial complex whose vertices are essential

non-peripheral simple closed curves on Σ, and a collection of such curves spans a

simplex in Y if they can be realised disjointly. Then Y is hyperbolic [MM99, The-

orem 1.1], and the mapping class group G of Σ – the group of homotopy classes of
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orientation-preserving homeomorphisms Σ→ Σ – acts on Y acylindrically [Bow08,

Theorem 1.3]. In particular, G is acylindrically hyperbolic.

(iv) Let X be a CAT(0) cube complex. Let G be a group acting properly, cocompactly

and cellularly on X with a G-invariant factor system (see [BHS17, Definition 8.1]):

the latter is a technical condition which is satisfied for all known examples of

such actions G y X. Then, by a result of Behrstock, Hagen and Sisto [BHS17,

Corollary 14.5], the induced action of G on the contact graph CX is acylindrical.

Combining this with Theorem 3.7 implies that if CX is unbounded, then G is either

virtually cyclic or acylindrically hyperbolic.

A condition seemingly significantly weaker than acylindrical hyperbolicity was also in-

troduced by Bestvina and Fujiwara in [BF02]. In particular, let a group G act on a

hyperbolic metric space (Y, d), and let h ∈ G be a loxodromic element with respect to

this action. We say that h satisfies the weak proper discontinuity condition (or h is a

WPD element for short) if for every ε ≥ 0 and x ∈ Y , there exists n ∈ N such that there

are only finitely many elements g ∈ G for which d(x, xg) ≤ ε and d(xh
n
, xh

ng) ≤ ε.

It is clear that ifG acts on a hyperbolic metric space acylindrically, then every loxodromic

element of G (with respect to this action) will be a WPD element. Perhaps surprisingly,

we can also go the other way: given an action with at least one loxodromic WPD element

of G, we may construct an acylindrical action of G on a (possibly different) hyperbolic

metric space. In particular, this leads to the following result.

Theorem 3.11 (Osin [Osi16, Theorem 1.2]). Let G be a group that is not virtually cyclic.

Then G is acylindrically hyperbolic if and only if G admits an action on a hyperbolic

metric space with at least one loxodromic WPD element.

This allows us to find new examples of acylindrically hyperbolic groups.

Example 3.12.

(i) Let G = Out(Fn) be the outer automorphism group of a free group of rank n ≥ 2,

and let g ∈ G be (represented by) a fully irreducible automorphism (also called

an irreducible with irreducible powers, or IWIP, automorphism): that is, an au-

tomorphism g such that gk(F ) is not conjugate to F for any proper non-trivial

free factor F < Fn and any k ≥ 1. In [BF10], Bestvina and Feighn constructed a

hyperbolic graph on which G acts acylindrically, and such that g is a loxodromic

WPD element with respect to this action. In particular, by Theorem 3.11, G is

acylindrically hyperbolic. It is worth noting that an explicit example of a hyperbolic

metric space on which G acts acylindrically is not known.

(ii) Let Γ be a finite simplicial graph with ≥ 2 vertices and connected complement, and

let G = {Gv | v ∈ V (Γ)} be a collection of non-trivial groups. Then the graph
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product ΓG splits as an amalgamated free product, ΓG ∼= ΓAGA ∗ΓCGC ΓBGB, where

A = V (Γ) \ {v}, B = star(v) and C = link(v) for some vertex v ∈ V (Γ). In

[MO15], Minasyan and Osin showed that the action of ΓG on the associated Bass-

Serre tree has loxodromic WPD elements. In particular, if either |V (Γ)| ≥ 3 or

|Gv| ≥ 3 for some v ∈ V (Γ), then ΓG is acylindrically hyperbolic by Theorem 3.11.

In Paper 3 we study acylindrical hyperbolicity of graph products. One of the aims of this

paper was to find an explicit description of an acylindrical action of a graph product on

a hyperbolic metric space, whose existence is given by Example 3.12 (ii) and Theorem

3.11. Our description is analogous to the description given in 3.10 (iv); in particular, we

prove the following theorem. Here, by a special action of a group G on a quasi-median

graph X we mean that the quotient X/G is a quasi-median analogue of a special cube

complex in the sense of Haglund and Wise [HW07]; see Definition 2.5 in Paper 3 or

[Gen17, Definition 4.4] for a precise definition.

Theorem 3.13 (Paper 3 [Val18a, Theorem B (ii)]). Let a group G act specially on a

quasi-median graph X. Suppose there exists a constant D ∈ N such that each stabiliser

StabG(x), for x ∈ V (X), is a finite group of cardinality ≤ D, and each vertex of ∆X/G

has ≤ D neighbours. Then the induced action Gy CX is acylindrical.

We may thus apply this result to the quasi-median graph X associated to a graph

product ΓG, described in Theorem 3.2. Indeed, Genevois showed in [Gen17, Chapter 8]

that the action ΓG y X is special [Gen17, Proposition 8.11] and that the quotient

∆X/G is isomorphic to Γ [Gen17, Lemmas 8.6 and 8.12]; moreover, as X is a Cayley

graph of ΓG, vertex stabilisers under this action are trivial. Thus, the following result

follows from Theorem 3.13.

Corollary 3.14 (Paper 3 [Val18a, Corollary C]). Let Γ be a simplicial graph of bounded

degree with |V (Γ)| ≥ 2, and let G = {Gv | v ∈ V (Γ)} be a collection of non-trivial groups.

Let X be the quasi-median graph associated to ΓG, as given in Theorem 3.2. Then the

action ΓG y CX is acylindrical. In particular, if the complement of Γ is connected and

either |V (Γ)| ≥ 3 or |Gv| ≥ 3 for some v ∈ V (Γ), then ΓG is acylindrically hyperbolic.

3.4 AH-accessibility

Another notion we use is the poset of actions of groups on (usually hyperbolic) metric

spaces, explored by Abbott, Balasubramanya and Osin in [ABO17]. Given a group G,

we may equip the set of (equivalence classes of) actions of G on metric spaces with a

partial order, as follows.

Definition 3.15 (Dominates, Weakly equivalent). Let G be a group, and let X and

Y be two metric spaces on which G acts by isometries. We say the action G y X
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dominates G y Y , written G y Y � G y X, if for some (equivalently, every) x ∈ X
and y ∈ Y , there exists a constant C ∈ N such that

dY (y, yg) ≤ CdX(x, xg) + C

for every g ∈ G. We say two actions G y X and G y Y are weakly equivalent if

G y Y � G y X and G y X � G y Y . As � is clearly reflexive and transitive, this

defines an equvalence relation; we denote the equivalence class of Gy X by [Gy X].

Note that, given any two actions G y X and G y Y , if there exists a coarsely G-

equivariant quasi-isometry X → Y then the actions G y X and G y Y are weakly

equivalent. The converse is not true in general: for instance, the action Z y R by

translations is weakly equivalent to the action Z ∼= 〈x〉 y X = Cay(F2(x, y), {x, y}),
obtained by restricting to 〈x〉 the usual action of F2(x, y) on its Cayley graph X, but

R is not quasi-isometric to X. However, if we restrict to cobounded actions, then weak

equivalence of Gy X and Gy Y is equivalent to existence of a coarsely G-equivariant

quasi-isometry [ABO17, Lemma 3.8].

Definition 3.15 allows us to give the set of equivalence classes of isometric actions of

G on metric spaces the structure of a poset P(G). One may then study the structure

of P(G): in particular, one may ask if this poset or a particular induced sub-poset has

a largest element.

We are in particular interested in the sub-poset AH(G) ⊆ P(G) of cobounded acylin-

drical actions of a group G on hyperbolic metric spaces. We say the group G is AH-

accessible if this poset AH(G) has a largest element [Gy X], and we say G is strongly

AH-accessible if in addition G y Y � G y X for all (not necessarily cobounded)

acylindrical actions Gy Y with Y hyperbolic.

Example 3.16.

(i) ([ABO17, Example 7.7]) If G is hyperbolic, then the action Gy Cay(G,S) dom-

inates any other action of G, where S is a finite generating set for G: see, for

instance, [ABO17, Lemma 3.10]. In particular, as Cay(G,S) is hyperbolic and this

action is proper and cocompact (hence, acylindrical and cobounded), G is strongly

AH-accessible.

(ii) ([ABO17, Example 7.7]) If G is a group that is not acylindrically hyperbolic, then

either G is virtually cyclic (in which case G is strongly AH-accessible by the previ-

ous example), or every acylindrical action of G on a hyperbolic space has bounded

orbits, and so is weakly equivalent to the action of G on a point. Thus G is strongly

AH-accessible.

(iii) Many acylindrically hyperbolic groups are also AH-accessible: for instance, it was

shown in [ABO17, Theorem 2.18] that finitely generated relatively hyperbolic groups



Chapter 0 Background 31

with non-acylindrically hyperbolic parabolics and right-angled Artin groups are AH-

accessible. Moreover, hierarchically hyperbolic groups – for instance, mapping class

groups, or groups acting properly and cocompactly on a CAT(0) cube complex with

an invariant factor system – are AH-accessible by [ABD17, Theorem A].

It is harder to think of examples of groups which are not AH-accessible. The first such

example was given by Osin in [Osi16, Example 6.10]: it is the group ∗n≥1(Z × Z/nZ).

In particular, this example tells us that we cannot expect all graph products (over not

necessarily finite graphs) of infinite AH-accessible groups to be AH-accessible in general.

However, if we restrict to graph products over finite graphs then such a result is true,

as the following consequence of Corollary 3.14 shows.

Corollary 3.17 (Paper 3 [Val18a, Corollary D]). Let Γ be a finite simplicial graph,

and let G = {Gv | v ∈ V (Γ)} be a collection of infinite groups. Suppose that for each

isolated vertex v ∈ V (Γ), the group Gv is strongly AH-accessible. Then ΓG is strongly

AH-accessible, and if Γ has no isolated vertices then [ΓG y CX] is the largest element

of AH(ΓG).

It is also known that there also exist finitely presented groups which are not AH-

accessible. Indeed, it was shown in [ABO17, Theorem 7.3] that if N is a non-hyperbolic

normal subgroup of a hyperbolic group G with G/N ∼= Z, then N cannot be AH-

accessible. Furthermore, such a subgroup N can be taken to be finitely presented by

[Bra99, Theorem 1.1].

3.5 Relation to equationally Noetherian groups

We here describe a result due to Groves and Hull [GH17, Theorem B] giving a criterion

for an acylindrically hyperbolic group to be equationally Noetherian. The methods

used in [GH17] are inspired by the work of Sela, who showed that free products of

equationally Noetherian groups [Sel10, Theorem 9.1] and torsion-free hyperbolic groups

[Sel09, Theorem 1.22] are equationally Noetherian.

In [GH17], an equivalent characterisation of equationally Noetherian groups is used,

defined as follows. Let ω be a non-principal ultrafilter on N – that is, a partition of

the power set of N into ‘ω-large’ and ‘ω-small’ subsets in such a way that each ω-

large subset is infinite, and the collection of ω-small subsets is closed under inclusions

and finite unions; existence of such an ω follows by the axiom of choice. Given a

collection of properties {P(i) | i ∈ N}, we say that P(i) holds ω-almost surely if the

subset {i ∈ N | P(i) holds} ⊆ N is ω-large. Given two groups G, H and a sequence of

homomorphisms (ϕi : H → G)∞i=0, we define the ω-kernel of (ϕi) to be

Hω = {h ∈ H | h ∈ ker(ϕi) ω-almost surely},
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which is easily seen to be a normal subgroup of H. We then have the following equivalent

characterisation of equationally Noetherian groups.

Theorem 3.18 (Groves–Hull [GH17, Theorem 3.5]). A group G is equationally Noethe-

rian if and only if for any finitely generated group H, any non-principal ultrafilter ω and

any sequence of homomorphisms ϕi : H → G, we have Hω ⊆ ker(ϕi) ω-almost surely.

This characterisation provides an easy proof that any finitely generated equationally

Noetherian group G must be hopfian – that is, any surjective homomorphism ϕ : G→ G

is an isomorphism. Indeed, if G is finitely generated and non-hopfian (thus admits

a surjective non-injective homomorphism ϕ : G → G), then by setting H = G and

ϕi = ϕi : G → G we see that {1} = ker(ϕ0) ( ker(ϕ1) ( ker(ϕ2) ( · · · and so

Hω =
⋃
j∈N ker(ϕj) * ker(ϕi) for any i ∈ N; it then follows from Theorem 3.18 that

G cannot be equationally Noetherian. Thus, for example, the Baumslag–Solitar group

BS(2, 3) = 〈a, t | t−1a2t = a3〉 is not equationally Noetherian.

To describe the relationship between acylindrically hyperbolic and equationally Noethe-

rian groups, we need the following definition.

Definition 3.19 (Divergent sequence of homomorphisms). Let G be a group acting on

a metric space (Y, d) by isometries, let H be a finitely generated group (with a finite

generating set S, say), and let ω be a non-principal ultrafilter. We say that a sequence

of homomorphisms (ϕi : H → G)∞i=0 is divergent with respect to G y Y if, for any

K ∈ N, we ω-almost surely have maxs∈S d(x, xϕi(s)) ≥ K for all x ∈ Y .

This allows us to state the main technical theorem of [GH17]. In particular, the following

theorem states that any sequence of homomorphisms ϕi : H → G as above can be

reduced to a non-divergent sequence (cf Theorem 3.18).

Theorem 3.20 (Groves–Hull [GH17, Theorem B]). Let G be a group that is not virtually

cyclic and acts on a hyperbolic metric space Y acylindrically with unbounded orbits.

Suppose that for any finitely generated group H, any non-principal ultrafilter ω and any

sequence of homomorphisms ϕi : H → G that is not divergent with respect to G y Y ,

we have Hω ⊆ ker(ϕi) ω-almost surely. Then G is equationally Noetherian.

We apply Theorem 3.20 in the case whenG = ΓG is a graph product over a finite graph Γ.

In particular, given H, ω and (ϕi) as above, using Theorem 3.20 and Corollary 3.14 we

are able to reduce to the case where H = ΓF for some collection F = {Fv | v ∈ V (Γ)}
of finitely generated groups and ϕi(Fv) ⊆ Γlink(v)Glink(v) for every i ∈ N and v ∈ V (Γ).

If Γ is triangle-free and square-free and if all groups in G are equationally Noetherian,

we are then able to deduce that in such a setting we have Hω ⊆ ker(ϕi) ω-almost surely.

In particular, we prove the following result.



Chapter 0 Background 33

Theorem 3.21 (Paper 3 [Val18a, Theorem E]). Let Γ be a finite simplicial triangle-

free and square-free graph, and let G = {Gv | v ∈ V (Γ)} be a collection of equationally

Noetherian groups. Then the graph product ΓG is equationally Noetherian.

We were not able to decide if the condition on Γ to be triangle-free and square-free in

Theorem 3.21 is necessary. In particular, the author is unaware of any graph products

of equationally Noetherian groups (over finite graphs) that can be shown not to be

equationally Noetherian.
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Paper 1

RATIONAL GROWTH AND DEGREE OF COMMUTATIVITY OF

GRAPH PRODUCTS

MOTIEJUS VALIUNAS

Abstract. Let G be an infinite group and let X be a finite generating set for G such

that the growth series of G with respect to X is a rational function; in this case G

is said to have rational growth with respect to X. In this paper a result on sizes of

spheres (or balls) in the Cayley graph Γ(G,X) is obtained: namely, the size of the

sphere of radius n is bounded above and below by positive constant multiples of nαλn

for some integer α ≥ 0 and some λ ≥ 1.

As an application of this result, a calculation of degree of commutativity (d. c.) is

provided: for a finite group F , its d. c. is defined as the probability that two randomly

chosen elements in F commute, and Antoĺın, Martino and Ventura have recently gen-

eralised this concept to all finitely generated groups. It has been conjectured that the

d. c. of a group G of exponential growth is zero. This paper verifies the conjecture

(for certain generating sets) when G is a right-angled Artin group or, more generally, a

graph product of groups of rational growth in which centralisers of non-trivial elements

are “uniformly small”.

1 Introduction

Let G be a group which has a finite generating set X. For any element g ∈ G, let

|g| = |g|X be the word length of g with respect to X. For any n ∈ Z≥0, let

BG,X(n) := {g ∈ G | |g|X ≤ n}

be the ball in G with respect to X of radius n, and let

SG,X(n) := {g ∈ G | |g|X = n}

be the sphere in G with respect to X of radius n. One writes BG(n) or B(n) for the

ball (and SG(n) or S(n) for the sphere) if the generating set or the group itself is clear.

A group G is said to have exponential growth if

lim inf
n→∞

log |BG,X(n)|
n

> 0 (1.1)

and subexponential growth otherwise; note that as there are at most (2|X|)n words over

X±1 of length n, the limit in (1.1) is finite, so the group cannot have ‘superexponential’

growth. A group G is said to have polynomial growth of degree d if

d := lim sup
n→∞

log |BG,X(n)|
log n

<∞

39
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and superpolynomial growth otherwise. It is well-known that having exponential growth

or polynomial growth of degree d is independent of the generating set X.

The pairs (G,X) as above considered in this paper will have some special properties. In

particular, consider the (spherical) growth series sG,X(t) of a finitely generated group

G with a finite generating set X, defined by

sG,X(t) =
∑
g∈G

t|g|X =
∞∑
n=0

|SG,X(n)|tn.

Cases of particular interest includes pairs (G,X) for which sG,X(t) is a rational function,

i.e. a ratio two polynomials; in this case G is said to have rational growth with respect

to X. In general, this property depends on the chosen generating set: for instance, the

higher Heisenberg group G = H2(Z) has two finite generating sets X1, X2 such that

sG,X1(t) is rational but sG,X2(t) is not [19].

Rational growth series implies some nice properties on the growth of a group. In par-

ticular, one can obtain the first main result of this paper:

Theorem 1. Let G be an infinite group with a finite generating set X such that sG,X(t)

is a rational function. Then there exist constants α ∈ Z≥0, λ ∈ [1,∞) and D > C > 0

such that

Cnαλn ≤ |SG,X(n)| ≤ Dnαλn

for all n ≥ 1.

Some of the ideas that go into the proof of Theorem 1 appear in the work of Stoll

[19], where asymptotics of ball sizes are used to show that the higher Heisenberg group

G = H2(Z) has a finite generating set X such that the series sG,X(t) is transcendental.

Remark 2. It is clear that, with the assumptions and notation as above, Theorem 1

implies

lim inf
n→∞

|SG,X(n)|
nαλn

≥ C > 0 and lim sup
n→∞

|SG,X(n)|
nαλn

≤ D <∞.

It is easy to check that the converse implication is also true. In particular, the conclusion

of Theorem 1 is equivalent to the statement that there exist α ∈ Z≥0 and λ ∈ [1,∞)

such that

lim inf
n→∞

|SG,X(n)|
nαλn

> 0 and lim sup
n→∞

|SG,X(n)|
nαλn

<∞.

Theorem 1 agrees with the result for hyperbolic groups. Indeed, it is known that if

G is a hyperbolic group and X is a finite generating set, then sG,X(t) is rational [14,

Theorem 8.5.N]. In this case the Theorem gives a weaker version of [8, Théorème 7.2],

which states that the conclusion of Theorem 1 holds with α = 0.
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As an application of Theorem 1 a calculation of degree of commutativity is provided.

For a finite group F , the degree of commutativity of F was defined by Erdős and Turán

[10] and Gustafson [15] as

dc(F ) :=
|{(x, y) ∈ F 2 | [x, y] = 1}|

|F |2
, (1.2)

i.e. the probability that two elements of F chosen uniformly at random commute. In

[1], Antoĺın, Martino and Ventura generalise this definition to infinite finitely generated

groups:

Definition 3. Let G be a finitely generated group and let X be a finite generating set

for G. The degree of commutativity for G with respect to X is

dcX(G) := lim sup
n→∞

|{(x, y) ∈ BG,X(n)2 | [x, y] = 1}|
|BG,X(n)|2

= lim sup
n→∞

∑
x∈BG,X(n) |CG(x) ∩BG,X(n)|

|BG,X(n)|2
,

where CG(x) is the centraliser of x in G.

Note that if G is finite then for any generating set X one has BG,X(N) = G for all

sufficiently large N , so this definition agrees with (1.2).

It is known that dcX(G) = 0 when G is either a non-virtually-abelian residually finite

group of subexponential growth [1, Theorem 1.3] or a non-elementary hyperbolic group

[1, Theorem 1.7], independently of the generating set X. It has been conjectured that

indeed dcX(G) = 0 whenever G has superpolynomial growth [1, Conjecture 1.6].

The interest of this paper is the degree of commutativity of graph products of groups.

Definition 4. Let Γ be a finite simple (undirected) graph, and let H : V (Γ)→ G be a

map from the vertex set of Γ to the category G of groups; suppose that H(v) � {1} for

each v ∈ V (Γ). Let

G̃(Γ,H) := ∗v∈V (Γ)H(v)

be a free product of groups, and let

R(Γ,H) := {[g, h] | g ∈ H(v), h ∈ H(w), {v, w} ∈ E(Γ)}.

Then the graph product associated with Γ and H is defined to be the group

G(Γ,H) := G̃(Γ,H)/〈〈R(Γ,H)〉〉G̃(Γ,H).

In particular, this is the construction of right-angled Artin (respectively Coxeter) groups

if H(v) ∼= Z (respectively H(v) ∼= C2) for all v ∈ Γ.
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This paper considers groups G which, together with their finite generating sets X, belong

to a certain class, defined as follows.

Definition 5. Say a pair (G,X) with a group G and a finite generating set X of G is

a rational pair with small centralisers if the following two conditions hold:

(i) sG,X(t) is a rational function;

(ii) there exist constants P, β ∈ Z≥1 such that |CG(g) ∩BG,X(n)| ≤ Pnβ for all n ≥ 1

and all non-trivial elements g ∈ G.

Note that condition (ii) is independent of the choice of a generating set X: indeed, as any

word metrics on G associated with generating sets X and X̂ are bi-Lipschitz equivalent,

the inequality |CG(g)∩BG,X(n)| ≤ Pnβ implies the inequality |CG(g)∩BG,X̂(n)| ≤ P̂ nβ

for some P̂ ∈ Z≥1 depending only on X̂ and P .

It was shown in [7] that, given a finite simple graph Γ with a group H(v) and a finite

generating set X(v) ⊆ H(v) associated to every vertex v ∈ V (Γ), if sH(v),X(v)(t) is

rational for each v ∈ V (Γ) then so is sG(Γ,H),X(Γ,H)(t), where X(Γ,H) =
⊔
v∈V (Γ)X(v).

If G(Γ,H) has exponential growth, then, together with an explicit form of centralisers

in G(Γ,H), described in [2], Theorem 1 can be used to compute the degree of commu-

tativity of G(Γ,H):

Theorem 6. Let Γ be a finite simple graph, and for each v ∈ V (Γ), let (H(v), X(v))

be a rational pair with small centralisers. Suppose that G(Γ,H) has exponential growth,

and let X =
⊔
v∈V (Γ)X(v). Then

dcX(G(Γ,H)) = 0.

Remark 7. Theorem 6 is enough to confirm [1, Conjecture 1.6] in this setting: that is,

either G = G(Γ,H) is virtually abelian, or dcX(G) = 0. Indeed, G(Γ,H) has subexpo-

nential growth if and only if all the H(v) have subexponential growth, the complement

ΓC of Γ contains no length 2 paths, and H(v) ∼= C2 for every non-isolated vertex v of ΓC .

In this case, rationality of sH(v),X(v)(t) implies that the H(v) all have polynomial growth

(by Theorem 1, for instance). Thus G(Γ,H) is a direct product of groups of polynomial

growth: namely, the group H(v) for each isolated vertex v of ΓC , and an infinite dihedral

group for each edge in ΓC . Consequently, G(Γ,H) itself has polynomial growth, and so

[1, Corollary 1.5] implies that either G(Γ,H) is virtually abelian, or dcX(G(Γ,H)) = 0.

Cases of particular interest of Theorem 6 include right-angled Artin groups and graph

products of finite groups. More generally, let us note two special cases of pairs of (G,X)

satisfying Definition 5:
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(i) Let G be virtually nilpotent, and X be a finite generating set with sG,X(t) rational:

in particular, this holds whenever G is virtually abelian [3] and for G = H1, the

integral Heisenberg group [9]. It was shown that by Wolf [20] that if G is virtually

nilpotent then it has polynomial growth (by Gromov’s Theorem [13], the converse

is also true), and so part (ii) of Definition 5 holds trivially by bounding growth of

centralisers by the growth of G itself.

(ii) Let G be a torsion-free hyperbolic group, and X be any finite generating set.

Cannon [6] and Gromov [14, Theorem 8.5.N] have shown that hyperbolic groups

have rational growth with respect to any generating set, and all infinite-order ele-

ments have virtually cyclic centralisers. Moreover, for any torsion-free hyperbolic

group G with a finite generating set X, there is a constant P > 0 such that

|CG(g) ∩ BG,X(n)| ≤ Pn for all n ≥ 1 and all non-trivial g ∈ G: see the proof of

Theorem 1.7 in [1] for details and references.

The paper is structured as follows. Section 2 applies to all infinite groups with rational

spherical growth series and is dedicated to a proof of Theorem 1. Section 3 is used to

prove Theorem 6.

Acknowledgements. The author would like to give special thanks to his Ph.D. super-

visor, Armando Martino, without whose help and guidance this paper would not have

been possible. He would also like to thank Yago Antoĺın, Charles Cox and Enric Ventura

for valuable discussions and advice, as well as Ashot Minasyan and anonymous referees

for their comments on this manuscript. Finally, the author would like to give credit to

Gerald Williams for a question which led to generalising a previous version of Theorem

6. The author was funded by EPSRC Studentship 1807335.

2 Groups with rational growth series

This section provides a proof of Theorem 1. Let G be an infinite group, and suppose that

the growth series of G with respect to a finite generating set X is a rational function.

In particular, the spherical growth series is

s(t) = sG,X(t) =
∞∑
n=0

S(n)tn =
p(t)

q(t)

where S(n) = SG(n) = SG,X(n) := |SG,X(n)|, and

q(t) = q0t
c
r∏
i=1

(1− λit)αi+1 and p(t) = p0t
c̃
r̃∏
i=1

(1− λ̃it)α̃i+1

are non-zero polynomials with no common roots (and so either c = 0 or c̃ = 0), with

αi, α̃i ∈ Z≥0 for all i. Since the series (S(n))∞n=0 grows at most exponentially, s(t) is
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analytic (and so continuous) at 0, hence one has

1 = S(0) = lim
t→0

s(t) =
p0

q0
lim
t→0

tc̃−c

and so c = c̃ and p0 = q0. Thus c = c̃ = 0 and, without loss of generality, q0 = p0 = 1.

Coefficients of such a series are described in [16, Lemma 1]; in particular, it follows that

S(n) =
r∑
i=1

αi∑
j=0

bi,jn
jλni (1.3)

for n large enough, with bi,αi 6= 0 for all i.

Now consider the terms of (1.3) that give a non-negligible contribution to S(n) for

large n. In particular, one may assume without loss of generality that

λ := |λ1| = |λ2| = · · · = |λk̃| > |λk̃+1| ≥ |λk̃+2| ≥ · · · ≥ |λr|

for some k̃ ≤ r and that

α := α1 = α2 = · · · = αk > αk+1 ≥ αk+2 ≥ · · · ≥ αk̃

for some k ≤ k̃. Note that one must have λ ≥ 1: otherwise the radius of convergence

of s(t) is λ−1 > 1 and so the series
∑

nS(n) converges, contradicting the fact that G is

infinite.

For n ∈ Z≥0, define

cn =
k∑
j=1

bj,α exp(iϕjn)

where λj = λ exp(iϕj) for some ϕj ∈ (−π, π], for 1 ≤ j ≤ k. It follows that

S(n) = nαλn(cn + o(1)) (1.4)

as n→∞. In particular, since S(n) ∈ (0,∞) ⊆ R for all n, it follows that

lim inf
n→∞

Re(cn) ≥ 0 and lim
n→∞

Im(cn) = 0. (1.5)

It is clear that

lim sup
n→∞

S(n)

nαλn
≤

k∑
j=1

|bj,α|,

which shows existence of the constant D in Theorem 1; in order to prove the Proposition,

it is enough to show that lim infn→∞S(n)/(nαλn) > 0. However, this bound does not

follow solely from the fact that s(t) is a rational function: see Example 12 (i) at the end

of this section.
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Remark 8. Clearly, for any n1, n2 ≥ 0, if g ∈ G has |g|X = n1 + n2 (respectively

|g|X ≤ n1 +n2), then one can write g = g1g2 where |gj |X = nj (respectively |gj |X ≤ nj)
for j ∈ {1, 2}. This gives injections S(n1 + n2) → S(n1) × S(n2) and B(n1 + n2) →
B(n1)×B(n2) by mapping g 7→ (g1, g2). In particular, it follows that

S(n1 + n2) ≤ S(n1)S(n2) and B(n1 + n2) ≤ B(n1)B(n2)

for any n1, n2 ∈ Z≥0. This property is called submultiplicativity of sphere and ball sizes

in G.

The aim is now to show that submultiplicativity of the sequence (S(n))∞n=0, together

with rationality of s(t), implies the conclusion of Theorem 1. As the bj,α are non-zero

and the ϕj are distinct, given (1.5) the following result seems highly likely:

Lemma 9. The numbers cn are real, and for some constant δ > 0, the set

Eδ := {n ∈ Z≥0 | cn ≥ δ}

is relatively dense in [0,∞), i.e. the inclusion Eδ ↪→ [0,∞) is a (1,K)-quasi-isometry

for some K ≥ 0.

However, the author has been unable to come up with a straightforward proof of Lemma

9 without using some additional theory on ‘quasi-periodicity’ of the sequence (cn)∞n=0.

Before giving a proof, let us deduce Theorem 1 from Lemma 9.

Assuming Lemma 9, one can find N ∈ Z≥1 such that for all n, there exists a constant

β = βn ∈ {0, . . . , N} such that cn+β ≥ δ. Define

R := max{λ−βS(β) | 0 ≤ β ≤ N},

and let M ∈ Z≥1 be such that for all n ≥M , one has

S(n) ≥ nαλn
(
cn −

δ

2

)
(such an M exists by (1.4)). Then submultiplicativity of sphere sizes implies that for

all n ≥M ,

δ

2
(n+ βn)αλn+βn ≤

(
cn+βn −

δ

2

)
(n+ βn)αλn+βn

≤ S(n+ βn) ≤ S(n)S(βn) ≤ S(n)Rλβn .

It follows that

S(n) ≥ δ

2R
(n+ βn)αλn ≥ δ

2R
nαλn
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for n ≥M , showing that

lim inf
n→∞

S(n)

nαλn
≥ δ

2R
> 0,

which shows existence of the constant C > 0 in Theorem 1. Thus in order to prove

Theorem 1 it is now enough to prove Lemma 9.

Proof of Lemma 9. To prove the Lemma, one may employ a digression into a certain

class of functions from R to C, called ‘uniformly almost periodic functions’. The theory

for these functions is presented in a book by Besicovitch [5].

Let f : R→ C be a function. Given ε > 0, define the set E(f, ε) ⊆ R to be the set of all

numbers τ ∈ R (called the translation numbers for f belonging to ε) such that

sup
x∈R
|f(x+ τ)− f(x)| ≤ ε.

The function f is said to be uniformly almost periodic (u. a. p.) if, for any ε > 0, the set

E(f, ε) is relatively dense in R, i.e. the inclusion E(f, ε) ↪→ R is a (1,K)-quasi-isometry

for some K ≥ 0. It is easy to see that any periodic function is u. a. p., and that every

continuous u. a. p. function is bounded.

Now note that the function

c : R→ C

t 7→
k∑
j=1

bj,α exp(iϕjt)

is a sum of continuous periodic functions, and so is a continuous u. a. p. function by [5,

Section 1.1, Theorem 12]. By definition, cn = c(n) for any n ∈ Z≥0.

The aim is to show that the function c̄ : t 7→ c(btc) is also u. a. p. For this, note that

c is everywhere differentiable and the derivative c′(t) is a sum of continuous periodic

functions, so is continuous and u. a. p. – in particular, it is bounded, by some R > 0,

say. For a given ε ∈ (0, R), set a constant M := ε/
(
2 sin

(
πε
2R

))
and define f : R→ R by

f(t) = M sin(πt). It is easy to check that

E
(
f,
ε

2

)
⊆
⋃
n∈Z

[
n− ε

2R
,n+

ε

2R

]
. (1.6)

For any τ ∈ R, define nτ =
⌊
τ + 1

2

⌋
∈ Z to be the nearest integer to τ . Pick τ ∈

E
(
f, ε2

)
∩E

(
c, ε2
)

– then |c(x+τ)−c(x)| ≤ ε
2 for all x ∈ R, and, by (1.6), |τ −nτ | ≤ ε

2R ,

so in particular |c(x + τ) − c(x + nτ )| ≤ ε
2 for all x ∈ R by the choice of R. Thus

|c(x+ nτ )− c(x)| ≤ ε for all x ∈ R, i.e. nτ ∈ E(c, ε).

But by [5, Section 1.1, Theorem 11], the set E
(
f, ε2

)
∩E

(
c, ε2
)

is relatively dense, hence
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(by the previous paragraph) so is the set E(c, ε) ∩ Z. However, for any n ∈ E(c, ε) ∩ Z
and any x ∈ R one has

|c̄(x+ n)− c̄(x)| = |c(bx+ nc)− c(bxc)| = |c(bxc+ n)− c(bxc)| ≤ ε

and so E(c, ε) ∩ Z ⊆ E(c̄, ε) ∩ Z. It follows that E(c̄, ε) ∩ Z is relatively dense (and so

the function c̄ : t 7→ c(btc) is u. a. p.).

Now recall that (1.5) provides constraints for limits of sequences (Re(cn)) and (Im(cn)):

namely,

lim inf
n→∞

Re(cn) ≥ 0 and lim
n→∞

Im(cn) = 0. (1.7)

It is easy to see that cn ∈ R≥0 for all n: indeed, if either Re(cn) = −δ < 0 or

| Im(cn)| = δ > 0 for some n then the fact that the set E(c̄, δ/2) ∩ Z is relatively dense

contradicts (1.7). Similarly, if cN > 0 for some N then the set E(c̄, δ)∩Z is a relatively

dense set contained in the set {n ∈ Z | c(n) ≥ δ}, where δ = cN/2. To prove Lemma 9

it is therefore enough to show that the sequence (cn)∞n=0 is not identically zero.

Now recall that the sequence (cn) is defined by

cn =
k∑
j=1

bj,α exp(iϕjn),

and suppose for contradiction that cn = 0 for all n ∈ Z≥0, and in particular for

0 ≤ n ≤ k − 1. This is the same as saying that Mv = 0, where

M =


1 1 · · · 1

exp(iϕ1) exp(iϕ2) · · · exp(iϕk)
...

...
. . .

...

exp(iϕ1)k−1 exp(iϕ2)k−1 · · · exp(iϕk)
k−1


and

v =


b1,α−1

b2,α−1

...

bk,α−1

 .

Thus M has a zero eigenvalue and so detM = 0. But M t is a Vandermonde matrix

with pairwise distinct rows, so detM 6= 0. This gives a contradiction which completes

the proof.

Remark 10. A stronger conclusion of Theorem 1 holds if in addition sG,X(t) is a positive

rational function, i.e. it is contained in the smallest sub-semiring of C(t) containing the

semiring Z≥0[t] and closed under quasi-inversion, f(t) 7→ (1 − f(t))−1 (for f(t) ∈ C(t)

with f(0) = 0). This is the case in particular if there exists a language L in (X ∪X−1)∗
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that is regular (i.e. recognised by a finite state automaton), the monoid homomorphism

Φ : L → G extending the inclusion X ∪X−1 ↪→ G is a bijection, and L consists only of

geodesic words in the Cayley graph of G with respect to X, i.e. the length of any word

l ∈ L is |Φ(l)|X . If sG,X(t) is a positive rational function, then the numbers ϕj above

are in fact rational multiples of π [4], and as a consequence the sequence (cn) is periodic.

However, the author has not been able to find a reason why the function sG,X(t), in case

it is rational, must also be positive. In particular, one can find pairs (G,X) such that

sG,X(t) is rational but there are no regular languages L as above, and one can even find

groups G such that this holds for (G,X) for any generating set X. For instance, it can

be shown that growth of the 2-step nilpotent Heisenberg group

G = H3 = 〈a, b, c | [a, b] = c, [a, c] = [b, c] = 1〉

is rational with respect to any generating set [9, Theorem 1], but there are no languages L
as above when G is a 2-step nilpotent group that is not virtually abelian [18, Corollary 3].

It is easy to check that the conclusion of Theorem 1 implies that

lim inf
n→∞

|BG,X(n)|
nα̂λn

> 0 and lim sup
n→∞

|BG,X(n)|
nα̂λn

<∞, (1.8)

where α̂ = α + 1 if λ = 1 and α̂ = α otherwise. Asymptotics similar to these have

been obtained for nilpotent groups, even without the condition on rational growth. In

particular, in [17] Pansu showed that given a nilpotent group G with a finite generating

set X, there exists α̂ ∈ Z≥0 such that
|BG,X(n)|

nα̂
→ C as n → ∞ for some C > 0.

Moreover, in [19] Stoll calculates the constant C for certain 2-step nilpotent groups

G explicitly to show that the corresponding growth series sG,X(t) cannot be rational.

However, in general – for groups that are not virtually nilpotent – one cannot expect

lim sup and lim inf in (1.8) to be equal, as the hyperbolic group C2 ∗ C3 shows: see [12,

§3].

Finally, note that the same proof indeed shows a more general result:

Theorem 11. Let (an)∞n=0 be a submultiplicative sequence of numbers in Z≥1 such that

s(t) =
∑
ant

n is a rational function. Then there exist constants α ∈ Z≥0, λ ∈ [1,∞)

and D > C > 0 such that for all n ≥ 1,

Cnαλn ≤ an ≤ Dnαλn.

The example below shows that both submultiplicativity and rationality are necessary

requirements.

Example 12. (i) Let

p(t) = 1 + 12t2 − 16t3



Paper 1 Rational growth and degree of commutativity 49

and

q(t) = (1− t)(1− 2t)(1− 2ωt)(1− 2ω̄t),

where ω is a 6th primitive root of unity. Let s(t), (an), λ, α and (cn) be as above.

Then λ = 2 and α = 0, and [16, Lemma 1] can be used to calculate

an = cn2n + 1

where

cn = 4− 2ωn − 2ω̄n =



0, n ≡ 0 (mod 6),

2, n ≡ ±1 (mod 6),

6, n ≡ ±2 (mod 6),

8, n ≡ 3 (mod 6).

But as cn = 0 for infinitely many values of n, one has

lim inf
n→∞

an/(n
αλn) = 0.

Note that in this case a7 = 257 > 5 = a1a6, so the sequence (an) is not submulti-

plicative.

(ii) For n ≥ 0, let an = 2b(n), where b(n) is the sum of digits in the binary representa-

tion of n. Then (an) is a submultiplicative sequence, but
∑
ant

n is not a rational

function. For each n ≥ 0, one has a2n−1 = 2n and a2n = 2. Thus

lim inf
n→∞

an
n
≤ lim inf

n→∞

2

2n
= 0

and

lim sup
n→∞

an ≥ lim sup
n→∞

2n =∞,

so (an) does not satisfy the conclusion of Theorem 11 for any λ ≥ 1 and α ∈ Z≥0.

3 Degree of commutativity

The aim of this section is to prove Theorem 6. For this, let Γ be a finite simple graph

and for each v ∈ V (Γ), let (H(v), X(v)) be a rational pair with small centralisers (see

Definition 5). To simplify notation, suppose in addition that the sets X(v) are symmetric

and do not contain the identity 1 ∈ H(v): clearly this does not affect the results. Suppose

in addition that G = G(Γ,H) is a group of exponential growth. One thus aims to show

that dcX(G) = 0, where X =
⊔
v∈V (Γ)X(v).
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3.1 Preliminaries

This subsection collects the terminology and preliminary results used in the proof of

Theorem 6.

Let `n : X∗ → Z≥0 be the normal form length function (n in `n stands for ‘normal’):

for w ∈ X∗, set `n(w) := m where m is the minimal integer for which w ≡ w1w2 · · ·wm
as words, where wi ∈ X(vi)

∗ for some vi ∈ V (Γ). Moreover, let `w : X∗ → Z≥0 be the

word length function (w in `w stands for ‘word’), i.e. let `w(w) be the number of letters

in w ∈ X∗.

The following result says that given any word w ∈ X∗ representing g ∈ G, there is a

simple algorithm to transform it into a word ŵ representing g with `n(ŵ) or `w(ŵ) small.

This follows quite easily from a result of Green [11].

Proposition 13. Let ` : X∗ → Z≥0 be either ` = `n or ` = `w. Let w ∈ X∗ be a word

representing an element g ∈ G, and let ŵ be a word representing g with (`(ŵ), `w(ŵ))

minimal (in the lexicographical ordering) among such words. Then ŵ can be obtained

from w by applying a sequence of moves of two types:

(i) for some wu ∈ X(u)∗ and wv ∈ X(v)∗ with {u, v} ∈ E(Γ), replacing a subword

wuwv with wvwu;

(ii) for some v ∈ V (Γ) and some subword w1 ∈ X(v)∗, replacing the subword w1 with

a word w0 ∈ X(v)∗ representing the same element in H(v), such that we have

`w(w0) ≤ `w(w1).

Proof. Suppose first that ` = `n, and let ŵ ≡ w1 · · ·wm, where wi ∈ X(vi)
∗ for some

vi ∈ V (Γ) and m = `n(w). In [11, Theorem 3.9], Green showed that by using moves

(i) and (ii) we can transform w into a word ŵ′ ≡ w′1 · · ·w′m where w′i ∈ X(vi)
∗ and

wi, w
′
i represent the same element of H(v). Notice that we have `w(wi) ≤ `w(w′i) for

each i: otherwise, existence of the word w1 · · ·wi−1w
′
iwi+1 · · ·wm would contradict the

minimality of ŵ. Thus a sequence of moves (ii) allows us to transform ŵ′ into ŵ, as

required.

Suppose now that ` = `w. Let ŵn ∈ X∗ be a word representing g with (`n(ŵn), `w(ŵn))

minimal among all such words. Then the result for ` = `n says that ŵ can be transformed

into ŵn by using the moves (i)–(ii). Notice that if w′ ∈ X∗ is obtained from w ∈ X∗

by applying move (i) or (ii), then `w(w′) ≤ `w(w), and if the equality holds then there

exists a move that transforms w′ back into w. By definition of ŵ, no moves strictly

decreasing the word length are used when transforming ŵ to ŵn, and so there exists a

sequence of moves transforming ŵn into ŵ as well. Thus we may apply moves (i)–(ii) to

obtain ŵn from w and subsequently ŵ from ŵn, as required.
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Note that it follows from the proof of Proposition 13 that minimal values of `n(w) and

`w(w) can be obtained simultaneously. This justifies the following:

Definition 14. For g ∈ G, define a normal form of g to be a word w ∈ X∗ with both

`n(w) and `w(w) minimal (so that `w(w) = |g|X). Write w = w1w2 · · ·wn for wi ∈ X,

and define the support of g as

supp(g) := {v ∈ V (Γ) | wi ∈ X(v) for some i};

by Proposition 13 this does not depend on the choice of w.

Now suppose for contradiction that dcX(G) > 0. That means that for some constant

ε > 0, one has ∑
g∈B(n)

|CG(g) ∩B(n)|
B(n)2

≥ ε (1.9)

for infinitely many values of n, where CG(g) denotes the centraliser of an element g ∈ G,

and B(n) = BG(n) = BG,X(n) := |BG,X(n)|.

In the proof certain conjugates of elements in G will be considered. In particular, let

g ∈ G, and pick a conjugate g̃ ∈ G of g such that g = p−1
g g̃pg with |g| = 2|pg|+ |g̃| and

such that |g̃| is minimal subject to this. If pg = 1, then g is called cyclically reduced ;

hence g̃ is cyclically reduced. Note that being cyclically reduced is a weaker condition

than being cyclically normal in the sense of [2].

For any subset A ⊆ V (Γ), let GA denote G(Γ(A),H|A), where Γ(A) is the full subgraph

of Γ spanned by A. These will be viewed as subgroups (called the special subgroups)

of G. One may also define the link of A to be

linkA = {u ∈ V (Γ) | (u, v) ∈ E(Γ) for all v ∈ A}.

Before carrying on with the proof, consider the sequence (dn)∞n=0 where

dn :=
|{(x, y) ∈ BG,X(n)2 | [x, y] = 1}|

BG,X(n)2
.

One aims to show that dn → 0 as n → ∞. Note that for many groups of exponential

growth, including all the non-elementary hyperbolic groups [1], the sequence (dn)∞n=0

converges to zero exponentially fast. However, the following example shows that this is

not always the case for graph products. The result of Theorem 6 may be therefore more

delicate than one might think.

Example 15. Suppose Γ is a complete bipartite graph Kk,k, i.e. Γ has vertex set

V (Γ) = {u1, . . . , uk, v1, . . . , vk}
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and edge set

E(Γ) = {{ui, vj} | 1 ≤ i, j ≤ k},

and let H(u) ∼= Z with generators X(u) = {xu, x−1
u } for each u ∈ V (Γ). In this case

one has G(Γ,H) ∼= Fk ×Fk (direct product of two free groups of rank k) and so one can

calculate sphere sizes in G(Γ,H) and its special subgroups easily. Note that clearly (by the

definition of link) every element of GA ≤ G commutes with every element of GlinkA ≤ G.

Now consider the case where A = {u1, . . . , uk} and so linkA = {v1, . . . , vk}. It follows

that

{(x, y) ∈ B(n)2 | [x, y] = 1} ⊇ BGA(n)×BGlinkA
(n).

An explicit computation shows that

BGA(n) = BGlinkA
(n) =

k(2k − 1)n − 1

k − 1

and

BG(n) =
2k2n(2k − 1)n

(k − 1)(2k − 1)
+ e1(2k − 1)n + e2

where e1 = e1(k) and e2 = e2(k) are some constants. It follows that

dn ≥
BGA(n)BGlinkA

(n)

BG(n)2
∼
(

2k − 1

2kn

)2

as n → ∞. In particular, the sequence (dn)∞n=0 converges to zero only at a polynomial

rate for G = G(Γ,H).

The proof of Theorem 6 is based on the fact that if (1.9) held for infinitely many n then

there would exist a subset A ⊆ V (Γ) such that the growth of both GA and GlinkA would

be comparable to that of G. More precisely, the outline of the proof is as follows:

(i) finding such a subset A ⊆ V (Γ) and showing that GA is not negligible in G, i.e.
BGA (n)

BG(n) 9 0 as n→∞ (subsection 3.2);

(ii) finding a collection H of subgroups of G having (uniformly) polynomial growth

such that, for all H ∈ H, GlinkA ×H is a subgroup of G and |(GlinkA×H)∩BG(n)|
BG(n) is

uniformly bounded below as n→∞ (subsection 3.3);

(iii) using the embedding GA × GlinkA ⊆ G and Theorem 1 to obtain a contradiction

(subsection 3.4).
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3.2 A non-negligible special subgroup

Note that (1.9) can be rewritten as

∑
A⊆V (Γ)

∑
g∈B(n)

supp(g̃)=A

|CG(g) ∩B(n)|
B(n)2

≥ ε (1.10)

and so (1.10) holds for infinitely many n. But as Γ is finite, there are only 2|V (Γ)| <∞
subsets of V (Γ), thus in particular there exists a subset A ⊆ V (Γ) such that

∑
g∈B(n)

supp(g̃)=A

|CG(g) ∩B(n)|
B(n)2

≥ 2−|V (Γ)|ε (1.11)

holds for infinitely many n. One may restrict the subset of elements g ∈ G considered

even further:

Lemma 16. There exist constants ε̃ > 0 and s ∈ Z≥0 such that

∑
g∈B(n)

supp(g̃)=A
|pg |≤s

|CG(g) ∩B(n)|
B(n)2

≥ ε̃

for infinitely many n.

Proof. As G has rational spherical growth series by [7], Theorem 1 says that there exist

constants α ∈ Z≥0, λ ≥ 1, C = CG > 0 and D = DG > C such that

Cnαλn ≤ S(n) ≤ Dnαλn (1.12)

for all n ≥ 1. As it is also assumed that G has exponential growth, one has λ > 1. It is

easy to show that in this case

Cnαλn < B(n) <
Dλ

λ− 1
nαλn (1.13)

for all n ≥ 1.

Now one can bound the number of terms in (1.11) corresponding to elements g ∈ G with

|pg| large (even without requiring supp(g̃) = A). Indeed, as any g ∈ G can be written



54 Paper 1 Rational growth and degree of commutativity

as g = p−1
g g̃pg with |g| = 2|pg|+ |g̃|, (1.12) and (1.13) imply

1

B(n)

∑
g∈B(n)
|pg |>s

|CG(g) ∩B(n)|
B(n)

≤ |{g ∈ B(n) | |pg| > s}|
B(n)

≤
bn2 c∑
i=s+1

S(i)B(n− 2i)

B(n)

≤ D

C

(
1

2

)α
λ−

n
2 +

D2λ

C(λ− 1)

bn−1
2 c∑

i=s+1

(
i(n− 2i)

n

)α
λ−i.

(1.14)

The first term of the sum above clearly tends to zero as n→∞, and the second term is

bounded above by the infinite sum
∑∞

i=s+1 i
αλ−i, which tends to zero as s → ∞ since

the series
∑

i i
αλ−i converges. Hence there exists a value of s ∈ Z≥0 which ensures that

the right hand side in (1.14) is less than 2−|V (Γ)|−1ε for n large enough. This means that

∑
g∈B(n)

supp(g̃)=A
|pg |≤s

|CG(g) ∩B(n)|
B(n)2

≥ 2−|V (Γ)|−1ε

for infinitely many n, so setting ε̃ := 2−|V (Γ)|−1ε completes the proof.

Now note that one may write

∑
g∈B(n)

supp(g̃)=A
|pg |≤s

|CG(g) ∩B(n)|
B(n)2

≤ |{g ∈ B(n) | supp(g̃) = A, |pg| ≤ s}|
B(n)

×max

{
|CG(g) ∩B(n)|

B(n)

∣∣∣∣ g ∈ B(n), supp(g̃) = A, |pg| ≤ s
}

where both terms in the product are bounded above by 1. It follows by Lemma 16 that

both
|{g ∈ B(n) | supp(g̃) = A, |pg| ≤ s}|

B(n)
≥ ε̃ (∗)

and

max

{
|CG(g) ∩B(n)|

B(n)

∣∣∣∣ g ∈ B(n), supp(g̃) = A, |pg| ≤ s
}
≥ ε̃ (†)

hold for infinitely many n.

The aim is now to show that (∗) and (†) imply that the special subgroups GA and GlinkA

(respectively) are non-negligible in G. For the latter, one may consider explicit forms

of centralisers of G: see the next subsection. For the former, note that the set in the

numerator consists of elements g ∈ BG(n) which have an expression g = p−1
g g̃pg with

pg ∈ BG(s) and g̃ ∈ BGA(n). It follows that

|{g ∈ B(n) | supp(g̃) = A, |pg| ≤ s}| ≤ BG(s)BGA(n)
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and so (∗) implies that
ε̃

BG(s)
≤ BGA(n)

BG(n)
≤ 1 (∗∗)

for infinitely many n, where the second inequality comes from the fact that BGA(n) ⊆
BG(n).

3.3 Centralisers in G

In order to use (†), one needs to consider forms of centralisers of elements g ∈ G with

supp(g̃) = A. Fix an element g ∈ G with supp(g̃) = A and note that one clearly has

CG(g) = p−1
g CG(g̃)pg, so if |pg| ≤ s then one has

|CG(g) ∩B(n)| ≤ |CG(g̃) ∩B(n+ 2s)|. (1.15)

In particular, it follows from (†) that for infinitely many n, there exists an element

g ∈ B(n) with supp(g̃) = A and |pg| ≤ s such that

ε̃ ≤ |CG(g̃) ∩BG(n+ 2s)|
BG(n)

≤ BG(2s); (††)

here the second inequality comes from the fact that |CG(g̃)∩B(n+ 2s)| ≤ B(n+ 2s) ≤
B(n)B(2s).

Now define an element g ∈ G to be cyclically normal (in the sense of [2]) if either

`n(g) ≤ 1, or n := `n(g) ≥ 2 and for any normal form w = w1 · · ·wn ∈ X∗ of g, where

wi ∈ X(vi)
∗ for some vi ∈ V (Γ), one has v1 6= vn. Then one has

Lemma 17. For any g ∈ G with supp(g̃) = A, there exists an element p̃g ∈ GA such

that ĝ := p̃g g̃p̃
−1
g is cyclically normal and supp(ĝ) = A.

Proof. If `n(g̃) ≤ 1 then p̃g = 1 does the job. Thus suppose that n := `n(g̃) ≥ 2. Let

E(g̃) := {g0 | w = w1 · · ·wn ∈ X∗ is a normal form for g̃ where

wi ∈ X(vi)
∗ for some vi ∈ V (Γ), and wn represents g0}

be a finite subset of GA. By Proposition 13, any two elements in E(g̃) commute, and so,

for any two distinct elements g1 ∈ H(v1) and g2 ∈ H(v2) of E(g̃), one has v1 6= v2. Now

define p̃g :=
∏
gn∈E(g̃) gn. Then p̃g ∈ GA, and following the proof of [2, Lemma 23] one

can see that ĝ := p̃g g̃p̃
−1
g is cyclically normal. Since supp(p̃g) ⊆ A and supp(g̃) = A, it

is clear that supp(ĝ) ⊆ A. It also follows by [2, Lemma 18] that supp(ĝ)∪ supp(p̃g) ⊇ A.

Thus one only needs to check that supp(p̃g) ⊆ supp(ĝ).

Suppose for contradiction that there exists some vertex v ∈ supp(p̃g) \ supp(ĝ), and

let gv ∈ E(g̃) ∩H(v) be the (unique) element. It is easy to see that v /∈ link(A \ {v}):
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otherwise any normal form of ĝ would contain a subword in X(v)∗ representing gv

and so v ∈ supp(ĝ). Then, following again the proof of [2, Lemma 23], one has

ñ := `n(gv g̃g
−1
v ) ≤ n− 1, with ñ = n− 1 if and only if g̃ has no normal form w1 · · ·wn,

where wi ∈ X(vi)
∗ for some vi ∈ V (Γ), with w1 and wn representing g−1

v and gv,

respectively. Thus, by minimality of |g̃|, clearly ñ = n − 1; but this cannot happen

by [2, Lemma 18], since by assumption v /∈ supp(ĝ). Hence supp(p̃g) ⊆ supp(ĝ), as

required.

The following Proposition describes growth of centralisers in G.

Proposition 18. Let g, g̃ ∈ G and A ⊆ V (Γ) be as above. Then

CG(g̃) = H1 × · · · ×Hk ×GlinkA

for some subgroups H1, . . . ,Hk ≤ G, and the following hold:

(i) for any h1 ∈ H1, . . . , hk ∈ Hk and c ∈ GlinkA,

|h1 · · ·hkc|X = |h1|X + · · ·+ |hk|X + |c|X ;

(ii) there exist constants D1, . . . , Dk, α1, . . . , αk ∈ Z≥1 such that

|Hi ∩BG,X(n)| ≤ Din
αi

for all n ≥ 1.

Furthermore, the number k ∈ Z≥1, the Di and the αi only depend on A and not on g.

Proof. Let A1, . . . , Ak ⊆ A form a partition of A such that the graphs Γ(Ai)
C are pre-

cisely the connected components of the graph Γ(A)C , where ∆C denotes the complement

of a graph ∆. Let p̃g, ĝ ∈ GA be as in Lemma 17. Then supp(ĝ) = A and so ĝ can be

expressed as

ĝ = ĝ1 · · · ĝk

where supp(ĝi) = Ai.

Now suppose without loss of generality that for some m, the sets Ai = {vi} are singletons

for 1 ≤ i ≤ m, and |Ai| ≥ 2 for m + 1 ≤ i ≤ k. Then Proposition 25, Theorem 32 and

Theorem 52 in [2] state that the centraliser of ĝ in G is

CG(ĝ) = CH(v1)(ĝ1)× · · · × CH(vm)(ĝm)× 〈hm+1〉 × · · · × 〈hk〉 ×GlinkA

where hm+1, . . . , hk ∈ G are some infinite order elements with supp(hi) = Ai (in fact,

one has ĝi = hβii for some βi ∈ Z \ {0}).
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In particular, since p̃g ∈ GA, one has p̃g = p1 · · · pk for some pi ∈ GAi . Thus one has

p̃−1
g qip̃g = p−1

i qipi for any qi ∈ GAi , and p̃−1
g (GlinkA)p̃g = GlinkA, hence

CG(g̃) = p̃−1
g CG(ĝ)p̃g = CH(v1)(g̃1)× · · · × CH(vm)(g̃m)

× 〈g̃m+1〉 × · · · × 〈g̃k〉 ×GlinkA

where g̃i := p−1
i ĝipi for 1 ≤ i ≤ m, and g̃i := p−1

i hipi for m + 1 ≤ i ≤ k. Therefore, by

setting Hi := CH(vi)(g̃i) for 1 ≤ i ≤ m and Hi := 〈g̃i〉 ∼= Z for m+ 1 ≤ i ≤ k one obtains

the required expression. By construction, k depends only on A (and not on g).

To show (i), it is enough to note that Hi ≤ GAi for each i, and that by construction

the subsets Ai are pairwise disjoint and disjoint from linkA. Indeed, then it follows

from Proposition 13 that if wi (respectively u) is a normal form for an element hi ∈ GAi
(respectively c ∈ GlinkA), then w1 · · ·wku is a normal form for the element h1 · · ·hkc.
This implies (i).

To show (ii) and the last part of the Proposition, one may consider cases 1 ≤ i ≤ m and

m + 1 ≤ i ≤ k separately. For 1 ≤ i ≤ m, note that, as a consequence of Proposition

13, |h|X = |h|X(vi) for all h ∈ Hi, and therefore |Hi ∩ BG,X(n)| = |Hi ∩ BH(vi),X(vi)(n)|
for all n ≥ 1. Thus, (ii) follows from the facts that g̃i 6= 1 and that (H(vi), X(vi)) is a

rational pair with small centralisers; it also follows that Di, αi do not depend on g. For

m+1 ≤ i ≤ k, it follows from the proof of [2, Lemma 37] that since ĝi is cyclically normal

and since Γ(supp(ĝi))
C = Γ(Ai)

C is connected, one has `n(g̃γi ) ≥ `n(ĝγi ) = |γ|`n(ĝi) for

all γ ∈ Z. In particular, |g̃γi |X ≥ `n(g̃γi ) ≥ |γ| for any γ ∈ Z and so |Hi ∩ BG,X(n)| ≤
2n+ 1 ≤ 3n for all n ≥ 1. Thus taking Di = 3 and αi = 1 shows (ii); independence from

g is clear.

3.4 Products of special subgroups

To finalise the proof, one employs the following general result:

Lemma 19. Let G be a group with a finite generating set X. Let H,K ≤ G be subgroups

such that H × K is also a subgroup of G, i.e. the map H × K → G, (h, k) 7→ hk is

an injective group homomorphism. Suppose that there exist constants αH , αK ∈ Z≥0,

λH , λK ∈ [1,∞) and D > C ≥ 0 such that

CnαHλnH ≤ |H ∩ SG,X(n)| ≤ DnαHλnH
and CnαKλnK ≤ |K ∩ SG,X(n)| ≤ DnαKλnK

for all n ≥ 1. Furthermore, suppose that |hk|X = |h|X + |k|X for all h ∈ H(n), k ∈ K(n),

and that λH ≥ λK . If λH > λK , then there exists some D̃ = D̃(D,αH , αK , λH , λK) > 0,



58 Paper 1 Rational growth and degree of commutativity

which does not depend on H or K, such that

|(H ×K) ∩ SG,X(n)| ≤ D̃nαHλnH

for all n ≥ 1. Furthermore, if λH = λK and C > 0, then no such constant D̃ exists.

Proof. Suppose first that λH > λK . Clearly it is enough to show that

lim sup
n→∞

|(H ×K) ∩ SG,X(n)|
nαHλnH

<∞.

Fix n ≥ 1. As |hk|X = |h|X + |k|X for any h ∈ H, k ∈ K, one has

|(H ×K) ∩ SG,X(n)|
nαHλnH

=
1

nαHλnH

n∑
i=0

|H ∩ SG,X(n− i)| × |K ∩ SG,X(i)|

≤ D2

(
1 +

n−1∑
i=1

(
λK
λH

)i(n− i
n

)αH
iαK +

(
λK
λH

)n
nαK−αH

)
.

As λK/λH < 1, limits of the first and third term above as n → ∞ are D2 and 0,

respectively. The second term can be bounded above by an upper bound for the se-

ries D2
∑

i(λK/λH)iiαK , which converges by the ratio test. Hence one indeed has

lim supn→∞ |(H × K) ∩ SG,X(n)|/(nαHλnH) < ∞, which implies the result. It is also

clear from the inequality above that D̃ depends only on D, αH , αK , λH and λK .

Conversely, suppose that C > 0 and λH = λK =: λ. Let n ≥ 20, so that d
√
ne ≤ n/4.

Then

|(H ×K) ∩ SG,X(n)|
nαHλn

=
1

nαHλn

n∑
i=0

|H ∩ SG,X(n− i)| × |K ∩ SG,X(i)|

≥ C2
n−1∑
i=1

(
n− i
n

)αH
iαK ≥ C2

bn/2c∑
i=d
√
ne

(
1

2

)αH
(
√
n)αK

≥ C22−(αH+2)n
αK
2

+1.

In particular, one has |(H × K) ∩ SG,X(n)|/(nαHλnH) → ∞ as n → ∞, implying the

result.

Given this Lemma, the proof can be finalised as follows. Recall (see (1.12) and (1.13))

that one has constants α ∈ Z≥0, λ > 1 and DV (Γ) > CV (Γ) > 0 such that

CV (Γ)n
αλn ≤ SG(n) ≤ DV (Γ)n

αλn

and CV (Γ)n
αλn < BG(n) <

DV (Γ)λ

λ− 1
nαλn

(1.16)
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for all n ≥ 1. Now (∗∗) implies that, for infinitely many n,

C̃An
αλn ≤ BGA(n) ≤ D̃An

αλn (1.17)

for some D̃A > C̃A > 0. But as GA has rational growth with respect to
⊔
v∈AX(v),

it follows from Theorem 1 that in fact, after modifying the constants D̃A and C̃A if

necessary, (1.17) holds for all n ≥ 1, and since λ > 1, after further modifying C̃A, one

has

C̃An
αλn ≤ SGA(n) ≤ D̃An

αλn (∗∗∗)

for all n ≥ 1.

Moreover, (††) implies that for infinitely many n ≥ 2s + 1 there exists g ∈ B(n) such

that

C̃ ′(n− 2s)αλn−2s ≤ |CG(g̃) ∩BG,X(n)| ≤ D̃′(n− 2s)αλn−2s

for some D̃′ > C̃ ′ > 0. After decreasing the constant C̃ ′ > 0 if necessary, one may

therefore assume that, for infinitely many n,

C̃ ′nαλn ≤ |CG(g̃) ∩BG,X(n)| ≤ D̃′nαλn (1.18)

for some g ∈ B(n) with supp(g̃) = A and |pg| ≤ s.

Note that GlinkA has rational growth with respect to
⊔
v∈linkAX(v) as it is a special

subgroup of G, and so by Theorem 1 it follows that, for all n ≥ 1,

C̃linkAn
α0λn0 ≤ SGlinkA

(n) ≤ D̃linkAn
α0λn0 (1.19)

for some D̃linkA > C̃linkA > 0 and some α0 ∈ Z≥0, λ0 ≥ 1.

One may now show that (λ0, α0) = (λ, α). Indeed, as SGlinkA
(n) ⊆ SG(n), it follows

from (1.16) that either λ0 < λ or λ0 = λ and α0 ≤ α. Let g ∈ G be such that

supp(g̃) = A for all n. By Proposition 18, one has an expression

CG(g̃) = H1 × · · · ×Hk ×GlinkA.

One now applies Lemma 19 k times. In particular, for each i = k, k − 1, . . . , 1 in order,

it follows from Proposition 18 that Lemma 19 can be applied for

H := Hi+1 × · · · ×Hk ×GlinkA,

K := Hi,
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(αH , λH) :=

(α0, λ0) if λ0 > 1,

(0, λ+1
2 ) if λ0 = 1,

(αK , λK) :=

(
0,
λH + 1

2

)
,

C := 0,

and D = Di := max{D̃i, D̃
′
i}.

Here D̃′i > 0 is such that Din
αi ≤ D̃′iλ

n
K for each n ≥ 1, where Di and αi are as

in Proposition 18, D̃k is such that SGlinkA
(n) ≤ D̃kn

αHλnH for all n ≥ 1, and, for each

i = k−1, k−2, . . . , 1, D̃i = D̃(Di+1, αH , αK , λH , λK) is the constant given by Lemma 19.

It then follows that, for all g ∈ G with supp(g̃) = A and |pg| ≤ s,

|CG(g̃) ∩ SG,X(n)| ≤ D̃nαHλnH (1.20)

for all n ≥ 1, where D̃ = D̃(D1, αH , αK , λH , λK) is the constant, independent from g,

given by Lemma 19. Since λH > 1, by further increasing D̃ we may replace SG,X(n)

with BG,X(n) in (1.20). But by construction, one has either λH < λ or λH = λ and

αH ≤ α, and so together with (1.18) this implies that (λH , αH) = (λ, α). Thus, by the

choice of (λH , αH), one has (λ0, α0) = (λ, α), as claimed. In particular, (1.19) can be

rewritten as

C̃linkAn
αλn ≤ SGlinkA

(n) ≤ D̃linkAn
αλn. (†††)

Finally, note that the group GA∪linkA = GA ×GlinkA is a special subgroup of G and so

one has SGA∪linkA(n) ⊆ SG(n). It then follows from (∗∗∗), (†††) and the last sentence

in Lemma 19 that for any D̃ > 0 one has

SG(n) ≥ SGA∪linkA(n) > D̃nαλn

for some n, which contradicts (1.16). This completes the proof of Theorem 6.
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PROBABILISTIC NILPOTENCE IN INFINITE GROUPS

ARMANDO MARTINO, MATTHEW C. H. TOINTON, MOTIEJUS VALIUNAS,

AND ENRIC VENTURA

Abstract.The ‘degree of k-step nilpotence’ of a finite group G is the proportion of

the tuples (x1, . . . , xk+1) ∈ Gk+1 for which the simple commutator [x1, . . . , xk+1] is

equal to the identity. In this paper we study versions of this for an infinite group G,

with the degree of nilpotence defined by sampling G in various natural ways, such as

with a random walk, or with a Følner sequence if G is amenable. In our first main

result we show that if G is finitely generated then the degree of k-step nilpotence is

positive if and only if G is virtually k-step nilpotent (Theorem 1.8). This generalises

both an earlier result of the second author treating the case k = 1 and a result of

Shalev for finite groups, and uses techniques from both of these earlier results. We

also show, using the notion of polynomial mappings of groups developed by Leibman

and others, that to a large extent the degree of nilpotence does not depend on the

method of sampling (Theorem 1.16). As part of our argument we generalise a result

of Leibman by showing that if ϕ is a polynomial mapping into a torsion-free nilpotent

group then the set of roots of ϕ is sparse in a certain sense (Theorem 1.29). In our

second main result we consider the case where G is residually finite but not necessarily

finitely generated. Here we show that if the degree of k-step nilpotence of the finite

quotients of G is uniformly bounded from below then G is virtually k-step nilpotent

(Theorem 1.31), answering a question of Shalev. As part of our proof we show that

degree of nilpotence of finite groups is sub-multiplicative with respect to quotients

(Theorem 1.32), generalising a result of Gallagher.

1 Introduction

If two elements x, y are chosen independently uniformly at random from a finite group G,

we define the probability that they commute to be the commuting probability or degree

of commutativity of G, and denote it by dc(G). Peter Neumann proved the following

structure theorem for groups with a high degree of commutativity.

Theorem 1.1 (P. M. Neumann [19, Theorem 1]). Let G be a finite group such that

dc(G) ≥ α > 0. Then G has a normal subgroup Γ of index at most α−1 + 1 and a

normal subgroup H of cardinality at most exp(O(α−O(1))) such that H ⊂ Γ and Γ/H is

abelian.

There are many natural ways in which one might seek to generalise this result. Here

we seek to generalise it in two ways. The first is to higher-degree commutators. Given

elements xi in a group G, we define the simple commutators [x1, . . . , xk] inductively

by setting [x1, x2] = x−1
1 x−1

2 x1x2 and setting [x1, . . . , xk] = [[x1, . . . , xk−1], xk]. If G is

63
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finite, we define dck(G) to be the probability that [x1, . . . , xk+1] = 1 if x1, . . . xk+1 are

chosen independently uniformly at random from G.

Shalev [20] recently considered higher-order commutators in residually finite groups,

proving the following results.

Theorem 1.2 (Shalev; see the proof of [20, Theorem 1.1]). Let G be a finite group of

rank at most r, and let k ∈ N. Suppose that dck(G) ≥ α > 0. Then G has a k-step

nilpotent subgroup of index at most Or,k,α(1).

Corollary 1.3 (Shalev [20, Theorem 1.1]). Let G be a finitely generated residually

finite group of rank at most r, and let k ∈ N. Suppose that dck(G/H) ≥ α > 0 for every

finite-index normal subgroup H of G. Then G has a k-step nilpotent subgroup of index

at most Or,k,α(1).

The second way in which we seek to generalise results of this type is by considering

groups that are not necessarily finite or even residually finite. The first question in this

setting is how to define the probability that two group elements commute. In [1] Antoĺın

and the first and fourth authors approach this issue by considering sequences of finitely

supported probability measures whose supports converge to the whole of G. Given a

probability measure µ on G, define the degree of commutativity dcµ(G) of G with respect

to µ via

dcµ(G) = µ({(x, y) ∈ G×G : xy = yx})

(here, and throughout, we abuse notation slightly by writing µ(X) for (µ× · · · × µ)(X)

when X ⊂ Gk). Then, given a sequence M = (µn)∞n=1 of probability measures on G,

define the degree of commutativity dcM (G) of G with respect to M via

dcM (G) = lim sup
n→∞

dcµn(G).

Here we extend this notion to more general equations. For each k ∈ N, write Fk for the

free group on k generators, denoted x1, . . . , xk.

Definition 1.4. Let G be a group.

(i) An equation in k variables over G is a word ϕ ∈ Fk ∗G. Abusing notation slightly,

we may view ϕ as a function Gk → G by defining ϕ(g1, . . . , gk) to be the element

of G resulting from replacing each instance of xi in the word ϕ by gi.

(ii) Given a probability measure µ on G and an equation ϕ in k variables over G,

define the degree of satisfiability dϕµ(G) of ϕ in G with respect to µ via

dϕµ(G) = µ({(g1, . . . , gk) ∈ Gk | ϕ(g1, . . . , gk) = 1}).
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Then, given a sequence M = (µn)∞n=1 of probability measures on G, define the

degree of satisfiability dϕM (G) of ϕ in G with respect to M via

dϕM (G) = lim sup
n→∞

dϕµn(G).

When G is finite and µ is the uniform probability measure on G we write simply

dϕ(G) = dϕµ(G).

In particular, if c = [x1, x2] ∈ F2 is a commutator, then we obtain the usual definitions

of dcµ(G) and dcM (G), as above. More generally, here and throughout we denote by c(k)

the (k+1)-fold simple commutator, c(k) = [x1, . . . , xk+1] ∈ Fk+1, so that c = c(1). We call

the resulting number dckµ(G) (respectively dckM (G)) the degree of k-nilpotence of G with

respect to µ (respectively M). For notational convenience in the inductive proof of The-

orem 1.8, below, we also define c(0) = x1 ∈ F1, so that dc0
M (G) = lim supn→∞ µn({1}).

In [1] Antoĺın and the first and fourth authors suggest that for any ‘reasonable’ sequence

M = (µn)∞n=1 of probability measures on G we should have dckM (G) > 0 if and only if G

is virtually k-step nilpotent. They further suggest that ‘reasonable’ might mean that the

measures µn cover G with ‘enough homogeneity’ as n→∞. A specific example they give

of what should be a ‘reasonable’ sequence is where µ is some finite probability measure

on G, and µn = µ∗n is defined by letting µ∗n(x) be the probability that a random walk of

length n on G with respect to µ ends at x. If G is amenable, another natural sequence

of measures to consider is the sequence of uniform probability measures on a Følner

sequence, or more generally an almost-invariant sequence of measures, which is to say a

sequence (µn)∞n=1 of probability measures satisfying

‖x · µn − µn‖1 → 0

for every x ∈ G (here x · µ is defined by setting x · µ(A) = µ(x−1A)).

In [21] the second author gave some fairly general conditions on a sequence (µn)∞n=1 of

measures under which such a theorem holds in the case k = 1. Two specific cases of this

are as follows.

Theorem 1.5 ([21, Theorems 1.13–1.15]). Let G be a finitely generated group. Suppose

that either

(i) µ is a symmetric, finitely supported generating probability measure on G with

µ({1}) > 0, and M = (µ∗n)∞n=1 is the sequence of measures corresponding to

the steps of the random walk on G with respect to µ; or

(ii) G is amenable and M = (µn)∞n=1 is an almost-invariant sequence of probability

measures on G.
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Suppose that dcM (G) ≥ α > 0. Then G has a normal subgroup Γ of index at most

dα−1e and a normal subgroup H of cardinality at most exp(O(α−O(1))) such that H ⊂ Γ

and Γ/H is abelian. In particular, if the rank of G is at most r then G has an abelian

subgroup of index at most Or,α(1).

One of the main aims of [21] was to provide a concrete but more-general set of hypotheses

on M under which Theorem 1.5 holds. This led to the following definitions.

Definition 1.6 (Uniform detection of index). Let π : (0, 1]→ (0, 1] be a non-decreasing

function such that π(γ)→ 0 as γ → 0. We say that a sequence M = (µn)∞n=1 of proba-

bility measures on a group G detects index uniformly at rate π if for every ε > 0 there

exists N = N(ε) ∈ N such that for every m ∈ N if [G : H] ≥ m then µn(H) ≤ π( 1
m) + ε

for every n ≥ N . We also say simply that M detects index uniformly to mean that there

exists some π such that M detects index uniformly at rate π.

The word ‘uniform’ in Definition 1.6 refers to the requirement that the definition be

satisfied by the same N(ε) for all subgroups H.

Definition 1.7 (Uniform measurement of index). We say that a sequence M = (µn)∞n=1

of probability measures on a group G measures index uniformly if µn(xH)→ 1/[G : H]

uniformly over all x ∈ G and all subgroups H of G (here we define 1/[G : H] = 0 if

[G : H] =∞).

Note that if a sequence of probability measures on a group measures index uniformly

then it also detects index uniformly with rate ι : (0, 1]→ (0, 1] defined by ι(x) = x.

The second author shows in [21, Theorems 1.13 & 1.14] that on a finitely generated group

every sequence of measures corresponding to the steps of a random walk measures index

uniformly, as does every almost-invariant sequence of measures. This is a key ingredient

in the proof of Theorem 1.5.

In the present paper we combine Shalev’s techniques with those of [21] to generalise

Theorem 1.2 similarly to arbitrary finitely generated groups, as follows.

Theorem 1.8. Let G be a finitely generated group of rank at most r, and let M =

(µn)∞n=1 be a sequence of measures that detects index uniformly at rate π. Suppose that

dckM (G) ≥ α > 0. Then G has a k-step nilpotent subgroup of index at most Or,k,π,α(1).

The following specific cases of interest of Theorem 1.8 then follow from [21, Theorems

1.13 & 1.14].

Theorem 1.9. Let G be a finitely generated group of rank at most r, and let k ∈ N.

Suppose that either
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(i) µ is a symmetric, finitely supported generating probability measure on G with

µ({1}) > 0, and M = (µ∗n)∞n=1 is the sequence of measures corresponding to

the steps of the random walk on G with respect to µ; or

(ii) G is amenable and M = (µn)∞n=1 is an almost-invariant sequence of probability

measures on G.

Suppose that dckM (G) ≥ α > 0. Then G has a k-step nilpotent subgroup of index at

most Or,k,α(1).

We prove Theorem 1.8 in Section 3.

Shalev actually proves a slightly more general result than Theorem 1.2. Given a finite

group G and an element g ∈ G, write

P k(G, g) = µ({(x1, . . . , xk+1) ∈ Gk+1 : [x1, . . . , xk+1] = g}),

noting that dck(G) = P k(G, 1). What Shalev shows is that Theorem 1.2 remains true

if the assumption that dck(G) ≥ α > 0 is replaced by the weaker assumption that

P k(G, g) ≥ α > 0 for some g ∈ G.

We can adapt the statement of Theorem 1.8 similarly. First, given a probability measure

µ on a group G, define

P kµ (G, g) = µ({(x1, . . . , xk+1) ∈ Gk+1 : [x1, . . . , xk+1] = g}).

Then, given a sequence M = (µn)∞n=1 of probability measures on G, define

P kM (G, g) = lim sup
n→∞

P kµn(G, g).

Proposition 1.10. Let G be a group, and let M = (µn)∞n=1 be a sequence of proba-

bility measures on G that measures index uniformly. Then P kM (G, 1) ≥ P kM (G, g) for

every g ∈ G.

Combined with Theorem 1.8 this immediately gives the following.

Corollary 1.11. Let G be a finitely generated group of rank at most r, and let M =

(µn)∞n=1 be a sequence of measures that measures index uniformly on G. Let g ∈ G, and

suppose that P kM (G, g) ≥ α > 0. Then G has a k-step nilpotent subgroup of index at

most Or,k,α(1).

We prove Proposition 1.10 in Section 3.



68 Paper 2 Probabilistic nilpotence in infinite groups

It is easy to see that if a finitely generated group G has a nilpotent subgroup of finite in-

dex then dckM (G) > 0 for every sequence M of measures measuring index uniformly on G.

The conclusion of Theorem 1.8 is therefore qualitatively optimal. Note, however, that

Theorem 1.5 shows that in the case k = 1 Theorem 1.8 can be improved quantitatively—

in the sense that the bounds can be made independent of the rank of G—at the expense

of concluding that G is bounded-by-abelian-by-bounded as in Theorem 1.1, rather than

virtually abelian.

The following result suggests that a quantitatively optimal result for dckM (G) might also

allow for bounded-by-nilpotent-by-bounded groups in its conclusion.

Proposition 1.12. Let m, d, k ∈ N. Let G be a finitely generated group, let Γ be a

subgroup of G of index at most m, and let H be a subgroup of cardinality at most d such

that Γ/H is k-step nilpotent. Let M = (µn)∞n=1 be a sequence of measures that measures

index uniformly on G. Then dckM (G) ≥ 1
mk+1d

.

We prove Proposition 1.12 in Section 3.

Note that Theorem 1.8 and Proposition 1.12 combine to give a new proof of the following

folklore result, which we have been unable to find in the literature (although after the

statement we reference two published arguments that give results in a similar direction).

Corollary 1.13 (Finite-by-(k-step nilpotent) groups are virtually k-step nilpotent). Let

r, d, k ∈ N. Let G be a finitely generated group of rank at most r, and let H be a subgroup

of cardinality at most d such that G/H is k-step nilpotent. Then G contains a k-step

nilpotent subgroup of index at most Or,d,k(1).

It is shown in the proof of [3, Corollary 11.7] that the group G contains a (k + 1)-step

nilpotent subgroup of index at most Od(1). The proof of [5, Proposition 3.4] shows how

to pass to a k-step nilpotent subgroup of finite index as in Corollary 1.13, but without

any obvious control over the index.

On the other hand, in Section 7 we give examples for all k ≥ 1 to show that the

dependence of the bound on the rank is necessary in Theorem 1.8 and Corollary 1.13

as stated. Moreover, the following result states that without the assumption on G to

be finitely generated, the (qualitative) conclusion of Theorem 1.8 and Corollary 1.13

on G being virtually k-step nilpotent need not be true. However, such a conclusion

in Corollary 1.13 is still true if we replace ‘finitely generated of rank at most r’ with

‘residually finite’: see Remark 7.5.

Proposition 1.14. For any k ≥ 1 and any odd prime p, there exists a group G and a

finite normal subgroup H CG of order p such that G/H is k-step nilpotent, but G is not

virtually k-step nilpotent.

We prove Proposition 1.14 in Section 7.
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Question 1.15. Can one make the bounds in Theorem 1.8 independent of the rank of

G at the expense of broadening the qualitative conclusion?

Equations over virtually nilpotent groups. The second author shows in [21,

Theorem 1.19] that if G is a finitely generated group and M = (µn)∞n=1 is a sequence

of measures that measures index uniformly on G then the lim sup in the definition of

dcM is actually a limit, and that this limit does not depend on the choice of M . In the

present work we extend this to dckM for k ≥ 2, as follows.

Theorem 1.16. Let G be a finitely generated group. Then dckM (G) takes the same value

for all sequences M of measures that measure index uniformly on G, and for every such

sequence M the lim sup in the definition of dckM (G) actually a limit.

In view of Theorem 1.8, in proving Theorem 1.16 it is enough to consider virtually

nilpotent groups, and in that context we actually prove something more general: we

show that for any equation ϕ over a finitely generated virtually nilpotent group G the

numbers dϕM (G) are well behaved in the sense of Theorem 1.16.

To do this we use a notion of sparsity that is independent of any particular sequence of

measures, as follows.

Definition 1.17. Given a group G, a set V ⊂ G is said to be negligible by finite

quotients of G if for every ε > 0 there exists a finite-index normal subgroup N CG such

that |V N/N | ≤ ε|G/N |.

The utility of this definition lies in the following proposition, which we prove in Section 2.

Proposition 1.18. Let (µn)∞n=1 be a sequence of measures that measure index uniformly

on a group G, and suppose that V ⊂ Gk is negligible by finite quotients of Gk. Then

µn(V )→ 0 as n→∞.

Remark 1.19. To see that being negligible by finite quotients is strictly stronger than

having zero density with respect to a sequence of measures measuring index uniformly,

consider the example in which µn is the uniform probability measure on the Følner set

{−n, . . . , n} ⊂ Z, and the set A is defined as

A =
∞⋃
k=1

{2k + 1, . . . , 2k + k}.

Then A satisfies µn(A)→ 0 as n→∞, but is not negligible by finite quotients of Z.

Theorem 1.20. Let G be a finitely generated virtually nilpotent group, and let N be a

torsion-free nilpotent normal subgroup of finite index in G. Let ϕ be an equation in k

variables over G. Then the set

Gϕ = {(g1, . . . , gk) ∈ Gk : ϕ(g1, . . . , gk) = 1}
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of solutions to ϕ is the union of a set of cosets of Nk and a set that is negligible by finite

quotients of Gk.

Recall that virtually nilpotent groups are always virtually torsion-free, so by defining

the subgroup N in Theorem 1.20 we are merely fixing notation, rather than imposing an

additional hypothesis. In particular, Proposition 1.18 and Theorem 1.20 immediately

imply the following result.

Corollary 1.21. Let G be a finitely generated virtually nilpotent group, and let ϕ be

an equation over G. Then dϕM (G) is the same for all sequences M of measures that

measure index uniformly on G, and for every such sequence M the lim sup in Definition

1.4 is actually a limit.

In particular, combined with Theorem 1.8 this implies Theorem 1.16. Indeed, in the

case of a residually finite group Theorems 1.8 and 1.20 even give the value of dckM (G)

in terms of dck of the finite quotients of G, as follows.

Corollary 1.22. Let G be a residually finite group and let M be a sequence of measures

on G that measures index uniformly. Let H1 > H2 > · · · be a sequence of finite-

index normal subgroups of G such that
⋂∞
m=1Hm = {1}. Then dck(G/Hm) → dckM (G)

as m→∞.

Note also that if G is assumed a priori to be virtually nilpotent then Theorem 1.20

similarly gives the value of dϕM (G) in Corollary 1.21.

Corollary 1.23. Let G be a finitely generated virtually nilpotent group, and let ϕ be an

equation over G. Let H1 > H2 > · · · be a sequence of finite-index normal subgroups of

G such that
⋂∞
m=1Hm = {1}. Then dϕ(G/Hm)→ dϕM (G) as m→∞.

Remark 1.24. It is easy to see, for G, M and (Hi) as in Corollary 1.22 and ϕ an arbitrary

equation over G, that the sequence (dϕ(G/Hm))∞m=1 is decreasing and bounded below

by 0—and hence converges to some limit—and that

dϕM (G) ≤ lim
m→∞

dϕ(G/Hm). (1.1)

Corollaries 1.22 and 1.23 say that if ϕ = c(k), or if G is virtually nilpotent, then we have

equality in (1.1).

An equation ϕ in k variables over a group G is a probabilistic identity with respect to a

sequence M of measures if dϕM (G) > 0; it is a coset identity if there exists a finite-index

subgroup H < G and elements g1, . . . , gk ∈ G such that ϕ(g1H, . . . , gkH) = 1. Shalev

[20, Corollary 1.2] notes that Theorem 1.2 implies that if [x1, . . . , xk+1] is a coset identity

in a finitely generated residually finite group G then G is virtually k-step nilpotent. The

following is immediate from Theorem 1.20.
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Corollary 1.25. Let G be a finitely generated virtually nilpotent group, and let M be a

sequence of measures on G that measures index uniformly. Then an equation ϕ in G is

a probabilistic identity with respect to M if and only if it is a coset identity.

We prove Theorem 1.20 in Section 4. An important tool in the proof is the notion of a

polynomial mapping of a group. These have been studied extensively by Leibman [15],

and have found applications to finding prime solutions to linear systems of equations

[13] and to the study of harmonic functions on groups [17].

A polynomial mapping of a group is defined as follows.

Definition 1.26 (Derivatives, Polynomial mappings). Let G,H be groups and let

ϕ : G→ H. Given u ∈ G, we define the u-derivative ∂uϕ : G → H of ϕ via ∂uϕ(x) =

ϕ(x)−1ϕ(xu). Given d ∈ N, we say that ϕ is polynomial of degree d if ∂u1 · · · ∂ud+1
ϕ ≡ 1

for all u1, . . . , ud+1 ∈ G.

Remark. Leibman actually defines the more refined notion of being polynomial relative

to a generating set S for G; Definition 1.26 corresponds to being polynomial relative

to G. Nonetheless, in the present paper the range of every mapping we consider will be

nilpotent, and Leibman shows that a mapping of G into a nilpotent group is polynomial

relative to some generating set for G if and only if it is polynomial relative to G [15,

Proposition 3.5], so we lose no generality by using Definition 1.26.

The basic scheme of the proof of Theorem 1.20 is to show that equations over virtually

nilpotent groups are polynomial mappings, so that the set of solutions to an arbitrary

equation can be viewed as the set of roots of some polynomial. The idea is then to use

the familiar notion that the set of roots of a polynomial is ‘sparse’ in some sense.

Leibman has already shown that the set of roots of a polynomial mapping into a torsion-

free nilpotent group is sparse with respect to Følner sequences, as follows.

Definition 1.27 (Closed subgroup). A subgroup Γ of a group G is said to be closed in

G if for every x ∈ G and n ∈ Z we have xn ∈ Γ if and only if x ∈ Γ.

Theorem 1.28 (Leibman [15, Proposition 4.3]). Let G be a countable amenable group,

and let (µn)∞n=1 be the sequence of uniform probability measures on some Følner sequence

on G. Let N be a nilpotent group, let Γ be a closed subgroup of N , and let ϕ : G → N

be polynomial. Then for every x ∈ N such that ϕ(G) 6⊂ xΓ we have µn(ϕ−1(xΓ)) → 0

as n→∞.

In Section 5 we strengthen this theorem in the finitely generated case to show that set

of roots of a polynomial mapping into a torsion-free nilpotent groups is sparse in the

stronger sense of Definition 1.17, as follows.
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Theorem 1.29. Let G be a finitely generated group, let N be a nilpotent group with a

closed subgroup Γ, and let ϕ : G → N be polynomial. Then for every x ∈ N such that

ϕ(G) 6⊂ xΓ the set ϕ−1(xΓ) is negligible by finite quotients of G.

This is a strengthening of Theorem 1.28 thanks to Proposition 1.18 and Remark 1.19;

indeed, it implies the following result, which by [21, Theorem 1.13] directly implies

Theorem 1.28 in the case where G is finitely generated.

Corollary 1.30. Let G be a finitely generated group, and let (µn)∞n=1 be a sequence

of measures that measures index uniformly on G. Let N be a nilpotent group with a

closed subgroup Γ, and let ϕ : G → N be polynomial. Then for every x ∈ N such that

ϕ(G) 6⊂ xΓ we have µn(ϕ−1(xΓ))→ 0 as n→∞.

It is also worth noting that, unlike Theorem 1.28, Theorem 1.29 and Corollary 1.30

are valid when G is not amenable. That said, we should emphasise that it follows from

[15, Proposition 3.21] that every polynomial mapping of G into a nilpotent group factors

through some amenable quotient of G. Theorem 1.28 therefore has some implicit content

even when G is not amenable.

Finite quotients. In the last of our main results we remove the ‘finitely generated’

assumption from Corollary 1.3, answering a question posed by Shalev [20, Problem 3.1].

Theorem 1.31. Let G be a residually finite group, and let N be a family of finite-

index normal subgroups of G that is closed under finite intersections and such that⋂
N∈N N = {1}. Let k ∈ N, and suppose that there exists a constant α > 0 such that

dck(G/N) ≥ α for every N ∈ N . Then G has a k-step nilpotent subgroup of finite index.

This generalises a result of Lévai and Pyber [16, Theorem 1.1 (iii)], who prove it in the

case k = 1. They also note that the finite index of the abelian subgroup in that case need

not be bounded in terms of α, citing the examples of direct products of abelian groups

and extra-special groups [16, §1]. In Section 7 we generalise these examples to show

that, for any k ≥ 1, the index of the k-step nilpotent subgroup coming from Theorem

1.31 need not be bounded in terms of k and α.

The key ingredient in the proof of Theorem 1.31 is the following result of independent

interest on finite groups.

Theorem 1.32. Let G be a finite group and let N E G be a normal subgroup. Then

dck(G) ≤ dck(N) dck(G/N) for all k ∈ N.

Theorem 1.32 generalises the main result of Gallagher [11], who proves it for k = 1. It

also generalises a theorem by Moghaddam, Salemkar and Chiti [18, Theorem A], who

prove Theorem 1.32 when the centraliser of every element of G is normal. As is noted
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in [10, Section 2], the centraliser of every element of G being normal implies that G is

3-step nilpotent; this is an extremely strong hypothesis for Theorem 1.32, rendering it

trivial for k ≥ 3, for example.

We prove Theorems 1.31 and 1.32 in Section 6.

Degree of nilpotence with respect to uniform measures on balls. If G is

generated by a finite set X, one may naturally define the degree of nilpotence of G using

the sequence of measures (µn)∞n=1 defined by taking µn to be the uniform probability

measure on the ball of radius n in G with respect to X. The main problem with adapting

our results to this setting is that, in general, the sequence µn does not measure index

uniformly (see the remark immediately after Theorem 1.13 of [21]).

Question 1.33. Let G be a group with a finite generating set X, let µn be the uniform

probability measure on the ball of radius n in G with respect to X, and write M =

(µn)∞n=1. Suppose that G is not virtually k-step nilpotent. Do we have dckM (G) = 0?

If M is defined using the uniform probability measures on the balls with respect to a

finite generating set as in Question 1.33, and if G is virtually nilpotent, then it is well

known and easy to check that M is an almost-invariant sequence of probability measures

on G. It therefore follows from [21, Theorem 1.13] that M measures index uniformly.

In light of Theorem 1.8, a positive answer to Question 1.33 would therefore extend both

Theorems 1.8 and 1.16 to the sequence of uniform probability measures on the balls with

respect to a finite generating set.

Question 1.33 seems to be difficult in general, although the answer is positive in some

cases. For example, in Appendix B we present an argument that was communicated to

us by Yago Antoĺın answering Question 1.33 for hyperbolic groups (see Corollary B.2).

Acknowledgements. The authors are grateful to Yago Antoĺın, Jack Button, Thie-

bout Delabie, Ana Khukhro, Ashot Minasyan, Aner Shalev and Alain Valette for helpful

conversations.

2 Products of measures that measure index uniformly

In this short section we prove the following result and use it to deduce Proposition 1.18.

Lemma 2.1. Let G1, . . . , Gk be groups, and for each i let (µ
(i)
n )∞n=1 be a sequence of

measures such that for every xi ∈ Gi and every finite-index subgroup Hi < Gi we have

µ
(i)
n (xiHi)→ 1/[Gi : Hi] as n→∞. Then

µ(1)
n × · · · × µ(k)

n (xH)→ 1

[G1 × · · · ×Gk : H]
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for every finite-index subgroup H < G1× · · · ×Gk and every element x ∈ G1× · · · ×Gk.

Proof. Note first that

µ(1)
n × · · · × µ(k)

n

(
x
∏k
i=1Hi

)
→ 1

[
∏k
i=1Gi :

∏k
i=1Hi]

for all x ∈
∏k
i=1Gi and all finite-index subgroups of the form

∏k
i=1Hi <

∏k
i=1Gi with

Hi < Gi for each i. It therefore suffices to show that an arbitrary finite-index subgroup

H <
∏k
i=1Gi has a finite-index subgroup of the form

∏k
i=1Hi. However, if H has

index d in G then H ∩Gi has index at most d in Gi for each i. The product subgroup∏k
i=1(H∩Gi) therefore has index at most dk in

∏k
i=1Gi, and hence in H, as required.

Proof of Proposition 1.18. Let ε > 0, and let H CGk be a finite-index normal subgroup

such that |V H/H| ≤ 1
2ε[G

k : H]. As Gk contains only finitely many cosets of H, it

follows from Lemma 2.1 that there exists N ∈ N such that for every x ∈ Gk and every

n ≥ N we have µn(xH) ≤ 2/[Gk : H], and hence µn(V ) ≤ µn(V H) ≤ ε. We therefore

have µn(V )→ 0, as required.

3 The algebraic structure of probabilistically nilpotent

groups

In this section we study the relation between dckM (G) and the existence of finite-index

k-step nilpotent subgroups of G, proving Theorem 1.8, Proposition 1.10 and Proposition

1.12. We start our proof of Theorem 1.8 with the following version of [21, Proposition

2.1], which was itself based on an argument of Neumann [19].

Proposition 3.1. Let k ∈ N. Let G be a group and let M = (µn)∞n=1 be a sequence of

measures on G that detects index uniformly at rate π. Let α ∈ (0, 1], and suppose that

dckM (G) ≥ α. Let γ ∈ (0, 1) be such that π(γ) < α, and write

X = {(x1, . . . , xk) ∈ Gk : [G : CG([x1, . . . , xk])] ≤ 1
γ }.

Then lim supn→∞ µn(X) ≥ α− π(γ).

Proof. By definition of dcM there exists a sequence n1 < n2 < · · · such that dckµni
(G) ≥

α− o(1). Writing E(n) for expectation with respect to µn, this means precisely that

E(ni)

(x1,...,xk)∈Gk(µni(CG([x1, . . . , xk]))) ≥ α− o(1).
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Following Neumann [19], we note that therefore

α ≤ µni(X)E(ni)
(x1,...,xk)∈X(µni(CG([x1, . . . , xk])))

+µni(G\X)E(ni)

(x1,...,xk)∈Gk\X(µni(CG([x1, . . . , xk]))) + o(1),

and hence, by uniform detection of index,

α ≤ µni(X) + π(γ) + o(1).

The result follows.

Lemma 3.2. Let m, r ∈ N, and let G be a group generated by r elements. Then G has

at most Om,r(1) subgroups of index m.

Proof. A subgroup H of index m is the stabiliser of an action of G on the set G/H,

which has size m. There at most | Sym(m)|r possible actions of G on a set of size m,

and so there are at most |Sym(m)|r possibilities for this stabiliser.

Proof of Theorem 1.8. We combine an induction used by Shalev in [20, Proposition 2.2]

with the proof of [21, Theorem 1.10]. If k = 0 then lim supn→∞ µn({1}) ≥ α, and so

the order of G is Oπ,α(1), and the theorem holds. For k > 0, let γ = 1
2 inf{β ∈ (0, 1] :

π(β) ≥ α
2 }, noting that therefore π(γ) < α

2 . Proposition 3.1 therefore gives

lim sup
n→∞

µn({(x1, . . . , xk) ∈ Gk : [G : CG([x1, . . . , xk])] ≤ 1
γ }) ≥

α
2 . (3.1)

Write Γ for the intersection of all subgroups of G of index at most 1
γ , noting that Γ is

normal and has index Or,π,α(1) by Lemma 3.2. It follows from (3.1) that

lim sup
n→∞

µn({(x1, . . . , xk) ∈ Gk : [x1, . . . , xk] ∈ CG(Γ)}) ≥ α
2 ,

or equivalently that

dck−1
M (G/CG(Γ)) ≥ α

2 .

By induction, G/CG(Γ) has a (k − 1)-step nilpotent subgroup N0 of index at most

Or,π,k,α(1). Writing N for the pullback of N0 to G, the intersection N ∩ Γ is k-step

nilpotent and has index at most Or,π,k,α(1) in G, and so the theorem is proved.

Proposition 1.10 is essentially based on the following lemma.

Lemma 3.3. Let G be a group, and u, g ∈ G. Then {x ∈ G : [u, x] = g} is either empty

or a coset of CG(u).

Proof. If {x ∈ G : [u, x] = g} is not empty then [u, x0] = g for some x0 ∈ G, in which

case we have {x ∈ G : [u, x] = g} = {x ∈ G : ux = ux0} = CG(u)x0.
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The point of the following lemma is that sequences of measures that measure index

uniformly give the same measure to right-cosets of a subgroup that they give to left-

cosets of that subgroup.

Lemma 3.4. Let M = (µn)∞n=1 be a sequence of measures that measures index uniformly.

Then µn(Hx)→ 1/[G : H] uniformly over all x ∈ G and all subgroups H of G.

Proof. This is because Hx = x(Hx) and Hx has the same index as H.

Proof of Proposition 1.10. Lemma 3.3, Lemma 3.4 and the definition of uniform mea-

surement of index imply that for every x1, . . . , xk ∈ G we have either

µn({x ∈ G : [[x1, . . . , xk], x] = g})→ 1

[G : CG([x1, . . . , xk])]

= lim
n→∞

µn(CG([x1, . . . , xk]))

or µn({x ∈ G : [[x1, . . . , xk], x] = g}) → 0, and that this convergence is uniform over

all x1, . . . , xk. Writing E(n) for expectation with respect to µn, it follows that

lim sup
n→∞

P kµn(G, g) = lim sup
n→∞

E(n)

(x1,...,xk)∈Gk(µn({x ∈ G : [[x1, . . . , xk], x] = g}))

≤ lim sup
n→∞

E(n)

(x1,...,xk)∈Gk(µn(CG([x1, . . . , xk])))

= P kM (G, 1),

as required.

We close this section by proving Proposition 1.12.

Proof of Proposition 1.12. We use a similar argument to that of [21, Proposition 1.17].

Fix elements x1, . . . , xk ∈ Γ. The fact that Γ/H is k-step nilpotent implies that

[x1, . . . , xk, y] ∈ H for every y ∈ Γ. Thus [x1, . . . , xk, y] = [x1, . . . , xk]
−1[x1, . . . , xk]

y

takes at most d distinct values as y ranges over Γ, and hence that the conjugacy class

of [x1, . . . , xk] has size at most d. The orbit-stabiliser theorem therefore implies that

CΓ([x1, . . . , xk]) has index at most d in Γ, and hence at most dm in G. Since this holds

for every x1, . . . , xk ∈ Γ, the result follows by uniform measurement of index.

4 Equations over virtually nilpotent groups in terms of

polynomial mappings

In this section we prove Theorem 1.20. The rough idea is to express an equation over

the group G in terms of polynomial mapping, and then apply Theorem 1.29. Recall
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that, given a group G and an equation ϕ ∈ Fk ∗G over G, we denote the set of solutions

to ϕ in Gk by

Gϕ = {(g1, . . . , gk) ∈ Gk : ϕ(g1, . . . , gk) = 1}.

The proof of Theorem 1.20 is particularly straightforward in the case where G itself is

torsion-free nilpotent, thanks to the following two results of Leibman, the first of which

shows that if ϕ,ψ : H → N are two polynomial mappings into a nilpotent group N

then the pointwise product ϕψ : H → N defined by setting (ϕψ)(h) = ϕ(h)ψ(h), and

the pointwise inverse ϕ(−1) : H → N defined by setting ϕ(−1)(h) = ϕ(h)−1, are also

polynomial.

Theorem 4.1 (Leibman [15, Theorem 3.2]). If H is a group and N is a nilpotent group

then the polynomial mappings H → N form a group under the operations of taking

pointwise products and pointwise inverses.

Since constant maps Gk → G are trivially polynomial of degree 0, and the maps Gk → G

sending (x1, . . . , xk) to xi are trivially polynomial of degree 1, it follows immediately from

Theorem 4.1 that an equation over a nilpotent group G is a polynomial Gk → G. Thus,

if G itself is torsion-free nilpotent then Theorem 1.20 follows from Theorem 1.29. We

spend the rest of this section explaining how to generalise this argument to the case in

which G is merely virtually nilpotent.

Let G be a group, let H CG be a normal subgroup, let ϕ ∈ Fk ∗G be an equation over

G and let g ∈ Gk. Given h ∈ Hk, note that ϕ(hg) ∈ Hϕ(g), so that we may define a

mapping ϕH,g : Hk → H via

ϕH,g(h) = ϕ(hg)ϕ(g)−1.

We may then describe the set of solutions to ϕ = 1 in the coset Hkg as

Gϕ ∩Hkg = {h ∈ Hk : ϕH,g(h) = ϕ(g)−1}g. (4.1)

Lemma 4.2. Let G be a group, let H C G be a finite-index normal subgroup, and

let g ∈ G. Let V ⊂ H be negligible by finite quotients in H. Then V g is negligible by

finite quotients in G.

Proof. Let ε > 0. Then there exists a normal subgroup K CH of finite index such that

|V K/K| ≤ ε|G/K|. Since K has finite index in G, there exists a finite-index subgroup

L < K such that L C G, and then we have |V gL/L| = |V L/L| ≤ |V K/K||K/L| ≤
ε|G/K||K/L| = ε|G/L|.

Lemma 4.3. Let G be a group, let NCG be a nilpotent normal subgroup, let ϕ ∈ Fk ∗G
be an equation over G, and let g ∈ Gk. Then the map ϕN,g : Nk → N is polynomial.
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Proof. We can view the equation ϕ as a concatenation of variables x±1
i ∈ Fk and con-

stants c ∈ G. Write g = (g1, . . . , gk), and let h = (h1, . . . , hk) ∈ Nk. Moving the ele-

ments g±1
i ∈ G and constants c ∈ G one by one to the right of the word ϕ(h1g1, . . . , hkgk),

conjugating the elements h±1
i as we go, we see that ϕN,g(h) is a product of elements of

the form (h±1
i )x, with x ∈ G depending only on g1, . . . , gk, not on h1, . . . , hk. Given any

fixed x ∈ G the maps Nk → N defined by (h1, . . . , hk) 7→ hxi are polynomial of degree 1,

and so Theorem 4.1 implies that ϕN,g is polynomial, as required.

Proof of Theorem 1.20. Since Nk has finite index in Gk, the theorem may be restated

as saying that for every g ∈ Gk with Gϕ ∩Nkg 6= Nkg we have Gϕ ∩Nkg negligible by

finite quotients of Gk. This follows readily from (4.1), Theorem 1.29, Lemma 4.2 and

Lemma 4.3.

5 Sparsity of roots of polynomial mappings

In this section we prove Theorem 1.29. We divide the proof into two parts. The first

part reduces to the case where N = Z, as follows.

Proposition 5.1. Let G be a finitely generated group, let N be a nilpotent group

with a closed subgroup Γ, let ϕ : G → N be polynomial, and let x ∈ N be such that

ϕ(G) 6⊂ xΓ. Then there is a non-constant polynomial mapping ψ : G → Z such that

ϕ−1(xΓ) ⊂ ψ−1(0).

The second part proves the theorem in this case, as follows.

Proposition 5.2. Let G be a finitely generated group and let ϕ : G → Z be a non-

constant polynomial mapping. Then ϕ−1(0) is negligible by finite quotients.

In proving Proposition 5.1 we use the following characterisation of closed subgroups of

nilpotent groups.

Proposition 5.3 (Bergelson–Leibman [2, Proposition 1.19]). Let N be a finitely gener-

ated nilpotent group. Then a subgroup Γ < N is closed in N if and only if there exists

a series Γ = Γ0 C Γ1 C . . .C Γr = N with Γi/Γi−1
∼= Z for every i.

We also use the following trivial lemma.

Lemma 5.4 (Leibman [15, Proposition 1.10]). Let G, H and H ′ be groups, let ϕ :

G → H be polynomial of degree d, and let π : H → H ′ be a homomorphism. Then the

composition π ◦ ϕ : G→ H ′ is also polynomial of degree d.
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Proof of Proposition 5.1. Since identity map is polynomial of degree 1, it follows from

Theorem 4.1 that x−1ϕ is polynomial. Since (x−1ϕ)(g) ∈ Γ precisely when ϕ(g) ∈ xΓ,

upon replacing ϕ by x−1ϕ we may therefore assume that x = 1.

Let Γ = Γ0CΓ1C. . .CΓr = N be the series given by Proposition 5.3, so that Γi/Γi−1
∼= Z

for every i, and let k be minimal such that ϕ(G) ⊂ Γk, noting that k ≥ 1 by as-

sumption. Write π : Γk → Γk/Γk−1
∼= Z for the quotient homomorphism, and define

ψ = π ◦ ϕ : G→ Γk/Γk−1
∼= Z, noting that ψ is polynomial by Lemma 5.4. We then

have ψ−1(0) = ϕ−1(Γk−1) ⊃ ϕ−1(Γ), as required.

The first step in our proof of Proposition 5.2 is to reduce to the case where G is torsion-

free nilpotent, via the following result of Meyerovitch, Perl, Yadin and the second author

[17].

Lemma 5.5. Let G be a group, and let ϕ : G→ Z be a polynomial mapping of degree d.

Then there is a torsion-free d-step nilpotent quotient G′ of G and a polynomial mapping

ϕ̂ : G′ → Z of degree d such that, writing π : G → G′ for the quotient homomorphism,

we have ϕ = ϕ̂ ◦ π.

Proof. This is immediate from [17, Lemmas 2.5 & 4.4].

In fact, although Lemma 5.5 is sufficient for our purposes in the present paper, in

Appendix A we take the opportunity to deduce from it a similar result for polynomial

mappings into arbitrary torsion-free nilpotent groups.

An important benefit of Lemma 5.5 is that it allows us in the proof of Proposition 5.2 to

exploit the existence of certain coordinate systems on torsion-free nilpotent groups. We

give a basic description of coordinate systems here; see [15, 3.8–3.19] for a more detailed

description of coordinate systems and their relationship to polynomial mappings, and

[17, §4.2] for details on a particularly natural coordinate system to use when studying

polynomial mappings to nilpotent groups.

Given a finitely generated torsion-free nilpotent group G, there exists a central series

{1} = G0 CG1 C . . .CGm = G such that Gi/Gi−1
∼= Z for every i. Picking ei ∈ Gi for

each i in such a way that Gi−1ei is a generator for Gi/Gi−1, every element g ∈ G then

has a unique expression

g = ev11 · · · e
vm
m (5.1)

for some v1, . . . , vm ∈ Z; we call (e1, . . . , em) a basis for G. We call the vi in the

expression (5.1) the coordinates of g with respect to (e1, . . . , em), and call the map

G → Zm taking an element of G to its coordinates the coordinate mapping of G with

respect to (e1, . . . , em). We often abbreviate the expression ev11 · · · evmm as ev.
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Proposition 5.6 (Leibman [15, Proposition 3.12]). Let G and N be finitely generated

torsion-free nilpotent groups with bases (e1, . . . , em) and (f1, . . . , fn), respectively, and

let α : G → Zm and β : N → Zn be the corresponding coordinate mappings. Then a

mapping ϕ : G→ N is polynomial if and only if β ◦ ϕ ◦ α−1 : Zm → Zn is polynomial.

Polynomial mappings Zm → Zn are just standard polynomials in m variables, although

we caution, as Leibman does in [15, 1.8], that these polynomials can have non-integer

rational coefficients: the polynomial 1
2n

2 + 1
2n maps Z→ Z, for example.

Leibman [15, Corollary 3.7] shows that in a nilpotent group G the operations of mul-

tiplication G × G → G defined by (g1, g2) 7→ g1g2, and raising to a power G × Z → G

defined by (g, n) 7→ gn, are polynomial mappings. Given a finitely generated torsion-free

nilpotent group G with basis (e1, . . . , em), it therefore follows from Proposition 5.6 that

there exist polynomials µ1, . . . , µm : Z2m → Z and ε1, . . . , εm : Zm+1 → Z such that

ev · ew = e
µ1(v,w)
1 · · · eµm(v,w)

m (5.2)

and

(ev)n = e
ε1(v,n)
1 · · · eεm(v,n)

m (5.3)

for every v,w ∈ Zm and every n ∈ Z. Leibman notes this in [15, Corollary 3.13]. It

recovers a result of Hall [14, Theorem 6.5].

In light of Proposition 5.6, if G is torsion-free nilpotent then Proposition 5.2 follows

from the following result.

Proposition 5.7. Let G be a torsion-free nilpotent group with basis (e1, . . . , em), and

let α : G→ Zm be the corresponding coordinate mapping. Let p : Zm → Z be a non-zero

polynomial, and let

Np := {g ∈ G : p ◦ α(g) = 0}.

Then Np is negligible in G by finite quotients.

The first step in the proof of Proposition 5.7 is to construct the quotients that we will use

to show that Np is negligible by finite quotients. Given a group G we write G(n) is the

subgroup generated by all nth powers of elements of G, and G(n) for the quotient G/G(n).

If G is finitely generated and torsion-free nilpotent with basis (e1, . . . , em) then we write

Gi(n) for the image of Gi under the quotient map G → G(n). The precise statement

that we prove in order to deduce Proposition 5.7 is then as follows.

Proposition 5.8. Let G be a torsion-free nilpotent group with basis (e1, . . . , em), and

let α : G→ Zm be the corresponding coordinate mapping. Let p : Zm → Z be a non-zero

polynomial, and let

Np := {g ∈ G : p ◦ α(g) = 0}.
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Then
|NpG(n)/G(n)|
|G/G(n)|

→ 0 (5.4)

as n→∞ through the primes.

Remark 5.9. An inspection of the argument shows that there exists some integer n0 =

n0(G, e1, . . . , em) such that (5.4) holds as n→∞ through those positive integers coprime

to n0.

Lemma 5.10. Let G be a finitely generated torsion-free nilpotent group with basis

(e1, . . . , em). Then there exists an integer n0 = n0(G, e1, . . . , em) such that for every

positive integer n coprime to n0 and every i = 1, . . . ,m we have Gi(n)/Gi−1(n) ∼= Cn.

Proof. Pick n0 so that the coefficients of the polynomials µi, εi given in (5.2) and (5.3)

all lie in 1
n0
Z. Fix n coprime to n0, and write Φn : G → G(n) for the quotient homo-

morphism.

Note that εi(v, 0) = 0 for each i and each v ∈ Zm, so that the polynomials εi(v,−) :

Z → Z have no constant term. By the definition of n0, for each i and each v ∈ Zm we

have εi(v, n) = ci,v,nn/n0 ∈ Z for some ci,v,n ∈ Z. As n is coprime to n0, it follows that

n divides εi(v, n), and so

G(n) = 〈en1 , . . . , enm〉. (5.5)

The polynomials µi : Z2m → Z similarly have no constant term, and so there exist

polynomials µ̄1, . . . , µ̄m : Z2m → Z such that

evn · ewn = e
µ̄1(v,w)n
1 · · · eµ̄m(v,w)n

m . (5.6)

By (5.5) and successive applications of (5.6), it therefore follows that

G(n) = {evn : v ∈ Zm}. (5.7)

It is clear that Gi(n)/Gi−1(n) is generated by Gi−1(n)Φn(ei) and is a quotient of Cn,

so it is enough to show that Φn(eri ) /∈ Gi−1(n) for r = 1, . . . , n− 1. If, on the contrary,

Φn(eri ) ∈ Gi−1(n) for some such r, then if would follow from (5.7) that

eri = evn · ew1
1 · · · e

wi−1

i−1

for some v ∈ Zm and some w1, . . . , wi−1 ∈ Z, which would give

evin−ri e
vi+1n
i+1 · · · evmnm ∈ Gi−1.

Since vin − r 6= 0 whenever 1 ≤ r ≤ n − 1, this would contradict the uniqueness of

coordinates, and so we indeed have Φn(eri ) /∈ Gi−1(n), as required.

Remark 5.11. Note that the conclusion of Lemma 5.10 does not necessarily hold for an
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arbitrary n ∈ N. For instance, if G =
(

1 Z Z
0 1 Z
0 0 1

)
is the integral Heisenberg group then

m = 3 and G1(2)/G0(2) is trivial.

Proof of Proposition 5.8. Throughout this proof n is a prime. Write d for the degree

of p, and for each prime n write Φn : G → G(n) for the quotient homomorphism. By

Lemma 5.10 the desired conclusion (5.4) is equivalent to the statement that

|Φn(Np)|
nm

→ 0 (5.8)

as n→∞ through the primes. If m = 1 then |Np| ≤ d, and so for every n we also have

|Φn(Np)| ≤ d, which certainly implies (5.8). We may therefore assume that m ≥ 2 and

proceed by induction on m.

We can view p as an element of Q[X1, . . . , Xm]. If p ∈ Q[X2, . . . , Xm] then it follows by

applying the induction hypothesis to G/G1 that

|Φn(Np)G1(n)/G1(n)|
nm−1

→ 0

as n→∞, which implies (5.8) by Lemma 5.10. We may therefore assume that

p(X1, . . . , Xm) =

d∑
i=0

Xi
1pi(X2, . . . , Xm)

for some p0, . . . , pd ∈ Q[X2, . . . , Xm] with pj 6= 0 for some j ≥ 1. Writing

P = {g ∈ G : pj(α2(g), . . . , αm(g)) = 0},

we have
|Φn(P)/G1(n)|

nm−1
→ 0

as n→∞ by induction, and hence

|Φn(P)|
nm

→ 0. (5.9)

For g ∈ Np \ P, on the other hand, α1(g) is a root of the non-zero polynomial

p(X,α2(g), . . . , αm(g)) ∈ Q[X]

of degree at most d, and so |(Np \ P) ∩ G1x| ≤ d for all x ∈ G. By taking images in

G(n) this implies that |Φn(Np \ P) ∩G1(n)x| ≤ d for all x ∈ G(n), and so

|Φn(Np \ P)| ≤ d|G(n)/G1(n)| = dnm−1

for every large enough prime n. Combined with (5.9), this implies (5.8), as required.
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Proof of Proposition 5.2. Let G′, π and ϕ̂ be as given by Lemma 5.5. It follows from

Propositions 5.6 and 5.8 that ϕ̂−1(0) is negligible by finite quotients of G′, and hence

that ϕ−1(0) = π−1(ϕ̂−1(0)) is negligible by finite quotients of G, as required.

6 Finite quotients

In this section we prove Theorem 1.32 and deduce Theorem 1.31 from it. We fix k ∈ N
throughout. In Sections 6.1 to 6.4 we also fix a finite group G and a normal subgroup

N CG, and define

Nk(G) := {(x1, . . . , xk+1) ∈ Gk+1 | [x1, . . . , xk+1] = 1}.

Note that Theorem 1.32 is equivalent to the following result.

Theorem 6.1. We have |Nk(G)| ≤ |Nk(N)| × |Nk(G/N)|.

We prove Theorem 6.1 in Sections 6.1 to 6.4. In Section 6.5 we prove Theorem 1.31.

6.1 Submultiplicativity of degree of nilpotence

Here we sketch the proof of Theorem 6.1, omitting the proof of a technical result—

Proposition 6.3—that we give in Sections 6.2 to 6.4.

For subsets A1, . . . , Ak+1 ⊆ G, define

fk(A1, . . . , Ak+1) = |Nk(G) ∩ (A1 × · · · ×Ak+1)|.

If Ai = {ai} is a singleton for some i, we will abuse the notation slightly by writing

fk(. . . , {ai}, . . .) as fk(. . . , ai, . . .).

Given cosets x1N, . . . , xk+1N ∈ G/N , it is clear that if fk(x1N, . . . , xk+1N) 6= 0 then the

element [x1N, . . . , xk+1N ] is trivial in G/N . Thus the number of (x1N, . . . , xk+1N) ∈
(G/N)k+1 with fk(x1N, . . . , xk+1N) 6= 0 is at most |Nk(G/N)|, and we obtain

|Nk(G)| ≤ |Nk(G/N)| ×max{fk(x1N, . . . , xk+1N) | (x1N, . . . , xk+1N) ∈ (G/N)k+1}.

Since fk(N, . . . , N) = |Nk(N)|, Theorem 6.1 therefore follows from the following Lemma.

Lemma 6.2. For every (x1N, . . . , xk+1N) ∈ (G/N)k+1 we have

fk(x1N, . . . , xk+1N) ≤ fk(N, . . . , N).

The proof of Lemma 6.2 uses the following proposition, to be proved in Sections 6.2

to 6.4.
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Proposition 6.3. For any g ∈ G and xN ∈ G/N , we have

fk(xN, g,N,N, . . . , N) ≤ fk(N, g,N,N, . . . , N).

Proof of Lemma 6.2. We will show that for each i ∈ {0, . . . , k}, we have

fk(x1N, . . . , xiN, xi+1N,N, . . . , N) ≤ fk(x1N, . . . , xiN,N,N, . . . , N),

which will imply the result. Note that for i = 0, this follows immediately from Propo-

sition 6.3 (by summing over g ∈ N), hence we can without loss of generality assume

that i ≥ 1.

Let s ∈ N. Since [y−1, g] = [g, y]y
−1

for all y, g ∈ G, we have an identity

[(xn)−1, g, n3, . . . , ns+1] = [g, xn, nxn3 , . . . , nxns+1](xn)−1
.

As N is normal in G, this induces a bijection

Ns(G) ∩
(
x−1N × {g} ×N s−1

)
↔ Ns(G) ∩

(
{g} × xN ×N s−1

)
,

and so we have

fs(x
−1N, g,N, . . . , N) = fs(g, xN,N, . . . , N)

for all g ∈ G and xN ∈ G/N . Thus Proposition 6.3 implies that

fs(g, xN,N, . . . , N) = fs(x
−1N, g,N, . . . , N)

≤ fs(N, g,N, . . . , N) = fs(g,N,N, . . . , N).

Now fix i ∈ {1, . . . , k}. Then this last inequality implies

fk(x1N, . . . , xiN, xi+1N,N, . . . , N) =
∑

n1,...,ni∈N
fk−i+1([x1n1, . . . , xini], xi+1N,N, . . . , N)

≤
∑

n1,...,ni∈N
fk−i+1([x1n1, . . . , xini], N,N, . . . , N)

= fk(x1N, . . . , xiN,N,N, . . . , N),

as required.

6.2 Sketch of the proof of Proposition 6.3

Here we give a proof of Proposition 6.3, omitting proofs of two equalities to be proved

in Section 6.4. Throughout this section, fix g ∈ G and xN ∈ G/N .
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We aim to show that

fk(xN, g,N, . . . , N) ≤ fk(N, g,N, . . . , N),

or in other words,∑
(n3,...,nk+1)∈Nk−1

fk(xN, g, n3, . . . , nk+1) ≤
∑

(n3,...,nk+1)∈Nk−1

fk(N, g, n3, . . . , nk+1).

The idea of the proof is to split this up into smaller parts: that is, to find a partition

N1 t · · · tNp of Nk−1 such that∑
(n3,...,nk+1)∈Nq

fk(xN, g, n3, . . . , nk+1) ≤
∑

(n3,...,nk+1)∈Nq

fk(N, g, n3, . . . , nk+1) (6.1)

for each q ∈ {1, . . . , p}. The proof relies on periodic behaviour (in a certain sense) of the

numbers fk(x
iN, g, n3, . . . , nk+1) where i ∈ Z and (n3, . . . , nk+1) ∈ Nq. In particular,

each part Nq will be subdivided further: in Section 6.3 we will define a function

L : Nq → Z/dZ

for some d = d(q) ∈ N, with the property that, for any i ∈ Z and (n3, . . . , nk+1) ∈ Nq,

the number fk(x
iN, g, n3, . . . , nk+1) depends only on the value of L(n3, . . . , nk+1) + i

in Z/dZ. That is, given any (n3, . . . , nk+1), (ñ3, . . . , ñk+1) ∈ Nq and i, ĩ ∈ Z, we have

if L(n3, . . . , nk+1) + i = L(ñ3, . . . , ñk+1) + ĩ (in Z/dZ),

then fk(x
iN, g, n3, . . . , nk+1) = fk(x

ĩN, g, ñ3, . . . , ñk+1);
(6.2)

we will prove (6.2) in Section 6.4.

This implies that there exist some integers hj (where j ∈ Z/dZ) such that

fk(x
iN, g, n3, . . . , nk+1) = hL(n3,...,nk+1)+i

for all i ∈ Z and (n3, . . . , nk+1) ∈ Nq. Thus∑
(n3,...,nk+1)∈Nq

fk(N, g, n3, . . . , nk+1) =
∑

j∈Z/dZ

|L−1(j)|hj

and ∑
(n3,...,nk+1)∈Nq

fk(xN, g, n3, . . . , nk+1) =
∑

j∈Z/dZ

|L−1(j)|hj+1,

and so (6.1) becomes ∑
j∈Z/dZ

|L−1(j)|hj+1 ≤
∑

j∈Z/dZ

|L−1(j)|hj .
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Moreover, in Section 6.4 we will show that

|L−1(j)|hj+1 = |L−1(j + 1)|hj (6.3)

for each j ∈ Z/dZ. Proposition 6.3 then follows from the following Lemma:

Lemma 6.4. Let d ∈ N and for each j ∈ Z/dZ, let rj and hj be non-negative integers

such that rjhj+1 = rj+1hj for each j. Then∑
j∈Z/dZ

rjhj+1 ≤
∑

j∈Z/dZ

rjhj .

Proof. For a fixed j ∈ Z/dZ, since rjhj+1 = rj+1hj , we have either rj ≤ rj+1 and

hj ≤ hj+1, or rj ≥ rj+1 and hj ≥ hj+1. This implies that

0 ≤
∑

j∈Z/dZ

(rj − rj+1)(hj − hj+1)

=
∑

j∈Z/dZ

rjhj −
∑

j∈Z/dZ

rjhj+1 −
∑

j∈Z/dZ

rj+1hj +
∑

j∈Z/dZ

rj+1hj+1

= 2

 ∑
j∈Z/dZ

rjhj −
∑

j∈Z/dZ

rjhj+1

 ,

as required.

6.3 Combinatorial structure of Nk(G)

Here we clarify the notation used in Section 6.2. In particular, we define the sub-

sets Nq ⊆ Nk−1, and for a given q ∈ {1, . . . , p}, the number d ∈ N and the function

L : Nq → Z/dZ used in Section 6.2.

A key fact used in the argument is the following commutator identity:

Lemma 6.5. For any z, y ∈ G and n3, . . . , nk+1 ∈ N ,

[zy, g, n3, . . . , nk+1] =

[
z, g, n

α−1
3

3 , . . . , n
α−1
k+1

k+1

]αk+2

[y, g, n3, . . . , nk+1],

where αi = y
∏i−2
j=2[y, g, n3, . . . , nj ] for 3 ≤ i ≤ k+ 2 (for the avoidance of doubt, α3 = y

and α4 = y[y, g]).

Proof. We proceed by induction on k. We make repeated use of the commutator identity

[ab, c] = [a, c]b[b, c]. (6.4)

For the base case k = 1, we use (6.4) with a = z, b = y and c = g, by noting that α3 = y.
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For k ≥ 2, the inductive hypothesis gives

[zy, g, n3, . . . , nk+1] =


ak+1︷ ︸︸ ︷[

z, g, n
α−1
3

3 , . . . , n
α−1
k
k

]αk+1

bk+1︷ ︸︸ ︷
[y, g, n3, . . . , nk], nk+1

 .
Since αk+2 = αk+1bk+1, the result follows by applying (6.4) with a = ak+1, b = bk+1

and c = nk+1.

This Lemma motivates the following construction. Let Γ be a directed labelled multi-

graph (that is, a directed labelled graph in which loops and multiple edges are allowed)

with vertex set

V (Γ) = Nk−1

and edge set

E(Γ) =

{
(n3, . . . , nk+1)

y−→
(
n
α−1
3

3 , . . . , n
α−1
k+1

k+1

) ∣∣∣∣ y ∈ xN, n3, . . . , nk+1 ∈ N,

[y, g, n3, . . . , nk+1] = 1

}
,

where α3 = α3(y), α4 = α4(y), α5 = α5(y, n3), . . . , αk+1 = αk+1(y, n3, . . . , nk−2) ∈ G are

as in Lemma 6.5.

Now write Γ as a union of its connected components,

Γ = Γ1 t · · · t Γp,

and write Nq for V (Γq), where 1 ≤ q ≤ p. This defines a partition

Nk−1 = N1 t · · · tNp,

as above. Fix q ∈ {1, . . . , p}. In what follows, a walk in Γq is not required to follow

directions of the edges, but does have a choice of orientation associated with it.

Definition 6.6. (i) For a walk γ of length s+ +s− from v ∈ Nq to w ∈ Nq, define the

directed length `(γ) of γ to be s+−s−, where s+ (respectively s−) is the number of

edges in γ with directions coincident with (respectively opposite to) the direction

of γ. Note that given any walk γ in Γq we have `(γ−1) = −`(γ).

(ii) Define the period of Γq to be

d = gcd({o} ∪ {|`(c)| | c is a closed walk in Γq}),

where o is the order of xN in G/N .
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(iii) Choose a base vertex vq of Γq. For any vertex v ∈ Γq, define the level of v to be

L(v) = `(γv) + dZ ∈ Z/dZ

where γv is a walk in Γq from vq to v. Note that if γv, γ̃v are two such walks, then

c = γ−1
v γ̃v is a closed walk, and so d divides `(c) = −`(γv) + `(γ̃v) by the choice

of d. Thus L(v) does not depend on the choice of γv.

Remark. The setW(Γq) of walks in Γq forms a group under concatenation, with inverses

given by changing orientation, and in this setting ` :W(Γq)→ Z is a homomorphism.

6.4 Completing the proof of Proposition 6.3

We now prove (6.2) and (6.3) from Section 6.2, which will complete the proof of Propo-

sition 6.3.

The last part of the following Lemma shows (6.2) is true:

Lemma 6.7. (i) For any walk γ from (n3, . . . , nk+1) ∈ Nq to (ñ3, . . . , ñk+1) ∈ Nq

and any i ∈ Z, we have

fk(x
iN, g, n3, . . . , nk+1) = fk(x

i−`(γ)N, g, ñ3, . . . , ñk+1).

(ii) For any (n3, . . . , nk+1) ∈ Nq and i ∈ Z, we have

fk(x
iN, g, n3, . . . , nk+1) = fk(x

i−dN, g, n3, . . . , nk+1).

(iii) For any (n3, . . . , nk+1), (ñ3, . . . , ñk+1) ∈ Nq and i, ĩ ∈ Z, if

L(n3, . . . , nk+1) + i = L(ñ3, . . . , ñk+1) + ĩ (in Z/dZ),

then

fk(x
iN, g, n3, . . . , nk+1) = fk(x

ĩN, g, ñ3, . . . , ñk+1).

Proof. (i) We proceed by induction on the length of γ. For the base case (when γ is

an edge), note that by Lemma 6.5, an edge (n3, . . . , nk+1)
y−→ (ñ3, . . . , ñk+1) in Γq

defines a bijection between elements zy ∈ xiN with [zy, g, n3, . . . , nk+1] = 1 and

elements z ∈ xi−1N with [z, g, ñ3, . . . , ñk+1] = 1, and hence

fk((xN)i, g, n3, . . . , nk+1) = fk((xN)i−1, g, ñ3, . . . , ñk+1). (6.5)

For the inductive step (when the length of γ is at least 2), note that we can write

γ = γ̃eε for some e ∈ E(Γq), ε ∈ {±1}, and a walk γ̃ that is strictly shorter than γ.

Thus, applying the inductive hypothesis to γ̃ and (6.5) to e yields the result.
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(ii) Fix a vertex v = (n3, . . . , nk+1) ∈ Nq and i ∈ Z. By definition of d, there exist

closed walks c1, . . . , cr and integers m,m1, . . . ,mr ∈ Z such that

d = mo+m1`(c1) + · · ·+mr`(cr).

Note that we may transform the closed walks cj to ones that start and end at v:

indeed, if γj is a walk from v to the starting (and ending) vertex of cj , then

c̃j = γjcjγ
−1
j is a closed walk starting and ending at v, and `(c̃j) = `(cj). This

allows us to construct a closed walk

c̃ = c̃m1
1 · · · c̃

mr
r

and we have

`(c̃) = m1`(c̃1) + · · ·+mr`(c̃r) = d−mo.

Substituting γ = c̃ to part ((i)) yields

f(xiN, g, n3, . . . , nk+1) = fk(x
i−d+moN, g, n3, . . . , nk+1).

But since o is the order of xN in G/N , we get xi−d+moN = (xi−dN)((xN)o)m =

xi−dN , which gives the result.

(iii) Let γ (respectively γ̃) be a walk in Γq from the base vertex vq to (n3, . . . , nk+1)

(respectively (ñ3, . . . , ñk+1)). By definition of level, we have

`(γ−1γ̃)+dZ = −`(γ)+`(γ̃)+dZ = −L(n3, . . . , nk+1)+L(ñ3, . . . , ñk+1) = i−ĩ+dZ,

and so `(γ−1γ̃) = i− ĩ+md for some m ∈ Z. By part ((i)), we have

fk(x
iN, g, n3, . . . , nk+1) = fk(x

i−(i−ĩ+md)N, g, ñ3, . . . , ñk+1)

= fk(x
ĩ−mdN, g, ñ3, . . . , ñk+1),

and so |m| applications of part ((ii)) to the right hand side gives the result.

Finally, we prove (6.3):

Lemma 6.8. For each j ∈ Z/dZ, we have |L−1(j)|hj+1 = |L−1(j + 1)|hj.

Proof. We will give a bijection between the set

A =
⊔

(n3,...,nk+1)∈Nq
L(n3,...,nk+1)=j

Nk(G) ∩ (xN × {g} × {n3} × . . .× {nk+1})
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and the set

B =
⊔

(ñ3,...,ñk+1)∈Nq
L(ñ3,...,ñk+1)=j+1

Nk(G) ∩
(
x−1N × {g} × {ñ3} × . . .× {ñk+1}

)
.

Since A is a disjoint union of |L−1(j)| sets, each of cardinality hj+1, and B is a disjoint

union of |L−1(j + 1)| sets, each of cardinality hj , this will imply the result.

Now consider

θ : xN × {g} ×Nk−1 → x−1N × {g} ×Nk−1,

(y, g, n3, . . . , nk+1) 7→
(
y−1, g, n

α−1
3

3 , . . . , n
α−1
k+1

k+1

)
,

where α3 = α3(y), α4 = α4(y), α5 = α5(y, n3), . . . , αk+1 = αk+1(y, n3, . . . , nk−1) are

as in Lemma 6.5. First, we claim that θ is a bijection. Indeed, for each i, the element

αi does not depend on ni, . . . , nk+1, and so it follows (by induction on k − i) that the

restriction of θ given by

θi : {y}×{g}×{n3}×· · ·×{ni+1}×Nk−i →
{
y−1
}
×{g}×

{
n
α−1
3

3

}
×· · ·×

{
n
α−1
i+1

i+1

}
×Nk−i

is a bijection for each y ∈ xN and (n3, . . . , ni+1) ∈ N i−1. In particular,

θ1 : {y} × {g} ×Nk−1 →
{
y−1
}
× {g} ×Nk−1

is a bijection for each y ∈ xN , and hence θ is a bijection as well.

It is now enough to show that θ(A) = B. By substituting z = y−1 in Lemma 6.5,

it follows that [y, g, n3, . . . , nk+1] = 1 if and only if

[
y−1, g, n

α−1
3

3 , . . . , n
α−1
k+1

k+1

]
= 1, and

hence that

θ
(
Nk(G) ∩ (xN × {g} ×Nk−1)

)
= Nk(G) ∩ (x−1N × {g} ×Nk−1).

Furthermore, for an arbitrary edge (n3, . . . , nk+1)
y−→ (ñ3, . . . , ñk+1) in Γ (note that

we have (ñ3, . . . , ñk+1) =

(
n
α−1
3

3 , . . . , n
α−1
k+1

k+1

)
in this case), its endpoints are in the same

connected component of Γ, that is, (n3, . . . , nk+1) ∈ Nq if and only if (ñ3, . . . , ñk+1) ∈ Nq.

Moreover, if it is the case that (n3, . . . , nk+1) , (ñ3, . . . , ñk+1) ∈ Nq then by definition of

level we have

L (ñ3, . . . , ñk+1) = L (n3, . . . , nk+1) + 1.

Hence θ(A) = B, as required.
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6.5 Residually finite groups

Finally, we prove Theorem 1.31. We follow the argument of Antoĺın and the first and

fourth authors in [1, Theorem 1.3]. The proof uses the following result.

Theorem 6.9 (Erfanian, Rezaei, Lescot [10, Theorem 5.1]). Let G be a finite group that

is not k-step nilpotent. Then

dck(G) ≤ 2k+2 − 3

2k+2
.

Proof of Theorem 1.31. We describe a recursive process outputting a (possibly finite)

sequence G0 > G1 > G2 > . . . of members of N as follows. We may assume without

loss of generality that G ∈ N and set G0 = G. Once Gi−1 is defined, if it is k-step

nilpotent we terminate the process. If not, there exist x1, . . . , xk+1 ∈ Gi−1 such that

[x1, . . . , xk+1] 6= 1. Since
⋂
N∈N N = {1}, there therefore exists Ni ∈ N such that

[x1, . . . , xk+1] /∈ Ni. Set Gi = Gi−1 ∩Ni, noting that Gi ∈ N by the finite-intersection

property, and that Gi−1/Gi is not k-step nilpotent.

Writing γk = (2k+2 − 3)/2k+2, it follows from Theorem 6.9 that dck(Gi−1/Gi) ≤ γk for

every i, and hence from Theorem 1.32 that for every n with Gn defined we have

dck(G/Gn) ≤
n∏
i=1

dck(Gi−1/Gi) ≤ γnk .

The process must therefore terminate for some n ≤ logα/ log γk, meaning that Gn is a

k-step nilpotent subgroup of finite index in G.

7 Dependence on rank

Here we give an example, for any odd prime p and any k ∈ N, of a family
(
G(n)

)∞
n=1

of

finite p-groups that are (k+1)-step nilpotent but not k-step nilpotent, and such that the

centre Z
(
G(n)

)
of G(n) has order p. Moreover, we will show that any k-step nilpotent

subgroup K(n) of G(n) has index at least pn. As G(n)/Z
(
G(n)

)
is k-step nilpotent, this

will show that the bound on the index of a k-step nilpotent subgroup of G in Corollary

1.13 has to depend on the rank of G. By Proposition 1.12, the same can be said about

the bound in Theorem 1.8.

Furthermore, note that this example will show that the index of a k-step nilpotent sub-

group in Theorem 1.31 cannot be bounded in terms of k and α. To see this, it is enough

to apply Proposition 1.12 and to note that if dck
(
G(n)

)
≥ α then also dck

(
G(n)/N

)
≥ α

for any normal subgroup N CG(n).

Finally, we may show that the direct limit of the groups G(n), G = lim−→G(n), is not

k-step nilpotent, but has a finite normal subgroup H (whose cardinality can be chosen
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independently of k) such that G/H is k-step nilpotent; this is described in Section 7.3,

where we prove Proposition 1.14. Such a group cannot be finitely generated (by Corollary

1.13) or residually finite (see Remark 7.5). Thus, this demonstrates the necessity of the

assumptions on finite generation in Theorem 1.8 and Corollary 1.13 and on residual

finiteness in Theorem 1.31.

Throughout this section, we fix an odd prime p, and denote the finite field of cardinality

p by Fp. For r, s ∈ N, we denote by Matr×s(Fp) the Fp-vector space of r × s matrices

with entries in Fp.

7.1 The group Gk(n, r, s)

Let k ∈ Z≥0 and let n, r, s ∈ N. We consider the following subgroup of GLr+kn+s(Fp)
consisting of block upper unitriangular matrices:

Gk(n, r, s) =





Ir A0 A1 · · · Ak−1 C

In D1,1 · · · D1,k−1 B1

In
. . .

...
...

. . . Dk−1,k−1 Bk−1

In Bk

Is



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ai ∈ Matr×n(Fp)
for 0 ≤ i ≤ k − 1,

Bi ∈ Matn×s(Fp)
for 1 ≤ i ≤ k,

C ∈ Matr×s(Fp),
Di,j ∈ Matn×n(Fp)

for 1 ≤ i ≤ j ≤ k − 1


.

For a matrix X ∈ Gk(n, r, s), we will write Aj(X), Bi(X), C(X) and Di,j(X) for

the corresponding blocks of X. For a subset U ⊆ Gk(n, r, s) we will similarly write

Aj(U) = {Aj(X) | X ∈ U}, etc.

Note that for k = 0, the group G0(n, r, s) =

{(
Ir C

0 Is

) ∣∣∣∣∣ C ∈ Matr×s(Fp)

}
is just the

elementary abelian group of order prs. For k = r = s = 1, the group G1(n, 1, 1) is the

extraspecial group of exponent p. It is well-known that such a group is 2-step nilpotent,

has centre of order p, but no abelian subgroups of index < pn (see, for instance, Lemma

7.1 and [22, Theorem 1.8]). We aim to generalise this example; in particular, for the

sequence
(
G(n)

)
of groups described above we will take G(n) = Gk(n, 1, 1). We thus

need to show that Gk(n, 1, 1) is (k + 1)-step nilpotent, has centre of order p and has no

k-step nilpotent subgroups of index < pn.

The first two of these statements follow from the following Lemma, whose proof is easy

and left as an exercise for the reader.

Lemma 7.1. Let k ∈ Z≥0 and n, r, s ∈ N. Let G = Gk(n, r, s), and let G = γ1(G) ≥
γ2(G) ≥ · · · and {1} = Z0(G) ≤ Z1(G) ≤ · · · be the lower and upper central series of
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G, respectively. Then

γ`+1(G) = Zk+1−`(G) = {X ∈ G | Aj(X) = 0 for j < `, Bi(X) = 0 for k − i < `,

Di,j(X) = 0 for j − i < `}

for all ` ∈ {0, . . . , k}.

We are therefore left to show that Gk(n, 1, 1) has no k-step nilpotent subgroups of

index < pn. In Section 7.2 we will prove the following proposition, which is slightly

more general.

Proposition 7.2. Let k, n, r, s ∈ N. If a subgroup K ≤ Gk(n, r, s) has index < pn, then

K is not k-step nilpotent.

Remark 7.3. Note that in the case r = s = 1, the bound in Proposition 7.2 is sharp:

indeed, {X ∈ Gk(n, 1, 1) | A0(X) = 0} is a subgroup of Gk(n, 1, 1) of index pn, and it is

not hard to verify that it is k-step nilpotent.

7.2 Non-existence of large k-step nilpotent subgroups

Let G = Gk(n, r, s). By Lemma 7.1, the abelianisation map ρ : G → Gab is given by

mapping a matrix in G to the set of its superdiagonal blocks:

ρ : G→ Matr×n(Fp)⊕

(
k−1⊕
i=1

Matn×n(Fp)

)
⊕Matn×s(Fp) ∼= Fn(r+(k−1)n+s)

p ,

X 7→ (A0(X), D1,1(X), . . . , Dk−1,k−1(X), Bk(X))

for k ≥ 1, and ρ : G → Matr×s(Fp), X 7→ C(X) for k = 0. For a subgroup K ≤ G,

we define the quasi-rank (respectively quasi-corank) of K in G to be the dimension

(respectively codimension) of ρ(K) in the Fp-vector space Gab. Note that if K has

quasi-corank q then we have [G : Kγ2(G)] = pq. We thus aim to show that the quasi-

corank of a k-step nilpotent subgroup of Gk(n, r, s) will be at least n.

The inductive proof of Proposition 7.2 is based on the surjective homomorphism π =

πk,n,r,s, obtained by taking the bottom-right (kn+ s)× (kn+ s) submatrix:

π : Gk(n, r, s)→ Gk−1(n, n, s),

Ir A0 A1 · · · Ak−1 C

In D1,1 · · · D1,k−1 B1

In
. . .

...
...

. . . Dk−1,k−1 Bk−1

In Bk

Is


7→



In D1,1 · · · D1,k−1 B1

In
. . .

...
...

. . . Dk−1,k−1 Bk−1

In Bk

Is


.
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Note that if K ≤ Gk(n, r, s) has quasi-corank q, then π(K) ≤ Gk−1(n, n, s) will have

quasi-corank at most q.

For any X ∈ γk(Gk(n, r, s)) we have B2(X) = · · · = Bk(X) = 0 by Lemma 7.1, and

for any Y ∈ kerπk,n,r,s we have B1(Y ) = · · · = Bk(Y ) = 0 by the definition of πk,n,r,s.

Therefore,

C([X,Y ]) = (C(Y ) +A0(X)B1(Y ) + · · ·+Ak−1(X)Bk(Y ) + C(X))

− (C(X) +A0(Y )B1(X) + · · ·+Ak−1(Y )Bk(X) + C(Y ))

= −A0(Y )B1(X) for all X ∈ γk(Gk(n, r, s)) and Y ∈ kerπk,n,r,s.

(7.1)

Thus, in order to prove Proposition 7.2, given a subgroup K ≤ Gk(n, r, s) of quasi-corank

< n we need to find matrices X ∈ γk(K) and Y ∈ K ∩kerπ such that A0(X)B1(Y ) 6= 0.

We first prove a slightly stronger version of Proposition 7.2 under the additional as-

sumption that r = n.

Lemma 7.4. Let k ∈ Z≥0 and n, s ∈ N. Let K be a subgroup of Gk(n, n, s) of quasi-

corank q < n. Then the subspace

C(γk+1(K)) = {C(X) | X ∈ γk+1(K)} ≤ Matn×s(Fp)

has codimension at most q.

Proof. By induction on k. For k = 0, we have G0(n, n, s) ∼= Matn×s(Fp) and C(γ1(K)) =

C(K) ∼= K, hence the result is clear.

Now suppose k ≥ 1, and let π = πk,n,n,s. As K has quasi-corank q in Gk(n, n, s),

the subgroup π(K) ≤ Gk−1(n, n, s) will have quasi-corank at most q. Therefore, by

induction hypothesis, the subspace

C(γk(π(K))) = B1(γk(K)) = {B1(X) | X ∈ γk(K)} ≤ Matn×s(Fp)

will have codimension at most q.

Moreover, it is clear by the definition of the quasi-corank that the subspace

A0(K ∩ kerπ) := {A0(X) | X ∈ K ∩ kerπ} ≤ Matn×n(Fp)

will have codimension at most q, so in particular

dimA0(K ∩ kerπ) ≥ n2 − q > n2 − n.

It follows by [8, Corollary 13] that A0(K ∩ kerπ) is generated by matrices of rank n, so

in particular there exists a matrix Y ∈ K∩kerπ such that A0(Y ) is invertible. But now,
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as C(γk+1(K)) contains C([X,Y ]) = −A0(Y )B1(X) for any X ∈ γk(K) (see (7.1)), it

follows that

codimC(γk+1(K)) ≤ codimB1(γk(K)) ≤ q,

as required.

Proof of Proposition 7.2. Let q be the quasi-corank of K in G = Gk(n, r, s). Then we

have

pq = [G : Kγ2(G)] ≤ [G : K] < pn

and so q < n. Consider again the map π = πk,n,r,s, and let q1 be the quasi-corank of

π(K) in Gk−1(n, n, s). By Lemma 7.4, the subspace B1(γk(K)) = C(γk(π(K))) will

have codimension at most q1 in Matn×s(Fp). By the rank-nullity theorem, the subspace

A0(K ∩ kerπ) ≤ Matr×n(Fp) will have codimension q − q1 =: q2.

Now consider the projections τ1 : Matr×n(Fp) → Fnp and τ2 : Matn×s(Fp) → Fnp of ma-

trices to the top row and to the right column, respectively. By (7.1), for any X ∈ γk(K)

and Y ∈ K ∩ kerπ, the top right entry of [X,Y ] will be −〈τ1(A0(Y )), τ2(B1(X))〉,
where 〈−,−〉 is the standard bilinear form on Fnp . Furthermore, it is clear that T1 :=

τ1(A0(K ∩ kerπ)) and T2 := τ2(B1(γk(K))) will have codimensions (in Fnp ) at most q1

and at most q2, respectively. Thus, as q < n, we have

dimT1 + dimT2 ≥ (n− q1) + (n− q2) = 2n− q > n,

and so, as 〈−,−〉 is non-degenerate,

dimT1 > n− dimT2 = dimT⊥2 .

This implies that T1 � T⊥2 , that is, 〈T1, T2〉 6= 0. Therefore, there exist matrices

X ∈ γk(K) and Y ∈ K ∩ kerπ such that the top right entry of [X,Y ] is non-zero,

so K is not k-step nilpotent.

7.3 Qualitative conclusions

Apart from the rank-dependence of quantitative conclusions of Theorem 1.8 and Corol-

lary 1.13, we may use the groups Gk(n, 1, 1) to give counterexamples to qualitative

conclusions as well for groups that are not finitely generated. In particular, we will

prove Proposition 1.14, which shows that the assumption for G to be finitely generated

in Corollary 1.13 is necessary. Throughout the rest of this section, fix a prime p and,

for each n ≥ 1, let Gk(n) := Gk(n, 1, 1) be the finite groups defined in Section 7.1.

Proof of Proposition 1.14. Our proof relies on the observation that Gk(n) can be seen
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as a subgroup of Gk(n+ 1). In particular, it is easy to see that

Gk(n) =





1 a0
T a1

T · · · ak−1
T c

In+1 D1,1 · · · D1,k−1 b1

In+1
. . .

...
...

. . . Dk−1,k−1 bk−1

In+1 bk

1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ai,bi ∈ Fnp
for 0 ≤ i ≤ k − 1,

c ∈ Fp,
Di,j ∈ Matn×n(Fp)

for 1 ≤ i ≤ j ≤ k − 1


is a subgroup of Gk(n+ 1) isomorphic to Gk(n), where given any A ∈ Matn×n(Fp) and

a ∈ Fnp we define A =

(
A 0

0T 0

)
∈ Mat(n+1)×(n+1)(Fp) and a =

(
a

0

)
∈ Fn+1

p . This

allows us to define the direct limit

Gk := lim−→Gk(n).

Given n ≥ 1, let fn : Gk(n) → Gk be the canonical inclusion. It follows from Lemma

7.1 that for each n, the image fn(Z(Gk(n))) of the centre of Gk(n) in Gk is the same

subgroup (Hk, say) of Gk of order p. Hence we have Z(Gk) =
⋃
n≥1 fn(Z(Gk(n))) = Hk,

and in particular, Hk is normal in Gk. We will show that G = Gk and H = Hk satisfy

the conclusion of the Proposition.

To show that Gk/Hk is k-step nilpotent, let g0, . . . , gk ∈ Gk be arbitrary elements.

Then, for any sufficiently large n and all i ∈ {0, . . . , k} we have gi = fn(hi) for some

hi ∈ Gk(n), and so

[h0, . . . , hk] ∈ γk+1(Gk(n)) ≤ Z(Gk(n))

as Gk(n) is (k + 1)-step nilpotent. In particular,

[g0, . . . , gk] = fn([h0, . . . , hk]) ∈ fn(Z(Gk(n))) = Hk,

and so Gk/Hk is k-step nilpotent, as required.

Finally, to show that Gk is not virtually k-step nilpotent, let N ≤ Gk be a subgroup of

index m < ∞. Let n ∈ Z≥1 be such that pn > m, and note that [Gk(n) : f−1
n (N)] ≤

[Gk : N ] = m < pn. Thus, by Proposition 7.2, f−1
n (N) cannot be k-step nilpotent. But

as fn is injective, f−1
n (N) is isomorphic to a subgroup of N , and so N cannot be k-step

nilpotent either.

As the group Gk constructed in Proposition 1.14 is a direct limit of finite groups,

lim−→Gk(n), it is amenable, and in particular the finite subgroups Gk(n) form a Følner
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sequence for Gk. We may thus define measures µn on Gk by setting

µn(A) =
|A ∩ fn(Gk(n))|
|Gk(n)|

for any A ⊆ Gk, where fn : Gk(n) → Gk is the canonical inclusion. It follows from

a result of the second author [21, Theorem 1.13] that the sequence M = (µn)∞n=1

measures index uniformly on G. Moreover, we know that |γk+1(Gk(n))| = p which,

when combined with Proposition 1.10, implies that dck(Gk(n)) ≥ 1/p and therefore

dckM (Gk) = lim supn→∞ dck(Gk(n)) ≥ 1/p. This shows that the assumption for G to be

finitely generated is necessary in Theorem 1.8 as well.

Remark 7.5. Note that the group G in Proposition 1.14 cannot be residually finite.

Indeed, any finite-index subgroup N ≤ G cannot be k-step nilpotent, and therefore

{1} 6= γk+1(N) ≤ γk+1(G) ∩N ≤ H ∩N, (7.2)

where the last inclusion comes from the fact that G/H is k-step nilpotent. Hence,

H ∩ N 6= {1}. But now if G was residually finite, then for each non-trivial g ∈ H we

could pick a finite-index subgroup Ng ≤ G such that g /∈ Ng. Then N :=
⋂
g∈H Ng is a

finite-index subgroup of G (as H is finite) and N ∩H = {1}, contradicting (7.2). Thus

G cannot be residually finite, as claimed.

Appendix

A Polynomial mappings into torsion-free nilpotent groups

In this appendix we prove the following extension of Lemma 5.5, using a similar argument

to the one that Leibman uses to reduce [15, Proposition 3.21] to [15, Proposition 2.15].

Proposition A.1. Let G be a group, let N be a finitely generated torsion-free s-step

nilpotent group, and let ϕ : G→ N be a polynomial mapping of degree d. Then there is

a torsion-free ds-step nilpotent quotient G′ of G and a polynomial mapping ϕ̂ : G′ → N

of degree d such that, writing π : G → G′ for the quotient homomorphism, we have

ϕ = ϕ̂ ◦ π.

Given a group G we write

G = γ1(G)B γ2(G)B . . .

for the lower central series of G. Following [17], we define the generalised commutator

subgroups γi(G) of G via

γi(G) = {x ∈ G : ∃n ∈ N such that xn ∈ γi(G)},



98 Paper 2 Probabilistic nilpotence in infinite groups

noting that G/γi(G) is torsion-free (i− 1)-step nilpotent.

Lemma A.2. Let G be a group and let x ∈ γi(G). Then there exists a finitely generated

subgroup Γ = Γ(x, i) < G such that x ∈ γi(Γ). If instead x ∈ γi(G) then there exists a

finitely generated subgroup Λ = Λ(x, i) < G such that x ∈ γi(Λ)

Proof. To start with we assume that x ∈ γi(G). In the case i = 1 the lemma is satisfied

by taking Γ(x, 1) = 〈x〉, so we may assume that i ≥ 2. If x ∈ γi(G) this implies that

there exist elements y1, . . . , yk ∈ γi−1(G) and z1, . . . , zk ∈ G such that x =
∏k
j=1[yj , zj ],

and so by induction on i we may take

Γ(x, i) = 〈Γ(y1, i− 1), . . . ,Γ(yk, i− 1), z1, . . . , zk〉.

If instead x ∈ γi(G) then by definition there exists n ∈ N such that xn ∈ γi(G), and so

we may take Λ(x, i) = 〈Γ(xn, i), x〉.

Proof of Proposition A.1. It is sufficient to show that for every x ∈ G and c ∈ γds+1(G)

we have ϕ(xc) = ϕ(x). Following Leibman’s proof of [15, Proposition 3.21], we may

assume by Lemma A.2 that G is finitely generated. It then follows from [15, Corol-

lary 1.18] that ϕ(G) lies in a finitely generated subgroup of N , and so we may also

assume that N is finitely generated. The proposition then follows from Lemma 5.5 and

[15, Proposition 3.15].

B Hyperbolic groups

The following argument was communicated by Yago Antoĺın, and shows that generic

subgroups of hyperbolic groups are free, with respect to the uniform probability measure

on the balls given by a finite generating set. In particular, the degree of nilpotence with

respect to such a measure is zero for any non-elementary hyperbolic group.

These techniques and the result are well known to experts, and we include it here for

completeness.

As previously, let Fr denote the free group of rank r. For a group, G, generated by a

(finite) set X, we let BX(n) denote the ball of radius n, and for an element g ∈ G, we

denote by |g|X the word length of g. Let µn be the uniform probability measure on the

ball of radius n in G with respect to X.

Theorem B.1. Let G be a non-elementary hyperbolic group with a finite generating

set X. For every r ∈ N

lim
n→∞

|{(g1, . . . , gr) ∈ BX(n)r | 〈g1, . . . , gr〉 ∼= Fr}|
|BX(n)|r

= 1,
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and the limit converges exponentially fast.

We note that the analogous theorem with respect to sequences of measures (µ∗n)∞n=1

corresponding to the steps of the random walk on G was proved in [12].

The following Corollary is immediate:

Corollary B.2. Let G be a non-elementary hyperbolic group with a finite generating set,

X, and write M = (µn)∞n=1 for the sequence of uniform measures on the balls BX(n).

Then dckM (G) = 0.

Throughout, G is a non-elementary hyperbolic group (i.e. a hyperbolic group that is

not virtually cyclic) and X a finite generating set of G. We assume that Γ(G,X) is

δ-hyperbolic. There are many equivalent definitions of Gromov hyperbolicity, (see for

example [4, Chapter III.H.1.17]), for convenience we will use the one that says that

geodesic triangles are δ-thin. In particular, if x, y, z ∈ G, and α is a geodesic with

endpoints in x and y, β a geodesic with endpoints in x, z and γ a geodesics with endpoints

y, z then we have that for points v ∈ α and u ∈ β with d(x, u) = d(x, v) ≤ (y · z)x :=
1
2(d(x, y) + d(x, z)− d(y, z)) one has that d(u, v) ≤ δ.

Since G has exponential growth, lim n
√
|BX(n)| = λ > 1. A result of Coornaert [6] states

that there are positive constants A, B and n0 such that

Aλn ≤ |BX(n)| ≤ Bλn (B.1)

for all n ≥ n0.

Remark B.3. From the submultiplicativity of the function |BX(n)| it follows that the

limit lim n
√
|BX(n)| exists and hence for every ε > 0 there exists nε, A and B such that

for all n > nε,

A(λ− ε)n ≤ |BX(n)| ≤ B(λ+ ε)n.

One can prove Theorem B.1 using this weaker fact. However, for simplicity of exposition,

we have preferred to use (B.1).

Lemma B.4 (Delzant [9, Lemma 1.1.]). Let (xn) be a sequence of points on a δ-

hyperbolic metric space such that d(xn+2, xn) ≥ max (d(xn+2, xn+1),d(xn+1, xn))+2δ+a.

Then d(xn, xm) ≥ a|m− n|.

Lemma B.5. There exists a constant D0 = D0(δ) ≥ 0 such that the following holds.

Let g1, g2, . . . , gr ∈ G satisfying that for all a, b ∈ {g1, . . . , gr}±1 with a 6= b−1 the

inequality

|ab|X ≥ max{|a|X , |b|X}+D0 (B.2)

holds. Then 〈g1, . . . , gn〉 is a free subgroup with basis {g1, . . . , gn}.
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Proof. Take D0 ≥ 2δ+ 1. Let w be any reduced word on Z = {g1, . . . , gr}±1 and denote

by wi the prefix of length i (as a word in Z). Then d(wi, wi+2) = d(1, w−1
i wi+1) = |ab|X

for some a, b ∈ Z with a 6= b−1 (since w is reduced). Thus, it follows from Lemma B.4

that |w|X ≥ `Z(w), where `Z(w) denotes the length of w as a word in Z.

We will find bounds on the number of elements in BX(n) not satisfying (B.2). There

are two different cases to be considered: a = b and a 6= b.

Lemma B.6. There is D1 = D1(δ,D0) ≥ 0 such that the cardinality of the set

AA(n) = {g ∈ BX(n) | |g2|X < |g|X +D0}

is bounded above by |BX(n2 +D1)|.

Proof. Let g ∈ BX(n) with |g2|X < |g|X + D0. Then (1 · g2)g > |g|X/2 − D0/2. Let

w be a geodesic word over X representing g. Suppose that w = wιw
′wτ , where wι

and wτ are the prefix and suffix of w of length (1, g2)g, respectively. Then, there exists

t ∈ BX(δ) such that wτwι =G t. Thus w−1
ι gwι = w′t, and therefore g is conjugated to an

element of length at most D0 +δ by an element of length at most n/2−D0/2. Hence, the

cardinality of AA(n) is bounded above by |BX(n/2−D0/2)||BX(D0 +δ)| ≤ |BX(n2 +D1)|
for some D1.

Remark B.7. Note that by Lemma B.5, if g /∈ AA(n) then g has infinite order. Thus,

in particular, the above Lemma implies that the number of finite order elements in the

ball of radius n is at most |BX(n2 +D1)|. This appears in [7].

Lemma B.8. Let ε ∈ (3/4, 1), n ∈ N and g ∈ G. Suppose that |g|X > εn. Then there

exists D2 = D2(δ,D0, ε) ≥ 0 such that the cardinality of the set

AB(g, n) = {h ∈ BX(n) | |h|X > εn, |gh|X < n+D0}

is bounded above by |BX(3n
4 +D2)|.

Proof. Let h ∈ BX(n) with |h|X > εn and |gh|X < n+D0. Then

(1 · gh)h > εn− n/2−D0/2 > n/4−D0/2.

Let u and v be geodesic words over X representing g and h respectively. Suppose

that u = u1u2 and v = v1v2, where u2 and v1 have length (1, gh)h. Note that

|v2|X ≤ 3n/4 +D0/2. Then there exists t ∈ BX(δ) such that u2v1 =G t. Thus,

u2h = tv2, and so AB(g, n) is contained in u−1
2 BX(δ)BX(3/4n+D0/2).

Proof of Theorem B.1. Fix ε ∈ (3/4, 1).



Paper 2 Probabilistic nilpotence in infinite groups 101

Let

P0(n) =
|{(g1, . . . , gr) ∈ (BX(n)− BX(εn))r | gi /∈ AA(n)}|

|BX(n)|r
.

For n� 0, we have from Lemma B.6 and (B.1)

P0(n) ≥ (|BX(n)| −Aλεn −Aλn/2+D1)r

|BX(n)|r

≥ (|BX(n)| − 2Aλεn)r

|BX(n)|r

≥ 1−
∑r

k=1

(
r
k

)
|BX(n)|r−k(2Aλεn)k

|BX(n)|r

≥ 1−
r∑

k=1

(
r

k

)(
2Aλεn

Bλn

)k
≥ 1− C1

λ(1−ε)n

where C1 is some constant depending on A, B and r.

For j = 1, . . . , r, let

Pj(n) =
|{(g1, . . . , gr) ∈ (BX(n)− BX(εn))r | gj /∈ AB(g±1

i , n) for i 6= j}|
|BX(n)|r

.

For n� 0, we have from Lemma B.8 and (B.1)

Pj(n) ≥ (|BX(n)| − |BX(εn)|)r − (2r − 2)|BX(3n/4 +D2)|(|BX(n)| − |BX(εn)|)r−1

|BX(n)|r

≥ (|BX(n)| − |BX(εn)|)r

|BX(n)|r
− (2r − 2)|BX(3n/4 +D2)|(|BX(n)|)r−1

|BX(n)|r

≥ 1− C1

λ(1−ε)n −
(2r − 2)Aλ3n/4+D2

Bλn

≥ 1− C1

λ(1−ε)n −
C2

λn/4

where C2 is some constant depending on A,B and r.

Thus, for i = 0, 1, . . . , r limn→∞ Pi(n) = 1 converges exponentially fast. By Lemma B.5

we have that for n� 0

1 ≥ |{(g1, . . . , gr) ∈ BX(n)r | 〈g1, . . . , gr〉 ∼= Fr}|
|BX(n)|r

≥ 1−
r∑
i=0

(1− Pi(n))

and taking limits, we see that the probability that an r-tuple freely generates a free

group converges to 1 exponentially fast.
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Paper 3

ACYLINDRICAL HYPERBOLICITY OF GROUPS ACTING ON

QUASI-MEDIAN GRAPHS AND EQUATIONS IN GRAPH

PRODUCTS

MOTIEJUS VALIUNAS

Abstract. In this paper we study group actions on quasi-median graphs, or ‘CAT(0)

prism complexes’, generalising the notion of CAT(0) cube complexes. We consider

hyperplanes in a quasi-median graph X and define the contact graph CX for these

hyperplanes. We show that CX is always quasi-isometric to a tree, generalising a result

of Hagen [16], and that under certain conditions a group action G y X induces an

acylindrical action Gy CX, giving a quasi-median analogue of a result of Behrstock,

Hagen and Sisto [5].

As an application, we exhibit an acylindrical action of a graph product on a quasi-tree,

generalising results of Kim and Koberda for right-angled Artin groups [18], [19]. We

show that for many graph products G, the action we exhibit is the ‘largest’ acylindrical

action of G on a hyperbolic metric space. We use this to show that the graph products

of equationally Noetherian groups over finite graphs of girth ≥ 5 are equationally

Noetherian, generalising a result of Sela [25].

1 Introduction

Group actions on CAT(0) cube complexes occupy a central role in geometric group

theory. Such actions have been used to study many interesting classes of groups, such as

right-angled Artin and Coxeter groups, many small cancellation and 3-manifold groups,

and even finitely presented infinite simple groups, constructed by Burger and Mozes in

[7]. Study of CAT(0) cube complexes is aided by their rich combinatorial structure,

introduced by Sageev in [24].

In the present paper we study quasi-median graphs, which can be viewed as a gener-

alisation of CAT(0) cube complexes; see Definition 2.1. In particular, one may think

of quasi-median graphs as ‘CAT(0) prism complexes’, consisting of prisms – cartesian

products of (possibly infinite dimensional) simplices – glued together in a non-positively

curved way. In his PhD thesis [10], Genevois introduced cubical-like combinatorial

structure and geometry to study a wide class of groups acting on quasi-median graphs,

including graph products, certain wreath products, and diagram products.

In particular, given a quasi-median graph X, we study hyperplanes in X: that is, the

equivalence classes of edges of X, under the equivalence relation generated by letting two

edges be equivalent if they induce a square or a triangle. Two hyperplanes are said to

intersect if two edges defining those hyperplanes are adjacent in a square, and osculate

if two edges defining those hyperplanes are adjacent but do not belong to a square; see

105
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Definition 2.2. This allows us to define two other graphs related to X, which turn out

to be useful in the study of groups acting on X.

Definition 1.1. Let X be a quasi-median graph. We define the contact graph CX and

the crossing graph ∆X as follows. For the vertices, let V (CX) = V (∆X) be the set of

hyperplanes of X. Two hyperplanes H,H ′ are then adjacent in ∆X if and only if H

and H ′ intersect; hyperplanes H,H ′ are adjacent in CX if and only if H and H ′ either

intersect or osculate.

For a CAT(0) cube complex X, Hagen has shown that the contact graph CX is a quasi-

tree – that is, it is quasi-isometric to a tree [16, Theorem 4.1]. Here we generalise this

result to quasi-median graphs.

Theorem A. Let X be a quasi-median graph. Then the contact graph CX is a quasi-

tree.

We prove Theorem A in Section 3.2.

In this paper we study acylindrical hyperbolicity of groups acting on quasi-median

graphs.

Definition 1.2. Suppose a group G acts on a metric space (X, d) by isometries. Such

an action is said to be acylindrical if for every ε > 0, there exist constants Dε, Nε > 0

such that for all x, y ∈ X with d(x, y) ≥ Dε, the number of elements g ∈ G satisfying

d(x, xg) ≤ ε and d(y, yg) ≤ ε

is bounded above by Nε. Moreover, an action G y X by isometries on a hyperbolic

metric space X is said to be non-elementary if orbits under this action is unbounded

and G is not virtually cyclic.

A group G is then said to be acylindrically hyperbolic if it possesses a non-elementary

acylindrical action on a hyperbolic metric space.

Acylindrically hyperbolic groups form a large family, including hyperbolic and relatively

hyperbolic groups, mapping class groups of most surfaces, and Out(Fn) for n ≥ 3 [23].

This family also includes ‘most’ hierarchically hyperbolic groups [5, Corollary 14.4], and

in particular ‘most’ groups G that act properly and cocompactly on a CAT(0) cube

complex with a ‘factor system’: see [5]. The following result shows that, more generally,

many groups acting on quasi-median graphs are acylindrically hyperbolic.

In the following theorem, we say a group action G y X is special if there are no two

hyperplanes H,H ′ of X such that H and H ′ intersect but Hg and H ′ osculate for some

g ∈ G, and there is no hyperplane H that intersects or osculates with Hg 6= H for

some g ∈ G. We say a collection S of sets is uniformly finite if there exists a constant

D ∈ N such that each S ∈ S has cardinality ≤ D.
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Theorem B. Let G be a group acting specially on a quasi-median graph X, and suppose

vertices in ∆X/G have uniformly finitely many neighbours.

(i) If ∆X is connected and ∆X/G has finitely many vertices, then the inclusion

∆X ↪→ CX is a quasi-isometry.

(ii) If stabilisers of vertices under Gy X are uniformly finite, then the induced action

Gy CX is acylindrical. In particular, if the orbits under Gy CX are unbounded,

then G is either virtually cyclic or acylindrically hyperbolic.

We prove part (i) of Theorem B in Section 3.1, and part (ii) in Section 4.

Note that a large class of examples of group actions on CAT(0) cube complexes with a

factor system comes from special actions [5, Corollaries 8.8 and 14.5]. Theorem B (ii)

generalises this result to quasi-median graphs. We also show that several other hierarchi-

cally hyperbolic space-like results on CAT(0) cube complexes generalise to quasi-median

graphs: for instance, existence of ‘hierarchy paths’, see [5, Theorem A (2)] and Propo-

sition 3.1.

The main application of Theorems A and B we give is to study graph products of groups.

In particular, let Γ be a simplicial graph and let G = {Gv | v ∈ V (Γ)} be a collection

of non-trivial groups. The graph product ΓG of the groups Gv over Γ is defined as the

group

ΓG =

(
∗

v∈V (Γ)
Gv

)/〈〈
g−1
v g−1

w gvgw
∣∣ gv ∈ Gv, gw ∈ Gw, (v, w) ∈ E(Γ)

〉〉
.

For example, for a complete graph Γ we have ΓG ∼=
∏
v∈V (Γ)Gv, while for discrete Γ we

have ΓG ∼= ∗v∈V (Γ)Gv. The applicability of the results above to graph products follows

from the following result of Genevois.

Theorem 1.3 (Genevois [10, Propositions 8.2 and 8.11]). Let Γ be a simplicial graph, let

G = {Gv | v ∈ V (Γ)} be a collection of non-trivial groups, and let S =
⋃
v∈V (Γ)Gv\{1} ⊆

ΓG. Then the Cayley graph X of ΓG with respect to S is quasi-median. Moreover, the

action of ΓG on X is free on vertices, special, and the quotient ∆X/ΓG is isomorphic

to Γ.

An important subclass of graph products are right-angled Artin groups (RAAGs): in-

deed, if Gv ∼= Z then ΓG is the RAAG associated to Γ. In this case, a vertex v ∈ V (Γ)

is usually identified with a generator of Gv. In [18] Kim and Koberda constructed the

extension graph Γe of a RAAG G = ΓG as a graph with vertex set V (Γe) = {vg ∈ G |
g ∈ G, v ∈ V (Γ)}, where gv and hw are adjacent in Γe if and only if they commute as

elements of G. This graph turns out to be the same as the crossing graph ∆X of the

Cayley graph X defined in Theorem 1.3.
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In fact, Kim and Koberda showed that, given that |V (Γ)| ≥ 2 and both Γ and its

complement ΓC are connected, Γe is quasi-isometric to a tree [18] and the action of G on

Γe by conjugation is non-elementary acylindrical [19]. In this paper we generalise these

results to arbitrary graph products; this follows as a special case of Theorems A and B.

As a special case, we recover hyperbolicity of the extension graph Γe and acylindricity

of the action ΓG y Γe, providing an alternative (shorter and more geometric) argument

to the ones presented in [18] and [19]. In the following corollary, a graph Γ is said to

have bounded degree if there exists a constant D ∈ N such that each vertex of Γ has

degree ≤ D.

Corollary C. Let Γ be a simplicial graph, let G = {Gv | v ∈ V (Γ)} be a collection of

non-trivial groups, and let X be the quasi-median graph defined in Theorem 1.3. Then

CX is a quasi-tree, and if Γ has bounded degree then the induced action ΓG y CX is

acylindrical. Moreover, if |V (Γ)| ≥ 2 and the complement ΓC of Γ is connected, then

either ΓG ∼= C2 ∗ C2 is the infinite dihedral group, or this action is non-elementary.

The hyperbolicity of CX and the acylindricity of the action follow immediately from

Theorems A, B and 1.3, while non-elementarity is shown in Section 5.1.

It is worth noting that Minasyan and Osin have already shown in [22] that if |V (Γ)| ≥ 2

and the complement of Γ is connected, then ΓG is either infinite dihedral or acylindri-

cally hyperbolic. However, their proof is not direct and does not provide an explicit

acylindrical action on a hyperbolic space. The aim of Corollary C is to describe such an

action.

We also show that in many cases the action of ΓG on CX is, in the sense of Abbott,

Balasubramanya and Osin [1], the ‘largest’ acylindrical action of ΓG on a hyperbolic

metric space: see Section 5.2. In particular, we show that many graph products are

strongly AH-accessible. This generalises the analogous result for right-angled Artin

groups [1, Theorem 2.19 (c)].

Corollary D. Let Γ be a finite simplicial graph and let G = {Gv | v ∈ V (Γ)} be a

collection of infinite groups. Suppose that for each isolated vertex v ∈ V (Γ), the group

Gv is strongly AH-accessible. Then ΓG is strongly AH-accessible. Furthermore, if Γ

has no isolated vertices, then the action ΓG y CX, where X is as in Theorem 1.3, is

the largest acylindrical action of ΓG on a hyperbolic metric space.

We prove Corollary D in Section 5.2.

Remark 1.4. After the first version of this preprint was made available, it has been

brought to the author’s attention that most of the results stated in Corollary C follow

from the results in [9], [11], [13]. Moreover, a special case of Corollary D (when the

vertex groups Gv are hierarchically hyperbolic) follows from the results in [2], [6]. See

Remarks 5.4 and 5.5 for details.
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As an application, we use Corollary C to study the class of equationally Noetherian

groups, defined as follows.

Definition 1.5. Given n ∈ N, let Fn denote the free group of rank n with a free basis

X1, . . . , Xn. Given a group G, an element s ∈ Fn and a tuple (g1, . . . , gn) ∈ Gn, we

write s(g1, . . . , gn) ∈ G for the element obtained by replacing every occurence of Xi in

s with gi, and evaluating the resulting word in G. Given a subset S ⊆ Fn, the solution

set of S in G is

VG(S) = {(g1, . . . , gn) ∈ Gn | s(g1, . . . , gn) = 1 for all s ∈ S}.

A group G is said to be equationally Noetherian if for any n ∈ N and any subset S ⊆ Fn,

there exists a finite subset S0 ⊆ S such that VG(S0) = VG(S).

Many classes of groups are known to be equationally Noetherian. For example, groups

that are linear over a field – in particular, right-angled Artin groups – are equationally

Noetherian [4, Theorem B1]. It is easy to see that the class of equationally Noetherian

groups is preserved under taking subgroups and direct products; a deep and non-trivial

argument shows that the same is true for free products:

Theorem 1.6 (Sela [25, Theorem 9.1]). Let G and H be equationally Noetherian groups.

Then G ∗H is equationally Noetherian.

Using methods of Groves and Hull developed for acylindrically hyperbolic groups [15],

we generalise Theorem 1.6 to a wider class of graph products.

Theorem E. Let Γ be a finite simplicial triangle-free and square-free graph, and let

G = {Gv | v ∈ V (Γ)} be a collection of equationally Noetherian groups. Then the graph

product ΓG is equationally Noetherian.

We prove Theorem E in Section 6.

The paper is structured as follows. In Section 2, we define quasi-median graphs and give

several results that are used in later sections. In Section 3, we analyse the geometry of

the contact graph and its relation to crossing graph, and prove Theoren A and Theorem

B (i). In Section 4, we consider the action of a group G on a quasi-median graph X, and

prove Theorem B (ii). In Section 5, we consider the particular case when G = ΓG is a

graph product and X is the quasi-median graph associated to it, and deduce Corollaries

C and D. In Section 6, we apply these results to prove Theorem E.
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2 Preliminaries

Throughout the paper, we use the following conventions and notation. By a graph X,

we mean an undirected simple (simplicial) graph, and we write V (X) and E(X) for the

vertex and edge sets of X, respectively. Moreover, we write dX(−,−) for the combina-

torial metric on X – thus, we view X as a geodesic metric space. We consider the set N
of natural numbers to include 0.

Given a group G, all actions of G on a set X are considered to be right actions,

θ : X ×G→ X, and are written as θ(x, g) = xg or θ(x, g) = xg. Note that this re-

sults in perhaps unusual terminology when we consider a Cayley graph Cay(G,S): in

our case it has edges of the form (g, sg) for g ∈ G and s ∈ S.

2.1 Quasi-median graphs

In this section we introduce quasi-median graphs and basic results that we use through-

out the paper. Most of the definitions and results in this section were introduced by

Genevois in his thesis [10]. We therefore refer the interested reader to [10] for further

discussion and results on applications of quasi-median graphs to geometric group theory.

Definition 2.1. Let X be a graph, let x1, x2, x3 ∈ V (X) be three vertices, and let

k ∈ N. We say a triple (y1, y2, y3) ∈ V (X)3 is a k-quasi-median of (x1, x2, x3) if (see

Figure 3.1(a)):

(i) yi and yj lie on a geodesic between xi and xj for any i 6= j;

(ii) k = dX(y1, y2) = dX(y1, y3) = dX(y2, y3); and

(iii) k is as small as possible subject to (i) and (ii).

We say (y1, y2, y3) ∈ V (X)3 is a quasi-median of (x1, x2, x3) ∈ V (X)3 if it is a k-quasi-

median for some k. A 0-quasi-median is called a median.

We say a graph X is a quasi-median graph if (see Figure 3.1(b)):

(i) every triple of vertices has a unique quasi-median;

(ii) K1,1,2 is not isomorphic to an induced subgraph of X; and

(iii) if Y ∼= C6 is a subgraph of X such that the embedding Y ↪→ X is isometric, then

the convex hull of Y in X is isomorphic to the 3-cube.

There are many equivalent characterisations of quasi-median graphs: see [3, Theorem 1].

In this paper we think of quasi-median graphs as generalisations of median graphs.
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x1

y1

x2

y2

x3

y3

k

kk

(a) A k-quasi-median (y1, y2, y3) of (x1, x2, x3).

K1,1,2 C6 3-cube

(b) The graphs K1,1,2, C6 and the 3-cube.

Figure 3.1: Graphs appearing in Definition 2.1.

Recall that a graph X is called a median graph if every triple of vertices of X has a

unique median. In particular, every median graph is quasi-median; more precisely, it is

known that a graph is median if and only if it is quasi-median and triangle-free: see [10,

Corollary 2.92], for instance.

In what follows, a clique is a maximal complete subgraph, a triangle is a complete graph

on 3 vertices, and a square is a complete bipartite graph on two sets of 2 vertices each.

Definition 2.2. Let X be a quasi-median graph. Let ∼ be the equivalence relation

on E(X) generated by the equivalences e ∼ f when e and f either are two sides of a

triangle or opposite sides of a square. A hyperplane H is an equivalence class [e] for

some e ∈ E(X); in this case, we say H is the hyperplane dual to e (or, alternatively,

H is the hyperplane dual to any clique containing e). Given a hyperplane H dual to

e ∈ E(X), the carrier of H, denoted by N (H), is the full subgraph of X induced by

[e] ⊆ E(X); a fibre of H is a connected component of N (H) \ J , where J is the union

of the interiors of all the edges in [e].

Given two edges e, e′ ∈ E(X) with a common endpoint (p, say) that do not belong to

the same clique, let H and H ′ be the hyperplanes dual to e and e′, respectively. We

then say H and H ′ intersect (or intersect at p) if e and e′ are adjacent edges in a square,

and we say H and H ′ osculate (or osculate at p) otherwise.

Finally, given two vertices p, q ∈ V (X) and a hyperplane H, we say H separates p from

q if every path between p and q contains an edge dual to H. More generally, we say H

separates two subgraphs P,Q ⊆ X if H does not separate any two vertices of P or any

two vertices of Q, but it separates a vertex of P from a vertex of Q. Given a path γ

in X, we also say H crosses γ if γ contains an edge dual to H.

Another important concept in the study of quasi-median graphs are gated subgraphs.

Such subgraphs coincide with convex subgraphs for median graphs, but in general form

a larger class in quasi-median graphs.

Definition 2.3. Let X be a quasi-median graph, let Y ⊆ X be a full subgraph, and let

v ∈ V (X). We say p ∈ V (Y ) is a gate for v in Y if, for any q ∈ V (Y ), there exists a
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geodesic in X between v and q passing through p. We say a full subgraph Y ⊆ X is a

gated subgraph if every vertex of X has a gate in Y .

The following result says that the subgraphs of interest to us are gated. Here, by

convention, given two graphs Y and Z we denote by Y ×Z the 1-skeleton of the square

complex obtained as a cartesian product of Y and Z.

Proposition 2.4 (Genevois [10, Proposition 2.15]). Let X be a quasi-median graph, H

a hyperplane dual to a clique C, and F a fibre of H. Then N (H), C and F are gated

subgraphs of X. Moreover, there exists a graph isomorphism Ψ : N (H)→ F×C, and the

cliques dual to H (respectively the fibres of H) are precisely the subgraphs Ψ−1({p}×C)

for vertices p ∈ V (F ) (respectively Ψ−1(F × {p}) for vertices p ∈ V (C)).

2.2 Special actions

In this section we describe the hypotheses that we impose on group actions on quasi-

median graphs. We first define what it means for an action on a quasi-median graph to

be special.

Definition 2.5. Let X be a quasi-median graph, and let G be a group acting on it by

graph isomorphisms. We say the action Gy X is special if

(i) no two hyperplanes in the same orbit under Gy X intersect or osculate; and

(ii) given two hyperplanes H and H ′ that intersect, Hg and H ′ do not osculate for

any g ∈ G.

Special actions on CAT(0) cube complexes were introduced by Haglund and Wise in [17].

Notably, there it is shown that, in our terminology, if a group G acts specially, cocom-

pactly and without ‘orientation-inversions’ of hyperplanes on a CAT(0) cube complex X,

then the fundamental group of the quotient X/G embeds in a right-angled Artin group.

It is clear from Proposition 2.4 that no hyperplane in a quasi-median graph can self-

intersect or self-osculate. The next lemma says that, moreover, the action of the trivial

group on a quasi-median graph is special. Recall that two hyperplanes are said to

interosculate if they both intersect and osculate.

Lemma 2.6. In a quasi-median graph X, no two hyperplanes can interosculate.

Proof. Suppose for contradiction that hyperplanes H and H ′ intersect at p and osculate

at q for some p, q ∈ V (X), and assume without loss of generality that p and q are chosen

in such a way that dX(p, q) is as small as possible. It is clear that p 6= q: see, for

instance, [10, Lemma 2.13]. On the other hand, since N (H) and N (H ′) are gated (and
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therefore convex) by Proposition 2.4, and as p, q ∈ N (H) ∩ N (H ′), it follows that a

geodesic between p and q lies in N (H) ∩ N (H ′). In particular, if r is a vertex on this

geodesic, then H and H ′ either intersect at r or osculate at r; by minimality of dX(p, q),

it then follows that dX(p, q) = 1.

Let e be the edge joining p and q, and let K be the hyperplane dual to e. It follows

from Proposition 2.4 that K 6= H and K 6= H ′: indeed, if we had K = H (say), then

K = H and H ′ would intersect at q, contradicting the choice of q. Thus K is distinct

from H and H ′, and so e belongs to a fibre of H and a fibre of H ′. It then follows from

Proposition 2.4 that K intersects both H and H ′ at q, and that the graph Y shown in

Figure 3.2 is a subgraph of X.

We now claim that the embedding Y ↪→ X is isometric. Indeed, as H, H ′ and K are

distinct hyperplanes, no two vertices p′, q′ ∈ V (Y ) with dY (p′, q′) = 2 can be joined

by an edge in X, as that would create a triangle in X with edges dual to different

hyperplanes. It is thus enough to show that if p′, q′ ∈ V (Y ) and dY (p′, q′) = 3, then

dX(p′, q′) = 3. Up to relabelling H, H ′ and K, we may assume without loss of generality

that p′ = s and q′ = q. Now it is clear that dX(s, q) 6= 1: otherwise, p1s and q1q are

opposite sides in a square in X, contradicting the fact that H 6= H ′. Thus, suppose

for contradiction that dX(s, q) = 2. But then the triple (p1, s, t) is a quasi-median of

(p1, s, q) for some vertex t ∈ V (X), and the edges p1s, p1t, q1q are dual to the same

hyperplane, again contradicting the fact that H 6= H ′. Thus the embedding Y ↪→ X is

isometric, as claimed.

But now the embedding of the C6 ⊆ Y formed by vertices s, p1, q1, q, q2 and p2 into X

is also isometric, and so the convex hull of this C6 in X is a 3-cube. Thus there exists a

vertex u ∈ V (X) joined by edges to s, p2 and q2. This implies that H and H ′ intersect

at q, contradicting the choice of q. Thus H and H ′ cannot interosculate.

H H ′

K

e

p1

s

p2

q2

q

q1

t

p

Figure 3.2: Proof of Lemma 2.6: the graph Y (solid edges) and the vertex t ∈ V (X).

Remark 2.7. We use Lemma 2.6 in the following setting. Let γ be a geodesic in a

quasi-median graph X, let e and e′ be two consecutive edges of γ, and let H and H ′

be the hyperplanes dual to e and e′, respectively. Suppose that H and H ′ intersect. It
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then follows from Lemma 2.6 that H and H ′ cannot osculate at the common endpoint

p of e and e′, and therefore H and H ′ must intersect at p. In particular, X contains a

square with edges e, e′, f and f ′, in which f and f ′ are the edges opposite to e and e′,

respectively. We may then obtain another geodesic γ′ in X (with the same endpoints

as γ) by replacing the subpath ee′ of γ with f ′f . We refer to the operation of replacing

γ by γ′ as swapping e and e′ on γ.

2.3 Geodesics in quasi-median graphs

Here we record two results on geodesics in a quasi-median graph. The first one of these

is due to Genevois.

Proposition 2.8 (Genevois [10, Proposition 2.30]). A path in a quasi-median graph

X is a geodesic if and only if it intersects any hyperplane at most once. In particular,

the distance between two vertices of X is equal to the number of hyperplanes separating

them.

Lemma 2.9. Let p, q, r ∈ V (X) be vertices of a quasi-median graph X such that some

hyperplane separates q from p and r. Then there exists a hyperplane C separating q from

p and r and geodesics γp (respectively γr) between q and p (respectively q and r) such

that q is an endpoint of the edges of γp and γr dual to C.

Proof. Let C be a hyperplane separating q from p and r, let γp (respectively γr) be

a geodesic between q and p (respectively q and r), and let cp and cr be the edges of

γp and γr (respectively) dual to C. Let qp and q′p, qr and q′r be the endpoints of cp, cr

(respectively), labelled so that C does not separate q, qp and qr. Suppose, without loss of

generality, that γp and C are chosen in such a way that dX(q, qp) is as small as possible,

and that γr is chosen so that dX(q, qr) is as small as possible (subject to the choice of

γp and C). See Figure 3.3.

We first claim that q = qp. Indeed, suppose not, and let c′p 6= cp be the other edge of

γp with endpoint qp. Let C ′p be the hyperplane dual to c′p. Then C ′p does not separate

qp and p (as γp is a geodesic), nor q and r (by minimality of dX(q, qp)), but it separates

qp (and so p) from q (and so r). On the other hand, C separates qp from p (as γp is

a geodesic) and q from r (as γr is a geodesic). Therefore, C and C ′p must intersect.

But then we may swap cp and c′p on γp (see Remark 2.7), contradicting minimality of

dX(q, qp). Thus we must have q = qp.

We now claim that q = qr. Indeed, suppose not, and let c′r 6= cr be the other edge of

γr with endpoint qr. Let C ′r be the hyperplane dual to c′r. Then C ′r does not separate

q and q′p (as C is the only hyperplane separating q = qp and q′p), nor qr and r (as γr

is a geodesic), but it separates q (and so q′p) from qr (and so r). On the other hand,

C separates qr from r (as γr is a geodesic) and q from q′p. Therefore, C and C ′r must
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intersect. But then we may swap cr and c′r on γr, contradicting minimality of dX(q, qr).

Thus we must have q = qr.

C

c′p c′r

C ′p C ′r

p

q

rq′p

qp qr

q′r

Figure 3.3: Proof of Lemma 2.9.

3 Geometry of the contact graph

Here we analyse the geometry of the contact graph CX of a quasi-median graph X. In

Section 3.1 we show that, under certain conditions, CX is quasi-isometric to ∆X, and

prove Theorem B (i). In Section 3.2 we prove that CX is a quasi-tree (Theorem A).

3.1 Contact and crossing graphs

The following proposition allows us to lift geodesics in C(X) back to X. This generalises

the existence of ‘hierarchy paths’ in CAT(0) cube complexes [5, Theorem A(2)] to arbi-

trary quasi-median graphs. Moreover, the same result applies when CX is replaced by

∆X, as long as ∆X is connected.

Proposition 3.1. Let Γ = CX or Γ = ∆X, and let A,B ∈ V (Γ) be hyperplanes in the

same connected component of Γ. Let p ∈ V (X) (respectively q ∈ V (X)) be a vertex in

N (A) (respectively N (B)). Then there exists a geodesic A = A0, . . . , Am = B in Γ and

vertices p = p0, . . . , pm+1 = q ∈ V (X) such that pi ∈ N (Ai−1) ∩ N (Ai) for 1 ≤ i ≤ m

and dX(p, q) =
∑m

i=0 dX(pi, pi+1).

Proof. By assumption, there exists a geodesic A = A0, A1, . . . , Am = B in Γ. For

1 ≤ i ≤ m, let pi ∈ V (X) be a vertex in the carriers of both Ai−1 and Ai, and let

p0 = p, pm+1 = q. Suppose that the Ai and the pi are chosen in such a way that

D =
∑m

i=0 dX(pi, pi+1) is as small as possible. We claim that D = dX(p, q).

Let γi be a geodesic between pi and pi+1 for 0 ≤ i ≤ m. Suppose for contradiction

that D > dX(p, q): this means that γ0γ1 · · · γm is not a geodesic. Therefore, there exists

a hyperplane C separating pi and pi+1 as well as pj and pj+1 for some i < j. Let ci

(respectively cj) be the edge of γi (respectively γj) dual to C.

As hyperplane carriers are gated (and therefore convex), any hyperplane separating pi

and pi+1 either is or intersects Ai for 0 ≤ i ≤ m. Now note that j − i ≤ 2: indeed, we
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have dΓ(Ai, C) ≤ 1 and dΓ(Aj , C) ≤ 1, so j − i = dΓ(Ai, Aj) ≤ 1 + 1 = 2. In particular,

j − i ∈ {1, 2}.

We now claim that j = i + 1. Indeed, suppose for contradiction that j = i + 2. Let

p′i+1 (respectively p′i+2) be the endpoint of ci (respectively ci+2) closer to pi (respec-

tively pi+3). Then we have

dX(pi, pi+1) + dX(pi+1, pi+2) + dX(pi+2, pi+3)

= dX(pi, p
′
i+1) + dX(p′i+1, pi+1) + dX(pi+1, pi+2) + dX(pi+2, p

′
i+2) + dX(p′i+2, pi+3)

≥ dX(pi, p
′
i+1) + dX(p′i+1, p

′
i+2) + dX(p′i+2, pi+3),

(3.1)

with equality if and only if γ′iγi+1γ
′
i+2 is a geodesic, where γ′i (respectively γ′i+2) is the

portion of γi (respectively γi+2) between p′i+1 and pi+1 (respectively pi+2 and p′i+2). But

γ′iγi+1γ
′
i+2 cannot be a geodesic as it passes through two edges dual to C, and so strict

inequality in (3.1) holds. We may then replace Ai+1, pi+1 and pi+2 with C, p′i+1 and

p′i+2, respectively, contradicting minimality of D. Thus j = i+ 1, as claimed.

Therefore, C separates pi+1 from pi and pi+2. By Lemma 2.9, we may assume (after

modifying C, γi and γi+1 if necessary) that pi+1 is an endpoint of both ci and ci+1. As

ci and ci+1 are dual to the same hyperplane, it follows that they belong to the same

clique. In particular (as carriers of hyperplanes are gated and so contain their triangles)

this whole clique belongs to N (Ai)∩N (Ai+1). If ri+1 6= pi+1 is the other endpoint of ci,

then dX(pi, ri+1) < dX(pi, pi+1) and dX(ri+1, pi+2) ≤ dX(pi+1, pi+2). We may therefore

replace pi+1 by ri+1, contradicting minimality of D. Thus D = dX(p, q), as claimed.

Taking Γ = ∆X and p = q in Proposition 3.1 immediately gives the following.

Corollary 3.2. Let A,B ∈ V (∆X) be hyperplanes in the same connected component of

∆X osculating at a point p ∈ V (X). Then there exists a geodesic A = A0, . . . , Am = B

in ∆X such that Ai−1 and Ai intersect at p for 1 ≤ i ≤ m.

Lemma 3.3. Suppose a group G acts on X specially with N orbits of hyperplanes. Let A

and B be hyperplanes that osculate and belong to the same connected component of ∆X.

Then d∆X(A,B) ≤ max{2, N − 1}.

Proof. Let p ∈ V (X) be such that A and B osculate at p. By Corollary 3.2, there exists a

geodesic A = A0, A1, . . . , Am = B in ∆X such that Ai−1 and Ai intersect at p for each i.

Let i1, . . . , ik ∈ N, satisfying 0 = i1 < i2 < · · · < ik = m+ 1, be such that AGij = AGij+1−1

for 1 ≤ j ≤ k − 1 (for instance, we may take ij = j − 1). Suppose this is done so that

k is as small as possible. Clearly, this implies AGij 6= AGij′ whenever 1 ≤ j < j′ ≤ k − 1:

otherwise, we may replace i1, . . . , ik by i1, . . . , ij , ij′+1, . . . , ik, contradicting minimality

of k. In particular, k ≤ N + 1; as m ≥ 2, note also that k ≥ 2. We will consider the

cases k = 2 and k ≥ 3 separately.
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Suppose first that k ≥ 3. We claim that ij+1 − ij ≤ 1 whenever 1 ≤ j ≤ k − 1.

Indeed, note that whenever 1 ≤ j ≤ k − 2, p ∈ N (Aij ) ∩ N (Aij+1), and so Aij and

Aij+1 must either intersect or osculate. But Aij+1 intersects Aij+1−1, and AGij = AGij+1−1:

therefore, as the action G y X is special, it follows that Aij and Aij+1 must intersect.

In particular, ij+1 − ij = d∆X(Aij , Aij+1) ≤ 1 for 1 ≤ j ≤ k − 2. For j = k − 1, we may

similarly note that N (Aij−1) ∩ N (Aij+1−1) 6= ∅ and so Aij−1 and Am = Aij+1−1 must

intersect: thus ij+1 − ij = d∆X(Aij−1, Aij+1−1) ≤ 1 in this case as well. In particular,

we get

d∆X(A,B) = m = ik − i1 − 1 =

k−1∑
j=1

(ij+1 − ij)

− 1 ≤ k − 2 ≤ N − 1,

as required.

Suppose now that k = 2. Similarly to the case k ≥ 3, we may note that p ∈ N (A1) ∩
N (Am), and so, as A0 and A1 intersect and as AG0 = AGm, it follows that A1 and Am

intersect. Thus m− 1 = d∆X(A1, Am) ≤ 1 and so d∆X(A,B) = m ≤ 2, as required.

Proof of Theorem B (i). It is clear that dCX(A,B) ≤ d∆X(A,B) for any hyperplanes A

and B, as ∆X is a subgraph of CX. Conversely, Lemma 3.3 implies that d∆X(A,B) ≤
NdCX(A,B) for any hyperplanes A and B, where N = max{2, N − 1}.

Remark 3.4. We note that all the assumptions for Theorem B (i) are necessary. In-

deed, it is clear that ∆X needs to be connected. To show necessity of the other two

conditions, consider the following. Let G0 = 〈S | R〉 be the group with generators

S = {ai,j | (i, j) ∈ Z2} and relators R =
⋃

(i,j)∈Z2{a2
i,j , [ai,j , ai,j+1], [ai,j , ai+1,j ]}; this is

the (infinitely generated) right-angled Coxeter group associated to a ‘grid’ in R2: a graph

Γ with V (Γ) = Z2, where (i, j) and (i′, j′) are adjacent if and only if |i− i′|+ |j− j′| = 1.

Let X be the Cayley graph of G0 with respect to S.

Then X is a quasi-median (and, indeed, median) graph by [10, Proposition 8.2]. Fur-

thermore, by the results in [10, Chapter 8], ∆X is connected, and if Hi,j is the hy-

perplane dual to the edge (1, ai,j) of X (for (i, j) ∈ Z2) then dCX(H0,0, Hi,j) ≤ 1 but

d∆X(H0,0, Hi,j) = |i| + |j| for all (i, j). Thus the inclusion ∆X ↪→ CX cannot be a

quasi-isometry. Moreover, by Theorem A, we know that CX is a quasi-tree, whereas the

inclusion into ∆X of the subgraph spanned by {Hi,j | (i, j) ∈ Z2} (which is isomorphic

to the ‘grid’ Γ) is isometric, and so ∆X cannot be hyperbolic – therefore, ∆X and CX
are not quasi-isometric in this case.

It follows from [10, Proposition 8.11] that the usual action of G0 on X is special –

however, there are infinitely many orbits of hyperplanes under this action. On the other

hand, let G = G0 o Z2, where the action of Z2 = 〈x, y | xy = yx〉 on G0 is given by

ax
nym

i,j = ai+n,j+m; this can be thought of as an example of a graph-wreath product, see
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[20] for details. Then it is easy to see that the action of G on G0 extends to an action

of G on X. This action is transitive on hyperplanes, and therefore not special.

3.2 Hyperbolicity

We show here that CX is a quasi-tree, proving Theorem A.

Proposition 3.5. Let A,B ∈ V (CX) be two hyperplanes such that dCX(A,B) ≥ 2.

Then there exists a midpoint M of a geodesic between A and B in CX and a hyperplane

C separating N (A) and N (B) such that dCX(M,C) ≤ 3/2.

Proof. By Proposition 2.4, we know thatN (A) andN (B) are gated. It then follows from

[10, Lemma 2.36] that there exist vertices p ∈ V (N (A)) and q ∈ V (N (B)) such that any

hyperplane separating p from q also separates N (A) from N (B). Let A = A0, . . . , Am =

B ∈ V (∆X) and p = p0, . . . , pm+1 = q ∈ V (X) be as given by Proposition 3.1 in

the case Γ = CX, and let M be the midpoint of the former geodesic. It is clear that

N (Ai)∩N (Aj) = ∅ whenever |i−j| ≥ 2; in particular, pi 6= pi+1 whenever 1 ≤ i ≤ m−1.

Now let i = bm/2c ∈ {1, . . . ,m−1}, and let C be any hyperplane separating pi and pi+1.

By the choice of the pj , there exists a geodesic between p and q passing through pi

and pi+1: therefore, C separates p and q. Hence, by the choice of p and q, C also

separates N (A) from N (B). Finally, note that as C separates pi, pi+1 ∈ N (Ai), we have

dCX(Ai, C) ≤ 1. Therefore,

dCX(M,C) ≤ dCX(M,Ai) + dCX(Ai, C) =
∣∣∣m

2
− i
∣∣∣+ dCX(Ai, C) ≤ 1

2
+ 1 =

3

2
,

as required.

Definition 3.6. For a connected graph Γ and two vertices v, w ∈ V (Γ) we say a point

m ∈ Γ is a midpoint between v and w if dΓ(m, v) = dΓ(m,w) = 1
2dΓ(v, w).

Let D ∈ N. A connected graph Γ is said to satisfy the D-bottleneck criterion if for any

vertices v, w ∈ V (Γ), there exists a midpoint m between v and w such that any path

between v and w passes through a point p such that dΓ(p,m) ≤ D.

Theorem 3.7 (Manning [21, Theorem 4.6]). A connected graph Γ is a quasi-tree if and

only if there exists a constant D such that Γ satisfies the D-bottleneck criterion.

Remark 3.8. In [21], the statement of this theorem is given for a general geodesic metric

space (not necessarily a graph), and the definition of bottleneck criterion given there

is stronger: instead of taking v, w to be vertices of Γ in Definition 3.6, Manning allows

v, w to be any points of Γ. However, as any point in a graph is within distance 1
2 of a

vertex, it is easy to see that in our setting the definition given here is equivalent to the

one given in [21] (up to possibly modifying the constant D).
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Proof of Theorem A. We claim that CX satisfies the 5/2-bottleneck criterion.

Let A,B ∈ V (CX) be two hyperplanes. If dCX(A,B) < 2, then any path between A

and B passes through A, and dCX(A,M) = dCX(A,B)/2 < 1 < 5/2 for any midpoint

M between A and B, so the 5/2-bottleneck criterion is satisfied.

On the other hand, if dCX(A,B) ≥ 2, then let M and C be as given by Proposition 3.5.

Let A = B0, B1, . . . , Bn = B be any path in CX between A and B, and choose vertices

q1, . . . , qn ∈ V (X) such that qi ∈ N (Bi−1)∩N (Bi) for all i. As q1 ∈ N (A), qn ∈ N (B),

and as C separates A and B, it follows that C separates q1 and qn, and so it separates

qi and qi+1 for some i. But as qi, qi+1 ∈ N (Bi), it follows that dCX(C,Bi) ≤ 1. In

particular,

dCX(M,Bi) ≤ dCX(M,C) + dCX(C,Bi) ≤
3

2
+ 1 =

5

2
,

and so again the 5/2-bottleneck criterion is satisfied.

In particular, Theorem 3.7 implies that CX is a quasi-tree.

4 Acylindricity

In this section we prove Theorem B (ii). To do this, in Section 4.1 we introduce the

notion of contact sequences (see Definition 4.2) and show the main technical result we

need to prove Theorem B (ii): namely, Proposition 4.3. In Section 4.2 we use this to

deduce Theorem B (ii).

Throughout this section, let X be a quasi-median graph.

4.1 Contact sequences

Lemma 4.1. Let Y ≤ X be a gated subgraph and let H be a collection of hyperplanes

in X. Let Y ′H ⊆ V (X) be the set of vertices v ∈ V (X) for which there exists a vertex

pv ∈ V (Y ) such that all hyperplanes separating v from pv are in H. Then the full

subgraph YH of X spanned by Y ′H is gated.

Proof. Suppose for contradiction that YH is not gated, and let v ∈ V (X) be a vertex

that does not have a gate in YH. Let p be the gate for v in Y . Let p̂ be a vertex of YH on

a geodesic between v and p with dX(v, p̂) minimal. By our assumption, p̂ is not a gate

for v in YH, and so there exists a vertex q̂ ∈ V (YH) such that no geodesic between v and

q̂ passes through p̂. Let q be the gate of q̂ in Y . Let γp, γq, δ, δ̂, η be geodesics between

p̂ and p, q̂ and q, p and q, p̂ and q̂, v and p̂ (respectively), as shown in Figure 3.4.

Since both η and δ̂ are geodesics, and since ηδ̂ is not (by the choice of q̂), it follows

from Lemma 2.9 that we may assume, without loss of generality, that there exists a
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hyperplane C and edges c1, c2 of η, δ̂ (respectively), both of which are dual to C and

have p̂ as an endpoint. But as p is the gate for v in Y , as ηγp is a geodesic by the choice

of p̂, and as q ∈ Y , it follows that ηγpδ is a geodesic. Therefore, by Proposition 2.8 H

cannot cross γpδ, and so H does not separate p̂ and q. As H separates p̂ and q̂, it follows

that H separates q̂ and q and so crosses γq. In particular, since q̂ ∈ V (YH) and since

q ∈ V (Y ) is a gate for q̂ in Y , it follows that all hyperplanes crossing γq are in H, and

therefore H ∈ H. But then the endpoint p′ 6= p̂ of c1 is separated from p ∈ V (Y ) only

by hyperplanes in H; this contradicts the choice of p̂. Thus YH is gated, as claimed.

YH

Yv p̂

q̂

p

q

η γp

γq

δ̂ δ

p′

H

Figure 3.4: Proof of Lemma 4.1.

Now let a group G act on a quasi-median graph X. This induces an action of G on the

crossing graph ∆X. Let H be the set of orbits of vertices under Gy ∆X – alternatively,

the set of orbits of hyperplanes under G y X. We may regard each element of H as a

collection of hyperplanes – thus, for instance, given H0 ⊆ H we may write
⋃
H0 for the

set of all hyperplanes whose orbits are elements of H0.

Let n ∈ N, and let H1, . . . ,Hn be subsets of H. Pick a vertex (a ‘basepoint’) o ∈ V (X),

and define the subgraphs Y0, . . . , Yn ⊆ X inductively: set Y0 = {o} and Yi = (Yi−1)⋃Hi
for 1 ≤ i ≤ n. By Lemma 4.1, Yn is a gated subgraph. We denote Yn as above by

Y (o,H1, . . . ,Hn), and we denote the gate for v ∈ V (X) in Yn by g(v; o,H1, . . . ,Hn).

Definition 4.2. Let H,H ′ ∈ V (CX), and let p, p′ ∈ V (X) be such that p ∈ N (H) and

p′ ∈ N (H ′). Let n = dCX(H,H ′). Given any geodesic H = H0, . . . ,Hn = H ′ in CX and

vertices p = p0, p1, . . . , pn+1 = p′ ∈ V (X) such that pi, pi+1 ∈ N (Hi) for 0 ≤ i ≤ n, we

call S = (H0, . . . ,Hn, p0, . . . , pn+1) a contact sequence for (H,H ′, p, p′).

Given a contact sequence S = (H0, . . . ,Hn, p0, . . . , pn+1) for (H,H ′, p, p′) and a ver-

tex v ∈ V (X), we say (g0, . . . , gn) ∈ V (X)n+1 is the v-gate for S if gi is the gate for

v in N (Hi) for 0 ≤ i ≤ n. We furthermore denote (dX(pn, gn), . . . , dX(p0, g0)) and

(dX(p1, g0), . . . , dX(pn+1, gn)) by C�(S, v) and C�(S, v), respectively. We say a con-

tact sequence S for (H,H ′, p, p′) is v-minimal if for any other contact sequence S′

for (H,H ′, p, p′) we have either C�(S, v) ≤ C�(S′, v) or C�(S, v) ≤ C�(S′, v) in the

lexicographical order.
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Finally, suppose a group G acts on X. Given a vertex v ∈ V (X) and a contact sequence

S = (H0, . . . ,Hn, p0, . . . , pn+1) for (H,H ′, p, p′) with a v-gate (g0, . . . , gn), we say the

tuple (H0, . . . ,Hn,H′0, . . . ,H′n), where Hi,H′i ⊆ V (CX/G), is the (v,G)-orbit sequence

for S if

Hi = {HG | H ∈ V (CX) separates pi from gi}

and

H′i = {HG | H ∈ V (CX) separates pi+1 from gi}

for 0 ≤ i ≤ n.

It is clear that given any H, H ′, p and p′ as in Definition 4.2, there exists a contact

sequence for (H,H ′, p, p′). As the lexicographical order is a well-ordering of Nn, it follows

that a v-minimal contact sequence exists as well.

Proposition 4.3. Suppose a group G acts specially on a quasi-median graph X. Let

H,H ′ ∈ V (CX), let p, p′ ∈ V (X) be such that p ∈ N (H) and p′ ∈ N (H ′), and let

v ∈ V (X). Let S = (H0, . . . ,Hn, p0, . . . , pn+1) be a v-minimal contact sequence for

(H,H ′, p, p′) with v-gate (g0, . . . , gn) and (v,G)-orbit sequence (H0, . . . ,Hn,H′0, . . . ,H′n).

Write gi := g(v; p,H0, . . . ,Hi) and g′i := g(v; p′,H′n, . . . ,H′i) for 0 ≤ i ≤ n. Then,

(i) gn = g′0;

(ii) no two hyperplanes in
⋃
Hi and

⋃
H′j (respectively) osculate whenever i > j; and

(iii) for 1 ≤ i ≤ n, the hyperplanes separating gi−1 from gi (respectively g′i from g′i−1)

are precisely the hyperplanes separating pi from gi (respectively pi from gi−1).

Proof. Induction on n.

For n = 0, we claim that g0 = g0. Indeed, by definition of H0 we have g0 ∈ Y (p0,H0),

and so there exists a geodesic η between p and v passing through g0 and g0. Suppose

for contradiction g0 6= g0, let a ⊆ η be the edge with endpoint g0 such that the other

endpoint qa 6= g0 of a satisfies dX(v, g0) > dX(v, qa), and let A be the hyperplane dual

to a; see Figure 3.5(a). Then g0 ∈ N (H0) ∩ N (A), and so H0 and A either coincide, or

intersect, or osculate. As A separates p and g0, we know that Ag separates p and g0 and

so Ag and H0 either coincide or intersect for some g ∈ G. Thus, as the action Gy X is

special, it follows that A and H0 cannot osculate, and therefore they either coincide or

intersect. But then we also have qa ∈ N (H0), contradicting the choice of g0. Therefore,

g0 = g0, as claimed. A symmetric argument shows that g′0 = g0, and so the conclusion

of the proposition is clear.

Suppose now that n ≥ 1, and let ĝ′i = g(v; pn,H′n−1, . . .H′i) for 0 ≤ i ≤ n (so that

ĝ′n = pn). Notice that (H0, . . . ,Hn−1, p0, . . . , pn) is a v-minimal contact sequence for

(H,Hn−1, p, pn). Thus, by the inductive hypothesis we have
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(i’) gn−1 = ĝ′0;

(ii’) no two hyperplanes in
⋃
Hi and

⋃
H′j (respectively) osculate whenever n − 1 ≥

i > j;

(iii’) for 1 ≤ i ≤ n − 1, the hyperplanes separating gi−1 from gi (respectively ĝ′i from

ĝ′i−1) are precisely the hyperplanes separating pi from gi (respectively pi from

gi−1).

Moreover, let ĝi = g(v; p1,H1, . . .Hi) for 0 ≤ i ≤ n (so that ĝ0 = p1), and notice that

(H1, . . . ,Hn, p1, . . . , pn+1) is a v-minimal contact sequence for (H1, H
′, p1, p

′). Thus, by

the inductive hypothesis we have

(i”) ĝn = g′1;

(ii”) no two hyperplanes in
⋃
Hi and

⋃
H′j (respectively) osculate whenever i > j ≥ 1;

(iii”) for 2 ≤ i ≤ n, the hyperplanes separating ĝi−1 from ĝi (respectively g′i from g′i−1)

are precisely the hyperplanes separating pi from gi (respectively pi from gi−1).

Finally, the proof of the n = 0 case above shows that g(v; pi,Hi) = gi = g(v; pi+1,H′i)
for 0 ≤ i ≤ n.

Now let q = ĝn−1 and note that we also have q = ĝ′1: this is clear if n = 1 and follows from

the inductive hypothesis if n ≥ 2. Let A,B,A′,B′ ⊆ V (∆X) be the sets of hyperplanes

separating q from gn−1, q from g′1, gn−1 from gn, g′1 from gn, respectively; see Figure

3.5(b). We claim that A = A′ and B = B′. We will show this in steps, proving part (ii)

of the Proposition along the way.

A ∩ B = ∅: Suppose for contradiction that there exists some hyperplane A ∈ A ∩ B.

As A ∈ A, we know that A separates ĝ′1 from ĝ′0, and so by (iii’) above it also

separates p1 from g0: thus dCX(H0, A) ≤ 1. Similarly, as A ∈ B, by (iii”) above

we know that A separates pn from gn and therefore dCX(Hn, A) ≤ 1. Hence,

n = d∆X(H0, Hn) ≤ 2, and so either n = 1 or n = 2.

Let α, β be geodesics between p1 and g0, pn and gn, respectively, and let a ⊆ α

and b ⊆ β be the edges dual to A. As a and b lie on geodesics with endpoint v,

we may pick endpoints qa and qb of a and b, respectively, such that A does not

separate qa, qb and v.

Suppose first that n = 2: see Figure 3.5(c). Note that in this case H0, A,H2 is

a geodesic in CX and that dX(p2, g2) > dX(qb, g2) and dX(p1, g0) > dX(qa, g0).

Moreover, since qa lies on a geodesic between p1 and g0, we have qa ∈ N (H0); sim-

ilarly, qb ∈ N (H2). Furthermore, by the construction we know that qa, qb ∈ N (A).
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We may therefore replace p1, p2 and H1 by qa, qb and A, respectively, contradicting

v-minimality of S. Thus n 6= 2.

Suppose now that n = 1. Then A separates p1 from both g0 and g1. By Lemma

2.9, we may then without loss of generality assume that p1 is an endpoint (distinct

from qa and qb) of both a and b. Now note that both a and b are edges on a geodesic

between p1 and v, so we must have a = b, and in particular qa = qb; see Figure

3.5(d). Since A separates p1 from both g0 and g1, it intersects or coincides with

both H0 and H1, and so qa ∈ N (H0)∩N (H1). We may therefore replace pn by qa;

but we have dX(p1, g1) > dX(qa, g1) and dX(p1, g0) > dX(qa, g0), contradicting v-

minimality of S. Thus no such hyperplane A ∈ A∩B can exist and so A∩B = ∅,

as claimed.

A ∩ B′ = ∅: This is clear, as gn−1 = ĝ′0 lies on a geodesic between q = ĝ′1 and gn, and

so no hyperplane can separate gn−1 from both q and gn.

A′ ∩ B = ∅: Let C be the set of hyperplanes separating gn and v. We first claim that

A′ ∩ B = A′ ∩ C. Indeed, let B ∈ A′ ∩ B. Since B ∈ B, it separates q and g′1;

as g′1 = ĝn lies on a geodesic between q and v, B cannot separate g′1 and v. But

as B ∈ A′, it separates g′1 and gn, and so B must separate gn and v. Therefore,

B ∈ A′ ∩ C. Conversely, let C ∈ A′ ∩ C. Since C ∈ C, it separates gn and v; as gn

lies on a geodesic between q and v, C cannot separate q and gn. But as C ∈ A′,
it separates g′1 and gn, and so C must separate q and g′1. Therefore, C ∈ A′ ∩ B,

and so A′ ∩ B = A′ ∩ C, as claimed.

Now suppose for contradiction that there exists a hyperplane A ∈ A′ ∩ B =

A′ ∩ B ∩ C. Let γ be a geodesic between gn and v, and let c ⊆ γ be the edge

dual to A. By Lemma 2.9, we may without loss of generality assume that gn is an

endpoint of c: see Figure 3.5(e).

Now let qc 6= gn be the other endpoint of c. Note that since A ∈ B, we have

AG ∈ Hn. Therefore, it follows that qc is separated from gn−1 only by hyperplanes

in
⋃
Hn; as dX(v, gn) > dX(v, qc), this contradicts the definition of gn. Thus

A ∩ B′ = ∅, as claimed.

A ⊆ A′ and B ⊆ B′: As A ∩ B = ∅ = A ∩ B′, every hyperplane separating q and gn−1

does not separate q and g′1, nor gn−1 and gn, thus it separates g′1 and gn. It follows

that A ⊆ A′. Similarly, as A ∩ B = ∅ = A′ ∩ B, we get B ⊆ B′.

Part (ii): By (ii’) and (ii”) above, it is enough to show that no two hyperplanes in
⋃
Hn

and
⋃
H′0 (respectively) osculate. Thus, let A (respectively B) be a hyperplane

separating p1 and g0 (respectively pn and gn), so that AG ∈ H′0 and BG ∈ Hn. It

is now enough to show that Ag and Bh do not osculate for any g, h ∈ G.

But as A separates p1 from g0, we know from (iii’) that it also separates ĝ′1 = q

from ĝ′0 = gn−1, that is, A ∈ A. Similarly, as B separates pn and gn, we know
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from (iii”) that B ∈ B. But as A ∩ B = ∅ = A ∩ B′ and as B ⊆ B′, it follows

that A separates q and g′1 from gn−1 and gn, while B separates q from g′1 and

gn−1 from gn. Therefore, A and B must intersect. But as the action G y X is

special, it follows that Ag and Bh do not osculate for any g, h ∈ G. Thus no two

hyperplanes in
⋃
Hn and

⋃
H′0 (respectively) osculate, and so part (ii) holds, as

required.

A′ ∩ B′ = ∅: Suppose for contradiction that A ∈ A′ ∩ B′ is a hyperplane. Let α′ be a

geodesic between g′1 and gn, let a ⊆ α′ be the edge dual to A, and let qa, q
′
a be the

endpoints of a so that A does not separate g′1 and qa. Suppose, without loss of

generality, that α′ and A are chosen in such a way that dX(g′1, qa) is as small as

possible.

We now claim that g′1 = qa. Indeed, suppose not, and let a′ 6= a be the other

edge on α′ with endpoint qa. Let A′ ∈ A′ be the hyperplane dual to a′; see Figure

3.5(f). Then A′ does not separate q and g′1 (as A′ ∩ B = ∅), nor gn−1 and gn (by

minimality of dX(g′1, qa)), but it separates g′1 (and so q) from gn (and so gn−1). In

particular, A′ ∈ A, and so A′ ∈
⋃
H′0. On the other hand, A ∈ B′ ⊆

⋃
Hn, and

so A and A′ cannot oscullate by part (ii). It follows that A and A′ must intersect,

and therefore we may swap a and a′ on α′, contradicting minimality of dX(g′1, qa).

Thus g′1 = qa, as claimed.

But now q′a is separated from q just by hyperplanes in
⋃
Hn. Furthermore, A

cannot separate gn and v (as gn lies on a geodesic between gn−1 and v, and as A

separates gn−1 and gn), nor gn and q′a (as α′ is a geodesic), but A separates q′a

(and so gn and v) from g′1. In particular, dX(v, g′1) > dX(v, q′a), contradicting the

fact that g′1 = ĝn. Thus A′ ∩ B′ = ∅, as required.

A = A′ and B = B′: We have already shown A ⊆ A′ and B ⊆ B′. Conversely, as

A′ ∩ B = ∅ = A′ ∩ B′, every hyperplane separating g′1 and gn does not separate q

and g′1, nor gn−1 and gn, thus it separates q and gn−1. It follows that A′ ⊆ A and

so A = A′. Similarly, as A ∩ B′ = ∅ = A′ ∩ B′, we get B = B′.

Now part (iii) of the Proposition follows immediately. Indeed, given (iii’) and (iii”), it is

enough to show that the hyperplanes separating gn−1 from gn (respectively g′1 from g′0)

are precisely the hyperplanes separating ĝn−1 from ĝn (respectively ĝ′1 from ĝ′0). But

this, and so (iii), follows from the fact that A = A′ and B = B′.

Finally, we are left to show part (i). We know that A′ = A ⊆
⋃
H′0, and so gn ∈

Y (g′1,H′0) ⊆ Y (p′,H′n, . . . ,H′0). In particular, there exists a geodesic between v and

gn passing through g(v; p′,H′n, . . . ,H′0) = g′0. But a symmetric argument can show

that there exists a geodesic between v and g′0 passing through gn. Thus gn = g′0,

proving (i).
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Figure 3.5: Proof of Proposition 4.3.

4.2 Consequences of Proposition 4.3

Corollary 4.4. Suppose a group G acts specially on a quasi-median graph X. Let

H,H ′,K,K ′ ∈ V (CX), and let p, p′, v, v′ ∈ V (X) be such that p ∈ N (H), p′ ∈ N (H ′),

v ∈ N (K) and v′ ∈ N (K ′). Suppose that dCX(H,K) ≥ dCX(H,H ′) + dCX(K,K ′) + 3.

If S is a v-minimal contact sequence for (H,H ′, p, p′), then S is also v′-minimal. Fur-

thermore, if (H0, . . . ,Hn,H′0, . . . ,H′n) is the (v,G)-orbit sequence for S, then we have

g(v; p,H0, . . . ,Hn) = g(v′; p,H0, . . . ,Hn).

Proof. Let m = dCX(K,K ′), and let K = K0, . . . ,Km = K ′ be a geodesic in ∆X. For

1 ≤ i ≤ m, choose a vertex vi ∈ N (Ki−1) ∩ N (Ki); let also v0 = v and vm+1 = v′. Let

n = dCX(H,H ′).
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Given a contact sequence S = (H0, . . . ,Hn, p0, . . . , pn+1) for (H,H ′, p, p′) and any

v ∈ V (X), the tuples C�(S, v) and C�(S, v) only depend on the gates for v in the

N (Hi), 0 ≤ i ≤ n. In particular, if for all hyperplanes A ∈ V (CX) with d∆X(H,A) ≤ n
the gates for v and v′ in N (A) coincide, then the set of v-minimal contact sequences for

(H,H ′, p, p′) coincides with the set of v′-minimal ones.

Thus, let A ∈ V (CX) be a hyperplane with d∆X(H,A) ≤ n, and suppose for contradic-

tion that g 6= g′, where g and g′ are the gates for v and v′ (respectively) in N (A). Let

B be a hyperplane separating g and g′. Since B separates two points in N (A), we must

have dCX(A,B) ≤ 1, and so dCX(H,B) ≤ n+ 1. On the other hand, as B separates the

gates of v and v′ in a gated subgraph, B must also separate v = v0 and v′ = vm+1. Thus

B must separate vi and vi+1 for some i ∈ {0, . . . ,m}. As vi, vi+1 ∈ N (Ki), it follows that

dCX(B,Ki) ≤ 1. In particular, dCX(B,K) ≤ dCX(B,Ki) + dCX(Ki,K) ≤ i+ 1 ≤ m+ 1.

But then dCX(H,K) ≤ dCX(H,B) + dCX(B,K) ≤ n+m+ 2, contradicting our assump-

tion. Thus we must have g = g′, and so the set of v-minimal contact sequences for

(H,H ′, p, p′) coincides with the set of v′-minimal ones. In particular, S is a v′-minimal

structural sequence for (H,H ′, p, p′), and so the conclusion of Proposition 4.3 holds if v

is replaced by v′ as well.

Now suppose for contradiction that the vertices gn(v) = g(v; p,H0, . . . ,Hn) and gn(v′) =

g(v′; p,H0, . . . ,Hn) do not coincide. Let B be a hyperplane separating gn(v) from gn(v′).

Then B separates gates for v and v′ in a gated subgraph, and so as above we get

dCX(B,K) ≤ m+ 1. On the other hand, since B separates gn(v) from gn(v′), it follows

that B separates p from either gn(v) or gn(v′): without loss of generality, suppose the

former. Then B must separate g(v; p,H0, . . . ,Hj−1) and g(v; p,H0, . . . ,Hj) for some

j ∈ {0, . . . , n}. By Proposition 4.3 (iii), it then follows that B separates pj from gj , and

so dCX(B,Hj) ≤ 1; in particular, dCX(H,B) ≤ dCX(H,Hj)+dCX(Hj , B) ≤ j+1 ≤ n+1.

Therefore, dCX(H,K) ≤ dCX(H,B) + dCX(B,K) ≤ n+m+ 2, again contradicting our

assumption. Thus we must have gn(v) = gn(v′), as required.

Lemma 4.5. Suppose G acts specially on X. Let D ∈ N, and suppose every vertex of

∆X/G has at most D neighbours. If v, w ∈ V (X), then there exist at most (D + 1)2

hyperplanes H ∈ V (CX) such that w ∈ N (H) and w is not the gate for v in N (H).

Proof. Let U ⊆ V (X) be the set of vertices u ∈ V (X) such that dX(u,w) = 1 and

dX(v, w) = dX(v, u) + 1. We claim that |U| ≤ D + 1. Indeed, suppose there exist k

distinct vertices u1, . . . , uk ∈ U , and let Hi be the hyperplane separating w and ui for

1 ≤ i ≤ k. It is clear that Hi 6= Hj whenever i 6= j: indeed, if Hi = Hj = H then by

Proposition 2.8 H cannot separate v from either ui or uj , and therefore ui = uj , hence

i = j. Since w ∈ N (Hi)∩N (Hj) for every i, j and since the action Gy X is special, it

also follows that HG
i 6= HG

j whenever i 6= j.

We now claim that Hi and Hj intersect for every i 6= j. Indeed, Hi cannot separate
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ui from v (by Proposition 2.8), nor w from wj (as Hi 6= Hj), but it does separate w

(and so uj) from ui (and so v). On the other hand, a symmetric argument shows that

Hj separates w and ui from uj and v. Thus Hi and Hj must intersect, as claimed.

Therefore, d∆X(Hi, Hj) = 1 and so, as HG
i 6= HG

j , we have d∆X/G(HG
i , H

G
j ) = 1. In

particular, {HG
1 , . . . ,H

G
k } are k vertices of a clique in ∆X/G, and so by our assumption

it follows that k ≤ D + 1. Thus |U| ≤ k, as claimed.

Now let u ∈ U , and let H ⊆ V (CX) be the set of hyperplanes H ∈ V (CX) such that

u,w ∈ N (H). It is then enough to show that |H| ≤ D+1. Thus, let H1, H2, . . . ,Hk ∈ H
be k distinct hyperplanes, where H1 is the hyperplane separating u and w. As w ∈
N (Hi) ∩ N (Hj) for every i, j and as G y X is special, it is clear that HG

i 6= HG
j for

any i 6= j. Furthermore, it is clear (see, for instance, Proposition 2.4) that H1 and Hj

intersect for every j 6= 1. In particular, d∆X(H1, Hj) = 1, and so d∆X/G(HG
1 , H

G
j ) = 1.

As by assumption HG
1 has at most D neighbours in ∆X/G, it follows that k ≤ D + 1,

and so |H| ≤ D + 1, as required.

Theorem 4.6. Suppose a group G acts specially on a quasi-median graph X, and sup-

pose there exists some D ∈ N such that |StabG(w)| ≤ D for any w ∈ V (X) and any

vertex of ∆X/G has at most D neighbours. Then the induced action Gy CX is acylin-

drical, and the acylindricity constants Dε and Nε can be expressed as functions of ε and

D only.

Proof. Let ε ∈ N. We claim that the acylindricity condition in Definition 1.2 is satisfied

for Dε = 2ε+ 6 and Nε = N2(ε+3)D/(N − 1)2, where N = (D + 1)22D+1.

Indeed, let h, k ∈ ∆X be such that dCX(h, k) ≥ Dε. Let H,K ∈ V (CX) be hyperplanes

such that dCX(H,h) ≤ 1/2 and dCX(K, k) ≤ 1/2, and note that we have dCX(H,K) ≥
Dε − 1 = 2ε+ 5. Let Gε(h, k) = {g ∈ G | dCX(h, hg) ≤ ε, dCX(k, kg) ≤ ε}, and note that

we have Gε(h, k) ⊆ Gε+1(H,K). We thus aim to show that |Gε+1(H,K)| ≤ Nε.

Pick vertices v ∈ N (K) and p ∈ N (H), and an element g ∈ Gε+1(H,K). Suppose

that S = (H0, . . . ,Hn, p0, . . . , pn+1) is a v-minimal contact sequence for (H,Hg, p, pg)

with v-gate (g0, . . . , gn) and (v,G)-orbit sequence (H0, . . . ,Hn,H′0, . . . ,H′n); as g ∈
Gε+1(H,K), we have n ≤ ε + 1. For 0 ≤ i ≤ n, set gi = g(v; p,H0, . . . ,Hi) and

g′i = g(v; pg,H′n, . . . ,H′i); let also g−1 = p and g′n+1 = pg.

We first claim that there exist hyperplanes A0, . . . , An ∈ V (CX) such that gi−1, gi ∈
N (Ai) for each i. Indeed, this is clear if gi = pi+1 for each i, as in that case we may

simply take Ai = Hi for each i. Otherwise, let k ∈ {0, . . . , n} be minimal such that

gk 6= pk+1, and let A be a hyperplane separating gk and pk+1 such that gk ∈ N (A). For

0 ≤ i ≤ k − 1 we may take Ai = Hi, while for k ≤ i ≤ n we can show (by induction

on i, say) that gi ∈ N (A). Indeed, the base case (i = k) is clear by construction; and

if gi−1 ∈ N (A) for some i > k and gi−1 = q0, . . . , qm = gi is a geodesic in X, then A

cannot osculate with the hyperplane separating qj−1 and qj by Proposition 4.3 (ii) and



128 Paper 3 Acylindrical hyperbolicity and equations in graph products

(iii), and so qj ∈ N (A) by induction on j. Thus we may take Ai = A for k ≤ i ≤ n, so

that gi−1, gi ∈ N (Ai) for each i, as claimed. A symmetric argument shows that there

exist hyperplanes Bn, . . . , B0 ∈ V (CX) such that g′i+1, g
′
i ∈ N (Bi) for each i.

Now, we may pass the sequence (g−1, . . . , gn) to a subsequence (gk0 , . . . , gka) by removing

those gi for which gi−1 = gi. It then follows that gki−1
6= gki and that gki−1

, gki ∈ N (Aki)

for 1 ≤ i ≤ a, where a ≤ n+1 ≤ ε+2. Similarly, we may pass the sequence (g′n+1, . . . , g
′
0)

to a subsequence (gk′0 , . . . , gk′b) such that gk′i−1
6= gk′i and that gk′i−1

, g′ki ∈ N (Bki) for

1 ≤ i ≤ b, where b ≤ n+ 1 ≤ ε+ 2.

Now as dCX(H,Hg)+dCX(K,Kg)+3 ≤ 2(ε+1)+3 = 2ε+5 ≤ dCX(H,K), it follows from

Corollary 4.4 that S is also a vg-minimal contact sequence and that g(v; p,H0, . . . ,Hn) =

g(vg; p,H0, . . . ,Hn). Therefore, by Proposition 4.3 (i) and the discussion above,

g(v; p,Hk1 , . . . ,Hka) = g(v; p,H0, . . . ,Hn) = g(vg; p,H0, . . . ,Hn)

= g(vg; pg,H′n, . . . ,H′0) = g(v; p,H′n, . . . ,H′0)g

= g(v; p,H′k′1 , . . . ,H
′
k′b

)g.

(4.1)

As the stabiliser of g(v; p,Hk1 , . . . ,Hka) has cardinality ≤ D, it follows that, given any

subsets Hk1 , . . . ,Hka ,H′k′1 , . . . ,H
′
k′b
⊆ V (CX/G), there are at most D elements g ∈ G

satisfying (4.1). But as gki−1
6= gki , as gki lies on a geodesic between gki−1

and v, and as

gki−1
, gki ∈ N (Ai), it follows from Lemma 4.5 that there are at most (D + 1)2 possible

choices for Aki (for 1 ≤ i ≤ a). Moreover, given a choice of Aki , as Hki ⊆ star∆X/G(AGki)

and by assumption | star∆X/G(AGki)| ≤ D + 1, there exist at most 2D+1 choices for Hki .
It follows that there exist at most Na choices for the subsets Hk1 , . . . ,Hka ⊆ V (CX/G),

where N = (D + 1)22D+1; similarly, there exist at most N b choices for the subsets

H′k′1 , . . . ,H
′
k′b
⊆ V (CX/G). In particular,

|Gε+1(H,K)| ≤ D

(
ε+2∑
a=0

Na

)(
ε+2∑
b=0

N b

)
< D

(
N ε+3

N − 1

)2

= Nε,

as required.

5 Application to graph products

We use this section to deduce results about graph products from Theorems A and B:

namely, we show Corollary C in Section 5.1 and Corollary D in Section 5.2. Throughout

this section, let Γ be a simplicial graph, let G = {Gv | v ∈ V (Γ)} be a collection of

non-trivial groups, and let X be the quasi-median graph associated to ΓG, as given by

Theorem 1.3. We will use the following result.

Theorem 5.1 (Genevois [10, Section 8.1]; Genevois–Martin [13, Theorem 2.13]). For

v ∈ V (Γ), let Hv be the hyperplane dual to the clique Gv ⊆ X. Then any hyperplane H
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in X is of the form Hg
v for some v ∈ V (Γ) and g ∈ ΓG. Moreover, the vertices in N (H)

are precisely Γstar(v)Gstar(v)g ⊆ V (X).

Remark 5.2. Due to our convention to consider only right actions, the Cayley graph

X = Cay(ΓG, S) defined in Theorem 1.3 is the left Cayley graph: for s ∈ S and g ∈ ΓG,

an edge labelled s joins g ∈ V (X) to sg ∈ V (X). Therefore, contrary to the convention

in [10] and [13], the vertices in the carrier of a hyperplane will form a right coset of

Γstar(v)Gstar(v) for some v ∈ V (Γ).

5.1 Acylindrical hyperbolicity

Here we prove Corollary C. It is clear from Theorem 1.3 that we may apply Theorems

A and B to the quasi-median graph X associated to a graph product ΓG. In particular,

it follows that the contact graph CX is a quasi-tree and ΓG acts on it acylindrically.

We thus only need to show that, given that |V (Γ)| ≥ 2 and the complement ΓC of Γ is

connected, the action ΓG y CX is non-elementary.

Lemma 5.3. Let H be a hyperplane in X. Then the following are equivalent:

(i) CX is unbounded;

(ii) ΓC is connected and |V (Γ)| ≥ 2.

Proof. We first show (i) ⇒ (ii). Indeed, if Γ is a single vertex v, then X is a single

clique and so CX is a single vertex. On the other hand, if ΓC is disconnected, then

we have a partition V (Γ) = A t B where A and B are adjacent and non-empty. In

particular, ΓG = ΓAGA × ΓBGB, and so any vertex g ∈ ΓG of X can be expressed as

g = gAgB for some gA ∈ ΓAGA and gB ∈ ΓBGB. Thus, if H ∈ V (CX) then by Theorem

5.1, N (H) = Γstar(v)Gstar(v)gAgB for some gA ∈ ΓAGA, gB ∈ ΓBGB and v ∈ V (Γ):

without loss of generality, suppose v ∈ A. Then gB ∈ ΓBGB ≤ Γstar(v)Gstar(v) and

gA ∈ ΓAGA ≤ Γstar(u)Gstar(u) for any u ∈ B, and so gA ∈ N (H) ∩ N (Hu); therefore,

dCX(H,Hu) ≤ 1. Since 1 ∈ N (Hu)∩N (Hv) and so dCX(Hu, Hv) ≤ 1 for any u, v ∈ V (Γ),

it follows that dCX(H,H ′) ≤ 3 for any H,H ′ ∈ CX and so CX is bounded, as required.

To show (ii) ⇒ (i), suppose that Γ is a graph with at least 2 vertices and connected

complement. Thus, there exists a closed walk (v0, v1, . . . , v`) on the complement of Γ

that visits every vertex – in particular, we have vi ∈ V (Γ) with v` = v0 and vi−1 6= vi,

(vi−1, vi) /∈ E(Γ) for 1 ≤ i ≤ `. Pick arbitrary non-identity elements gi ∈ Gvi for

i = 1, . . . , `, and consider the element g = g1 · · · g` ∈ ΓG.

Now let n ∈ N, and let A,B ∈ V (CX) be such that 1 ∈ N (A) and gn ∈ N (B). Let

A = A0, . . . , Am = B be the geodesic in CX and let 1 = p0, . . . , pm+1 = gn be the

vertices in X given by Proposition 3.1. It follows from the normal form theorem for
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graph products [14, Theorem 3.9] that

n︷ ︸︸ ︷
(g1 · · · g`) · · · (g1 · · · g`) is the unique normal form

for the element gn. In particular, as geodesics in X are precisely the words spelling out

normal forms of elements of ΓG, we have pi = g`n−ci+1g`n−ci+2 · · · g`n, where 0 = c0 ≤
c1 ≤ · · · ≤ cm+1 = `n and indices are taken modulo `.

We now claim that ci+1 − ci < ` for each i. Indeed, suppose ci+1 − ci ≥ ` for some i.

Note that, as pi, pi+1 ∈ N (Ai), it follows from Theorem 5.1 that Γstar(v)Gstar(v)pi =

V (N (Ai)) = Γstar(v)Gstar(v)pi+1 for some v ∈ V (Γ), and hence pi+1p
−1
i ∈ Γstar(v)Gstar(v).

But as g`n−ci+1
g`n−ci+1+1 · · · g`n−ci−1 is a normal form for pi+1p

−1
i (where indices are

taken modulo `), it follows that vj ∈ star(v) for `n − ci+1 ≤ j < `n − ci (with indices

again modulo `). But as by assumption ci+1 − ci ≥ ` and as {v1, . . . , v`} = V (Γ), this

implies that star(v) = V (Γ), and so v is an isolated vertex of ΓC . This contradicts the

fact that ΓC is connected; thus ci+1 − ci < ` for each i, as claimed.

In particular, we get `n =
∑m

i=0(ci+1 − ci) < (m + 1)`, and so m + 1 > n. Thus

dCX(A,B) = m ≥ n and so CX is unbounded, as required.

It is now easy to deduce when the action of ΓG on CX is non-elementary acylindrical.

Proof of Corollary C. By the argument above, we only need to show the last part. Thus,

suppose that Γ is a graph with at least 3 vertices and connected complement. Then,

by Lemma 5.3, the graph CX is unbounded. In particular, given any H ∈ V (CX) and

n ∈ N, we may pickH ′ ∈ V (CX) such that dCX(H,H ′) ≥ n+1. Since the action ΓG y X

is transitive on vertices, it follows that given any vertex p ∈ N (H) there exists g ∈ ΓG
such that pg ∈ N (H ′), and in particular dCX(Hg, H ′) ≤ 1. Thus dCX(H,Hg) ≥ n, and

so the action ΓG y CX has unbounded orbits.

We now claim that ΓG is not virtually cyclic. Indeed, since |V (Γ)| ≥ 3 and ΓC is

connected, ΓC contains a path of length 2, and so there exist vertices v1, v2, w ∈ Γ such

that v1 � w � v2. Let A = {v1, v2, w} and H = Γ{v1,v2}G{v1,v2} (so either H ∼= Gv1×Gv2
or H ∼= Gv1 ∗ Gv2). Since the groups Gv are non-trivial for each v ∈ V (Γ), we have

|H| ≥ 4 > 2 and so ΓAGA ∼= Gw ∗H has infinitely many ends. In particular, since the

subgroup ΓAGA ≤ ΓG is not virtually cyclic, neither is ΓG, as required.

Remark 5.4. After appearance of the first version of this preprint, it has been brought to

the author’s attention that most of the results stated in Corollary C have already been

proved by Genevois. In [11, Theorem 2.38], Genevois shows that ∆X is quasi-isometric

to a tree whenever it is connected and Γ is finite, so in particular, by Theorem B (i), CX
is a quasi-tree as well. Moreover, methods used by Genevois to prove [9, Theorem 22]

can be adapted to show that the action of ΓG on CX is non-uniformly acylindrical; here,

the non-uniform acylindricity of an action G y X is a weaker version of acylindricity,

defined by replacing the phrase ‘is bounded above by Nε’ by ‘is finite’ in Definition 1.2.

Corollary C strengthens this statement.
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5.2 AH-accessibility

Here we study AH-accessibility, introduced in [1] by Abbott, Balasubramanya and Osin,

of graph products. In particular, we show that if Γ is connected, non-trivial, and the

groups in G are infinite, then the action of ΓG on CX is the ‘largest’ acylindrical action

of ΓG on a hyperbolic metric space. Hence we prove Corollary D.

We briefly recall the terminology of [1]. Given two isometric actions Gy X and Gy Y

of a group G, we say G y X dominates G y Y , denoted G y Y � G y X, if there

exist x ∈ X, y ∈ Y and a constant C such that

dY (y, yg) ≤ CdX(x, xg) + C

for all g ∈ G. The actions G y X and G y Y are said to be weakly equivalent if

G y X � G y Y and G y Y � G y X. This partitions all such actions into

equivalence classes.

It is easy to see that � defines a preorder on the set of all isometric actions of G on

metric spaces. Therefore, � defines a partial order on the set of equivalence classes of

all such actions. We may restrict this to a partial order on the set AH(G) of equivalence

classes of acylindrical actions of G on a hyperbolic space. We then say the group G is

AH-accessible if the partial order AH(G) has a largest element (which, if exists, must

necessarily be unique), and we say G is strongly AH-accessible if a representative of this

largest element is a Cayley graph of G.

Recall that for an action Gy X by isometries with X hyperbolic, an element g ∈ G is

said to be loxodromic if, for some (or any) x ∈ X, the map Z → X given by n 7→ xg
n

is a quasi-isometric embedding. It is clear from the definitions that the ‘largest’ action

G y X will also be universal, in the sense that every element of G, that is loxodromic

with respect to some acylindrical action of G on a hyperbolic space, will be loxodromic

with respect to Gy X.

In [1, Theorem 2.19 (c)], it is shown that the all right-angled Artin groups are AH-

accessible (and more generally, so are all hierarchically hyperbolic groups – in particular,

groups acting properly and cocompactly on a CAT(0) cube complex possessing a factor

system [2, Theorem A]). Here we generalise this result to ‘most’ graph products of infinite

groups. The proof is very similar to that of [1, Lemma 7.16].

Proof of Corollary D. It is easy to show – for instance, by Theorem 5.1 – that CX is (G-

equivariantly) quasi-isometric to the Cayley graph of ΓG with respect to the generating

set
⋃
v∈V (Γ) Γstar(v)Gstar(v).

We prove the statement by induction on |V (Γ)|. If |V (Γ)| = 1 (V (Γ)| = {v}, say), then v

is an isolated vertex of Γ and so, by the assumption, ΓG ∼= Gv is strongly AH-accessible.
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Suppose now that |V (Γ)| ≥ 2. If Γ has an isolated vertex (Γ = ΓAt{v} for some partition

V (Γ) = At{v}, say), then ΓG ∼= ΓAGA∗Gv is hyperbolic relative to {ΓAGA, Gv}. By the

induction hypothesis, both ΓAGA and Gv are strongly AH-accessible, and hence, by [1,

Theorem 7.9], so is ΓG. If, on the other hand, the complement ΓC of Γ is disconnected

(ΓC = ΓCA t ΓCB for some partition V (Γ) = AtB, say), then ΓG ∼= ΓAGA × ΓBGB is not

acylindrically hyperbolic by [23, Corollary 7.2], as both ΓAGA and ΓBGB are infinite. It

then follows from [1, Example 7.8] that ΓG is strongly AH-accessible; it also follows that

any acylindrical action of ΓG on a hyperbolic metric space (ΓG y CX, say) represents

the largest element of AH(ΓG).

Hence, we may without loss of generality assume that Γ is a graph with no isolated

vertices and connected complement. It then follows that |V (Γ)| ≥ 4, and so by Corollary

C, CX is a hyperbolic metric space and ΓG acts on it non-elementarily acylindrically.

It is easy to see from Theorem 5.1 that, given two hyperplanes H,H ′ ∈ V (CX), they

are adjacent in CX if and only if there exist distinct u, v ∈ V (Γ) and g ∈ ΓG such that

H = Hg
u and H ′ = Hg

v . It follows that the quotient space CX/ΓG is the complete graph

on |V (Γ)| vertices, and in particular, the action ΓG y CX is cocompact.

Moreover, it follows from Theorem 5.1 that the stabiliser of an arbitrary vertex Hg
v of

CX is precisely G ∼= (Γstar(v)Gstar(v))
g ∼= Ggv × (Γlink(v)Glink(v))

g. Since Γ has no isolated

vertices, link(v) 6= ∅, and so, as all groups in G are infinite, both Ggv and (Γlink(v)Glink(v))
g

are infinite groups. Thus, G is a direct product of two infinite groups, and so – by

[23, Corollary 7.2], say – G does not possess a non-elementary acylindrical action on

a hyperbolic space. Since G is not virtually cyclic, for every acylindrical action of ΓG
on a hyperbolic space Y , the induced action of G on Y has bounded orbits. It then

follows from [1, Proposition 4.13] that ΓG is strongly AH-accessible – and in particular,

ΓG y CX represents the largest element of AH(ΓG).

Remark 5.5. Corollary D gives some explicit descriptions for the class of hierarchically

hyperbolic groups, introduced by Behrstock, Hagen and Sisto in [5]. In particular,

a result by Berlai and Robbio [6, Theorem C] says that if all vertex groups Gv are

hierarchically hyperbolic with the intersection property and clean containers, then the

same can be said about ΓG. Moreover, Abbott, Behrstock and Durham show in [2,

Theorem A] that all hierarchically hyperbolic groups are AH-accessible, which implies

Corollary D in the case when the vertex groups Gv are hierarchically hyperbolic with

the intersection property and clean containers.

More precisely, every hierarchically hyperbolic group G comes with an action on a

space X , such that there exist projections πY : X → 2ĈY to some collection of δ-

hyperbolic spaces {ĈY | Y ∈ S}, where S is a partial order that contains a (unique)

largest element, S ∈ S, say. Moreover, the action of G on X induces an action of G on

(a space quasi-isometric to) U =
⋃
x∈X πS(x) ⊆ ĈS, and in [5, Theorem 14.3] it is shown

that this action is acylindrical. In [2], this construction is modified so that the action
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Gy U represents the largest element of AH(G). If Γ is connected, non-trivial, and the

groups Gv are infinite and hierarchically hyperbolic (with the intersection property and

clean containers), then the proof of Corollary D gives this action ΓG y U explicitly.

This is potentially useful for studying hierarchical hyperbolicity of graph products.

Remark 5.6. Note that the condition on the Gv being infinite is necessary for the proof

to work. Indeed, suppose Γ =
a b c d

is a path of length 3, and Gv = 〈gv〉 ∼= C2

for each v ∈ V (Γ), so that ΓG is the right-angled Coxeter group over Γ. Notice that

ΓG ∼= A ∗C B, where A = Gb× (Ga ∗Gc), B = Gc×Gd and C = Gc. In particular, since

C is finite, ΓG is hyperbolic relative to {A,B}. Hence the Cayley graph Cay(ΓG, A∪B)

is hyperbolic and the usual action of ΓG on it is acylindrical.

It is easy to verify from the normal form theorem for amalgamated free products that

the element gbgd will be loxodromic with respect to ΓG y Cay(ΓG, A ∪ B). However,

as gbgd ∈ Γstar(c)Gstar(c), we know that gbgd stabilises the hyperplane dual to Gc ⊆
V (X) under the action of ΓG on CX, and so gbgd is not loxodromic with respect to

ΓG y CX. In particular, the equivalence class of ΓG y CX cannot be the largest

element of AH(ΓG). It is straightforward to generalise this argument to show that if

c ∈ V (Γ) is a separating vertex of a connected finite simplicial graph Γ, then for any

graph product ΓG with Gc finite, the action ΓG y CX will not be the ‘largest’ one.

On the other hand, note that this particular group ΓG (and indeed any right-angled

Coxeter group) will be AH-accessible: see [2, Theorem A (4)].

6 Equational Noetherianity of graph products

In this section we prove Theorem E. To do this, we use the methods that Groves and

Hull exhibited in [15]. Here we briefly recall their terminology.

The approach to equationally Noetherian groups used in [15] is through sequences of

homomorphisms. In particular, let G be any group, let F be a finitely generated group

and let ϕi : F → G be a sequence of homomorphisms (i ∈ N). Let ω : P(N) → {0, 1}
be a non-principal ultrafilter. We say a sequence of properties (Pi)i∈N holds ω-almost

surely if ω({i ∈ N | Pi holds}) = 1. We define the ω-kernel of F with respect to (ϕi) to

be

Fω,(ϕi) = {f ∈ F | ϕi(f) = 1 ω-almost surely};

we write Fω for Fω,(ϕi) if the sequence (ϕi) is clear. It is easy to check that Fω is a

normal subgroup of F . We say ϕi factors through Fω ω-almost surely if Fω ⊆ ker(ϕi)

ω-almost surely.

The idea behind all these definitions is the following result.
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Theorem 6.1 (Groves and Hull [15, Theorem 3.5]). Let ω be a non-principal ultrafilter.

Then the following are equivalent for any group G:

(i) G is equationally Noetherian;

(ii) for any finitely generated group F and any sequence of homomorphisms (ϕi) from

F to G, ϕi factors through Fω ω-almost surely.

Remark 6.2. Note that Definition 1.5 differs from the usual definition of equationally

Noetherian groups, as we do not allow ‘coefficients’ in our equations: that is, we restrict

to subsets S ⊆ Fn instead of S ⊆ G ∗Fn. However, the two concepts coincide when G is

finitely generated – see [4, §2.2, Proposition 3]. We use this (weaker) definition of equa-

tionally Noetherian groups as it is more suitable for our methods. In particular, we use

an equivalent characterisation of equationally Noetherian groups given by Theorem 6.1.

In this section we prove Theorem E. In Section 6.1, we introduce ‘admissible’ graphs

and show that being equationally Noetherian is preserved under taking graph products

over admissible graphs. In Section 6.3, we show that indeed all graphs of girth ≥ 5 are

admissible.

6.1 Reduction to sequences of linking homomorphisms

Suppose now that the group G acts by isometries on a metric space (X, d). As before,

let F be a finitely generated group, ω a non-principal ultrafilter, and (ϕi : F → G)∞i=1

a sequence of homomorphisms. Pick a finite generating set S for F . We say that the

sequence of homomorphisms (ϕi) is non-divergent if

lim
ω

inf
x∈X

max
s∈S

d(x, xϕi(s)) <∞.

We say that (ϕi) is divergent otherwise. It is easy to see that this does not depend on

the choice of a generating set for F .

The main technical result of [15] states that in case X is hyperbolic and the action of G

on X is non-elementary acylindrical, it is enough to consider non-divergent sequences of

homomorphisms (cf Theorem 6.1).

Theorem 6.3 (Groves and Hull [15, Theorem B]). Let X be a hyperbolic metric space

and G a group acting non-elementarily acylindrically on X. Suppose that for any finitely

generated group F and any non-divergent sequence of homomorphisms (ϕi : F → G), ϕi

factors through Fω ω-almost surely. Then G is equationally Noetherian.

We now consider the particular case when G is a graph product and X is the extension

graph. Thus, as before, let Γ be a finite simplicial graph and let G = {Gv | v ∈ V (Γ)}
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be a collection of non-trivial groups. It turns out that in this case we may reduce any

non-divergent sequence of homomorphisms to one of the following form: see the proof

of Theorem 6.6.

Definition 6.4. Let F = {Fv | v ∈ V (Γ)} be a collection of finitely generated groups,

and let ϕ : ΓF → ΓG be a homomorphism. We say ϕ is linking if ϕ(Fv) ⊆ Γlink(v)Glink(v)

for each v ∈ V (Γ). We say the graph Γ is admissible if for every collection of non-trivial

equationally Noetherian groups G = {Gv | v ∈ V (Γ)} and every sequence of linking

homomorphisms (ϕi : ΓF → ΓG)∞i=1, ϕi factors through (ΓF)ω ω-almost surely.

The proof of Theorem 6.6 uses the following result.

Lemma 6.5. Full subgraphs of admissible graphs are admissible.

Proof. Let Γ be a admissible graph, let G = {Gv | v ∈ V (Γ)} be a collection of non-

trivial equationally Noetherian groups, and let F = {Fv | v ∈ V (Γ)} be a collection

of finitely generated groups. Let A ⊆ V (Γ), so that ΓA is a full subgraph of Γ, and

let (ϕAi : ΓAFA → ΓAGA)∞i=1 be a sequence of linking homomorphisms. Let ω be a

non-principal ultrafilter. We aim to show that ϕAi factors through (ΓAFA)ω ω-almost

surely.

Note that we have a canonical retraction ρA : ΓF → ΓAFA, defined on vertex groups

by ρA(f) = f if f ∈ Fv for v ∈ A, and ρA(f) = 1 if f ∈ Fv for v /∈ A. We also have

a canonical inclusion of subgroup ιA : ΓAGA → ΓG. For each i, let ϕi = ιA ◦ ϕAi ◦ ρA :

ΓF → ΓG. It is easy to see that the ϕi are linking homomorphisms. In particular, since

Γ is admissible, we have (ΓF)ω ⊆ kerϕi ω-almost surely. Moreover, since ιA is injective,

we obtain

kerϕi = ρ−1
A (kerϕAi ) for each i and (ΓF)ω = ρ−1

A ((ΓAFA)ω).

As ρA is surjective, it follows that (ΓAFA)ω ⊆ kerϕAi ω-almost surely, and so ΓA is

admissible, as required.

Theorem 6.6. For any admissible graph Γ and any collection G = {Gv | v ∈ V (Γ)} of

equationally Noetherian groups, the graph product ΓG is equationally Noetherian.

Proof. We proceed by induction on |V (Γ)|. If |V (Γ)| = 1 (V (Γ) = {v}, say) then

ΓG ∼= Gv, and so the result is clear. Thus, assume that |V (Γ)| ≥ 2.

If Γ is disconnected, then we have a partition V (Γ) = A t B into non-empty subsets

such that Γ = ΓAtΓB, and so ΓG ∼= ΓAGA ∗ΓBGB. By Lemma 6.5, both ΓA and ΓB are

admissible, and so by the induction hypothesis, both ΓAGA and ΓBGB are equationally

Noetherian. By Theorem 1.6, ΓG is equationally Noetherian as well, as required. Thus,

without loss of generality, we may assume that Γ is connected.
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Similarly, if the complement of Γ is disconnected, then we have a partition V (Γ) = AtB
such that ΓG ∼= ΓAGA×ΓBGB. As before, ΓAGA and ΓBGB are equationally Noetherian

by the induction hypothesis. It is clear from the definition that a direct product G×H of

equationally Noetherian groups G and H is equationally Noetherian: indeed, this follows

from the cartesian product decomposition VG×H(S) = VG(S)× VH(S), for any S ⊆ Fn.

Thus ΓG is equationally Noetherian in this case as well.

Therefore, we may without of loss of generality assume that Γ is a connected graph

with a connected complement and |V (Γ)| ≥ 2 (and, therefore, |V (Γ)| ≥ 4). In this

case, Corollary C shows that CX is a hyperbolic metric space and the action of ΓG on

it is non-elementary acylindrical. We thus may use Theorem 6.3 to show that ΓG is

equationally Noetherian.

In particular, let F be a finitely generated group and let (ϕi : F → ΓG)i∈N be a non-

divergent sequence of homomorphisms. By Theorem 6.3, it is enough to show that ϕi

factors through Fω ω-almost surely.

We proceed as in the proof of [15, Theorem D]. Let S be a finite generating set for F .

Note that, by Theorem 5.1, we may conjugate each ϕi (if necessary) to assume that

the minimum (over all hyperplanes H in X) of maxs∈S dCX(H,Hϕi(s)) is attained for

H = Hu for some u ∈ V (Γ). Moreover, it is easy to see from Theorem 5.1 that

|‖g‖∗ − dCX(Hu, H
g
u)| ≤ 1 for any g ∈ ΓG and u ∈ V (Γ), where we write ‖g‖∗ for the

minimal integer ` ∈ N such that g = g1 · · · g` and gi ∈ Γstar(vi)Gstar(vi) for some vi ∈ V (Γ).

In particular, since the sequence (ϕi) is non-divergent, it follows that

lim
ω

max
s∈S
‖ϕi(s)‖∗ <∞.

It follows that for each s ∈ S, there exists n̂s ∈ N such that ‖ϕi(s)‖∗ = n̂s ω-almost

surely. Moreover, for each s ∈ S, there exist v̂s,1, . . . , v̂s,n̂s ∈ V (Γ) such that we have

ϕi(s) = ĝi,s,1 · · · ĝi,s,n̂s

with ĝi,s,j ∈ Γstar(v̂s,j)Gstar(v̂s,j) ω-almost surely. But since we have Γstar(v)Gstar(v) =

Gv × Γlink(v)Glink(v) for each v ∈ V (Γ), we can write ĝi,s,j = gi,s,2j−1gi,s,2j , where

gi,s,2j−1 ∈ Gv̂s,j ≤ Γlink(vs,2j−1)Glink(vs,2j−1) with any choice of vertex vs,2j−1 ∈ link(v̂s,j)

(which exists since Γ is connected and |V (Γ)| ≥ 2), and gi,s,2j ∈ Γlink(vs,2j)Glink(vs,2j) with

vs,2j = v̂s,j . It follows that, after setting ns = 2n̂s, we may write

ϕi(s) = gi,s,1 · · · gi,s,ns

with gi,s,j ∈ Γlink(vs,j)Glink(vs,j) ω-almost surely.
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Now for each s ∈ S, define abstract letters hs,1, . . . , hs,ns . For each v ∈ V (Γ), let

Hv = {hs,j | vs,j = v},

and let Fv = F (Hv), the free group on Hv. Let F = {Fv | v ∈ V (Γ)}, and consider the

graph product ΓF. We can define a map from S to ΓF by sending s ∈ S to hs,1 · · ·hs,ns .
Let N be the normal subgroup of ΓF generated by images of all the relators of F under

this map. This gives a group homomorphism ρ : F → ΓF/N .

The map ϕ̂i : ΓF/N → ΓG, obtained by sending hs,jN to gi,s,j , is ω-almost surely a

well-defined homomorphism. Indeed, all the relators in ΓF/N are either of the form

[hs1,j1 , hs2,j2 ] = 1 if vs1,j1 ∼ vs2,j2 in Γ, or of the form φ({hs,1 · · ·hs,ns | s ∈ S}), where

φ(S) is a relator in F . Both of these ω-almost surely map to the identity under ϕ̂i: the

former because [gi,s1,j1 , gi,s2,j2 ] = 1 in G if vs1,j1 ∼ vs2,j2 in Γ, and the latter because ϕi

is a well-defined homomorphism. It is also clear that ϕi = ϕ̂i ◦ ρ ω-almost surely.

Now let π : ΓF → ΓF/N be the quotient map. Then, by construction, the homo-

morphisms ϕ′i = ϕ̂i ◦ π : ΓF → ΓG are linking (when they are well-defined). Since Γ

is admissible and the groups Gv are equationally Noetherian, it follows that ϕ′i factors

through (ΓF)ω ω-almost surely. Since π is surjective, this implies that (ΓF/N)ω ⊆ ker ϕ̂i

ω-almost surely. Thus ϕi = ϕ̂i ◦ ρ factors through Fω = ρ−1((ΓF/N)ω) ω-almost surely,

as required.

We expect that the class of equationally Noetherian groups is closed under taking arbi-

trary graph products. Although we are not able to show this in full generality, in the

next subsection we show that any triangle-free and square-free graph Γ is admissible,

and therefore, by Theorem 6.6, the class of equationally Noetherian groups is closed

under taking graph products over such graphs Γ.

6.2 Digression: dual van Kampen diagrams

Before embarking on a proof of Theorem E, let us define the following notion. Following

methods of [8] and [19], we consider dual van Kampen diagrams for words representing

the identity in ΓG; recently, dual van Kampen diagrams for graph products have been

independently introduced by Genevois in [12]. Here we explain their construction and

properties.

We consider van Kampen diagrams in the quasi-median graph X given by Theorem 1.3,

viewed as a Cayley graph. In particular, note that we have a presentation

ΓG = 〈S | R4 tR�〉 (6.1)
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with generators

S =
⊔
v∈V Γ

(Gv \ {1})

and relators of two types: the ‘triangular’ relators

R4 =
⊔

v∈V (Γ)

{ghk−1 | g, h, k ∈ Gv \ {1}, gh = k in Gv}

and the ‘rectangular’ relators

R� =
⊔

(v,w)∈E(Γ)

{[gv, gw] | gv ∈ Gv \ {1}, gw ∈ Gw \ {1}}.

We now dualise the notion of van Kampen diagrams with respect to the presentation

(6.1). Let D ⊆ R2 be a van Kampen diagram with boundary label w, for some word

w ∈ S∗ representing the identity in ΓG, with respect to the presentation (6.1). It

is convenient to pick a colouring V (Γ) → N and to colour edges of D according to

their labels. Suppose that w = g1 · · · gn for some syllables gi, and let e1, . . . , en be the

corresponding edges on the boundary of D. We add a ‘vertex at infinity’ ∞ somewhere

on R2 \ D, and for each i = 1, . . . , n, we attach to D a triangular ‘boundary’ face

whose vertices are the endpoints of ei and ∞. We get the dual van Kampen diagram ∆

corresponding to D by taking the dual of D as a polyhedral complex and removing the

face corresponding to ∞: thus, ∆ is a tesselation of a disk. See Figure 3.6.

We lift the colouring of edges in D to a colouring of edges of ∆: this gives a corresponding

vertex v ∈ V (Γ) for each internal edge of ∆. We say a 1-subcomplex (a subgraph)

of ∆ is a v-component (or just a component) for some v ∈ V (Γ) if it is a maximal

connected subgraph each of whose edges correspond to the vertex v. We call a vertex of

∆ an intersection point (respectively branch point, boundary point) if it comes from a

triangular (respectively rectangular, boundary) face inD. It is easy to see that boundary,

intersection and branch points lying on a component C will be precisely the vertices of

C of degree 1, 2 and 3, respectively.

The following Lemma says that, without loss of generality, we may always assume that

components of dual van Kampen diagrams do not contain cycles. It is a special case of

[12, Proposition 1.1].

Lemma 6.7. Let w ∈ S∗ be a word representing the identity element in ΓG. Then there

exists a dual van Kampen diagram ∆ for w such that each component of ∆ is a tree.

Proof. Let D be a van Kampen diagram for w with the corresponding dual van Kampen

diagram ∆. Suppose a v-component C of ∆ (for some v ∈ V (Γ)) contains a cycle C0 ⊆ C.

Then C0 corresponds to a ‘corridor’ K0 ⊆ D: that is, a subcomplex K0 homeomorphic

to an annulus or, in ‘degenerate’ cases, a disk. The interior int(K0) of K0 will consist
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Figure 3.6: Van Kampen diagram (D, left) and its dual (∆, right) with the word
a1b1c1a2b2c2a

−1
3 c−12 a3b

−1
2 c−13 a−14 c−14 b−11 as its boundary label, where ai ∈ Ga with

a1a2 = a4, bi ∈ Gb, ci ∈ Gc with c4c3 = c1, and b ∼ a ∼ c in Γ. The black edges
on D represent the boundary faces attached: the non-visible endpoint of each black
edge is the point∞. The dual van Kampen diagram ∆ contains 6 components in total:

2 components corresponding to each of the vertices a, b and c.

of faces and edges that correspond to vertices and edges of C0. Note that his will not

have the usual meaning if K0 is homeomorphic to a disk, as vertices contained in the

‘usual’ interior of K0 and edges joining them will not belong to int(K0). Thus int(K0)

separates D into two connected components: the inside and the outside of K0.

Fix e a directed edge e in int(K0) with initial vertex in the inside of K0, and let g ∈ Gv
be the label of e. We then construct a new van Kampen diagram D′ from D as follows.

Given any directed edge e′ in int(K0) with initial vertex in the inside of K0 and label

g′ ∈ Gv, we replace the label of e′ with g−1g′. By construction, the resulting diagram

will have one or more edges labelled by the trivial element. Each face containing such an

edge (we call it a bad face) will either be a triangular face with other two edges having

the same (non-identity) labels, or a rectangular one with two opposite edges labelled by

the trivial element. In either case we can remove such a face by gluing the two edges

labelled by non-identity elements. We remove all the bad faces in such a way, and call

the resulting diagram D′. The corresponding dual van Kampen diagram ∆′ will be

identical to ∆ apart from some of the edges of C0 removed (along with vertices that

would otherwise have degree 2 in ∆′). Thus ∆′ has strictly fewer cycles contained in a

single component than ∆, and so we may repeat this procedure to obtain a dual van

Kampen diagram in which each component is a tree.
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6.3 Graphs of large girth

Here we aim to show that all (finite simplicial) graphs of girth ≥ 5 – that is, graphs that

are both triangle-free and square-free – are admissible. Thus, let Γ be a finite simplicial

graph, and let F = {Fv | v ∈ V (Γ)} and G = {Gv | v ∈ V (Γ)} be two collections of

groups, with all Fv finitely generated and all Gv equationally Noetherian. Let ω be a

non-principal ultrafilter. For each i ∈ N, let ϕi : ΓF → ΓG be a linking homomorphism

(in the sense of Definition 6.4).

Notice that, given a homomorphism ϕ : ΓF → ΓG, there are only finitely many choices

for the subsets supp(ϕ(Fv)) ⊆ link(v) for v ∈ V (Γ). Therefore, there exist subsets

Av ⊆ link(v) such that Av = supp(ϕi(Fv)) for all v ∈ V (Γ) ω-almost surely. We will fix

these subsets Av throughout this subsection. The next result characterises combinatorial

restrictions that must be imposed on the Av.

Lemma 6.8. If Γ has girth ≥ 4, then for any v ∼ w we have av ∼ aw for all av ∈ Av
and aw ∈ Aw. In particular, if Γ has girth ≥ 5, then either Av ⊆ {w} or Aw ⊆ {v}
whenever v ∼ w.

Proof. First, we prove the first statement. Let i ∈ N be such that Au = supp(ϕi(Fv)) for

u ∈ {v, w}, and let gu ∈ ϕi(Fu) be an element such that au ∈ supp(gu) for u ∈ {v, w}.
Since ϕi is a homomorphism, [gv, gw] = 1. Let ∆ be a dual van Kampen diagram

corresponding to the word p−1
v p−1

w pvpw for some reduced words pv, pw representing

gv, gw, respectively, and let ∂v and ∂′v (respectively ∂w and ∂′w) be the intervals on the

boundary of ∆ that spell out pv (respectively pw).

Let Pv (respectively Pw) be a av-component (respectively aw-component) of ∆ that has

a boundary point on ∂v (respectively ∂w). Notice that no other boundary point of Pv

lies on ∂v since pv is reduced. Notice also that as Av ⊆ link(v) and Aw ⊆ link(w), and as

by assumption Γ is triangle-free, we have Av ∩ Aw = ∅ – in particular, av /∈ Aw. Thus

Pv cannot have boundary points on either ∂w or ∂′w.

As Pv must have at least two boundary points, this implies that Pv must have a boundary

point on ∂′v. Similarly, Pw must have a boundary point on ∂′w. But then Pv and Pw

intersect, implying that av ∼ aw, as required. This proves the first statement.

The second statement of the Lemma now follows from the first one under the additional

assumption that Γ is square-free.

As an immediate consequence, we obtain the following result.

Corollary 6.9. If Γ has girth ≥ 5 and v ∈ V (Γ) has |Av| ≥ 2, then |Aw| ≤ 1 for all

w ∼ v.



Paper 3 Acylindrical hyperbolicity and equations in graph products 141

This implies the existence of ‘non-rigid’ vertices if Γ has girth ≥ 5, in the following sense.

The idea behind this is that there are transformations that allow us to move boundary

points of components corresponding to non-rigid vertices in certain dual van Kampen

diagrams: see Lemma 6.11.

Definition 6.10. We call a vertex v ∈ V (Γ) (ϕi)-rigid (or simply rigid) if there exists

w ∈ V (Γ) such that v ∈ Aw and |Aw| ≥ 2. Otherwise, v is called non-rigid.

Given a subset A ⊆ V (Γ), we write ιA : ΓAFA → ΓF for the canonical inclusion, and ρA :

ΓG → ΓAGA for the canonical retraction. We then may define further homomorphisms

ϕ
(v,1)
i = ρV (Γ)\link(v) ◦ ϕi : ΓF → ΓV (Γ)\link(v)GV (Γ)\link(v)

and

ϕ
(v,2)
i = ρV (Γ)\{v} ◦ ϕi : ΓF → ΓV (Γ)\{v}GV (Γ)\{v}.

In addition, given any v ∈ V (Γ), we define

B(v) = {w ∈ V (Γ) | Aw = {v}}.

If v is non-rigid, then we may ‘decompose’ the homomorphisms ϕi into ones with a

‘smaller’ domain. In particular, ϕi ω-almost surely restricts to homomorphisms

ϕ
(v,3)
i = ϕi ◦ ιB(v) : ΓB(v)FB(v) → Gv

and

ϕ
(v,4)
i = ϕi ◦ ιV (Γ)\B(v) : ΓV (Γ)\B(v)FV (Γ)\B(v) → ΓV (Γ)\{v}GV (Γ)\{v}.

For j ∈ {1, 2, 3, 4}, let (ΓF)
(v,j)
ω be the ω-kernel for the sequence of homomorphisms(

ϕ
(v,j)
i

)∞
i=1

.

Lemma 6.11. Suppose v ∈ V (Γ) is non-rigid. Then ω-almost surely we have

ker(ϕi) =
〈〈
ιB(v)

(
kerϕ

(v,3)
i

)
∪ ιV (Γ)\B(v)

(
kerϕ

(v,4)
i

)
∪
[
kerϕ

(v,1)
i , kerϕ

(v,2)
i

]〉〉
. (6.2)

Moreover, the ω-kernel for the sequence (ϕi)
∞
i=1 is

(ΓF)ω =
〈〈
ιB(v)

(
(ΓF)(v,3)

ω

)
∪ ιV (Γ)\B(v)

(
(ΓF)(v,4)

ω

)
∪
[
(ΓF)(v,1)

ω , (ΓF)(v,2)
ω

]〉〉
.

Proof. We first prove that (6.2) holds ω-almost surely. The inclusion (⊇) is clear, and

so we only need to prove the inclusion (⊆).

Let i ∈ N be such that supp(ϕi(Fw)) = Aw for all w ∈ V (Γ): this happens ω-almost

surely. Let g ∈ ker(ϕi) be a cyclically reduced element. Consider an expression

g = g1 · · · gn, with gj ∈ Fvj for some v1, . . . , vn ∈ V (Γ). We will look at g1 · · · gn as
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a cyclic word throughout, that is, we will not distinguish between g1 · · · gn and its cyclic

permutations.

We will perform two types of transformations of the cyclic word g1 · · · gn, which will not

change whether or not the resulting element is contained in either side of (6.2):

(A) Transpositions: if, for some k ≤ ` ≤ m, we have ϕi(gk+1 · · · g`) ∈ Γlink(v)Glink(v)

and ϕi(g`+1 · · · gm) ∈ Gv, then we may transpose the corresponding subwords

of the cyclic word g1 · · · gn: replace the (cyclic) word gk+1 · · · gk with the word

g`+1 · · · gmgk+1 · · · g`gm+1 · · · gk. By construction, we have

gk+1 · · · g` ∈ kerϕ
(v,1)
i

and

g`+1 · · · gm ∈ kerϕ
(v,2)
i ,

so this transformation multiplies g by a conjugate of the element

[g`+1 · · · gm, gk+1 · · · g`] ∈
[
kerϕ

(v,1)
i , kerϕ

(v,2)
i

]
.

(B) Removals: if, for some k, `, we have ϕi(gk+1 · · · g`) = 1 and vj ∈ B(v) for j =

k + 1, . . . , `, then we may remove the corresponding subword of g1 · · · gn: that is,

replace the (cyclic) word gk+1 · · · gk with the word g`+1 · · · gk. By construction,

this transformation multiplies g by a conjugate of the element

(gk+1 · · · g`)−1 ∈ ιB(v)

(
kerϕ

(v,3)
i

)
.

Let ∆ be a dual van Kampen diagram for the word ϕi(g1) · · ·ϕi(gn), where the elements

ϕi(gj) are represented by reduced words. We will prove that g is contained in the right-

hand side of (6.2) by induction on n. The base case, n = 0, is clear. Without loss of

generality, we may assume that ϕi(gj) 6= 1 for each j. Indeed, if ϕi(gj) = 1 for some

j then we may replace the cyclic word gj+1 · · · gj with gj+1 · · · gj−1 by multiplying g

by a conjugate of g−1
j ∈ ιB(v)

(
kerϕ

(v,3)
i

)
or g−1

j ∈ ιV (Γ)\B(v)

(
kerϕ

(v,4)
i

)
, depending on

whether or not vj ∈ B(v). This reduces the length of the word representing g, and so

we are done by the induction hypothesis.

If ∆ does not contain any v-components, then we are done: indeed, this means that

vj /∈ B(v) for all j and so g ∈ ιV (Γ)\B(v)

(
kerϕ

(v,4)
i

)
. Otherwise, let P be a v-component

of ∆.

Since v is non-rigid, it follows that we may write g1 · · · gn (or some its cyclic permutation)

as h1k1 · · ·hmkm, where any boundary point on the interval on the boundary of ∆

corresponding to ϕi(hj) (respectively ϕi(kj)) is (respectively is not) a boundary point

of P . Notice that the hj consist only of syllables from Gw for w ∈ B(v), and that



Paper 3 Acylindrical hyperbolicity and equations in graph products 143

ϕi(h1 · · ·hm) = 1. If m = 1, then we are done: indeed, in that case h1 = 1, and so we

may remove the subword h1 from g1 · · · gn, as explained in (B) above. This reduces the

length of a word representing g, so we are done by the induction hypothesis.

Suppose now that m ≥ 2. If Q is any component of ∆ having a boundary point on the

interval ∂j corresponding to ϕi(kj), then either Q intersects P , or all other boundary

points of Q are on ∂j . It follows that ϕi(kj) ∈ Γlink(v)Glink(v); as P is a v-component, it

is also clear that ϕi(hj) ∈ Gv. Thus we may transpose subwords hj and kj of g1 · · · gn
for any j, as explained in (A) above. This also can be done with minimal changes to ∆:

see Figure 3.7. In particular, this rearranges boundary points in ∆ without changing

whether or not a specific boundary point belongs to P . This reduces the value of m for

the corresponding word, and so after m − 1 such transpositions we return to the case

m = 1. We are then done by the previous paragraph. This proves (6.2).

g`ϕ
i (k
j−

1 )

ϕ
i (h
j )

ϕ
i (k
j )

ϕ
i (h
j+

1 )

ϕ
i (k
j−

1 )

ϕ
i (h
j g −

1`
)

ϕ
i (k
j )

ϕ
i (g̀
h
j+

1 )

Figure 3.7: Proof of Lemma 6.11: transposing kj and the last syllable g` of hj . We
transpose hj and kj by performing finitely many operations like these. P is shown in

red, other components in other colours.

Finally, for the second statement, notice that in the proof above, the only operations we

do to the cyclic word g1 · · · gn are transpositions (A) or removals (B) of its subwords, and

there are finitely many operations of this form. The number of these operations is also

bounded as a function of n: for instance, we may assume that no permutation of syllables

of g1 · · · gn is obtained more than once while performing the procedure, and so there are

at most n! transpositions of subwords performed until we remove a subword. Thus some

particular sequence of transpositions and removals of subwords happens ω-almost surely,

which implies the second statement.

By combining Corollary 6.9 with Lemma 6.11, we obtain the following.

Theorem 6.12. Any finite graph Γ of girth ≥ 5 is admissible.

Proof. We will induct on |V (Γ)|; the base case, |V (Γ)| = 1, is clear. Now assume that

Γ is a graph of girth ≥ 5 with |V (Γ)| ≥ 2 and that every graph Γ̂ of girth ≥ 5 with

|V (Γ̂)| < |V (Γ)| is admissible.

Note that Γ has at least one non-rigid vertex. Indeed, it is clear that any vertex v such

that |Aw| ≤ 1 for all w ∼ v is non-rigid. Thus, if Γ contains a vertex v with |Av| ≥ 2
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then, by Corollary 6.9, v is non-rigid. On the other hand, if Γ contains no vertices v

with |Av| ≥ 2, then no vertices of Γ are rigid.

Without loss of generality, we can assume that Γ is connected – indeed, if it is not then

ΓG ∼= ΓAGA ∗ ΓBGB for some partition V (Γ) = A tB. By the inductive hypothesis, ΓA

and ΓB are admissible, and therefore, by Theorem 6.6, ΓAGA and ΓBGB are equationally

Noetherian. It then follows from Theorem 1.6 that ΓG is equationally Noetherian as well,

and so (by Theorem 6.1) Γ is admissible, as required. We will therefore assume here

that Γ is connected.

Now let v be a non-rigid vertex of Γ. As Γ is connected, link(v) 6= ∅. Therefore, by

inductive hypothesis, the graphs ΓV (Γ)\link(v) and ΓV (Γ)\{v} are admissible, and conse-

quently, by Theorem 6.6, the groups ΓV (Γ)\link(v)GV (Γ)\link(v) and ΓV (Γ)\{v}GV (Γ)\{v} are

equationally Noetherian. As Gv is also equationally Noetherian, it follows that for every

j ∈ {1, 2, 3, 4} we have

(ΓF)(v,j)
ω ⊆ kerϕ

(v,j)
i

ω-almost surely. The result now follows from Lemma 6.11.

Proof of Theorem E. This is immediate from Theorems 6.6 and 6.12.

References

[1] C. Abbott, S. Balasubramanya, and D. V. Osin, Hyperbolic structures on groups, preprint,

available at arXiv:1710.05197 [math.GR], 2017.

[2] C. Abbott, J. Behrstock, and M.G. Durham, Largest acylindrical actions and stability in

hierarchically hyperbolic groups, preprint, available at arXiv:1705.06219 [math.GR], 2017.

[3] H.-J. Bandelt, H. M. Mulder, and E. Wilkeit, Quasi-median graphs and algebras, J. Graph

Theory 18 (1994), no. 7, 681–703.

[4] G. Baumslag, A. Myasnikov, and V. Remeslennikov, Algebraic geometry over groups, I.

Algebraic sets and ideal theory, J. Algebra 219 (1999), no. 1, 16–79.

[5] J. Behrstock, M. F. Hagen, and A. Sisto, Hierarchically hyperbolic spaces, I: Curve complexes

for cubical groups, Geom. Topol. 21 (2017), no. 3, 1731–1804.

[6] F. Berlai and B. Robbio, A refined combination theorem for hierarchically hyperbolic groups,

preprint, available at arXiv:1810.06476 [math.GR], 2018.

[7] M. Burger and S. Mozes, Finitely presented simple groups and products of trees, C. R. Acad.

Sci. Paris, Ser. I 324 (1997), 747–752.

[8] J. Crisp and B. Wiest, Embeddings of graph braid and surface goups in right-angled Artin

groups and braid groups, Algebr. Geom. Topol. 4 (2004), 439–472.

[9] A. Genevois, Acylindrical action on the hyperplanes of a CAT(0) cube complex, preprint,

available at arXiv:1610.08759 [math.GR], 2016.

https://arxiv.org/abs/1710.05197
https://arxiv.org/abs/1705.06219
https://arxiv.org/abs/1810.06476
https://arxiv.org/abs/1610.08759


Paper 3 Acylindrical hyperbolicity and equations in graph products 145

[10] , Cubical-like geometry of quasi-median graphs and applications to geometric group

theory, Ph.D. thesis, Aix-Marseille Université, 2017.

[11] , Negative curvature of automorphism groups of graph products with applications to

right-angled Artin groups, preprint, available at arXiv:1807.00622 [math.GR], 2018.

[12] , On the geometry of van Kampen diagrams of graph products of groups, preprint,

available at arXiv:1901.04538 [math.GR], 2019.

[13] A. Genevois and A. Martin, Automorphisms of graph products of groups from a geometric

perspective, preprint, available at arXiv:1809.08091 [math.GR], 2018.

[14] E. R. Green, Graph products of groups, Ph.D. thesis, The University of Leeds, 1990.

[15] D. Groves and M. Hull, Homomorphisms to acylindrically hyperbolic groups I: Equationally

noetherian groups and families, to appear in Trans. Amer. Math. Soc., preprint available at

http://homepages.math.uic.edu/~groves/Papers/HAH1.pdf, 2017.

[16] M. F. Hagen, Weak hyperbolicity of cube complexes and quasi-arboreal groups, J. Topol. 7

(2014), no. 2, 385–418.

[17] F. Haglund and D. T. Wise, Special cube complexes, Geom. Funct. Anal. 17 (2007), 1551–

1620.

[18] S. Kim and T. Koberda, Embedability between right-angled Artin groups, Geom. Topol. 17

(2013), no. 1, 493–530.

[19] , The geometry of the curve graph of a right-angled Artin group, Int. J. Algebra

Comput. 24 (2014), no. 2, 121–169.

[20] P. H. Kropholler and A. Martino, Graph-wreath products and finiteness conditions, J. Pure

Appl. Algebra 220 (2016), no. 1, 422–434.

[21] J. F. Manning, Geometry of pseudocharacters, Geom. Topol. 9 (2005), 1147–1185.

[22] A. Minasyan and D. V. Osin, Acylindrical hyperbolicity of groups acting on trees, Math.

Ann. 362 (2015), 1055–1105.

[23] D. V. Osin, Acylindrically hyperbolic groups, Trans. Amer. Math. Soc. 368 (2016), 851–888.

[24] M. Sageev, Ends of group pairs and non-positively curved cube complexes, Proc. London

Math. Soc. 71 (1995), no. 3, 585–617.

[25] Z. Sela, Diophantine geometry over groups X: The elementary theory of free products,

preprint, available at arXiv:1012.0044 [math.GR], 2010.

https://arxiv.org/abs/1807.00622
https://arxiv.org/abs/1901.04538
https://arxiv.org/abs/1809.08091
http://homepages.math.uic.edu/~groves/Papers/HAH1.pdf
https://arxiv.org/abs/1012.0044

	Research Thesis: Declaration of Authorship
	Notation
	Acknowledgements
	0 Background
	0 Introduction
	1 Background for Paper 1
	2 Background for Paper 2
	3 Background for Paper 3

	Bibliography
	1 Rational growth and degree of commutativity of graph products
	1 Introduction
	2 Groups with rational growth series
	3 Degree of commutativity
	References

	2 Probabilistic nilpotence in infinite groups
	1 Introduction
	2 Products of measures that measure index uniformly
	3 The algebraic structure of probabilistically nilpotent groups
	4 Equations over virtually nilpotent groups in terms of polynomial mappings
	5 Sparsity of roots of polynomial mappings
	6 Finite quotients
	7 Dependence on rank
	A Polynomial mappings into torsion-free nilpotent groups
	B Hyperbolic groups
	References

	3 Acylindrical hyperbolicity of groups acting on quasi-median graphs and equations in graph products
	1 Introduction
	2 Preliminaries
	3 Geometry of the contact graph
	4 Acylindricity
	5 Application to graph products
	6 Equational Noetherianity of graph products
	References


