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A polyhedral product (X, A)¥ is determined by a finite simplicial complex K and m pairs
of topological spaces. The functorial property of polyhedral products implies two types
of symmetries of polyhedral products induced by symmetries of simplicial complexes and
by group actions on the topological pairs. In this thesis, we consider these two types of

symmetries.

In the case of G-polyhedral products induced by a simplicial G-complex K, we show
that the homotopy decomposition ¥ (X, A)X due to Bahri-Bendersky-Cohen-Gitler [3]
is homotopy G-equivariant after suspension. It implies a homological decomposition of
H;((X, A)X) in terms of G-representations, which we rely on to study the representation
stability of polyhedral product in the sense of Church-Farb [15].

The torus actions on moment-angle complexes Zx is a special case of actions on poly-
hedral products induced by actions on the topological pairs. In this thesis, we compute
the cohomology of the quotient Zj /S! under free circle actions and introduce a chain
complex (Cy(L),§) whose homology isomorphic to H*(Zk /S; R). For certain cases K,
we determine the homotopy types of Zx/S?.
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Chapter 1

Introduction

Back in 1977, Hochster [26] decomposed the Tor-algebra Tor gy, (R[K], R) into the
cohomologies of full subcomplexes of K as R-modules, where K is a finite simplicial
complex. In 2000, Buchstaber and Panov [8] first introduced the space known as the
moment-angle complex Zx and proved that its cohomolgy is isomorphic to the Tor-
algebra as R-algebras. It made possible to show that Hochster’s decomposition is an
isomorphism of algebras, a result due to Baskakov [4]. Since then, studies of moment-
angle complexes include the studies of connections among topological properties of Zg,

algebraic properties of Tor g, (R[K], R) and combinatorial structures of K.

For example, Grbi¢ and Theriault [22] proved that if K is shifted, then the homotopy
type of Zk is a wedge of spheres. This is a topological version of the algebraic state-
ment that if K is shifted, then all multiplications in Tor gy, (R[K], R) vanish. Bahri-
Bendersky-Cohen-Gitler [3] proved the existence of a homotopy splitting of moment-
angle complexes which leads to a homological decomposition, a topological proof of

Hochster’s decomposition.

A polyhedral product (X, A)¥ is defined by a subspace of a product space determined
by a finite simplicial complex K and a sequence of topological pairs, which is a homo-
topy theoretical generalisation of moment-angle complexes. The studies of polyhedral
products via homotopy theory extend applications to other area, such as combinatorics

and geometry.

In particular, one of the fundamental properties of polyhedral products is functoriality,
which indicates two types of symmetries, one from the symmetries of simplicial com-
plexes and one from group actions on the topological pairs. Our work in this thesis
consists of two projects by considering these two types of symmetries of polyhedral

products.

In [20], we considered how the symmetries of simplicial complexes influence the symmet-

ries of polyhedral products. If a finite group G acts on K simplicially, then (X, A)¥ is a

1



2 1. INTRODUCTION

CW-G-complex. We showed that the homotopy decomposition [3] of (X, A)X is then
G-equivariant after suspension. In the case of 3,,-polyhedral products, we give criteria

on simplicial Y,,-complexes which imply representation stability of X,,-representations
{H;((X, A)Xm)} in the sense of Church-Farb [15]. This content is contained in Chapter 3.

Actions on polyhedral products can also arise from coordinatewise actions on the to-
pological pair. In this case, we are interested in the polyhedral product (ConeG, G)¥
which is a G™-invariant subspace of (Cone G)™, where G is a compact Lie group. By
taking G = S Lor Zs, this action specialises to T'-actions (1 <1< m) on moment-angle
complexes Zx or Zé—actions on real moment-angle complexes RZg, respectively. Here
T! (vesp. Z,) acts on Zx (resp. RZx) as a subtorus group of 7™ (resp. Z3'). These
quotient spaces Zg /Tl and RZx /le, known as toric spaces, play a key role in toric

topology.

Cai [11] introduced a differential graded algebra (R/Ik,d) with homology algebraically
isomorphic to the integral cohomology of RZx. Choi and Park [13] considered the Z)-
action on R/Ix and deduced an analogous Hochster’s formula for the cohomology of
RZy /7. Panov [35] identified the cohomology of the quotient space of Zx/H to an
appropriate Tor-algebra (4.4) if the subtorus H acts freely on Zg.

However, the proofs of Hochster’s formula and Choi-Park’s formula can not be general-
ised to the case of partial quotients of Zx, since Hochster’s formula relies on a multi-
grading structure, which does not exist in the case of Zx/H in general, and Choi-Park’s
formula relies on a result which is only valid for finite group actions. This makes it more

difficult to find a generalised Hochster-type formula for the cohomology of Zx/H.

In the last chapter, we consider a special case of torus actions on Zx when H is of rank
r = 1. In this case, the circle action on Zx by (s1,. .., Sm) determines a chain complex
(C«(L),0) (Construction 4.4.5), for which we relate the cohomology of the quotient space
Zk /St to homology groups H,(L,§). In the end, we finish this thesis by studying the
homotopy type of Zx /S* for certain K.

I shall summarise the results on the work in representation stability of polyhedral

products. This is a joint work with my supervisor Jelena Grbi¢ (see Chapter 3).

Theorem 3.3.3. Let K be a simplicial G-complex on [m]. Then there is a homotopy
G-decomposition
0: 22X, AN ~ 52 \/ (X, A"
JClm]
where the G-action on X2(X, A)K is induced by the G-action on X™, and the G-action

on the right hand side is a permutation of wedge summands by the G-action on 2™

Passing to homology groups, we obtain the following statement.



Theorem 3.3.5. Let K be a simplicial G-complex on [m]. Then there exists an iso-

morphism of kG-modules

H((X, A% 0 = @ B(xX. A5k = @ mdd, Hi(X, )5 k)
JC[m] Jelm)/a

where G acts on the middle term by permuting the summands such that g-ﬁi((X, AT k) =
H;((X,A)Xe7:K), [m]/G is a set of representatives of the orbit of 2™\ () under G and
G is the stabiliser of J.

If a symmetric group %, of degree m acts on K, then the homology group H;((X, A)¥; k)

is a X,,-representation over k. Thus a sequence of simplicial ¥,,-complexes
gKm—l gngKm—H c...
gives rise to a sequence of Y,,-representations

C— Hy(X, A1 k) — Hy(X, A5 k) — H(X, A)E k) — ... (1.1)

We also considered sufficient conditions for a sequence of simplicial 3,,-complexes such
that the induced sequence of ¥,,-representations (1.1) satisfies the property of repres-

entation stability.

Theorem 3.4.12. Let {K,,, i} be a consistent sequence of finite simplicial complezes
and X be a connected, based CW -complex of finite type with a based subcomplex A. Sup-
pose that { Ky, im} is completely surjective and stabiliser consistent. Then the consistent
sequence of Xy, -representations {I;Tz((X, A)Em k), i, } for chark = 0 is uniformly rep-

resentation stable.

In my second project regarding to torus actions on moment-angle complexes, we first
apply the Taylor resolution and Koszul resolution to the Tor-algebra (4.4), which implies
two differential graded algebras whose cohomologies are isomorphic to H*(Zx/H) as

algebras.

Taylor algebra. The differential graded algebra (A*[P]® R[x1,...,x,],d) is defined by
d(ail e Uip) = Z (71)t—15p(x1’ c ,SUT)O'Z'I e Oy e Oi,
1<t<i

dl’j =
where 0p(z1,...,2r) = [I (D2 sizj) if Sy # Sp,» and 1 otherwise.
iESa\Sato j=1

The bigradings of oy, ...0;, and x; are given by

bideg o, ... 05, = (—p, 2|Ss|) and bideg z; = (0, 2).

P



4 1. INTRODUCTION

Koszul algebra. The differential graded algebra (Afui,. .., un—r]® R[K],d') is defined
by
d/ui = )\ﬂvl + ... )\imvm and d’vj = 0.

The bigradings of u; and v; are given by
bideg u; = (—1,2) and bidegv; = (0, 2).

Theorem (Theorem 4.3.3, Proposition 4.3.6). There exist isomorphisms of R-algebras

1%

H*(Zk /H; R) = Torg(p(rmmy;r)(RIK], R) = H(A'[P] ® Rlzy, ..., 2], d)

H(Aur, . .., um_] ® RIK],d).

I

Specialising to free circle actions on Zk, one can construct a filtration {L, | 1 <p < m}

of simplicial complexes on the vertex set IP,
LP = {{Ul17'--aalj} QP| ‘O’ll U...UO’lj| Sp}

where P denotes the set of all minimal missing faces of K.

The circle action on Zx by (s1,..., Sy,) induces a chain complex (Cy(Lp;d)) for each L,

defined in Construction 4.4.5. The result follows next.

Theorem 4.4.11. Suppose that S' acts freely on Z. Then there exists an isomorphism
of R-algebras

H*(Zx/S“R) = €D Hj1(Ly,0).
2p—j=>0

In the case of the diagonal action, the homology H.(L,,d) is the reduced simplicial

homology of the simplicial complex L.

Corollary 4.4.12. There is an isomorphism of R-algebras

H*(Zk/S3R) = @ Hj1(LyR).

2p—j=0
We continue to consider homotopy types of of partial quotients Zx /S* under free circle
actions for certain K.

Theorem 4.5.4. Let S' acts freely on Zi by (s1,...,5m). Assume that there exits a
vertex v € K such that s, = +1.

(a) There exist homotopy equivalences

Flink ~ ZLinkge(v)> FRest ™ ZRestre(v)s Fotar = ZLinkse(0)/ 5



(b) The quotient space Zi /S is the homotopy pushout of the diagram Zy . (v)/Sl L
Zinke (v) LN ZRest (v), Where v is a map induced by the simplicial inclusion Linkk (v) —

Restx (v) and q is a quotient map.

Let Zar denote the moment-angle complex corresponding to the k-skeleton of A™~1
We identify the homotopy type of the homotopy cofibre of the quotient map Z Ak —
Z Ak, /SY, which consequently gives the homotopy type of Z Ak, / Scll under the diagonal

action.

Theorem 4.5.10. Let Cym denote the homotopy cofibre of the quotient map Zxnr —
ZAEn/Scll' Then there exists a homotopy equivalence

k+1 .
Ck,m = (CPk+2 V (\/ 82271 * ZAIH'l__i) \V4 (S2k+3 * Tm*k72)'

=1

Corollary 4.5.13. The homotopy type of ZA;C,L/Sclz i Z Ak LV Cr—1,m—1-






Chapter 2
Background

The cohomology of moment-angle complexes and their quotient spaces closely relates to
(R[K],R) (4.4) of K, which are one of the main objects

of research in commutative algebra. The study of these objects provides topological

the Tor-algebras Torgy, .

-~7tm—r]

approaches to the study of algebraic properties of these algebras.

2.1 Preliminaries in commutative algebra

We start with some basic combinatorial definitions.

Definition 2.1.1. An abstract simplicial complex K on [m] = {1,2,...,m} is a collec-

tion of subsets of [m| such that
(1) if o € K, then any subset of o also belongs to K;
(2) if o and 7 are in K, then the intersection o N7 is in K.

We always assume that () € K.

The finite set [m] is called the vertex set of K. A ghost vertex i of K is whenever ¢ € [m)]
but i ¢ K. For example, consider K = {0),{1}} on [2]. Then {2} is a ghost vertex
of K on [2]. The dimension of a simplex o of K is dimo = |o| — 1, where |o| is the
cardinality of ¢. The dimension of the simplicial complex K is the maximal dimension

of its simplices (i.e. dim K = max|o| — 1).
oceK

Example 2.1.2. The boundary of a simplex A™~! is a simplicial complex of dimension
(m — 2). The k-skeleton AF of a simplex A™~! consists of all subsets of [m] with

cardinality at most k 4+ 1. This is a simplicial complex of dimension k.

Construction 2.1.3. Let K; and K3 be simplicial complexes on [m4] and [mg], re-

spectively. The join K7 * Ko of two simplicial complexes is a simplicial complex on the

7



8 2.1. Preliminaries in commutative algebra

vertex set [mq] Ll [mg] whose faces are of the form o L7, where 0 € K; and 7 € K3 and

Ll denotes the disjoint union.

Example 2.1.4. Let K; = ° e and Ky = s e be a disjoint union of two points. Then

the join of K7 and K5 is the boundary of a square.

Example 2.1.5. The cone on K, denoted by ConeK, is the join of K and one single

vertex.

Definition 2.1.6. For J C [m], the full subcomplez K j is the subcomplex of K whose
vertex set is J, that is
Ky={onJ|oceK}.

Definition 2.1.7. An n-polytope P" is called simple if there are exactly n codimension-

one faces meeting at each vertex. These codimension-one faces are called facets of P™.

Examples of simple polytopes include m-gons, prisms, the m-simplex A™ and the m-

cube I, where I = [0,1]. A typical non-example is the cone on an m-gon when m > 4.

Definition 2.1.8. Let P™ be an simple n-polytope and let F = {Fi,..., F,} be the
facets of P™. The nerve complex OP* of P™ is the boundary of its dual polytope P*
([10, p.4]), which is a simplicial complex, denoted by Kp, on the vertex set F, where
{Fi,,...,F;,} forms a simplex of Kp if and only if the intersection F; N ... N Fj, is

non-empty. Note that Kp is a triangulation of an (n — 1)-sphere.

For example, if P is a simplex A™ or an m-gon, then the nerve complex Kp is the

boundary of P since P and P* are combinatorially isomorphic.

Definition 2.1.9. The barycentric subdivision K' of K is a simplicial complex on the
vertex set {o € K | o # 0}, where (0y,,...,05,) forms a face of K’ if and only if there
exist face inclusions o;; C ... C 0y, where 0; C 0; means that o; is a proper face of ;.
The cone on K’, denoted by Cone K’, can be seen as a simplicial complex on the vertex
set {o € K} (including the empty face of K) constructed in the same way by adding

the empty set () as the cone vertex.

Example 2.1.10. Let K be the 1-simplex. Then the abstract simplicial complex K’ is

K= {0, {1}, {2}, {1, 2}, {1}, {1, 2}}, {{2}. {1, 2}}}.

Geometrically, we have

(12)

K K’ Cone K’

The shading denotes the face of ConeK’



Definition 2.1.11. Let (P, <) be a finite poset (partially ordered set). The order
complex A(P) is a simplicial complex on the vertex set given by elements of P, where

the simplicies are the tuples (p;,,...,p;) such that p;, < ... <p;, in P.

For example, a simplicial complex K has an associated poset K, which has elements
consisting of faces of K, ordered by the reverse inclusion, i.e., ¢ < 7 if and only if 7 C o.
Thus, the empty set @) is the maximal element of K. Also, the order complex A(K) is
the simplicial complex ConeK’ defined in Definition 2.1.9.

2.1.1 Stanley-Reisner ring and Tor-algebras

Let R be a commutative ring with unit, let 1z denote the multiplicative identity of R

and let k be a field or Z. The tensor product ® is taken over R, unless otherwise stated.

Definition 2.1.12. The Stanley-Reisner ring R[K] of a simplicial complex K on [m] is a
quotient ring R[K| = R[v1,- -+ ,vm]/Ik, where Ig = (v,: 0 ¢ K) is the Stanley-Reisner

ideal generated by those monomials v, = []v; which correspond to non-faces o of K.
1€0

Example 2.1.13. Let K be the following simplicial complex.

Then the Stanley-Reisner ring of K is R[K| = R[v1, v2, vs, v4]/(v1v2, V20304).

The underlying R-module of R[K] is free, which is infinite dimensional unless K = ().

Lemma 2.1.14. [10, Proposition 3.1.9] The Stanley-Reisner ring R[K] has a basis

consisting of 1r and vfll o le with a; >0 and {i1,...,4} € K, as an R-module.

The quotient homomorphism R[vi,- -+ ,v,] — R[K] gives R[K] a module structure
over R[m| = R[vi, -+ ,vp]. Moreover, R is an R[m]|-module induced by the homo-
morphism R[m] —~ R which sends each v; of R[m] to 0. Therefore, a Tor-module
Tor g (R[K], R) is established. In fact, it is an R-algebra induced by the Koszul al-

gebra.

Construction 2.1.15 (Koszul resolution). The Koszul resolution of R over R[m] is a
long exact sequence of free R[m]-modules defined by
d

0 — A" [ug, ..., um) @ Rlv1,...,vn] i>Am_1[ul,...,um](EQR[Ul,...,vm] — @.1)

...i>A1[u1,...,um]®R[vl,...,vm]gR[vl,...,vm]éR%O
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where Afug, ..., uy] is an exterior algebra on m generators and A?[uy, . .., u,,] denotes the
R-module generated by wy of length i, i.e., uy = uj, ... uj, with J = {j1,..., 5} C [m].

Here the bigradings of u; and v; are given by
bidegu; = (—1,2) and bidegv; = (0, 2).
The differentials on the algebraic generators are defined by
du; = v; and dv; = 0.

These extend to differentials on Afug,...,un] ® R[vi,...,vy] according to the Leibniz
identity (i.e. d(a-b) =da-b+ (—1)%e@)q . db).

Applying — ®gjm, R[K] to (2.1), we have a differential graded algebra
(Alug, ..., um] ® R[K],d),du; = v; and dv; =0 (2.2)

such that Tor gy, (R[K], R) = H(Afu1, -+, upm] ® R[K],d).

Recall that the tensor product A ® B of two R-algebras A and B is an R-algebra by
(a1 ®b1) - (a2 ® ba) = (a1a2) @ (b1be) (2.3)

where a; € Aand b; € B,i=1,2.

Definition 2.1.16. The differential graded algebra (2.2) is known as Koszul algebra,
whose multiplication is the tensor product (2.3) of the exterior algebra Afug, ..., un]

and the Stanley-Reisner ring R[K] over R.
The isomorphism Tor g, (R[K], R) = H(Afu1,--- ,um] ® R[K],d) gives an R-algebra
structure on Tor gy, (R[K], R).

Definition 2.1.17. We refer to Torgy, (R[K], R) as the Tor-algebra of a simplicial

complex K over R.

Example 2.1.18. Consider K = () on [m]. Then the Stanley-Reisner ring
R[0] = R[v1,...,vm]/(v1,...,vm) = R.

In this case, the differentials on the Koszul algebra are trivial. Thus, Torg, (R, R) =

A[ul, s ,um].

In [34], a quotient algebra R*(K) of the Koszul algebra was introduced whose underlying

R-module is finite dimensional and its cohomology is isomorphic to Tor g, (R[K], R).



11

Construction 2.1.19. Define the quotient algebra
R*(K) = Alut, - ,um] @ RIK]/(uiv; = v} = 0,1 <i < m)
where the differentials d and bigrading are given by

du; = v;, dv; =0 and bidegu; = (—1,2), bidegv; = (0,2).

There exists an R-basis {ujvr | JNI =0, J C [m],I € K} of the underlying R-module of
R*(K). Denote by t: R*(K) — Afui, ..., un]®R[K] an R-homomorphism which sends
the basis element ujvr identically and let p: Afug, ..., un] ® RIK] — R*(K) be the
quotient homomorphism. Thus, pt = id. Though tp # id, the next statement says that
there exists a cochain homotopy h between tp and id. Since the quotient homomorphism

p is a map of algebras, p induces an isomorphism of algebras on cohomology.

Lemma 2.1.20. [10, 34] There exists a cochain homotopy
hi: Aug, ... um] @ RIK] — A ug, ... upm] @ R[K]

such that dh—hd = id —tp. Hence, the quotient homomorphism p induces isomorphisms
of R-algebras

Torpm(RIK], R) & H(Auy, -+ , ] @ RIK],d) = H(R*(K), d).

Example 2.1.21. Let K be the boundary of an (m — 1)-simplex. Then R[K| =
R[m]/(vy...vy). The R-basis of R*(K) consists of {ujv; | JNIT =0, € K}. The

differentials on generators ujvy of R*(K) are

0 if J={j}and I =[m]\{j}
dujvr =

> €(d, Jupgjyvjur - otherwise
JjeJ

where €(j, J) = (—1)"1if j sits at the r-th position of .J. The generators of Ker d~* (i.e.
cocyles of bigrading (—1,*)) are {ujvymp\ (1,1 < j < m}. Since d(wj, Uiy Vim)\ (5, ,j0}) =
U Vpm\jy — Ur Vlm]\ji > Tor]}[lﬁ]m(R[K],R) >~ R generated by ujvovs...v,. Let a =
>orprugvr € Ker d=2*. We can write o« = ujaq + g, where oy € RV and ap € R™2*
whose generators do not contain u; as a factor. Hence, dao = ayvq — uidag + dag = 0
so that ajv; + das = 0 and doy = 0. It follows that oy = 0 since oy € Kerd b*
and the supporting generators w;jvy of oy satisfying |I| < m — 2. So a = ay whose
supporting generators do not contain u;. Repeating this, gives « = 0. Similarly, we
have Ker d—7* = 0 for j > 2. Hence, we have

Toryp,, (RIK], R) = R and Tor i 2" (R[K], R) = R.

[m] [m]
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4 3
Example 2.1.22. Let K be the boundary of a 4-gon, ! 2 | Then R[K] = R[4]/(v1vs, vavy).
The non-trivial differentials on generators ujvr (JNI =0 and I € K) of R*(K) are

d(u;v;) = vju; if {j,i} € K
W)y Vj, Vi if jjui e K and joUi ¢ K
d(uj, uj,vi) =  —uj,v5,0; if Ui ¢ K and joUi € K
UjVj Vi — U V5,0 if jrUdand joUi € K

A(WUpmpvi) = Y U\ g}V
JE[mM\i

The cocycles of bigrading (—1, %) has a basis

{u1v3, u1v2v3, U1V3VL, UV, U3V1V2, UV1 V4, U2V, URV1V4, URU3V, U4V, ULVI V2, ULV2V3 |-
Since dujug = ugvi —uivs and duguy = Ugv2 — Uy, Tor;zm(R[K], R) = R® R generated
by ujvs and ugvy. A direct calculation implies that Tor ?®(R[K], R) is generated by
ujugv3vy and Tor(])é? (R[K],R) = R (the ground ring R).

m]

2.1.2 Hochster’s Formula

Hochster’s formula is a useful tool for computing Tor gy, (R[K], R) by calculating the
reduced simplicial cohomology of full subcomplexes K; of K. Recall that for J C [m],
the full subcomplex K is defined by Ky ={ocnNJ|o € K}.

Theorem 2.1.23 (Hochster [26]). Let K be a simplicial complex K on [m]. There are

isomorphisms of R-modules

Torg o (RIKL,R) = € H "'KjR).
JC[m],\J\:j

Note that H='(0; R) = R.

Next, we give a sketch proof of Hochster’s formula which can be adapted to to show Pro-

position 4.3.11. It relies on the multigrading structure of R*(K) (Construction 2.1.19).

Construction 2.1.24 (multigrading). The multigrading of R*(K) is defined on the
R-basis elements by
mdeg oy = (—|J\ 1],2J).

Let J C [m]. Define R*?/(K) to be the submodule of R*(K) generated by basis

elements {uprvr € R*(K) | I € K}. Since d(upvr) = > + .\ unyvior,
jeI\ JUIEK

where up junvjur € R%?(K), thus R**/(K) is a cochain subcomplex of R*(K).
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We also have a decomposition R™4%(K) = @ R **(K) which induces a de-
JC[ml,|J]=j
composition of the Tor-module Tor;zf;z}] (RIK],R)= Torl_%fflj] (R[K], R).
JC[m] | J|=j

Let o* denote the cochain basis element of C*(K; R) corresponding to an oriented sim-

plex 0 € K. For any J C [m], there exists a cochain isomorphism

f: CP YKy R) — RPVI2(K)
o+ (o, J)up Vo
where e(o,J) = []e(j,J) and €(j, J) = (—1)"*1 if j sits at the r-th position in J with
j€o
J written increasingly. We refer to [10, Theorem 3.2.9] for a detailed proof that f

commutes with the differentials. Hence, f induces isomorphisms on cohomology

HP (K j; R) = Torly 1/ (RIK), R).

2.1.3 Taylor resolution

The Taylor resolution [39] of the Stanley-Reisner ring R[K] is constructed as follows. Let
P = {o1,...,0p} consist of all minimal missing faces of K and let A*[P] be an exterior

algebra on generators corresponding to elements in P over R.

Construction 2.1.25 (Taylor resolution). The Taylor resolution of R[K]| over R[vy, ..., Up]
is given by
... — N[P| @ Rlvr, ..., vm] -5 AP ® Rvy, ..., vm] —5 o)
L AMPI® Run, .. ] =5 Rlvr, ..., vm] — RIK] — 0

where the differential operation d is defined by

lem(vy, Vg, -, Vg,
d(ffjlajz"'fqu)z Z (_1 t—1 (0]17 Ojjg> > a]q) O'jl"'a'\jt---O'j

o q
ICIH(UOJ.I )" ’Uajt’ T 7Ucrjq)

and lcm(vgjl,vajz, e ,vajq) stands for the least common multiple, o;, and Uy, mean

that o, and v, are omitted, respectively.
The multigrading of A*[P] ® R[v1,...,vs] is given by

mdeg (le Ojo "+ qu) = (*Qa 1CII1(’UU],1 1y Uajys 0 Vay, ))
and its bigrading is given by

bideg (0,0}, ---0j,) = (—q,2|0;, U...Uoj,|) and bidegv; = (0, 2).
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Let 0y, ...04, € A'[P] and let 0}, ...0j, € AY[P]. The multiplication x of the Taylor
resolution (2.4) is defined by

lem(vgy ..oy Vo, )lcm(v,7]1 Vo, )
lcm(vgi1 yeeVoy, Vo ,..A,v(,jq)

Oiy-+-04,04, -.-0j, if{il,,..7it}ﬂ{j1,,..7jq}IQ)

04y -+ 0jy ><O’j1...0']'q =

0 otherwise.

Applying — ®pgjm R to (2.4), since R is an R[m]-module by sending all v; to zero, it
reduces to a differential graded algebra (A*[P],d), where the differential operation d is
defined by
d(oj 05, - 0j,) = Z (_l)t_l(stgjd Ty Oy (2.5)
1<t<q
Here §; = 1if S, = 8y,, and zero otherwise, where S, = o, U... U0y, and Sy, =
o U...Ud;,U...Udgj,.

The differential graded algebra (A*[PP], d) is called the Taylor algebra whose multigrading

is defined as follows.

Construction 2.1.26 (multigrading [27]). The multigrading of A*[P] is given by

mdegoj, ...0j5, = (—¢,2(0;, U...Udgj,)).

For any J C [m], let A*2/ be the submodule of A*[P] generated by elements of multigrad-

ing (,2J). By the definition of the differential (2.5), A*27 is closed under the differential.

Thus, A*2?7 is a cochain subcomplex of A*[P]. The decomposition A*[P] = @ A*?/[P]
JCm]

induces a decomposition on cohomology. Hence, the next statement follows.

Theorem 2.1.27 ([41]). Let K be a simplicial complex on [m] and let P consist of all

minimal missing faces of K. Then we have an isomorphism of rings

Torg (RIK],R) = @ Hi(A™"*/[P],d).
JC[m]

Here the product on @ H(A*?/[P],d) is given by
JC[m]

el <[] =[e- ] b5

where [c] € Hy(A*,d) and [] € Hy(A%*,d), the cycle c- ¢ is the product of ¢ and ¢
inA*7*[P] andch,J/ =1 ifJﬂJ/:w, and&]’y =0 ifJﬂJ/?é@.

Let us remark that the exterior algebra A*[P] in the Taylor resolution A*[P|@R][v1, .. ., U]
of R[K] is taken over a finite set corresponding to the generators of the Stanley-Reisner
ideal Ix. Thus, theoretically P in Theorem 2.1.27 can be given by any finite set

{o1,...,00 | o € 2™} which contains all minimal missing faces of K. However, in
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order that the calculation of Torgy, (R[K], R) is as efficient as possible, we state the

result that P only contains all minimal missing faces.

Example 2.1.28. Let K be the boundary of a 5-gon.

K= 2 )

Take P = {7‘13 = {1,3},7’14 = {1,4},7’24 = {2,4},7’25 = {2,5},7’35 = {3,5}} to be the
minimal missing faces of K. By the definition (2.5) of the differential operation d, the

non-trivial differentials are:

d5(7'137147'247'257'35) = T14T24T257T35 — T137T24T25T25 1 T13T14T25T35 — T13T14724735 + T13T147T24 725
da(T13T14T4To5) = —T13T24To5 + T13T14Tos;  da(T13T14T24T35) = —T13T24T35 + T13T14735}
dy(T13T14T25T35) = T14T25T35 — T13T14T25;  d4(T13T24T25735) = T13T247T35 — T13T24725;
dy(T14T24To5T35) = —T14T25T35 + T14T24735'

d3(T13T14T24) = —T13T24;  d3(T137T14735) = T14735;  d3(T14T24T25) = —T14T25;

d3(T24T25T35) = —To4T3s;  d3(T13T25T35) = T13725.

As an R-module, Torgj5 (R[K], R) has a basis given by

1 Ti3 T14 To4 T25 T35
T13T24T25 T13T14 T13735 Ti14T24  T24T25 T25735
It follows that

Torg,v[lyf](R[K], R) = R®5 generated by 713, T14, To4, To5, T35;

—2,6 ~ pP®5 .
TOI"R[m] (RIK],R) = R®°, generated by 713714, 713735, T14T24, T24T25, T257T35:

TOYE?A;]O(R[K], R) 2 R, generated by Ti3724725.

2.2 Moment-angle Complexes

In this section, we recall definitions and properties of moment-angle complexes.

Let K be a simplicial complex on [m]. The moment-angle complex Zx is a union of
products of discs and circles which is a T™-invariant subspace of (D?)™, where the
T™-action on (D?)™ is induced by a coordinatewise multiplication of complex numbers,

viewing (D?)™ as a subset of the complex space C™.
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Definition 2.2.1. The moment-angle complex Zx associated to a simplicial complex

K on [m] is defined by
zZg = | J (D% 8Y)
ceK
D? ifico
where (D?,81) =Yy x --- x Y, and Y; =
St ifido.

For example, if K is the boundary of a simplex with m vertices, then

Zr=(D?*xD?x---x SHUD?*x---x S' x D*)U---U(S' x D* x --- x D?)
:8((D2)m) gSQm—l.

Proposition 2.2.2. [10, Theorem 4.1.4] If K s a triangulation of an (n — 1)-sphere
with m vertices, then the corresponding moment-angle complex Zx is a closed (m +n)-

manifold.

We refer to Zx as a moment-angle manifold when K is a triangulation of a sphere. For
example, let P" be a simple polytope (Definition 2.1.7) with facets F = {F},..., Fi,}.
The nerve complex Kp of P" (Definition 2.1.8) is a triangulation of (n — 1)-sphere.

Hence Zg, is a moment-angle manifold.

2.2.1 Cohomology of Zx

The cellular decomposition of Z is described as a subspace of (D?)™. The disc D? has
1 €2 of dimensions 0, 1,2, respectively. The cells of (D?)™ are paramet-
rised by subsets I,J C [m] with I N J = (). That is to say, a cell denoted by «(J, I) is

equal to e; X --- X ey, in (D?)™, where ¢; is the 2-dimensional cell e? if i € I, e; is the

three cells €, e

I-dimensional cell e! if i € J, and e; is the point € if i € [m]\ (I U J). Since Z is a
subcomplex of (D?)™ determined by the simplicial complex K, the cells of Zj are those
cells k(J,I) where I € K. Thus the cellular cochain complex C*(Zk; R) of Zx has a
basis of cochains {x(J,I)* | I € K,INJ = 0}, where each x(J, I)* corresponds to a cell
k(J,I) of Zx.

Recall that the quotient differential graded algebra R*(K) (Construction 2.1.19) is
defined by

R*(K) = Alui, ..., un] ® RIK]/(uv; = v = 0,1 <i < m)

where du; = v; and dv; = 0. There is a bijection between the R-basis of C*(Zk; R) and
R*(K) which commutes with differentials.
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Lemma 2.2.3 ([10, 34]). The cellular cochain algebra C*(Zk; R) is isomorphic to the al-
gebra R*(K). Therefore, there is an isomorphism of cohomology rings between H*(Zg; R)
and H(R*(K)).

Now combining Lemma 2.1.20, Theorem 2.1.23 and Theorem 2.1.27, we have the follow-
ing result.
Theorem 2.2.4 ([10, 4]). There are isomorphisms of R-algebras
H*(Zk; R) = Torgy, (RIK], R) = @5 H*(K,; R).
JC[m]

where the ring structure on the rTight hand side is given by the canonical maps
Hk*‘[lfl(KI; R) ® Hli‘Jlil(K]; R) — Hk+l*‘[|*‘]‘fl(KIUJ;R)
which are induced by simplicial maps K,y — Ky Ky for INJ = 0 and zero otherwise.

Moreover, it has been proven in [4] that the isomorphisms of Hochster’s formula

HP"}(K 3 R) = Tor 0 */ (R[K]; R)

are functorial with respect to simplicial maps. An important application of these func-
torial properties is seen when one considers the G-actions on Zg induced by a simplicial
G-complex K, which will induce a kG-module on H*(Z; k) compatible with the decom-
position of Hochster’s formula. This lays the foundation to consider the representation

stability of moment-angle complexes in Chapter 3.
We have seen that Zx is homeomorphic to S?™~! when K is the boundary of an (m—1)-
simplex. Let us calculate its cohomology by applying Hochster’s formula.

Example 2.2.5. Let K be the boundary of an (m — 1)-simplex. In this case, only
when J = () and J = [m], the reduced simplicial cohomology of K is nontrivial. By
Theorem 2.2.4,

H°(Zx;R) = H'(0;R) = R;

H*™ Y (Zk;R) = H ™ (2k; R) = H™ (K|, R) = R.

Moreover, examples (2.1.22 and 2.1.28) give the cohomology groups of Zx when K is
the boundary of a 4-gon or 5-gon. That is, let K be the boundary of a square, then

R ifl=0
/ RoR ifl=3
H'(Zg; R) =
R ifl=26
0 otherwise.
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Let K be the boundary of a 5-gon, then
R ifl=0,7

H'(Zg;R) = { R®®  if [ =34

0 otherwise

In fact, by [5, 31], when K is the boundary of an m-gon (m > 4), Zk is homeomorphic

to a connected sum of sphere products

2y = T (SF x g2k E-D (L),
k=3

2.2.2 Partial Quotients of Moment-angle Complexes

The purpose of this section is to give an alternative definition of moment-angle complexes
and their quotient spaces under torus actions. The cohomological properties of partial

quotients of Zx will be studied in Chapter 4.

Let I'" denote the standard unit m-cube with I = [0,1]. For J C I C [m], any face of

I'"™ can be written as

Cicr={(1,...,ym) €™ |y; =0for je J, yj =1for j ¢ I}

and vertices of I"™ are indexed by subsets of [m]

Crer={(wi, .. ym) €™ |y; =0for jeI, y;=1for j ¢ I}.
In particular, Cycp = (1,...,1).

Denote by 2" the power set of [m).

Construction 2.2.6 (triangulation of I [10]). Let A™! be an (m — 1)-simplex. The
simplicial complex Cone(A™ 1) is on the vertex set 2/™. The identity map id: 2™ —
2[m] viewed as a map between the vertex set of Cone(A™1)" and the vertex set of 1™,
extends linearly to a homeomorphism i,

ic: Cone(A™ 1) — ™

(2.6)
o C...C 04— Cgilcgil.

The image of i, gives a triangulation of I"*. Note that i.(0) = Cycg = (1,...,1).

Example 2.2.7. Let us illustrate the triangulation of I2. The vertices of I? correspond
to subsets of [2] by i.(0) = (1,1), i.({1}) = (0,1), i.({2}) = (1,0) and i.({1,2}) =
(0,0). The resulting homeomorphism i.: Cone(A')" — 12 is extended linearly by this

correspondence. See the picture below.
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0 1 0
Al
1 2
(12) 1z 2
Cone K’ 12

Let K be a simplicial complex on [m]. Then K is a subcomplex of A”™ ! and Cone K’
is a subcomplex of Cone(A™ ). Each face F(,,) (0; € K) of Cone K’ corresponds
to a chain o9 C 01 C ... € oy of faces of K and i.(F,,)) = Csoco, by (2.6). The
codimensional-one faces of F,,) are these chains {oo C ... C6; & ... C oy | 0<j <1}
where” denotes omission. The interior int F{,,) consists of points in F{,,) which are not in
its codimensional-one faces. Hence if # € Cone K”, there is a unique face F{,,) € Cone K’

such that x € int F{,,).

The image of ConeK'’ under the map 7. provides a triangulation of a cubical subcomplex
of I'". Denote by cc(K) this underlying cubical subcomplex of the image of Cone K’

under the map i.. Then the moment-angle complex Zx = (D2 SY)X = |J (D?,5%)7 is
oeK
a pullback of the diagram

Zx —— (D)™

| | (2.7)

ce(K) —— ™
where 7 is an inclusion and p(z1,...,2m) = (|z1],-- -, |2ml)-

For any o C [m], denote by T the coordinate |o|-subtorus
TU:{(t1,~-,tm)ETm\tj:Iforjga}ng. (2.8)

In particular, 7% is the trivial subgroup {1} of 7. Now let us introduce a homeo-
morphism of (D?)™ which, together with the pullback square (2.7), gives an alternative
definition of Z. Since D? is homeomorphic to (I x S1)/(0,t) ~ (0,t), there is a
homeomorphism

(D)™ =™ x T™/ ~ (2.9)

where (x,t1) ~ (y,t2) if and only if x =y and t] 'ty € T¥® and w(x) = {i € [m] | z; =
0}. This equivalence (x,t1) ~ (x,t2) (2.9) is equivalent to saying that the coordinate

t =t ifx; 0, where #/ and ¢} represent the j-th coordinates of t; and ts, respectively.
1 2 1Ly 1 2 J y

By the definition of i. (2.6), w(i.(x)) = oo for which x € int F{,,) and F,,) corresponds
to the chain o9 C ... C oy of faces of K. Since cc(K) is homeomorphic to Cone K’ by
ic, together with the pullback diagram (2.7) and the homeomorphism (2.9), there is a
homeomorphism Zx = Cone K’ x T™/ ~, where (x,t1) ~ (y,t2) if and only if x =y €
int F,,) and t1 'to € T70. Moreover, the homeomorphism (2.9) (D?)™ 2T x T™/ ~ is

T™-equivariant, where T™ acts on the second coordinate of I x T™/ ~. Hence there
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is a T"™-action on Cone K’ x T™/ ~ by a T™-action on the second coordinate and the

homeomorphism Zx = Cone K/ x T™/ ~ is T™-equivariant.

We obtain an alternative definition of moment-angle complexes, which was introduced
in [17].

Definition 2.2.8. The moment-angle complex Zg is T""-equivariantly homeomorphic
to
Cone K' x T™/ ~ (2.10)

where (x,t1) ~ (y,t2) if and only if x =y € int F{,,) and t; 1ty € TO0.

Example 2.2.9. Let K be the disjoint union of two points. Then the geometrical
realisation |Cone K'| is homeomorphic to the interval [0,1]. Then by (2.10), Zx =
I x S{ x S3/ ~, where (0,t1,t2) ~ (0,t],t2) and (1,t1,t2) ~ (1,%1,t5). The space
[ x S} x S}/ ~ is exactly the join of S' and S1, which is S3.

Example 2.2.9 illustrates moment-angle manifolds obtained from simple polytopes when
K (the two disjoint points) is a nerve complex of a simple polytope (the 1-simplex). A
polytopal moment-angle manifold refers to a moment-angle complex Zg, corresponding

to a nerve complex Kp of a simple polytope P".

Let P™ be a simple polytope with m facets, let F(P) denote the facet set {Fy,--- , Fy,}
of P" and let Ix = {i € [m] | x € F;} for each x € P.

Definition 2.2.10 ([10]). For a simple n-polytope P with m facets, we define
Zp=(P"xT™)/ ~
where (x,t1) ~ (y,t2) if and only if x =y and t; 'ty € T'x.

Example 2.2.11 (odd dimensional spheres). Consider P™ to be the n-simplex A™ C
R+, The moment-angle manifold associated to A™ is S?"*1. To see this, let

S = {(xo,71,...,%n) 65”|xi20,0§i§n}gRgH

be the part of n-sphere lying in the non-negative coordinate region of R™*'. Then
there exists a homeomorphism ¢: A" — ST which maps the boundary of A™ onto the

boundary of ST homeomorphically.

Since S*"1 = {(20,21,...,2n) € C"TL | |20|> + |21 + ... + |z]* = 1}, ST =
{(zhto, 2it1, ... aptn) | (20,...,2),) € S, (to,...,tn) € T"T'} by applying the polar
coordinate z; = x’ztz Define a map

f: A" x TTL+1 SN SZnJrl C (CnJrl

(2.11)
((330, R ,l'n), (tg, R ,tn)) — (mgto, ey x;ltn)
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where (zq, ..., 2}) = ¥(xo, ..., Tn).

We can check that f(x,t1) = f(y, t2) if and only if (x,t;) ~ (y,t2), where ~ is defined
as in Definition 2.2.10. To see this, f(x,t1) = f(y,t2) if and only if :U;.tj = y;.t%, where
%, y; and t],t} represent the j-th coordinate of x',y’ and t1,t2, respectively. Since
ait] = yit as complex numbers, we have |2t} = |y§t§] Thus = = y} as @, y} are
non-negative real numbers. So x = y. Then x;tjl = x;t% if and only if when x; # 0,

t] = ), (when ) =0, t] and #} can be any element in S).

Finally, since f is surjective, the map f induces a homeomorphism

Zan = A" x T/ A Sontl

It has been proven in [10, Theorem 6.2.4] that Zp = P x T™/ ~ defined in Defini-

tion 2.2.10 and the moment-angle Zg, complex are homeomorphism.

Theorem 2.2.12 ([10]). The moment-angle manifold Zi, obtained from the nerve com-
plex of a simple polytope P™ is T -equivariantly homeomorphic to Zp defined in Defin-
ition 2.2.10.

Next we introduce the quotient spaces of Zy under torus actions. Let A: Z" — Z™™"

be a surjective linear map. Then the short exact sequence
0 — KerA — 2™ 2 7m0

splits ([32, Corollary 23.2]). The map A induces a homomorphism of tori 7™ — T ",

also denoted by A, and a short exact sequence of tori follows
1 — KerA — T 2 77 4 1,

For every o € K, let A, denote the image of 77 (2.8) in T " due to the composite
Alpe: T — T"™ — T™~". We have the following definition of quotient space Zx/H.

Lemma 2.2.13. The subtorus H = KerA of rank r acts on Zx. The quotient space

Zx /H is homeomorphic to the following space
Cone K' x T™™"/ ~

where (x,t1) ~ (y,t2) if and only if x =y € int Fi,,y and tfltg € Ay,

Proof. Since the homeomorphism Zx = Cone K’ x T™/ ~ (2.10) is T™-equivariant, it

is also H-equivariant for any subtorus H < 7T™. Hence we have the homeomorphism

Zr/H =2 ConeK' x T™/ ~
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where the relation ~ includes the identifications due to the subtorus H-action (x, gt) ~
(x,t) for g € H and the identifications of Zy, i.e., (x,t1) ~ (y,t2) if x =y € int F|,,)
and tl_ltg € T°. The identifications due to the H-action have representatives given by
the left coset space T™/H. So (x,t1H) ~ (x,toH) if and only if (t1H) ! (toH) € T7°,
which is equivalent to t;'ta € Ay,. The statement follows since T™/H = T™". ]

In particular, in the case of nerve complexes Kp for a simple n-polytope P"™ with m
facets, the integral n X m-matrix A is called a characteristic function if KerA acts on
Zp freely. This freeness condition is given by the following (*) condition ([34, Theorem
3.12])

(%) for every vertex v € P as an intersection of n facets v = F;; N Fj, N--- N Fj,, the
maximal minor A, = Aj, j,...j, formed by the columns ji, - -, j, of the matrix A, satisfies
detA, = +1.

With a simple polytope P™ and a characteristic function A, this quotient manifold
Zp/KerA is known as a quasi-toric manifold M (P", A).

Definition 2.2.14 ([17]). Let (P", A) satisfy the (*) condition. A quasitoric manifold
is M(P,A) = P x T"/ ~,, where (x,t1) ~a (y,t2) if x =y and tl_th € Ty a and Tx A
is the image of 7= in T™ under A.

Example 2.2.15 (projective spaces). Let A = (In | —1), where —1 = (—1,...,—1)%.
In this case, (A", A) satisfies the (*) condition and KerA =2 S' acts on Zan» diagonally.
By (2.11), the homeomorphism f: A" x Tt/ ~— §2n+1 ig T+ equivariant. Hence,
f is S'-equivariantly homeomorphic. Consider the diagonal action on both sides, where
the quotient space of S?"*! under the diagonal action is CP™. So Zan/KerA = CP".

2.3 Polyhedral products

The homotopy-theoretical applications in polyhedral products are beautiful, providing
topological approaches to finding relations among algebraic properties and combinatorial
structures. In this section, we review the definitions of polyhedral products and their

related properties with an emphasis from a homotopy viewpoint.

Let K be a simplicial complex on [m] and let (X, A) = {(X1,A41),...,(Xm,Am)} be a
sequence of m pairs of topological spaces. For any subset o = {i1,...,4} C [m], we

introduce the following spaces

(X, A ={(z1,...,2m) € [[X) | z;j € Afor j ¢ I}
j=1

(X, AM ={z1 A Axp € X4 A A X | x5 € Afor j ¢ T}
XM =X, ANAX,.
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If all X; = X and A; = A, the above corresponding spaces are denoted by (X, A)7,
(X, A and X", respectively.

Definition 2.3.1. A polyhedral product (X, A)¥ is a subspace of [] X;, defined by
i=1

(X, A% = J X, 47
ceK

If all X; = X and 4; = A, write (X, 4)% = (X, A)X. We will illustrate polyhedral

products with various simplicial complexes and distinct topological pairs.

Example 2.3.2. (1) If X = D? and A = S, then the corresponding polyhedral product
Zx = (D?,S")K is known as the moment-angle complex. If X = BS! (the classifying
space of S!) and A = #, then the corresponding polyhedral product DJy = (BS*, %)

is called the Davis-Januszkiewicz space.
(2) Let K be a simplex A™~1. Then (X, A)% = X1 x ... x X;,.

(3) Let each X; be a based space and let each A; be the base point. If K consists of m
m

disjoint points, then (X, *)% = \/ X;. If K = 9A™!, the boundary of a simplex, then
=1

1=

(X, *)‘rmmfl is a fat wedge of X1 X ... x X, i.e., a subspace with at least one coordinate
to be the based point.

Here are two fundamental properties (functorial properties and retractions) of polyhedral

products which are crucial to the results of this thesis.

Lemma 2.3.3 ([40]). (a) The polyhedral product (X, A)X is functorial with respect to the
category of simplicial complexes and simplicial inclusions and the category of a sequence

of topological spaces and continuous maps, respectively.

(b) For any non-empty subset J C [m], the polyhedral product (X, A)X retracts off
(X, A,

We give a remark regarding to maps between polyhedral products induced by simplicial

inclusions.

Remark 2.3.4. Since the definition of a polyhedral product relies on the vertex set of K,
if L is a subcomplex of K, then there are two types of polyhedral products associated
to L. The usual notation (X, A)” denotes the polyhedral product defined on the vertex
set V(L) and we use (X, A)f to denote the polyhedral product obtained by taking L
on the vertex set V(K), i.e., allowing the ghost vertices due to L being a subcomplex
of K. Both these two spaces (X, A)Y and (X, A)L are subspaces of (X, A)X. The maps

induced by simplicial inclusions considered in Lemma 2.3.3 are from (X, A)L to (X, A)K .
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Next we introduce the polyhedral smash product. The smash product X AY is a
quotient space X X Y/X VY and the smash product Xj A... A X,, is a quotient space
(X1 x ... x X)) /(X *)aAm_l. The join X Y of two based spaces is XX A Y.

Definition 2.3.5. The polyhedral smash product of a simplicial complex K and m
topological pairs (X, A) is defined as

(X’A)/\K — U (Xyé)/\g
ceK

where (X, A)N =Y1A...ANY ,and Y, =X;ificoand Y; = A; ifi ¢ 0.

2.3.1 Homotopy decompositions

A classical splitting of a product space X; x...x X,, is given by ([38, Proposition 7.7.6])

DXy % ..ox X)) — X\ XM
1Cfm]

where I goes through non-empty subsets of [m].
In [3], Bahri, Bendersky, Cohen, Gitler proved that this splitting induces a splitting of
polyhedral product.

Theorem 2.3.6 ([3]). Let K be a simplicial complex on [m|. Then there ezists a ho-

motopy equivalence
DX, AR~ \/ (X, )M
IC[m]

when (X, A) consists of m pairs of connected, based CW-complexes.
Interesting families of (X, A)® include the spaces such that either each X; or A; is

contractible, which covers the cases of moment-angle complexes and Davis-Januszkiewicz

spaces.

Theorem 2.3.7 ([3]). Let X; and A; be closed CW complexes for all i. There are

homotopy equivalences in the following cases:

(a) if the inclusion A; — X; is null homotopic, then

B, A)F ~ 2\ xM)
IeK

(b) if all X; are contractible, then

S(X, A)F =~ 2\ K ]« AM)
I¢K

where | K| is the geometrical realisation of the full subcomplex Kf ={oNI|o € K}.
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Furthermore, Grbi¢ and Theriault [23] proved that Theorem 2.3.7(b) can be desuspended
for (CX, X)X when K is shifted. A simplicial complex K is shifted if there exits an
order =< on its vertex set V(K) such that when o = {i1,...,4} € K, then for every
o' ={j1,..., 51} satisfying j; < i, (1 <t <), o’ also belongs to K. A typical example
of shifted complexes is the k-skeleton Af;l of a simplex, which contains all the subsets of

[m] with cardinality less than or equal to k + 1.

Theorem 2.3.8 ([23]). Let K be a simplicial complex on [m]. If K is shifted, then there

exists a homotopy equivalence

(CX, X)5 ~ (\/ K]+ X,
I¢K

This generalised a result of Porter [36] for a homotopy decomposition (CX, X )Afn.

Theorem 2.3.9 ([23, 36]). The homotopy type of (CX, X)Afn is the wedge

. ) ) k+1
j=k+2 1<i1<...<i;<m

(CX, X)2m ~ \ﬂ} ( V <j1>2k+1Xi1/\.../\Xij).

2.3.2 Diagrams of spaces

Let CAT(K) be the face category of K whose objects are faces of K and morphisms are
inclusions, let Top be the category of topological spaces and let CW, be the category of

connected, based CW-complexes.

Definition 2.3.10. A CAT(K)-diagram of spaces is a functor F' from the face category
CAT(K) to the category of topological spaces.

In most cases, we are working in the category of connected, based CW complexes. For
two faces o C 7 of K, denote by i, ,: 0 — 7 the face inclusion and F(iy,): F(0) —
F(7) the corresponding map between spaces F'(c) and F'(7). We would like to describe
the spaces of colimit and homotopy colimit of F'. Since a functor preserves the identity
morphisms and compositions of morphisms, the colimit of a CAT(K)-diagram F' is the

following space.

Definition 2.3.11. Let F' be a CAT(K)-diagram of CW complexes. Then the colimit

of F' is the disjoint union ][] F(¢) with certain identifications
oeK

colim F' = HF(U)/N

ceEK

where  ~ F(iy)(z) for which € F(o) and all possible o C 7 with the face inclusion

log7:0 —>T.
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Next we describe a construction of homotopy colimit for a CAT(K)-diagram F', fol-
lowing a construction of the homotopy colimit in [3, 42] for a diagram P — CW,,
where P is a poset (partially ordered set). A CAT(K)-diagram F' is equivalent to a
diagram from a poset K to CW,, where K denotes the poset associated to K which
has elements consisting of faces of K, ordered by the reverse inclusion. Then the con-
struction ho;:g}gm F (o) relies on the order complex A(K), which is ConeK’, the cone on
the barycentric subdivision of K (Definition 2.1.9, 2.1.11). We adapt the construction
in [3, Section 4] of homotopy colimit for a diagram P — CW, to a CAT(K)-diagram
F, since objects and morphisms in CAT(K) form a poset which is exactly K.

Recall that Cone K’ has a vertex set {c € K} (Definition 2.1.9) including the empty
face. For o € K, denote by X (o) the full subcomplex of Cone K’ on the vertex set
{r € K| o C1}. For faces 0 C 7 of K, then X(7) is a subcomplex of X (o) and denote
by jro: X(7) — X(o) the simplicial inclusion. Note that X (@) = Cone K'. With a
CAT(K)-diagram F' and a subface o of 7, there are two types of related maps o and /3
defined by
a=idx F(isr): X(1)x F(o) — X(7)X F(7)
B =jro xid: X(1)x F(o) — X(0) x F(0).

Definition 2.3.12. Given a CAT(K)-diagram F' of based CW complexes, the homotopy

colimit of F is a disjoint union [[ X (o) x F(o) after identifications
oceK

hocolim " = ( [[x(0) x F(e))/ ~ (2.12)
oceK

where (x,u) ~ (x/,u') whenever a(x,u) = f(x/,u).

Recall that 77 = {(t1,...,tm) € T™ | t; = 1if j ¢ o} is a |o|-torus for ¢ C [m]. Thus
the quotient group 7T /T = {(t1,...,tm) € t™ | t; = 1if j € 0} is an (m — |o|)-torus.
For o C 7 C [m], there exists a quotient map 7™ /T — T™ /T projecting t; to 1 if
jeTbut j&£o.

I will show that the moment-angle complex provides a candidate for the homotopy
colimit of the CAT(K)-diagram D'(o) =T™/T°.

Example 2.3.13 (moment-angle complex). Consider a CAT(K)-diagram D’ defined by
D'(¢) =T™/T? with quotient maps T /T — T™ /T for 0 C 7 of K. We describe
the homotopy colimit of D’ by (2.12). First, for every o € K, we have X (o) x F(o) C
X (0) x F(0). We conclude that every element (x,u) from X (o) x F(o) is equivalent to
the same element (x,u) in X (0) x F(0) by considering the two types of maps « and 3
corresponding to ) C . Thus hocg}gm D'~ X(0)xF(0)/ ~. To describe the equivalence
relation on X () x F(0), we rel;f on the transitive property of an equivalence relation.
That is to say, (x,u) ~ (x/,u') in X(0) x F(0) if and only if there exists 0 € K and
an element (y,v) € X(o) x F(o) such that (x,u) ~ (y,v) and (y,v) ~ (x/,u’). In this
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way, we have x =y = x" and u; = uj; for j € o, where u; and u} are the j-th coordinate
of u and u’ respectively. Note that u; = uj for j € o if and only if u~lu’ € T°. Then,
we have

hocolim D' ~ ConeK' x T™/ ~ (2.13)
ceK

where (x,u) ~ (y,u’) if and only if for some 0 € K, x =y € X(0) and u~!u’ € T°.

We see that the space ConeK’'xT™/ ~ (2.13) coincides with the alternative construction
of moment-angle complexes Zx defined in Definition 2.2.8, which implies the following

statement.

Lemma 2.3.14. The colimit of D: CAT(K) — CW, by D(o) = (D?,5%)° is homotopy

equivalent to its homotopy colimit

Zi = colim (D?, S1)° ~ hocolim T™/T°.
K=o P ST =hopgm T

Proof. We denote by the relation ~; in (2.13) and the relation ~ in Definition 2.2.8 and
show that these relations coincide. Let x € X (o) and t,t’ € 7™ such that t~!t' € T°.
Since X (o) is the full subcomplex of Cone K’ on the set {r € K | o C 7}, there is a
unique face Fi.y (10 & ... € 1) such that x € int F{,) and o C 79. Thus t~1t' € T™ so
that (x,t) ~2 (x,t’). On the other hand, let (x,t) ~2 (x,t'), i.e., there exists a unique
face F(,,) € Cone K’ such that x € int F(,,) and t~'t’ € T%°. Let o = 0¢. So x € X(0)
and t~'t’ € T which implies (x,t) ~1 (x,t/). O

Let A: T™ — T™7" be a homomorphism of tori induced by a surjective linear map
Z™ — Z"™~". Consider the diagram E’': CAT(K) — CW, by E'(c) =T™ " /A, and
quotient maps T~ " /Ay — T™ " /A, for 0 C 7 € K and A, denotes the image of T
in T by A. Following the argument in Example 2.3.13, we recover the quotient of

Zk as a homotopy colimit of E’.

Example 2.3.15 (quotients of Zk). The homotopy colimit of the CAT(K)-diagram E’
is given by

hocolim E' (o) ~ Zx /KerA
ceK

where (x,t1) ~ (y,t2) if and only if x =y € int F{,,) and t7 Mt € Ay,

In particular, if H = KerA satisfies H N T? = {1} for any o € K, then E'(c) =
T " /A, = T™ /(T x H). This is the case of particular interest to consider free subtorus

actions on Zg in Chapter 4.

In general, a polydedral product (X, A)X and a polyhedral smash product (X, A)"
have their associated CAT(K)-diagrams.
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Definition 2.3.16. Let K be a simplicial complex on [m] and (X, A) be m pairs of

spaces.

(a) Define a polyhedral functor P: CAT(K) — Top by P(o) = (X, A)? and the inclu-
sion (X, A)? — (X, A)" foroc C 7€ K.

(b) Analogously, define a polyhedral smash functor P: CAT(K) — Top by ]3(0) =
(X, A)"? and the inclusion (X, A)" — (X, A)" foroc C 7€ K.

Thus we have (X, A)X = |J (X,A)? = colim P(¢) and (X, A)"E = |J (X,A)"\° =
g€K o€k oeK

lim P(0).
el

Under certain conditions, the homotopy types of colim F' and hocolim F' coincide.

Theorem 2.3.17 ([3]). Let K be a simplicial complez on [m] and (X, A) be m pairs of
connected based CW-complexes. Let P be a polyhedral functor defined by P(o) = (X, A)?

for o € K. Then there exists a homotopy equivalence
colim P(c) ~ hocolim P(0).

Example 2.3.18. Consider the diagram D.J: CAT(K) — CW, by DJ (o) = (BS*, x)°
and the inclusion (BS?!, )7 — (BS', %)™ for 0 C 7 € K. Then the Davis-Januszkiewicz
space DJi = (BS', )X = colim DJ (o) ~ hocolim D.J ().

oeK oceK

To summarise, we have considered a few diagrams from CAT(K) to CW,. Let H be a
subtorus of 7™ such that H NT7 = {1} for every o € K. For faces o C 7 of K, these

diagrams are defined as follows.

Example 2.3.19. Here are a few diagrams which will be studied in the next section to

obtain homotopy fibrations.

D(o) = (D% §")7 with inclusions (D?, S)? — (D?, 817,

D'(0) = T™ /T with quotient maps T™/T° — T™/T7,

E(o) = (D?, 817 /H with induced quotient maps (D?, S1)°/H — (D? SY)"/H,
E'(0) =T™/(T° x H) with quotient maps T /(T° x H) — T™/(T" x H),
DJ(c) = (BS', %) with inclusions (BS!, %) — (BS*, ).

Note that each space (D?,S')7 is an H-invariant subspace of Zx (Lemma 4.5.1).
2.3.3 Fibration sequences
The purpose of this section is to get homotopy fibrations by applying Puppe’s the-

orem [37] to CAT(K)-diagrams. Our exposition below follows a description due to [18,
p.180].



29

Let £ be a CAT(K)-diagram of spaces and let B be a fixed space. By amap f: £ — B
bewteen £ and B, we mean that f is a natural transformation from & to Top with a
constant evaluation f(o) = B for every o € £. With a map from £ to a fixed space B,

there exists an associated diagram of fibres by taking the objectwise homotopy fibre.

Definition 2.3.20. Let £ be a CAT(K)-diagram of spaces, let B be a fixed space
and f: £ — B be a map bewteen £ and B. A CAT(K)-diagram Fibs of fibres is
defined by taking Fibs(o) to be the homotopy fibre of f5: £(0) — B and morphisms
Fibs(o) — Fiby(7) to be the corresponding maps between fibres induced by the map
E(oc) — &(r) forc C7in K.

Given a map f from a CAT(K)-diagram € to a fixed space B, there are two topological
spaces associated. One is the homotopy fibre of an induced map f: hoacg}}m (o) — B
and another one is hogg}ém Fibs(o), the homotopy colimit of the CAT(K)-diagram of
fibres induced by f. Puppe’s theorem states when these two spaces have the same

homotopy type.

Theorem 2.3.21 ([37, 18]). Let £ be a CAT(K)-diagram of spaces, let B be a fized
connected space and let f: & — B be any map bewteen £ and B. Assume that for

o C 7 in CAT(K), the following diagram is commutative

E(o) —— &(7)

S

Then the homotopy fibre of the induced map f: hoco}}mé‘(a) — B is homotopy equi-
S
valent to the homotopy colimit of a CAT(K)-diagram Fib¢ of fibres.

To explain the next statement, we recall a fact [30, p.212] that if H is a closed connected
subgroup of G, then H — G -+ G/H = {gH | g € G} is a fibration (in fact it is
a principal H-bundle). Let m: G — G/H denote the “type” of quotient maps. Here
“type” means all quotient maps from a group G to its left coset space G/H with H < G.
So if Hy and Hy are two subtori of 7" satisfying that H; N Hy = {1}, then there is a
fibration

(Hy x Hy)/Hy — T™/Hy — T™/(H; x H3)

by taking (H; x Hz)/Hs as a closed subgroup of T™/H, which has a quotient group
isomorphic to T™/(H; x Hy). Moreover, since we assume that H; N Hy = {1}, then the
composite H; N Hy x Hy = (Hy x Hs)/Hs is a goup isomorphism. Thus, there is a
fibration

Hy % T™/Hy — T™/(Hy x Hy)

where « is the composite Hy — T™ SN T™/Hs.
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As H; is a subtorus of T™, we have a fibration H; i> " — T™/H;. Then the

quotient map 7™ — T /Hy gives a commutative diagram of fibrations

H ——1Tm T™/H,

J“ lﬂ (2.14)

H1 SN Tm/H2 e Tm/(Hl X HQ)

Moreover, there is a fibration G/H — BH — BG ([16, Proposition 2.15]) if H is a

subgroup of G. Then (2.14) gives rise to a homotopy commutative diagram of fibrations

T /H, —— BH, —2" BT™

J* H Jo-

T™/(Hy x Hy) —— BH; —5% B(T™/H>).

Lemma 2.3.22. Let H be a subtorus of T™ of rank r satisfying H N T = {1} for
every o € K. Then the quotient map Zx BN Zi /H makes the following diagram of

homotopy fibrations commutative up to homotopy

Zx —— DJg —2— Br™

I H Jo-

Zx/H —— DJx P2 grm |

where j is a canonical inclusion.

Proof. If HN'T? is trivial for every o € K, then we have a diagram of fibrations

™/ ——— BT —— BT™

L e e

T"/(T° x H) —— BT° —— B(T™/H).

Consider the Davis-Januszkiewicz space as DJx = (BS!, %)X ~ hoaceollgmBT" . The in-
clusion j,: BT° — BT™ and its composition with the quotient map 7j,: BT° —
B(T™/H), give two maps from a CAT(K)-diagram DJ (Example 2.3.19) to fixed
spaces BT™ and B(T™/H), respectively. By the fibre bundles (2.15), the CAT(K)-
diagrams D’ and E’ (Example 2.3.19) are the induced CAT(K)-diagrams of fibres for
(BSh, %) 4 BT™ and (BS*Y, x)K (%i B(T™/H), respectively. Objectwise, the
quotient map D’(c) — E’(0) is the induced map between fibres.

Note that these two maps j and (Bw) o j satisfy the condition in Puppe’s theorem.

A direct consequence of Puppe’s theorem is that hoco}}m D'(0) and hoco}}m E'(0) are
S (S

the homotopy fibres of maps DJg 4 BT™ and DJ. K (Br)gi B(T™/H), respectively.
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According to the construction (2.12) of the homotopy colimit, the objectwise quotient
map D'(0) — E'(0) will induce a quotient map between X () x D'(c)/ ~ and X (0) x
FE'(0)/ ~. By Examples 2.3.13 and 2.3.15, these candidates (2.12) of the homotopy
colimit of D’ and E’ are homeomorphic to Zx and Zx/H. When we replace X (()) x
D'(o)/ ~ and X(0) x E'(0)/ ~ by Zkx and Zx/H due to the homeomorphism, the
quotient map between X () x D'(c)/ ~ and X(0) x E’(c)/ ~ induces the quotient
map between Zx and Zx/H, since X(0) x D'(0)/ ~ and Zk are H-equivariantly

homeomorphic. O

Remark 2.3.23. Tt can be shown that if K does not have ghost vertices, then these
two fibration sequences in Lemma 2.15 splits after loop because of the existence of

sections in both cases. The long exact sequence of homotopy groups associated to
Zx/H — DJg — B(T™/H) implies that Zx /H is simply-connected.

Homological consequences. In [34, 35], Panov proved that the Eilenberg-Moore
spectral sequences associated to these two fibration sequences Zx — DJg — BT™
and Zx /H — DJx — B(T™/H) collapse at the Fs-term if H satisfies the condition
in Lemma 2.3.22. The cohomologies of Zx and Zx/H follow.

Theorem 2.3.24 ([34, 35]). Let H be a subtorus of T™ such that HNT? = {1} for

every o € K. Then there are isomorphisms of R-algebras

H*(Zk; R) = Torgpy, (R[K], R);
H*(Zk /H; R) = Torg(p(rm /my;r) (R[K], R).

We recall that the inclusion (BS?, *)K — BT™ induces the quotient homomorphism
on their cohomologies. More details of this Tor-algebra Tor g+ (p(rm /i), r) (RIK], R) will

be considered in Section 4.3.

Proposition 2.3.25 ([10]). The cohomology ring H*(DJk; R) of Davis-Januszkiewicz
spaces is isomorphic to the Stanley-Reisner ring R[K]. The inclusion (BS', ) SN

BT™ induces a quotient homomorphism between their cohomologies
Jj5: Rlvi, ..., um] — R[K] = R[v1,...,vn]/Ik

where I is the Stanley-Reisner ideal.

Hence, the moment-angle complex provides a topological model of the Tor-algebra
Tor gy (R[K], R), which makes it possible to study combinatorial algebras by topological

techniques. For instance, the homotopy splitting X Zx ~ ¥I/I+2 \/ |K | (Theorem 2.3.7)
JEK
implies a decomposition of R-modules

H'(Zg;R) = @ HVINK ) R).
JC(m]
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Grbié-Theriault [22] proved that the homotopy type of Zx for shifted complexes is a
wedge of spheres. It is a topological version of the algebraic statement that if K is
shifted, then all multiplications in Tor gy, (R[K], R) vanish.

It has been stated in Section 2.1 that there are standard differential graded algebras,
Koszul algebra and Taylor algebra, such that their cohomolgy algebras are algebraically
isomorphic to Tor gj,, (R[K], R). In Section 4.3, we will apply the corresponding Koszul
algebra and Taylor algebra to Torg«(g(rm /), R)(R[K ], R), to calculate the cohomology
of Zx/H.

2.3.4 Homotopy pushouts

We consider the topological pushout among polyhedral products induced by a pushout
of simplicial complexes. Let K; and K» be two simplicial complexes on [m;] and [ma].

Then there is a pushout of simplicial complexes

KiNKy — Ky

l l (2.16)

K — K7 UK,.

If L is a subcomplex of K, let (X, A)Z denote the polyhedral product which includes
ghost vertices of L in K. Say K; U Ko has m vertices and take K1 N Ko, K1 and K5 are
subcomplexes of K1 U Ky on V(K U Ks). With this, we have a topological pushout.

Lemma 2.3.26 ([40]). There is a pushout of topological spaces

(&7A)K10K2 E— (&7 A)KQ

l (2.17)

(X7A)Fl N (X7A)K1UK2

where all maps among these spaces are induced by corresponding simplicial inclusions.

1 4
Example 2.3.27. Let K| = 2 Ny and Ky = 2 Ny . Then K, N K3 is a disjoint

union of two points and K; U K3 is a boundary of a square. In this case,

(X, A)FNE2 — Ay % (X x Az Uayxa, Az X X3) X Ay
X,A)E = X1 X (X2 x A3 Ux,xa, A2 x X3) x Ay
X, A)E = A1 x (X2 X A3 Upyxn, A2 x X3) x Xy,

The polyhedral product (X, A)519K2 is a union of (X, A)X! and (X, A)K2 over the

intersection (X, A)K1NKz2,
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Homotopy pushouts of fibres. Here we rely on the cube lemma [29] to obtain a

homotopy pushout among fibres.

Lemma 2.3.28 (cube lemma [29, 2]). Consider a cube diagram whose faces are homo-
o
A7
D
|
A
v
C D

If the bottom square A— B —C — D is a homotopy pushout and all four sided square are

topy commutative.
B/

Cl

B

homotopy pullbacks, then the top square A’ — B’ — C" — D' is also a homotopy pushout.

Given a map D — Z, there is a commutative diagram

Q—n

S+—

N

A special case of cube lemma observes that the top square A’ — B’ —C’" — D’ is obtained
by taking the homotopy fibre, respectively, through mapping each A, B, C, D into a fixed
space Z given a map D — Z. So that, if A— B — C' — D is a homotopy pushout, then
the square of fibres on the top A’ — B’ — C' — D’ is a homotopy pushout too.

In particular, Lemma 2.3.26 provides a pushout square specialising to Davis-Januszkiewicz
spaces DJy = (BS', %)X, Since (BS?, ) is a pair of CW complexes, the maps between
Davis-Januszkiewicz spaces induced by simplicial inclusions are cofibrations. So this
pushout (2.17) in terms of Davis-Januszkiewicz spaces is also a homotopy pushout.
Mapping (BS!, %)% to BT™ and B(T™/H) as in Lemma 2.3.22, we have the homotopy
fibres Zx and Zx /H. Hence by cube lemma, there are two homotopy pushouts in terms
of moment-angle complexes Zx and their quotients Zx/H and the maps among them
are induced by simplicial inclusions in (2.16). Under the assumption of Lemma 2.3.22,

the next statement follows.
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Lemma 2.3.29. Let K = K; U Ky on [m]. Suppose that H is a subtorus of T™ such
that HNT? = {1} for any o € K. There is a commutative cube diagram

Zrnk; 2%,
2z, Zx
|
ZKmKQ /H ZKZ/H
/ /
Zr, /H Zx/H

where the top and bottom are homotopy pushouts, whose maps are induced by simplicial

inclusions (2.16) and all vertical map are quotient maps.

Example 2.3.30. Let K be the following simplicial complex with K7 and K5 pictured

below. Consider the diagonal S'-action on Z.
1 1 1
4 4 4
K K, Ky

In this case, we have the following spaces (up to homotopy)

Zrrrs =S X SY, Zpag/Si =St Zg ~ ST xS, 2R /9~ 8% i=1,2.

The diagram in Lemma 2.3.29 indicates a homotopy commutative diagram by a replace-

ment of spaces due to homotopy equivalences

idx*

St x st St x 85
S5 X Sl J{ ZK
/Sl /85
S5 Zy/Sh

where the top and bottom square are homotopy pushout. Since the fundamental group

71(S%) is trivial, the homotopy types of Zx and Zx/S) are

Zy ~ St STV (ST % S5) v (S® x SY) and Zg/S) ~ S% v 285,

We will continue to consider the homotopy types of Zxx /S} by taking a pushout of

simplicial complexes in Section 4.5.2 .



Chapter 3

Representation stability of
polyhedral products

The content of this chapter is to be published as a joint article [20] with my supervisor
Jelena Grbi¢. The idea to study representation stability was motivated from the lectures
given by Benson Farb at the conference Young Topologist Meeting in Stockholm 2017.
I started to consider the representation stability of the cohomology of moment-angle
complexes corresponding to m disjoint points. My supervisor suggested to generalise it

to polyhedral products which led us to work together on this project.

Moment-angle complexes Zx = (D2, S1)X are considered as spaces on which a torus T*,
I < m acts. The action of the torus is induced by an S'-action on (D?,S'). Extens-
ive literature exists on the study of this action. The problem we are studying is how
symmetries of a simplicial complex K influence the symmetries of the moment-angle

complex Zg.

Church and Farb [15] introduced the theory of representation stability. The goal of
representation stability is to provide a framework for generalising the classical homology
stability to situations when each vector space V,,, has an action of the symmetric group
Y (or other natural families of groups). We initiate the study of representation stability

to toric topology.

If a finite group G acts simplicially on a simplicial complex K, then that action induces
a G-action on polyhedral products, in particular on the moment-angle complex Z.
Notice that by acting simplicially on a simplicial complex K on m vertices, G is a

subgroup of the symmetric group X,,.

In this chapter we study X,,,-representation stability of polyhedral products. We start by
analysing G-equivariant properties of the stable homotopy decomposition of moment-

angle complexes Zx [26, 9] and polyhedral products (X, A)® [3]. These homotopy

35
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decompositions induce kG-module decompositions of the cohomology of moment-angle

complexes and polyhedral products, respectively.

Specialising to G = X,,,, we describe several non-trivial constructions of families of sim-
plicial ¥,,-complexes K = {K,,,} (see Constructions 3.4.7 and 3.4.8) and describe condi-
tions on these families which together with decomposition (3.1) and Hemmer’s result [25]
imply uniform representation stability of ¥,,-representation of {H,((X, A)5m:k)} (see
Theorem 3.4.12 and Corollary 3.4.14). In the case of moment-angle complexes, we con-
struct a sequence of Y,,-manifolds which are uniformly representation stable although

not homology stable (see Proposition 3.4.15).

The uniform representation stability influences the behaviour of the Betti numbers of
the i-th homology groups {H;((X, A)Xm;Q)} and we show that in this case their growth

is eventually polynomial with respect to m (see Theorem 3.5.3).

3.1 Irreducible representations of symmetric groups

We first collect definitions and properties of X,,-representations from [7, 21]. In this

section, let G be a finite group and let k be a field or Z.

Definition 3.1.1. The group algebra kG consists of elements of the form ) a49, a4 € k,
geG
with a k-bilinear product kG xkG — kG extended uniquely by the group multiplication

of G. A G-representation over k is a kG-module, i.e., a module over kG.

A G-representation over k can also be defined by a vector space V' over k together with
a group action p: G x V. — V such that p(g,a + b) = p(g,a) + p(g,b) for g € G and
a,b € V. We also write g - a to denote p(g,a).

Let H be a subgroup of G and let V' be a kH-module. The homomorphism kH — kG
induced by H < G gives kG a right kH-module structure. Then the tensor product
kG @xp V is a kG-module by a(a’ @y z) = (ad') @xg x, where a,a’ € kG and z € V.

Definition 3.1.2. We refer to Indf]V = kG ®kg V as an induced kG-module from a
kH-module V.

Since the H-action on G by right multiplication is free, kG is a free kH-module, with
a basis consisting of representatives of the left coset G/H. That is, as a kH-module,

kG= @ g-kH, where g-kH ={ > an(gh),a) € k}. It follows that kG @y V has
geG/H heH
a G-isomorphism
mdGV =kGewg Ve P g-V
geG/H



37

where g - V denotes (¢ -kH) @k V and g-V = V and the G-actionon & ¢V is
geG/H

a permutation of the summands by ¢ - V (¢'g) - V, induced by the G-action on the
left coset G/H by left multiplication, which is transitive.

On the other hand, suppose that N = @V, is a G-module and G acts transitively
el
permuting the summands (i.e., there exists a transitive G-action on I such that g-V; =
Vg.i). The next statement implies N = Ind%V for some H and a kH-module V.
Proposition 3.1.3 ([7]). Let N = @V; be a kG-module as above and V' be one of the
el

summands V;. Denote by H the isotropy group of i. Then V is an H-module and there
is an isomorphism of kG-modules N = Ind§V .

A direct consequence of the above proposition follows.

Corollary 3.1.4 ([7]). Let N = @V; be a kG-module. Assume that the G-action
permutes the summands accordmgl% some action of G on I. Then there exists an
isomorphism of kG-modules
N = Pmdg,V; (3.1)
€D
where E is a set of representatives of orbits of I and G; is the stabiliser of i in G.

Definition 3.1.5. A G-complex is a CW-complex X together with a group action G

on it which permutes the cells.

A simplicial G-complex is a simplicial complex K on a vertex set [m] with a G-action on
[m] such that the induced action on subsets of [m] preserves K. Thus, the geometrical

realisation of a simplicial G-complex K is a G-complex.

Example 3.1.6 (Simplicial G-complexes). For a simplicial G-complex K, each chain
group Cp,(K;k) is a direct sum of copies of k, each summand corresponding to an n-
simplex of K on which G acts. Denote by G, the stabiliser of ¢, and let F,, be a set of
representatives of the G-orbits of n-simplices of K. Thus, by (3.1),

Cn(K;k) = P Indg k.
O'GEn

Definition 3.1.7. A kG-module is irreducible if the only G-invariant submodules are 0
and V itself.

Proposition 3.1.8 ([21]). Let k be a field of characteristic zero. For a kG-module V,

there is a unique decomposition up to isomorphism
VeVEU g g VI

where the V; are non-isomorphic irreducible kG-modules and these a; are multiplicities

of Vi in' V.
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A kG-module is a G-representation over k. Now we focus on irreducible representations

of symmetric groups Y,,, in order to study the X,,-representation stability. A partition

!
A Em of mis a sequence A = (A1,...,A;) where Ay > Xy > ... >N >1and ) N\, =m.
i=1
The number [ is called the length of A.
Definition 3.1.9. A Young diagram associated to a partition A = (A1,...,\)) F m is

m boxes with [ rows and each i-th row contains \; boxes.

For example, let A = (4,2,1) - 7. Then its associated Young diagram is [

The canonical tableau on a given Young diagram is numbering each box consecutively

by 1,...,m as shown

\]

3]4]

|\1Cﬂr—l
(=2}

(3.2)

Construction 3.1.10 ([21]). For a canonical tableau on a given Young diagram, let
P, = {g € ¥,, | g preserves each row} and Q) = {g € ¥, | g preserves each column}.
Then define ay and by in k35, by

ay = Zg and by = Z sgn(g)g

gePy, geEQN

The Young symmetrizer is defined by ¢y = ay)by in k3,,.

For example, in (3.2), these two associated groups Py and @) are isomorphic to ¥4 x Yo

and X3 X X9, respectively.

Theorem 3.1.11 ([21]). Let k be a field of characteristic 0 and let Vy = (kX,,)cn. Then
V\ is irreducible and each irreducible representation of X, is given by Vy for a unique

partition .

Definition 3.1.12. If given any partition A = (A1,...,N\) F k, then for m > A\ + &,
the partition A[m] = (m — k, A1,..., ) is called padded partition. Its corresponding

irreducible representation is denoted by V().

Let A+ k and let V), be the corresponding irreducible ¥j-representation. For m > k, V)
can be seen as a (X X X,,_)-representation by a trivial ¥, _g-action, which is denoted
by VA K k. Since ¥ X ¥,,,_k is a subgroup of ,,,, Pieri’s formula gives a decomposition

of its induced X,,-representation.

Proposition 3.1.13 (Pieri’s formula [21]). Let k be a field of characteristic zero. Then

for m >k, the induced %, -representation Indgz‘xxm_kV)\ Xk has a decomposition

Indgm,.  VaRk= ﬁmv“
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where p goes over the partitions whose Young diagram is obtained by adding m —k bozxes

to the Young diagram of X such that no two boxes are in the same column.

Example 3.1.14. Let A = (4,2,1) - 7. Then by Pieri’s formula,

Indgilew Xk =Vs21)® Vigs1) ® Voo ®Viaoi
Indg‘;x& Nk =Vig21) @ Visz1) @ Vis22 ©Vis211) @ Viaa) © Viusze © Viusi) ® Ve

3.2 kG-module structures on H*(Zg; k)

Let k be a field or Z, let G be a finite group, and let K be a simplicial G-complex.
We will describe G-actions on the moment-angle complex Zx induced by a simplicial

G-action on K.

Recall the cellular decomposition of a moment-angle complex Zx in Section 2.2. A cell
of Zx denoted by (L, I) for which I € K is equal to e; X ... X e, in D?™ where ¢; is
the 2-dimensional cell e? if i € I, e; is the 1-dimensional cell e' if i € L, and e; is the
point €’ if i € [m]\ (IUL).

We start by showing that if K is a simplicial G-complex, the corresponding moment-
angle complex Zy is a G-complex. Let 2™ be the power set of [m]. Then the G-action
on K can be extended to an action ® on 2. Specifically, ®: G x 20" — 2" i5 given
by ®(g,{i1,...,u1}) ={9-41,...,9 4}, where g € G and {i1,...,i;} C [m].

The simplicial G-action on K induces a G-action on Zg, p: G X Zx — Z, through

homeomorphisms of Zx given by

Pg- (21, 2m) = (2915 - - - Zgm)- (3.3)

Lemma 3.2.1. For a simplicial G-complex K, the moment-angle complex Zx is a G-

complez.

Proof. A cell k(L,I), I € K of Zk is mapped by g € G to g-k(L,I) = k(g-L,g-I)
which is again a cell of Zx as a simplicial G-action maps simplices to simplices and

non-simplices to non-simplices. Thus, Zk is a G-complex. O

The orientation on a cell k(L, I) is given by the orientation of I as an oriented simplex
of A™~1 up to multiple e(I,TUL). Cochains x(L, I)* corresponding to the oriented cells
k(L, I) form the basis of cochains of Zx. Each g € G defines a bijection on the cochain
basis by g - k(L,I)* = €(g,L)k(g- L,g-I)* where €(g, L) is a sign induced by the action
of g on L defined to be 1 if g preserves the orientation of L and —1 otherwise. With
o C L and both o and L written in an increasing order, denote by €(o, L) = [] (4, L),
o
where €(j, L) = (=1)"71 if j is the r-th element of L. a
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Lemma 3.2.2. Observe that €(g, L) satisfies the following identity,

e(o,L)e(g, L\ o) = e(g,0)e(g, L)e(g - 0,9 - L). (3.4)

In particular, if |o| =1, say j € L then (3.4) implies that
e(j, L)e(g, L\ {j}) = €(g9, L)e(g - 4,9 - L). (3.5)

Proof. Assume that L = {j1,---, 7} with j1 < --- < j;. Let r(g, L) be the number of

permutations such that {g-j1,---,¢- 7} written in an increasing order. Then €(g, L) =

(-1)"@L) Let r(o,L) = ¥ r(i, L), where (i, L) is the position of i in L with L an
1€0

increasing order. We have ¢(o, L) = (—1)T(U’L)_‘U|.

There are r(o, L) — |o| permutations
such that L is written as a disjoint union o U (L \ 0) with ¢ and L\ ¢ in an increasing
order respectively. The number of permutations such that g - o and g - (L \ o) being
increasing order respectively is given by r(g,0) + r(g,L \ o). We illustrate it in the
following diagram, assuming that all sets appeared in the following diagram are written

in an increasing order,

r(o,L)—|o|

L JI_I(L\U)TM)Q-UI_IQ~(L\U)
l’r(g,L) lr(g'ovgi)—\ol
g-L — »g- L

where each number along with each arrow is the number of necessary permutations.
Therefore,
(g, L) = (=1)"9D) = (—1)r(@L)=leltr(g.o)tr(g.L\o)+r(g-0.g9-L)=]e]
= €(0,L)e(g,0)e(g, L\ 0)e(g - 0,9 L).
O

Lemma 3.2.3. Let K be a simplicial G-complex. The cellular cochain complex C*(Z)

is a cochain complex of G-modules.

Proof. The coboundary operation on C*(Z) is given by

OR(L, D)= Y i, L)n(L\ {5}, i)

jeL, juleK
It is enough to show that the G-action commutes with the coboundary operator §. As

0(g - (R(L, 1)7)) = 6(e(g, L)k(g - L, g - 1)")

= > egL)elg-jig-L)r(g- L\{g-i},g-jug D"
jJEL, jJUIEK
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and
g-(O(R(L, D)) =g-( D> e LR\ {iL vy
jEL, jUIEK
= Y G L)g- (s(L\ {5} u D))
jJeL, jUIeK
= Y G Delg, L\ {iDrlg- L\{g-jtg-iUg- 1)
jeL, jUIeK
the result follows after applying (3.5). O

Geometrizing the famous Hochster decomposition [26], Buchstaber and Panov [9, 34]

together with Baskakov [4] showed that H*(Zx:k) = @ H*(Kj;k) as k-algebras,
JC[m]
where K ; is the full subcomplex of K on J defined by Ky ={ocnNJ|o € K}. We aim

to show that this is a kG-algebra isomorphism.
Lemma 3.2.4. Let K be a simplicial G-complex on [m]. Then for any subset J C [m)]

and g € G, the set g- Ky ={g-0 |0 € K} is the full subcomplex K,.;.

Proof. Since K is a subcomplex of K, every subset 7 of ¢ is in K; if 0 € K ;. Hence
for 0 € K, every subset 7/ of g -0 is g - 7 for some 7 < ¢ and therefore is in g - K.

Thus g - K; is a subcomplex of K.

To check that g- K is the full subcomplex K., we observe that g- Ky =g-(KNJ) =

g-KNg-J=KnNg-J=Kg. O
Denote by {io, ..., iy} an unoriented simplex in K and by [io, . .., ip] an oriented simplex
in K. For an oriented p-simplex o = [ig,...,1p|, let o* = [ig,...,ip]* denote the basis

cochain in CP(K; k).

Next, we show that a simplicial G-action on K induces a G-action on €D H “(Kj; k).
JC[m]

Lemma 3.2.5. Let K be a simplicial G-complex. For every g € G and J C [m],

g-H (Kj;k) = H (Ky.5;k).

Proof. Let o = [ig,...,ip] be an oriented simplex in K; and ¢* be the corresponding
base cochain in CP(K j;k). Since g gives a bijection between the basis of C*(K j; k) and
the basis of C*(Kg.5;k) by 0" — g-0* =€(g,0)(g - 0)*, the cochain complex C* (K ; k)

is isomorphic to C*(K,.7; k) as abelian groups. As the coboundary operator d is given

by
do* = Z €577
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where the summation of the coboundary operator extends over all (p 4 1)-simplices 7;
having o as a face, and €; = £1 is the sign with which o appears in the expression for

01, we obtain the commutative diagram

C*(Kj;K) —> C*(K,.7;K)

oo

C*(Kj; k) —= C*(K4.5; k).
Therefore g induces an isomorphism between H*(K;;k) and H* (K g-7: K). O

We continue by showing that the G-actions on H*(Zx:k) and @ H*(K;k) are com-
JC[m]
patible.

On C*(Zk; k) a multigrading can be defined. Consider a subset J C [m] as a vector in
N™ whose j-th coordinate is 1 if j € J, or is 0 if j ¢ J. Define a Z @& N"-grading on
C*(Zk; k) as
C*(Zk:k) = €P ¢**/(2k;:k)
JCm]
where C*2/(Zx: k) is the subcomplex spanned by cochains #(J \ I,1)* with I C J and
I € K whose multidegree is mgr(J \ I,1)* = (—|J \ I|,J).

Buchstaber and Panov [10, Theorem 3.2.9] showed that there are isomorphisms between
pr_l(KJ; k) and H?~1/27(Zx: k) which are functorial with respect to simplicial maps
and are induced by the cochain isomorphisms fy: CP~1(K ; k) — CP~ /127 (2 k) given
by

fr(c*) =¢€(o, J)r(J \ 0,0)* (3.6)
where o € K and e(o,J) = [[ e(4,J) with €(j,J) = (=1)""1 if j is the r-th element of
jEo

J.

The functorial property induces a commutative diagram

CP1(K i k) —22 = 017127 (201 k)

lg :

Cp_l(Kg.J; k) fg crl9J1200( Z e k)

implying the following statement.

Lemma 3.2.6. If K is a simplicial G-complex, then C*(Zk;k) is multigraded iso-

morphic to @ C*(Kj;k) as kG-modules.
JC[m]

Passing to cohomology, we obtain the following corollary.
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Corollary 3.2.7. For a simplicial G-complex, H*(Zg; k) is isomorphic to @ H* (K ;k)
JChm]
as kG-algebras.

Proof. By [10, Theorem 4.5.8], the multiplication on P ﬁ*(KJ; k) is given by
JC[m]

HY(Kp k) ® H (K3 k) — H (Ko k)

which is induced by the simplicial inclusions K,y — Ky * K for I NJ = () and zero
otherwise. Under this multiplication, the maps f; induce a k-algebraic isomorphism

b f[*(KJ;k) — H*(Zg; k). Since f,.709 = go f;, the maps f; induce a kG-algebraic
JC[m)
isomorphism. O

Now we state the main result of this section.

Proposition 3.2.8. Let K be a simplicial G-complex. Then there are kG-algebra iso-

H*(Zx;k) = EB P g7V (K K)

[m]/G geG/G s

morphisms

where Gy ={g € G| g-J = J} is the stabiliser of J and [m]/G is a set of representatives
of G-orbits of 2I™.
The multiplication on P @ g H*(Kj;K) is given so that for any I,.J € [m]/G

Jem]/G geG/G
and g € G/Gy, h € G/Gy, there is a map

peg- H VYK k) @ h- HEY K k) = HVIPY(K k) @ HEIEN (K, k) — HR T2 R G000 k)

which is induced by the simplicial inclusion Kg.jonr — Kgg* Kprifg-JNOh-1 = 1]

and is a zero map otherwise.

Proof. Since by Corollary 3.2.7 H*(Zx;k) = @ H*(K;k) as kG-algebras, it suffices
JC[m]
to show that the G-isomorphism

P a K= P P g H(Ksk)

JC[m] Jem]/G geG/Gy

preserves the multiplications on both sides. The multiplication on € P g-
Jem]/G geG/G

H*(K j; k) is induced by the multiplication on @ H*(K;k) via the above G-isomorphism.
JC[m]

2k @ @ g-H V(KK
Je|m]/G geG/G

as kG-algebras. O

Therefore,
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We illustrate Proposition 3.2.8 on several examples.

4 3

Example 3.2.9. Let K be the boundary of a square, 1 2 Itisa simplicial Cy-

complex, where Cy is the cyclic group of order 4. Write Cy = {(1), (1234), (13)(24), (1432)}
as a subgroup of the permutation group 4. A set of representatives of 214/ under Cy is
given by

E={0,{1},{1,2},{1,3},{1,2,3},{1,2,3,4}}.

Taking J to be an element in F, observe that

k when J =0 and p=—1
~ k when J={1,3} and p=20
FP(K k) = W {1,3} and p

k when J ={1,2,3,4} and p=1

0 otherwise.

The stabilisers G ; corresponding to J =0, J = {1,3} and J = {1,2,3,4} are Gy = Cy,
Gi13 = {(1),(13)(24)} and G234 = Cy, respectively. Therefore, the cohomology groups
of Zk are given by

kdok fori=3

k for i = 0,6.

H'(Zg: k) =

Example 3.2.10. Let K = AF be the full k-skeleton of A™~! which consists all subsets
of [m] with cardinality at most k+ 1. The permutation group ¥, acts on K simplicially.

A set of representatives of 2" under the action of ¥, can be also chosen as

E={0,{1},{1,2},....{1,...,m}}.

For any J = {1,2,...,[J|} € E, the stabiliser of J is the Young subgroup ¥ ;| x %, -
If J € E with |J| < k+ 1, then K; = AVI=!, Thus H*(K;;k) = 0.

If J € E with k +2 < |J| < m, then K is the full k-skeleton of Al/I=1. Recall that
ﬁ*(KJ; k) = @k, where ¢ = (l‘]‘_l) if ¥ = k; otherwise .FI*(KJ; k) = 0. Therefore,
(&

k+1
k where:=0
H'(Zg;k) ={ @k wherec= (GI) ('ﬂr_ll) and i = |J| +k+1
&
0 otherwise.

Let us remark that for £ = 0, the simplicial complex K consists of m disjoint points
and denote by Z,, the moment-angle complex corresponding to it. By Proposition 3.2.8,
H3(Z,,;k) has a basis {a;; | 1 <i < j < m} and identifying a;; = —a;;, the symmetric
group ¥, acts on H3(Z,,;k) by a permutation of the indices.
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For K,, = AF with k fixed and m increasing, we get a sequence of moment-angle

complexes {2k, }. There exist retractions py,: Zk, ., — Zk,, obtained by restricting

m—+1
the projection map (D*)™*! — (D?)™ to Zx. We shall consider the representation

stability of the sequence {H*(Zk;k),p!,} in Section 3.4.

3.3 Polyhedral products over simplicial G-complexes

Moment-angle complexes are specific examples of polyhedral products (X, A)* which are
constructed from combinatorial information of a simplicial complex K and a topological
pair (X, A). Our next aim is to study symmetries of polyhedral products induced by
the symmetries of K. The geometric and homological properties of polyhedral products
arising from simplicial Aut(K)-complexes have been studied by Ali Al-Raisi in his PhD

thesis [1]. Al-Raisi proved that the map (X, A)X — Q¥( \/ (X, A)"51) is homotopy
I1C[m]
Aut(K)-equivariant.

In this section, we will give a different method for studying homotopy G-decompositions
of polyhedral product (X, A)¥ associated with a simplicial G-complex K by studying
the adjoint of the Al-Raisi map, known as the Bahri-Bendersky-Cohen-Gitler (BBCG)

map (Theorem 2.3.6), after several suspensions.

If K is a simplicial G-complex, then the G-action on K induces a cellular G-action on
the corresponding polyhedral product (X, A)K with respect to a pair of CW-complexes
(X,A), A C X. Explicitly, for z = (21,...,2m) € (X,4)5, g -2 = (2g1,...,2gm).
Thus (X, A)X is a G-complex. If X is a G-CW-complex, then each i-th homology group
H;(X;R) is an RG-module. Consider a natural G-action on X by g- ({x,t)) = (¢9-x,t)
for g € G. The naturality of long exact sequence for the topological pair (C X, X) implies

that the isomorphism H;41(XX; R) = H;(X; R) is an RG-isomorphism.

Consider X™ as a Xy,-space given by g-z = g-(21,...,2m) = (Zg1,...,2gm) for g € X,
and x; € X. There exists a ¥,,-action on the based spaces Y X™ and ( \/ X"I), where
IC[m]

I runs over the non-empty subset of [m]. Explicitly, for every g € ¥,, and (z,t) € XX™,
g - (z,t) = (9 z,t). For any non-empty subset I = {i1,...,3;} C [m], each map
g: SXM — £XMT sending (i, A. .. Az, t) to (Tgiy A. .. Az, t) induces a Ey-action
onY \/ XM,

IC[m]

Lemma 3.3.1. There exists a homotopy equivalence

$0,,: Y2X™" — 02 \/ XM
IC[m]

that is ¥, -equivariant.
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Proof. For a non-empty set I = {i1,...,4;} C [m], define maps Zp" by

opM BX™ — XM

(1, .oy T, t) —> (@iy Ao A, t)

L

Let L = 2™ — 1. Define a comultiplication map d,,: XX — \/ ZX™ on LX™ such
j=1

that

ifte[L, ) (0<i<L-1),

=

Om({X1y ooy Ty t)) = (% ooy, (T, oy Ty L —0) %, ..y %)

L
where (x1,..., %y, Lt — i) is in the (i 4+ 1)-st wedge summand of \/ X X™.

Jj=1

Fix an order I1 > Iy > --- > Iy, on the finite set {I C [m] | I # 0}. Let each I; contain

elements written in an increasing order. Rewrite £( \/ X")as SX Mt v ... v EXNL,
IC[m]

L
Consider a map \/ XpM: \VZX™ — 2( \ X)) given by

Te2lm\g Jj=1 IC[m]
L
\V =M =spMivo v spMes \[SXT — SXM vy XM
Ie2lmh\g J=1

Thus the map
0 = \/ Ep/\l 0 O
Ie2lm\(

Let g € ¥y, and (z1,..., Ty, t) € SX™. For t € [+,“H] (0 <i < L —1), there is

Omog({x1,...,xm,t)) = \/ Ep“oém(@:g.l,...,xg.m,t))

Ie2lm\(
I .
= \/ SpM Gy R Tty ey Tgomy Lt — ), %, oo, %)
Ie2lm\g i1
= (k... %, <xg.m5¢+1) A $g.mgi+1),Lt — D), Ky, k)
i1
where I;11 = {mgiﬂ), e ,mgﬂ)} with m&”l) < e < mgiﬂ).

Recall that \/ XpN =3p v, . vEpML and defineby  \/  Zpieh) = ppiel)y
Ie2m\p Ie2imh\p
.V EpNeIL) Hence, f,09= \/ Zp 9D o4,
Tealmi\g
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L
On the other hand, there exits a permutation 7' of summand \/ ¥X™ induced by g such

j=1
that go 6, = \/ Xp"@)oT o4, Since g acts on a set {1,...,L} by g-i being
Ie2lm\(
the unique number satisfying I,; = g - I; as sets, this action on {1,...,L} induces a

L o
permutation 7' of \/ £X™. Note that for t € [£, %] (0<i < L —1),

7=1

\/ Ep/\(g'l) oT o (5m(<$1, R e t))

Ie2lm\g
= \/ SpID o T, o w (w1, .o Ty Lt — 3), %, ..., %)
Ie2lm\p i?l—rl
= ZpA(g'I)(*, coy i (T, e T, L — ) %, .. %)
=(k, ..., %, <f13g.m§i+l) VAN 1’g'mgi+1) JLt — ), %, ..., %)
g-(i+1)
where I;11 = {mgiﬂ), e ,mgiﬂ)} with mgiﬂ) <ooo<mltY,

Also, for t € [£, 2] (0<i < L—1),

goOm((z1,...,xm,t)) = g(*,..., %, (mm(iH) /\.../\:rm(i+1),Lt—i>,*,...,*)
1 s

i+1
= (..., %, <xg.mgi+1) AN xg.mgi+1),Lt — i),k L, k).
g-(i+1)
Thus we have go 6, = \/ Xp 0D oT o4,
Ie2lm\(
Since Y0y, is cocommutative, (g o 6,,) ~ 3(0,, o g). O

The following statement is a consequence of Lemma 3.3.1.

Lemma 3.3.2. a) For g € ¥,,, and I C [m], there is the homotopy commutative diagram

22(X, A)I >~ JC\{ ]22(‘)(7 A)/\(IQJ) (3.7)

g J{g
EQ(X, A)g-[ =~ \/ ZQ(X, A)/\g-([ﬁ])
g-JC[m]

where the vertical map g on the left is given by

g-{(x1,...,Tm,t,8) = (Tg1,...,Tgm,t, )
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and the vertical map g on the right maps each element in ¥%(X, A)A(mj) into the cor-

responding one in ¥2(X, A)/\g'(m“’) via a coordinate permutation by g.

b) For an inclusion Iy C Iy C [m], there is the diagram

DX, AN n2(x, A)9h
D2(X, A)l2 i z $2(X, A)9- T2 ~
N Vo S2(X, AN . yoV o Z2(X, AN (i)
- JC[m] g-JC[m]
v 22(X,A)/\<I2m‘]) g N v 22(X,A)/\9'(12m‘])
JEml g-JC[m

(3:8)
where the four side diagrams are homotopy commutative and the top and bottom diagrams

are commutative. O

Since the homotopy decomposition ¥2(X, A)KX ~ %2 \/ (X, A)"5 is natural with re-
JC[m]
spect to inclusions in K ([3, Theorem 2.10]), the next result follows immediately from

the lemma above.

Theorem 3.3.3. Let K be a simplicial G-complex with m vertices. Then there is a

homotopy G-decomposition

0: X2 (X, A)F ~ 52 \/ (X, )M (3.9)
JC[m]

where the G-action on X?(X, A)K is induced by the G-action on X™, and the G-action
on the right hand side is induced by (3.7).

Proof. Let CAT(K) be the face category of K consisting of simplices of K and simplicial
inclusions in K. Define two functors D and E from CAT(K) to CW, by D(o) = (X, A)?

and E(o) = \ (X,A)") for ¢ € CAT(K). For every o € CAT(K) and g € G,
JC[m]
diagram (3.7) implies that there exists a homotopy

Hy(0): ¥*D(0) x T — X2E(g - 0)

such that Hy(o)(x,0) = 0(0) and Hy(o)(x,1) = 0(g-0), where §(o) is the natural homo-
topy equivalence between ¥2D (o) and X2E(c) and I is the interval [0, 1]. Diagram (3.8)
implies that if o, 7 € CAT(K), then Hy(o N7) = Hy(0)|s2p(onr)x1 = Hg(T) |52 D(onr)xT-
H,y(+) induces a natural transformation from 2D(-) x I to $2E(-).

With g fixed, H,(o) will induce a continuous map Hy: colim 2D x I —» colim $2F
such that Hy(x,0) = ¢gf(x) and Hg(x,1) = 6(g - «). Therefore, § is a homotopy G-

decomposition. O
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Example 3.3.4. Let K be the k-skeleton of a simplex A™~! on which %,, acts by
permuting vertices. By Porter [36], Grbié-Theriault [23], the homotopy type of (C A, A)K
is the wedge

(CA,A)K:\W}( \ <j_1>zk+1A,-1A...AAij).

) . ) k+1
j=k+2 1<i1<..<i;<m

Although ¥, acts on both sides this homotopy equivalence might not be a homotopy
Ym-equivalence. However after suspending it twice, by Theorem 3.3.3 it is a homotopy

equivariant map.

Considering G-equivalence (3.9) and observing the induced G-actions on the reduced

homology groups, we have the following result.

Theorem 3.3.5. Let K be a simplicial G-complex on m wvertices. Then there exists a

kG-module isomorphism

Hi(X, %) = @ B((X, )50 = @ Wdf, Hi(X, 4);k)
JClm] Je[m]/G

where G acts on the middle term by permuting the summands such that g-H; (X, A)M<7; k) =
H;((X,A)Xe7:K), [m]/G is a set of representatives of the orbit of 2™\ () under G and
G s the stabiliser of J. O

3.4 Representation stability for polyhedral products

Let G be a finite group and k be a field of characteristic zero. Then a G-action on a
simplicial complex K induces a G-complex structure on the corresponding polyhedral
product (X, A)X and therefore its homology is a kG-module. Since every kG-module is a
G-representation over k, we are able to use representation theory to study the homology
groups of polyhedral products associated with simplicial G-complexes. Representation
stability studies a sequence of finite dimensional vector spaces such that each vector
space V;, is equipped with a G,,-action and each V,, M Vin+1 is Gp-equivariant. Here
groups G,, are not arbitrary; they all belong to a fixed family of groups whose k-linear
irreducible representations are determined by some datum A\ which is independent of
Gy, and therefore of m. One such family consists of symmetric groups *.,,, which we
will consider in this section. The idea of representation stability was firstly introduced
by Church and Farb in [15, Section 2.3]. Stability in representation theory generalises
a classical homological stability. A sequence {Y;,} of groups, manifolds or topological
spaces with maps Y, Ym, Ym+1 for each ¢ > 0 is called homology stable if the map

H;(Y) (M* H;(Y,;,+1) is an isomorphism for a sufficiently large m.
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We recall the precise definition of uniformly representation stability of representations

of symmetric groups according to Church and Farb [15, Definition 2.6].

Definition 3.4.1. Let {V,,, ¥, } be a sequence of ¥,,-representations so that the group
Y acts on V41 as a subgroup of ¥,41. Then it is consistent if each V,,, decomposes

as a direct sum of finite-dimensional irreducible representations.

Definition 3.4.2. Let now {V,, ¥} be a consistent sequence of ¥,,-representations
over a field k of characteristic 0. The sequence {V,,, ¥} is uniformly representation

stable with stable range m > N if each of the following conditions holds for all m > N.
1. Injectivity: The natural map v, : Vi, = Vg1 is injective.
2. Surjectivity: The 3, 1-orbit of 1, (V) spans Vi,41.

3. Multiplicities (uniform): Decompose V;, into irreducible representations as
Vi = @BeamV (Nm
A

with multiplicities 0 < ¢y, < 00. There is some M, not depending on A, so that for

m > M the multiplicities c) ,, are independent of m for all A.

Let ¥ be a subgroup ¥,, when m > k. For a Yj-representation V', it can be seen
as a (X X X,,_)-representation, where ¥,,_1 acts trivially on V', denoted by V X k.

Consider the induced X,,-representation IndgkmX s VEk

Example 3.4.3 (multiplicity). Let V(5 ;) be the irreducible representation of X3 cor-
responding to partition (2,1). Then {V,, = Ind%;"xzm_gV(g,l) X k} forms a consistent
sequence of ¥,,-representations, which stabilises when m > 5. Pieri’s formula (Proposi-
tion 3.1.13) implies that

Id$! s, Vion) Bk = Viz1) @ Vi) ® Via11)
Indggmxzm_gv(zl) Xk =Vim-1,1)® Vim-22 & Vim-2,11) ® Vim-321) for m>5
= V(l)m ® V(Q)m S V(l’ l)m @ V(2, 1)m-

Analogously, by Pieri’s formula for m > 7,
Indgjxgm,)/(s,l) Mk =Vim-1,1)® Vim-22 & Vim-2,11) D Vim-33) & Vim-321) ® Vim-1,31)-

The sequence {Imdgzl"X 5,4 V(31) Xk} stabilises at m > 7.

In general, Hemmer [25] proved the uniform representation stability of ¥,,-representations
{Ind%’;zmikv X k} induced by an H-representation V', where H < 3. Note that V
is seen as an (H x X,,_)-representation, where ¥, acts on V trivially, denoted by
V Xk for any m > k.
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Theorem 3.4.4 ([25]). Let H be a subgroup of ¥ and let m > k. Then the sequence

{Ind%{;xm_kv Xk} is uniformly representation stable.

In this section, we study the representation stability arising in polyhedral products over

a sequence of finite simplicial X,,-complexes.

Definition 3.4.5. A sequence of finite simplicial complexes
Ko CK I CKyC...C Ky CKpy1 C...

where Ky = () and each K, is a simplicial X,,-complex and the simplicial inclusion
im: Km C Kt is Yp-equivariant (X, acts on K41 via X, < X,,11) is called a

consistent sequence.

We start by considering few families of consistent sequences of finite simplicial com-
plexes. The main aim of the paper is to show that these consistent sequences induce
the consistent sequence of ¥,,-representations of the homology of polyhedral products

which are representation stable.
Example 3.4.6. (k-skeleton sequences) Fix an integer k > 0. To each m assign the
k-skeleton AF of a standard (m — 1)-simplex,

pcakc...cak cak c.... (3.10)

m

The action of ¥, on K, is induced by permutations of all m vertices. Each simplicial

inclusion ,,: A, — Ak | is ¥,,-equivariant. Therefore (3.10) is consistent.

In general, if K and L are simplicial G-complexes on V' (K) and V(L) respectively, then
the G-action can be extended to the join K * L, as a complex on V(K)UV (L) vertices,
diagonally.

Construction 3.4.7. Fix integers s > 1 and kq,...,ks > 0. For each m > 0, let K,
be a simplicial complex on sm vertices given by the join of Akl ARz Aks  Gince
each Afri is a simplicial ¥,,-complex, then K, is also a simplicial X,,-complex with the
Yn-action given by g - (o1 U...Uos) = g-o1U...Ug-os for g € X, and for each
o; € AFi. Let us consider the sequence

@gA’fl*...*AIfSg...gA]f,}*...*Aﬁ;jQAQH*...*AIZ;;HQ....

The inclusion K,, C K,,4+1 is given as a join of coordinate X,,-equivariant inclusions

A,’ﬁ; - Afﬁ 41 and therefore it is X,,-equivariant.

Notice that for s = 1 we recover the family of k-skeleton sequences of Example 3.4.6.

Next we construct a non-tivial example of consistent sequence of finite simplicial X,,,-

complexes.
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Construction 3.4.8. Let I"™ be an m-cube. Consider the simplicial complex K,
obtained by taking the boundary of the dual of a simple polytope ve(I™), where ve(I™)
is obtained by cutting a vertex from I"™. Note that K consists of two disjoint points.
K., can also be constructed as follows. Let Sz, = SV % ... * SO, be the join of m copies
of two disjoint points, where SZQ = {0;,1;}. Notice that Ss,, is a triangulation of an
(m — 1)-sphere on 2m vertices. Then K,, is obtained from Ss,, by deleting the interior
of the (m — 1)-face on vertices 01, ...,0, and taking the cone on it. The natural 3,,-
action on K, is given by ¢g-0; = 044, g - 1; = 144, and g fixes the cone vertex. The
inclusions Ky, C K1 are induced by the inclusions S ...%S9, C SV, xS0 xS0

with the cone vertex mapping to itself.

For example, when m = 2, K5 is simplicially isomorphic to a pentagon, and the >o-
action on Ky is given by 0; mapping to 02 and 1; mapping to 15 keeping the cone vertex
fixed. As shown in the picture below, the blue colour lines represent how K5 is included
into K3.

01 02 —

1p

1

Ko K

Vertices with the same color belong to the same orbit of symmetric actions.

Definition 3.4.9. Given an integer r > 0, a consistent sequence K = {Kp,,in} of
finite simplicial ¥,,-complexes is called r-face-stable at degree d if for m > d and every
o € K, with dim o = r there exist a g € ¥,, and 7 € Ky such that g - iz (1) = o,

where iq,, = im 0 ...01q is a composite of the inclusions iq, ..., im.

Similarly, a consistent sequence K = { K, i, } of finite simplicial ¥,,,-complexes is called
r-vertex-stable at degree d if for m > d and any collection {vp,...,v.} of r + 1 vertices
of K, there exist a g € 3, and a collection {ug,...,u,} of r 4+ 1 vertices in Ky such

that g - igm(u;) = v;. In particular, if r = 0 then K is called vertez-stable.

If a consistent sequence {K,,im,} of finite simplicial 3,,-complexes is r-vertex-stable
(resp. r-face-stable) for every r > 0, we call it completely surjective (resp. simplicially
surjective).

Remark 3.4.10. Note that Construction 3.4.7 and Construction 3.4.8 are completely

surjective.
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(i) Let K, = Ak, For r >0, let E;, 41 consist of all the subsets of [m] with cardinality
r+1. Then the transitivity of ¥,,-action on E,, ,1; implies that {K,,} is r-vertex-stable
at degree r + 1.

(ii) Let K,, = AF s ...« Ak If s = 2, then AFl x AF2 is r-vertex-stable at degree
r+ 1. Let Ji, Ja be two subsets of [m] with |[Ji| + |J2] = 7+ 1 and m > r 4+ 1. If
JiNJy # 0, JyNJy can be seen as a subset of vertices of Afnl and A],?,%, respectively. Let
Ji=Ji\JiNJz and J§ = Jo\ J1 N J2 with cardinalities r; and 73 and let ro = [J1 N Ja|.

Define g € ¥,,, by sending {1,...,7r0} to J1 N Ja, {ro+1,...,70 + 71} to J{ and {ro +
ri+1,...,70+r1 +r2} to J§ and the complement of {1,...,rg+r; +r2} in [m] to the

complement of J; U Jo in [m], respecting to the initial order of vertices.

Now take the subset of vertices {1,...,79 + 71} of Afﬂrl and the subset of vertices
{1,...,7r0,ro+r1+1,...,ro+r1+72} ofAf?H satisfying g-({1,...,ro+r1 }U{1,... 70, 70+
T1+1,...,T0+T1+’F2}) =JiUJs.

If J1NJy =0, then ro =0 and g € %,,, sending {1,...,71} to Jy and {r1 +1,...,r1 +r2}
to Jo and the complement of {1,...,7r; +r2} in [m] to the complement of J; U Jy in [m].

Inductively, K, is completely surjective.

(iii) For any r > 0, K, = dve(I™)* is r-vertex-stable at degree d = r + 1. With m > d,
let J be a subset of vertices of K, and |J| = r+ 1. Write J = J, U Jy U...U Jp,, where
Jx is either empty or the cone vertex {*} and each J; C {0;,1;}. Since |J| = r+1, there
are at most r 4 1 nonempty components of J, say J;,,...,J;, . Ilf * ¢ J, define g € %,
by sending i to ¢; if ¢ < r + 1 and to k;_,_1 otherwise where {ki,...,kn—r_1} is the
complement of {t1,...,t.11} in [m]. Now let J' = Jj U...UJ/ | from the vertex set of
K41 where J! contains 0; or 1; if and only if .J;, contains 0y, or 1;,. If * € J, consider
J = J\ {*} and repeat the above procedure to find g € ,, and J' € Ver(K,,1) for .J.
Then let J' = J,UJ and g-J' = J.

By Theorem 3.3.5, for a simplicial G-complex K on m vertices

H((X, A%k = @ Wdg, H((X,A)";k). (3.11)
Jem]/G

If a consistent sequence {Ky,,im} of ¥,-complexes K, on the vertex set V(K,,) is
completely surjective then the summands in (3.11) do not depend on m for sufficiently
large m. We shall use Hemmer’s result to study the uniformly representation stability
of polyhedral products. For that the stabiliser (3,,) s needs to be of the form H x ¥,,_x
for some H < Xj. Therefore we proceed by studying the stabiliser of J € P(V(K,,)) in
¥, which we denote by stab(J, m).
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Observe that for a fixed integer d, for all m > d and for some J € P(V(K)), as J also
belongs to the X,,-set P(V(K,,)), there is a sequence of stabilisers

Z’VVL E'm+1

| |

... —>stab(J,m) —>stab(J,m +1) —— ....

For instance, in Example 3.4.6, if m > |J|, then J € P(V(AK)) and stab(J,m) =
24| X Zm—|]-

In Construction 3.4.7, K,,, = AF1x A2 «AFs Write J as a disjoint union of .Jy, ..., J;,
where each J; (1 <t < s) is from the t-th component P(V (Ak)). Let b(J) = max BAR
SUSS

For m > b(J), we observe the stabilisers of J in ¥,,,

stab(J,m) ={g€ X |g- 1 =J,1 <t <s}= m stab(J;, m)

1<t<s

where, as in Example 3.4.6, each stab(.J;, m) is isomorphic to %7, x X, 7,|- For integers

a < b <m, we have
Yia X Vm—a NEp X Xpp = 2g X Dp_g X 2Dim—b-

Therefore stab(.J,m) = stab(J,b(J)) X X,,_ps) for m > b(J), and X,,_y) acts on J
trivially.

We call such sequences stabiliser consistent.

Definition 3.4.11. A consistent sequence K = { K, i), } of finite simplicial 3,,-complexes
is called stabiliser consistent if for every d and every finite set J € P(V(K)) there exists
an integer b(J), such that if m > d and m > b(J), then either %,, acts on J trivially
or the stabiliser stab(J,m) is isomorphic to stab(J,b(J)) X X, _p(.7), where X,y acts
on J trivially.

Construction 3.4.8 also provides a stabiliser consistent sequence. If J € P(V(Ky)) for
some d, write J = J,UJiU...UJy, where J, is either empty or {«} and each J; C {0;,1;}.
Since ¥, acts on * trivially, stab(.J,m) = stab(.J,m) where J = J; U... U Jg. Let

b(J) be the number of non-empty components J;. Then for m > b(J), stab(J,m) =
stab(J,b(J)) X Xy, _p(s) Where .,y acts on J trivially.

As a consequence, we have the following result that states conditions on a sequence
of finite simplicial complexes that will induce in homology a uniformly representation

stable sequence.

Theorem 3.4.12. Let {K,,,im} be a consistent sequence of finite simplicial complezes

and X be a connected, based CW -complexes of finite type with a based subcomplex A.
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Suppose that { K, iy} is completely surjective and stabiliser consistent. Then the con-
sistent sequence of X, -representations {ITL((X, AYEmiK) iy} for chark = 0 is uni-

formly representation stable.

Proof. By Theorem 3.3.5, we have

Hi((X, A% k) = P Indzm ) Hi((X, A)MNSma k) (3.12)
JeEEm

where E,, is a set of representatives of P(V (K,,)) under the action X,,, and stab(J, m)
is the stabiliser of J under X,

We prove that if |.J| > i 4 1 then H;((X, A)<m.7; k) is trivial. By the reduced Kiinneth
formula for path-connected spaces, it is obvious that H; (Y1 A. . AY| g5 k) = 0if [J] > i+1,
where each Y; is either X or A. This implies that for any o € K, j, f[i((X, AN k) =0
if |J| > ¢+ 1. If X; and Xy are connected C'W-complexes with a non-empty in-
tersection such that ﬁi(Xl;k) = ﬁi(Xg;k) = I;Ti(Xl N Xo;k) = 0 for ¢ < I, then
Hi(X, U Xg,k) =0 for i <. As (X, A)Km7 is a union of (X, A)? over all o € K, ,
inductively H;((X, A) <7 k) is trivial if |J| > i + 1.

Since {K,,im} is completely surjective, if |J| < i there exists an integer N > 1 such
that if m > N, we have Ep1,; = Ep i = ... = En;, where Ep,; = {J € Ep, | |J] <i}.
Therefore the summands in (3.12) do not depend on m for m > N. On the other hand,
for each J € F, there exists an integer b(J) such that for m > b(J), either 3, acts on J
trivially or the stabiliser stab(J,m) = stab(J,b(J)) X X,,_y(s), where X, _|; acts on J
trivially. In the first case, if ¥, acts on J trivially for m > b(J), then for any k < b(J),
¥, acts on J trivially because ¥, acts on J as a subgroup of ¥ jy. As the vertex support
set J of K, s is fixed, the space (X, A)MEm.7 will stay the same when m increases. Thus,
H;((X, A)MSm.7: k) is a fixed finite-dimensional trivial Y,,-representation even though
m varies. It follows that {H;((X, A)<m.7;k)} is uniformly representation stable.

If stab(J,m) = stab(J, b(J))x¥,,_y(s), then H;((X, A)MSm.7: k) is a stab(.J, m)-representation

with a trivial 3,,_j j-action. By [25], we have that Indszt;”b( H;((X, A)MSma k) s

Jm)
uniformly representation stable.

Therefore, the sequence of X,,-representations {ﬁz( (X, A)Km %) i, ) is uniformly rep-

resentation stable as the summands do not depend on m eventually. O

Remark 3.4.13. In general, we require the simplicial maps 7,, in the consistent sequence
of finite simplicial complexes to be inclusions so that they induce maps of polyhedral
products. However, in the case when (X, A) is a pair of topological monoids, as it
is for moment-angle complexes when (X, A) = (D?,S'), any %,,-simplicial map, not

necessary a simplicial inclusion, can be chosen for i,,. A simplicial map f: K — L
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induces a continuous map (X, A)¥ — (X, A)F defined by (x1,...,7,) = (y1,---,Yq),

where y; = ][] ;. Here p and ¢ are the number of vertices of K and L, respectively.
ief~1()

We have proved that the sequences in Constructions 3.4.7 and 3.4.8 are completely

surjective and stabiliser consistent. Applying Theorem 3.4.12, we conclude the following

statement.

Corollary 3.4.14. Let K be one of the consistent sequences in Constructions 3.4.7
and 3.4.8 and X be a connected, based C'W -complexes of finite type with a based sub-
complex A. Then the consistent sequence of Sy -representations {H;((X, A)Km:K), iy}

for chark = 0 is uniformly representation stable. Ol

Note that since the sequence in Construction 3.4.8 provides a consistent sequence of
finite simplicial complexes, given by taking the boundary of dual of simple polytopes,

the corresponding moment-angle complexes are a sequence of manifolds.

Proposition 3.4.15. Let K be the consistent sequence in Construction 3.4.8. Then
for the moment-angle manifolds Zx, the consistent sequence {H.(Zk,,;K),im,} of Xm-

representations for chark = 0 is uniformly representation stable. Ol

Moreover, due to [5, 12], the manifold Zk,, is diffeomorphic to

m

2k, = o[]S D) x D)t # (]
m J=1

)(Sj+2 > S3mfjfl).

Therefore, H3(Zk,,; k) has Betti number m which means that the sequence of moment-
angle manifolds Zy,, with the maps Z, — Z, ., induced by simplicial maps K,,, —
K41 is not homology stable.

Let K, = Af’%. Since every K, is a full subcomplex of K, 1, the moment-angle complex
Z,, retracts off Zk,, ,, and the retraction map py,: Zk,,,, — Zk,, is Lm-equivariant.
The uniform stability of ¥,,-representations { H'(Z, ; k), pi,} follows immediately.

Proposition 3.4.16. Fori > 2k+3, the sequence of ¥, -representations { H(Zk,, ; k), pi,}

is uniformly representation stable.

Proof. By Proposition 3.2.8, we have

JEEm

where E,, = {{1},{1,2},...,{1,2,...,m}} and K ,, = JNAF . Thus K is a (|J| - 1)-
face of K, if |J| < k+ 1 and is the k-skeleton of (|.J| — 1)-simplex with J as its vertex
set if [J| > k + 2. The latter one allows an ¥, j-action. Therefore, if |J| < k + 1, then
H*(Kjm; k) =0. If k+2 < |J| <m, H?(Kjn; k) =k if p = k, and is 0, otherwise.
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The nontrivial cohomology group of K j,, implies that i—|J|—1 = k and k+2 < |J| < m.
Thus if 2k +3 <7 <m + k + 1, we have a X,,-representation isomorphism that

H'(Zg, : k) "’Indgﬁ‘xz H*(K jm; k), with [J] =i —k—1.

—1J1

Hemmer [25] implies that the sequence of X,,-representations { H*(Z2k,,;k),pi,} is uni-

formly representation stable. O

Example 3.4.17. When K,, consists of m disjoint points and for ¢ > 3, as a X,-

representation H'(Z,,;k) can be written explicitly as

H'(Zm;k) = Indgm Viicon) Bk

1XEm_ir1
where V(;_5 1) is the standard representation of ¥;_1.

In particular,

H*(Zm; k) =Vin-1,1) ® Vim—2,1,1) for m > 3;

HYZm3K) =Vin_11) @ Vim—2.2) ® Vim—2,1,1) ® Vim—3,2,1) for m > 5;

H?(Zm; k) =Vim-1,1) © Vim—22) ® Vim—211) ® Vim-33) ® Vim-321) ® Vim-a,3,1) form > 7;
H(Z;Kk) =Vim-1,1) ® Vim—22) ® Vim—2,1,1) ® Vim-33) ® Vim-321) ® Vim-4,4)

& Vim-431) ® Vim-s4,1) form>9.

3.5 Applications of uniformly representation stability of

polyhedral products

We finish the paper by investigating what kind of structural properties of H;((X, A)%; Q)

are implied by representation stability.

One of the key properties of a sequence of uniformly stable X,,-representations over Q

is that their characters are eventually polynomials [14, Definition 1.4].

Denote by A = m a partition A = (Aq,..., ) with Ay > ... >0and \j+...+ N =m
Let |A| be the sum A\; 4 ...+ A;. Given any partition A, for any m > |A| 4+ A1, denote by
A[m] = (m—|A|, A\1,..., A (see [14, Definition 2.2.5]). Denote by V(A),, the irreducible
representation corresponding to partition A[m]. The weight of a consistent sequence of
Y n-representations {V,,, ¢, } is the maximum of |A| over all irreducible constituents
V(A)m that appears in Vp,.

Example 3.5.1. For any partition x - n and m > n, applying Proposition 3.2.4 in [14],
the consistent sequence {Imdg’”XE W k} has weight n, where V), is the irreducible

representation corresponding to p.
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Hemmer [25] (see Theorem 3.4.4) constructed a sequence of 3,,-representations that is
uniformly representation stable. Next we calculate the weight of this sequence applying

the result from Example 3.5.1.

Lemma 3.5.2. Fiz an integer n > 0. Let H be a subgroup of ¥, and V is a X,-
representation over a field k of characteristic 0. For m > n, the consistent sequence
{Ind3m s, . V Xk} has weight n.

Proof. Observe that
Indys  VEk=Indg"y (Indﬁngﬂ" (VRK)) =IndSr,s  (IndyrV) Kk

As ¥,,-representations, Indﬁ"V is decomposed as @VHEBC“, where ¢, are multiplicities.
ukn

By Example 3.5.1, {Indg™ y, ~ V, Wk} has weight n. Then {Ind}7, ~ V Kk} has
weight n, as each Ind?{;zm_nV X k is decomposed into a finite direct sum as X,,-

representations

Indjry  VRk=@e,dndgr oV, Kk
ukn

O]

Given a uniformly representation stable sequence {V;,, %}, the uniform multiplicity
stability implies that there exists an integer M > 0 such that V,, is decomposed into
PerV (N for m > M. A classical result ([28, Example 1.7.14]) in representation theory
A

states that the character of V' (\),, is polynomial if m > |A\|4+ A;. Explicitly, let ay, aq, ...
be class functions a;: ¥; — N for any ¢ > 0 such that a;(g) is the number of j-cycles
in the cycle decomposition of g. Then, for each partition A there exists a polynomial
Py € Qlay,aq,...], called the character polynomial corresponding to the partition A,
such that Py has degree |A| and the character Xy (y),,(g9) = Pa(g) for all m > |A| + A\
and g € Xp,.

We finish this chapter by looking at the growth of Betti numbers of polyhedral products.

Theorem 3.5.3. Let {K, iy} and (X, A) be as in Theorem 3.4.12. Then for each i > 0,
the consistent sequence {Hy((X, A)Xm:Q), im, } has a finite weight. Moreover, the growth
of Betti numbers of {I;Q((X, A)Em: Q) i, } is eventually polynomial with respect to m.

Proof. By Theorem 3.4.12, {f[l((X, A)Em:Q), 4y, } is uniformly representation stable.
Thus the uniformly multiplicity stability implies that there exists an integer N > 0, not

depending on A, such that for all m > N, there are constant integers cy such that

H((X, A5 Q) = PerV Vi
A
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These integers c) are uniquely given by multiplicities defined in the irreducible compon-
ents of H;((X, A)X~:Q). Therefore, the weight w; of sequence {H;((X, A)5m:Q), i, }
is the maximum |A| that forms a irreducible component of H;((X,A)X~;Q). Since
H;((X, A~ Q) has finite dimension over Q, w; is finite.

In particular, if m > 2w;, then for all A\ appearing in the above equation, m > |A| + A;.
Then there exists a polynomial character of {ﬁl( (X, A)Km: Q) given by 3", Py. Take g
to be the identity of symmetric groups. This gives that the growth of Betti numbers of
{ﬁi((X, A)Em:Q), 4y, } is eventually polynomial with respect to m. O






Chapter 4
Torus actions on Zj

Let H be a torus subgroup of T™ of rank r and let Zx be a moment-angle complex
corresponding to a simplicial complex K on [m]. Then H acts on Zx as a subgroup of
T™. The quotient space Zx/H has underlying combinatorial data (K, A), where A is
an integral matrix associated to the quotient homomorphism 7™ — 7™ /H. This pair
(K, A) can be combinatorially interpreted as assigning each vertex of K a “colour” in
Z™~". Given an order on the vertex set of a coloured simplicial complex, we obtain a
linear map A: Z'™ — Z™~", which induces a homomorphism of tori 7™ — T™". If
we require this linear map A to be surjective, then the induced subgroup KerA of T™
is a subtorus. Thus we obtain a quotient space Zx/H (H = KerA) under a subtorus

H-action.

4.1 Preliminaries on torus groups

A homomorphism of tori f: 7™ —— T" induces a linear map on their Lie algeb-
ras R™ — R"™ and consequently induces a linear map on their fibres 2™ — Z"
whose associated matrix has integral entries A = (Ajj)nxm ([6, Exercise(4.15) 9, IJ)
after choosing a basis of Z™ and Z™. In this way, the homomorphism f is written as
fltr, .. tm) = (ti‘11 s ,ti‘"l ...t2m). In the following lemma, we will show
that the induced map between cohomology rings of tori and their corresponding classi-

fying spaces can be characterised by the associated matrix A.

Let R be a commutative and associative ring with unit and let 1z denote the multiplic-

ative identity.

Lemma 4.1.1. Let f: T™ — T" be a group homomorphism of tori with associated

integral matric (Nij)nxm-

61
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(a) The induced map f* on the cohomology ring of tori is given by
[ H*(T™;R) = AR[B1, ..., Bn] — H*(T™; R) = ARplai, ..., an]

Bi— > (Nij - 1r)y
j=1

where deg 8; = deg aj = 1.
(b) The induced map Bf* on the cohomology ring of classifying spaces is given by
Bf*: H*(BT";R) = R[x1,...,xy) — H*(BT™; R) = Rly1,- - -, Ym|

m
Ti—— Z(A” . 1R)yj-
j=1
where deg x; = degy; = 2.

Proof. (a) Since the cohomology of T™ is the exterior algebra generated by the first
cohomology H'(T™; R) ([24, Example 3.11]), it suffices to see what the map between
the first cohomology groups of 7™ and 1™ is. Consider the first cellular chain complex
Ci(T™ R) = @C1(S'; R), which is a free R-module with a basis {a;,i = 1,...,m},
where a; is a g@nerator of the i-th summand of C;(7"; R). Similarly, denote by b;, for

j=1,...,n, the generator of the j-th summand of C;(T™; R).

Consider the restriction of f to the i-th coordinate of T™,

flgr: Sf —T"
tes (M0 g2 )

which is of degree \j; at the j-th coordinate of the image T™. Thus, f induces a map
fi: Ci(T™; R) — C1(T™; R) of the following form

fl(ai) = ()\11‘ . 1R7--'7)\m' . 1R) = ()\11‘ . 1R)bl + ...+ (/\m . 1R)bn‘

The first cochain C}(T"; R) = Hompg(C1(T™; R), R) has a basis {b;-‘,j =1,...,n}, where
b; sends b; to 1g and other basis elements to zero. Similarly, CY{(T™; R) has a basis

{af,i=1,...,m}. Consider the induced map on the first cellular cochain

fr:cH (T R) — CH(T™; R)
b — fH(b]) = bf o fu.

Since fl(b}‘ (ai) = b7 o fi(a;) = bj((A\1i - 1r)b1 + ... + (Ani - Lr)bn) = Aji - 1 g, we obtain

fl(b’;-) = Zl()\ji - 1r)af. Therefore, the induced map between the first cohomology
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groups of 7" and T™, also denoted by f!, has the following description
fr HY(T™, R) — HY(T™; R)
FHB) — > (Vi - 1r)a}
i=1
where {3; = [b]} and {a; = [af]} form the basis of H'(T"; R) and H'(T™; R), respect-
ively.

(b) By applying the Serre spectral sequence to the fibre bundle 7" — ET™ — BT™,
the cohomology ring H*(BT™; R) is a polynomial ring over R whose algebraic generators
x; are in one-to-one correspondence to generators 3; of H*(T™; R), 1 < j < n (see [38,

Example 11.9.7]). Similarly, each algebraic generator y; of H*(BT"™;R) corresponds

to a generator oy of H*(T™; R), 1 < i < m. Since f*(5;) = >_(\ji - 1r)a; (the first
statement of this lemma), therefore we have that Bf*(z;) = > (\ij - 1r)y;- O
j=1

Let H be a subtorus of T™ of rank . That is, there is a homomorphism of tori
S: T —T™ (4.1)

such that the image S(7T") = H and S: T" — H is a group isomorphism. By a slight
abuse of notation, we use S = (Sij>m><r to denote the associated integral matrix of (4.1).

Then H can be written as follows
H = {(t" 32 -5, ooty i) € T | (b, .., t) € T}
Alternatively, since T = R™ /7™

H = {(eXrilsmbntedtsiyn) - 2milsmuntetomedo)) | (4 b)) € RT).

Let us remark that H is a subtorus of T if and only if the column vectors of S form part
of a basis of Z™. To see this, denote by colz(S) = Spany{s; € Z™ | 1 < j < r}, where
s; are the column vectors of S. If H is a subtorus of 7", then colz(S) is the spanning
lattice of H. Thus H = colr(S)/colz(S), where colg(S) = Spang{s; | 1 < j < r}.
Since colz(S) = colg(S) N Z™ = Z", the column vectors of S form part of a basis of
Z™. On the other hand, if the column vectors of S form part of a basis of Z™, then
colz(S) = Z". Thus H = colg(S)/colz(S) is a subtorus of R™/Z™ = T™. If H is
a subtorus of T, then the quotient group 7""/H is a compact connected abelian Lie
group. Thus T™/H is isomorphic to a torus group of rank m — r and the quotient
homomorphism 7™ — T™ /H has an associated integral matrix A = (Aij)(m—r)xm- In
this way, we have H = Im S = KerA. Next, we illustrate the relation between S and A

explicitly.
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There exists an integral m x (m—r)-matrix S’ such that the m x m-matrix M = (S | S’)

is invertible. The column vectors s; (1 < j < m) of (S | S’ ) form a basis of Z™. Under
the standard basis e; of Z™, M is the linear isomorphism Z™ — colz(S) @ colz(S’) by
s; = M(ej). Then A = Mfl\colz(sl) 0 Qg0 M, where Q)2 is the projection

m % ! Q2 /
Z™ = colz(S) @ colz(S") — colz(S").

Similarly, let A’ = M _1|Colz( 5)© Q10 M, where (1 is the projection

m X N
Z™ = colz(S) @ colz(S") — colz(S).

/
Then A is the inverse matrix of (S | S’), where A" = ()\};) is an integral (r x m)-
matrix and A = ()\;;) is an integral (m — r) x m-matrix. It follows that A’S = I.«,,
AS' = I(m—r)x(m—r) and AS = A'S" = 0, where I,x, and I(m—r)x(m—r) are the identity

matrices.

The following properties of integral matrices will be useful when we consider the condi-
tions under which H acts freely on Zk, stated in Lemma 4.2.1. For two or more integers
ai,...,anm, which are not all zero, denote by ged(aq, ..., an) the largest positive integer
that divides each a;.

Lemma 4.1.2. (a) An integral vector (ai,...,an) can be extended to an invertible

integral (m x m)-matriz if and only if ged(ay, ..., am) = 1.

(b) Let S be an m x r integral matriz (1 < r < m). Then S can be extended to an

invertible integral matriz if and only if the row vectors of S span 7.

Proof. (a) We proceed by induction on m. If m = 1, a; is a basis of Z if and only

if a; = +1. Suppose the statement is true for m. Consider the case m + 1. Let
a = ged(at, ..., ap) and a; = % (1 < i < m). Since ged(ay,. .., amy1) = 1, there exist
integers p and ¢ such that pa + ga,,+1 = 1. By assumption, (af,...,a),) extends to an

/ /

ay ... a
invertible integral matrix denoted by ( ! A m) It follows that the integral matrix

aq e [07%%) Am+1
A 0 is invertible.

(=1)™qay ... (=1)"qay,,  p
(b) In this proof, all matrices considered are integral and by an invertible matrix, we

mean that it has integral inverse (i.e., its determinant is +1).

“ = 7 Since the column vectors of S form part of a basis of Z™, there exists S’ such
I
that M = (S | S’) is invertible, so M~1S = (; . Since the row vectors of M 1S are

a linear combination of row vectors of S, the row vectors of .S span Z".
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13

< 7 If the row vectors of S spans Z", we show that S can be extended into an
invertible matrix (S | S ) by an induction on r. In the case of r = 1, the row vectors
of S consist of m integers. These integers span Z if and only if their greatest common
divisor ged(sy,...,$m) = 1 by the first part of this lemma. Thus the statement is
true for r = 1. Now assume that any integral m X r-matrix can be extended to an
integral invertible matrix if and only if its row vectors span Z". Let us consider an
m x (r+1)-matrix S. Suppose its row vectors span Z" 1. It follows that there exists an
(r+1) x m-matrix P such that PS = I, ;1. Now let S = (S’ | Sr+1> and P = < P ),

Pr+1
where s, is the last column vector of S and p,41 is the last row vector of P. Since

PS = 1,41, we have
P/S, = IT7 P,ST+1 = O, pr+1S, =0 and Pr+1Sr+1 = 1. (42)

Since P (S’ | sr+1) = (PS’ ] Psr+1) = I,y1, the row vectors of PS’ span Z", which
implies that the row vectors of S’ span Z". Thus by induction, S’ can be extended to
an invertible matrix (S’ ] 5’”). Denote by (a1, ..., ;) the column vectors of (S’ ] S”).

Since (S' | S”) is invertible, there are integers by, ..., by, such that s, 11 = bjag + ...+

byouy,. Hence s,y — (a1 + ...+ byar) = > bjay € Col(S”). Then by (4.2),
j=r+1

pr+1(sr+1 - (blal + ...+ brar)) = Pr+18Sr41 = 1.

Thus ged(byi1,--.,bm) = 1, which implies that (by11,...,b,)" can be extended to an

I. | D
invertible (m — r) x (m — r)-matrix B. Now let @ = <T‘?) where D = (b | 0)

and b = (by,...,b.)t. Note that Q is invertible and so is (S’ | S”) Q. The minor given
by the first  + 1 column vectors of (S’ ] S”) Q is exactly S. Thus, S can be extended

to an invertible matrix. O

4.2 Torus actions on Zx and the freeness condition

Let H be a torus subgroup of 7™ of rank r and let S = (sij)mxr and A = (Xij) (m—r)xm
be the associated integral matrices of the inclusion H — T"" and the quotient homo-
morphism 7" — T™ /H | respectively. The torus subgroup H < T™ acts on Zx and
we denote by Zx/H the quotient space.

Recall the subtorus 77 = {(t1,...,tm) € T™ | t; = 1if j ¢ o} for every o C [m].
We first characterize the condition that H acts freely on Zg, in terms of 77 and the

associated matrices S, A.
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Lemma 4.2.1. Let H be a torus subgroup of T™ of rank r acting on Zi. Then the

following statements are equivalent:
(a) H acts on Zx freely;
(b) for any o € K, the intersection T° N H is trivial;

(c) for any o € K, the column vectors of the (m — |o|) X r-matriz (sij);¢, form part of

basis of Z™l°!;

(d) for any o € K, the row vectors of the (m — r) x |o|-matriz (Xij)jes Span the lattice
yAds

Proof. (a)=-(b) For every o € K, there exists z = (21,...,2mn) € (D?, 5% such that
zi = 0if ¢ € 0 and z; = 1 otherwise. Then the stabiliser H, of z is H NT7, which is

trivial if H acts on Zk freely.

(a)<(b) For any point z € Zg, denote by 0, = {i € [m] | |z;| = 0}. Thus the stabiliser
H, of z is HNT?, which is trivial by the assumption. So H acts on Z freely.

(b)<(c) The condition of (b) is equivalent to that the product H x T is a subtorus
of T™ which has rank r + |o|. Therefore, r + |o| < m or r < m — |o|. The associated
integral matrix S of the inclusion H x 7% — T™ is an extended matrix of S by adding
|o| columns (0,---,1,---,0)7 with 1 as the j-th entry for j € o. The product H x T°
is a subtorus of 7™ if and only if the column vectors of S form part basis of Z™, which

is equivalent to that the colomn vectors of (S;;);¢, form part of basis of zm=lol,

(b)<(d) The intersection T N H is trivial if and only if 77 = (T x H)/H, which
is equivalent to that (7% x H)/H is a subtorus of 7" /H. Thus the inclusion (77 x
H)/H — T™/H is induced by the composition 77 — T — T /H, which implies
that its associated matrix is given by A,, where Ay = (\jj)jes. By Lemma 4.1.2; the

row vectors of A, span ZI!. O

Remark 4.2.2. Since T™ acts on Zx coordinatewise, choosing the standard basis of T
is equivalent to giving an order (V(K), =) on the vertex set of K in the following sense.
The spanning lattice of T™ is given by Z™ and there is a one-to-one correspondence
e; <> v;, where {eq,...,e,} is the standard basis of Z™ and we list each vertex of K in
an order v; < ... < vUy,. In this way, the matrix A is called a Z™ "-color on V(K), as it
assigns each vertex v; € V(K) to a vector \; € Z™ ", where each \; is a column vector
of A.

On the other hand, if give an order v; < ... < vy, on V(K) and assign each v; to a vector
A; in Z™7", then we have an (m — r) X m-matrix A: Z™ — Z™~" induced by mapping
each standard basis vector e; to \;. Thus, we have an integral matrix A: Z" — Z™™"
which gives rise to a homomorphism 7" A T whose kernel H = KerA is a subgroup

of T™ acting on Zx. To make sure that H is a subtorus, we require A to be surjective.
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In this sense, one can think of the underlying combinatorial structure of the partial
quotient Zx/H as a pair (K,A), where each vertex of the simplicial complex K is
assigned a vector in Z™~". Choosing an order of vertices of K, an (m — r) X m-integral
matrix A is obtained whose column vectors are those vectors associated to vertices, listed
according to the order of vertices. We say that Zx/H does not depend on the order of
V(K) because by changing an order of the vertices, the corresponding column vectors
of the matrix A are permutated. The resulting quotient spaces Zx/H and Zg, /H; are
homeomorphic, where Zk, /H; is obtained by changing the order of the vertices of K.

For example, the simplicial complex K in Figure 4.1 has same vectors in Z? assigned
to its vertices. Labelling the vertices of the simplicial complex in two different orders,
the resulting simplicial complexes K; and K are simplicial isomorphic, as seen in Fig-
ure 4.1. As abstract sets, K1 and K5 are different.

el 1 3
91+92\b91+292 2\b3 4\l>1
2e; 4 2

K Ky K3

FIGURE 4.1: Simplicial complexes with different orders on the vertices.

The corresponding integral matrices are A; = (
0

In this case, the quotient space Zg, /KerA; is homeomorphic to Zg, /KerAs.

An application of Lemma 4.2.1 is that given an integral matrix A, one may find a
simplicial complex K such that H = KerA acts on Zg freely.
Example 4.2.3. Let A = (1,...,1). Then by Lemma 4.2.1(d), if K is a disjoint union
~—
m
of m points, there is a free KerA-action on Zg. It is the only possible simplicial complex

on m vertices without ghost vertices for which KerA acts freely on Zp.

Example 4.2.4. Let K be a simplicial complex on [m] without ghost vertices. Yu [43]
calculated the cohomology of certain partial quotients Zx /KerA (not necessarily by

free actions), where A is obtained by permutating the column vectors of the following
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matrix (4.3) and each «; # 0.

1...1 0 0 0
N——"

[e51

0 1...1 0 0

N——
a2
0 0 1...1 0 (4.3)
as
0 0 0 1...1
N——

R Ixm

If A is a matrix of this type, it induces a map fx from [m] to [I]. Then (fy'(1),..., fi ' (1))

is a partition of the vertex set [m]. By abuse of notion, let a; = le(j).

Given a free KerA-action on Zg, the freeness condition (Lemma 4.2.1) implies that
(i1,...,1p) € K if and only if each i; belongs to a different partition o,. Explicitly, K is
a simplicial subcomplex of ] * ... * [oy] without ghost vertices (i.e., Vi € [m], i € K),

where [a;] denotes a set of «; disjoint points.

One explicit example of Example 4.2.4 is in the following.

Example 4.2.5. In [10, Example 7.8.17], one illustrates a quasi-toric manifold over a

2k-gon with a matrix A of the form

1010 ...10
0101 ...01)°

This A satisfies the condition in Example 4.2.4.

4.3 The Tor-algebras

In this section, we study the Tor-algebra Torg«(p(rm,my;r)(R[K], R) via the Koszul

resolution and the Taylor resolution.

4.3.1 Panov’s formula

Recall that if H is a torus subgroup of T acting freely on Zg, then the quotient space
Zx /H is the homotopy fibre of DJg N B(T™/H) (Lemma 2.3.22, 4.2.1), where f is a
composition of the inclusion DJx = (BS!, %)X — BT™ followed by the quotient map
Br™ 24 B(T™/H). Panov [35] proved that the Eilenberg-Moore spectral sequence

associated to this homotopy fibration collapses at the Es-term. Around the time of my
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viva, a new preprint [19] stated the cup product of the quotient space Zx/H is not the
standard multiplication of the Tor-algebra Tor p«(p(rm /m);r)(R[K], R) as in [35]. The

results in this section and Section 4.4 will still be true if 2 is a unit of R due to [19].

Theorem 2.3.24. If H acts freely on Zk, then there exists an isomorphism of graded
R-algebras
H*(Zk/H; R) = Torg«prmmy;r) (RIK], R). (4.4)

Here the Stanley-Reisner ring R[K] is an H*(B(T™/H); R)-module given by an R-
homomorphism
H*(B(T™/H): R) 2% H*(BT™; R) -2 RIK]

where p is induced by the inclusion (BS', ¥)% — BT™ and BA* is induced by the map
BT 25 BT /).

Precisely, since 7™ /H is isomorphic to an (m — r)-torus group, H*(B(T™/H); R) is

a polynomial ring over R with m — r variables. As convenient notations, we write

A = H*(B(T™/H);R) = R[t1,...,tm—r] and H*(BT™; R) = R[v1,...,vm]. Then by
m

Lemma 4.1.1, BA*(t;) = > (\ij - 1g)v; for 1 < i < m — r and by Proposition 2.3.25,
j=1

the map p: R[v1,...,vn] — R[K] = R[v1,...,vn]/Ix is a quotient homomorphism.

The homomorphism BA* and the composition po BA* define an A-module structure on

RJv1,...,vy] and R[K], respectively.

m

In this way, the polynomial R[v1, ..., vy] is an A-algebra by sending ¢; to Y (\ij - 1r)v;
j=1

and the multiplication is induced by the standard multiplication of polynomial rings. The

ground ring R is an A-module by mapping each t; to zero. Since A can be extended into
an integral invertible matrix, R[vy, ..., vy,] is isomorphic as an A-algebra to a polynomial

ring with r variables over A. We prove this in the next lemma.

Lemma 4.3.1. Let Alzy,...,z,] be a polynomial ring over A. Then there exists an
isomorphism of A-algebras between Alzxy,...,x,] and R[vi,...,vy]. Consequently, the
tensor product R[vi,...,vn] ®a R is isomorphic as an R-algebra to Rlzq,. .., z,].

Proof. Let u; = Zx\wvj, where )\U = \jj if it <m —1r and )‘w =\ ifi>m—r.

i—m-r,J

A
Note that the matrix A’) has an inverse matrix M = (S’ | S) . Hence Rvy, ..., Up] is

isomorphic as an R-algebra to R[uq,...,uy] by changing the basis according to M, i.e.,
m

sending v; to Zl(éij -1g)u; where 3;; = s’ij if j <m—rand 55 = s;j_mqr if j >m—r.
]:

The composition M o BA* turns Rluy, ..., u,] into an A-module.

Since for 1 <7 <r

m m m
BA* (s’\s)
t; — Z)\Z'jvj — Z)\” Z Sgk 1R uk = U;
=1

j=1 k=1
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the composition Mo BA* sends variables t1, . .., t. of A identically to variables uq, ..., u,.

We have that Ruj,...,um] can be seen as a polynomial ring over A with variables

Um—rg1y - - - 5 U Hence Rluq,. .., uy] is isomorphic as an A-algebra to A[zq,...,x,| by

letting x; corresponding to wum,—r4;. Therefore, R[vi,...,v,] is isomorphic as an A-

algebra to Alzy,...,x,]. Identifying z; = uy,—pq; for 1 <i < r, then R[vy,..., v, ®4 R
T

is isomorphic as an R-algebra to R[z1,...,x,] by sending each v; to Y~ (si; - 1g)z;. O
j=1

4.3.2 Calculations of Tor-algebras

In this section, we apply the Taylor resolution and the Koszul resolution to calculate
the Tor-algebra (4.4).

Taylor Resolution. Let P = {oy,...,0,} be a set consisting of all the minimal
missing faces of K. Denote by A*[P| the exterior algebra over R with basis P. Let
A= H*(B(T™/H); R). Then A‘[P|® R[v1,...,vn] is a free A-module by Lemma 4.3.1.

Construction 4.3.2 (Taylor resolution [39]). The Taylor resolution of R[K] over A is

given by
. — N[P]® Ry, ..., 0] = AP @ Rlvy, . .., ] — ws)
2 AYP® Rlvr,. .., vm] = Rlv1,. .., vm] — R[K] — 0
where for o;, ...0;, € AI[P],
_ lcm(vg. s Voiy " 3 Vo ) ~
5(Uj10j2"'0'jq) — Z (_1)17 1 J1 2 Jiq Ojy Ty Ol

0<p<q lem(ve,, -+ oy, 5 Vo, )

d(vi) =0, 0<i<m
and 0;, and v, ip indicate that elements are omitted.

€ AP, let o5 = 0, ...0j, € AY[P] and let I = {iy,...,i4}, J =
{j1,---,Ji}- The multiplication o7 x oy on the Taylor resolution (4.5) is defined by

Let o] = Uil-"aiq

lcm(v%1 Vo )lcm(vc,j1 Vo ) 010 FTAT — @
ey Ugy

lcm(y"il """ Voip Yoy 1) (4.6)

0 otherwise.

oy Xog =

The bigrading of A*[P] ® Rv1,...,vs] is defined by

bideg oy, ...04, = (—q,2|os, U...Uo;,|) and bidegv; = (0, 2).

Due to Theorem 2.3.24, we obtain the following statement.



71

Theorem 4.3.3. Let H be a torus subgroup of T™ of rank r which acts freely on Zi.
Let S = (sij)mw denote the associated integral matrix H < T™. Then there exist

isomorphisms of R-algebras
H*(Zx/H;R) = Tor4(R[K],R) =2 H(A*[P] ® R[z1,...,2.],d) (4.7)
where (A*[P] ® R[x1,...,x,],d) is defined by

d(ail e Uip) = Z (—1)t_15t(£1?1, R ,xT)ail c. &it <0G,
1<i<p

dr; =0 1<j<r

T
and 0¢(z1,...,z) = [ (D2 (sij - 1r)z;) if So # Spe and 1 otherwise. Here Sy =
iGSa\SaiU j=1
o, U...Uo;, and Sp,o =03, U...U0T;, U...Uo;,.

Proof. Applying — ®4 R to (4.5), we obtain a differential graded R-algebra
(A*[P] @ R[v1,...,0m] ®4 R, 6 ®41d). (4.8)

Identifying R[vi,...,vm] ®4 R = Rx1,...,z,] as R-algebras, (4.8) reduces to a differ-
ential graded R-algebra (A*[P] ® R[z1,...,x,],d)

.= APPI® Rz, .., 1] -5 .. -5 AYPI® Rz, .., 2] -5 Rz, ..., 2] — 0
where the differential map d is given by
d(ail . O'ip) = Z (—l)tflét(a;l, R ,a:r)ail c Oy Oi,
1<i<i
and 8¢ (x1,...,x,) = [ (D0 (s45 - 1r)x;) if Sg # Sp,» and 1 otherwise.
’iGScr\Satg Jj=1

The multiplication o7 x o7 on (A*[P] ® R[x1,...,z,],d) is induced from the multiplica-
tion (4.6) on the Taylor resolution, defined by
T

[T (> (sij-1lr)xj)oroy fINJ=0and Sp, NS,, #0
i€85,NSs, j=1

01X OI= N o if INJ=8,,NS,, =10

0 otherwise

where o7 and o are the same notation as (4.6) and Sy, = 0y, U...Uo;, and S,, =
UJ'IU...UO'jl. OJ

Let us call the algebra A*[P] ® R[z1,...,x,| the Taylor algebra.
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Example 4.3.4 (complex projective spaces). Let K be the boundary of a simplex A™~ 1.
Then P = {0} where 0 = {1,2,...,m}. The quotient space Zf/S} under the diagonal
action is CP™~! (Example 2.2.15). By (4.7), there is a differential graded R-algebra,

0 — Allo] ® Rlz] % R[z] — 0,

where d(0) = 2!l = 2™. Thus, the cohomology is given by H*(Zx/S}; R) = Rlz]/(z™)
and degz = 2.

More generally, we will apply Theorem 4.3.3 to the case when K is a triangulation of

an (n — 1)-sphere with m vertices. Consider a linear sequence in Z[K]|
ti=X1v1+ ...+ AimUm, 1 <1< n (4.9)

which gives an n x m-integral matrix A = (A;;). In [10, Theorem 4.8.7], it has been
proven that the linear sequence (¢1,...,%,) is a linear system of parameters if and only
if the kernel of A: T™ — T" is an (m — n)-torus acting on Zk freely. Moreover,
recall that an algebra is Cohen-Macaulay if it is a free finitely generated module over a
polynomial subalgebra and a simplicial complex K is called Cohen-Macaulay if k[K] is a
Cohen-Macaulay algebra for k = Q or any finite field ([10, Definition 3.3.5, Proposition
A.3.13]). Any triangulation of a sphere is Cohen-Macaulay ([10, Corollary 3.3.17]).

Therefore, if K is a triangulation of an (n — 1)-sphere with m vertices and a sub-
torus group H = T™™" acts on Zg freely, then the freeness implies that the linear
sequence (t1,...,t,) (4.9) is a linear system of parameters. Since k[K]| is Cohen-
Macaulay over k, k[K] is a free k[t1,...,t,]-module ([10, Proposition A.3.3]). Hence,
Tor 3ty m 1rya0 (KUK K) i trivial if i > 1T and H*(Z/H;k) 2 Tory g )00 (KIK] k).
Corollary 4.3.5. Let K be a triangulation of an (n — 1)-sphere with m vertices and let
H be an (m — n)-torus subgroup of T™ acting freely on Zx. Then the cohomology ring

of Zx/H is given by

H*(Zx/H;k) =k[z1,...,2m—n]/(00,8)sep

m—n
where (aq,5)0cp s the ideal generated by ay 5 = [[( > (sij - lk)xj) and degxj = 2.
i€o j=1

Proof. According to (4.7), Tor%*(B(Tm i)y (RIK], R) is given by the quotient ring

m—n

Rlz1,...,Zm—n]/Imd where Imd is the ideal generated by d(c) = [[( >_ (si; - 1k)x;) for
ico j=1

every o € P. O

Koszul Resolution. The Koszul resolution of R over Rl[ti, ..., tmn—,] is defined by

(A[ul, . ,um_r} (= R[tl, .. ,tm_r], d), du; = t; and dt; = 0.



73

Tensoring it with — ®pyy, . 4.1 RIK], we have the statement below.
Proposition 4.3.6. Let H be a subtorus of T™ and A be the corresponding integral
matriz of the projection T™ — T™ /H. Then there is an isomorphism of graded algebras

H*(Zi/H; R) 2 Tor e (prm aryey (RIK], R) & H(A[us, ..., ] ® R[K],d)  (4.10)

where the differentials are defined by du; = (A1 - 1r)v1 + ...+ (Nim - 1r)Um and dv; = 0.

Proof. For convenience, write A = H*(B(T™/H); R) = R[t1,...,tm—r]. Recall that in
Section 4.3.1, R[K] is an A-algebra given by the homomorphism

fiR[t, ... tmy] — RIK]

t; — Z(/\” . 1R)’Uj.
j=1

There is an isomorphism of R-algebras 8: A®4 R[K] — R[K]|, f(a®4b) = f(a)b where
a € A and b € R[K]. Tts algebraic inverse homomorphism is given by 871(b) = 1 ®4 b.
Both 8 and 57! are R-homomorphism of algebras by properties of the tensor product.

Thus there is an isomorphism of R-algebras
Afug, ... upm—y] ® A®4 RIK] ZAfug, ..., Un—r] @ RIK]
U ®a®ab—u; @ f(a)b.
Hence the differential d on Afuy, ..., um—r] ® R[K] induced by the Koszul resolution is

given by
du; = f(tz) = ()\il . 1R)’U1 4+ ...+ (Aim . 1R)Um-

O

The algebra Afui, ..., up—r] ® R[K] is called Koszul algebra, whose multiplication is the
tensor product of R-algebras (2.3).

Example 4.3.7. The diagonal action on Zx is always free. In this case, the associated
integral matrix A induced by the quotient map T™ — T™/S} is (Im_1 \ —1), where
—1=(—1,...,—1)% Thus the Koszul algebra (A[ug,...,un—1] ® R[K],d) is given by

du; = v; — vy for 1 <i <m —1and dv; =0 for 1 < j <m.
By Proposition 4.3.6, H*(Zx /S R) = H.(A[uy, . .., um—1] ® R[K],d).

Bigradings. Unlike moment-angle complexes (Construction 2.1.24, 2.1.26) and quotient
spaces of real moment-angle complexes ([13, Theorem 4.6]), there are no analogous
multigrading structures on the Taylor algebra (4.7) and the Koszul algebra (4.10) which

are closed under the differentials in general. However, the bigrading structures exist.
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The bigradings of generators of the Taylor algebra (A*[P] ® R[z1,...,x,]|,d) (4.7) are
defined by

bideg 03, ... 03, = (=p, 2|0y, U... U0y, |) for each o;; € P and bideg z; = (0,2).

The bigradings of u; and v; in the Koszul algebra (A*[u1, ..., um—r] ® R[K],d) (4.10)
are defined by
bideg u; = (—1,2) and bideg v; = (0, 2).

The Eilenberg-Moore spectral sequence indicates how the cohomology degree of Zx /H
corresponds to the bigrading of the Tor-algebra. Let A=%%/[P] and A%/ [u1, ..., Up ]
be the corresponding R-submodule of degree (—i,2j). Similarly, let R?![z1,...,x,] and
R*[K] be the corresponding R-submodule of degree 2t. Then the next result follows

immediately.

Theorem 4.3.8. Let K be a simplicial complex on [m] and H be a subtorus group of

T™ of rank r acting on Zx freely. Then there exist isomorphisms of groups

HYZk/H;R) = @@ Tory2t pn ). (RIK], R)

—i+2j=q

=~ P HNEFP @R, ... 1), d)
—i+2j/+2t=¢q

~ B H((A ;... um—r] ® R¥[K],d).
i+2t=q

Proof. Let C*(-) denote the singular cochain functor with coefficients in R. The algebraic
isomorphism (4.4) in [35] is established by showing that the Eilenberg-Moore spectral
sequence associated to the homotopy fibration Zx/H — DJg N B(T™/H) collapses

at the Fo-term and the existence of a multiplicative isomorphism
P: TOYH*(B(TT”/H);R) (R[K], R) — TOI“C*(B(Tm/H))(C*(DJK), R)
Consider the pullback square

x 1 prmm)

k |

DJx —L B /H)

where f is a composite DJg — BT"™ A B (T™/H). Recall that in [30, Theorem 7.14]

(the second Eilenberg-Moore theorem), there exists a filtration-preserving map

0: total(Q®) @c-(prm /) C*(E(T™/H)) — C*(X)
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which induces an isomorphism on cohomology
0*: TOI‘C*(B(Tm/H))(C*(DJK), C*(E(Tm/H))) — H*(X; R) = H*(ZK/H, R)

Here Q* —— C*(D.Jg; R) — 01is a proper projective resolution ([30, Definition 2.18]) of
C*(DJg) over C*(B(T™/H)). And Q* forms a bicomplex. Hence there is an associated

total complex (total(Q®),d), where total(Q®)? = &  Q7/v%2. Then the map 6 is
—Jj1+2j2=q
defined to be a composition

total(Q*) @c=(p(rm /mry) C*(E(T™/H))

e®idi \

C*(DJk) ®@c+Brm/my) C(E(T™/H)) —— C*(X)
where & is induced by the composition

a: C*(DJx) ® C*(E(T™/H)) 24" 0 (X) @ C* (X) =5 C*(X).

Since E(T™/H) is contractible, there exists a chain equivalence C*(E(T™/H)) ~ R.

Therefore, we have

HY(Zk/H; R) qu(tOtal(Q°) ®c+Brm/m) B d)

@ Tor,,. Z2J Tm/H))(C*(BTK),R)
—i+2j=q

where the second isomorphism is valid since the bigrading of the Tor-module is defined
by the bigrading of @®. As the multiplicative isomorphism ® is degree-preserving, we

have
o1 hrm iy (C* (DTi)s B) 2 TOX o gy y (™ (DT ), R) = Tov sy py (RIK], R).

The bigradings of Tor-algebra Tor g« (g(rm /1) r) (R[K], R) correspond the bigradings of
the Taylor algebra (4.7) and the Koszul algebra (4.10). That is to say,

Tor - ey (BIK) B) = €D Hi(AT [Pl @ R [an, ..., 2], d)
g/ +t=j
=~ P Hi(A [, ..., up—r] @ R¥[K],d).
i+t=j

Example 4.3.9. Let K be the following simplicial complex.



76 4.3. The Tor-algebras

1

4

Then the minimal missing faces of K are P = {023,0124,0134}. We calculate the co-
homology of the quotient Zx/S} under the diagonal action. The Taylor algebra (4.7)
is

0 — A*[P] ® Rlz] -2 A2[P] ® Rlz] 2> A[P] ® R[z] % Rlz] — 0.

The nontrivial differentials are

2 3 3 _
doog = x*, doio4 = x°, doi34 = 27, dogzoi24 = (0124 — 0237),
doggoi34 = (0134 — 0237)x, doi240134 = (0134 — 0124),

do2301240134 = 01240134 — 0230134 + 02307124.
Hence, the homology groups are
R[z]/(x?) if i =0
Hl(A*[P](g)R[-T]ad) = R- [02356—0'124]@R' [0'23$—0134] ifi=1
0 otherwise
where R - [a] is denoted by the R-module with the generator [a].

Note that bidegx = (0,2) and bideg (023.% - 0’124) = bideg (0’23$ — 0'134) = (—1,6).

Therefore, we have

R if i =0,2
H'(Zk/S;iR)={R&R ifi=5
0 otherwise

in accordance with Example 2.3.30.

Example 4.3.10. Let Z,, be the moment-angle complex corresponding to m disjoint
point. We calculate the cohomology of Zx /KerA, where A = (1,...,1) (Example 4.2.3).
——

In this case, the Stanley-Reisner ring R[K| = R[m]/(v;v;,1 Sw; < 7 < m) and the
Koszul algebra (4.10) is given by (A*[u] ® R[K],d) where du = v1 + ... 4+ v, and
d(uv;) = UJQ- for 1 < j < m. Thus, the homology groups are Ho(A*[u] ® R[K],d) =
R[K]/(v1 + ...+ vm,v},1 < j < m) and zero, otherwise. This implies that

R, if i =0,
H'(Zk [KerA; R) = { RO(m=1)  jf j — 9

0 otherwise.

Note that in the case m = 2, we have Zx = S° and ZK/Sl ~ 52,
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4.3.3 Yu’s formula

We will apply Proposition 4.3.6 to compute H*(Zx/H; R) in Example 4.2.4 when the
subtorus H = KerA acts on Zx freely. See [43, Theorem 1.2] for a topological approach
including non-free actions. Recall that in Example 4.2.4, A has a particular form. Let
RowA be a subspace of Z3' spanned by the row vectors of A. Then under the bijection
of the vector space Z3' and the power set olml of [m], the row vector space RowA
corresponds to a subset J of 2™ consisting of {J C [m] | ifi € a,, and i € J, then ay, C
J}. By an abuse of notation, we use RowA to denote the set 7. Note that there is a
bijection ¢ between RowA and the power set 2! of [I]

¢: RowA — 20

‘ . (4.11)
J +— {plicoyandiecJ}

where [ is the number of partitions of V(K). Alternatively, this bijection ¢: RowA —
2lll is given by sending the vector kyA; + ... + kA to {i | k; # 0}, where ); are the row
vectors of A. The following result is known as [43, Theorem 1.2]. We give a different

proof in the case of a free KerA-action as follows.

Proposition 4.3.11. Let (K, A) satisfy the condition in Example 4.2.4. Then there

exists an isomorphism of graded R-algebras
H*(Zg /KerA; R) = H(Aluq, ..., w] ® R[K],d)

where the differentials are du; = vj,dv, = 0,1 <0 < 1,1 < p < m. Moreover, there
JE;
are isomorphisms of homology groups

HY(Zx [Kerhs R) = @) HDI1 (K R).
JERowA

Next, we will prove Proposition 4.3.11 in a few lemmas, an analogue of the proof of
Hochster’s formula shown in [10, Section 3.2]. A sketch of this proof is contained in
Section 2.1.2 of this thesis.

Construction 4.3.12. Define a quotient algebra Q*(K)
Q" (K) = Alut, ..., ® R[K]/(uvj = vﬁ =0,j€;,1<i<[;1<p<m)

where Q*(K) has a basis {ujv, | JNIy(oc) = 0 and ¢ € K} as an R-module. The
ideal (u;v; = vg =0,j € a;,1<i<I[1<p<m)is closed under the differential, since
dujv; = ’UJQ- for j € a; and i € [I]. Thus Q*(K) is a differential graded algebra. Recall
that R[K] has a basis consisting 15 and vi-’ll . v?;’ with b; > 0 for {i1,...,ip} € K ([10,
Proposition 3.1.9]). By the construction of K, if o € K, then each i € o is from different
partition oy,. For o = {i1,...,ip}, denote by Io(c) = {j € [I] | ¢j N o # 0}. There
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is a multigrading on v, in Q*(K) defined by mdegv, = (2ay,...,2a;) where a; = 1 if
iNIy(0) # 0 and zero otherwise. It gives a Z @ N'-grading on Q*(K) by

mdegu vy = (—|J|,J U I4(0)).

There exist a quotient homomorphism p: Afuq,...,w]® R[K] — Q*(K) and an inclu-
sion of R-modules ¢: Q*(K) — Afuq,...,w] ® R[K] with pt = id.

Lemma 4.3.13. There exists a chain homotopy s: A[uy, ..., w|QR[K] — Afuy, ..., w|®
R[K] such that ds — sd = id — vp. Consequently, the projection Afuy,...,u;| ® R[K] —

Q*[K] induces isomorphisms on homology groups.

Proof. The proof is similar to [10, Lemma 3.2.6]. First consider a special case when
K =Jai]*... *[oyq]. Let B} = Alug,...,w] @ R[a1] *... *[oy]]. Ifl =1, K is a disjoint

union of a; points. Denote by the corresponding Stanley-Reisner ring R[a;]/In, =

a9 .
Rlv1,...,v0,]/(vivj,i # j). Let z = ap+ > Y ajv] € Rlay]/Ia,. Define
i=15=1

s By — B

by s1(z) = ui[(agiv1 + ...+ a2q,Vay) + .-+ (ajlv{_l +...+ ajalvg:l)] and s1(uzx) = 0.
The map s satisfies ds; — s1d = id — o p. For a general [, since F; = E;_1 ® E1, we can
inductively define s; = s;_1 ® id + ¢;_1 0 pj_1 ® s1, which is a chain homotopy between

id and Lo pr.

Now consider any K with V(K) = [oq]U...U[y] € K C [ag] * ... * [oy]. Let I be
the ideal in Ej generated by the monomials v,, where 0 ¢ K and each i € o is from a
distinct partition ay. In this case, the Koszul algebra Afuy, ..., ] ® R[K] = E;/I}. To
define the chain homotopy s to Afui, ..., w] ® R[K], it suffices to show that

d(Iy) C I t0p(I) C Iy, and s(I) C Ik. (4.12)

As an R-module, I}. has a basis {UJvfll . ..UZ‘:}, where {i1,...,i,} ¢ K with each i,

sitting in a different partition oy and b, > 0. Note that d(uﬂ)ﬁ’f vf;’) = > +
jeJ

w20 vivfll . vf;’) Also notice that vivfll . .vf;’ = 0 if there exists some i, (1 < g < p)
1€Q;
such that ¢ and i, are from the same partition by the construction of I} and Ej. Thus

d(UJU,?ll . .vf;’) € I}.. So d(I}) C Ij.. We also have that
if bg=1and JNIy(o) =10

U JViq - - - Vi

ip .
0, otherwise.
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Hence, tp(I}) C Ij. By the inductive definition of s,

by bpy _ b1 bg—1 bp
s(ugv;) . .v;7) = g Tugug) vy
inOtj,bq>1

The third inclusion in (4.12) follows. O

For L C [l], let Q"% = Spang{us\1,(0)0s | 0 € K, I4(0) € L}. It is a chain subcomplex
since

dup\1,(0) V0 = Z (FD) UL\ (14 (o)) ZU;

keL\I4 (o) JEay
where v;v, is zero unless j Uo € K. By the construction of K, if jUoc € K then
1,(jUo) = kUI(0). Thus, dup, 1, (o)ve € Q. Moreover, the chain complex (Q*(K), d)

has a splitting of chain subcomplexes Q*(K) = @ Q**(K). In the following statement,
LC[l]

we prove that Q%" (K) is isomorphic to C* (Kg-1(1); R) as cochain complexes, where ¢

is bijection (4.11) between RowA and subsets of [I] and K41z is the full subcomplex

of K on ¢~1(L).

For I C J C [m], define the sign function €(I,J) = [[e(i, I), where €(i,I) = (=1)"*!
iel

with 4 sitting at the r-th position of I if I is written increasingly. It satisfies that

e(7,J)e(d,jUl) =€(4,J\I) for j € J\ I (see [10, Theorem 3.2.9]).

Lemma 4.3.14. For J € RowA, there are isomorphisms of R-modules

Hy(Q "*U)(K),d) = HI*UDI==1(K ;; R).

Proof. For J € RowA and ¢(J) C [l], define

f: CP(Kj; R) — Ql#W)I=p=10)) (k)
Xo = €(La(0), 9(J))Up(I)\ I (0) Vo

where X, is a base cochain corresponding to an oriented simplex o. It suffices to prove
that f is an isomorphism of chain complexes. First, by the construction of K, if 0 € K
and |o| = p + 1, then |I,(c)| = p + 1. Since ¢ is a bijection and QI?(/)I=P=1.6()) has a
basis {Uug()\1.(0) Vo | 0 € K,|o| =p+1,14(0) € ¢(J)}, f is an isomorphism. Observe
that

f(dXU) :f( Z G(j,j U U)XjUU)

jeJ\o,jUcEK 5

=Y (4,7 U0)e(Tali U ), ¢(J)) g 1. (juo) ViLo
jeJ\o

df(Xo) = Y ella(0),d(]))e(k, d(I)\ La(0)) g (kura(e) (D vp)V

ked(J)\a(o) peay
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To simplify df(X,), note that v,v, = 0 € Q%?V)(K) unless pU o € K. Thus, the
summands in df(X,) go though k € ¢(J) \ In(0) such that there is at least one vertex
p € ap that pUo € K. There is a bijection between {j € J\o | jUc € K}
and {p € a; | k € ¢(J) \ Ia(0),pUoc € K} by sending j to p. By this bijection,
if jUo € Ky, then there is a unique k € [I] such that j € aj and k ¢ I,(0). So
I,(jUo) = kUI, (o). Hence, the terms appearing in df (X, ) and fd(X,) match. In order
to show that df(X,) = fd(X,), we need to show that the signs match. If jUo € K,
then €(j,j Uo) = e(k,k U I,(0)) by the construction of K. Hence, we have

€(g,jUo)e(la(jU0), ¢(J)) = e(k, k U Lo(0))e(k U La(0), ¢(J))
=e(k, kU la(0))e(k, o(J))e(la(0), ¢(])) = €(k, 9(J) \ La(J))e(la(0), ()

Therefore, f commutes with the differentials. O

We finish the algebraic proof of Proposition 4.3.11.

Proof of Proposition 4.3.11. The first statement is a direct application of the Koszul
algebra. Now we prove the second statement. By Theorem 4.3.8, Lemma 4.3.13 and

Lemma 4.3.14, we have

HY(Zg /KerA; R) = P Hi(A™"¥[uy, ..., w) ® R*[K],d)
i+2t=q

D H(Q(K).d)

—i4+2j=q,|(J)|=j

12

~ @D  BERR)
—i+2j=q,|¢(J)|=J
= @ H 1Dk R)
JeRowA
which completes the proof. ]

4.3.4 Comparison with the cohomology of Zj

Let K be a simplicial complex on [m] and let P consist of all minimal missing faces
of K. Recall that in [41] (Theorem 2.1.27), a differential graded algebra (A*[P],d) is
introduced with the homology isomorphic as an R-algebra to the cohomology of Zg, by
applying the Taylor resolution of R[K]| over R[vy,...,vn].

Theorem 2.1.27. There exist isomorphisms of R-algebras

H*(2x; R) = Torgyy, ....0,, ] (R[K], R) = Hi(A*[P], d)

- P
where d(oy, ...05,) = Y (=1)"1604, ... 64, ...04, and & = 1 if S; = Sp,e and zero,

otherwise.
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The next lemma shows that the projection map 7: A*[P|® R[z1, ..., x,] — A*[P] which
sends all x; to zero is a chain map between the chain complexes (A*[P]® R[z1, ..., z,],d)
and (A*[P], d).

Lemma 4.3.15. The map w: (A*[P] ® R[z1,...,2,],d) — (A*[P],d) by z; — 0 is a

chain map.

Proof. Let 0y, ...0;, € AP[P], let f € R[z1,...,7,] and let a = f(0,...,0) € R. Then

we have

nd(oiy . ..0i, @ f) = 7( Z (1) Loy, ... 6, . 0, @ fOp(w1,. ., 2p))

1<t<s
= Z (—1)t_1a(5t(0, ce 70)Ui1 ce OA'Z't - 04y
1<t<s
~ i

dr(og, ..o, ® f) = ad(fnl L OG,) = Z(—l)t_laétail 0y 0G,

t=1

Recall that by (4.7), d¢(x1,...,2,) = [ (D sijzy) if So # Sp,o and 1 otherwise.
i€8,\S,0 J=1

Thus &(0,...,0) = é; and dr = nd. O

Let R[z1,...,z,]T denote the kernel of the augmentation map e: R[zy,...,x,] — R

by €(xzj) = 0. Since the underlying R-module of A*[P] is free, we have a short exact

sequence of R-modules
0 — A*[P] @ Rlz1,. .., 2" 1 A*[P] @ Rlzy, ..., 2] - A*[F] — 0

where A*[P|® R[z1,...,x,]T is closed under the differential. Thus we have the following

lemma.

Lemma 4.3.16. There exists a short exact sequence of chain complexes

0 — (A*[P] ® Rlz,. .., 2]t d) -5 (AP ® Rlz1, ..., 2,),d) = (A*[P],d) — 0

where f is an inclusion of chain complexes and 7 is a projection by 7(x;) = 0.

It gives rise to a long exact sequence of homology groups

. — Hi(A[P| @ Ry, ..., 2,]", d) 25 Hi(A*[P] @ Rlz, . .., 2], d)

T Hy(A*[P), d) 25 Hio1(A*[P] @ Rz, ... 20T d) — ...
which induces short exact sequences for i > 0

00— HZ(A*[P](X)R[.%l, R ,l‘r]+, d)/1m¢z+1 — Hl(A* [P]@R[l‘l, R ,a:r], d) — Ker¢; — 0.
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Proposition 4.3.17. The above short exact sequences split for every i > 0, so there are

isomorphisms of R-modules

Hz(A* [P] ® R[xlv ey :Er]v d) = H’L(A* []P)] ® R[$1, v 7$7‘]+7 d)/1m¢l+1 ® Kerqbi-

Proof. Tt suffices to define a section s; : Ker¢; — H;(A*[P] ® R[x1,...,2,],d). Let
a = [a] € Kerg;. Then ¢;(a) = [d(a)] € H;i—1(A*[P] ® R[x1,...,2,]T,d). Since ¢;(a) =
0, there exists an element b € A‘[P] ® R[x1,...,z,]" such that d(b) = d(a). Thus

a —b € Kerd. Define s;(a) = [a — b]. It is easy to see that s; is a section since

610 si(a) = gila —b]) = [a] = o o

4.4 Circle actions on Zg

In this section we focus on free S'-actions on Zx. Let K be a simplicial complex on [m)]
(K # A™ 1) and let ged(s1,...,8m) = 1, s; € Z. The S'-action on Zx by (s1,...,5m)
is given by t - (21,...,2m) = (t**z1,...,t%"2,,), where t%z; is the product of complex

numbers for any t € S! and (z1,...,2m) € Zk.

We first adapt Lemma 4.2.1 to give conditions for S! acting freely on Zx. This will be
used in Proposition 4.4.7. For two or more integers {a;}icr, which are not all zero, let

ged(ag: @ € I) denote the largest positive integer that divides all of the a;.

Lemma 4.4.1. The S'-action on Zx by (s1,...,5m) is free if and only if gcd(s;: i €
o) =1 for every [m]\ o € K.

Proof. In the case of circle actions, the associated matrix is S = (s1,...,8mn)!. By
Lemma 4.2.1, S! acts on Zx freely if and only if for every 7 € K, the vector (84)igrs
obtained by deleting elements sitting at positions indexed by 7, forms part of a basis of
Z™=I7l. By Lemma 4.1.2(a), the latter condition is equivalent to ged(s; | i € [m]\7) = 1.
The statement follows immediately by setting o = [m] \ 7 for every 7 € K. O

For example, let Z,, be the moment-angle complex corresponding to m disjoint points.

Then the S'-action on Z,, by (s1,...,8m) is free if and only if for every j € [m],
ged(s1,...,8j,...,8m) = 1, where §; indicates omission.
Let K be a simplicial complex on [m] and let P = {0y, ...,0,} C 20" collect all minimal

missing faces of K, By this property of P, any subset of [m] which contains some o € P
is missing face of K. Then this simplicial complex K consists of the following subsets
of [m)]

K =2M\ {J C[m]| o C J for some o € P}. (4.13)
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Lemma 4.4.2. Let P = {o1,...,0,} be the set of all minimal missing faces of K. Then
the S'-action on Zxk by (s1,...,8m) is free if and only if ged(sj,, ..., s;,) = 1 for each
Jr€or (1<t <p)

Proof. Let {j1,...,jp} be a subset of [m] with each j; in o, (1 <t < p). We show that
[m]\ {Jj1,...,Jp} are maximal faces of K (4.13).

For every o; € P, the intersection {j1,...,jp,} Noy is non-empty, which means that every
o € [m]\ {j1,-...Jp}. Hence [m]\ {j1,...,jp} € K by (4.13). On the other hand,
if I € K, thenI ¢ {J C [m] | o C J for some o € P}. That is to say, for each
or € P, there exists j; € oy such that j; ¢ I, so we have I C [m]\ {j1,...,Jp} because

Iﬁ{jl,...,jp}:Q).

By Lemma 4.4.1, we have that S* acts freely on Zk, if and only if ged(s;,,...,s;,) =1
for each j; € oy. ]

Remark 4.4.3. Note that ged(a, be) = 1 if and only if ged(a, b) = ged(a, ) = 1. Thus, S*

acts freely on Zg, by (s1,..., sm) if and only if ged( [] s4,..., [ s;) = 1. In particular,
JjEo1 Jj€op
if P = {0}, then S* acts freely on Zg, if and only if s; = +1 for every i € o.

Let P = {01,...,0,} be a set of minimal missing faces of K. If S* acts freely on Z by

(S1,...,8m), then by Theorem 4.3.3, there is an isomorphism of R-algebras
H*(Z2k/SY; R) = H(A*[P] ® R[z],d).
Here the differential d is defined by

d(0i, 04y ... 03,) = 1<§<q(—1)t_1( 1T si troi ... 60... 0, @ !5\l
== JES\So,0 (4.14)

dr =0

where S, = 0y, U...Uo;, and assume that []s;-1r = 1g. The bigrading of A*[P]® R[z]
Jjeb
is defined by
bideg 0y, 04, ... 0, = (—¢,2|S,|) and bidegz = (0, 2).

We apply (4.14) to calculate the cohomology of the quotient space of a product of odd
spheres under free circle actions in the next example. It is a different method as [33,
Theorem 2].

Example 4.4.4 (free circle actions on S?™~1 x §2m2=1) Let 1 < my < my. Suppose
that R is an integral domain. Let K = 9A™~1x9A™2~! be the join on mq+msy vertices.
Assume that if m; = mg = 1, then Zx = S' x S'. The minimal missing faces of K

are P = {o,7} where 0 = {1,...,m1} and 7 = {m; + 1,...,m; + ma}. Suppose that
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St acts on Zg by (a1,...,am,,b1,...,bm,) and write a = a1 ...am, and b= by...by,.
Then the differentials from (4.14) are

do(oT) =a-1gx"™'7 —b- - 1ga"?0c = 2™y

where y = a - 1pT —b- 1z ™0 € kerd; and deg y = 2my — 1.
Since do(z) = 0, Hy(A[P] ® R[z],d) = R[z]/(a - 1rz™ ,b- 1rx™?).

The circle action on Zg is free if and only if each a; is relatively prime to b; by
Lemma 4.4.2. Thus, if @ = 0 then b = £1. If @ = 0, then d;(0) = 0 and 2?0 € Imds.
In this case, H1(A[P] ® R[z],d) = Allo] ® R[z]/(x™20) = Al[o] ® (R[z]/(z™2)) where
degz = 2 and dego = 2m; — 1 and Hy(A*[P] ® Rz],d) = R[z]/(z™2).

If a # 0, then Hy(A[P] ® R[x],d) = Al[y] ® (R[z]/(z™)).
Summarising the above, we obtain

H*(Z /Sl' R) = [x,y]/(y27zm1y’a. 1™ b 1gx™2) where degy =2mg — 1 and degz =2 if a #0
K ;
R[l'ao]/(OZal’mQ) where dego =2mj — 1 and degx =2 if a = 0.

Differential (4.14) implies a chain complex as follows. We start with a simplicial complex
K on [m] which is not a simplex and an S'-action on Zf by (s1,...,5mn). Let P denote
the set of all minimal missing faces of K. We consider simplicial complexes L whose

vertex set is given by P and define the following chain complexes (Cy(L),d) induced by

(81, .. .,Sm).

Construction 4.4.5. Let L be a simplicial complex on the vertex set P. For every

face F of L, define a supporting set Sp C [m] by letting S, = |J 0. Define a chain
o€V (F)
complex (Cy(L),0) associated to L. Let Cy(L) be a free R-module on basis elements

of oriented g¢-faces F' of L. Note that C_;1(L) = R and C;(L) = 0 for i« < —2. The
differential 6: Cy — Cy—1 is defined by

S(F)= > sen(F,F)( [ s)F (4.15)

F'eF(F) iGSF\SF/
where F(F') consists of all facets of F and sgn(F, F’) is 1g if F and F’ have the same

orientation and —1g otherwise. Since J is an evaluation of differential (4.14) at x = 1,
62 = 0. Let H.(L,6) denote the homology groups of the chain complex (Cy(L),?).

Let Ap be a simplex on P. Construct a filtration {L, | 1 < p < m} of simplicial
complexes on P,
Ly ={F € Ap | |Sp| < p}.
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Note that Lo = 0, L,, = Ap and L, is a subcomplex of L, ;. Thus each L, is associated
with a chain complex (C«(Lyp),d) by (4.15).

Let us remark that if S' acts on Zx diagonally, then all s; = 1. In this case, the
homology H,(L,8) is the standard reduced homology H.,(L;R).

Example 4.4.6. Let K = {v;} on [2], i.e., {v2} is a ghost vertex of K. Thus P = {vs}
and Zxg = D? x S'. In this case, Ap is a single vertex. We consider two different
Sl-actions on Zx by wy = (0,1) and we = (1,0), where the first action is free and the

second is not. The associated chain complexes given by Construction (4.4.5) are
5(1)
0—>Co(A]p)—O>R—>O

where §5 (v2) = 1g and 65 (v2) = 0. Thus H,(Ap,6*') = 0 and Ho(Ap, *?) = R.

Recall that a chain complex (Cy, d) is acyclic if its homology is trivial. As illustrated in
Exmaple 4.4.6, in general, the homology of this chain complex (C,(Ap), d) for a simplex
is not trivial. However, we show that if S acts on Zx freely, then (C,(Ap), §) is acyclic.

Proposition 4.4.7. If S acts on Zy freely, then (C.(Ap),6) is acyclic.

Proof. Choose o € P and let P’ denote P\ {o}. If F = [04,...,04,] is an oriented
g-face of Ap/, then denote by Fo the oriented (¢ + 1)-face [0y, ..., 0i,,0] of Ap. If
c=Y riF; € Cy(Ap), then co =) ri(Fjo) € Cy41(Ap). Define an R-homomorphism

0! Cq(A]P’) e Cq(A]p/)

Fr ] (si-1r)F
JjESFNCT

where we assume that [[s;-1r = 1g.
Jjeo
Now let z = z1 + 220 € Cy(Ap), where 21 € Cy(Ap) and 2o € Cy_1(Ap). We show

that if §(z) = 0, then ([]s;)z € Imd. Let 21 = > rgQ, where the sum goes through
j€o QEA
all oriented g-faces of Ap and let Z2; = 6(z1) = > ro( [[ s;)Q. Recall that F(Q)
QEAR JESQNo
denotes the set of all codimension-one faces of Q.

We do the following calculation

0Qo)= Y sen@QN( J] s)Qo+(0)"'( I s)@

Q' eF(Q) 7€8qo\Sq/ J€SQs\Sq

d(z0)= > 1ol [ 51)6(Qo)

QEAP/ jESQ No

= > ol I] soi Do sem@@)( ] Qo+ (=1 I spak

QEA JjE€ESgNo QeEF(Q) jESQg\SQ/G jESQU\SQ
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Since the support Sg of the face F' € Ap is a subset of [m], we have the following

(Sno)U((SquUa)\ (SgUo)) = (S \Sg)U(SerNo)
(Seno)u((SqUo)\Sq) =0
(Senao)N((SquUo)\ (S o)) =0
(Seno)N((SquUa)\Sq) =10
Thus,
0(z210) = Y rol D sen(@,Q)( 11 s)Qo + (=) ([ [s)@
QEAy  QeF(Q) JE(SQ\So)U(SqrNo) jeo
= > g > sen(Q,Q)( I1 5))Qo + (1) ([[s55)=
QEA QEF(Q) (jESQ\SQ/)U(SQ/ﬁU) j€o
ZTQ Z sen(Q, Q')( 5)Q'c 4+ (—1)7T( Hs z — 290).
Qe QeF(Q) JE(SQ\Sg)U(SgNo) JjET
Next, we show that
doro Y sgn Q. Q)( I1 s)Q + (1) ([[s)2=0  (4.16)
Qedy  QEF(Q JE(SQ\So)U(SgiNa) jeo

which implies that ([] s;)z = (—1)7"1§(Z10) € Imé.
j€o

Let zo = > rpF where each dimF = ¢ — 1. Since d(z) = 0, we have —d(220) =
FEA]P/

d(21) € Cy—1(Apr). The terms in the expression for d(z20) corresponding to the basis

faces which contain ¢ as a vertex vanish. Thus,

8(z0) = Y rpé(Fo)= > re(-1)% [ s)F (4.17)
FeAp FelAp JE(SFUO)\SF
and
0(8(220)) = > (=17 ] s)C I s)F =00 ]s0)z
FEAy JESFNo  (SpUo)\Sp j€o
Note that 21 = ) 7QQ. Hence,
QEAR

Z rQ Z sgn(Q, Q')( H 5;)Q'. (4.18)

QEAR QEF(Q) ]ESQ\SQ/
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As 0(z1) = —0(z20), 00(z1) = —06(220). The terms appearing in (4.17) and (4.18)

should match. Thus we have

05(z1) = > 1o . sen(@. Q) ] s I sn@

QEA QRIEF(Q) jGSQ/ﬂU jGSQ\SQ/
= (D" (] ]s5)2
jE€o

which implies (4.16).

Hence, we have proven that if §(z) = 0, then (]]s;)z lies in Imd. The proof does not

depend on the choice of . Thus, for every o JEEU]P’, (H sj)z lies in Imd provided that

d(z) = 0. The freeness condition (Remark 4.4.3) irnp]l?gs that ged([]s; | o € P) = 1.

Then there are integers {l,},cp such that > [,(]]s;) = 1. Hence, Jzei Yo lo(IIsj)z €
ocelP  jeo oeP  jEo

Imo so that (Ci(Ap),d) is acyclic. O

Our next goal is to calculate H*(Zx/S'; R) in terms of H,.(Ly,d), where L, and the
chain complexes (Cy(Ly), d) are defined in Construction 4.4.5.

Define a map

f: (AP ® R[z],d) — (Cx(Ap) ® R[x],d ® id)

Tiy - 04y = o @ 21575 | (4.19)
z? — x4
where F, = [0y, ...,04,] is an oriented simplex of Ap.

Since

@ ®@id)o f(oi, ...05) =6([oiy,..., o] @y = 5 (—1)!7( [ i 1r)do @ 57

1<t<q )
JESF,\SFy,

fod(oil...aiq):f< > (=07 ] sj-lR)atO(X)xS"\Sata) = (6®id)o f(oi, ... 03,)

1<t<q
jESU\SatU

f is a chain map. Thus, f induces a short exact sequence of chain complexes

0 — (A*[P|@R[z],d) N (Ce_1(Ap)@R[z], 6®id) = (Cy_1(Ap)®R[z]/Tmf,d) — 0

(4.20)
where (Cy.(Ap) ® R[z]/Imf,d’) is a chain complex induced by ¢ ® id on the quotient
R-module. The quotient R-module Cy(Ap) ® R[z|/Imf has a basis {FF @ 2P | F €
Ap and 0 < p < |Sp|} and the differential d’ on the basis F®a? is defined by d'(F ®aP) =

S e(F,FY( I si-1r)F' ®@aP, where e(F, F') = sgn(F, F') if 0 < p < |Sp/| and
FIEF(F) i€Sp\Spr
is zero otherwise.
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The bigrading on Cy(Ap) ® R[z]/Imf is given by setting

bideg F ® 2P = (—dimF, 2|Sr| + 2p).

The chain complex (A*[P] ® R[z]/Imf,d’) splits in terms of relative chain complexes
as follows. Consider a pair of simplicial complexes (Ap, L,) and their relative chain
complex Cy(Ap, Ly). Note that C\(Ap, L) has an R-basis {F' € Ap | |Sp| > p}. Define
a chain map

g9: Cu(Ap) ® Rlz)/Imf — @D Cu(Ap, L) (4.21)

0<p<m—1

which sends the basis element F'® 2P to the basis element F’ sitting in the p-th summand
C.(Ap, Lp). Note that g is a bijection between the basis elements in Cy(Ap) ® R[z]/Im f

and @ C.(Ap,Lp). Thus g induces an isomorphism on homology groups for j > 0,
0<p<m-—1

H;j(C.(Ap) ® Rlz)/Imf,d) = @) H;(A*[P]® Rlx],d).

0<p<m—1

Proposition 4.4.8. Let S' act on Zx freely. For j > 0, there are isomorphisms of

R-modules

H;(A*[P] ® Rlz],d) = Hj(Cy(Ap) ® Rlz]/Imf) = EDH;1(Ly, )
p=0

Proof. If S acts on Zy freely, then (C.(Ap),d) is acyclic. So (Ci(Ap) ® R[z],d ® id)
is acyclic, as R[z] is a free R-module. The first isomorphism follows from the long
exact sequence induced by (4.20). The second isomorphism is true since H;(Ap, Ly; §) =
H;_1(Ly,6) for i > 0 by the long exact sequence induced by the short exact sequence of
chain complexes 0 — C,(Lp) — Cy(Ap) — Cx(Ap, L) — 0. O

Together with Theorem 4.3.8, in the case of free circle actions, we have the following

statement.

Proposition 4.4.9. Let S' acts freely on Zx. There are isomorphisms of R-modules

H'(Zk/S“R) = @ Hj-1(Ly,0). (4.22)
2p—j=i

Proof. By Theorem 4.3.8,

H'(Zx/ShR)= D Hj(A [Pl @ R[], d).
—j+2p'+2q=i
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m
By Proposition 4.4.8, we have H;(A*[P] ® Rx],d) =2 @ H;—1(Ly,d). To prove (4.22),
p=0

we will show that H; 1(L,,0) = @ Hj(A5%'[P| @ R¥[z],d).
2p’+2q=p

Due to the isomorphism g (4.21), there is a decomposition of R-modules

Hj(C.(Ap) ® Rlz)/Imf,d) = ) H;(Ap, Ly, 8) @ 2”.

0<p<m-1
Let o = [a] € Hj(Ci(Ap) @ R[z]/Imf,d') with d'(a) = 0. By chasing the diagrams in

the zig-zag lemma induced by the short exact sequence (4.20), the isomorphism ®; is

given by

®;: H;(C,(Ap) ® R[z]/Imf,d) — H;(A*[P] ® Rlz], d)

4.23
[a] = [0] -

where b € AJ[P]® R[z] satisfies f(b) = §®id(a) (f is defined in (4.19)). Explicitly, write
[a] = [ao] +[a1]z+. ..+ [am—1]z™ L, where [a,] € H;(Ap, Ly, ). Thus 6(a,) € Cj—1(Ly).

Let 6(ap) = Y, rppk where F are oriented (j — 1)-faces of L, and rg), € R. Then
dimF=j—1
Di([ap]) = . 7Fp[F ®aP~ISF]]. Note that bideg ®;([a,]) = (—4, 2p).
dimF=j—1

On the other hand, there are isomorphisms H;(Ap, L,,d) = H;_1(Ly,§), which are
given by sending [a,] to [0(ap)] for any j. Thus for every 3, € H;j_1(Lp,0), there exists
a unique [a,] € H;(Ap, Ly, 0) such that 8, = [6(ap)]. Since ®; (4.23) is an isomorphism,

the following isomorphism ¥; is well-defined

\I/j : @Hj—l(Lpa 5) — H](A* [P] X R[l’], d)

Bp — @;(lap))-

Since bideg ®;([a,]) = (—j,2p), each H;j_i(Ly,d) is mapped into @ H,;(A7%'[P] ®
p’'+q=p
R?[z],d) by ¥;. Thus ¥; induces an isomorphism

~

Hj 1(Lp,0) — @D Hj(A7*'[P| @ R*[z],d).
p’'+q=p

O]

Mulplicative structures. The differential graded algebra (A*[P] ® R[z], d) is a special
case of the Taylor algebra (4.7) when r = 1. Thus, the homology H,(A*[P]® R|x],d) has

a multiplicative structure and it is possible to give a multiplicationon @  H.(Ly,9)
0<p<m—1
such that the isomorphisms in Proposition 4.4.9 are of R-algebras.
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The multiplication x of (A*[P] ® R|x],d) is defined by

C II s ].R).’IJ'S‘TIQS‘TJlO'[O"] ifINJ=0and S;, NSy, #0
i€85,NSs,

o X oy = 85185, fINJ=8;,NSs, =0

0 otherwise

where o7 = Oy - 04, € Aq[P], o] = 0j...05 € Al[]P)] and 801 =0y U...Uogy,

SO'J:O-jlu"’uo-jﬂand‘[:{i17"'7iq}7 J={j1,..., i}

The multiplication on @  H.(Lp, ) is described as follows.
0<p<m—1

Construction 4.4.10. Let 0, ... 04, € Cj,—1(Lp) and oy, ... 0, € Cj,—1(Lg). Define

J

the following linear map on Cj,_1(Ly) & Cj,—1(Lg) given by

x
Cji-1(Lp) ® Cjy—1(Lg) = Cjitjp—1(Lp+q) (4.24)
( H Si‘lR)Ualw-O'aj Oby -+ - O, ifAﬁBz(Z)anngaﬂSgb#@
i€824MS0, ' :
Oay -+ Oaj X Oby - -0, = Oay -+ Oaj, Oby - - Oby, ifAﬂBZSgaﬂsgbZQ
0 otherwise

where A = {a1,...,a;,} and B = {b1,..., b}, }.

The map (4.24) induces a multiplicative structure on @  H,.(Lp,d) such that the
0<p<m—1

isomorphism (4.22) is of R-algebras. Here we conclude our main result of this section.

Theorem 4.4.11. Suppose that S' acts freely on Zi. Then there exists an isomorphism

of R-algebras

H*(Zx/S“R) = €D Hj 1(Ly,0).
2p—j=>0

By the definition of chain complexes (Cy(Ly),d) (Construction 4.4.5), the homology
H,(L,¢) is the standard reduced simplicial homology in the case of the diagonal action

on Zg. A corollary of Theorem 4.4.11 follows.

Corollary 4.4.12 (diagonal action). There is an isomorphism of R-algebras

H*(Zx/S1iR) = € Hj-1(LyR).
2p—j2>0

Here are examples of free circle actions on moment-angle complexes through different

simplicial complexes by Theorem 4.4.11.

Example 4.4.13. Let K be the simplicial complex 2 3. In this case, S! acts
on K freely if and only if s = +1 and s3 = +1. Then P = {0} where 0 = {2,3}
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and Lo = Ly = () and Ly = Ap. Thus the nontrivial homology groups of Ci(Ly,?)
are H_1(Lo,8) = H_1(L1,6) = R. By Proposition 4.4.9 we have H’(Zx/S';R) =
H?(Zk/S'; R) = R. The nontrivial multiplications

H_l(L(),&) X H_l(L0,5) — H_l(L0,5)
H_l(L(),(5) X H_I(Ll,é) — H_l(L1,5)

are the multiplications of the ring R. Thus H*(Zx/S'; R) = R[z]/(x?) where degx = 2.

We can also use Theorem 4.4.11 to calculate the cohomology of complex projective

spaces.

Example 4.4.14 (projective spaces). Let K be the boundary of an (m — 1)-simplex.
The quotient manifold of Zx under the diagonal action is the complex projective space
CP™ 1. Then P = {0} where ¢ = {1,2,...,m}. Thus L, = () for p < m and L,, =
Ap. The nontrivial homology groups of C,(Ly, ) are H_1(Lp,0) = R for p < m. By
Proposition 4.4.9, Hi(ZK/Sé; R) = R for i = 2p and p < m. The multiplication on

P H.L,0)= @ H*Zk/S;R = & R*

0<p<m—1 0<p<m—1 0<p<m—1

is the multiplication of R, where R? - R?1 = R?*24 if p + ¢ < m and zero otherwise.
Thus H*(Zk/S') = R[z]/(x™) with degz = 2.

Example 4.4.15. Let K,P,0,7,a,b be as in Example 4.4.4. Then

0 if p<my
1] if p<mi=ms
{0,0} if mi <p<ma
L, = L, = {0,0,7} if ma <p<mi+me
{0,0,7} it ma <p<mq+me
Ap if p=mi+my
Ap if p=mq+ms

with differential operation ¢ given by doc =a -1 and 7 =b- 1.

If a = 0, then freeness condition implies that b = £1. Thus non-trivial homology groups
of Cy(Lyp,d) include

if p<mgand j =—1
m1 < ma, Hj(Lp,(S) =
o] ifmi<p<mi+mgand j=0

R

R

R if p<m; and j = -1
mi1 = ma, Hj(Lp,(S) = R

“lo] fme<p<mi+mgand j=0
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where R - [o] is an R-module generated by [o].
If a # 0, non-trivial homology groups of C,(Ly,d) are

R if p<mi and j = -1
m1 < mg, Hj(Ly,0) = R/(a-1Rg) ifm <p<mgand j=-1

R-[boc —ar] iftmg<p<mi+mgandj=0

ifp<m;and j=-1
mi1 = ma, Hj(Lp,(s)%
R-[bo —ar] ifme<p<mi+mgandj=0.

By Proposition 4.4.9,

. R fori =2p,p <m
if a =0 or m; =my, H(Zg/SY; R) = pp ?
R-[o] fori=2p—1,m3 <p<mg+mg

R for i = 2p,p < my
ifagé()andml#mz, Hl(ZK/Sl,R): R/(alR) fori:2p’m1 §p<m2

R-[boc—ar] fori=2p—1,mqo<p<mq+ma.
The multiplication x on H*(Z/S'; R) can be written explicitly as follows.

Suppose that a = 0 or m; = msy. Consider the multiplicative identity 1z € H*(Zx/S'; R)
and 1 € H?1(Zk/SY; R). Then 1 x 1p is equal to 1 if p + ¢ < mg and zero
otherwise. Also, let 1z € H*(Zk/S'; R) and [0] € H* (2K /S'; R) with p < mao
and m; < ¢ < mp +mgy. Then [0] X [0] = 0 and 1 X [o] = [o] if p+ ¢ < m1 + M2
and zero otherwise. Thus, H*(Zx/SY; R) = Rlx,0]/(xz™2,0%) where degz = 2 and
dego = 2m; — 1.

If a # 0 and my # mg, analogously, we have H*(Zx/S'; R) = Rz, y]/(az™ , ™2, y?, x™y)
where degx = 2 and degy = 2mqo — 1.

4.5 Homotopy types of partial quotients

In this section, we study homotopy types of Zx/S'. In particular, we determine the
homotopy type of the quotient space Z Ak / 5’; under the diagonal action.

We first consider properties of moment-angle complexes under subtorus actions.

Lemma 4.5.1. Let K be a simplicial complex on [m] and let H be a subtorus of T™

acting on Zx and r = rankH.

(a) For 0 € K, (D? SY)° is an H-invariant subspace of Zx. Consequently, for any
simplicial subcomplex L C K, Z;, is an H-subspace of Zk .
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(b) Let ®: H x Zx — Zg be the action map. Then there exists a homeomorphism
sh: Hx Zx — H X Zg such that poosh = ®, where pa2 is a projection H X Z — Zi.

(c) The action map ®: H x Zix — Zx induces a map ®: H x Zx — Zx with a
homotopy cofibre Cg ~ H x Z.

Proof. (a) Since H is a subtorus of 7™, there is an isomorphism 7" = H < T™ given by
a choice of basis and an m x r integral matrix S = (s;;) such that g = (g1,...,9m) € H
has the form g; = #; ...t with (¢t1,...,t,) € T". Let z = (21,...,2m) € (D? S1)°,
that is, z; € D? if i € o and z; € St if 4 ¢ o. Recall that S1 acts on D? by a rotation.
Thus if z; € IntD?, then g¢; - z; € IntD? and if z; € 9D?, then g; - z; € OD?. Therefore,
gi -z € D?if i € o, otherwise g; - z; € S'. Thus g-z = (g1-21,.-.,9m - 2m) € (D%, S1)°.

(b) Define the shearing map H x Zx S Hx 2g by sh(g,z) = (g, ®(g,2)) for g € H and

z € Zk. It is a homeomorphism with inverse sh™!(g,z) = (¢, ¢ 'z). Thus ps o sh = ®.

(c) Let % be the base point (1,...,1) of Zx. Since the image ®|gyx, is in T and
the inclusion T — Zg is null homotopic, thus ®|gx. is also null homotopic. The
homotopy cofibration H < H x Zx — H x Zk gives an induced map ®: H x Zx —>
Z with ®og ~ ®. Note that H*Zg is the homotopy pushout of H & HxZx B Zk.
By the second statement, the shearing map sh is a homeomorphism and ® = ps o sh,
H x Zg is the homotopy pushout of H LU H x Zg 2, Zk. Pinching out H, we have
Cy ~ HxZg. O

By Lemma 4.2.1, the subgroup H acts freely on Zx if and only if H N7T7 is trivial. In
this case, the quotient map q: Zx — Zx/H makes the following diagram commutative

up to homotopy as a consequence of Lemma 2.3.22.

Lemma 4.5.2. Let H be a subtorus of T™ acting freely on Zx. Then there is a homo-

topy commutative diagram of fibrations

Zx — (BSY, K — g™

I | Jo»

Zi/H —— (BSY,»)K BN popm gy,

4.5.1 Free circle actions

Now we focus on circle actions on Z. Suppose that H = {(¢°!,...,t*m) € T™ | t € S'}
is a circle subgroup 17", where s; € Z. Let A be the associated integral matrix of the
projection 7™ — T /H. As stated in Section 4.1, the relation between S and A is
as follows. Since H is a circle subgroup of 7", there exists an integral m x (m — 1)-

matrix S’ such that the m x m-matrix (S | S’) is invertible, where S = (s1,...,5m).
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A/
Then <A> is the inverse matrix of <S | S’) where A’ = ();;) is an integral (1 x m)-
vector and A = ();;) is the integral (m — 1) X m-matrix representing the quotient
0
map T™ — T™/H. Following this, if s; = £1, then the matrix (81 I ) has an
S m—1

S1 0

—s18 Ip1
such that KerA = H.

invertible matrix ), where s = (s2,...,8m,). Thus A = (—sls Im,1>

The next statement applies to the special case of quotient spaces Zf /S under free circle

actions when K has ghost vertices.

Lemma 4.5.3. Suppose that {v} is a ghost verter of K. Let S acts on Zx by
(81,-++,8m). If s, = £1, then S acts on Zx freely and Zx/S' ~ Z;, where L = Ky
is the full subcomplex of K on V =V (K)\ {v}.

Proof. Without loss of generality, we can assume {1} is a ghost vertex of K. Then
Zx = S' x Zp, where Zp is an S'-space by (s2,...,5,). If s = £1, then S'-action
on Zx is an S'-diagonal action on the product space S!' x Zr. Let ® ®~! be maps
St x Z; — Z;, where ® is the group action and ®~1(g,z) = ®(¢g !, z). Then if s; = 1,
&1 will induce an S'-equivariant homeomorphism Zj /S? = S! x g1 Z;, = Z;, whose
inverse is given by sending z € Z, to [(1,2)] € Zx/S!. Similarly, if s; = —1, then the

action map ® will induce an S'-equivariant homeomorphism. O

For a simplicial complex K and v € V(K), let

Linkg(v) ={c € K| (v)x0o € K,v ¢ o}
Starg (v) ={oc € K | (v)*o € K} = (v) x Linkg (v)
Restg(v) ={oc € K | V(K)\ {v}}.

There exists a pushout of simplicial complexes

Linkg (v) —— Restx (v)

| |

Starg (v) —— K

which induces a topological pushout of corresponding Davis-Januszkiewicz spaces by
Lemma 2.3.26. Mapping these spaces to B(T™/S'), denote by Fiink, Fstar and FRrest

the correspond homotopy fibres, respectively. Then there is a diagram of homotopy
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pushouts as follows.

Fink > FRest
Fstar / Zr /St
J
(BS?, x)Linkk (v) (BS, )Restrc(v)
/ /
(BS?, x)Starc(v) » (BSY, %)X

If a circle action on Zg satisfies the condition in Lemma 4.5.3, it is possible to identify

the homotopy types of these fibres for special cases.

Theorem 4.5.4. Let S' acts on Zx freely. Assume that there exits a vertex v € K
such that s, = £1.

(a) There exist homotopy equivalences

FLink =~ ZLinkK(v)7 FRrest =~ ZRestK(v)7 Fstar >~ ZLinkK(v)/Sl'

(b) The quotient space Zy /S is the homotopy pushout of the diagram Zysy . (v)/Sl &
ZYinke (v) 5 ZRest e (v), Where ¢ is the map induced by the simplicial inclusion and q is

the quotient map.

Proof. (a) Without loss of generality, assume that v = {1}. Since Linkx (1) and Restx (1)
are on the vertex set {2,...,m}, FLink = Zrink (1), FRest = ZResty (v) DY Lemma 4.5.3.
Since S! acts on Zgtare (1) freely, its quotient Zgiar . (1)/5 ! is homotopy equivalent to the
Borel construction ES' x g1 Zstarg(1)y Where Zggar (1) = D? x Zlinkge(1)- Since S1 acts on
ZLinkc (1) freely, Fsear = Ztar,c(1)/S" = ES' X1 Zstary (1) = ES' X g1 (D? X ZLink (1)) =
Zinkge(1)/ ST

(b) It suffices to identify the maps between these fibres. Since s; = =£1, the matrix
A representing the projection T™ — T™/S! is given by (—sls Im—l) with s =

(82, ..,8m)t. Therefore, the composite BT™ 1 55, prm B(T™/S1) is the identity
map, where j is an inclusion of 7™ ! to the last m — 1 coordinates of T™. Thus for L
being Linkg (1) or Restg(1), the composite (BS*, ¥)¥ — BT™ BA B(T™/S1) is the
standard inclusion (BS!,*)* —s BT™~! if T™~! is identified with 7™ /S'. Therefore,
the map between the fibres F1inx — FRest is the inclusion between the corresponding

moment-angle complexes Zj;ink LN ZRest -

There exists an induced free circle action on Zy i, (1) given by g - (22,...,2m) = (9°2
22y, 9%+ 2). We first note that Ims = {(t52,...,t5m) | (t2,...,tm) € T™ 1} is



96 4.5. Homotopy types of partial quotients

a circle subgroup of 77!, Because we assume that {1} € K, by Lemma 4.2.1, the

freeness condition of a circle action on Zx implies that ged(se, ..., s,) = 1. To see that
this induced action is free, send (z2,...,2m) € Zrinke(1) 10 (0,22, -+, 2m) € Zsparg(1)-
The isotropy group of (0, 22, ..., z,) under the original S'-action by (s1,2,...,8m) is
equal to the isotropy group of (22, ..., z,) under the induced S'-action by (sa, ..., sm).
Since the original S'-action acts on Zstarg (1) {reely, the isotropy group of (0,29,...,2m)
is trivial, which means that the S'-action on Ziinkg(1) DY (52, 8p) is free.

This circle subgroup of 7! has an associated integral matrix 7 representing the quo-

tient map T~ ! — T™~1/S!. There is a homotopy commutative diagram of fibrations

Zpinie (1) ————— (BS!, )linksc(D) (B! B(T™/S")
kg (1) —— (BSY, x)Hnkx(1) L » BT

I | [
ZLinkK(l)/Sl N (lej*)LinkK(l) y=(Bm)on . B(T™1/81)
| b !
Zlinkee(1)/S' —— BS'x (B! 5)linki() 0 gl (o1 /S1)
(4.25)
where the top square is obtained by 7™ /S' being identified with 7!, the second

square is due to Lemma 4.5.2, g is a quotient map and js is an inclusion into the second

coordinate.

In fact, the homotopy fibration at the bottom row in (4.25) is equivalent to the homotopy
fibration obtained by mapping (BS!, x)St#rx() to B(T™/S")

FStar N (le’ *)StarK(l) (Bi>)ol B(Tm/sl)

The relation between (sa, .. ., 5,,) and 7 implies that 7™ /S? is isomorphic to Ims x Im 7,
where Ims and Im 7 are torus groups with rank 1 and m — 2, respectively. Thus there
are isomorphisms 7" /S* My tms x Tmr X5 81 x T m=2 which are represented by an
(m—1) x (m — 1)-integral invertible matrices M; and Ms. Let M = MsM;. Composing
BM with (BA) o i, we have a diagram of homotopy fibrations

Fopar —— (BS?, St U0, ppm g1

l H [ (4.26)

F — (BSY, s)Starx () BMBNS gy ppm—2

where the left square is homotopy commutative and the right one is commutative and

all vertical maps are homotopy equivalences.
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Since (BS!, %)Starx (1) = BS1 x (BS!, %)Lnkx ()| the composite (BM) o BAoi = id x 7.

Combining these homotopy commutative diagrams (4.25) and (4.26), the simplicial
inclusion Linkg (1) — Starg (1) induces a quotient map of the fibres 2y, (1) 1,

ZLinkK(l)/Sl- O

In some special case, the map Zyny,.(v) — ZRest (v) 15 Dull homotopic. For example, if
for some v € K such that Linkg (v) = 0, then 2k, (v) — ZResty (v) 1S null homotopic
([23, Lemma 3.3]). If so, there is a homotopy splitting of the quotient Z /S?.

Corollary 4.5.5. Let K and S' satisfy the assumption in Theorem 4.5.4. Suppose that
for the same vertex v, the map Zyin,(v) — ZResty(v) i null homotopic. Then there
exists a homotopy splitting Zy /S' ~ ZRestx (v) V Cq, where Cy is the homotopy cofibre
of the quotient map Zynk . (v) N ZLinkK(v)/Sl.

In particular, if Linkg (v) = 0, then Zg /St ~ ZRestrc (v) V S2 v (St xT™=2),

Proof. If the map Zpinky (v) — ZResty(v) 15 null homotopic, there is an iterated homo-
topy pushout

ZLinkK (v) ok ZRestK(v)
Js | !
Z’ZLinkK(v)/S1 Cq ZK/Sl

Thus the first statement follows.

If Linkg (v) = 0, then Zyny, () ~ T ! and Starg(v) = {v}. Consider the following

diagram of fibration sequences

Zy > % » B(T™/SY)

J! I H
Zy/St ——— BS! ——— B(T™/S%)
|- | [~

QBT™2 — 5 BSL % pgl x BTm-2,

Here the top diagram between homotopy fibrations is induced by § — {v} and the
bottom diagram is an equivalence of fibration sequences, proved as a special case of
diagram (4.26) in Theorem 4.5.4, due to the isomorphism 7™ /St = St x T2, Since p
is a homotopy equivalence, we have C; ~ Cp,. Note that the composition pq is induced by
projecting T™/S1 — T™=2. Precisely, it is the map 7™ /51 =5 Sl pm—2 P2, pm—2

Therefore, it remains to identify the homotopy cofibre of ps.



98 4.5. Homotopy types of partial quotients

Let my: X XY — Y be a projection, where X and Y are two connected CW-complexes.

Consider the following homotopy commutative diagram

XxYy 2 5 X *

g ! !

Y —— XY —— Cp,

where the left and right diagrams are homotopy pushouts. Since X — X %Y is null
homotopic, Cr, ~ XX V X * Y. Thus C; ~ X8t v (8!« T™m=2). 0

Example 4.5.6. Denote by Z,,, the moment-angle complex corresponding to m disjoint
points. If St acts freely on Z,, by (s1,...,8y) with some s; = £1, then Z,,/S1 ~
Zm-1 VS2V (St T™m2),

4.5.2 Homotopy types of cofibres

In this section, we determine homotopy cofibres C},,, of quotient maps g, : 2 Ak
ZNTC”/S; under the diagonal action. Note that if K = A is on the vertex set {1,...,m},
then Linkx {1} has vertex set {2,...,m} and is simplicially isomorphic to A’fnill. Thus
we have a pushout of simplicial complexes

k—1 k
Am 1 Amfl

| J

()« AR s AR

This pushout implies homotopy pushouts of the corresponding moment-angle complexes

and of their quotient spaces under the diagonal action (Lemma 2.3.29)

id X * ~x
' X Zppo = S X 2 Zak, > 288,
l*Xid lf’gym lqk—l,m—l lgk,'m (427)
Zpb, T 2a, Zpr-1 [Sq — Zan, /1S4

where f,, is a map induced by the simplicial inclusion Ak . — AF and the map

Jk,m is induced by fj ,, between the quotient spaces.

The left diagram in (4.27) implies an iterated homotopy pushout

St x Zpr1 st St x Z

m—1

J*xid J Jfk,m

Zppr s STk Zp1 s Zpp

m—1 m—1
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which induces the following iterated homotopy pushout after pinching out S*

S'x 2,k * » ST Z s
m—1

m—1

i*xid J ifhm (4.28)

hi,
ZAkfl —_— Sl * ZAk—l —m> ZAk .
m—1 m—1 m

Thus the right square of (4.28) implies a splitting homotopy cofibration St x Z \x S

m—1

Zxx —> Cf , where the homotopy cofibre Cf, is homotopic to S L Z AR -
m ,m sm m—1

Since the map Z k-1 — Zxk ) is null homotopic, the right homotopy pushout in (4.27)
m—1 m—

also implies an iterated homotopy pushout

k-1
Am71 m—1

iqk—l,m—l l igk,m (4.29)
h/

k,m
Z k-1 /Scll — Ck—l,m—l E— ZA’in/Scll
m—1

A

9k,m

The right square of (4.29) implies a splitting homotopy cofibration Z s Zpk /8L —
Cgk,ma where the homotopy cofibre Cgk,m is homotopic to Ci—1,m—1-

Lemma 4.5.7. There exists a homotopy equivalence ZA%/S}I ~ Zak » V Cr—1,m—1,
where Cg_1,m—1 18 the homotopy cofibre of the quotient map Z k-1 —> Z k-1 /S&.
m—1 m—1

Hence, to determine the homotopy type of Z Ak / Scll, it suffices to determine the homo-
topy type of Cj .

Lemma 4.5.8. There exists a homotopy commutative diagram

(i,—l
NN

m—1

m—1

lfk’m lgk,m (430)
qk

,m 1
ZA;C,L B ZA?,L/Sd

— —1
where ®~1 is induced by the map S* x Zx » 2, Z Ak B given by @ (t,z) =t - z.

Proof. The simplicial inclusion AF | — AF gives rise to a commutative diagram

1 « 1

m—1

lfk,m J//B
1
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where the horizontal maps a and gy, ,,, are quotient maps and 3 is a map between quotient

spaces induced by fj . By Lemma 4.5.3, there is a homotopy equivalence

n
Sl Xsé ZAk QZAIC

m—1 m—1

where 7 sends [(t,z)] to ®1(¢,z). It follows easily that no a(t,z) =t~! -z = &71(,2).
Thus, replacing S xg1 Z Ak by its homotopy equivalent space Z« » due to n, there

is a homotopy commutative diagram,

-1
SUx Zan  —2s Zpx

m—1 m—1

Jrfk,m lﬁon
qk

s 1
Znk, —— Zak /5]

where on coincides the map g, in the diagram (4.27), since they are the maps induced

by fi,m after we have chosen an certain homotopy type of quotient spaces.

Since the restriction of ®~! to the first coordinate S' is null homotopic, we obtain the

homotopy commutative diagram in the statement. O

The homotopy commutative diagram (4.30) gives rise to the following homotopy com-

mutative diagram (see [38, Theorem 7.6.3])

-1
m—

ifk’m \Lgk,'m J/
Zak LN ZA%/S(% — > Cim (4.31)

\LTk’m l’réﬁm l

Pr,m

Cf_.k,m . Cgk,m Qk,m

where each row and column is a homotopy cofibration. The homotopy pushouts (4.28)

and (4.29) imply that Cp =~ ST s Z -1 and Cy, -~ Cp_1,,-1 and the first and
m m—1 ’ ’

second columns of (4.31) are splitting homotopy cofibrations.

We will determine the homotopy type of Cj ,,,. The idea is to find simplicial complexes
k . . . . .
Li,, such that their quotient spaces under diagonal actions give the homotopy type of

the cofibre of the quotient map. We firstly identify the homotopy type of maps ¢, .

Lemma 4.5.9. Let K = AF and Llfjm = KUAg,. . . m-13- Then ka,m ~ Zk and
ZL’f /S’é ~ Cyy...- Under these homotopy equivalences, the maps Qi m are equivalent to

the quotient maps Zfo — ZL’f /Sé.
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Proof. Since K NAg g m—1} = Ak

+—1, we have a pushout of simplicial complexes

Af:n—l A{1,2,...,771—1}

| |

k k
A — .
m Ll,m

There are two homotopy pushouts of topological spaces, one of moment-angle complexes

and one of quotient spaces of moment-angle complexes

By xS Mgz,
fk,ml J and ig’“m l
ZA’fn EEEE—— ZLIme ZAJ;H/S;/ E— ZL/fm/Sé

Pinching out S' in the left pushout above, we have a homotopy cofibration

ZAk'

m—1

w g1 T Zny — Zpk (4.32)

Taking the corresponding quotient spaces of (4.32) and the homotopy commutative

diagram (4.31), there exists a homotopy commutative diagram of homotopy fibrations

Zy oast Tem

m—1

L

9k,m 1 1
Znn " Ea /S —— Zpp /Sh

Zn —— Zp

Thus the maps ¢y, in (4.31) are quotient maps up to homotopy and Cf, =~ Zsz
and ZL’fm/Scll ~Cy = Crtm1.

We have identified the homotopy type of Cp_1,,—1 as Z Lk / Scll. We will continue to
show that the homotopy cofibre Cj, ,, has the following form.

Theorem 4.5.10. There exists homotopy equivalences

k41 o
Cln =~ CPM2 (.\/1 G2i-1 Z i) V (523 m—h=2)

1= m—1

The main idea of the proof of Theorem 4.5.10 is to construct a sequence of simplicial
complexes Lﬁm and iterate to determine the homotopy types of their quotient spaces
under the diagonal action. We give an explicit construction of these simplicial complexes
Lf’m from the k-skeleton AF, .
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Denote by Ay, ;3 a simplex on vertices {i1,...,ip}. Let L’g} = Ak Define L¥
A’ﬁn UAg 2. m-1y and Lé?’ = Lf 1.m Y A{17...7mf‘ﬁ_17...7m}, where m — j —|— 1 means that
this vertex is omitted.

We first prove that the simplicial inclusion L?;ll — Lﬁm induces a null homotopic map

on corresponding moment-angle complexes.

Lemma 4.5.11. For1 < j < k+1, the inclusion J: Z x-1 — Z;x is null homotopic.
j,m j,m

Proof. Let K = U Aq,.gm—1y- Thus Zi = (] D?)x Zypj—1, where AT 1
m—j+1<g<m m—j

is the boundary of a simplex on vertices {m — j+1,...,m}. Note that Lim = Afn UK
and ZL’? :ZAk UZK.
J,m m

First, there is a filtration of simplicial complexes A*~1 C (1)xAF~1 C Ak where AF—Y
in the middle is on vertices {2, ..., m}, which implies a filtration of simplicial complexes
LY ()« AL UK C LY In particular, (1)« Al )UK = (1) (AL UK)Y),
where K is the full subcomplex of K on vertices {2,...,m}. Thus, the inclusion J
factors through the corresponding moment-angle complexes

. -/
i1 2 1
ZL;?,;@I — D* x (ZA:::}I U ZKl) — ZL?,m

By the construction of L¥ Afn__ll UK = Lk . 1 which is a full subcomplex of L

Jme
on vertices {2,...,m}. Denote by r1 the retraction Z, k-1 —> Z;k—1 . Then the map
j,m— 1
i1 factors through r; and a coordinate inclusion ¢1: ZLk . — D? x ZLk—l up to
Jj,m—1 j,m—1

homotopy. Namely, there exists a diagram

Zkl

]'m

IS

Lkl *>D2><Zk1 *)ZLIC
j,m—1 ]ml 17

where the left triangle is homotopy commutative and the right one is commutative.

In particular, the composition ij¢; coincides with the map induced by the simplicial

. . - j J3
inclusion Lk 1 — L n Which has a filtration Lf’ml_l 22, Lﬁm_l =2 Lf}m
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The same strategy applies for Lf ml 1 22 Lﬁm_l. Repeating the above procedure, there

are diagrams for 1 <g<m—k—1

Z
Lfml gq+1
Zip1 = D2 X Z i — 2 (4.33)
jym—q jm q Jym—q+1

m
Zrk
.7

',m—

q

where each L;“ ml gisa full subcomplex of LJ m—get

left triangle is homotopy commutative and the other two are commutative.

, on vertices {g +1,...,m}, the top

i .
If g = m — k — 1, observe the composition Z Img Zrk nf ZLI?k+2. Since
Js

k—1
Ly k1

Lf,k 41 1s a full subcomplex of L;“ 4o ON vertices {m — k,...,m}, it contains all subsets
of {m—k,...,m} with cardinality at most k+1. Thus L* 7 k1 is a simplex, which means
that j,—x is null homotopic. Chasing the homotopy commutative diagram (4.33), jy—k

is a factor of J up to homotopy. Hence, J is null homotopic. ]

Proposition 4.5.12. There exist homotopy equivalences Z;r =~ St * Z k-1 and
J,m j 1,m—1

/Sd o~ qu 1, where C is the homotopy cofibre of the quotient map
j—1m—1 j—1m-—1

qk

Zin =5 Z /Scll. Consequently, we have the homotopy types of the following spaces
J,m J,m

2 SH TV wZ oy if1<j<k+1
~ m—j
Liim §2k+3 ifj=k+2

and

C Pk v ( 5'21 Ly Z o0y ) V (SQk’-l—l * Tm—k—Q) ifl1<ji<k+1
ZL? /S& ~ Z—j A'rn i—1
Cprtt ifj=k+2.

Proof. If 1 < j < k + 1, observe that LlnkLk (m) = Lf llm , and Resth (m) =

Ag1,....m-1}- We have two homotopy pushouts Of correspondlng moment-angle complexes

and their quotient spaces under the diagonal action

Z ka1 x 81 2 +xid St ZLk—l EE———
Lj 1,m—1 j—1,m—1
k—
idx* l and q],llm,l l
Z k-1 — Z Z k-1 SIHZIC S
Lj—l'm—l LJ’m Lj—l,m—l/ d L / d
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Thus Z;r =~ SI*ZLk—l
J,m j

j—1m-—1

and ZL§m/Sé ~ Cp-1 . Iterating ZLfm ~ SYZ

Jj—1,m—1 j—1,m—1

we obtain the homotopy equivalences Z;r =~ S2—1 4 Zyk-g for1<j<k+1
J,m m—j

Consider the

homotopy pushouts of corresponding moment-angle complexes and their quotient spaces

Next consider that Link;r (1) = L?*I_l and Rest;r (1) = L*
J,m J,m

1 j:mfl‘

under the diagonal action

id X * ~x
Sl X ZLk—l Sl X ZLk ZLl?*l ” ZL’?
j,m—1 j,m—1 Jjym—1 Jj,m—1
k— k
* X idl lff’m and J’qj,mlf 1 lgj,m
Z k-1 —_— Z Z k-1 Sl — Zk Sl.
Ly Lim Lj,mfl/ d Lj,m/ d

By Lemma 4.5.11, the simplicial inclusion Link;, (1) — Rest;r (1) induces a null
J,m J,m
homotopic map on corresponding moment-angle complexes. Thus, there are two splitting

homotopy cofibrations

Sl X ZL’?

J,m—1

Fm
2B Z — S w2
J,m

Jym—1

k

95 m

=3 Zk /5’5 — qu&
J.m

Jym—1

Zrk

jm—1

Thus, there are homotopy equivalences

Zp =S % Z 0 VS X 2
J,m

Jj,m—1 jm—1

and Cf]’fm ~ St ZL;;A ~ Zk

jm—1 Jj+1,m

ZL?M/S; :ZL?,mf VCra and Cir ~C :ZL;?H,m/Scll'

1 95, m—1 9j,m 95,m—1

Iterating the homotopy equivalence Z;x /S} ~ Z, 1\/qu—1 ~ Zk
J,m J,m— J,m—

j,m—1 1

we have

2 /S) ~ Zye Vv Zp V..V Zn VI(Z  /Sh). (4.34)

j+1,m—1 k+1,m—1 k+2,m

In the end, we identify the homotopy type of ZL;:+2 /Sé.

If £k =0, then L%m =Aq,. m-1} YA, m—2,m}, Where two (m — 2)-simplices are glued

together along one common facet Agy  ,,,—23. In this case, we have

Zy = ([[D* < (D%, SHIAL ~ g1y 51,
m—2

Since the diagonal action on Z is free, the genuine quotient space has the same homo-

topy type as its homotopy quotient. Hence, there is a homotopy equivalence

Zyy /i~ BS' xg Z1g = ES" g (( [T 0% x (02 54%4") ~ ES! xg1 (D?, SHPA" ~ cpl.
m—2
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m

In general, the simplicial complex Lllz Yom = Uk lA
j=m—k—

of dimension m — 2 (the “first” k 4 2 facets of A™1) are glued along the common face
Ag,.m—k—2y- Thus, ZLz]z+2 =( [I D? x (Dz,Sl)aAkH. The diagonal action on

m—k—2
Z L, implies that the genuine quotient space has the same homotopy type with its
homo‘éopy quotient. Hence, we have

{1y]rm}? where k + 2 simplices

Zrk

k+2,m

/Sé ~ ESl XS; ZLﬁ+2 _ ESl XS; (( H D2) % (D27S1)3Ak+1) ~ (D2751)6MH/SCII ~ (CPkJrl.
" m—k—2

By (4.34), there is a homotopy equivalence

2 /S} ~CPMy Zpe NV Zp V.V 2k

j+1,m—1 k+1,m—1

~ CPF v (8% 1« Zk-i )V (S%HL 4 Zk-j-1) V...V (S2EFL y pm—h=2)

m—j—1 m—j—2

k .
~ CPMV (VISP T w2 s )V (SHFTLR TR,

1=) m—i—1

Now we prove Theorem 4.5.10.

Proof of Theorem 4.5.10. The homotopy commutative diagram (4.31) shows that C, ,,, ~

Z

L /S}. By Proposition 4.5.12,
,m+

k+1 .
Ck,m ~ (CP]H—Q v/ (‘\/ 521—1 * ZAkJrlfi) \/ (32k+3 ” Tm_k_Q)_

=1

Corollary 4.5.13. The homotopy type of ZA%/S}I 18 Zak LV Cr—1,m—1-

Proof. The proof follows from Corollary 4.5.5. O
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