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that the homotopy decomposition Σ(X,A)K due to Bahri-Bendersky-Cohen-Gitler [3]
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Hi((X,A)K) in terms of G-representations, which we rely on to study the representation
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The torus actions on moment-angle complexes ZK is a special case of actions on poly-

hedral products induced by actions on the topological pairs. In this thesis, we compute
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complex (C∗(L), δ) whose homology isomorphic to H∗(ZK/S1;R). For certain cases K,

we determine the homotopy types of ZK/S1.
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Chapter 1

Introduction

Back in 1977, Hochster [26] decomposed the Tor-algebra TorR[m](R[K], R) into the

cohomologies of full subcomplexes of K as R-modules, where K is a finite simplicial

complex. In 2000, Buchstaber and Panov [8] first introduced the space known as the

moment-angle complex ZK and proved that its cohomolgy is isomorphic to the Tor-

algebra as R-algebras. It made possible to show that Hochster’s decomposition is an

isomorphism of algebras, a result due to Baskakov [4]. Since then, studies of moment-

angle complexes include the studies of connections among topological properties of ZK ,

algebraic properties of TorR[m](R[K], R) and combinatorial structures of K.

For example, Grbić and Theriault [22] proved that if K is shifted, then the homotopy

type of ZK is a wedge of spheres. This is a topological version of the algebraic state-

ment that if K is shifted, then all multiplications in TorR[m](R[K], R) vanish. Bahri-

Bendersky-Cohen-Gitler [3] proved the existence of a homotopy splitting of moment-

angle complexes which leads to a homological decomposition, a topological proof of

Hochster’s decomposition.

A polyhedral product (X,A)K is defined by a subspace of a product space determined

by a finite simplicial complex K and a sequence of topological pairs, which is a homo-

topy theoretical generalisation of moment-angle complexes. The studies of polyhedral

products via homotopy theory extend applications to other area, such as combinatorics

and geometry.

In particular, one of the fundamental properties of polyhedral products is functoriality,

which indicates two types of symmetries, one from the symmetries of simplicial com-

plexes and one from group actions on the topological pairs. Our work in this thesis

consists of two projects by considering these two types of symmetries of polyhedral

products.

In [20], we considered how the symmetries of simplicial complexes influence the symmet-

ries of polyhedral products. If a finite group G acts on K simplicially, then (X,A)K is a

1



2 1. Introduction

CW-G-complex. We showed that the homotopy decomposition [3] of Σ(X,A)K is then

G-equivariant after suspension. In the case of Σm-polyhedral products, we give criteria

on simplicial Σm-complexes which imply representation stability of Σm-representations

{Hi((X,A)Km)} in the sense of Church-Farb [15]. This content is contained in Chapter 3.

Actions on polyhedral products can also arise from coordinatewise actions on the to-

pological pair. In this case, we are interested in the polyhedral product (ConeG,G)K

which is a Gm-invariant subspace of (ConeG)m, where G is a compact Lie group. By

taking G = S1 or Z2, this action specialises to T l-actions (1 ≤ l ≤ m) on moment-angle

complexes ZK or Zl2-actions on real moment-angle complexes RZK , respectively. Here

T l (resp. Zl2) acts on ZK (resp. RZK) as a subtorus group of Tm (resp. Zm2 ). These

quotient spaces ZK/T l and RZK/Zl2, known as toric spaces, play a key role in toric

topology.

Cai [11] introduced a differential graded algebra (R/IK , d) with homology algebraically

isomorphic to the integral cohomology of RZK . Choi and Park [13] considered the Zl2-

action on R/IK and deduced an analogous Hochster’s formula for the cohomology of

RZK/Zl2. Panov [35] identified the cohomology of the quotient space of ZK/H to an

appropriate Tor-algebra (4.4) if the subtorus H acts freely on ZK .

However, the proofs of Hochster’s formula and Choi-Park’s formula can not be general-

ised to the case of partial quotients of ZK , since Hochster’s formula relies on a multi-

grading structure, which does not exist in the case of ZK/H in general, and Choi-Park’s

formula relies on a result which is only valid for finite group actions. This makes it more

difficult to find a generalised Hochster-type formula for the cohomology of ZK/H.

In the last chapter, we consider a special case of torus actions on ZK when H is of rank

r = 1. In this case, the circle action on ZK by (s1, . . . , sm) determines a chain complex

(C∗(L), δ) (Construction 4.4.5), for which we relate the cohomology of the quotient space

ZK/S1 to homology groups H∗(L, δ). In the end, we finish this thesis by studying the

homotopy type of ZK/S1 for certain K.

I shall summarise the results on the work in representation stability of polyhedral

products. This is a joint work with my supervisor Jelena Grbić (see Chapter 3).

Theorem 3.3.3. Let K be a simplicial G-complex on [m]. Then there is a homotopy

G-decomposition

θ : Σ2(X,A)K ' Σ2
∨

J⊆[m]

(X,A)∧KJ

where the G-action on Σ2(X,A)K is induced by the G-action on Xm, and the G-action

on the right hand side is a permutation of wedge summands by the G-action on 2[m].

Passing to homology groups, we obtain the following statement.
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Theorem 3.3.5. Let K be a simplicial G-complex on [m]. Then there exists an iso-

morphism of kG-modules

H̃i((X,A)K ; k) ∼=
⊕
J⊆[m]

H̃i((X,A)∧KJ ; k) ∼=
⊕

J∈[m]/G

IndGGJ H̃i((X,A)∧KJ ; k)

where G acts on the middle term by permuting the summands such that g·H̃i((X,A)∧KJ ; k) =

H̃i((X,A)Kg·J ; k), [m]/G is a set of representatives of the orbit of 2[m] \ ∅ under G and

GJ is the stabiliser of J .

If a symmetric group Σm of degreem acts onK, then the homology groupHi((X,A)K ; k)

is a Σm-representation over k. Thus a sequence of simplicial Σm-complexes

. . . ⊆ Km−1 ⊆ Km ⊆ Km+1 ⊆ . . .

gives rise to a sequence of Σm-representations

. . . −→ Hi((X,A)Km−1 ; k) −→ Hi((X,A)Km ; k) −→ Hi((X,A)Km+1 ; k) −→ . . . (1.1)

We also considered sufficient conditions for a sequence of simplicial Σm-complexes such

that the induced sequence of Σm-representations (1.1) satisfies the property of repres-

entation stability.

Theorem 3.4.12. Let {Km, im} be a consistent sequence of finite simplicial complexes

and X be a connected, based CW -complex of finite type with a based subcomplex A. Sup-

pose that {Km, im} is completely surjective and stabiliser consistent. Then the consistent

sequence of Σm-representations {H̃i((X,A)Km ; k), im∗} for char k = 0 is uniformly rep-

resentation stable.

In my second project regarding to torus actions on moment-angle complexes, we first

apply the Taylor resolution and Koszul resolution to the Tor-algebra (4.4), which implies

two differential graded algebras whose cohomologies are isomorphic to H∗(ZK/H) as

algebras.

Taylor algebra. The differential graded algebra (Λ∗[P]⊗R[x1, . . . , xr], d) is defined by

d(σi1 . . . σip) =
∑

1≤t≤i
(−1)t−1δp(x1, . . . , xr)σi1 . . . σ̂it . . . σip

dxj =0

where δp(x1, . . . , xr) =
∏

i∈Sσ\S∂tσ
(
r∑
j=1

sijxj) if Sσ 6= S∂tσ and 1 otherwise.

The bigradings of σi1 . . . σip and xj are given by

bideg σi1 . . . σip = (−p, 2|Sσ|) and bideg xj = (0, 2).
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Koszul algebra. The differential graded algebra (Λ[u1, . . . , um−r]⊗R[K], d′) is defined

by

d′ui = λi1v1 + . . . λimvm and d′vj = 0.

The bigradings of ui and vj are given by

bideg ui = (−1, 2) and bideg vj = (0, 2).

Theorem (Theorem 4.3.3, Proposition 4.3.6). There exist isomorphisms of R-algebras

H∗(ZK/H;R) ∼= TorH∗(B(Tm/H);R)(R[K], R) ∼= H(Λ∗[P]⊗R[x1, . . . , xr], d)

∼= H(Λ[u1, . . . , um−r]⊗R[K], d′).

Specialising to free circle actions on ZK , one can construct a filtration {Lp | 1 ≤ p ≤ m}
of simplicial complexes on the vertex set P,

Lp = {{σl1 , . . . , σlj} ⊆ P | |σl1 ∪ . . . ∪ σlj | ≤ p}

where P denotes the set of all minimal missing faces of K.

The circle action on ZK by (s1, . . . , sm) induces a chain complex (C∗(Lp; δ)) for each Lp

defined in Construction 4.4.5. The result follows next.

Theorem 4.4.11. Suppose that S1 acts freely on ZK . Then there exists an isomorphism

of R-algebras

H∗(ZK/S1;R) ∼=
⊕

2p−j≥0

Hj−1(Lp, δ).

In the case of the diagonal action, the homology H∗(Lp, δ) is the reduced simplicial

homology of the simplicial complex Lp.

Corollary 4.4.12. There is an isomorphism of R-algebras

H∗(ZK/S1
d ;R) ∼=

⊕
2p−j≥0

H̃j−1(Lp;R).

We continue to consider homotopy types of of partial quotients ZK/S1 under free circle

actions for certain K.

Theorem 4.5.4. Let S1 acts freely on ZK by (s1, . . . , sm). Assume that there exits a

vertex v ∈ K such that sv = ±1.

(a) There exist homotopy equivalences

FLink ' ZLinkK(v), FRest ' ZRestK(v), FStar ' ZLinkK(v)/S
1.
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(b) The quotient space ZK/S1 is the homotopy pushout of the diagram ZLinkK(v)/S
1 q←−

ZLinkK(v)
ι−→ ZRestK(v), where ι is a map induced by the simplicial inclusion LinkK(v) −→

RestK(v) and q is a quotient map.

Let Z∆k
m

denote the moment-angle complex corresponding to the k-skeleton of ∆m−1.

We identify the homotopy type of the homotopy cofibre of the quotient map Z∆k
m
−→

Z∆k
m
/S1

d , which consequently gives the homotopy type of Z∆k
m
/S1

d under the diagonal

action.

Theorem 4.5.10. Let Ck,m denote the homotopy cofibre of the quotient map Z∆k
m
−→

Z∆k
m
/S1

d. Then there exists a homotopy equivalence

Ck,m ' CP k+2 ∨ (
k+1
∨
i=1

S2i−1 ∗ Z∆k+1−i
m−i

) ∨ (S2k+3 ∗ Tm−k−2).

Corollary 4.5.13. The homotopy type of Z∆k
m
/S1

d is Z∆k
m−1
∨ Ck−1,m−1.





Chapter 2

Background

The cohomology of moment-angle complexes and their quotient spaces closely relates to

the Tor-algebras TorR[t1,...,tm−r](R[K], R) (4.4) of K, which are one of the main objects

of research in commutative algebra. The study of these objects provides topological

approaches to the study of algebraic properties of these algebras.

2.1 Preliminaries in commutative algebra

We start with some basic combinatorial definitions.

Definition 2.1.1. An abstract simplicial complex K on [m] = {1, 2, . . . ,m} is a collec-

tion of subsets of [m] such that

(1) if σ ∈ K, then any subset of σ also belongs to K;

(2) if σ and τ are in K, then the intersection σ ∩ τ is in K.

We always assume that ∅ ∈ K.

The finite set [m] is called the vertex set of K. A ghost vertex i of K is whenever i ∈ [m]

but i /∈ K. For example, consider K = {∅, {1}} on [2]. Then {2} is a ghost vertex

of K on [2]. The dimension of a simplex σ of K is dimσ = |σ| − 1, where |σ| is the

cardinality of σ. The dimension of the simplicial complex K is the maximal dimension

of its simplices (i.e. dimK = max
σ∈K
|σ| − 1).

Example 2.1.2. The boundary of a simplex ∆m−1 is a simplicial complex of dimension

(m − 2). The k-skeleton ∆k
m of a simplex ∆m−1 consists of all subsets of [m] with

cardinality at most k + 1. This is a simplicial complex of dimension k.

Construction 2.1.3. Let K1 and K2 be simplicial complexes on [m1] and [m2], re-

spectively. The join K1 ∗K2 of two simplicial complexes is a simplicial complex on the

7



8 2.1. Preliminaries in commutative algebra

vertex set [m1] t [m2] whose faces are of the form σ t τ , where σ ∈ K1 and τ ∈ K2 and

t denotes the disjoint union.

Example 2.1.4. Let K1 = •
1
•
2

and K2 = •
3
•
4

be a disjoint union of two points. Then

the join of K1 and K2 is the boundary of a square.

Example 2.1.5. The cone on K, denoted by ConeK, is the join of K and one single

vertex.

Definition 2.1.6. For J ⊆ [m], the full subcomplex KJ is the subcomplex of K whose

vertex set is J , that is

KJ = {σ ∩ J | σ ∈ K}.

Definition 2.1.7. An n-polytope Pn is called simple if there are exactly n codimension-

one faces meeting at each vertex. These codimension-one faces are called facets of Pn.

Examples of simple polytopes include m-gons, prisms, the m-simplex ∆m and the m-

cube Im, where I = [0, 1]. A typical non-example is the cone on an m-gon when m ≥ 4.

Definition 2.1.8. Let Pn be an simple n-polytope and let F = {F1, . . . , Fm} be the

facets of Pn. The nerve complex ∂P ∗ of Pn is the boundary of its dual polytope P ∗

([10, p.4]), which is a simplicial complex, denoted by KP , on the vertex set F , where

{Fi1 , . . . , Fil} forms a simplex of KP if and only if the intersection Fi1 ∩ . . . ∩ Fil is

non-empty. Note that KP is a triangulation of an (n− 1)-sphere.

For example, if P is a simplex ∆n or an m-gon, then the nerve complex KP is the

boundary of P since P and P ∗ are combinatorially isomorphic.

Definition 2.1.9. The barycentric subdivision K ′ of K is a simplicial complex on the

vertex set {σ ∈ K | σ 6= ∅}, where (σi1 , . . . , σil) forms a face of K ′ if and only if there

exist face inclusions σi1 ( . . . ( σil , where σi ( σj means that σi is a proper face of σj .

The cone on K ′, denoted by ConeK ′, can be seen as a simplicial complex on the vertex

set {σ ∈ K} (including the empty face of K) constructed in the same way by adding

the empty set ∅ as the cone vertex.

Example 2.1.10. Let K be the 1-simplex. Then the abstract simplicial complex K ′ is

K ′ = {∅, {1}, {2}, {1, 2}, {{1}, {1, 2}}, {{2}, {1, 2}}}.

Geometrically, we have

1 2

K

1 2

(12)

K ′
1 2

(12)

∅

ConeK′

The shading denotes the face of ConeK′
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Definition 2.1.11. Let (P,≤) be a finite poset (partially ordered set). The order

complex ∆(P) is a simplicial complex on the vertex set given by elements of P, where

the simplicies are the tuples (pi1 , . . . , pil) such that pi1 < . . . < pil in P.

For example, a simplicial complex K has an associated poset K̄, which has elements

consisting of faces of K, ordered by the reverse inclusion, i.e., σ ≤ τ if and only if τ ⊆ σ.

Thus, the empty set ∅ is the maximal element of K̄. Also, the order complex ∆(K̄) is

the simplicial complex ConeK ′ defined in Definition 2.1.9.

2.1.1 Stanley-Reisner ring and Tor-algebras

Let R be a commutative ring with unit, let 1R denote the multiplicative identity of R

and let k be a field or Z. The tensor product ⊗ is taken over R, unless otherwise stated.

Definition 2.1.12. The Stanley-Reisner ring R[K] of a simplicial complex K on [m] is a

quotient ring R[K] = R[v1, · · · , vm]/IK , where IK = (vσ : σ /∈ K) is the Stanley-Reisner

ideal generated by those monomials vσ =
∏
i∈σ
vi which correspond to non-faces σ of K.

Example 2.1.13. Let K be the following simplicial complex.

1 2

4

3

Then the Stanley-Reisner ring of K is R[K] = R[v1, v2, v3, v4]/(v1v2, v2v3v4).

The underlying R-module of R[K] is free, which is infinite dimensional unless K = ∅.

Lemma 2.1.14. [10, Proposition 3.1.9] The Stanley-Reisner ring R[K] has a basis

consisting of 1R and va1i1 . . . v
al
il

with aj > 0 and {i1, . . . , il} ∈ K, as an R-module.

The quotient homomorphism R[v1, · · · , vm] −→ R[K] gives R[K] a module structure

over R[m] = R[v1, · · · , vm]. Moreover, R is an R[m]-module induced by the homo-

morphism R[m]
ε−→ R which sends each vi of R[m] to 0. Therefore, a Tor-module

TorR[m](R[K], R) is established. In fact, it is an R-algebra induced by the Koszul al-

gebra.

Construction 2.1.15 (Koszul resolution). The Koszul resolution of R over R[m] is a

long exact sequence of free R[m]-modules defined by

0 −→ Λm[u1, . . . , um]⊗R[v1, . . . , vm]
d−→ Λm−1[u1, . . . , um]⊗R[v1, . . . , vm]

d−→

. . .
d−→ Λ1[u1, . . . , um]⊗R[v1, . . . , vm]

d−→ R[v1, . . . , vm]
ε−→ R −→ 0

(2.1)
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where Λ[u1, . . . , um] is an exterior algebra onm generators and Λi[u1, . . . , um] denotes the

R-module generated by uJ of length i, i.e., uJ = uj1 . . . uji with J = {j1, . . . , ji} ⊆ [m].

Here the bigradings of ui and vi are given by

bideg ui = (−1, 2) and bideg vi = (0, 2).

The differentials on the algebraic generators are defined by

dui = vi and dvi = 0.

These extend to differentials on Λ[u1, . . . , um] ⊗ R[v1, . . . , vm] according to the Leibniz

identity (i.e. d(a · b) = da · b+ (−1)deg(a)a · db).

Applying −⊗R[m] R[K] to (2.1), we have a differential graded algebra

(Λ[u1, . . . , um]⊗R[K], d), dui = vi and dvi = 0 (2.2)

such that TorR[m](R[K], R) ∼= H(Λ[u1, · · · , um]⊗R[K], d).

Recall that the tensor product A⊗B of two R-algebras A and B is an R-algebra by

(a1 ⊗ b1) · (a2 ⊗ b2) = (a1a2)⊗ (b1b2) (2.3)

where ai ∈ A and bi ∈ B, i = 1, 2.

Definition 2.1.16. The differential graded algebra (2.2) is known as Koszul algebra,

whose multiplication is the tensor product (2.3) of the exterior algebra Λ[u1, . . . , um]

and the Stanley-Reisner ring R[K] over R.

The isomorphism TorR[m](R[K], R) ∼= H(Λ[u1, · · · , um] ⊗ R[K], d) gives an R-algebra

structure on TorR[m](R[K], R).

Definition 2.1.17. We refer to TorR[m](R[K], R) as the Tor-algebra of a simplicial

complex K over R.

Example 2.1.18. Consider K = ∅ on [m]. Then the Stanley-Reisner ring

R[∅] = R[v1, . . . , vm]/(v1, . . . , vm) = R.

In this case, the differentials on the Koszul algebra are trivial. Thus, TorR[m](R,R) =

Λ[u1, · · · , um].

In [34], a quotient algebraR∗(K) of the Koszul algebra was introduced whose underlying

R-module is finite dimensional and its cohomology is isomorphic to TorR[m](R[K], R).
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Construction 2.1.19. Define the quotient algebra

R∗(K) = Λ[u1, · · · , um]⊗R[K]/(uivi = v2
i = 0, 1 ≤ i ≤ m)

where the differentials d and bigrading are given by

dui = vi, dvi = 0 and bideg ui = (−1, 2), bideg vi = (0, 2).

There exists an R-basis {uJvI | J∩I = ∅, J ⊆ [m], I ∈ K} of the underlying R-module of

R∗(K). Denote by ι : R∗(K) −→ Λ[u1, . . . , um]⊗R[K] an R-homomorphism which sends

the basis element uJvI identically and let ρ : Λ[u1, . . . , um] ⊗ R[K] −→ R∗(K) be the

quotient homomorphism. Thus, ρι = id. Though ιρ 6= id, the next statement says that

there exists a cochain homotopy h between ιρ and id. Since the quotient homomorphism

ρ is a map of algebras, ρ induces an isomorphism of algebras on cohomology.

Lemma 2.1.20. [10, 34] There exists a cochain homotopy

hi : Λi[u1, . . . , um]⊗R[K] −→ Λi+1[u1, . . . , um]⊗R[K]

such that dh−hd = id− ιρ. Hence, the quotient homomorphism ρ induces isomorphisms

of R-algebras

TorR[m](R[K], R) ∼= H(Λ[u1, · · · , um]⊗R[K], d) ∼= H(R∗(K), d).

Example 2.1.21. Let K be the boundary of an (m − 1)-simplex. Then R[K] =

R[m]/(v1 . . . vm). The R-basis of R∗(K) consists of {uJvI | J ∩ I = ∅, I ∈ K}. The

differentials on generators uJvI of R∗(K) are

duJvI =


0 if J = {j} and I = [m] \ {j}∑
j∈J

ε(j, J)uJ\{j}vj∪I otherwise

where ε(j, J) = (−1)r−1 if j sits at the r-th position of J . The generators of Ker d−1,∗ (i.e.

cocyles of bigrading (−1, ∗)) are {ujv[m]\{j}, 1 ≤ j ≤ m}. Since d(uj1uj2v[m]\{j1,j2}) =

uj2v[m]\j1 − uj1v[m]\j1 , Tor−1,2m
R[m] (R[K], R) ∼= R generated by u1v2v3 . . . vm. Let α =∑

rJ,IuJvI ∈ Ker d−2,∗. We can write α = u1α1 +α2, where α1 ∈ R−1,∗ and α2 ∈ R−2,∗

whose generators do not contain u1 as a factor. Hence, dα = α1v1 − u1dα1 + dα2 = 0

so that α1v1 + dα2 = 0 and dα1 = 0. It follows that α1 = 0 since α1 ∈ Ker d−1,∗

and the supporting generators ujvI of α1 satisfying |I| ≤ m − 2. So α = α2 whose

supporting generators do not contain u1. Repeating this, gives α = 0. Similarly, we

have Ker d−j,∗ = 0 for j ≥ 2. Hence, we have

Tor0,0
R[m](R[K], R) = R and Tor−1,2m

R[m] (R[K], R) = R.
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Example 2.1.22. LetK be the boundary of a 4-gon, 1 2

34

. ThenR[K] ∼= R[4]/(v1v3, v2v4).

The non-trivial differentials on generators uJvI (J ∩ I = ∅ and I ∈ K) of R∗(K) are

d(ujvi) = vjvi if {j, i} ∈ K

d(uj1uj2vi) =


uj2vj1vi if j1 ∪ i ∈ K and j2 ∪ i /∈ K

−uj1vj2vi if j1 ∪ i /∈ K and j2 ∪ i ∈ K

uj2vj1vi − uj1vj2vi if j1 ∪ i and j2 ∪ i ∈ K

d(u[m]\ivi) =
∑

j∈[m]\i

± u[m]\{j,i}vivj .

The cocycles of bigrading (−1, ∗) has a basis

{u1v3, u1v2v3, u1v3v4, u3v1, u3v1v2, u3v1v4, u2v4, u2v1v4, u2v3v4, u4v2, u4v1v2, u4v2v3}.

Since du1u3 = u3v1−u1v3 and du2u4 = u4v2−u2v4, Tor−1,4
R[m](R[K], R) ∼= R⊕R generated

by u1v3 and u2v4. A direct calculation implies that Tor−2,8(R[K], R) is generated by

u1u2v3v4 and Tor0,0
R[m](R[K], R) = R (the ground ring R).

2.1.2 Hochster’s Formula

Hochster’s formula is a useful tool for computing TorR[m](R[K], R) by calculating the

reduced simplicial cohomology of full subcomplexes KJ of K. Recall that for J ⊆ [m],

the full subcomplex KJ is defined by KJ = {σ ∩ J | σ ∈ K}.

Theorem 2.1.23 (Hochster [26]). Let K be a simplicial complex K on [m]. There are

isomorphisms of R-modules

Tor−i,2jR[m] (R[K], R) =
⊕

J⊂[m],|J |=j

H̃j−i−1(KJ ;R).

Note that H̃−1(∅;R) = R.

Next, we give a sketch proof of Hochster’s formula which can be adapted to to show Pro-

position 4.3.11. It relies on the multigrading structure of R∗(K) (Construction 2.1.19).

Construction 2.1.24 (multigrading). The multigrading of R∗(K) is defined on the

R-basis elements by

mdeg uJ\IvI = (−|J \ I|, 2J).

Let J ⊆ [m]. Define R∗,2J(K) to be the submodule of R∗(K) generated by basis

elements {uJ\IvI ∈ R∗(K) | I ∈ K}. Since d(uJ\IvI) =
∑

j∈J\I,j∪I∈K
± uJ\{j∪I}vj∪I ,

where uJ\{j∪I}vj∪I ∈ R∗,2J(K), thus R∗,2J(K) is a cochain subcomplex of R∗(K).
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We also have a decomposition R−i,2j(K) =
⊕

J⊆[m],|J |=j
R−i,2J(K) which induces a de-

composition of the Tor-module Tor−i,2jR[m] (R[K], R) =
⊕

J⊆[m],|J |=j
Tor−i,2JR[m] (R[K], R).

Let σ∗ denote the cochain basis element of C∗(K;R) corresponding to an oriented sim-

plex σ ∈ K. For any J ⊆ [m], there exists a cochain isomorphism

f : Cp−1(KJ ;R) −→ Rp−|J |,2J(K)

σ∗ 7−→ ε(σ, J)uJ\σvσ

where ε(σ, J) =
∏
j∈σ

ε(j, J) and ε(j, J) = (−1)r+1 if j sits at the r-th position in J with

J written increasingly. We refer to [10, Theorem 3.2.9] for a detailed proof that f

commutes with the differentials. Hence, f induces isomorphisms on cohomology

H̃p−1(KJ ;R) ∼= Tor
p−|J |,2J
R[m] (R[K], R).

2.1.3 Taylor resolution

The Taylor resolution [39] of the Stanley-Reisner ring R[K] is constructed as follows. Let

P = {σ1, . . . , σp} consist of all minimal missing faces of K and let Λ∗[P] be an exterior

algebra on generators corresponding to elements in P over R.

Construction 2.1.25 (Taylor resolution). The Taylor resolution ofR[K] overR[v1, . . . , vm]

is given by

. . . −→ Λi[P]⊗R[v1, . . . , vm]
d−→ Λi−1[P]⊗R[v1, . . . , vm]

d−→

. . .
d−→ Λ1[P]⊗R[v1, . . . , vm]

d−→ R[v1, . . . , vm] −→ R[K] −→ 0
(2.4)

where the differential operation d is defined by

d(σj1σj2 · · ·σjq) =
∑

0≤t≤q
(−1)t−1

lcm(vσj1 , vσj2 , · · · , vσjq )

lcm(vσj1 , · · · , v̂σjt , · · · , vσjq )
σj1 · · · σ̂jt · · ·σjq

d(vi) = 0, 0 ≤ i ≤ m

and lcm(vσj1 , vσj2 , · · · , vσjq ) stands for the least common multiple, σ̂jt and v̂σjt mean

that σjt and vσjt are omitted, respectively.

The multigrading of Λ∗[P]⊗R[v1, . . . , vm] is given by

mdeg (σj1σj2 · · ·σjq) = (−q, lcm(vσj1 , vσj2 , · · · , vσjq ))

and its bigrading is given by

bideg (σj1σj2 · · ·σjq) = (−q, 2|σj1 ∪ . . . ∪ σjq |) and bideg vj = (0, 2).
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Let σi1 . . . σit ∈ Λt[P] and let σj1 . . . σjq ∈ Λq[P]. The multiplication × of the Taylor

resolution (2.4) is defined by

σi1 . . . σit × σj1 . . . σjq =


lcm(vσ1 ,...,vσit

)lcm(vσj1
,...,vσjq )

lcm(vσi1
,...,vσit

,vσj1
,...,vσjq )

σi1 . . . σitσj1 . . . σjq if {i1, . . . , it} ∩ {j1, . . . , jq} = ∅

0 otherwise.

Applying − ⊗R[m] R to (2.4), since R is an R[m]-module by sending all vi to zero, it

reduces to a differential graded algebra (Λ∗[P], d), where the differential operation d is

defined by

d(σj1σj2 · · ·σjq) =
∑

1≤t≤q
(−1)t−1δtσj1 · · · σ̂jt · · ·σjq . (2.5)

Here δt = 1 if Sσ = S∂tσ and zero otherwise, where Sσ = σj1 ∪ . . . ∪ σjq and S∂tσ =

σj1 ∪ . . . ∪ σ̂jt ∪ . . . ∪ σjq .

The differential graded algebra (Λ∗[P], d) is called the Taylor algebra whose multigrading

is defined as follows.

Construction 2.1.26 (multigrading [27]). The multigrading of Λ∗[P] is given by

mdeg σj1 . . . σjq = (−q, 2(σj1 ∪ . . . ∪ σjq)).

For any J ⊆ [m], let Λ∗,2J be the submodule of Λ∗[P] generated by elements of multigrad-

ing (∗, 2J). By the definition of the differential (2.5), Λ∗,2J is closed under the differential.

Thus, Λ∗,2J is a cochain subcomplex of Λ∗[P]. The decomposition Λ∗[P] =
⊕

J⊆[m]

Λ∗,2J [P]

induces a decomposition on cohomology. Hence, the next statement follows.

Theorem 2.1.27 ([41]). Let K be a simplicial complex on [m] and let P consist of all

minimal missing faces of K. Then we have an isomorphism of rings

TorR[m](R[K], R) ∼=
⊕
J⊆[m]

Hi(Λ
−i,2J [P], d).

Here the product on
⊕

J⊆[m]

H(Λ∗,2J [P], d) is given by

[c]× [c′] = [c · c′] · δJ,J ′

where [c] ∈ Hq(Λ
∗,2J , d) and [c′] ∈ Hp(Λ

∗,2J ′ , d), the cycle c · c′ is the product of c and c′

in Λ∗,∗[P] and δJ,J ′ = 1 if J ∩ J ′ = ∅, and δJ,J ′ = 0 if J ∩ J ′ 6= ∅.

Let us remark that the exterior algebra Λ∗[P] in the Taylor resolution Λ∗[P]⊗R[v1, . . . , vm]

of R[K] is taken over a finite set corresponding to the generators of the Stanley-Reisner

ideal IK . Thus, theoretically P in Theorem 2.1.27 can be given by any finite set

{σ1, . . . , σl | σ ∈ 2[m]} which contains all minimal missing faces of K. However, in
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order that the calculation of TorR[m](R[K], R) is as efficient as possible, we state the

result that P only contains all minimal missing faces.

Example 2.1.28. Let K be the boundary of a 5-gon.

K=

1

2

3 4

5

Take P = {τ13 = {1, 3}, τ14 = {1, 4}, τ24 = {2, 4}, τ25 = {2, 5}, τ35 = {3, 5}} to be the

minimal missing faces of K. By the definition (2.5) of the differential operation d, the

non-trivial differentials are:

d5(τ13τ14τ24τ25τ35) = τ14τ24τ25τ35 − τ13τ24τ25τ25 + τ13τ14τ25τ35 − τ13τ14τ24τ35 + τ13τ14τ24τ25;

d4(τ13τ14τ24τ25) = −τ13τ24τ25 + τ13τ14τ25; d4(τ13τ14τ24τ35) = −τ13τ24τ35 + τ13τ14τ35;

d4(τ13τ14τ25τ35) = τ14τ25τ35 − τ13τ14τ25; d4(τ13τ24τ25τ35) = τ13τ24τ35 − τ13τ24τ25;

d4(τ14τ24τ25τ35) = −τ14τ25τ35 + τ14τ24τ35;

d3(τ13τ14τ24) = −τ13τ24; d3(τ13τ14τ35) = τ14τ35; d3(τ14τ24τ25) = −τ14τ25;

d3(τ24τ25τ35) = −τ24τ35; d3(τ13τ25τ35) = τ13τ25.

As an R-module, TorR[5](R[K], R) has a basis given by{
1 τ13 τ14 τ24 τ25 τ35

τ13τ24τ25 τ13τ14 τ13τ35 τ14τ24 τ24τ25 τ25τ35

}
.

It follows that

Tor−1,4
R[m](R[K], R) ∼= R⊕5, generated by τ13, τ14, τ24, τ25, τ35;

Tor−2,6
R[m](R[K], R) ∼= R⊕5, generated by τ13τ14, τ13τ35, τ14τ24, τ24τ25, τ25τ35;

Tor−3,10
R[m] (R[K], R) ∼= R, generated by τ13τ24τ25.

2.2 Moment-angle Complexes

In this section, we recall definitions and properties of moment-angle complexes.

Let K be a simplicial complex on [m]. The moment-angle complex ZK is a union of

products of discs and circles which is a Tm-invariant subspace of (D2)m, where the

Tm-action on (D2)m is induced by a coordinatewise multiplication of complex numbers,

viewing (D2)m as a subset of the complex space Cm.
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Definition 2.2.1. The moment-angle complex ZK associated to a simplicial complex

K on [m] is defined by

ZK =
⋃
σ∈K

(D2, S1)σ

where (D2, S1)σ = Y1 × · · · × Ym and Yi =

D2 if i ∈ σ

S1 if i /∈ σ.

For example, if K is the boundary of a simplex with m vertices, then

ZK = (D2 ×D2 × · · · × S1) ∪ (D2 × · · · × S1 ×D2) ∪ · · · ∪ (S1 ×D2 × · · · ×D2)

= ∂((D2)m) ∼= S2m−1.

Proposition 2.2.2. [10, Theorem 4.1.4] If K is a triangulation of an (n − 1)-sphere

with m vertices, then the corresponding moment-angle complex ZK is a closed (m+ n)-

manifold.

We refer to ZK as a moment-angle manifold when K is a triangulation of a sphere. For

example, let Pn be a simple polytope (Definition 2.1.7) with facets F = {F1, . . . , Fm}.
The nerve complex KP of Pn (Definition 2.1.8) is a triangulation of (n − 1)-sphere.

Hence ZKP is a moment-angle manifold.

2.2.1 Cohomology of ZK

The cellular decomposition of ZK is described as a subspace of (D2)m. The disc D2 has

three cells e0, e1, e2 of dimensions 0, 1, 2, respectively. The cells of (D2)m are paramet-

rised by subsets I, J ⊆ [m] with I ∩ J = ∅. That is to say, a cell denoted by κ(J, I) is

equal to e1 × · · · × em in (D2)m, where ei is the 2-dimensional cell e2 if i ∈ I, ei is the

1-dimensional cell e1 if i ∈ J , and ei is the point e0 if i ∈ [m] \ (I ∪ J). Since ZK is a

subcomplex of (D2)m determined by the simplicial complex K, the cells of ZK are those

cells κ(J, I) where I ∈ K. Thus the cellular cochain complex C∗(ZK ;R) of ZK has a

basis of cochains {κ(J, I)∗ | I ∈ K, I ∩ J = ∅}, where each κ(J, I)∗ corresponds to a cell

κ(J, I) of ZK .

Recall that the quotient differential graded algebra R∗(K) (Construction 2.1.19) is

defined by

R∗(K) = Λ[u1, . . . , um]⊗R[K]/(uivi = v2
i = 0, 1 ≤ i ≤ m)

where dui = vi and dvi = 0. There is a bijection between the R-basis of C∗(ZK ;R) and

R∗(K) which commutes with differentials.
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Lemma 2.2.3 ([10, 34]). The cellular cochain algebra C∗(ZK ;R) is isomorphic to the al-

gebra R∗(K). Therefore, there is an isomorphism of cohomology rings between H∗(ZK ;R)

and H(R∗(K)).

Now combining Lemma 2.1.20, Theorem 2.1.23 and Theorem 2.1.27, we have the follow-

ing result.

Theorem 2.2.4 ([10, 4]). There are isomorphisms of R-algebras

H∗(ZK ;R) ∼= TorR[m](R[K], R) ∼=
⊕
J⊆[m]

H̃∗(KJ ;R).

where the ring structure on the right hand side is given by the canonical maps

Hk−|I|−1(KI ;R)⊗H l−|J |−1(KJ ;R)→ Hk+l−|I|−|J |−1(KI∪J ;R)

which are induced by simplicial maps KI∪J → KI ∗KJ for I ∩J = ∅ and zero otherwise.

Moreover, it has been proven in [4] that the isomorphisms of Hochster’s formula

H̃p−1(KJ ;R) ∼= Tor−p+1,2J
R[m] (R[K];R)

are functorial with respect to simplicial maps. An important application of these func-

torial properties is seen when one considers the G-actions on ZK induced by a simplicial

G-complex K, which will induce a kG-module on H∗(ZK ; k) compatible with the decom-

position of Hochster’s formula. This lays the foundation to consider the representation

stability of moment-angle complexes in Chapter 3.

We have seen that ZK is homeomorphic to S2m−1 when K is the boundary of an (m−1)-

simplex. Let us calculate its cohomology by applying Hochster’s formula.

Example 2.2.5. Let K be the boundary of an (m − 1)-simplex. In this case, only

when J = ∅ and J = [m], the reduced simplicial cohomology of KJ is nontrivial. By

Theorem 2.2.4,

H0(ZK ;R) ∼= H̃−1(∅;R) = R;

H2m−1(ZK ;R) = H−1,2m(ZK ;R) ∼= H̃m−2(K[m];R) ∼= R.

Moreover, examples (2.1.22 and 2.1.28) give the cohomology groups of ZK when K is

the boundary of a 4-gon or 5-gon. That is, let K be the boundary of a square, then

H l(ZK ;R) ∼=



R if l = 0

R⊕R if l = 3

R if l = 6

0 otherwise.
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Let K be the boundary of a 5-gon, then

H l(ZK ;R) ∼=


R if l = 0, 7

R⊕5 if l = 3, 4

0 otherwise

In fact, by [5, 31], when K is the boundary of an m-gon (m ≥ 4), ZK is homeomorphic

to a connected sum of sphere products

ZK ∼=
m−1
#
k=3

(Sk × Sm+2−k)#(k−2)(m−2
k−1).

2.2.2 Partial Quotients of Moment-angle Complexes

The purpose of this section is to give an alternative definition of moment-angle complexes

and their quotient spaces under torus actions. The cohomological properties of partial

quotients of ZK will be studied in Chapter 4.

Let Im denote the standard unit m-cube with I = [0, 1]. For J ⊂ I ⊂ [m], any face of

Im can be written as

CJ⊂I = {(y1, . . . , ym) ∈ Im | yj = 0 for j ∈ J, yj = 1 for j /∈ I}

and vertices of Im are indexed by subsets of [m]

CI⊂I = {(y1, . . . , ym) ∈ Im | yj = 0 for j ∈ I, yj = 1 for j /∈ I}.

In particular, C∅⊂∅ = (1, . . . , 1).

Denote by 2[m] the power set of [m].

Construction 2.2.6 (triangulation of Im [10]). Let ∆m−1 be an (m− 1)-simplex. The

simplicial complex Cone(∆m−1)′ is on the vertex set 2[m]. The identity map id: 2[m] −→
2[m], viewed as a map between the vertex set of Cone(∆m−1)′ and the vertex set of Im,

extends linearly to a homeomorphism ic

ic : Cone(∆m−1)′ −→ Im

σi1 ( . . . ( σil 7−→ Cσi1⊂σil .
(2.6)

The image of ic gives a triangulation of Im. Note that ic(∅) = C∅⊂∅ = (1, . . . , 1).

Example 2.2.7. Let us illustrate the triangulation of I2. The vertices of I2 correspond

to subsets of [2] by ic(∅) = (1, 1), ic({1}) = (0, 1), ic({2}) = (1, 0) and ic({1, 2}) =

(0, 0). The resulting homeomorphism ic : Cone(∆1)′ −→ I2 is extended linearly by this

correspondence. See the picture below.
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1 2
(12)

∅

ConeK′

ic−→

1

2(12)

∅

I2

Let K be a simplicial complex on [m]. Then K is a subcomplex of ∆m−1 and ConeK ′

is a subcomplex of Cone(∆m−1)′. Each face F(σi) (σi ∈ K) of ConeK ′ corresponds

to a chain σ0 ( σ1 ( . . . ( σl of faces of K and ic(F(σi)) = Cσ0⊆σl by (2.6). The

codimensional-one faces of F(σi) are these chains {σ0 ( . . . ( σ̂j ( . . . ( σl | 0 ≤ j ≤ l}
whereˆdenotes omission. The interior intF(σi) consists of points in F(σi) which are not in

its codimensional-one faces. Hence if x ∈ ConeK ′, there is a unique face F(σi) ∈ ConeK ′

such that x ∈ intF(σi).

The image of ConeK ′ under the map ic provides a triangulation of a cubical subcomplex

of Im. Denote by cc(K) this underlying cubical subcomplex of the image of ConeK ′

under the map ic. Then the moment-angle complex ZK = (D2, S1)K =
⋃
σ∈K

(D2, S1)σ is

a pullback of the diagram

ZK (D2)m

cc(K) Im
µ

i

(2.7)

where i is an inclusion and µ(z1, . . . , zm) = (|z1|, . . . , |zm|).

For any σ ⊆ [m], denote by T σ the coordinate |σ|-subtorus

T σ = {(t1, · · · , tm) ∈ Tm | tj = 1 for j 6∈ σ} 6 Tm. (2.8)

In particular, T ∅ is the trivial subgroup {1} of Tm. Now let us introduce a homeo-

morphism of (D2)m which, together with the pullback square (2.7), gives an alternative

definition of ZK . Since D2 is homeomorphic to (I × S1)/(0, t) ∼ (0, t′), there is a

homeomorphism

(D2)m ∼= Im × Tm/ ∼ (2.9)

where (x, t1) ∼ (y, t2) if and only if x = y and t−1
1 t2 ∈ Tω(x) and ω(x) = {i ∈ [m] | xi =

0}. This equivalence (x, t1) ∼ (x, t2) (2.9) is equivalent to saying that the coordinate

tj1 = tj2 if xj 6= 0, where tj1 and tj2 represent the j-th coordinates of t1 and t2, respectively.

By the definition of ic (2.6), ω(ic(x)) = σ0 for which x ∈ intF(σi) and F(σi) corresponds

to the chain σ0 ( . . . ( σl of faces of K. Since cc(K) is homeomorphic to ConeK ′ by

ic, together with the pullback diagram (2.7) and the homeomorphism (2.9), there is a

homeomorphism ZK ∼= ConeK ′ × Tm/ ∼, where (x, t1) ∼ (y, t2) if and only if x = y ∈
intF(σi) and t−1

1 t2 ∈ T σ0 . Moreover, the homeomorphism (2.9) (D2)m ∼= Im× Tm/ ∼ is

Tm-equivariant, where Tm acts on the second coordinate of Im × Tm/ ∼. Hence there
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is a Tm-action on ConeK ′ × Tm/ ∼ by a Tm-action on the second coordinate and the

homeomorphism ZK ∼= ConeK ′ × Tm/ ∼ is Tm-equivariant.

We obtain an alternative definition of moment-angle complexes, which was introduced

in [17].

Definition 2.2.8. The moment-angle complex ZK is Tm-equivariantly homeomorphic

to

ConeK ′ × Tm/ ∼ (2.10)

where (x, t1) ∼ (y, t2) if and only if x = y ∈ intF(σi) and t−1
1 t2 ∈ T σ0 .

Example 2.2.9. Let K be the disjoint union of two points. Then the geometrical

realisation |ConeK ′| is homeomorphic to the interval [0, 1]. Then by (2.10), ZK ∼=
I × S1

1 × S1
2/ ∼, where (0, t1, t2) ∼ (0, t′1, t2) and (1, t1, t2) ∼ (1, t1, t

′
2). The space

I× S1
1 × S1

2/ ∼ is exactly the join of S1 and S1, which is S3.

Example 2.2.9 illustrates moment-angle manifolds obtained from simple polytopes when

K (the two disjoint points) is a nerve complex of a simple polytope (the 1-simplex). A

polytopal moment-angle manifold refers to a moment-angle complex ZKP corresponding

to a nerve complex KP of a simple polytope Pn.

Let Pn be a simple polytope with m facets, let F(P ) denote the facet set {F1, · · · , Fm}
of Pn and let Ix = {i ∈ [m] | x ∈ Fi} for each x ∈ P .

Definition 2.2.10 ([10]). For a simple n-polytope P with m facets, we define

ZP = (Pn × Tm)/ ∼

where (x, t1) ∼ (y, t2) if and only if x = y and t−1
1 t2 ∈ T Ix .

Example 2.2.11 (odd dimensional spheres). Consider Pn to be the n-simplex ∆n ⊆
Rn+1. The moment-angle manifold associated to ∆n is S2n+1. To see this, let

Sn> = {(x0, x1, . . . , xn) ∈ Sn | xi ≥ 0, 0 ≤ i ≤ n} ⊆ Rn+1
>

be the part of n-sphere lying in the non-negative coordinate region of Rn+1. Then

there exists a homeomorphism ψ : ∆n −→ Sn> which maps the boundary of ∆n onto the

boundary of Sn> homeomorphically.

Since S2n+1 = {(z0, z1, . . . , zn) ∈ Cn+1 | |z0|2 + |z1|2 + . . . + |zn|2 = 1}, S2n+1 =

{(x′0t0, x′1t1, . . . , x′ntn) | (x′0, . . . , x
′
n) ∈ Sn>, (t0, . . . , tn) ∈ Tn+1} by applying the polar

coordinate zi = x′iti. Define a map

f : ∆n × Tn+1 −→ S2n+1 ⊆ Cn+1

((x0, . . . , xn), (t0, . . . , tn)) 7−→ (x′0t0, . . . , x
′
ntn)

(2.11)
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where (x′0, . . . , x
′
n) = ψ(x0, . . . , xn).

We can check that f(x, t1) = f(y, t2) if and only if (x, t1) ∼ (y, t2), where ∼ is defined

as in Definition 2.2.10. To see this, f(x, t1) = f(y, t2) if and only if x′jt
j
1 = y′jt

j
2, where

x′j , y
′
j and tj1, t

j
2 represent the j-th coordinate of x′,y′ and t1, t2, respectively. Since

x′jt
j
1 = y′jt

j
2 as complex numbers, we have |x′jt

j
1| = |y′jt

j
2|. Thus x′j = y′j as x′j , y

′
j are

non-negative real numbers. So x = y. Then x′jt
j
1 = x′jt

j
2 if and only if when x′j 6= 0,

tj1 = tj2 (when x′j = 0, tj1 and tj2 can be any element in S1).

Finally, since f is surjective, the map f induces a homeomorphism

Z∆n = ∆n × Tn+1/ ∼
f̄∼= S2n+1.

It has been proven in [10, Theorem 6.2.4] that ZP = P × Tm/ ∼ defined in Defini-

tion 2.2.10 and the moment-angle ZKP complex are homeomorphism.

Theorem 2.2.12 ([10]). The moment-angle manifold ZKP obtained from the nerve com-

plex of a simple polytope Pn is Tm-equivariantly homeomorphic to ZP defined in Defin-

ition 2.2.10.

Next we introduce the quotient spaces of ZK under torus actions. Let Λ: Zm −→ Zm−r

be a surjective linear map. Then the short exact sequence

0 −→ KerΛ −→ Zm Λ−→ Zm−r −→ 0

splits ([32, Corollary 23.2]). The map Λ induces a homomorphism of tori Tm −→ Tm−r,

also denoted by Λ, and a short exact sequence of tori follows

1 −→ KerΛ −→ Tm
Λ−→ Tm−r −→ 1.

For every σ ∈ K, let Λσ denote the image of T σ (2.8) in Tm−r due to the composite

Λ|Tσ : T σ −→ Tm −→ Tm−r. We have the following definition of quotient space ZK/H.

Lemma 2.2.13. The subtorus H = KerΛ of rank r acts on ZK . The quotient space

ZK/H is homeomorphic to the following space

ConeK ′ × Tm−r/ ∼

where (x, t1) ∼ (y, t2) if and only if x = y ∈ intF(σi) and t−1
1 t2 ∈ Λσ0.

Proof. Since the homeomorphism ZK ∼= ConeK ′ × Tm/ ∼ (2.10) is Tm-equivariant, it

is also H-equivariant for any subtorus H 6 Tm. Hence we have the homeomorphism

ZK/H ∼= ConeK ′ × Tm/ ∼
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where the relation ∼ includes the identifications due to the subtorus H-action (x, gt) ∼
(x, t) for g ∈ H and the identifications of ZK , i.e., (x, t1) ∼ (y, t2) if x = y ∈ intF(σi)

and t−1
1 t2 ∈ T σ0 . The identifications due to the H-action have representatives given by

the left coset space Tm/H. So (x, t1H) ∼ (x, t2H) if and only if (t1H)−1(t2H) ∈ T σ0 ,

which is equivalent to t−1
1 t2 ∈ Λσ0 . The statement follows since Tm/H ∼= Tm−r.

In particular, in the case of nerve complexes KP for a simple n-polytope Pn with m

facets, the integral n × m-matrix Λ is called a characteristic function if KerΛ acts on

ZP freely. This freeness condition is given by the following (∗) condition ([34, Theorem

3.12])

(∗) for every vertex v ∈ P as an intersection of n facets v = Fj1 ∩ Fj2 ∩ · · · ∩ Fjn , the

maximal minor Λv = Λj1j2···jn formed by the columns j1, · · · , jn of the matrix Λ, satisfies

detΛv = ±1.

With a simple polytope Pn and a characteristic function Λ, this quotient manifold

ZP /KerΛ is known as a quasi-toric manifold M(Pn,Λ).

Definition 2.2.14 ([17]). Let (Pn,Λ) satisfy the (∗) condition. A quasitoric manifold

is M(P,Λ) = P × Tn/ ∼Λ, where (x, t1) ∼Λ (y, t2) if x = y and t−1
1 t2 ∈ Tx,Λ and Tx,Λ

is the image of T Ix in Tn under Λ.

Example 2.2.15 (projective spaces). Let Λ =
(
In | −1

)
, where −1 = (−1, . . . ,−1)t.

In this case, (∆n,Λ) satisfies the (∗) condition and KerΛ ∼= S1 acts on Z∆n diagonally.

By (2.11), the homeomorphism f̄ : ∆n×Tn+1/ ∼−→ S2n+1 is Tn+1-equivariant. Hence,

f̄ is S1-equivariantly homeomorphic. Consider the diagonal action on both sides, where

the quotient space of S2n+1 under the diagonal action is CPn. So Z∆n/KerΛ ∼= CPn.

2.3 Polyhedral products

The homotopy-theoretical applications in polyhedral products are beautiful, providing

topological approaches to finding relations among algebraic properties and combinatorial

structures. In this section, we review the definitions of polyhedral products and their

related properties with an emphasis from a homotopy viewpoint.

Let K be a simplicial complex on [m] and let (X,A) = {(X1, A1), . . . , (Xm, Am)} be a

sequence of m pairs of topological spaces. For any subset σ = {i1, . . . , il} ⊆ [m], we

introduce the following spaces

(X,A)σ = {(x1, . . . , xm) ∈
m∏
j=1

Xj | xj ∈ A for j /∈ I}

(X,A)∧I = {x1 ∧ . . . ∧ xm ∈ X1 ∧ . . . ∧Xm | xj ∈ A for j /∈ I}

X∧I = Xi1 ∧ . . . ∧Xil .
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If all Xi = X and Ai = A, the above corresponding spaces are denoted by (X,A)I ,

(X,A)∧I and X∧I , respectively.

Definition 2.3.1. A polyhedral product (X,A)K is a subspace of
m∏
i=1
Xi, defined by

(X,A)K =
⋃
σ∈K

(X,A)σ

If all Xi = X and Ai = A, write (X,A)K = (X,A)K . We will illustrate polyhedral

products with various simplicial complexes and distinct topological pairs.

Example 2.3.2. (1) If X = D2 and A = S1, then the corresponding polyhedral product

ZK = (D2, S1)K is known as the moment-angle complex. If X = BS1 (the classifying

space of S1) and A = ∗, then the corresponding polyhedral product DJK = (BS1, ∗)K

is called the Davis-Januszkiewicz space.

(2) Let K be a simplex ∆m−1. Then (X,A)K = X1 × . . .×Xm.

(3) Let each Xi be a based space and let each Ai be the base point. If K consists of m

disjoint points, then (X, ∗)K =
m∨
i=1
Xi. If K = ∂∆m−1, the boundary of a simplex, then

(X, ∗)∂∆m−1
is a fat wedge of X1× . . .×Xm, i.e., a subspace with at least one coordinate

to be the based point.

Here are two fundamental properties (functorial properties and retractions) of polyhedral

products which are crucial to the results of this thesis.

Lemma 2.3.3 ([40]). (a) The polyhedral product (X,A)K is functorial with respect to the

category of simplicial complexes and simplicial inclusions and the category of a sequence

of topological spaces and continuous maps, respectively.

(b) For any non-empty subset J ⊆ [m], the polyhedral product (X,A)K retracts off

(X,A)KJ .

We give a remark regarding to maps between polyhedral products induced by simplicial

inclusions.

Remark 2.3.4. Since the definition of a polyhedral product relies on the vertex set of K,

if L is a subcomplex of K, then there are two types of polyhedral products associated

to L. The usual notation (X,A)L denotes the polyhedral product defined on the vertex

set V (L) and we use (X,A)L to denote the polyhedral product obtained by taking L

on the vertex set V (K), i.e., allowing the ghost vertices due to L being a subcomplex

of K. Both these two spaces (X,A)L and (X,A)L are subspaces of (X,A)K . The maps

induced by simplicial inclusions considered in Lemma 2.3.3 are from (X,A)L to (X,A)K .
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Next we introduce the polyhedral smash product. The smash product X ∧ Y is a

quotient space X × Y/X ∨ Y and the smash product X1 ∧ . . . ∧Xm is a quotient space

(X1 × . . .×Xm)/(X, ∗)∂∆m−1
. The join X ∗ Y of two based spaces is ΣX ∧ Y .

Definition 2.3.5. The polyhedral smash product of a simplicial complex K and m

topological pairs (X,A) is defined as

(X,A)∧K =
⋃
σ∈K

(X,A)∧σ

where (X,A)∧σ = Y1 ∧ . . . ∧ Ym and Yi = Xi if i ∈ σ and Yi = Ai if i /∈ σ.

2.3.1 Homotopy decompositions

A classical splitting of a product space X1× . . .×Xm is given by ([38, Proposition 7.7.6])

Σ(X1 × . . .×Xm)
'−→ Σ

∨
I⊆[m]

X∧I

where I goes through non-empty subsets of [m].

In [3], Bahri, Bendersky, Cohen, Gitler proved that this splitting induces a splitting of

polyhedral product.

Theorem 2.3.6 ([3]). Let K be a simplicial complex on [m]. Then there exists a ho-

motopy equivalence

Σ(X,A)K ' Σ
∨
I⊆[m]

(X,A)∧KI

when (X,A) consists of m pairs of connected, based CW-complexes.

Interesting families of (X,A)K include the spaces such that either each Xi or Ai is

contractible, which covers the cases of moment-angle complexes and Davis-Januszkiewicz

spaces.

Theorem 2.3.7 ([3]). Let Xi and Ai be closed CW complexes for all i. There are

homotopy equivalences in the following cases:

(a) if the inclusion Ai −→ Xi is null homotopic, then

Σ(X,A)K ' Σ(
∨
I∈K

X∧I)

(b) if all Xi are contractible, then

Σ(X,A)K ' Σ(
∨
I /∈K

|KI | ∗A∧I)

where |KI | is the geometrical realisation of the full subcomplex KI = {σ ∩ I | σ ∈ K}.
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Furthermore, Grbić and Theriault [23] proved that Theorem 2.3.7(b) can be desuspended

for (CX,X)K when K is shifted. A simplicial complex K is shifted if there exits an

order � on its vertex set V (K) such that when σ = {i1, . . . , il} ∈ K, then for every

σ′ = {j1, . . . , jl} satisfying jt � it, (1 ≤ t ≤ l), σ′ also belongs to K. A typical example

of shifted complexes is the k-skeleton ∆k
m of a simplex, which contains all the subsets of

[m] with cardinality less than or equal to k + 1.

Theorem 2.3.8 ([23]). Let K be a simplicial complex on [m]. If K is shifted, then there

exists a homotopy equivalence

(CX,X)K ' (
∨
I /∈K

|KI | ∗X∧I).

This generalised a result of Porter [36] for a homotopy decomposition (CX,X)∆k
m .

Theorem 2.3.9 ([23, 36]). The homotopy type of (CX,X)∆k
m is the wedge

(CX,X)∆k
m '

m∨
j=k+2

( ∨
1≤i1<...<ij≤m

(
j − 1

k + 1

)
Σk+1Xi1 ∧ . . . ∧Xij

)
.

2.3.2 Diagrams of spaces

Let CAT(K) be the face category of K whose objects are faces of K and morphisms are

inclusions, let Top be the category of topological spaces and let CW∗ be the category of

connected, based CW-complexes.

Definition 2.3.10. A CAT(K)-diagram of spaces is a functor F from the face category

CAT(K) to the category of topological spaces.

In most cases, we are working in the category of connected, based CW complexes. For

two faces σ ⊆ τ of K, denote by iσ,τ : σ −→ τ the face inclusion and F (iσ,τ ) : F (σ) −→
F (τ) the corresponding map between spaces F (σ) and F (τ). We would like to describe

the spaces of colimit and homotopy colimit of F . Since a functor preserves the identity

morphisms and compositions of morphisms, the colimit of a CAT(K)-diagram F is the

following space.

Definition 2.3.11. Let F be a CAT(K)-diagram of CW complexes. Then the colimit

of F is the disjoint union
∐
σ∈K

F (σ) with certain identifications

colimF =
∐
σ∈K

F (σ)/ ∼

where x ∼ F (iσ,τ )(x) for which x ∈ F (σ) and all possible σ ⊆ τ with the face inclusion

iσ,τ : σ −→ τ .
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Next we describe a construction of homotopy colimit for a CAT(K)-diagram F , fol-

lowing a construction of the homotopy colimit in [3, 42] for a diagram P −→ CW∗,

where P is a poset (partially ordered set). A CAT(K)-diagram F is equivalent to a

diagram from a poset K̄ to CW∗, where K̄ denotes the poset associated to K which

has elements consisting of faces of K, ordered by the reverse inclusion. Then the con-

struction hocolim
σ∈K

F (σ) relies on the order complex ∆(K̄), which is ConeK ′, the cone on

the barycentric subdivision of K (Definition 2.1.9, 2.1.11). We adapt the construction

in [3, Section 4] of homotopy colimit for a diagram P −→ CW∗ to a CAT(K)-diagram

F , since objects and morphisms in CAT(K) form a poset which is exactly K̄.

Recall that ConeK ′ has a vertex set {σ ∈ K} (Definition 2.1.9) including the empty

face. For σ ∈ K, denote by X(σ) the full subcomplex of ConeK ′ on the vertex set

{τ ∈ K | σ ⊆ τ}. For faces σ ⊆ τ of K, then X(τ) is a subcomplex of X(σ) and denote

by jτ,σ : X(τ) −→ X(σ) the simplicial inclusion. Note that X(∅) = ConeK ′. With a

CAT(K)-diagram F and a subface σ of τ , there are two types of related maps α and β

defined by

α = id× F (iσ,τ ) : X(τ)× F (σ) −→ X(τ)× F (τ)

β = jτ,σ × id : X(τ)× F (σ) −→ X(σ)× F (σ).

Definition 2.3.12. Given a CAT(K)-diagram F of based CW complexes, the homotopy

colimit of F is a disjoint union
∐
σ∈K

X(σ)× F (σ) after identifications

hocolim
σ∈K

F = (
∐
σ∈K

X(σ)× F (σ))/ ∼ (2.12)

where (x, u) ∼ (x′, u′) whenever α(x, u) = β(x′, u′).

Recall that T σ = {(t1, . . . , tm) ∈ Tm | tj = 1 if j /∈ σ} is a |σ|-torus for σ ⊆ [m]. Thus

the quotient group Tm/T σ = {(t1, . . . , tm) ∈ tm | tj = 1 if j ∈ σ} is an (m− |σ|)-torus.

For σ ⊆ τ ⊆ [m], there exists a quotient map Tm/T σ −→ Tm/T τ projecting tj to 1 if

j ∈ τ but j 6∈ σ.

I will show that the moment-angle complex provides a candidate for the homotopy

colimit of the CAT(K)-diagram D′(σ) = Tm/T σ.

Example 2.3.13 (moment-angle complex). Consider a CAT(K)-diagram D′ defined by

D′(σ) = Tm/T σ with quotient maps Tm/T σ −→ Tm/T τ for σ ⊆ τ of K. We describe

the homotopy colimit of D′ by (2.12). First, for every σ ∈ K, we have X(σ) × F (σ) ⊆
X(∅)× F (∅). We conclude that every element (x,u) from X(σ)× F (σ) is equivalent to

the same element (x,u) in X(∅)× F (∅) by considering the two types of maps α and β

corresponding to ∅ ⊆ σ. Thus hocolim
σ∈K

D′ ' X(∅)×F (∅)/ ∼. To describe the equivalence

relation on X(∅) × F (∅), we rely on the transitive property of an equivalence relation.

That is to say, (x,u) ∼ (x′,u′) in X(∅) × F (∅) if and only if there exists σ ∈ K and

an element (y,v) ∈ X(σ)× F (σ) such that (x,u) ∼ (y,v) and (y,v) ∼ (x′,u′). In this
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way, we have x = y = x′ and uj = u′j for j 6∈ σ, where uj and u′j are the j-th coordinate

of u and u′ respectively. Note that uj = u′j for j 6∈ σ if and only if u−1u′ ∈ T σ. Then,

we have

hocolim
σ∈K

D′ ' ConeK ′ × Tm/ ∼ (2.13)

where (x,u) ∼ (y,u′) if and only if for some σ ∈ K, x = y ∈ X(σ) and u−1u′ ∈ T σ.

We see that the space ConeK ′×Tm/ ∼ (2.13) coincides with the alternative construction

of moment-angle complexes ZK defined in Definition 2.2.8, which implies the following

statement.

Lemma 2.3.14. The colimit of D : CAT(K) −→ CW∗ by D(σ) = (D2, S1)σ is homotopy

equivalent to its homotopy colimit

ZK = colim
σ∈K

(D2, S1)σ ' hocolim
σ∈K

Tm/T σ.

Proof. We denote by the relation ∼1 in (2.13) and the relation ∼2 in Definition 2.2.8 and

show that these relations coincide. Let x ∈ X(σ) and t, t′ ∈ Tm such that t−1t′ ∈ T σ.

Since X(σ) is the full subcomplex of ConeK ′ on the set {τ ∈ K | σ ⊆ τ}, there is a

unique face F(τi) (τ0 ( . . . ( τl) such that x ∈ intF(τi) and σ ⊆ τ0. Thus t−1t′ ∈ T τ0 so

that (x, t) ∼2 (x, t′). On the other hand, let (x, t) ∼2 (x, t′), i.e., there exists a unique

face F(σi) ∈ ConeK ′ such that x ∈ intF(σi) and t−1t′ ∈ T σ0 . Let σ = σ0. So x ∈ X(σ)

and t−1t′ ∈ T σ which implies (x, t) ∼1 (x, t′).

Let Λ: Tm −→ Tm−r be a homomorphism of tori induced by a surjective linear map

Zm −→ Zm−r. Consider the diagram E′ : CAT(K) −→ CW∗ by E′(σ) = Tm−r/Λσ and

quotient maps Tm−r/Λσ −→ Tm−r/Λτ for σ ⊆ τ ∈ K and Λσ denotes the image of T σ

in Tm−r by Λ. Following the argument in Example 2.3.13, we recover the quotient of

ZK as a homotopy colimit of E′.

Example 2.3.15 (quotients of ZK). The homotopy colimit of the CAT(K)-diagram E′

is given by

hocolim
σ∈K

E′(σ) ' ZK/KerΛ

where (x, t1) ∼ (y, t2) if and only if x = y ∈ intF(σi) and t−1
1 t2 ∈ Λσ0 .

In particular, if H = KerΛ satisfies H ∩ T σ = {1} for any σ ∈ K, then E′(σ) =

Tm−r/Λσ ∼= Tm/(T σ×H). This is the case of particular interest to consider free subtorus

actions on ZK in Chapter 4.

In general, a polydedral product (X,A)K and a polyhedral smash product (X,A)∧K

have their associated CAT(K)-diagrams.
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Definition 2.3.16. Let K be a simplicial complex on [m] and (X,A) be m pairs of

spaces.

(a) Define a polyhedral functor P : CAT(K) −→ Top by P (σ) = (X,A)σ and the inclu-

sion (X,A)σ −→ (X,A)τ for σ ⊆ τ ∈ K.

(b) Analogously, define a polyhedral smash functor P̂ : CAT(K) −→ Top by P̂ (σ) =

(X,A)∧σ and the inclusion (X,A)∧σ −→ (X,A)∧τ for σ ⊆ τ ∈ K.

Thus we have (X,A)K =
⋃
σ∈K

(X,A)σ = colim
σ∈K

P (σ) and (X,A)∧K =
⋃
σ∈K

(X,A)∧σ =

colim
σ∈K

P̂ (σ).

Under certain conditions, the homotopy types of colimF and hocolimF coincide.

Theorem 2.3.17 ([3]). Let K be a simplicial complex on [m] and (X,A) be m pairs of

connected based CW-complexes. Let P be a polyhedral functor defined by P (σ) = (X,A)σ

for σ ∈ K. Then there exists a homotopy equivalence

colimP (σ) ' hocolimP (σ).

Example 2.3.18. Consider the diagram DJ : CAT(K) −→ CW∗ by DJ(σ) = (BS1, ∗)σ

and the inclusion (BS1, ∗)σ −→ (BS1, ∗)τ for σ ⊆ τ ∈ K. Then the Davis-Januszkiewicz

space DJK = (BS1, ∗)K = colim
σ∈K

DJ(σ) ' hocolim
σ∈K

DJ(σ).

To summarise, we have considered a few diagrams from CAT(K) to CW∗. Let H be a

subtorus of Tm such that H ∩ T σ = {1} for every σ ∈ K. For faces σ ⊆ τ of K, these

diagrams are defined as follows.

Example 2.3.19. Here are a few diagrams which will be studied in the next section to

obtain homotopy fibrations.

D(σ) = (D2, S1)σ with inclusions (D2, S1)σ −→ (D2, S1)τ ,

D′(σ) = Tm/T σ with quotient maps Tm/T σ −→ Tm/T τ ,

E(σ) = (D2, S1)σ/H with induced quotient maps (D2, S1)σ/H −→ (D2, S1)τ/H,

E′(σ) = Tm/(T σ ×H) with quotient maps Tm/(T σ ×H) −→ Tm/(T τ ×H),

DJ(σ) = (BS1, ∗)σ with inclusions (BS1, ∗)σ −→ (BS1, ∗)τ .

Note that each space (D2, S1)σ is an H-invariant subspace of ZK (Lemma 4.5.1).

2.3.3 Fibration sequences

The purpose of this section is to get homotopy fibrations by applying Puppe’s the-

orem [37] to CAT(K)-diagrams. Our exposition below follows a description due to [18,

p.180].
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Let E be a CAT(K)-diagram of spaces and let B be a fixed space. By a map f : E −→ B

bewteen E and B, we mean that f is a natural transformation from E to Top with a

constant evaluation f(σ) = B for every σ ∈ E . With a map from E to a fixed space B,

there exists an associated diagram of fibres by taking the objectwise homotopy fibre.

Definition 2.3.20. Let E be a CAT(K)-diagram of spaces, let B be a fixed space

and f : E −→ B be a map bewteen E and B. A CAT(K)-diagram Fibf of fibres is

defined by taking Fibf (σ) to be the homotopy fibre of fσ : E(σ) −→ B and morphisms

Fibf (σ) −→ Fibf (τ) to be the corresponding maps between fibres induced by the map

E(σ) −→ E(τ) for σ ⊆ τ in K.

Given a map f from a CAT(K)-diagram E to a fixed space B, there are two topological

spaces associated. One is the homotopy fibre of an induced map f̄ : hocolim
σ∈K

E(σ) −→ B

and another one is hocolim
σ∈K

Fibf (σ), the homotopy colimit of the CAT(K)-diagram of

fibres induced by f . Puppe’s theorem states when these two spaces have the same

homotopy type.

Theorem 2.3.21 ([37, 18]). Let E be a CAT(K)-diagram of spaces, let B be a fixed

connected space and let f : E −→ B be any map bewteen E and B. Assume that for

σ ⊆ τ in CAT(K), the following diagram is commutative

E(σ) E(τ)

B B.

Then the homotopy fibre of the induced map f̄ : hocolim
σ∈K

E(σ) −→ B is homotopy equi-

valent to the homotopy colimit of a CAT(K)-diagram Fibf of fibres.

To explain the next statement, we recall a fact [30, p.212] that if H is a closed connected

subgroup of G, then H ↪→ G
π−→ G/H = {gH | g ∈ G} is a fibration (in fact it is

a principal H-bundle). Let π : G −→ G/H denote the “type” of quotient maps. Here

“type” means all quotient maps from a group G to its left coset space G/H with H 6 G.

So if H1 and H2 are two subtori of Tm satisfying that H1 ∩H2 = {1}, then there is a

fibration

(H1 ×H2)/H2 −→ Tm/H2 −→ Tm/(H1 ×H2)

by taking (H1 × H2)/H2 as a closed subgroup of Tm/H2 which has a quotient group

isomorphic to Tm/(H1×H2). Moreover, since we assume that H1 ∩H2 = {1}, then the

composite H1
i1−→ H1 ×H2

π−→ (H1 ×H2)/H2 is a goup isomorphism. Thus, there is a

fibration

H1
α−→ Tm/H2 −→ Tm/(H1 ×H2)

where α is the composite H1 ↪→ Tm
π−→ Tm/H2.
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As H1 is a subtorus of Tm, we have a fibration H1
i
↪→ Tm −→ Tm/H1. Then the

quotient map Tm −→ Tm/H2 gives a commutative diagram of fibrations

H1 Tm Tm/H1

H1 Tm/H2 Tm/(H1 ×H2).

i

π π

α

(2.14)

Moreover, there is a fibration G/H −→ BH −→ BG ([16, Proposition 2.15]) if H is a

subgroup of G. Then (2.14) gives rise to a homotopy commutative diagram of fibrations

Tm/H1 BH1 BTm

Tm/(H1 ×H2) BH1 B(Tm/H2).

π

Bi

Bπ

Bα

Lemma 2.3.22. Let H be a subtorus of Tm of rank r satisfying H ∩ T σ = {1} for

every σ ∈ K. Then the quotient map ZK
q−→ ZK/H makes the following diagram of

homotopy fibrations commutative up to homotopy

ZK DJK BTm

ZK/H DJK B(Tm/H)

q

j

Bπ

(Bπ)◦j

where j is a canonical inclusion.

Proof. If H ∩ T σ is trivial for every σ ∈ K, then we have a diagram of fibrations

Tm/T σ BT σ BTm

Tm/(T σ ×H) BT σ B(Tm/H).

Bπ (2.15)

Consider the Davis-Januszkiewicz space as DJK = (BS1, ∗)K ' hocolim
σ∈K

BT σ. The in-

clusion jσ : BT σ −→ BTm and its composition with the quotient map πjσ : BT σ −→
B(Tm/H), give two maps from a CAT(K)-diagram DJ (Example 2.3.19) to fixed

spaces BTm and B(Tm/H), respectively. By the fibre bundles (2.15), the CAT(K)-

diagrams D′ and E′ (Example 2.3.19) are the induced CAT(K)-diagrams of fibres for

(BS1, ∗)K j−→ BTm and (BS1, ∗)K (Bπ)◦i−→ B(Tm/H), respectively. Objectwise, the

quotient map D′(σ) −→ E′(σ) is the induced map between fibres.

Note that these two maps j and (Bπ) ◦ j satisfy the condition in Puppe’s theorem.

A direct consequence of Puppe’s theorem is that hocolim
σ∈K

D′(σ) and hocolim
σ∈K

E′(σ) are

the homotopy fibres of maps DJK
j−→ BTm and DJK

(Bπ)◦j−→ B(Tm/H), respectively.



31

According to the construction (2.12) of the homotopy colimit, the objectwise quotient

map D′(σ) −→ E′(σ) will induce a quotient map between X(∅)×D′(σ)/ ∼ and X(∅)×
E′(σ)/ ∼. By Examples 2.3.13 and 2.3.15, these candidates (2.12) of the homotopy

colimit of D′ and E′ are homeomorphic to ZK and ZK/H. When we replace X(∅) ×
D′(σ)/ ∼ and X(∅) × E′(σ)/ ∼ by ZK and ZK/H due to the homeomorphism, the

quotient map between X(∅) × D′(σ)/ ∼ and X(∅) × E′(σ)/ ∼ induces the quotient

map between ZK and ZK/H, since X(∅) × D′(σ)/ ∼ and ZK are H-equivariantly

homeomorphic.

Remark 2.3.23. It can be shown that if K does not have ghost vertices, then these

two fibration sequences in Lemma 2.15 splits after loop because of the existence of

sections in both cases. The long exact sequence of homotopy groups associated to

ZK/H −→ DJK −→ B(Tm/H) implies that ZK/H is simply-connected.

Homological consequences. In [34, 35], Panov proved that the Eilenberg-Moore

spectral sequences associated to these two fibration sequences ZK −→ DJK −→ BTm

and ZK/H −→ DJK −→ B(Tm/H) collapse at the E2-term if H satisfies the condition

in Lemma 2.3.22. The cohomologies of ZK and ZK/H follow.

Theorem 2.3.24 ([34, 35]). Let H be a subtorus of Tm such that H ∩ T σ = {1} for

every σ ∈ K. Then there are isomorphisms of R-algebras

H∗(ZK ;R) ∼= TorR[m](R[K], R);

H∗(ZK/H;R) ∼= TorH∗(B(Tm/H);R)(R[K], R).

We recall that the inclusion (BS1, ∗)K −→ BTm induces the quotient homomorphism

on their cohomologies. More details of this Tor-algebra TorH∗(B(Tm/H);R)(R[K], R) will

be considered in Section 4.3.

Proposition 2.3.25 ([10]). The cohomology ring H∗(DJK ;R) of Davis-Januszkiewicz

spaces is isomorphic to the Stanley-Reisner ring R[K]. The inclusion (BS1, ∗)K j−→
BTm induces a quotient homomorphism between their cohomologies

j∗ : R[v1, . . . , vm] −→ R[K] = R[v1, . . . , vm]/IK

where IK is the Stanley-Reisner ideal.

Hence, the moment-angle complex provides a topological model of the Tor-algebra

TorR[m](R[K], R), which makes it possible to study combinatorial algebras by topological

techniques. For instance, the homotopy splitting ΣZK ' Σ|J |+2
∨
J /∈K
|KJ | (Theorem 2.3.7)

implies a decomposition of R-modules

H i(ZK ;R) ∼=
⊕
J⊆[m]

H̃ i−|J |−1(KJ ;R).
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Grbić-Theriault [22] proved that the homotopy type of ZK for shifted complexes is a

wedge of spheres. It is a topological version of the algebraic statement that if K is

shifted, then all multiplications in TorR[m](R[K], R) vanish.

It has been stated in Section 2.1 that there are standard differential graded algebras,

Koszul algebra and Taylor algebra, such that their cohomolgy algebras are algebraically

isomorphic to TorR[m](R[K], R). In Section 4.3, we will apply the corresponding Koszul

algebra and Taylor algebra to TorH∗(B(Tm/H);R)(R[K], R), to calculate the cohomology

of ZK/H.

2.3.4 Homotopy pushouts

We consider the topological pushout among polyhedral products induced by a pushout

of simplicial complexes. Let K1 and K2 be two simplicial complexes on [m1] and [m2].

Then there is a pushout of simplicial complexes

K1 ∩K2 K2

K1 K1 ∪K2.

(2.16)

If L is a subcomplex of K, let (X,A)L denote the polyhedral product which includes

ghost vertices of L in K. Say K1 ∪K2 has m vertices and take K1 ∩K2, K1 and K2 are

subcomplexes of K1 ∪K2 on V (K1 ∪K2). With this, we have a topological pushout.

Lemma 2.3.26 ([40]). There is a pushout of topological spaces

(X,A)K1∩K2 (X,A)K2

(X,A)K1 (X,A)K1∪K2

(2.17)

where all maps among these spaces are induced by corresponding simplicial inclusions.

Example 2.3.27. Let K1 = 2 3

1

and K2 = 2 3

4

. Then K1 ∩K2 is a disjoint

union of two points and K1 ∪K2 is a boundary of a square. In this case,

(X,A)K1∩K2 = A1 × (X2 ×A3 ∪A2×A3 A2 ×X3)×A4

(X,A)K1 = X1 × (X2 ×A3 ∪A2×A3 A2 ×X3)×A4

(X,A)K2 = A1 × (X2 ×A3 ∪A2×A3 A2 ×X3)×X4.

The polyhedral product (X,A)K1∪K2 is a union of (X,A)K1 and (X,A)K2 over the

intersection (X,A)K1∩K2 .
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Homotopy pushouts of fibres. Here we rely on the cube lemma [29] to obtain a

homotopy pushout among fibres.

Lemma 2.3.28 (cube lemma [29, 2]). Consider a cube diagram whose faces are homo-

topy commutative.

A′

~~

//

��

B′

��

~~
C ′ //

��

D′

��

A

~~

// B

}}
C // D

If the bottom square A−B−C−D is a homotopy pushout and all four sided square are

homotopy pullbacks, then the top square A′ −B′ −C ′ −D′ is also a homotopy pushout.

Given a map D −→ Z, there is a commutative diagram

A B

C D

Z.

A special case of cube lemma observes that the top square A′−B′−C ′−D′ is obtained

by taking the homotopy fibre, respectively, through mapping each A,B,C,D into a fixed

space Z given a map D −→ Z. So that, if A−B −C −D is a homotopy pushout, then

the square of fibres on the top A′ −B′ − C ′ −D′ is a homotopy pushout too.

In particular, Lemma 2.3.26 provides a pushout square specialising to Davis-Januszkiewicz

spaces DJK = (BS1, ∗)K . Since (BS1, ∗) is a pair of CW complexes, the maps between

Davis-Januszkiewicz spaces induced by simplicial inclusions are cofibrations. So this

pushout (2.17) in terms of Davis-Januszkiewicz spaces is also a homotopy pushout.

Mapping (BS1, ∗)K to BTm and B(Tm/H) as in Lemma 2.3.22, we have the homotopy

fibres ZK and ZK/H. Hence by cube lemma, there are two homotopy pushouts in terms

of moment-angle complexes ZK and their quotients ZK/H and the maps among them

are induced by simplicial inclusions in (2.16). Under the assumption of Lemma 2.3.22,

the next statement follows.
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Lemma 2.3.29. Let K = K1 ∪K2 on [m]. Suppose that H is a subtorus of Tm such

that H ∩ T σ = {1} for any σ ∈ K. There is a commutative cube diagram

ZK1∩K2

xx

//

��

ZK2

��

zz
ZK1

//

��

ZK

��

ZK1∩K2
/H

xx

// ZK2
/H

zz
ZK1

/H // ZK/H

where the top and bottom are homotopy pushouts, whose maps are induced by simplicial

inclusions (2.16) and all vertical map are quotient maps.

Example 2.3.30. Let K be the following simplicial complex with K1 and K2 pictured

below. Consider the diagonal S1-action on ZK .

K

1

2 3

4

K1

1

2

4

K2

1

3

4

In this case, we have the following spaces (up to homotopy)

ZK1∩K2
' S1 × S1, ZK1∩K2

/S1
d ' S1, ZKi

' S1 × S5, ZKi
/S1

d ' S5, i = 1, 2.

The diagram in Lemma 2.3.29 indicates a homotopy commutative diagram by a replace-

ment of spaces due to homotopy equivalences

S1 × S1

∗×id

yy

id×∗ //

��

S1 × S5

��

yy
S5 × S1 //

��

ZK

��

S1

∗

yy

∗ // S5

yy
S5 // ZK/S1

d

where the top and bottom square are homotopy pushout. Since the fundamental group

π1(S5) is trivial, the homotopy types of ZK and ZK/S1
d are

ZK ' S1 ∗ S1 ∨ (S1 n S5) ∨ (S5 o S1) and ZK/S1
d ' S2 ∨ 2S5.

We will continue to consider the homotopy types of Z∆k
m
/S1

d by taking a pushout of

simplicial complexes in Section 4.5.2 .



Chapter 3

Representation stability of

polyhedral products

The content of this chapter is to be published as a joint article [20] with my supervisor

Jelena Grbić. The idea to study representation stability was motivated from the lectures

given by Benson Farb at the conference Young Topologist Meeting in Stockholm 2017.

I started to consider the representation stability of the cohomology of moment-angle

complexes corresponding to m disjoint points. My supervisor suggested to generalise it

to polyhedral products which led us to work together on this project.

Moment-angle complexes ZK = (D2, S1)K are considered as spaces on which a torus T l,

l ≤ m acts. The action of the torus is induced by an S1-action on (D2, S1). Extens-

ive literature exists on the study of this action. The problem we are studying is how

symmetries of a simplicial complex K influence the symmetries of the moment-angle

complex ZK .

Church and Farb [15] introduced the theory of representation stability. The goal of

representation stability is to provide a framework for generalising the classical homology

stability to situations when each vector space Vm has an action of the symmetric group

Σm (or other natural families of groups). We initiate the study of representation stability

to toric topology.

If a finite group G acts simplicially on a simplicial complex K, then that action induces

a G-action on polyhedral products, in particular on the moment-angle complex ZK .

Notice that by acting simplicially on a simplicial complex K on m vertices, G is a

subgroup of the symmetric group Σm.

In this chapter we study Σm-representation stability of polyhedral products. We start by

analysing G-equivariant properties of the stable homotopy decomposition of moment-

angle complexes ZK [26, 9] and polyhedral products (X,A)K [3]. These homotopy

35
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decompositions induce kG-module decompositions of the cohomology of moment-angle

complexes and polyhedral products, respectively.

Specialising to G = Σm, we describe several non-trivial constructions of families of sim-

plicial Σm-complexes K = {Km} (see Constructions 3.4.7 and 3.4.8) and describe condi-

tions on these families which together with decomposition (3.1) and Hemmer’s result [25]

imply uniform representation stability of Σm-representation of {H̃∗((X,A)Km ; k)} (see

Theorem 3.4.12 and Corollary 3.4.14). In the case of moment-angle complexes, we con-

struct a sequence of Σm-manifolds which are uniformly representation stable although

not homology stable (see Proposition 3.4.15).

The uniform representation stability influences the behaviour of the Betti numbers of

the i-th homology groups {H̃i((X,A)Km ;Q)} and we show that in this case their growth

is eventually polynomial with respect to m (see Theorem 3.5.3).

3.1 Irreducible representations of symmetric groups

We first collect definitions and properties of Σm-representations from [7, 21]. In this

section, let G be a finite group and let k be a field or Z.

Definition 3.1.1. The group algebra kG consists of elements of the form
∑
g∈G

agg, ag ∈ k,

with a k-bilinear product kG×kG −→ kG extended uniquely by the group multiplication

of G. A G-representation over k is a kG-module, i.e., a module over kG.

A G-representation over k can also be defined by a vector space V over k together with

a group action ρ : G × V −→ V such that ρ(g, a + b) = ρ(g, a) + ρ(g, b) for g ∈ G and

a, b ∈ V . We also write g · a to denote ρ(g, a).

Let H be a subgroup of G and let V be a kH-module. The homomorphism kH −→ kG

induced by H 6 G gives kG a right kH-module structure. Then the tensor product

kG⊗kH V is a kG-module by a(a′ ⊗kH x) = (aa′)⊗kH x, where a, a′ ∈ kG and x ∈ V .

Definition 3.1.2. We refer to IndGHV = kG ⊗kH V as an induced kG-module from a

kH-module V .

Since the H-action on G by right multiplication is free, kG is a free kH-module, with

a basis consisting of representatives of the left coset G/H. That is, as a kH-module,

kG ∼=
⊕

g∈G/H
g · kH, where g · kH = {

∑
h∈H

ah(gh), ah ∈ k}. It follows that kG⊗kH V has

a G-isomorphism

IndGHV = kG⊗kH V ∼=
⊕

g∈G/H

g · V
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where g · V denotes (g · kH) ⊗kH V and g · V ∼= V and the G-action on
⊕

g∈G/H
g · V is

a permutation of the summands by g · V g′7−→ (g′g) · V , induced by the G-action on the

left coset G/H by left multiplication, which is transitive.

On the other hand, suppose that N =
⊕
i∈I
Vi is a G-module and G acts transitively

permuting the summands (i.e., there exists a transitive G-action on I such that g · Vi =

Vg·i). The next statement implies N ∼= IndGHV for some H and a kH-module V .

Proposition 3.1.3 ([7]). Let N =
⊕
i∈I
Vi be a kG-module as above and V be one of the

summands Vi. Denote by H the isotropy group of i. Then V is an H-module and there

is an isomorphism of kG-modules N ∼= IndGHV .

A direct consequence of the above proposition follows.

Corollary 3.1.4 ([7]). Let N =
⊕
i∈I
Vi be a kG-module. Assume that the G-action

permutes the summands according to some action of G on I. Then there exists an

isomorphism of kG-modules

N ∼=
⊕
i∈E

IndGGiVi (3.1)

where E is a set of representatives of orbits of I and Gi is the stabiliser of i in G.

Definition 3.1.5. A G-complex is a CW-complex X together with a group action G

on it which permutes the cells.

A simplicial G-complex is a simplicial complex K on a vertex set [m] with a G-action on

[m] such that the induced action on subsets of [m] preserves K. Thus, the geometrical

realisation of a simplicial G-complex K is a G-complex.

Example 3.1.6 (Simplicial G-complexes). For a simplicial G-complex K, each chain

group Cn(K; k) is a direct sum of copies of k, each summand corresponding to an n-

simplex of K on which G acts. Denote by Gσ the stabiliser of σ, and let En be a set of

representatives of the G-orbits of n-simplices of K. Thus, by (3.1),

Cn(K; k) ∼=
⊕
σ∈En

IndGGσk.

Definition 3.1.7. A kG-module is irreducible if the only G-invariant submodules are 0

and V itself.

Proposition 3.1.8 ([21]). Let k be a field of characteristic zero. For a kG-module V ,

there is a unique decomposition up to isomorphism

V ∼= V ⊕a11 ⊕ . . .⊕ V ⊕akk

where the Vi are non-isomorphic irreducible kG-modules and these ai are multiplicities

of Vi in V .
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A kG-module is a G-representation over k. Now we focus on irreducible representations

of symmetric groups Σm, in order to study the Σm-representation stability. A partition

λ ` m of m is a sequence λ = (λ1, . . . , λl) where λ1 ≥ λ2 ≥ . . . ≥ λl ≥ 1 and
l∑

i=1
λi = m.

The number l is called the length of λ.

Definition 3.1.9. A Young diagram associated to a partition λ = (λ1, . . . , λl) ` m is

m boxes with l rows and each i-th row contains λi boxes.

For example, let λ = (4, 2, 1) ` 7. Then its associated Young diagram is .

The canonical tableau on a given Young diagram is numbering each box consecutively

by 1, . . . ,m as shown
1 2 3 4
5 6
7 (3.2)

Construction 3.1.10 ([21]). For a canonical tableau on a given Young diagram, let

Pλ = {g ∈ Σm | g preserves each row} and Qλ = {g ∈ Σm | g preserves each column}.
Then define aλ and bλ in kΣm by

aλ =
∑
g∈Pλ

g and bλ =
∑
g∈Qλ

sgn(g)g

The Young symmetrizer is defined by cλ = aλbλ in kΣm.

For example, in (3.2), these two associated groups Pλ and Qλ are isomorphic to Σ4×Σ2

and Σ3 × Σ2, respectively.

Theorem 3.1.11 ([21]). Let k be a field of characteristic 0 and let Vλ = (kΣm)cλ. Then

Vλ is irreducible and each irreducible representation of Σm is given by Vλ for a unique

partition λ.

Definition 3.1.12. If given any partition λ = (λ1, . . . , λl) ` k, then for m ≥ λ1 + k,

the partition λ[m] = (m − k, λ1, . . . , λl) is called padded partition. Its corresponding

irreducible representation is denoted by V (λ)m.

Let λ ` k and let Vλ be the corresponding irreducible Σk-representation. For m ≥ k, Vλ

can be seen as a (Σk×Σm−k)-representation by a trivial Σm−k-action, which is denoted

by Vλ�k. Since Σk ×Σm−k is a subgroup of Σm, Pieri’s formula gives a decomposition

of its induced Σm-representation.

Proposition 3.1.13 (Pieri’s formula [21]). Let k be a field of characteristic zero. Then

for m ≥ k, the induced Σm-representation IndΣm
Σk×Σm−k

Vλ � k has a decomposition

IndΣm
Σk×Σm−k

Vλ � k = ⊕
µ`m

Vµ
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where µ goes over the partitions whose Young diagram is obtained by adding m−k boxes

to the Young diagram of λ such that no two boxes are in the same column.

Example 3.1.14. Let λ = (4, 2, 1) ` 7. Then by Pieri’s formula,

IndΣ8
Σ7×Σ1

Vλ � k = V(5,2,1) ⊕ V(4,3,1) ⊕ V(4,2,2) ⊕ V(4,2,1,1)

IndΣ9
Σ7×Σ2

Vλ � k = V(6,2,1) ⊕ V(5,3,1) ⊕ V(5,2,2) ⊕ V(5,2,1,1) ⊕ V(4,4,1) ⊕ V(4,3,2) ⊕ V(4,3,1,1) ⊕ V(4,2,2,1).

3.2 kG-module structures on H∗(ZK ; k)

Let k be a field or Z, let G be a finite group, and let K be a simplicial G-complex.

We will describe G-actions on the moment-angle complex ZK induced by a simplicial

G-action on K.

Recall the cellular decomposition of a moment-angle complex ZK in Section 2.2. A cell

of ZK denoted by κ(L, I) for which I ∈ K is equal to e1 × . . .× em in D2m, where ei is

the 2-dimensional cell e2 if i ∈ I, ei is the 1-dimensional cell e1 if i ∈ L, and ei is the

point e0 if i ∈ [m] \ (I ∪ L).

We start by showing that if K is a simplicial G-complex, the corresponding moment-

angle complex ZK is a G-complex. Let 2[m] be the power set of [m]. Then the G-action

on K can be extended to an action Φ on 2[m]. Specifically, Φ: G× 2[m] −→ 2[m] is given

by Φ(g, {i1, . . . , il}) = {g · i1, . . . , g · il}, where g ∈ G and {i1, . . . , il} ⊂ [m].

The simplicial G-action on K induces a G-action on ZK , ρ : G× ZK −→ ZK , through

homeomorphisms of ZK given by

ρg · (z1, . . . , zm) = (zg·1, . . . , zg·m). (3.3)

Lemma 3.2.1. For a simplicial G-complex K, the moment-angle complex ZK is a G-

complex.

Proof. A cell κ(L, I), I ∈ K of ZK is mapped by g ∈ G to g · κ(L, I) = κ(g · L, g · I)

which is again a cell of ZK as a simplicial G-action maps simplices to simplices and

non-simplices to non-simplices. Thus, ZK is a G-complex.

The orientation on a cell κ(L, I) is given by the orientation of I as an oriented simplex

of ∆m−1 up to multiple ε(I, I∪L). Cochains κ(L, I)∗ corresponding to the oriented cells

κ(L, I) form the basis of cochains of ZK . Each g ∈ G defines a bijection on the cochain

basis by g · κ(L, I)∗ = ε(g, L)κ(g ·L, g · I)∗ where ε(g, L) is a sign induced by the action

of g on L defined to be 1 if g preserves the orientation of L and −1 otherwise. With

σ ⊆ L and both σ and L written in an increasing order, denote by ε(σ, L) =
∏
j∈σ

ε(j, L),

where ε(j, L) = (−1)r−1 if j is the r-th element of L.
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Lemma 3.2.2. Observe that ε(g, L) satisfies the following identity,

ε(σ, L)ε(g, L \ σ) = ε(g, σ)ε(g, L)ε(g · σ, g · L). (3.4)

In particular, if |σ| = 1, say j ∈ L then (3.4) implies that

ε(j, L)ε(g, L \ {j}) = ε(g, L)ε(g · j, g · L). (3.5)

Proof. Assume that L = {j1, · · · , jl} with j1 < · · · < jl. Let r(g, L) be the number of

permutations such that {g · j1, · · · , g · jl} written in an increasing order. Then ε(g, L) =

(−1)r(g,L). Let r(σ, L) = Σ
i∈σ
r(i, L), where r(i, L) is the position of i in L with L an

increasing order. We have ε(σ, L) = (−1)r(σ,L)−|σ|. There are r(σ, L)− |σ| permutations

such that L is written as a disjoint union σ t (L \ σ) with σ and L \ σ in an increasing

order respectively. The number of permutations such that g · σ and g · (L \ σ) being

increasing order respectively is given by r(g, σ) + r(g, L \ σ). We illustrate it in the

following diagram, assuming that all sets appeared in the following diagram are written

in an increasing order,

L σ t (L \ σ) g · σ t g · (L \ σ)

g · L g · L

r(σ,L)−|σ|

r(g,L)

r(g,σ)+r(g,L\σ)

r(g·σ,g·L)−|σ|

=

where each number along with each arrow is the number of necessary permutations.

Therefore,

ε(g, L) = (−1)r(g,L) = (−1)r(σ,L)−|σ|+r(g,σ)+r(g,L\σ)+r(g·σ,g·L)−|σ|

= ε(σ, L)ε(g, σ)ε(g, L \ σ)ε(g · σ, g · L).

Lemma 3.2.3. Let K be a simplicial G-complex. The cellular cochain complex C∗(ZK)

is a cochain complex of G-modules.

Proof. The coboundary operation on C∗(ZK) is given by

δκ(L, I)∗ =
∑

j∈L, j∪I∈K
ε(j, L)κ(L \ {j}, {j} ∪ I)∗.

It is enough to show that the G-action commutes with the coboundary operator δ. As

δ(g · (κ(L, I)∗)) = δ(ε(g, L)κ(g · L, g · I)∗)

=
∑

j∈L, j∪I∈K
ε(g, L)ε(g · j, g · L)κ(g · L \ {g · j}, g · j ∪ g · I)∗
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and

g · (δ(κ(L, I)∗)) = g · (
∑

j∈L, j∪I∈K
ε(j, L)κ(L \ {j}, {j} ∪ I)∗)

=
∑

j∈L, j∪I∈K
ε(j, L)g · (κ(L \ {j}, {j} ∪ I)∗)

=
∑

j∈L, j∪I∈K
ε(j, L)ε(g, L \ {j})κ(g · L \ {g · j}, g · j ∪ g · I)∗

the result follows after applying (3.5).

Geometrizing the famous Hochster decomposition [26], Buchstaber and Panov [9, 34]

together with Baskakov [4] showed that H∗(ZK ; k) ∼=
⊕

J⊆[m]

H̃∗(KJ ; k) as k-algebras,

where KJ is the full subcomplex of K on J defined by KJ = {σ ∩ J | σ ∈ K}. We aim

to show that this is a kG-algebra isomorphism.

Lemma 3.2.4. Let K be a simplicial G-complex on [m]. Then for any subset J ⊆ [m]

and g ∈ G, the set g ·KJ = {g · σ | σ ∈ KJ} is the full subcomplex Kg·J .

Proof. Since KJ is a subcomplex of K, every subset τ of σ is in KJ if σ ∈ KJ . Hence

for σ ∈ KJ , every subset τ ′ of g · σ is g · τ for some τ ≤ σ and therefore is in g · KJ .

Thus g ·KJ is a subcomplex of K.

To check that g ·KJ is the full subcomplex Kg·J , we observe that g ·KJ = g · (K ∩ J) =

g ·K ∩ g · J = K ∩ g · J = Kg·J .

Denote by {i0, . . . , ip} an unoriented simplex in K and by [i0, . . . , ip] an oriented simplex

in K. For an oriented p-simplex σ = [i0, . . . , ip], let σ∗ = [i0, . . . , ip]
∗ denote the basis

cochain in Cp(K; k).

Next, we show that a simplicial G-action on K induces a G-action on
⊕

J⊆[m]

H̃∗(KJ ; k).

Lemma 3.2.5. Let K be a simplicial G-complex. For every g ∈ G and J ⊆ [m],

g · H̃∗(KJ ; k) = H̃∗(Kg·J ; k).

Proof. Let σ = [i0, . . . , ip] be an oriented simplex in KJ and σ∗ be the corresponding

base cochain in Cp(KJ ; k). Since g gives a bijection between the basis of C∗(KJ ; k) and

the basis of C∗(Kg·J ; k) by σ∗ 7→ g · σ∗ = ε(g, σ)(g · σ)∗, the cochain complex C∗(KJ ; k)

is isomorphic to C∗(Kg·J ; k) as abelian groups. As the coboundary operator d is given

by

dσ∗ =
∑

εjτ
∗
j



42 3.2. kG-module structures on H∗(ZK ; k)

where the summation of the coboundary operator extends over all (p + 1)-simplices τj

having σ as a face, and εj = ±1 is the sign with which σ appears in the expression for

∂τ , we obtain the commutative diagram

C∗(KJ ; k)
∼= //

d
��

C∗(Kg·J ; k)

d
��

C∗(KJ ; k)
∼= // C∗(Kg·J ; k).

Therefore g induces an isomorphism between H̃∗(KJ ; k) and H̃∗(Kg·J ; k).

We continue by showing that the G-actions on H∗(ZK ; k) and
⊕

J⊆[m]

H̃∗(KJ ; k) are com-

patible.

On C∗(ZK ; k) a multigrading can be defined. Consider a subset J ⊆ [m] as a vector in

Nm whose j-th coordinate is 1 if j ∈ J , or is 0 if j /∈ J . Define a Z ⊕ Nm-grading on

C∗(ZK ; k) as

C∗(ZK ; k) =
⊕
J⊆[m]

C∗,2J(ZK ; k)

where C∗,2J(ZK ; k) is the subcomplex spanned by cochains κ(J \ I, I)∗ with I ⊆ J and

I ∈ K whose multidegree is mgκ(J \ I, I)∗ = (−|J \ I|, J).

Buchstaber and Panov [10, Theorem 3.2.9] showed that there are isomorphisms between

H̃p−1(KJ ; k) and Hp−|J |,2J(ZK ; k) which are functorial with respect to simplicial maps

and are induced by the cochain isomorphisms fJ : Cp−1(KJ ; k)→ Cp−|J |,2J(ZK ; k) given

by

fJ(σ∗) = ε(σ, J)κ(J \ σ, σ)∗ (3.6)

where σ ∈ KJ and ε(σ, J) =
∏
j∈σ

ε(j, J) with ε(j, J) = (−1)r−1 if j is the r-th element of

J .

The functorial property induces a commutative diagram

Cp−1(KJ ; k)
fJ //

g

��

Cp−|J |,2J(ZK ; k)

g

��
Cp−1(Kg·J ; k)

fg·J // Cp−|g·J |,2g·J(ZK ; k)

implying the following statement.

Lemma 3.2.6. If K is a simplicial G-complex, then C∗(ZK ; k) is multigraded iso-

morphic to
⊕

J⊆[m]

C∗(KJ ; k) as kG-modules.

Passing to cohomology, we obtain the following corollary.
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Corollary 3.2.7. For a simplicial G-complex, H∗(ZK ; k) is isomorphic to
⊕

J⊆[m]

H̃∗(KJ ; k)

as kG-algebras.

Proof. By [10, Theorem 4.5.8], the multiplication on
⊕

J⊆[m]

H̃∗(KJ ; k) is given by

H i(KI ; k)⊗Hj(KJ ; k)→ H i+j(KI∪J ; k)

which is induced by the simplicial inclusions KI∪J → KI ∗KJ for I ∩ J = ∅ and zero

otherwise. Under this multiplication, the maps fJ induce a k-algebraic isomorphism⊕
J⊆[m]

H̃∗(KJ ; k)→ H∗(ZK ; k). Since fg·J ◦g = g◦fJ , the maps fJ induce a kG-algebraic

isomorphism.

Now we state the main result of this section.

Proposition 3.2.8. Let K be a simplicial G-complex. Then there are kG-algebra iso-

morphisms

H∗(ZK ; k) ∼=
⊕

J∈[m]/G

⊕
g∈G/GJ

g · H̃∗−|J |−1(KJ ; k)

where GJ = {g ∈ G | g ·J = J} is the stabiliser of J and [m]/G is a set of representatives

of G-orbits of 2[m].

The multiplication on
⊕

J∈[m]/G

⊕
g∈G/GJ

g · H̃∗(KJ ; k) is given so that for any I, J ∈ [m]/G

and g ∈ G/GJ , h ∈ G/GI , there is a map

µ : g ·Hk−|J |−1(KJ ; k)⊗ h ·H l−|I|−1(KI ; k) = Hk−|J |−1(Kg·J ; k)⊗H l−|I|−1(Kh·I ; k)→ Hk+l−|I|−|J |−1(Kg·J∪h·I ; k)

which is induced by the simplicial inclusion Kg·J∪h·I −→ Kg·J ∗Kh·I if g · J ∩ h · I = ∅
and is a zero map otherwise.

Proof. Since by Corollary 3.2.7 H∗(ZK ; k) ∼=
⊕

J⊆[m]

H̃∗(KJ ; k) as kG-algebras, it suffices

to show that the G-isomorphism⊕
J⊆[m]

H̃∗(KJ ; k) ∼=
⊕

J∈[m]/G

⊕
g∈G/GJ

g · H̃∗(KJ ; k)

preserves the multiplications on both sides. The multiplication on
⊕

J∈[m]/G

⊕
g∈G/GJ

g ·

H̃∗(KJ ; k) is induced by the multiplication on
⊕

J⊆[m]

H̃∗(KJ ; k) via the aboveG-isomorphism.

Therefore,

H∗(ZK ; k) ∼=
⊕

J∈[m]/G

⊕
g∈G/GJ

g · H̃∗−|J |−1(KJ ; k)

as kG-algebras.
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We illustrate Proposition 3.2.8 on several examples.

Example 3.2.9. Let K be the boundary of a square, 1 2

34

. It is a simplicial C4-

complex, where C4 is the cyclic group of order 4. Write C4 = {(1), (1234), (13)(24), (1432)}
as a subgroup of the permutation group Σ4. A set of representatives of 2[4] under C4 is

given by

E = {∅, {1}, {1, 2}, {1, 3}, {1, 2, 3}, {1, 2, 3, 4}}.

Taking J to be an element in E, observe that

H̃p(KJ ; k) =



k when J = ∅ and p = −1

k when J = {1, 3} and p = 0

k when J = {1, 2, 3, 4} and p = 1

0 otherwise.

The stabilisers GJ corresponding to J = ∅, J = {1, 3} and J = {1, 2, 3, 4} are G∅ = C4,

G13 = {(1), (13)(24)} and G1234 = C4, respectively. Therefore, the cohomology groups

of ZK are given by

H i(ZK ; k) =

 k⊕ k for i = 3

k for i = 0, 6.

Example 3.2.10. Let K = ∆k
m be the full k-skeleton of ∆m−1 which consists all subsets

of [m] with cardinality at most k+1. The permutation group Σm acts on K simplicially.

A set of representatives of 2[m] under the action of Σm can be also chosen as

E = {∅, {1}, {1, 2}, . . . , {1, . . . ,m}}.

For any J = {1, 2, . . . , |J |} ∈ E, the stabiliser of J is the Young subgroup Σ|J |×Σm−|J |.

If J ∈ E with |J | ≤ k + 1, then KJ = ∆|J |−1. Thus H̃∗(KJ ; k) = 0.

If J ∈ E with k + 2 ≤ |J | ≤ m, then KJ is the full k-skeleton of ∆|J |−1. Recall that

H̃∗(KJ ; k) = ⊕
c
k, where c =

(|J |−1
k+1

)
if ∗ = k; otherwise H̃∗(KJ ; k) = 0. Therefore,

H i(ZK ; k) =


k where i = 0

⊕
c
k where c =

(
m
|J |
)(|J |−1

k+1

)
and i = |J |+ k + 1

0 otherwise.

Let us remark that for k = 0, the simplicial complex K consists of m disjoint points

and denote by Zm the moment-angle complex corresponding to it. By Proposition 3.2.8,

H3(Zm; k) has a basis {aij | 1 ≤ i < j ≤ m} and identifying aji = −aij , the symmetric

group Σm acts on H3(Zm; k) by a permutation of the indices.
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For Km = ∆k
m with k fixed and m increasing, we get a sequence of moment-angle

complexes {ZKm}. There exist retractions pm : ZKm+1 −→ ZKm obtained by restricting

the projection map (D2)m+1 −→ (D2)m to ZK . We shall consider the representation

stability of the sequence {H i(ZK ; k), pim} in Section 3.4.

3.3 Polyhedral products over simplicial G-complexes

Moment-angle complexes are specific examples of polyhedral products (X,A)K which are

constructed from combinatorial information of a simplicial complex K and a topological

pair (X,A). Our next aim is to study symmetries of polyhedral products induced by

the symmetries of K. The geometric and homological properties of polyhedral products

arising from simplicial Aut(K)-complexes have been studied by Ali Al-Raisi in his PhD

thesis [1]. Al-Raisi proved that the map (X,A)K −→ ΩΣ(
∨

I⊆[m]

(X,A)∧KI ) is homotopy

Aut(K)-equivariant.

In this section, we will give a different method for studying homotopy G-decompositions

of polyhedral product (X,A)K associated with a simplicial G-complex K by studying

the adjoint of the Al-Raisi map, known as the Bahri-Bendersky-Cohen-Gitler (BBCG)

map (Theorem 2.3.6), after several suspensions.

If K is a simplicial G-complex, then the G-action on K induces a cellular G-action on

the corresponding polyhedral product (X,A)K with respect to a pair of CW-complexes

(X,A), A ⊆ X. Explicitly, for x = (x1, . . . , xm) ∈ (X,A)K , g · x = (xg·1, . . . , xg·m).

Thus (X,A)K is a G-complex. If X is a G-CW-complex, then each i-th homology group

Hi(X;R) is an RG-module. Consider a natural G-action on ΣX by g · (〈x, t〉) = 〈g ·x, t〉
for g ∈ G. The naturality of long exact sequence for the topological pair (CX,X) implies

that the isomorphism Hi+1(ΣX;R) ∼= H̃i(X;R) is an RG-isomorphism.

Consider Xm as a Σm-space given by g ·x = g ·(x1, . . . , xm) = (xg·1, . . . , xg·m) for g ∈ Σm

and xi ∈ X. There exists a Σm-action on the based spaces ΣXm and Σ(
∨

I⊆[m]

X∧I), where

I runs over the non-empty subset of [m]. Explicitly, for every g ∈ Σm and 〈x, t〉 ∈ ΣXm,

g · 〈x, t〉 = 〈g · x, t〉. For any non-empty subset I = {i1, . . . , il} ⊆ [m], each map

g : ΣX∧I → ΣX∧g·I sending 〈xi1 ∧ . . .∧xil , t〉 to 〈xg·i1 ∧ . . .∧xg·il , t〉 induces a Σm-action

on Σ
∨

I⊆[m]

X∧I .

Lemma 3.3.1. There exists a homotopy equivalence

Σθm : Σ2Xm −→ Σ2
∨
I⊆[m]

X∧I

that is Σm-equivariant.
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Proof. For a non-empty set I = {i1, . . . , il} ⊆ [m], define maps Σp∧I by

Σp∧I : ΣXm −→ ΣX∧I

〈x1, . . . , xm, t〉 7−→ 〈xi1 ∧ . . . ∧ xil , t〉

Let L = 2m − 1. Define a comultiplication map δm : ΣXm −→
L∨
j=1

ΣXm on ΣXm such

that

if t ∈ [ iL ,
i+1
L ] (0 ≤ i ≤ L− 1),

δm(〈x1, . . . , xm, t〉) = (∗, . . . , ∗, 〈x1, . . . , xm, Lt− i〉, ∗, . . . , ∗)

where 〈x1, . . . , xm, Lt− i〉 is in the (i+ 1)-st wedge summand of
L∨
j=1

ΣXm.

Fix an order I1 > I2 > · · · > IL on the finite set {I ⊆ [m] | I 6= ∅}. Let each Ij contain

elements written in an increasing order. Rewrite Σ(
∨

I⊆[m]

X∧I) as ΣX∧I1 ∨ . . . ∨ΣX∧IL .

Consider a map
∨

I∈2[m]\∅
Σp∧I :

L∨
j=1

ΣXm −→ Σ(
∨

I⊆[m]

X∧I) given by

∨
I∈2[m]\∅

Σp∧I = Σp∧I1 ∨ . . . ∨ Σp∧IL :
L∨
j=1

ΣXm −→ ΣX∧I1 ∨ . . . ∨ ΣX∧IL .

Thus the map

θm =
∨

I∈2[m]\∅

Σp∧I ◦ δm.

Let g ∈ Σm and 〈x1, . . . , xm, t〉 ∈ ΣXm. For t ∈ [ iL ,
i+1
L ] (0 ≤ i ≤ L− 1), there is

θm ◦ g(〈x1, . . . , xm, t〉) =
∨

I∈2[m]\∅

Σp∧I ◦ δm(〈xg·1, . . . , xg·m, t〉)

=
∨

I∈2[m]\∅

Σp∧I(∗, . . . , ∗, 〈xg·1, . . . , xg·m, Lt− i〉︸ ︷︷ ︸
i+1

, ∗, . . . , ∗)

= (∗, . . . , ∗, 〈x
g·m(i+1)

1

∧ . . . ∧ x
g·m(i+1)

s
, Lt− i〉︸ ︷︷ ︸

i+1

, ∗, . . . , ∗)

where Ii+1 = {m(i+1)
1 , . . . ,m

(i+1)
s } with m

(i+1)
1 < · · · < m

(i+1)
s .

Recall that
∨

I∈2[m]\∅
Σp∧I = Σp∧I1∨. . .∨Σp∧IL and define by

∨
I∈2[m]\∅

Σp∧(g·I) = Σp∧(g·I1)∨

. . . ∨ Σp∧(g·IL). Hence, θm ◦ g =
∨

I∈2[m]\∅
Σp∧(g·I) ◦ δm.
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On the other hand, there exits a permutation T of summand
L∨
j=1

ΣXm induced by g such

that g ◦ θm =
∨

I∈2[m]\∅
Σp∧(g·I) ◦ T ◦ δm. Since g acts on a set {1, . . . , L} by g · i being

the unique number satisfying Ig·i = g · Ii as sets, this action on {1, . . . , L} induces a

permutation T of
L∨
j=1

ΣXm. Note that for t ∈ [ iL ,
i+1
L ] (0 ≤ i ≤ L− 1),

∨
I∈2[m]\∅

Σp∧(g·I) ◦ T ◦ δm(〈x1, . . . , xm, t〉)

=
∨

I∈2[m]\∅

Σp∧(g·I) ◦ T (∗, . . . , ∗, 〈x1, . . . , xm, Lt− i〉︸ ︷︷ ︸
i+1

, ∗, . . . , ∗)

=
∨

I∈2[m]\∅

Σp∧(g·I)(∗, . . . , ∗, 〈x1, . . . , xm, Lt− i〉︸ ︷︷ ︸
g·(i+1)

, ∗, . . . , ∗)

=(∗, . . . , ∗, 〈x
g·m(i+1)

1

∧ . . . ∧ x
g·m(i+1)

s
, Lt− i〉︸ ︷︷ ︸

g·(i+1)

, ∗, . . . , ∗)

where Ii+1 = {m(i+1)
1 , . . . ,m

(i+1)
s } with m

(i+1)
1 < · · · < m

(i+1)
s .

Also, for t ∈ [ iL ,
i+1
L ] (0 ≤ i ≤ L− 1),

g ◦ θm(〈x1, . . . , xm, t〉) = g(∗, . . . , ∗, 〈x
m

(i+1)
1

∧ . . . ∧ x
m

(i+1)
s

, Lt− i〉︸ ︷︷ ︸
i+1

, ∗, . . . , ∗)

= (∗, . . . , ∗, 〈x
g·m(i+1)

1

∧ . . . ∧ x
g·m(i+1)

s
, Lt− i〉︸ ︷︷ ︸

g·(i+1)

, ∗, . . . , ∗).

Thus we have g ◦ θm =
∨

I∈2[m]\∅
Σp∧(g·I) ◦ T ◦ δm.

Since Σδm is cocommutative, Σ(g ◦ θm) ' Σ(θm ◦ g).

The following statement is a consequence of Lemma 3.3.1.

Lemma 3.3.2. a) For g ∈ Σm and I ⊆ [m], there is the homotopy commutative diagram

Σ2(X,A)I
' //

g

��

∨
J⊆[m]

Σ2(X,A)∧(I∩J)

g

��
Σ2(X,A)g·I

' //
∨

g·J⊆[m]

Σ2(X,A)∧g·(I∩J)

(3.7)

where the vertical map g on the left is given by

g · 〈x1, . . . , xm, t, s〉 = 〈xg·1, . . . , xg·m, t, s〉
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and the vertical map g on the right maps each element in Σ2(X,A)∧(I∩J) into the cor-

responding one in Σ2(X,A)∧g·(I∩J) via a coordinate permutation by g.

b) For an inclusion I1 ⊆ I2 ⊆ [m], there is the diagram

Σ2(X,A)I1 Σ2(X,A)g·I1

Σ2(X,A)I2 Σ2(X,A)g·I2

∨
J⊆[m]

Σ2(X,A)∧(I1∩J)
∨

g·J⊆[m]

Σ2(X,A)∧g·(I1∩J)

∨
J⊆[m]

Σ2(X,A)∧(I2∩J)
∨

g·J⊆[m]

Σ2(X,A)∧g·(I2∩J)

g

'

'
g

'
g

g

'

(3.8)

where the four side diagrams are homotopy commutative and the top and bottom diagrams

are commutative.

Since the homotopy decomposition Σ2(X,A)K ' Σ2
∨

J⊆[m]

(X,A)∧KJ is natural with re-

spect to inclusions in K ([3, Theorem 2.10]), the next result follows immediately from

the lemma above.

Theorem 3.3.3. Let K be a simplicial G-complex with m vertices. Then there is a

homotopy G-decomposition

θ : Σ2(X,A)K ' Σ2
∨

J⊆[m]

(X,A)∧KJ (3.9)

where the G-action on Σ2(X,A)K is induced by the G-action on Xm, and the G-action

on the right hand side is induced by (3.7).

Proof. Let CAT(K) be the face category of K consisting of simplices of K and simplicial

inclusions in K. Define two functors D and E from CAT(K) to CW∗ by D(σ) = (X,A)σ

and E(σ) =
∨

J⊆[m]

(X,A)∧(σ∩J) for σ ∈ CAT(K). For every σ ∈ CAT(K) and g ∈ G,

diagram (3.7) implies that there exists a homotopy

Hg(σ) : Σ2D(σ)× I −→ Σ2E(g · σ)

such that Hg(σ)(x, 0) = θ(σ) and Hg(σ)(x, 1) = θ(g ·σ), where θ(σ) is the natural homo-

topy equivalence between Σ2D(σ) and Σ2E(σ) and I is the interval [0, 1]. Diagram (3.8)

implies that if σ, τ ∈ CAT(K), then Hg(σ ∩ τ) = Hg(σ)|Σ2D(σ∩τ)×I = Hg(τ)|Σ2D(σ∩τ)×I.

Hg(·) induces a natural transformation from Σ2D(·)× I to Σ2E(·).

With g fixed, Hg(σ) will induce a continuous map Hg : colim Σ2D × I −→ colim Σ2E

such that Hg(x, 0) = gθ(x) and Hg(x, 1) = θ(g · x). Therefore, θ is a homotopy G-

decomposition.
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Example 3.3.4. Let K be the k-skeleton of a simplex ∆m−1 on which Σm acts by

permuting vertices. By Porter [36], Grbić-Theriault [23], the homotopy type of (CA,A)K

is the wedge

(CA,A)K '
m∨

j=k+2

( ∨
1≤i1<...<ij≤m

(
j − 1

k + 1

)
Σk+1Ai1 ∧ . . . ∧Aij

)
.

Although Σm acts on both sides this homotopy equivalence might not be a homotopy

Σm-equivalence. However after suspending it twice, by Theorem 3.3.3 it is a homotopy

equivariant map.

Considering G-equivalence (3.9) and observing the induced G-actions on the reduced

homology groups, we have the following result.

Theorem 3.3.5. Let K be a simplicial G-complex on m vertices. Then there exists a

kG-module isomorphism

H̃i((X,A)K ; k) ∼=
⊕
J⊆[m]

H̃i((X,A)∧KJ ; k) ∼=
⊕

J∈[m]/G

IndGGJ H̃i((X,A)∧KJ ; k)

where G acts on the middle term by permuting the summands such that g·H̃i((X,A)∧KJ ; k) =

H̃i((X,A)Kg·J ; k), [m]/G is a set of representatives of the orbit of 2[m] \ ∅ under G and

GJ is the stabiliser of J .

3.4 Representation stability for polyhedral products

Let G be a finite group and k be a field of characteristic zero. Then a G-action on a

simplicial complex K induces a G-complex structure on the corresponding polyhedral

product (X,A)K and therefore its homology is a kG-module. Since every kG-module is a

G-representation over k, we are able to use representation theory to study the homology

groups of polyhedral products associated with simplicial G-complexes. Representation

stability studies a sequence of finite dimensional vector spaces such that each vector

space Vm is equipped with a Gm-action and each Vm
ψm−→ Vm+1 is Gm-equivariant. Here

groups Gm are not arbitrary; they all belong to a fixed family of groups whose k-linear

irreducible representations are determined by some datum λ which is independent of

Gm and therefore of m. One such family consists of symmetric groups Σm, which we

will consider in this section. The idea of representation stability was firstly introduced

by Church and Farb in [15, Section 2.3]. Stability in representation theory generalises

a classical homological stability. A sequence {Ym} of groups, manifolds or topological

spaces with maps Ym
ψm−→ Ym+1 for each i ≥ 0 is called homology stable if the map

Hi(Ym)
(ψm)∗−→ Hi(Ym+1) is an isomorphism for a sufficiently large m.
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We recall the precise definition of uniformly representation stability of representations

of symmetric groups according to Church and Farb [15, Definition 2.6].

Definition 3.4.1. Let {Vm, ψm} be a sequence of Σm-representations so that the group

Σm acts on Vm+1 as a subgroup of Σm+1. Then it is consistent if each Vm decomposes

as a direct sum of finite-dimensional irreducible representations.

Definition 3.4.2. Let now {Vm, ψm} be a consistent sequence of Σm-representations

over a field k of characteristic 0. The sequence {Vm, ψm} is uniformly representation

stable with stable range m ≥ N if each of the following conditions holds for all m ≥ N .

1. Injectivity: The natural map ψm : Vm → Vm+1 is injective.

2. Surjectivity: The Σm+1-orbit of ψm(Vm) spans Vm+1.

3. Multiplicities (uniform): Decompose Vm into irreducible representations as

Vm =
⊕
λ

cλ,mV (λ)m

with multiplicities 0 ≤ cλ,m ≤ ∞. There is some M , not depending on λ, so that for

m ≥M the multiplicities cλ,m are independent of m for all λ.

Let Σk be a subgroup Σm when m ≥ k. For a Σk-representation V , it can be seen

as a (Σk × Σm−k)-representation, where Σm−1 acts trivially on V , denoted by V � k.

Consider the induced Σm-representation IndΣm
Σk×Σm−1

V � k.

Example 3.4.3 (multiplicity). Let V(2,1) be the irreducible representation of Σ3 cor-

responding to partition (2, 1). Then {Vm = IndΣm
Σ3×Σm−3

V(2,1) � k} forms a consistent

sequence of Σm-representations, which stabilises when m ≥ 5. Pieri’s formula (Proposi-

tion 3.1.13) implies that

IndΣ4
Σ3×Σ1

V(2,1) � k = V(3,1) ⊕ V(2,2) ⊕ V(2,1,1)

IndΣm
Σ3×Σm−3

V(2,1) � k = V(m−1,1) ⊕ V(m−2,2) ⊕ V(m−2,1,1) ⊕ V(m−3,2,1) for m ≥ 5

= V (1)m ⊕ V (2)m ⊕ V (1, 1)m ⊕ V (2, 1)m.

Analogously, by Pieri’s formula for m ≥ 7,

IndΣm
Σ4×Σm−4

V(3,1) � k = V(m−1,1) ⊕ V(m−2,2) ⊕ V(m−2,1,1) ⊕ V(m−3,3) ⊕ V(m−3,2,1) ⊕ V(m−4,3,1).

The sequence {IndΣm
Σ4×Σm−4

V(3,1) � k} stabilises at m ≥ 7.

In general, Hemmer [25] proved the uniform representation stability of Σm-representations

{IndΣm
H×Σm−k

V � k} induced by an H-representation V , where H ≤ Σk. Note that V

is seen as an (H × Σm−k)-representation, where Σm−k acts on V trivially, denoted by

V � k for any m ≥ k.
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Theorem 3.4.4 ([25]). Let H be a subgroup of Σk and let m ≥ k. Then the sequence

{IndΣm
H×Σm−k

V � k} is uniformly representation stable.

In this section, we study the representation stability arising in polyhedral products over

a sequence of finite simplicial Σm-complexes.

Definition 3.4.5. A sequence of finite simplicial complexes

K0 ⊆ K1 ⊆ K2 ⊆ . . . ⊆ Km ⊆ Km+1 ⊆ . . .

where K0 = ∅ and each Km is a simplicial Σm-complex and the simplicial inclusion

im : Km ⊆ Km+1 is Σm-equivariant (Σm acts on Km+1 via Σm ↪→ Σm+1) is called a

consistent sequence.

We start by considering few families of consistent sequences of finite simplicial com-

plexes. The main aim of the paper is to show that these consistent sequences induce

the consistent sequence of Σm-representations of the homology of polyhedral products

which are representation stable.

Example 3.4.6. (k-skeleton sequences) Fix an integer k ≥ 0. To each m assign the

k-skeleton ∆k
m of a standard (m− 1)-simplex,

∅ ⊆ ∆k
1 ⊆ . . . ⊆ ∆k

m ⊆ ∆k
m+1 ⊆ . . . . (3.10)

The action of Σm on Km is induced by permutations of all m vertices. Each simplicial

inclusion im : ∆k
m −→ ∆k

m+1 is Σm-equivariant. Therefore (3.10) is consistent.

In general, if K and L are simplicial G-complexes on V (K) and V (L) respectively, then

the G-action can be extended to the join K ∗L, as a complex on V (K)∪ V (L) vertices,

diagonally.

Construction 3.4.7. Fix integers s ≥ 1 and k1, . . . , ks ≥ 0. For each m ≥ 0, let Km

be a simplicial complex on sm vertices given by the join of ∆k1
m ,∆

k2
m , . . . ,∆

ks
m . Since

each ∆ki
m is a simplicial Σm-complex, then Km is also a simplicial Σm-complex with the

Σm-action given by g · (σ1 t . . . t σs) = g · σ1 t . . . t g · σs for g ∈ Σm and for each

σi ∈ ∆ki
m. Let us consider the sequence

∅ ⊆ ∆k1
1 ∗ . . . ∗∆ks

1 ⊆ . . . ⊆ ∆k1
m ∗ . . . ∗∆ks

m ⊆ ∆k1
m+1 ∗ . . . ∗∆ks

m+1 ⊆ . . . .

The inclusion Km ⊆ Km+1 is given as a join of coordinate Σm-equivariant inclusions

∆ki
m ⊆ ∆ki

m+1 and therefore it is Σm-equivariant.

Notice that for s = 1 we recover the family of k-skeleton sequences of Example 3.4.6.

Next we construct a non-tivial example of consistent sequence of finite simplicial Σm-

complexes.
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Construction 3.4.8. Let Im be an m-cube. Consider the simplicial complex Km

obtained by taking the boundary of the dual of a simple polytope vc(Im), where vc(Im)

is obtained by cutting a vertex from Im. Note that K1 consists of two disjoint points.

Km can also be constructed as follows. Let S2m = S0
1 ∗ . . . ∗ S0

m be the join of m copies

of two disjoint points, where S0
i = {0i, 1i}. Notice that S2m is a triangulation of an

(m− 1)-sphere on 2m vertices. Then Km is obtained from S2m by deleting the interior

of the (m − 1)-face on vertices 01, . . . , 0m and taking the cone on it. The natural Σm-

action on Km is given by g · 0i = 0g·i, g · 1i = 1g·i, and g fixes the cone vertex. The

inclusions Km ⊆ Km+1 are induced by the inclusions S0
1 ∗ . . . ∗S0

m ⊆ S0
1 ∗ . . . ∗S0

m ∗S0
m+1

with the cone vertex mapping to itself.

For example, when m = 2, K2 is simplicially isomorphic to a pentagon, and the Σ2-

action on K2 is given by 01 mapping to 02 and 11 mapping to 12 keeping the cone vertex

fixed. As shown in the picture below, the blue colour lines represent how K2 is included

into K3.

∗

02 −→

11
12

01

K2

01

12

11

02

03

13

∗

K3

Vertices with the same color belong to the same orbit of symmetric actions.

Definition 3.4.9. Given an integer r ≥ 0, a consistent sequence K = {Km, im} of

finite simplicial Σm-complexes is called r-face-stable at degree d if for m ≥ d and every

σ ∈ Km with dim σ = r there exist a g ∈ Σm and τ ∈ Kd such that g · id,m(τ) = σ,

where id,m = im ◦ . . . ◦ id is a composite of the inclusions id, . . . , im.

Similarly, a consistent sequence K = {Km, im} of finite simplicial Σm-complexes is called

r-vertex-stable at degree d if for m ≥ d and any collection {v0, . . . , vr} of r + 1 vertices

of Km there exist a g ∈ Σm and a collection {u0, . . . , ur} of r + 1 vertices in Kd such

that g · id,m(ui) = vi. In particular, if r = 0 then K is called vertex-stable.

If a consistent sequence {Km, im} of finite simplicial Σm-complexes is r-vertex-stable

(resp. r-face-stable) for every r ≥ 0, we call it completely surjective (resp. simplicially

surjective).

Remark 3.4.10. Note that Construction 3.4.7 and Construction 3.4.8 are completely

surjective.



53

(i) Let Km = ∆k
m. For r ≥ 0, let Em,r+1 consist of all the subsets of [m] with cardinality

r+1. Then the transitivity of Σm-action on Em,r+1 implies that {Km} is r-vertex-stable

at degree r + 1.

(ii) Let Km = ∆k1
m ∗ . . . ∗ ∆ks

m . If s = 2, then ∆k1
m ∗ ∆k2

m is r-vertex-stable at degree

r + 1. Let J1, J2 be two subsets of [m] with |J1| + |J2| = r + 1 and m ≥ r + 1. If

J1 ∩J2 6= ∅, J1 ∩J2 can be seen as a subset of vertices of ∆k1
m and ∆k2

m , respectively. Let

Jc1 = J1 \J1∩J2 and Jc2 = J2 \J1∩J2 with cardinalities r1 and r2 and let r0 = |J1∩J2|.

Define g ∈ Σm by sending {1, . . . , r0} to J1 ∩ J2, {r0 + 1, . . . , r0 + r1} to Jc1 and {r0 +

r1 + 1, . . . , r0 + r1 + r2} to Jc2 and the complement of {1, . . . , r0 + r1 + r2} in [m] to the

complement of J1 ∪ J2 in [m], respecting to the initial order of vertices.

Now take the subset of vertices {1, . . . , r0 + r1} of ∆k1
r+1 and the subset of vertices

{1, . . . , r0, r0+r1+1, . . . , r0+r1+r2} of ∆k2
r+1 satisfying g·({1, . . . , r0+r1}t{1, . . . , r0, r0+

r1 + 1, . . . , r0 + r1 + r2}) = J1 t J2.

If J1∩J2 = ∅, then r0 = 0 and g ∈ Σm sending {1, . . . , r1} to J1 and {r1 +1, . . . , r1 +r2}
to J2 and the complement of {1, . . . , r1 + r2} in [m] to the complement of J1 ∪J2 in [m].

Inductively, Km is completely surjective.

(iii) For any r ≥ 0, Km = ∂vc(Im)∗ is r-vertex-stable at degree d = r+ 1. With m ≥ d,

let J be a subset of vertices of Km and |J | = r+ 1. Write J = J∗ t J1 t . . .t Jm, where

J∗ is either empty or the cone vertex {∗} and each Ji ⊆ {0i, 1i}. Since |J | = r+ 1, there

are at most r+ 1 nonempty components of J , say Jt1 , . . . , Jtr+1 . If ∗ /∈ J , define g ∈ Σm

by sending i to ti if i ≤ r + 1 and to ki−r−1 otherwise where {k1, . . . , km−r−1} is the

complement of {t1, . . . , tr+1} in [m]. Now let J ′ = J ′1 t . . . t J ′r+1 from the vertex set of

Kr+1 where J ′i contains 0i or 1i if and only if Jti contains 0ti or 1ti . If ∗ ∈ J , consider

J̃ = J \ {∗} and repeat the above procedure to find g ∈ Σm and J̃ ′ ∈ Ver(Kr+1) for J̃ .

Then let J ′ = J∗ t J̃ ′ and g · J ′ = J .

By Theorem 3.3.5, for a simplicial G-complex K on m vertices

H̃i((X,A)K ; k) ∼=
⊕

J∈[m]/G

IndGGJ H̃i((X,A)∧KJ ; k). (3.11)

If a consistent sequence {Km, im} of Σm-complexes Km on the vertex set V (Km) is

completely surjective then the summands in (3.11) do not depend on m for sufficiently

large m. We shall use Hemmer’s result to study the uniformly representation stability

of polyhedral products. For that the stabiliser (Σm)J needs to be of the form H×Σm−k

for some H ≤ Σk. Therefore we proceed by studying the stabiliser of J ∈ P(V (Km)) in

Σm which we denote by stab(J,m).
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Observe that for a fixed integer d, for all m ≥ d and for some J ∈ P(V (Kd)), as J also

belongs to the Σm-set P(V (Km)), there is a sequence of stabilisers

. . . // Σm // Σm+1
// . . .

. . . // stab(J,m)

OO

// stab(J,m+ 1)

OO

// . . . .

For instance, in Example 3.4.6, if m ≥ |J |, then J ∈ P(V (∆k
m)) and stab(J,m) =

Σ|J | × Σm−|J |.

In Construction 3.4.7, Km = ∆k1
m ∗∆k2

m ∗. . .∗∆ks
m . Write J as a disjoint union of J1, . . . , Js,

where each Jt (1 ≤ t ≤ s) is from the t-th component P(V (∆kt
m)). Let b(J) = max

1≤t≤s
|Jt|.

For m ≥ b(J), we observe the stabilisers of J in Σm,

stab(J,m) = {g ∈ Σm | g · Jt = Jt, 1 ≤ t ≤ s} =
⋂

1≤t≤s
stab(Jt,m)

where, as in Example 3.4.6, each stab(Jt,m) is isomorphic to Σ|Jt|×Σm−|Jt|. For integers

a ≤ b ≤ m, we have

Σa × Σm−a ∩ Σb × Σm−b = Σa × Σb−a × Σm−b.

Therefore stab(J,m) = stab(J, b(J)) × Σm−b(J) for m ≥ b(J), and Σm−b(J) acts on J

trivially.

We call such sequences stabiliser consistent.

Definition 3.4.11. A consistent sequenceK = {Km, im} of finite simplicial Σm-complexes

is called stabiliser consistent if for every d and every finite set J ∈ P(V (Kd)) there exists

an integer b(J), such that if m ≥ d and m ≥ b(J), then either Σm acts on J trivially

or the stabiliser stab(J,m) is isomorphic to stab(J, b(J))×Σm−b(J), where Σm−b(J) acts

on J trivially.

Construction 3.4.8 also provides a stabiliser consistent sequence. If J ∈ P(V (Kd)) for

some d, write J = J∗tJ1t. . .tJd, where J∗ is either empty or {∗} and each Ji ⊆ {0i, 1i}.
Since Σm acts on ∗ trivially, stab(J,m) = stab(J̃ ,m) where J̃ = J1 t . . . t Jd. Let

b(J) be the number of non-empty components Jt. Then for m ≥ b(J), stab(J,m) ∼=
stab(J, b(J))× Σm−b(J) where Σm−b(J) acts on J trivially.

As a consequence, we have the following result that states conditions on a sequence

of finite simplicial complexes that will induce in homology a uniformly representation

stable sequence.

Theorem 3.4.12. Let {Km, im} be a consistent sequence of finite simplicial complexes

and X be a connected, based CW -complexes of finite type with a based subcomplex A.
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Suppose that {Km, im} is completely surjective and stabiliser consistent. Then the con-

sistent sequence of Σm-representations {H̃i((X,A)Km ; k), im∗} for chark = 0 is uni-

formly representation stable.

Proof. By Theorem 3.3.5, we have

H̃i((X,A)Km ; k) ∼=
⊕
J∈Em

IndΣm
stab(J,m)H̃i((X,A)∧Km,J ; k) (3.12)

where Em is a set of representatives of P(V (Km)) under the action Σm, and stab(J,m)

is the stabiliser of J under Σm.

We prove that if |J | ≥ i+ 1 then H̃i((X,A)∧Km,J ; k) is trivial. By the reduced Künneth

formula for path-connected spaces, it is obvious that H̃i(Y1∧. . .∧Y|J |; k) = 0 if |J | ≥ i+1,

where each Yi is either X or A. This implies that for any σ ∈ Km,J , H̃i((X,A)∧σ; k) = 0

if |J | ≥ i + 1. If X1 and X2 are connected CW -complexes with a non-empty in-

tersection such that H̃i(X1; k) = H̃i(X2; k) = H̃i(X1 ∩ X2; k) = 0 for i ≤ l, then

H̃i(X1 ∪ X2; k) = 0 for i ≤ l. As (X,A)Km,J is a union of (X,A)σ over all σ ∈ Km,J ,

inductively H̃i((X,A)∧KJ ; k) is trivial if |J | ≥ i+ 1.

Since {Km, im} is completely surjective, if |J | ≤ i there exists an integer N ≥ 1 such

that if m ≥ N , we have Em+1,i = Em,i = . . . = EN,i, where Em,i = {J ∈ Em | |J | ≤ i}.
Therefore the summands in (3.12) do not depend on m for m ≥ N . On the other hand,

for each J ∈ E∗ there exists an integer b(J) such that for m ≥ b(J), either Σm acts on J

trivially or the stabiliser stab(J,m) = stab(J, b(J)) × Σm−b(J), where Σm−|J | acts on J

trivially. In the first case, if Σm acts on J trivially for m ≥ b(J), then for any k ≤ b(J),

Σk acts on J trivially because Σk acts on J as a subgroup of Σb(J). As the vertex support

set J of Km,J is fixed, the space (X,A)∧Km,J will stay the same when m increases. Thus,

H̃i((X,A)∧Km,J ; k) is a fixed finite-dimensional trivial Σm-representation even though

m varies. It follows that {H̃i((X,A)∧Km,J ; k)} is uniformly representation stable.

If stab(J,m) = stab(J, b(J))×Σm−b(J), then H̃i((X,A)∧Km,J ; k) is a stab(J,m)-representation

with a trivial Σm−b(J)-action. By [25], we have that IndΣm
stab(J,m)H̃i((X,A)∧Km,J ; k) is

uniformly representation stable.

Therefore, the sequence of Σm-representations {H̃i((X,A)Km ; k), im∗} is uniformly rep-

resentation stable as the summands do not depend on m eventually.

Remark 3.4.13. In general, we require the simplicial maps im in the consistent sequence

of finite simplicial complexes to be inclusions so that they induce maps of polyhedral

products. However, in the case when (X,A) is a pair of topological monoids, as it

is for moment-angle complexes when (X,A) = (D2, S1), any Σm-simplicial map, not

necessary a simplicial inclusion, can be chosen for im. A simplicial map f : K −→ L
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induces a continuous map (X,A)K −→ (X,A)L defined by (x1, . . . , xp) = (y1, . . . , yq),

where yj =
∏

i∈f−1(j)

xi. Here p and q are the number of vertices of K and L, respectively.

We have proved that the sequences in Constructions 3.4.7 and 3.4.8 are completely

surjective and stabiliser consistent. Applying Theorem 3.4.12, we conclude the following

statement.

Corollary 3.4.14. Let K be one of the consistent sequences in Constructions 3.4.7

and 3.4.8 and X be a connected, based CW -complexes of finite type with a based sub-

complex A. Then the consistent sequence of Σm-representations {H̃i((X,A)Km ; k), im∗}
for chark = 0 is uniformly representation stable.

Note that since the sequence in Construction 3.4.8 provides a consistent sequence of

finite simplicial complexes, given by taking the boundary of dual of simple polytopes,

the corresponding moment-angle complexes are a sequence of manifolds.

Proposition 3.4.15. Let K be the consistent sequence in Construction 3.4.8. Then

for the moment-angle manifolds ZK, the consistent sequence {H∗(ZKm ; k), im∗} of Σm-

representations for char k = 0 is uniformly representation stable.

Moreover, due to [5, 12], the manifold ZKm is diffeomorphic to

ZKm
diff∼= ∂((

∏
m

S3 −D3m)×D2)#
m
#
j=1

(
m

j

)
(Sj+2 × S3m−j−1).

Therefore, H3(ZKm ; k) has Betti number m which means that the sequence of moment-

angle manifolds ZKm with the maps ZKm −→ ZKm+1 induced by simplicial mapsKm −→
Km+1 is not homology stable.

Let Km = ∆k
m. Since every Km is a full subcomplex of Km+1, the moment-angle complex

ZKm retracts off ZKm+1 , and the retraction map pm : ZKm+1 −→ ZKm is Σm-equivariant.

The uniform stability of Σm-representations {H i(ZKm ; k), pim} follows immediately.

Proposition 3.4.16. For i ≥ 2k+3, the sequence of Σm-representations {H i(ZKm ; k), pim}
is uniformly representation stable.

Proof. By Proposition 3.2.8, we have

H i(ZKm ; k) ∼=
⊕
J∈Em

IndΣm
Σ|J|×Σm−|J|

H̃ i−|J |−1(KJ,m; k)

where Em = {{1}, {1, 2}, . . . , {1, 2, . . . ,m}} and KJ,m = J ∩∆k
m. Thus KJ is a (|J |−1)-

face of K, if |J | ≤ k + 1 and is the k-skeleton of (|J | − 1)-simplex with J as its vertex

set if |J | ≥ k + 2. The latter one allows an Σ|J |-action. Therefore, if |J | ≤ k + 1, then

H̃∗(KJ,m; k) = 0. If k + 2 ≤ |J | ≤ m, H̃p(KJ,m; k) = k if p = k, and is 0, otherwise.
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The nontrivial cohomology group of KJ,m implies that i−|J |−1 = k and k+2 ≤ |J | ≤ m.

Thus if 2k + 3 ≤ i ≤ m+ k + 1, we have a Σm-representation isomorphism that

H i(ZKm ; k) ∼= IndΣm
Σ|J|×Σm−|J|

H̃k(KJ,m; k), with |J | = i− k − 1.

Hemmer [25] implies that the sequence of Σm-representations {H i(ZKm ; k), pim} is uni-

formly representation stable.

Example 3.4.17. When Km consists of m disjoint points and for i ≥ 3, as a Σm-

representation H i(Zm; k) can be written explicitly as

H i(Zm; k) = IndΣm
Σi−1×Σm−i+1

V(i−2,1) � k

where V(i−2,1) is the standard representation of Σi−1.

In particular,

H3(Zm; k) =V(m−1,1) ⊕ V(m−2,1,1) for m ≥ 3;

H4(Zm; k) =V(m−1,1) ⊕ V(m−2,2) ⊕ V(m−2,1,1) ⊕ V(m−3,2,1) for m ≥ 5;

H5(Zm; k) =V(m−1,1) ⊕ V(m−2,2) ⊕ V(m−2,1,1) ⊕ V(m−3,3) ⊕ V(m−3,2,1) ⊕ V(m−4,3,1) form ≥ 7;

H6(Zm; k) =V(m−1,1) ⊕ V(m−2,2) ⊕ V(m−2,1,1) ⊕ V(m−3,3) ⊕ V(m−3,2,1) ⊕ V(m−4,4)

⊕ V(m−4,3,1) ⊕ V(m−5,4,1) for m ≥ 9.

3.5 Applications of uniformly representation stability of

polyhedral products

We finish the paper by investigating what kind of structural properties of Hi((X,A)K ;Q)

are implied by representation stability.

One of the key properties of a sequence of uniformly stable Σm-representations over Q
is that their characters are eventually polynomials [14, Definition 1.4].

Denote by λ ` m a partition λ = (λ1, . . . , λl) with λ1 ≥ . . . λl > 0 and λ1 + . . .+λl = m.

Let |λ| be the sum λ1 + . . .+λl. Given any partition λ, for any m ≥ |λ|+λ1, denote by

λ[m] = (m−|λ|, λ1, . . . , λl) (see [14, Definition 2.2.5]). Denote by V (λ)m the irreducible

representation corresponding to partition λ[m]. The weight of a consistent sequence of

Σm-representations {Vm, ψm} is the maximum of |λ| over all irreducible constituents

V (λ)m that appears in Vm.

Example 3.5.1. For any partition µ ` n and m ≥ n, applying Proposition 3.2.4 in [14],

the consistent sequence {IndΣm
Σn×Σm−n

Vµ � k} has weight n, where Vµ is the irreducible

representation corresponding to µ.
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Hemmer [25] (see Theorem 3.4.4) constructed a sequence of Σm-representations that is

uniformly representation stable. Next we calculate the weight of this sequence applying

the result from Example 3.5.1.

Lemma 3.5.2. Fix an integer n ≥ 0. Let H be a subgroup of Σn and V is a Σn-

representation over a field k of characteristic 0. For m ≥ n, the consistent sequence

{IndΣm
H×Σm−n

V � k} has weight n.

Proof. Observe that

IndΣm
H×Σm−n

V � k = IndΣm
Σn×Σm−n

(Ind
Σn×Σm−n
H×Σm−n

(V � k)) = IndΣm
Σn×Σm−n

(IndΣn
H V )� k.

As Σn-representations, IndΣn
H V is decomposed as

⊕
µ`n

V
⊕cµ
µ , where cµ are multiplicities.

By Example 3.5.1, {IndΣm
Σn×Σm−n

Vµ � k} has weight n. Then {IndΣm
H×Σm−n

V � k} has

weight n, as each IndΣm
H×Σm−n

V � k is decomposed into a finite direct sum as Σm-

representations

IndΣm
H×Σm−n

V � k ∼=
⊕
µ`n

cµIndΣm
Σn×Σm−n

Vµ � k.

Given a uniformly representation stable sequence {Vm, ψm}, the uniform multiplicity

stability implies that there exists an integer M ≥ 0 such that Vm is decomposed into⊕
λ

cλV (λ)m for m ≥M . A classical result ([28, Example I.7.14]) in representation theory

states that the character of V (λ)m is polynomial if m ≥ |λ|+λ1. Explicitly, let a1, a2, . . .

be class functions aj : Σi −→ N for any i ≥ 0 such that aj(g) is the number of j-cycles

in the cycle decomposition of g. Then, for each partition λ there exists a polynomial

Pλ ∈ Q[a1, a2, . . .], called the character polynomial corresponding to the partition λ,

such that Pλ has degree |λ| and the character χV (λ)m(g) = Pλ(g) for all m ≥ |λ| + λ1

and g ∈ Σm.

We finish this chapter by looking at the growth of Betti numbers of polyhedral products.

Theorem 3.5.3. Let {K, im} and (X,A) be as in Theorem 3.4.12. Then for each i ≥ 0,

the consistent sequence {H̃i((X,A)Km ;Q), im∗} has a finite weight. Moreover, the growth

of Betti numbers of {H̃i((X,A)Km ;Q), im∗} is eventually polynomial with respect to m.

Proof. By Theorem 3.4.12, {H̃i((X,A)Km ;Q), im∗} is uniformly representation stable.

Thus the uniformly multiplicity stability implies that there exists an integer N > 0, not

depending on λ, such that for all m ≥ N , there are constant integers cλ such that

H̃i((X,A)Km ;Q) ∼=
⊕
λ

cλV (λ)m.
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These integers cλ are uniquely given by multiplicities defined in the irreducible compon-

ents of H̃i((X,A)KN ;Q). Therefore, the weight ωi of sequence {H̃i((X,A)Km ;Q), im∗}
is the maximum |λ| that forms a irreducible component of H̃i((X,A)KN ;Q). Since

H̃i((X,A)KN ;Q) has finite dimension over Q, ωi is finite.

In particular, if m ≥ 2ωi, then for all λ appearing in the above equation, m ≥ |λ|+ λ1.

Then there exists a polynomial character of {H̃i((X,A)Km ;Q) given by
∑

λ Pλ. Take g

to be the identity of symmetric groups. This gives that the growth of Betti numbers of

{H̃i((X,A)Km ;Q), im∗} is eventually polynomial with respect to m.





Chapter 4

Torus actions on ZK

Let H be a torus subgroup of Tm of rank r and let ZK be a moment-angle complex

corresponding to a simplicial complex K on [m]. Then H acts on ZK as a subgroup of

Tm. The quotient space ZK/H has underlying combinatorial data (K,Λ), where Λ is

an integral matrix associated to the quotient homomorphism Tm −→ Tm/H. This pair

(K,Λ) can be combinatorially interpreted as assigning each vertex of K a “colour” in

Zm−r. Given an order on the vertex set of a coloured simplicial complex, we obtain a

linear map Λ: Zm −→ Zm−r, which induces a homomorphism of tori Tm −→ Tm−r. If

we require this linear map Λ to be surjective, then the induced subgroup KerΛ of Tm

is a subtorus. Thus we obtain a quotient space ZK/H (H = KerΛ) under a subtorus

H-action.

4.1 Preliminaries on torus groups

A homomorphism of tori f : Tm −→ Tn induces a linear map on their Lie algeb-

ras Rm −→ Rn and consequently induces a linear map on their fibres Zm −→ Zn

whose associated matrix has integral entries Λ = (λij)n×m ([6, Exercise(4.15) 9, I])

after choosing a basis of Zm and Zn. In this way, the homomorphism f is written as

f(t1, . . . , tm) = (tλ111 . . . tλ1mm , . . . , tλn11 . . . tλnmm ). In the following lemma, we will show

that the induced map between cohomology rings of tori and their corresponding classi-

fying spaces can be characterised by the associated matrix Λ.

Let R be a commutative and associative ring with unit and let 1R denote the multiplic-

ative identity.

Lemma 4.1.1. Let f : Tm −→ Tn be a group homomorphism of tori with associated

integral matrix (λij)n×m.

61
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(a) The induced map f∗ on the cohomology ring of tori is given by

f∗ : H∗(Tn;R) = Λ∗R[β1, . . . , βn] −→ H∗(Tm;R) = Λ∗R[α1, . . . , αm]

βi 7−→
m∑
j=1

(λij · 1R)αj

where deg βi = degαj = 1.

(b) The induced map Bf∗ on the cohomology ring of classifying spaces is given by

Bf∗ : H∗(BTn;R) = R[x1, . . . , xn] −→ H∗(BTm;R) = R[y1, . . . , ym]

xi 7−→
m∑
j=1

(λij · 1R)yj .

where deg xi = deg yj = 2.

Proof. (a) Since the cohomology of Tm is the exterior algebra generated by the first

cohomology H1(Tm;R) ([24, Example 3.11]), it suffices to see what the map between

the first cohomology groups of Tn and Tm is. Consider the first cellular chain complex

C1(Tm;R) ∼=
⊕
m
C1(S1;R), which is a free R-module with a basis {ai, i = 1, . . . ,m},

where ai is a generator of the i-th summand of C1(Tm;R). Similarly, denote by bj , for

j = 1, . . . , n, the generator of the j-th summand of C1(Tn;R).

Consider the restriction of f to the i-th coordinate of Tm,

f |S1
i

: S1
i −→ Tn

t 7→ (tλ1i , tλ2i , . . . , tλni)

which is of degree λji at the j-th coordinate of the image Tn. Thus, f induces a map

f1 : C1(Tm;R) −→ C1(Tn;R) of the following form

f1(ai) = (λ1i · 1R, . . . , λni · 1R) = (λ1i · 1R)b1 + . . .+ (λni · 1R)bn.

The first cochain C1(Tn;R) = HomR(C1(Tn;R), R) has a basis {b∗j , j = 1, . . . , n}, where

b∗j sends bj to 1R and other basis elements to zero. Similarly, C1(Tm;R) has a basis

{a∗i , i = 1, . . . ,m}. Consider the induced map on the first cellular cochain

f1 : C1(Tn;R) −→ C1(Tm;R)

b∗j 7−→ f1(b∗j ) = b∗j ◦ f1.

Since f1(b∗j )(ai) = b∗j ◦ f1(ai) = b∗j ((λ1i · 1R)b1 + . . .+ (λni · 1R)bn) = λji · 1R, we obtain

f1(b∗j ) =
m∑
i=1

(λji · 1R)a∗i . Therefore, the induced map between the first cohomology



63

groups of Tn and Tm, also denoted by f1, has the following description

f1 : H1(Tn;R) −→ H1(Tm;R)

f1(βj) 7−→
m∑
i=1

(λji · 1R)α∗i

where {βj = [b∗j ]} and {αi = [a∗i ]} form the basis of H1(Tn;R) and H1(Tm;R), respect-

ively.

(b) By applying the Serre spectral sequence to the fibre bundle Tn −→ ETn −→ BTn,

the cohomology ring H∗(BTn;R) is a polynomial ring over R whose algebraic generators

xj are in one-to-one correspondence to generators βj of H∗(Tn;R), 1 ≤ j ≤ n (see [38,

Example 11.9.7]). Similarly, each algebraic generator yi of H∗(BTm;R) corresponds

to a generator αi of H∗(Tm;R), 1 ≤ i ≤ m. Since f∗(βj) =
m∑
i=1

(λji · 1R)α∗i (the first

statement of this lemma), therefore we have that Bf∗(xi) =
m∑
j=1

(λij · 1R)yj .

Let H be a subtorus of Tm of rank r. That is, there is a homomorphism of tori

S : T r −→ Tm (4.1)

such that the image S(T r) = H and S : T r −→ H is a group isomorphism. By a slight

abuse of notation, we use S = (sij)m×r to denote the associated integral matrix of (4.1).

Then H can be written as follows

H = {(ts111 ts122 · · · t
s1r
r , . . . , tsm1

1 tsm2
2 · · · tsmrr ) ∈ Tm | (t1, . . . , tr) ∈ T r}.

Alternatively, since Tm ∼= Rm/Zm

H = {(e2πi(s11ψ1+...+s1rψr), . . . , e2πi(sm1ψ1+...+smrψr)) | (ψ1, . . . , ψr) ∈ Rr}.

Let us remark that H is a subtorus of Tm if and only if the column vectors of S form part

of a basis of Zm. To see this, denote by colZ(S) = SpanZ{sj ∈ Zm | 1 ≤ j ≤ r}, where

sj are the column vectors of S. If H is a subtorus of Tm, then colZ(S) is the spanning

lattice of H. Thus H ∼= colR(S)/colZ(S), where colR(S) = SpanR{sj | 1 ≤ j ≤ r}.
Since colZ(S) = colR(S) ∩ Zm ∼= Zr, the column vectors of S form part of a basis of

Zm. On the other hand, if the column vectors of S form part of a basis of Zm, then

colZ(S) ∼= Zr. Thus H ∼= colR(S)/colZ(S) is a subtorus of Rm/Zm ∼= Tm. If H is

a subtorus of Tm, then the quotient group Tm/H is a compact connected abelian Lie

group. Thus Tm/H is isomorphic to a torus group of rank m − r and the quotient

homomorphism Tm −→ Tm/H has an associated integral matrix Λ = (λij)(m−r)×m. In

this way, we have H = ImS = KerΛ. Next, we illustrate the relation between S and Λ

explicitly.
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There exists an integral m×(m−r)-matrix S′ such that the m×m-matrix M =
(
S | S′

)
is invertible. The column vectors sj (1 ≤ j ≤ m) of

(
S | S′

)
form a basis of Zm. Under

the standard basis ej of Zm, M is the linear isomorphism Zm −→ colZ(S)⊕ colZ(S′) by

sj = M(ej). Then Λ = M−1|colZ(S′) ◦Q2 ◦M , where Q2 is the projection

Zm
M∼= colZ(S)⊕ colZ(S′)

Q2−→ colZ(S′).

Similarly, let Λ′ = M−1|colZ(S) ◦Q1 ◦M , where Q1 is the projection

Zm
M∼= colZ(S)⊕ colZ(S′)

Q1−→ colZ(S).

Then

(
Λ′

Λ

)
is the inverse matrix of

(
S | S′

)
, where Λ′ = (λ′ij) is an integral (r ×m)-

matrix and Λ = (λij) is an integral (m − r) × m-matrix. It follows that Λ′S = Ir×r,

ΛS′ = I(m−r)×(m−r) and ΛS = Λ′S′ = 0, where Ir×r and I(m−r)×(m−r) are the identity

matrices.

The following properties of integral matrices will be useful when we consider the condi-

tions under which H acts freely on ZK , stated in Lemma 4.2.1. For two or more integers

a1, . . . , am, which are not all zero, denote by gcd(a1, . . . , am) the largest positive integer

that divides each ai.

Lemma 4.1.2. (a) An integral vector (a1, . . . , am) can be extended to an invertible

integral (m×m)-matrix if and only if gcd(a1, . . . , am) = 1.

(b) Let S be an m × r integral matrix (1 ≤ r ≤ m). Then S can be extended to an

invertible integral matrix if and only if the row vectors of S span Zr.

Proof. (a) We proceed by induction on m. If m = 1, a1 is a basis of Z if and only

if a1 = ±1. Suppose the statement is true for m. Consider the case m + 1. Let

a = gcd(a1, . . . , am) and a′i = ai
a (1 ≤ i ≤ m). Since gcd(a1, . . . , am+1) = 1, there exist

integers p and q such that pa+ qam+1 = 1. By assumption, (a′1, . . . , a
′
m) extends to an

invertible integral matrix denoted by

(
a′1 . . . a′m

A

)
. It follows that the integral matrix a1 . . . am am+1

A 0

(−1)mqa′1 . . . (−1)mqa′m p

 is invertible.

(b) In this proof, all matrices considered are integral and by an invertible matrix, we

mean that it has integral inverse (i.e., its determinant is ±1).

“ ⇒ ” Since the column vectors of S form part of a basis of Zm, there exists S′ such

that M =
(
S | S′

)
is invertible, so M−1S =

(
Ir

0

)
. Since the row vectors of M−1S are

a linear combination of row vectors of S, the row vectors of S span Zr.
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“ ⇐ ” If the row vectors of S spans Zr, we show that S can be extended into an

invertible matrix
(
S | S′

)
by an induction on r. In the case of r = 1, the row vectors

of S consist of m integers. These integers span Z if and only if their greatest common

divisor gcd(s1, . . . , sm) = 1 by the first part of this lemma. Thus the statement is

true for r = 1. Now assume that any integral m × r-matrix can be extended to an

integral invertible matrix if and only if its row vectors span Zr. Let us consider an

m× (r+ 1)-matrix S. Suppose its row vectors span Zr+1. It follows that there exists an

(r+ 1)×m-matrix P such that PS = Ir+1. Now let S =
(
S′ | sr+1

)
and P =

(
P ′

pr+1

)
,

where sr+1 is the last column vector of S and pr+1 is the last row vector of P . Since

PS = Ir+1, we have

P ′S′ = Ir, P
′sr+1 = 0, pr+1S

′ = 0 and pr+1sr+1 = 1. (4.2)

Since P
(
S′ | sr+1

)
=
(
PS′ | P sr+1

)
= Ir+1, the row vectors of PS′ span Zr, which

implies that the row vectors of S′ span Zr. Thus by induction, S′ can be extended to

an invertible matrix
(
S′ | S′′

)
. Denote by (α1, . . . , αm) the column vectors of

(
S′ | S′′

)
.

Since
(
S′ | S′′

)
is invertible, there are integers b1, . . . , bm such that sr+1 = b1α1 + . . .+

bmαm. Hence sr+1 − (b1α1 + . . .+ brαr) =
m∑

j=r+1
bjαj ∈ Col(S′′). Then by (4.2),

pr+1(sr+1 − (b1α1 + . . .+ brαr)) = pr+1sr+1 = 1.

Thus gcd(br+1, . . . , bm) = 1, which implies that (br+1, . . . , bm)t can be extended to an

invertible (m − r) × (m − r)-matrix B. Now let Q =

(
Ir D

0 B

)
where D =

(
b | 0

)
and b = (b1, . . . , br)

t. Note that Q is invertible and so is
(
S′ | S′′

)
Q. The minor given

by the first r + 1 column vectors of
(
S′ | S′′

)
Q is exactly S. Thus, S can be extended

to an invertible matrix.

4.2 Torus actions on ZK and the freeness condition

Let H be a torus subgroup of Tm of rank r and let S = (sij)m×r and Λ = (λij)(m−r)×m

be the associated integral matrices of the inclusion H −→ Tm and the quotient homo-

morphism Tm −→ Tm/H, respectively. The torus subgroup H 6 Tm acts on ZK and

we denote by ZK/H the quotient space.

Recall the subtorus T σ = {(t1, . . . , tm) ∈ Tm | tj = 1 if j /∈ σ} for every σ ⊆ [m].

We first characterize the condition that H acts freely on ZK , in terms of T σ and the

associated matrices S,Λ.
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Lemma 4.2.1. Let H be a torus subgroup of Tm of rank r acting on ZK . Then the

following statements are equivalent:

(a) H acts on ZK freely;

(b) for any σ ∈ K, the intersection T σ ∩H is trivial;

(c) for any σ ∈ K, the column vectors of the (m− |σ|)× r-matrix (sij)i/∈σ form part of

basis of Zm−|σ|;

(d) for any σ ∈ K, the row vectors of the (m− r)× |σ|-matrix (λij)j∈σ span the lattice

Z|σ|.

Proof. (a)⇒(b) For every σ ∈ K, there exists z = (z1, . . . , zm) ∈ (D2, S1)σ such that

zi = 0 if i ∈ σ and zi = 1 otherwise. Then the stabiliser Hz of z is H ∩ T σ, which is

trivial if H acts on ZK freely.

(a)⇐(b) For any point z ∈ ZK , denote by σz = {i ∈ [m] | |zi| = 0}. Thus the stabiliser

Hz of z is H ∩ T σ, which is trivial by the assumption. So H acts on ZK freely.

(b)⇔(c) The condition of (b) is equivalent to that the product H × T σ is a subtorus

of Tm which has rank r + |σ|. Therefore, r + |σ| ≤ m or r ≤ m − |σ|. The associated

integral matrix S̄ of the inclusion H ×T σ −→ Tm is an extended matrix of S by adding

|σ| columns (0, · · · , 1, · · · , 0)T with 1 as the j-th entry for j ∈ σ. The product H × T σ

is a subtorus of Tm if and only if the column vectors of S̄ form part basis of Zm, which

is equivalent to that the colomn vectors of (Sij)i/∈σ form part of basis of Zm−|σ|.

(b)⇔(d) The intersection T σ ∩ H is trivial if and only if T σ ∼= (T σ × H)/H, which

is equivalent to that (T σ × H)/H is a subtorus of Tm/H. Thus the inclusion (T σ ×
H)/H −→ Tm/H is induced by the composition T σ −→ Tm −→ Tm/H, which implies

that its associated matrix is given by Λσ, where Λσ = (λij)j∈σ. By Lemma 4.1.2, the

row vectors of Λσ span Z|σ|.

Remark 4.2.2. Since Tm acts on ZK coordinatewise, choosing the standard basis of Tm

is equivalent to giving an order (V (K),�) on the vertex set of K in the following sense.

The spanning lattice of Tm is given by Zm and there is a one-to-one correspondence

ei ↔ vi, where {e1, . . . , em} is the standard basis of Zm and we list each vertex of K in

an order v1 ≺ . . . ≺ vm. In this way, the matrix Λ is called a Zm−r-color on V (K), as it

assigns each vertex vi ∈ V (K) to a vector λi ∈ Zm−r, where each λi is a column vector

of Λ.

On the other hand, if give an order v1 ≺ . . . ≺ vm on V (K) and assign each vi to a vector

λi in Zm−r, then we have an (m− r)×m-matrix Λ: Zm −→ Zm−r induced by mapping

each standard basis vector ei to λi. Thus, we have an integral matrix Λ: Zm −→ Zm−r

which gives rise to a homomorphism Tm
Λ−→ Tm−r whose kernel H = KerΛ is a subgroup

of Tm acting on ZK . To make sure that H is a subtorus, we require Λ to be surjective.
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In this sense, one can think of the underlying combinatorial structure of the partial

quotient ZK/H as a pair (K,Λ), where each vertex of the simplicial complex K is

assigned a vector in Zm−r. Choosing an order of vertices of K, an (m− r)×m-integral

matrix Λ is obtained whose column vectors are those vectors associated to vertices, listed

according to the order of vertices. We say that ZK/H does not depend on the order of

V (K) because by changing an order of the vertices, the corresponding column vectors

of the matrix Λ are permutated. The resulting quotient spaces ZK/H and ZK1/H1 are

homeomorphic, where ZK1/H1 is obtained by changing the order of the vertices of K.

For example, the simplicial complex K in Figure 4.1 has same vectors in Z2 assigned

to its vertices. Labelling the vertices of the simplicial complex in two different orders,

the resulting simplicial complexes K1 and K2 are simplicial isomorphic, as seen in Fig-

ure 4.1. As abstract sets, K1 and K2 are different.

K

e1

e1 + e2 e1 + 2e2

2e1

K1

1

2 3

4

K2

3

4 1

2

Figure 4.1: Simplicial complexes with different orders on the vertices.

The corresponding integral matrices are Λ1 =

1 2 3 4( )
1 1 1 2

0 1 2 0
and Λ2 =

1 2 3 4( )
1 2 1 1

2 0 0 1
.

In this case, the quotient space ZK1/KerΛ1 is homeomorphic to ZK2/KerΛ2.

An application of Lemma 4.2.1 is that given an integral matrix Λ, one may find a

simplicial complex K such that H = KerΛ acts on ZK freely.

Example 4.2.3. Let Λ = (1, . . . , 1︸ ︷︷ ︸
m

). Then by Lemma 4.2.1(d), if K is a disjoint union

of m points, there is a free KerΛ-action on ZK . It is the only possible simplicial complex

on m vertices without ghost vertices for which KerΛ acts freely on ZK .

Example 4.2.4. Let K be a simplicial complex on [m] without ghost vertices. Yu [43]

calculated the cohomology of certain partial quotients ZK/KerΛ (not necessarily by

free actions), where Λ is obtained by permutating the column vectors of the following
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matrix (4.3) and each αj 6= 0.

1 . . . 1︸ ︷︷ ︸
α1

0 0 . . . 0

0 1 . . . 1︸ ︷︷ ︸
α2

0 . . . 0

0 0 1 . . . 1︸ ︷︷ ︸
α3

. . . 0

...
...

...
...

0 0 0 . . . 1 . . . 1︸ ︷︷ ︸
αl


l×m

(4.3)

If Λ is a matrix of this type, it induces a map fΛ from [m] to [l]. Then (f−1
Λ (1), . . . , f−1

Λ (l))

is a partition of the vertex set [m]. By abuse of notion, let αj = f−1
Λ (j).

Given a free KerΛ-action on ZK , the freeness condition (Lemma 4.2.1) implies that

(i1, . . . , ip) ∈ K if and only if each ij belongs to a different partition αq. Explicitly, K is

a simplicial subcomplex of [α1] ∗ . . . ∗ [αl] without ghost vertices (i.e., ∀i ∈ [m], i ∈ K),

where [αj ] denotes a set of αj disjoint points.

One explicit example of Example 4.2.4 is in the following.

Example 4.2.5. In [10, Example 7.8.17], one illustrates a quasi-toric manifold over a

2k-gon with a matrix Λ of the form(
1 0 1 0 . . . 1 0

0 1 0 1 . . . 0 1

)
.

This Λ satisfies the condition in Example 4.2.4.

4.3 The Tor-algebras

In this section, we study the Tor-algebra TorH∗(B(Tm/H);R)(R[K], R) via the Koszul

resolution and the Taylor resolution.

4.3.1 Panov’s formula

Recall that if H is a torus subgroup of Tm acting freely on ZK , then the quotient space

ZK/H is the homotopy fibre of DJK
f−→ B(Tm/H) (Lemma 2.3.22, 4.2.1), where f is a

composition of the inclusion DJK = (BS1, ∗)K −→ BTm followed by the quotient map

BTm
BΛ−→ B(Tm/H). Panov [35] proved that the Eilenberg-Moore spectral sequence

associated to this homotopy fibration collapses at the E2-term. Around the time of my
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viva, a new preprint [19] stated the cup product of the quotient space ZK/H is not the

standard multiplication of the Tor-algebra TorH∗(B(Tm/H);R)(R[K], R) as in [35]. The

results in this section and Section 4.4 will still be true if 2 is a unit of R due to [19].

Theorem 2.3.24. If H acts freely on ZK , then there exists an isomorphism of graded

R-algebras

H∗(ZK/H;R) ∼= TorH∗(B(Tm/H);R)(R[K], R). (4.4)

Here the Stanley-Reisner ring R[K] is an H∗(B(Tm/H);R)-module given by an R-

homomorphism

H∗(B(Tm/H);R)
BΛ∗−→ H∗(BTm;R)

p−→ R[K]

where p is induced by the inclusion (BS1, ∗)K −→ BTm and BΛ∗ is induced by the map

BTm
BΛ−→ B(Tm/H).

Precisely, since Tm/H is isomorphic to an (m − r)-torus group, H∗(B(Tm/H);R) is

a polynomial ring over R with m − r variables. As convenient notations, we write

A = H∗(B(Tm/H);R) = R[t1, . . . , tm−r] and H∗(BTm;R) = R[v1, . . . , vm]. Then by

Lemma 4.1.1, BΛ∗(ti) =
m∑
j=1

(λij · 1R)vj for 1 ≤ i ≤ m − r and by Proposition 2.3.25,

the map p : R[v1, . . . , vm] −→ R[K] = R[v1, . . . , vm]/IK is a quotient homomorphism.

The homomorphism BΛ∗ and the composition p ◦BΛ∗ define an A-module structure on

R[v1, . . . , vm] and R[K], respectively.

In this way, the polynomial R[v1, . . . , vm] is an A-algebra by sending ti to
m∑
j=1

(λij · 1R)vj

and the multiplication is induced by the standard multiplication of polynomial rings. The

ground ring R is an A-module by mapping each ti to zero. Since Λ can be extended into

an integral invertible matrix, R[v1, . . . , vm] is isomorphic as an A-algebra to a polynomial

ring with r variables over A. We prove this in the next lemma.

Lemma 4.3.1. Let A[x1, . . . , xr] be a polynomial ring over A. Then there exists an

isomorphism of A-algebras between A[x1, . . . , xr] and R[v1, . . . , vm]. Consequently, the

tensor product R[v1, . . . , vm]⊗A R is isomorphic as an R-algebra to R[x1, . . . , xr].

Proof. Let ui =
m∑
j=1

λ̃ijvj , where λ̃ij = λij if i ≤ m− r and λ̃ij = λ′i−m+r,j if i > m− r.

Note that the matrix

(
Λ

Λ′

)
has an inverse matrix M =

(
S′ | S

)
. Hence R[v1, . . . , vm] is

isomorphic as an R-algebra to R[u1, . . . , um] by changing the basis according to M , i.e.,

sending vi to
m∑
j=1

(s̃ij · 1R)uj where s̃ij = s′ij if j ≤ m− r and s̃ij = si,j−m+r if j > m− r.

The composition M ◦BΛ∗ turns R[u1, . . . , um] into an A-module.

Since for 1 ≤ i ≤ r

ti
BΛ∗7−→

m∑
j=1

λijvj

(
S′ | S

)
7−→

m∑
j=1

λij(

m∑
k=1

(s̃jk · 1R)uk) = ui
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the composition M ◦BΛ∗ sends variables t1, . . . , tr of A identically to variables u1, . . . , ur.

We have that R[u1, . . . , um] can be seen as a polynomial ring over A with variables

um−r+1, . . . , um. Hence R[u1, . . . , um] is isomorphic as an A-algebra to A[x1, . . . , xr] by

letting xi corresponding to um−r+i. Therefore, R[v1, . . . , vm] is isomorphic as an A-

algebra to A[x1, . . . , xr]. Identifying xi = um−r+i for 1 ≤ i ≤ r, then R[v1, . . . , vm]⊗AR
is isomorphic as an R-algebra to R[x1, . . . , xr] by sending each vi to

r∑
j=1

(sij · 1R)xj .

4.3.2 Calculations of Tor-algebras

In this section, we apply the Taylor resolution and the Koszul resolution to calculate

the Tor-algebra (4.4).

Taylor Resolution. Let P = {σ1, . . . , σp} be a set consisting of all the minimal

missing faces of K. Denote by Λ∗[P] the exterior algebra over R with basis P. Let

A = H∗(B(Tm/H);R). Then Λi[P]⊗R[v1, . . . , vm] is a free A-module by Lemma 4.3.1.

Construction 4.3.2 (Taylor resolution [39]). The Taylor resolution of R[K] over A is

given by

. . . −→ Λi[P]⊗R[v1, . . . , vm]
δ−→ Λi−1[P]⊗R[v1, . . . , vm]

δ−→

. . .
δ−→ Λ1[P]⊗R[v1, . . . , vm]

δ−→ R[v1, . . . , vm] −→ R[K] −→ 0
(4.5)

where for σj1 . . . σjq ∈ Λq[P],

δ(σj1σj2 · · ·σjq) =
∑

0≤p≤q
(−1)p−1

lcm(vσj1 , vσj2 , · · · , vσjq )

lcm(vσj1 , · · · , v̂σjp , · · · , vσjq )
σj1 · · · σ̂jp · · ·σjq

δ(vi) = 0, 0 ≤ i ≤ m

and σ̂jp and v̂σjp indicate that elements are omitted.

Let σI = σi1 . . . σiq ∈ Λq[P], let σJ = σj1 . . . σjl ∈ Λl[P] and let I = {i1, . . . , iq}, J =

{j1, . . . , jl}. The multiplication σI × σJ on the Taylor resolution (4.5) is defined by

σI × σJ =


lcm(vσi1

,...,vσiq )lcm(vσj1
,...,vσjq )

lcm(vσi1
,...,vσip ,vσj1

,...,vσjl
)
σIσJ if I ∩ J = ∅

0 otherwise.
(4.6)

The bigrading of Λ∗[P]⊗R[v1, . . . , vm] is defined by

bideg σi1 . . . σiq = (−q, 2|σi1 ∪ . . . ∪ σiq |) and bideg vj = (0, 2).

Due to Theorem 2.3.24, we obtain the following statement.
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Theorem 4.3.3. Let H be a torus subgroup of Tm of rank r which acts freely on ZK .

Let S = (sij)m×r denote the associated integral matrix H 6 Tm. Then there exist

isomorphisms of R-algebras

H∗(ZK/H;R) ∼= TorA(R[K], R) ∼= H(Λ∗[P]⊗R[x1, . . . , xr], d) (4.7)

where (Λ∗[P]⊗R[x1, . . . , xr], d) is defined by

d(σi1 . . . σip) =
∑

1≤t≤p
(−1)t−1δt(x1, . . . , xr)σi1 . . . σ̂it . . . σip

dxj = 0 1 ≤ j ≤ r

and δt(x1, . . . , xr) =
∏

i∈Sσ\S∂tσ
(
r∑
j=1

(sij · 1R)xj) if Sσ 6= S∂tσ and 1 otherwise. Here Sσ =

σi1 ∪ . . . ∪ σip and S∂tσ = σi1 ∪ . . . ∪ σ̂it ∪ . . . ∪ σip.

Proof. Applying −⊗A R to (4.5), we obtain a differential graded R-algebra

(Λ∗[P]⊗R[v1, . . . , vm]⊗A R, δ ⊗A id). (4.8)

Identifying R[v1, . . . , vm] ⊗A R ∼= R[x1, . . . , xr] as R-algebras, (4.8) reduces to a differ-

ential graded R-algebra (Λ∗[P]⊗R[x1, . . . , xr], d)

. . . −→ Λp[P]⊗R[x1, . . . , xr]
d−→ . . .

d−→ Λ1[P]⊗R[x1, . . . , xr]
d−→ R[x1, . . . , xr] −→ 0

where the differential map d is given by

d(σi1 . . . σip) =
∑

1≤t≤i
(−1)t−1δt(x1, . . . , xr)σi1 . . . σ̂it . . . σip

and δt(x1, . . . , xr) =
∏

i∈Sσ\S∂tσ
(
r∑
j=1

(sij · 1R)xj) if Sσ 6= S∂tσ and 1 otherwise.

The multiplication σI × σJ on (Λ∗[P]⊗R[x1, . . . , xr], d) is induced from the multiplica-

tion (4.6) on the Taylor resolution, defined by

σI × σJ =


∏

i∈SσI∩SσJ
(
r∑
j=1

(sij · 1R)xj)σIσJ if I ∩ J = ∅ and SσI ∩ SσJ 6= ∅

σIσJ if I ∩ J = SσI ∩ SσJ = ∅

0 otherwise

where σI and σJ are the same notation as (4.6) and SσI = σi1 ∪ . . . ∪ σiq and SσJ =

σj1 ∪ . . . ∪ σjl .

Let us call the algebra Λ∗[P]⊗R[x1, . . . , xr] the Taylor algebra.
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Example 4.3.4 (complex projective spaces). Let K be the boundary of a simplex ∆m−1.

Then P = {σ} where σ = {1, 2, . . . ,m}. The quotient space ZK/S1
d under the diagonal

action is CPm−1 (Example 2.2.15). By (4.7), there is a differential graded R-algebra,

0 −→ Λ1[σ]⊗R[x]
d−→ R[x] −→ 0,

where d(σ) = x|σ| = xm. Thus, the cohomology is given by H∗(ZK/S1
d ;R) = R[x]/(xm)

and deg x = 2.

More generally, we will apply Theorem 4.3.3 to the case when K is a triangulation of

an (n− 1)-sphere with m vertices. Consider a linear sequence in Z[K]

ti = λi1v1 + . . .+ λimvm, 1 ≤ i ≤ n (4.9)

which gives an n × m-integral matrix Λ = (λij). In [10, Theorem 4.8.7], it has been

proven that the linear sequence (t1, . . . , tn) is a linear system of parameters if and only

if the kernel of Λ: Tm −→ Tn is an (m − n)-torus acting on ZK freely. Moreover,

recall that an algebra is Cohen-Macaulay if it is a free finitely generated module over a

polynomial subalgebra and a simplicial complex K is called Cohen-Macaulay if k[K] is a

Cohen-Macaulay algebra for k = Q or any finite field ([10, Definition 3.3.5, Proposition

A.3.13]). Any triangulation of a sphere is Cohen-Macaulay ([10, Corollary 3.3.17]).

Therefore, if K is a triangulation of an (n − 1)-sphere with m vertices and a sub-

torus group H ∼= Tm−n acts on ZK freely, then the freeness implies that the linear

sequence (t1, . . . , tn) (4.9) is a linear system of parameters. Since k[K] is Cohen-

Macaulay over k, k[K] is a free k[t1, . . . , tn]-module ([10, Proposition A.3.3]). Hence,

Tor−i,2jH∗(B(Tm/H);k)(k[K],k) is trivial if i ≥ 1 and H∗(ZK/H; k) ∼= Tor0,∗
H∗(B(Tm/H);k)(k[K],k).

Corollary 4.3.5. Let K be a triangulation of an (n− 1)-sphere with m vertices and let

H be an (m− n)-torus subgroup of Tm acting freely on ZK . Then the cohomology ring

of ZK/H is given by

H∗(ZK/H; k) = k[x1, . . . , xm−n]/(aσ,S)σ∈P

where (aσ,S)σ∈P is the ideal generated by aσ,S =
∏
i∈σ

(
m−n∑
j=1

(sij · 1k)xj) and deg xj = 2.

Proof. According to (4.7), Tor0
H∗(B(Tm/H);R)(R[K], R) is given by the quotient ring

R[x1, . . . , xm−n]/Imd where Imd is the ideal generated by d(σ) =
∏
i∈σ

(
m−n∑
j=1

(sij ·1k)xj) for

every σ ∈ P.

Koszul Resolution. The Koszul resolution of R over R[t1, . . . , tm−r] is defined by

(Λ[u1, . . . , um−r]⊗R[t1, . . . , tm−r], d), dui = ti and dti = 0.



73

Tensoring it with −⊗R[t1,...,tm−r] R[K], we have the statement below.

Proposition 4.3.6. Let H be a subtorus of Tm and Λ be the corresponding integral

matrix of the projection Tm −→ Tm/H. Then there is an isomorphism of graded algebras

H∗(ZK/H;R) ∼= TorH∗(B(Tm/H);R)(R[K], R) ∼= H(Λ[u1, . . . , um−r]⊗R[K], d) (4.10)

where the differentials are defined by dui = (λi1 · 1R)v1 + . . .+ (λim · 1R)vm and dvj = 0.

Proof. For convenience, write A = H∗(B(Tm/H);R) = R[t1, . . . , tm−r]. Recall that in

Section 4.3.1, R[K] is an A-algebra given by the homomorphism

f : R[t1, . . . , tm−r] −→ R[K]

ti 7−→
m∑
j=1

(λij · 1R)vj .

There is an isomorphism of R-algebras β : A⊗AR[K] −→ R[K], β(a⊗Ab) = f(a)b where

a ∈ A and b ∈ R[K]. Its algebraic inverse homomorphism is given by β−1(b) = 1R ⊗A b.
Both β and β−1 are R-homomorphism of algebras by properties of the tensor product.

Thus there is an isomorphism of R-algebras

Λ[u1, . . . , um−r]⊗A⊗A R[K] ∼=Λ[u1, . . . , um−r]⊗R[K]

ui ⊗ a⊗A b 7→ui ⊗ f(a)b.

Hence the differential d on Λ[u1, . . . , um−r] ⊗ R[K] induced by the Koszul resolution is

given by

dui = f(ti) = (λi1 · 1R)v1 + . . .+ (λim · 1R)vm.

The algebra Λ[u1, . . . , um−r]⊗R[K] is called Koszul algebra, whose multiplication is the

tensor product of R-algebras (2.3).

Example 4.3.7. The diagonal action on ZK is always free. In this case, the associated

integral matrix Λ induced by the quotient map Tm −→ Tm/S1
d is

(
Im−1 | −1

)
, where

−1 = (−1, . . . ,−1)t. Thus the Koszul algebra (Λ[u1, . . . , um−1]⊗R[K], d) is given by

dui = vi − vm for 1 ≤ i ≤ m− 1 and dvj = 0 for 1 ≤ j ≤ m.

By Proposition 4.3.6, H∗(ZK/S1
d ;R) ∼= H∗(Λ[u1, . . . , um−1]⊗R[K], d).

Bigradings. Unlike moment-angle complexes (Construction 2.1.24, 2.1.26) and quotient

spaces of real moment-angle complexes ([13, Theorem 4.6]), there are no analogous

multigrading structures on the Taylor algebra (4.7) and the Koszul algebra (4.10) which

are closed under the differentials in general. However, the bigrading structures exist.
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The bigradings of generators of the Taylor algebra (Λ∗[P] ⊗ R[x1, . . . , xr], d) (4.7) are

defined by

bideg σi1 . . . σiq = (−p, 2|σi1 ∪ . . . ∪ σiq |) for each σij ∈ P and bideg xj = (0, 2).

The bigradings of uj and vi in the Koszul algebra (Λ∗[u1, . . . , um−r] ⊗ R[K], d) (4.10)

are defined by

bideg uj = (−1, 2) and bideg vi = (0, 2).

The Eilenberg-Moore spectral sequence indicates how the cohomology degree of ZK/H
corresponds to the bigrading of the Tor-algebra. Let Λ−i,2j [P] and Λ−i,2j [u1, . . . , um−r]

be the corresponding R-submodule of degree (−i, 2j). Similarly, let R2t[x1, . . . , xr] and

R2t[K] be the corresponding R-submodule of degree 2t. Then the next result follows

immediately.

Theorem 4.3.8. Let K be a simplicial complex on [m] and H be a subtorus group of

Tm of rank r acting on ZK freely. Then there exist isomorphisms of groups

Hq(ZK/H;R) ∼=
⊕

−i+2j=q

Tor−i,2jH∗(B(Tm/H);R)(R[K], R)

∼=
⊕

−i+2j′+2t=q

Hi(Λ
−i,2j′ [P]⊗R2t[x1, . . . , xr], d)

∼=
⊕
i+2t=q

Hi(Λ
−i,2i[u1, . . . , um−r]⊗R2t[K], d).

Proof. Let C∗(·) denote the singular cochain functor with coefficients in R. The algebraic

isomorphism (4.4) in [35] is established by showing that the Eilenberg-Moore spectral

sequence associated to the homotopy fibration ZK/H −→ DJK
f−→ B(Tm/H) collapses

at the E2-term and the existence of a multiplicative isomorphism

Φ: TorH∗(B(Tm/H);R)(R[K], R) −→ TorC∗(B(Tm/H))(C
∗(DJK), R).

Consider the pullback square

X E(Tm/H)

DJK B(Tm/H)

f̃

g

f

where f is a composite DJK ↪→ BTm
BΛ−→ B(Tm/H). Recall that in [30, Theorem 7.14]

(the second Eilenberg-Moore theorem), there exists a filtration-preserving map

θ : total(Q•)⊗C∗(B(Tm/H);R) C
∗(E(Tm/H)) −→ C∗(X)
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which induces an isomorphism on cohomology

θ∗ : TorC∗(B(Tm/H))(C
∗(DJK), C∗(E(Tm/H))) −→ H∗(X;R) = H∗(ZK/H;R).

Here Q•
ε−→ C∗(DJK ;R) −→ 0 is a proper projective resolution ([30, Definition 2.18]) of

C∗(DJK) over C∗(B(Tm/H)). And Q• forms a bicomplex. Hence there is an associated

total complex (total(Q•), d), where total(Q•)q = ⊕
−j1+2j2=q

Q−j1,2j2 . Then the map θ is

defined to be a composition

total(Q•)⊗C∗(B(Tm/H)) C
∗(E(Tm/H))

C∗(DJK)⊗C∗(B(Tm/H)) C
∗(E(Tm/H)) C∗(X)

ε⊗id θ

ᾱ

where ᾱ is induced by the composition

ᾱ : C∗(DJK)⊗ C∗(E(Tm/H))
g∗⊗f̃∗−→ C∗(X)⊗ C∗(X)

×−→ C∗(X).

Since E(Tm/H) is contractible, there exists a chain equivalence C∗(E(Tm/H)) ' R.

Therefore, we have

Hq(ZK/H;R) ∼=Hq(total(Q•)⊗C∗(B(Tm/H)) R, d
′)

∼=
⊕

−i+2j=q

Tor−i,2jC∗(B(Tm/H))(C
∗(BTK), R)

where the second isomorphism is valid since the bigrading of the Tor-module is defined

by the bigrading of Q•. As the multiplicative isomorphism Φ is degree-preserving, we

have

Tor−i,2jC∗(B(Tm/H))(C
∗(DJK), R) ∼= Tor−i,2jH∗(B(Tm/H);R)(H

∗(DJK ;R), R) = Tor−i,2jH∗(B(Tm/H);R)(R[K], R).

The bigradings of Tor-algebra TorH∗(B(Tm/H);R)(R[K], R) correspond the bigradings of

the Taylor algebra (4.7) and the Koszul algebra (4.10). That is to say,

Tor−i,2jH∗(B(Tm/H);R)(R[K], R) ∼=
⊕
j′+t=j

Hi(Λ
−i,2j′ [P]⊗R2t[x1, . . . , xr], d)

∼=
⊕
i+t=j

Hi(Λ
−i,2i[u1, . . . , um−r]⊗R2t[K], d).

Example 4.3.9. Let K be the following simplicial complex.
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K :

1

2 3

4

Then the minimal missing faces of K are P = {σ23, σ124, σ134}. We calculate the co-

homology of the quotient ZK/S1
d under the diagonal action. The Taylor algebra (4.7)

is

0 −→ Λ3[P]⊗R[x]
d3−→ Λ2[P]⊗R[x]

d2−→ Λ1[P]⊗R[x]
d1−→ R[x] −→ 0.

The nontrivial differentials are

dσ23 = x2, dσ124 = x3, dσ134 = x3, dσ23σ124 = (σ124 − σ23x)x,

dσ23σ134 = (σ134 − σ23x)x, dσ124σ134 = (σ134 − σ124)x,

dσ23σ124σ134 = σ124σ134 − σ23σ134 + σ23σ124.

Hence, the homology groups are

Hi(Λ
∗[P]⊗R[x], d) =


R[x]/(x2) if i = 0

R · [σ23x− σ124]⊕R · [σ23x− σ134] if i = 1

0 otherwise

where R · [a] is denoted by the R-module with the generator [a].

Note that bideg x = (0, 2) and bideg (σ23x − σ124) = bideg (σ23x − σ134) = (−1, 6).

Therefore, we have

H i(ZK/S1
d ;R) =


R if i = 0, 2

R⊕R if i = 5

0 otherwise

in accordance with Example 2.3.30.

Example 4.3.10. Let Zm be the moment-angle complex corresponding to m disjoint

point. We calculate the cohomology of ZK/KerΛ, where Λ = (1, . . . , 1︸ ︷︷ ︸
m

) (Example 4.2.3).

In this case, the Stanley-Reisner ring R[K] = R[m]/(vivj , 1 ≤ i < j ≤ m) and the

Koszul algebra (4.10) is given by (Λ∗[u] ⊗ R[K], d) where du = v1 + . . . + vm and

d(uvj) = v2
j for 1 ≤ j ≤ m. Thus, the homology groups are H0(Λ∗[u] ⊗ R[K], d) ∼=

R[K]/(v1 + . . .+ vm, v
2
j , 1 ≤ j ≤ m) and zero, otherwise. This implies that

H i(ZK/KerΛ;R) =


R, if i = 0,

R⊕(m−1) if i = 2,

0 otherwise.

Note that in the case m = 2, we have ZK ∼= S3 and ZK/S1 ' S2.
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4.3.3 Yu’s formula

We will apply Proposition 4.3.6 to compute H∗(ZK/H;R) in Example 4.2.4 when the

subtorus H = KerΛ acts on ZK freely. See [43, Theorem 1.2] for a topological approach

including non-free actions. Recall that in Example 4.2.4, Λ has a particular form. Let

RowΛ be a subspace of Zm2 spanned by the row vectors of Λ. Then under the bijection

of the vector space Zm2 and the power set 2[m] of [m], the row vector space RowΛ

corresponds to a subset J of 2[m] consisting of {J ⊆ [m] | if i ∈ αp and i ∈ J, then αp ⊆
J}. By an abuse of notation, we use RowΛ to denote the set J . Note that there is a

bijection φ between RowΛ and the power set 2[l] of [l]

φ : RowΛ −→ 2[l]

J 7−→ {p | i ∈ αp and i ∈ J}
(4.11)

where l is the number of partitions of V (K). Alternatively, this bijection φ : RowΛ −→
2[l] is given by sending the vector k1λ1 + . . .+ klλl to {i | ki 6= 0}, where λi are the row

vectors of Λ. The following result is known as [43, Theorem 1.2]. We give a different

proof in the case of a free KerΛ-action as follows.

Proposition 4.3.11. Let (K,Λ) satisfy the condition in Example 4.2.4. Then there

exists an isomorphism of graded R-algebras

H∗(ZK/KerΛ;R) ∼= H(Λ[u1, . . . , ul]⊗R[K], d)

where the differentials are dui =
∑
j∈αi

vj , dvp = 0, 1 ≤ i ≤ l, 1 ≤ p ≤ m. Moreover, there

are isomorphisms of homology groups

Hq(ZK/KerΛ;R) ∼=
⊕

J∈RowΛ

H̃q−|φ(J)|−1(KJ ;R).

Next, we will prove Proposition 4.3.11 in a few lemmas, an analogue of the proof of

Hochster’s formula shown in [10, Section 3.2]. A sketch of this proof is contained in

Section 2.1.2 of this thesis.

Construction 4.3.12. Define a quotient algebra Q∗(K)

Q∗(K) = Λ[u1, . . . , ul]⊗R[K]/(uivj = v2
p = 0, j ∈ αi, 1 ≤ i ≤ l, 1 ≤ p ≤ m)

where Q∗(K) has a basis {uJvσ | J ∩ Iα(σ) = ∅ and σ ∈ K} as an R-module. The

ideal (uivj = v2
p = 0, j ∈ αi, 1 ≤ i ≤ l, 1 ≤ p ≤ m) is closed under the differential, since

duivj = v2
j for j ∈ αi and i ∈ [l]. Thus Q∗(K) is a differential graded algebra. Recall

that R[K] has a basis consisting 1R and vb1i1 . . . v
bp
ip

with bj > 0 for {i1, . . . , ip} ∈ K ([10,

Proposition 3.1.9]). By the construction of K, if σ ∈ K, then each i ∈ σ is from different

partition αp. For σ = {i1, . . . , ip}, denote by Iα(σ) = {j ∈ [l] | αj ∩ σ 6= ∅}. There
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is a multigrading on vσ in Q∗(K) defined by mdegvσ = (2a1, . . . , 2al) where ai = 1 if

i ∩ Iα(σ) 6= ∅ and zero otherwise. It gives a Z⊕ Nl-grading on Q∗(K) by

mdeguJvσ = (−|J |, J ∪ Iα(σ)).

There exist a quotient homomorphism ρ : Λ[u1, . . . , ul]⊗R[K] −→ Q∗(K) and an inclu-

sion of R-modules ι : Q∗(K) −→ Λ[u1, . . . , ul]⊗R[K] with ρι = id.

Lemma 4.3.13. There exists a chain homotopy s : Λ[u1, . . . , ul]⊗R[K] −→ Λ[u1, . . . , ul]⊗
R[K] such that ds− sd = id− ιρ. Consequently, the projection Λ[u1, . . . , ul]⊗R[K] −→
Q∗[K] induces isomorphisms on homology groups.

Proof. The proof is similar to [10, Lemma 3.2.6]. First consider a special case when

K = [α1] ∗ . . . ∗ [αl]. Let El = Λ[u1, . . . , ul]⊗R[[α1] ∗ . . . ∗ [αl]]. If l = 1, K is a disjoint

union of α1 points. Denote by the corresponding Stanley-Reisner ring R[α1]/Iα1 =

R[v1, . . . , vα1 ]/(vivj , i 6= j). Let x = a0 +
α1∑
i=1

q∑
j=1

ajiv
j
i ∈ R[α1]/Iα1 . Define

s1 : E−i,∗1 −→ E−i−1,∗
1

by s1(x) = u1[(a21v1 + . . .+ a2α1vα1) + . . .+ (aj1v
j−1
1 + . . .+ ajα1v

j−1
α1 )] and s1(ux) = 0.

The map s1 satisfies ds1− s1d = id− ι ◦ ρ. For a general l, since El = El−1⊗E1, we can

inductively define sl = sl−1 ⊗ id + ιl−1 ◦ ρl−1 ⊗ s1, which is a chain homotopy between

id and ιl ◦ ρl.

Now consider any K with V (K) = [α1] t . . . t [αl] ⊆ K ⊆ [α1] ∗ . . . ∗ [αl]. Let I ′K be

the ideal in El generated by the monomials vσ, where σ /∈ K and each i ∈ σ is from a

distinct partition αp. In this case, the Koszul algebra Λ[u1, . . . , ul]⊗R[K] = El/I
′
K . To

define the chain homotopy s to Λ[u1, . . . , ul]⊗R[K], it suffices to show that

d(I ′K) ⊆ I ′K , ι ◦ ρ(I ′K) ⊆ I ′K , and s(I ′K) ⊆ I ′K . (4.12)

As an R-module, I ′K has a basis {uJvb1i1 . . . v
bp
ip
}, where {i1, . . . , ip} /∈ K with each iq

sitting in a different partition αt and bq > 0. Note that d(uJv
b1
i1
. . . v

bp
ip

) =
∑
j∈J
±

uJ\j(
∑
i∈αj

viv
b1
i1
. . . v

bp
ip

). Also notice that viv
b1
i1
. . . v

bp
ip

= 0 if there exists some iq (1 ≤ q ≤ p)

such that i and iq are from the same partition by the construction of I ′K and El. Thus

d(uJv
b1
i1
. . . v

bp
ip

) ∈ I ′K . So d(I ′K) ⊆ I ′K . We also have that

ιρ(uJv
b1
i1
. . . v

bp
ip

) =

uJvi1 . . . vip if bq = 1 and J ∩ Iα(σ) = ∅

0, otherwise.
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Hence, ιρ(I ′K) ⊆ I ′K . By the inductive definition of sl,

s(uJv
b1
i1
. . . v

bp
ip

) =
∑

iq∈αj ,bq>1

± uJujvb1i1 . . . v
bq−1
iq

. . . v
bp
ip
.

The third inclusion in (4.12) follows.

For L ⊆ [l], let Q∗,L = SpanR{uL\Iα(σ)vσ | σ ∈ K, Iα(σ) ⊆ L}. It is a chain subcomplex

since

duL\Iα(σ)vσ =
∑

k∈L\Iα(σ)

(±1)uL\(Iα(σ)∪k)(
∑
j∈αk

vj)vσ

where vjvσ is zero unless j ∪ σ ∈ K. By the construction of K, if j ∪ σ ∈ K then

Iα(j∪σ) = k∪Iα(σ). Thus, duL\Iα(σ)vσ ∈ Q∗,L. Moreover, the chain complex (Q∗(K), d)

has a splitting of chain subcomplexes Q∗(K) =
⊕
L⊆[l]

Q∗,L(K). In the following statement,

we prove that Q∗,L(K) is isomorphic to C∗(Kφ−1(L);R) as cochain complexes, where φ

is bijection (4.11) between RowΛ and subsets of [l] and Kφ−1(L) is the full subcomplex

of K on φ−1(L).

For I ⊆ J ⊆ [m], define the sign function ε(I, J) =
∏
i∈I
ε(i, I), where ε(i, I) = (−1)r+1

with i sitting at the r-th position of I if I is written increasingly. It satisfies that

ε(j, J)ε(j, j ∪ I) = ε(j, J \ I) for j ∈ J \ I (see [10, Theorem 3.2.9]).

Lemma 4.3.14. For J ∈ RowΛ, there are isomorphisms of R-modules

Hi(Q−i,φ(J)(K), d) ∼= H̃ |φ(J)|−i−1(KJ ;R).

Proof. For J ∈ RowΛ and φ(J) ⊆ [l], define

f : Cp(KJ ;R) −→ Q|φ(J)|−p−1,φ(J)(K)

χσ 7→ ε(Iα(σ), φ(J))uφ(J)\Iα(σ)vσ

where χσ is a base cochain corresponding to an oriented simplex σ. It suffices to prove

that f is an isomorphism of chain complexes. First, by the construction of K, if σ ∈ K
and |σ| = p + 1, then |Iα(σ)| = p + 1. Since φ is a bijection and Q|φ(J)|−p−1,φ(J) has a

basis {uφ(J)\Iα(σ)vσ | σ ∈ K, |σ| = p + 1, Iα(σ) ⊆ φ(J)}, f is an isomorphism. Observe

that

f(dχσ) =f(
∑

j∈J\σ,j∪σ∈KJ

ε(j, j ∪ σ)χj∪σ)

=
∑
j∈J\σ

ε(j, j ∪ σ)ε(Iα(j ∪ σ), φ(J))uφ(J)\Iα(j∪σ)vj∪σ

df(χσ) =
∑

k∈φ(J)\Iα(σ)

ε(Iα(σ), φ(J))ε(k, φ(J) \ Iα(σ))uφ(J)\(k∪Iα(σ))(
∑
p∈αk

vp)vσ.
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To simplify df(χσ), note that vpvσ = 0 ∈ Q∗,φ(J)(K) unless p ∪ σ ∈ K. Thus, the

summands in df(χσ) go though k ∈ φ(J) \ Iα(σ) such that there is at least one vertex

p ∈ αk that p ∪ σ ∈ K. There is a bijection between {j ∈ J \ σ | j ∪ σ ∈ KJ}
and {p ∈ αk | k ∈ φ(J) \ Iα(σ), p ∪ σ ∈ K} by sending j to p. By this bijection,

if j ∪ σ ∈ KJ , then there is a unique k ∈ [l] such that j ∈ αk and k /∈ Iα(σ). So

Iα(j∪σ) = k∪Iα(σ). Hence, the terms appearing in df(χσ) and fd(χσ) match. In order

to show that df(χσ) = fd(χσ), we need to show that the signs match. If j ∪ σ ∈ KJ ,

then ε(j, j ∪ σ) = ε(k, k ∪ Iα(σ)) by the construction of K. Hence, we have

ε(j, j ∪ σ)ε(Iα(j ∪ σ), φ(J)) = ε(k, k ∪ Iα(σ))ε(k ∪ Iα(σ), φ(J))

=ε(k, k ∪ Iα(σ))ε(k, φ(J))ε(Iα(σ), φ(J)) = ε(k, φ(J) \ Iα(J))ε(Iα(σ), φ(J))

Therefore, f commutes with the differentials.

We finish the algebraic proof of Proposition 4.3.11.

Proof of Proposition 4.3.11. The first statement is a direct application of the Koszul

algebra. Now we prove the second statement. By Theorem 4.3.8, Lemma 4.3.13 and

Lemma 4.3.14, we have

Hq(ZK/KerΛ;R) ∼=
⊕
i+2t=q

Hi(Λ
−i,2i[u1, . . . , ul]⊗R2t[K], d)

∼=
⊕

−i+2j=q,|φ(J)|=j

Hi(Q−i,φ(J)(K), d)

∼=
⊕

−i+2j=q,|φ(J)|=j

H̃j−i−1(KJ ;R)

=
⊕

J∈RowΛ

H̃q−|φ(J)|−1(KJ ;R)

which completes the proof.

4.3.4 Comparison with the cohomology of ZK

Let K be a simplicial complex on [m] and let P consist of all minimal missing faces

of K. Recall that in [41] (Theorem 2.1.27), a differential graded algebra (Λ∗[P], d̃) is

introduced with the homology isomorphic as an R-algebra to the cohomology of ZK , by

applying the Taylor resolution of R[K] over R[v1, . . . , vm].

Theorem 2.1.27. There exist isomorphisms of R-algebras

H∗(ZK ;R) ∼= TorR[v1,...,vm](R[K], R) ∼= Hi(Λ
∗[P], d̃)

where d̃(σi1 . . . σip) =
p∑
t=1

(−1)t−1δtσi1 . . . σ̂it . . . σip and δt = 1 if Sσ = S∂tσ and zero,

otherwise.
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The next lemma shows that the projection map π : Λ∗[P]⊗R[x1, . . . , xr] −→ Λ∗[P] which

sends all xi to zero is a chain map between the chain complexes (Λ∗[P]⊗R[x1, . . . , xr], d)

and (Λ∗[P], d̃).

Lemma 4.3.15. The map π : (Λ∗[P] ⊗ R[x1, . . . , xr], d) −→ (Λ∗[P], d̃) by xj 7→ 0 is a

chain map.

Proof. Let σi1 . . . σip ∈ Λp[P], let f ∈ R[x1, . . . , xr] and let a = f(0, . . . , 0) ∈ R. Then

we have

πd(σi1 . . . σip ⊗ f) = π(
∑

1≤t≤i
(−1)t−1σi1 . . . σ̂it . . . σip ⊗ fδp(x1, . . . , xr))

=
∑

1≤t≤i
(−1)t−1aδt(0, . . . , 0)σi1 . . . σ̂it . . . σip

d̃π(σi1 . . . σip ⊗ f) = ad̃(σi1 . . . σip) =

i∑
t=1

(−1)t−1aδtσi1 . . . σ̂it . . . σip

Recall that by (4.7), δt(x1, . . . , xr) =
∏

i∈Sσ\S∂tσ
(
r∑
j=1

sijxj) if Sσ 6= S∂tσ and 1 otherwise.

Thus δt(0, . . . , 0) = δt and d̃π = πd.

Let R[x1, . . . , xr]
+ denote the kernel of the augmentation map ε : R[x1, . . . , xr] −→ R

by ε(xj) = 0. Since the underlying R-module of Λ∗[P] is free, we have a short exact

sequence of R-modules

0 −→ Λ∗[P]⊗R[x1, . . . , xr]
+ f−→ Λ∗[P]⊗R[x1, . . . , xr]

π−→ Λ∗[P] −→ 0

where Λ∗[P]⊗R[x1, . . . , xr]
+ is closed under the differential. Thus we have the following

lemma.

Lemma 4.3.16. There exists a short exact sequence of chain complexes

0 −→ (Λ∗[P]⊗R[x1, . . . , xr]
+, d)

f−→ (Λ∗[P]⊗R[x1, . . . , xr], d)
π−→ (Λ∗[P], d̃) −→ 0

where f is an inclusion of chain complexes and π is a projection by π(xj) = 0.

It gives rise to a long exact sequence of homology groups

. . . −→ Hi(Λ
∗[P]⊗R[x1, . . . , xr]

+, d)
fi−→ Hi(Λ

∗[P]⊗R[x1, . . . , xr], d)

πi−→ Hi(Λ
∗[P], d̃)

φi−→ Hi−1(Λ∗[P]⊗R[x1, . . . , xr]
+, d) −→ . . .

which induces short exact sequences for i ≥ 0

0 −→ Hi(Λ
∗[P]⊗R[x1, . . . , xr]

+, d)/Imφi+1 −→ Hi(Λ
∗[P]⊗R[x1, . . . , xr], d) −→ Kerφi −→ 0.
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Proposition 4.3.17. The above short exact sequences split for every i ≥ 0, so there are

isomorphisms of R-modules

Hi(Λ
∗[P]⊗R[x1, . . . , xr], d) ∼= Hi(Λ

∗[P]⊗R[x1, . . . , xr]
+, d)/Imφi+1 ⊕Kerφi.

Proof. It suffices to define a section si : Kerφi −→ Hi(Λ
∗[P] ⊗ R[x1, . . . , xr], d). Let

α = [a] ∈ Kerφi. Then φi(α) = [d(a)] ∈ Hi−1(Λ∗[P] ⊗ R[x1, . . . , xr]
+, d). Since φi(α) =

0, there exists an element b ∈ Λi[P] ⊗ R[x1, . . . , xr]
+ such that d(b) = d(a). Thus

a − b ∈ Kerd. Define si(α) = [a − b]. It is easy to see that si is a section since

φi ◦ si(α) = φi([a− b]) = [a] = α.

4.4 Circle actions on ZK

In this section we focus on free S1-actions on ZK . Let K be a simplicial complex on [m]

(K 6= ∆m−1) and let gcd(s1, . . . , sm) = 1, si ∈ Z. The S1-action on ZK by (s1, . . . , sm)

is given by t · (z1, . . . , zm) = (ts1z1, . . . , t
smzm), where tsizi is the product of complex

numbers for any t ∈ S1 and (z1, . . . , zm) ∈ ZK .

We first adapt Lemma 4.2.1 to give conditions for S1 acting freely on ZK . This will be

used in Proposition 4.4.7. For two or more integers {ai}i∈I , which are not all zero, let

gcd(ai : i ∈ I) denote the largest positive integer that divides all of the ai.

Lemma 4.4.1. The S1-action on ZK by (s1, . . . , sm) is free if and only if gcd(si : i ∈
σ) = 1 for every [m] \ σ ∈ K.

Proof. In the case of circle actions, the associated matrix is S = (s1, . . . , sm)t. By

Lemma 4.2.1, S1 acts on ZK freely if and only if for every τ ∈ K, the vector (si)i/∈τ ,

obtained by deleting elements sitting at positions indexed by τ , forms part of a basis of

Zm−|τ |. By Lemma 4.1.2(a), the latter condition is equivalent to gcd(si | i ∈ [m]\τ) = 1.

The statement follows immediately by setting σ = [m] \ τ for every τ ∈ K.

For example, let Zm be the moment-angle complex corresponding to m disjoint points.

Then the S1-action on Zm by (s1, . . . , sm) is free if and only if for every j ∈ [m],

gcd(s1, . . . , ŝj , . . . , sm) = 1, where ŝj indicates omission.

Let K be a simplicial complex on [m] and let P = {σ1, . . . , σp} ⊂ 2[m] collect all minimal

missing faces of K, By this property of P, any subset of [m] which contains some σ ∈ P
is missing face of K. Then this simplicial complex K consists of the following subsets

of [m]

K = 2[m] \ {J ⊆ [m] | σ ⊆ J for some σ ∈ P}. (4.13)
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Lemma 4.4.2. Let P = {σ1, . . . , σp} be the set of all minimal missing faces of K. Then

the S1-action on ZK by (s1, . . . , sm) is free if and only if gcd(sj1 , . . . , sjp) = 1 for each

jt ∈ σt (1 ≤ t ≤ p).

Proof. Let {j1, . . . , jp} be a subset of [m] with each jt in σt (1 ≤ t ≤ p). We show that

[m] \ {j1, . . . , jp} are maximal faces of K (4.13).

For every σt ∈ P, the intersection {j1, . . . , jp}∩σt is non-empty, which means that every

σt * [m] \ {j1, . . . , jp}. Hence [m] \ {j1, . . . , jp} ∈ K by (4.13). On the other hand,

if I ∈ K, then I /∈ {J ⊆ [m] | σ ⊆ J for some σ ∈ P}. That is to say, for each

σt ∈ P, there exists jt ∈ σt such that jt /∈ I, so we have I ⊆ [m] \ {j1, . . . , jp} because

I ∩ {j1, . . . , jp} = ∅.

By Lemma 4.4.1, we have that S1 acts freely on ZKP if and only if gcd(sj1 , . . . , sjp) = 1

for each jt ∈ σt.

Remark 4.4.3. Note that gcd(a, bc) = 1 if and only if gcd(a, b) = gcd(a, c) = 1. Thus, S1

acts freely on ZKP by (s1, . . . , sm) if and only if gcd(
∏
j∈σ1

sj , . . . ,
∏
j∈σp

sj) = 1. In particular,

if P = {σ}, then S1 acts freely on ZKP if and only if sj = ±1 for every i ∈ σ.

Let P = {σ1, . . . , σp} be a set of minimal missing faces of K. If S1 acts freely on ZK by

(s1, . . . , sm), then by Theorem 4.3.3, there is an isomorphism of R-algebras

H∗(ZK/S1;R) ∼= H(Λ∗[P]⊗R[x], d).

Here the differential d is defined by

d(σi1σi2 . . . σiq) = Σ
1≤t≤q

(−1)t−1(
∏

j∈Sσ\S∂tσ

sj · 1R)σi1 . . . σ̂t . . . σiq ⊗ x|Sσ\S∂tσ |

dx = 0

(4.14)

where Sσ = σi1 ∪ . . .∪σiq and assume that
∏
j∈∅
sj ·1R = 1R. The bigrading of Λ∗[P]⊗R[x]

is defined by

bideg σi1σi2 . . . σiq = (−q, 2|Sσ|) and bideg x = (0, 2).

We apply (4.14) to calculate the cohomology of the quotient space of a product of odd

spheres under free circle actions in the next example. It is a different method as [33,

Theorem 2].

Example 4.4.4 (free circle actions on S2m1−1 × S2m2−1). Let 1 ≤ m1 ≤ m2. Suppose

that R is an integral domain. Let K = ∂∆m1−1∗∂∆m2−1 be the join on m1+m2 vertices.

Assume that if m1 = m2 = 1, then ZK = S1 × S1. The minimal missing faces of K

are P = {σ, τ} where σ = {1, . . . ,m1} and τ = {m1 + 1, . . . ,m1 + m2}. Suppose that
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S1 acts on ZK by (a1, . . . , am1 , b1, . . . , bm2) and write a = a1 . . . am1 and b = b1 . . . bm2 .

Then the differentials from (4.14) are

d2(στ) = a · 1Rxm1τ − b · 1Rxm2σ = xm1y

d1(σ) = a · 1Rxm1

d1(τ) = b · 1Rxm2

where y = a · 1Rτ − b · 1Rxm2−m1σ ∈ kerd1 and deg y = 2m2 − 1.

Since d0(x) = 0, H0(Λ[P]⊗R[x], d) = R[x]/(a · 1Rxm1 , b · 1Rxm2).

The circle action on ZK is free if and only if each ai is relatively prime to bj by

Lemma 4.4.2. Thus, if a = 0 then b = ±1. If a = 0, then d1(σ) = 0 and xm2σ ∈ Imd2.

In this case, H1(Λ[P] ⊗ R[x], d) = Λ1[σ] ⊗ R[x]/(xm2σ) ∼= Λ1[σ] ⊗ (R[x]/(xm2)) where

deg x = 2 and deg σ = 2m1 − 1 and H0(Λ∗[P]⊗R[x], d) ∼= R[x]/(xm2).

If a 6= 0, then H1(Λ[P]⊗R[x], d) = Λ1[y]⊗ (R[x]/(xm1)).

Summarising the above, we obtain

H∗(ZK/S1;R) ∼=

R[x, y]/(y2, xm1y, a · 1Rxm1 , b · 1Rxm2) where deg y = 2m2 − 1 and deg x = 2 if a 6= 0

R[x, σ]/(σ2, xm2) where deg σ = 2m1 − 1 and deg x = 2 if a = 0.

Differential (4.14) implies a chain complex as follows. We start with a simplicial complex

K on [m] which is not a simplex and an S1-action on ZK by (s1, . . . , sm). Let P denote

the set of all minimal missing faces of K. We consider simplicial complexes L whose

vertex set is given by P and define the following chain complexes (C∗(L), δ) induced by

(s1, . . . , sm).

Construction 4.4.5. Let L be a simplicial complex on the vertex set P. For every

face F of L, define a supporting set SF ⊂ [m] by letting SF =
⋃

σ∈V (F )

σ. Define a chain

complex (C∗(L), δ) associated to L. Let Cq(L) be a free R-module on basis elements

of oriented q-faces F of L. Note that C−1(L) = R and Ci(L) = 0 for i ≤ −2. The

differential δ : Cq −→ Cq−1 is defined by

δ(F ) =
∑

F ′∈F(F )

sgn(F, F ′)(
∏

i∈SF \SF ′

si)F
′ (4.15)

where F(F ) consists of all facets of F and sgn(F, F ′) is 1R if F and F ′ have the same

orientation and −1R otherwise. Since δ is an evaluation of differential (4.14) at x = 1,

δ2 = 0. Let H∗(L, δ) denote the homology groups of the chain complex (C∗(L), δ).

Let ∆P be a simplex on P. Construct a filtration {Lp | 1 ≤ p ≤ m} of simplicial

complexes on P,

Lp = {F ∈ ∆P | |SF | ≤ p}.
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Note that L0 = ∅, Lm = ∆P and Lp is a subcomplex of Lp+1. Thus each Lp is associated

with a chain complex (C∗(Lp), δ) by (4.15).

Let us remark that if S1 acts on ZK diagonally, then all si = 1. In this case, the

homology H∗(L, δ) is the standard reduced homology H̃∗(L;R).

Example 4.4.6. Let K = {v1} on [2], i.e., {v2} is a ghost vertex of K. Thus P = {v2}
and ZK = D2 × S1. In this case, ∆P is a single vertex. We consider two different

S1-actions on ZK by ω1 = (0, 1) and ω2 = (1, 0), where the first action is free and the

second is not. The associated chain complexes given by Construction (4.4.5) are

0 −→ C0(∆P)
δω0−→ R −→ 0

where δω1
0 (v2) = 1R and δω2

0 (v2) = 0. Thus H∗(∆P, δ
ω1) = 0 and H0(∆P, δ

ω2) = R.

Recall that a chain complex (C∗, δ) is acyclic if its homology is trivial. As illustrated in

Exmaple 4.4.6, in general, the homology of this chain complex (C∗(∆P), δ) for a simplex

is not trivial. However, we show that if S1 acts on ZK freely, then (C∗(∆P), δ) is acyclic.

Proposition 4.4.7. If S1 acts on ZK freely, then (C∗(∆P), δ) is acyclic.

Proof. Choose σ ∈ P and let P′ denote P \ {σ}. If F = [σi0 , . . . , σiq ] is an oriented

q-face of ∆P′ , then denote by Fσ the oriented (q + 1)-face [σi0 , . . . , σiq , σ] of ∆P. If

c =
∑
riFi ∈ Cq(∆P′), then cσ =

∑
ri(Fiσ) ∈ Cq+1(∆P). Define an R-homomorphism

θ : Cq(∆P′) −→ Cq(∆P′)

F 7−→
∏

j∈SF∩σ
(sj · 1R)F

where we assume that
∏
j∈∅
sj · 1R = 1R.

Now let z = z1 + z2σ ∈ Cq(∆P), where z1 ∈ Cq(∆P′) and z2 ∈ Cq−1(∆P′). We show

that if δ(z) = 0, then (
∏
j∈σ

sj)z ∈ Imδ. Let z1 =
∑

Q∈∆P′

rQQ, where the sum goes through

all oriented q-faces of ∆P′ and let z̃1 = θ(z1) =
∑

Q∈∆P′

rQ(
∏

j∈SQ∩σ
sj)Q. Recall that F(Q)

denotes the set of all codimension-one faces of Q.

We do the following calculation

δ(Qσ) =
∑

Q′∈F(Q)

sgn(Q,Q′)(
∏

j∈SQσ\SQ′σ

sj)Q
′σ + (−1)q+1(

∏
j∈SQσ\SQ

sj)Q

δ(z̃1σ) =
∑
Q∈∆P′

rQ(
∏

j∈SQ∩σ
sj)δ(Qσ)

=
∑
Q∈∆P′

rQ(
∏

j∈SQ∩σ
sj){

∑
Q′∈F(Q)

sgn(Q,Q′)(
∏

j∈SQσ\SQ′σ

sj)Q
′σ + (−1)q+1(

∏
j∈SQσ\SQ

sj)Q}.
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Since the support SF of the face F ∈ ∆P is a subset of [m], we have the following

(SQ ∩ σ) ∪ ((SQ ∪ σ) \ (SQ′ ∪ σ)) = (SQ \ SQ′) ∪ (SQ′ ∩ σ)

(SQ ∩ σ) ∪ ((SQ ∪ σ) \ SQ) = σ

(SQ ∩ σ) ∩ ((SQ ∪ σ) \ (SQ′ ∪ σ)) = ∅

(SQ ∩ σ) ∩ ((SQ ∪ σ) \ SQ) = ∅.

Thus,

δ(z̃1σ) =
∑
Q∈∆P′

rQ{
∑

Q′∈F(Q)

sgn(Q,Q′)(
∏

j∈(SQ\SQ′ )∪(SQ′∩σ)

sj)Q
′σ + (−1)q+1(

∏
j∈σ

sj)Q}

=
∑
Q∈∆P′

rQ
∑

Q′∈F(Q)

sgn(Q,Q′)(
∏

(j∈SQ\SQ′ )∪(SQ′∩σ)

sj)Q
′σ + (−1)q+1(

∏
j∈σ

sj)z1.

=
∑
Q∈∆P′

rQ
∑

Q′∈F(Q)

sgn(Q,Q′)(
∏

j∈(SQ\SQ′ )∪(SQ′∩σ)

sj)Q
′σ + (−1)q+1(

∏
j∈σ

sj)(z − z2σ).

Next, we show that∑
Q∈∆P′

rQ
∑

Q′∈F(Q)

sgn(Q,Q′)(
∏

j∈(SQ\SQ′ )∪(SQ′∩σ)

sj)Q
′ + (−1)q(

∏
j∈σ

sj)z2 = 0 (4.16)

which implies that (
∏
j∈σ

sj)z = (−1)q+1δ(z̃1σ) ∈ Imδ.

Let z2 =
∑

F∈∆P′

rFF where each dimF = q − 1. Since δ(z) = 0, we have −δ(z2σ) =

δ(z1) ∈ Cq−1(∆P′). The terms in the expression for δ(z2σ) corresponding to the basis

faces which contain σ as a vertex vanish. Thus,

δ(z2σ) =
∑
F∈∆P′

rF δ(Fσ) =
∑
F∈∆P′

rF (−1)q(
∏

j∈(SF∪σ)\SF

sj)F (4.17)

and

θ(δ(z2σ)) =
∑
F∈∆P′

rF (−1)q(
∏

j∈SF∩σ
sj)(

∏
(SF∪σ)\SF

sj)F = (−1)q(
∏
j∈σ

sj)z2.

Note that z1 =
∑

Q∈∆P′

rQQ. Hence,

δ(z1) =
∑
Q∈∆P′

rQ
∑

Q′∈F(Q)

sgn(Q,Q′)(
∏

j∈SQ\SQ′

sj)Q
′. (4.18)
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As δ(z1) = −δ(z2σ), θδ(z1) = −θδ(z2σ). The terms appearing in (4.17) and (4.18)

should match. Thus we have

θδ(z1) =
∑
Q∈∆P′

rQ
∑

Q′∈F(Q)

sgn(Q,Q′)(
∏

j∈SQ′∩σ
sj)(

∏
j∈SQ\SQ′

sj)Q
′

= (−1)q+1(
∏
j∈σ

sj)z2

which implies (4.16).

Hence, we have proven that if δ(z) = 0, then (
∏
j∈σ

sj)z lies in Imδ. The proof does not

depend on the choice of σ. Thus, for every σ ∈ P, (
∏
j∈σ

sj)z lies in Imδ provided that

δ(z) = 0. The freeness condition (Remark 4.4.3) implies that gcd(
∏
j∈σ

sj | σ ∈ P) = 1.

Then there are integers {lσ}σ∈P such that
∑
σ∈P

lσ(
∏
j∈σ

sj) = 1. Hence, z =
∑
σ∈P

lσ(
∏
j∈σ

sj)z ∈

Imδ so that (C∗(∆P), δ) is acyclic.

Our next goal is to calculate H∗(ZK/S1;R) in terms of H∗(Lp, δ), where Lp and the

chain complexes (C∗(Lp), δ) are defined in Construction 4.4.5.

Define a map

f : (Λ∗[P]⊗R[x], d) −→ (C∗(∆P)⊗R[x], δ ⊗ id)

σi1 . . . σiq 7→ Fσ ⊗ x|SFσ |

xq 7→ xq

(4.19)

where Fσ = [σi1 , . . . , σiq ] is an oriented simplex of ∆P.

Since

(δ ⊗ id) ◦ f(σi1 . . . σiq) = δ([σi1 , . . . , σiq ]⊗ x|SFσ |) = Σ
1≤t≤q

(−1)t−1(
∏

j∈SFσ\SF∂tσ

sj · 1R)∂tσ ⊗ x|SFσ |

f ◦ d(σi1 . . . σiq) = f

 Σ
1≤t≤q

(−1)t−1(
∏

j∈Sσ\S∂tσ

sj · 1R)∂tσ ⊗ x|Sσ\S∂tσ |
 = (δ ⊗ id) ◦ f(σi1 . . . σiq)

f is a chain map. Thus, f induces a short exact sequence of chain complexes

0 −→ (Λ∗[P]⊗R[x], d)
f−→ (C∗−1(∆P)⊗R[x], δ⊗id)

π−→ (C∗−1(∆P)⊗R[x]/Imf, d′) −→ 0

(4.20)

where (C∗(∆P) ⊗ R[x]/Imf, d′) is a chain complex induced by δ ⊗ id on the quotient

R-module. The quotient R-module C∗(∆P) ⊗ R[x]/Imf has a basis {F ⊗ xp | F ∈
∆P and 0 ≤ p < |SF |} and the differential d′ on the basis F⊗xp is defined by d′(F⊗xp) =∑
F ′∈F(F )

ε(F, F ′)(
∏

i∈SF \SF ′
si · 1R)F ′⊗ xp, where ε(F, F ′) = sgn(F, F ′) if 0 ≤ p < |SF ′ | and

is zero otherwise.
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The bigrading on C∗(∆P)⊗R[x]/Imf is given by setting

bideg F ⊗ xp = (−dimF, 2|SF |+ 2p).

The chain complex (Λ∗[P] ⊗ R[x]/Imf, d′) splits in terms of relative chain complexes

as follows. Consider a pair of simplicial complexes (∆P, Lp) and their relative chain

complex C∗(∆P, Lp). Note that C∗(∆P, Lp) has an R-basis {F ∈ ∆P | |SF | > p}. Define

a chain map

g : C∗(∆P)⊗R[x]/Imf −→
⊕

0≤p≤m−1

C∗(∆P, Lp) (4.21)

which sends the basis element F ⊗xp to the basis element F sitting in the p-th summand

C∗(∆P, Lp). Note that g is a bijection between the basis elements in C∗(∆P)⊗R[x]/Imf

and
⊕

0≤p≤m−1
C∗(∆P, Lp). Thus g induces an isomorphism on homology groups for j ≥ 0,

Hj(C∗(∆P)⊗R[x]/Imf, d′) ∼=
⊕

0≤p≤m−1

Hj(Λ
∗[P]⊗R[x], d).

Proposition 4.4.8. Let S1 act on ZK freely. For j ≥ 0, there are isomorphisms of

R-modules

Hj(Λ
∗[P]⊗R[x], d) ∼= Hj(C∗(∆P)⊗R[x]/Imf) ∼=

m⊕
p=0

Hj−1(Lp, δ)

Proof. If S1 acts on ZK freely, then (C∗(∆P), δ) is acyclic. So (C∗(∆P) ⊗ R[x], δ ⊗ id)

is acyclic, as R[x] is a free R-module. The first isomorphism follows from the long

exact sequence induced by (4.20). The second isomorphism is true since Hi(∆P, Lp; δ) ∼=
Hi−1(Lp, δ) for i ≥ 0 by the long exact sequence induced by the short exact sequence of

chain complexes 0 −→ C∗(Lp) −→ C∗(∆P) −→ C∗(∆P, Lp) −→ 0.

Together with Theorem 4.3.8, in the case of free circle actions, we have the following

statement.

Proposition 4.4.9. Let S1 acts freely on ZK . There are isomorphisms of R-modules

H i(ZK/S1;R) ∼=
⊕

2p−j=i
Hj−1(Lp, δ). (4.22)

Proof. By Theorem 4.3.8,

H i(ZK/S1;R) ∼=
⊕

−j+2p′+2q=i

Hj(Λ
−j,2p′ [P]⊗R2q[x], d).
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By Proposition 4.4.8, we have Hj(Λ
∗[P] ⊗ R[x], d) ∼=

m⊕
p=0

Hj−1(Lp, δ). To prove (4.22),

we will show that Hj−1(Lp, δ) ∼=
⊕

2p′+2q=p

Hj(Λ
−j,2p′ [P]⊗R2q[x], d).

Due to the isomorphism g (4.21), there is a decomposition of R-modules

Hj(C∗(∆P)⊗R[x]/Imf, d′) ∼=
⊕

0≤p≤m−1

Hj(∆P, Lp, δ)⊗ xp.

Let α = [a] ∈ Hj(C∗(∆P) ⊗ R[x]/Imf, d′) with d′(a) = 0. By chasing the diagrams in

the zig-zag lemma induced by the short exact sequence (4.20), the isomorphism Φj is

given by

Φj : Hj(C∗(∆P)⊗R[x]/Imf, d′) −→ Hj(Λ
∗[P]⊗R[x], d)

[a] 7→ [b]
(4.23)

where b ∈ Λj [P]⊗R[x] satisfies f(b) = δ⊗ id(a) (f is defined in (4.19)). Explicitly, write

[a] = [a0]+[a1]x+ . . .+[am−1]xm−1, where [ap] ∈ Hj(∆P, Lp, δ). Thus δ(ap) ∈ Cj−1(Lp).

Let δ(ap) =
∑

dimF=j−1

rF,pF where F are oriented (j − 1)-faces of Lp and rF,p ∈ R. Then

Φj([ap]) =
∑

dimF=j−1

rF,p[F ⊗ xp−|SF |]. Note that bideg Φj([ap]) = (−j, 2p).

On the other hand, there are isomorphisms Hj(∆P, Lp, δ) ∼= Hj−1(Lp, δ), which are

given by sending [ap] to [δ(ap)] for any j. Thus for every βp ∈ Hj−1(Lp, δ), there exists

a unique [ap] ∈ Hj(∆P, Lp, δ) such that βp = [δ(ap)]. Since Φj (4.23) is an isomorphism,

the following isomorphism Ψj is well-defined

Ψj :
⊕
p

Hj−1(Lp, δ) −→ Hj(Λ
∗[P]⊗R[x], d)

βp 7−→ Φj([ap]).

Since bideg Φj([ap]) = (−j, 2p), each Hj−1(Lp, δ) is mapped into
⊕

p′+q=p
Hj(Λ

−j,2p′ [P] ⊗

R2q[x], d) by Ψj . Thus Ψj induces an isomorphism

Hj−1(Lp, δ)
∼=−→

⊕
p′+q=p

Hj(Λ
−j,2p′ [P]⊗R2q[x], d).

Mulplicative structures. The differential graded algebra (Λ∗[P]⊗R[x], d) is a special

case of the Taylor algebra (4.7) when r = 1. Thus, the homology H∗(Λ
∗[P]⊗R[x], d) has

a multiplicative structure and it is possible to give a multiplication on
⊕

0≤p≤m−1
H∗(Lp, δ)

such that the isomorphisms in Proposition 4.4.9 are of R-algebras.
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The multiplication × of (Λ∗[P]⊗R[x], d) is defined by

σI × σJ =


(

∏
i∈SσI∩SσJ

si · 1R)x|SσI∩SσJ |σIσJ if I ∩ J = ∅ and SσI ∩ SσJ 6= ∅

SσISσJ if I ∩ J = SσI ∩ SσJ = ∅

0 otherwise

where σI = σi1 . . . σiq ∈ Λq[P], σJ = σj1 . . . σjl ∈ Λl[P] and SσI = σi1 ∪ . . . ∪ σiq
SσJ = σj1 ∪ . . . ∪ σjl , and I = {i1, . . . , iq}, J = {j1, . . . , jl}.

The multiplication on
⊕

0≤p≤m−1
H∗(Lp, δ) is described as follows.

Construction 4.4.10. Let σa1 . . . σaj1 ∈ Cj1−1(Lp) and σb1 . . . σbj2 ∈ Cj2−1(Lq). Define

the following linear map on Cj1−1(Lp)⊕ Cj2−1(Lq) given by

Cj1−1(Lp)⊕ Cj2−1(Lq)
×−→ Cj1+j2−1(Lp+q) (4.24)

σa1 . . . σaj1 × σb1 . . . σbj2 =


(

∏
i∈Sσa∩Sσb

si · 1R)σa1 . . . σaj1σb1 . . . σbj2 if A ∩B = ∅ and Sσa ∩ Sσb 6= ∅

σa1 . . . σaj1σb1 . . . σbj2 if A ∩B = Sσa ∩ Sσb = ∅

0 otherwise

where A = {a1, . . . , aj1} and B = {b1, . . . , bj2}.

The map (4.24) induces a multiplicative structure on
⊕

0≤p≤m−1
H∗(Lp, δ) such that the

isomorphism (4.22) is of R-algebras. Here we conclude our main result of this section.

Theorem 4.4.11. Suppose that S1 acts freely on ZK . Then there exists an isomorphism

of R-algebras

H∗(ZK/S1;R) ∼=
⊕

2p−j≥0

Hj−1(Lp, δ).

By the definition of chain complexes (C∗(Lp), δ) (Construction 4.4.5), the homology

H∗(L, δ) is the standard reduced simplicial homology in the case of the diagonal action

on ZK . A corollary of Theorem 4.4.11 follows.

Corollary 4.4.12 (diagonal action). There is an isomorphism of R-algebras

H∗(ZK/S1
d ;R)) ∼=

⊕
2p−j≥0

H̃j−1(Lp;R).

Here are examples of free circle actions on moment-angle complexes through different

simplicial complexes by Theorem 4.4.11.

Example 4.4.13. Let K be the simplicial complex 2 3

1

. In this case, S1 acts

on K freely if and only if s2 = ±1 and s3 = ±1. Then P = {σ} where σ = {2, 3}
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and L0 = L1 = ∅ and L2 = ∆P. Thus the nontrivial homology groups of C∗(Lp, δ)

are H−1(L0, δ) = H−1(L1, δ) = R. By Proposition 4.4.9 we have H0(ZK/S1;R) =

H2(ZK/S1;R) = R. The nontrivial multiplications

H−1(L0, δ)×H−1(L0, δ) −→ H−1(L0, δ)

H−1(L0, δ)×H−1(L1, δ) −→ H−1(L1, δ)

are the multiplications of the ring R. Thus H∗(ZK/S1;R) = R[x]/(x2) where deg x = 2.

We can also use Theorem 4.4.11 to calculate the cohomology of complex projective

spaces.

Example 4.4.14 (projective spaces). Let K be the boundary of an (m − 1)-simplex.

The quotient manifold of ZK under the diagonal action is the complex projective space

CPm−1. Then P = {σ} where σ = {1, 2, . . . ,m}. Thus Lp = ∅ for p < m and Lm =

∆P. The nontrivial homology groups of C∗(Lp, δ) are H−1(Lp, δ) = R for p < m. By

Proposition 4.4.9, H i(ZK/S1
d ;R) = R for i = 2p and p < m. The multiplication on⊕

0≤p≤m−1

H−1(Lp, δ) =
⊕

0≤p≤m−1

H2p(ZK/S1
d ;R) =

⊕
0≤p≤m−1

R2p

is the multiplication of R, where R2p · R2q = R2p+2q if p + q < m and zero otherwise.

Thus H∗(ZK/S1) = R[x]/(xm) with deg x = 2.

Example 4.4.15. Let K,P, σ, τ, a, b be as in Example 4.4.4. Then

Lp =



∅ if p < m1

{∅, σ} if m1 ≤ p < m2

{∅, σ, τ} if m2 ≤ p < m1 +m2

∆P if p = m1 +m2

Lp =


∅ if p < m1 = m2

{∅, σ, τ} if m2 ≤ p < m1 +m2

∆P if p = m1 +m2

with differential operation δ given by δσ = a · 1R and δτ = b · 1R.

If a = 0, then freeness condition implies that b = ±1. Thus non-trivial homology groups

of C∗(Lp, δ) include

m1 < m2, Hj(Lp, δ) ∼=

R if p < m2 and j = −1

R · [σ] if m1 ≤ p < m1 +m2 and j = 0

m1 = m2, Hj(Lp, δ) ∼=

R if p < m1 and j = −1

R · [σ] if m2 ≤ p < m1 +m2 and j = 0
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where R · [σ] is an R-module generated by [σ].

If a 6= 0, non-trivial homology groups of C∗(Lp, δ) are

m1 < m2, Hj(Lp, δ) ∼=


R if p < m1 and j = −1

R/(a · 1R) if m1 ≤ p < m2 and j = −1

R · [bσ − aτ ] if m2 ≤ p < m1 +m2 and j = 0

m1 = m2, Hj(Lp, δ) ∼=

R if p < m1 and j = −1

R · [bσ − aτ ] if m2 ≤ p < m1 +m2 and j = 0.

By Proposition 4.4.9,

if a = 0 or m1 = m2, H
i(ZK/S1;R) =

R for i = 2p, p < m2

R · [σ] for i = 2p− 1,m1 ≤ p < m1 +m2

if a 6= 0 and m1 6= m2, H
i(ZK/S1;R) =


R for i = 2p, p < m1

R/(a · 1R) for i = 2p,m1 ≤ p < m2

R · [bσ − aτ ] for i = 2p− 1,m2 ≤ p < m1 +m2.

The multiplication × on H∗(ZK/S1;R) can be written explicitly as follows.

Suppose that a = 0 or m1 = m2. Consider the multiplicative identity 1R ∈ H2p(ZK/S1;R)

and 1R ∈ H2q(ZK/S1;R). Then 1R × 1R is equal to 1R if p + q < m2 and zero

otherwise. Also, let 1R ∈ H2p(ZK/S1;R) and [σ] ∈ H2q−1(ZK/S1;R) with p < m2

and m1 < q < m1 + m2. Then [σ] × [σ] = 0 and 1R × [σ] = [σ] if p + q < m1 + m2

and zero otherwise. Thus, H∗(ZK/S1;R) ∼= R[x, σ]/(xm2 , σ2) where deg x = 2 and

deg σ = 2m1 − 1.

If a 6= 0 and m1 6= m2, analogously, we have H∗(ZK/S1;R) ∼= R[x, y]/(axm1 , xm2 , y2, xm1y)

where deg x = 2 and deg y = 2m2 − 1.

4.5 Homotopy types of partial quotients

In this section, we study homotopy types of ZK/S1. In particular, we determine the

homotopy type of the quotient space Z∆k
m
/S1

d under the diagonal action.

We first consider properties of moment-angle complexes under subtorus actions.

Lemma 4.5.1. Let K be a simplicial complex on [m] and let H be a subtorus of Tm

acting on ZK and r = rankH.

(a) For σ ∈ K, (D2, S1)σ is an H-invariant subspace of ZK . Consequently, for any

simplicial subcomplex L ⊆ K, ZL is an H-subspace of ZK .
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(b) Let Φ: H × ZK −→ ZK be the action map. Then there exists a homeomorphism

sh: H×ZK −→ H×ZK such that p2◦sh = Φ, where p2 is a projection H×ZK −→ ZK .

(c) The action map Φ: H × ZK −→ ZK induces a map Φ̄ : H n ZK −→ ZK with a

homotopy cofibre CΦ̄ ' H ∗ ZK .

Proof. (a) Since H is a subtorus of Tm, there is an isomorphism T r ∼= H < Tm given by

a choice of basis and an m× r integral matrix S = (sij) such that g = (g1, . . . , gm) ∈ H
has the form gi = tsi11 . . . tsirr with (t1, . . . , tr) ∈ T r. Let z = (z1, . . . , zm) ∈ (D2, S1)σ,

that is, zi ∈ D2 if i ∈ σ and zi ∈ S1 if i /∈ σ. Recall that S1 acts on D2 by a rotation.

Thus if zi ∈ IntD2, then gi · zi ∈ IntD2 and if zi ∈ ∂D2, then gi · zi ∈ ∂D2. Therefore,

gi · zi ∈ D2 if i ∈ σ, otherwise gi · zi ∈ S1. Thus g · z = (g1 · z1, . . . , gm · zm) ∈ (D2, S1)σ.

(b) Define the shearing map H×ZK
sh−→ H×ZK by sh(g, z) = (g,Φ(g, z)) for g ∈ H and

z ∈ ZK . It is a homeomorphism with inverse sh−1(g, z) = (g, g−1z). Thus p2 ◦ sh = Φ.

(c) Let ∗ be the base point (1, . . . , 1) of ZK . Since the image Φ|H×∗ is in Tm and

the inclusion Tm −→ ZK is null homotopic, thus Φ|H×∗ is also null homotopic. The

homotopy cofibration H ↪→ H ×ZK −→ H nZK gives an induced map Φ̄: H nZK −→
ZK with Φ̄◦q ' Φ. Note that H∗ZK is the homotopy pushout of H

p1←− H×ZK
p2−→ ZK .

By the second statement, the shearing map sh is a homeomorphism and Φ = p2 ◦ sh,

H ∗ ZK is the homotopy pushout of H
p1←− H × ZK

Φ−→ ZK . Pinching out H, we have

CΦ̄ ' H ∗ ZK .

By Lemma 4.2.1, the subgroup H acts freely on ZK if and only if H ∩ T σ is trivial. In

this case, the quotient map q : ZK −→ ZK/H makes the following diagram commutative

up to homotopy as a consequence of Lemma 2.3.22.

Lemma 4.5.2. Let H be a subtorus of Tm acting freely on ZK . Then there is a homo-

topy commutative diagram of fibrations

ZK (BS1, ∗)K BTm

ZK/H (BS1, ∗)K B(Tm/H).

q

i

BΛ

(BΛ)◦i

4.5.1 Free circle actions

Now we focus on circle actions on ZK . Suppose that H = {(ts1 , . . . , tsm) ∈ Tm | t ∈ S1}
is a circle subgroup Tm, where si ∈ Z. Let Λ be the associated integral matrix of the

projection Tm −→ Tm/H. As stated in Section 4.1, the relation between S and Λ is

as follows. Since H is a circle subgroup of Tm, there exists an integral m × (m − 1)-

matrix S′ such that the m × m-matrix
(
S | S′

)
is invertible, where S = (s1, . . . , sm).



94 4.5. Homotopy types of partial quotients

Then

(
Λ′

Λ

)
is the inverse matrix of

(
S | S′

)
where Λ′ = (λ′ij) is an integral (1 ×m)-

vector and Λ = (λij) is the integral (m − 1) × m-matrix representing the quotient

map Tm −→ Tm/H. Following this, if s1 = ±1, then the matrix

(
s1 0

s Im−1

)
has an

invertible matrix

(
s1 0

−s1s Im−1

)
, where s = (s2, . . . , sm). Thus Λ =

(
−s1s Im−1

)
such that KerΛ = H.

The next statement applies to the special case of quotient spaces ZK/S1 under free circle

actions when K has ghost vertices.

Lemma 4.5.3. Suppose that {v} is a ghost vertex of K. Let S1 acts on ZK by

(s1, . . . , sm). If sv = ±1, then S1 acts on ZK freely and ZK/S1 ' ZL, where L = KV̄

is the full subcomplex of K on V̄ = V (K) \ {v}.

Proof. Without loss of generality, we can assume {1} is a ghost vertex of K. Then

ZK = S1 × ZL, where ZL is an S1-space by (s2, . . . , sm). If s1 = ±1, then S1-action

on ZK is an S1-diagonal action on the product space S1 × ZL. Let Φ,Φ−1 be maps

S1×ZL −→ ZL where Φ is the group action and Φ−1(g, z) = Φ(g−1, z). Then if s1 = 1,

Φ−1 will induce an S1-equivariant homeomorphism ZK/S1 = S1 ×S1 ZL ∼= ZL, whose

inverse is given by sending z ∈ ZL to [(1, z)] ∈ ZK/S1. Similarly, if s1 = −1, then the

action map Φ will induce an S1-equivariant homeomorphism.

For a simplicial complex K and v ∈ V (K), let

LinkK(v) = {σ ∈ K | (v) ∗ σ ∈ K, v /∈ σ}

StarK(v) = {σ ∈ K | (v) ∗ σ ∈ K} = (v) ∗ LinkK(v)

RestK(v) = {σ ∈ K | V (K) \ {v}}.

There exists a pushout of simplicial complexes

LinkK(v) RestK(v)

StarK(v) K

which induces a topological pushout of corresponding Davis-Januszkiewicz spaces by

Lemma 2.3.26. Mapping these spaces to B(Tm/S1), denote by FLink, FStar and FRest

the correspond homotopy fibres, respectively. Then there is a diagram of homotopy
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pushouts as follows.

FLink FRest

FStar ZK/S1

(BS1, ∗)LinkK(v) (BS1, ∗)RestK(v)

(BS1, ∗)StarK(v) (BS1, ∗)K

If a circle action on ZK satisfies the condition in Lemma 4.5.3, it is possible to identify

the homotopy types of these fibres for special cases.

Theorem 4.5.4. Let S1 acts on ZK freely. Assume that there exits a vertex v ∈ K

such that sv = ±1.

(a) There exist homotopy equivalences

FLink ' ZLinkK(v), FRest ' ZRestK(v), FStar ' ZLinkK(v)/S
1.

(b) The quotient space ZK/S1 is the homotopy pushout of the diagram ZLinkK(v)/S
1 q←−

ZLinkK(v)
ι−→ ZRestK(v), where ι is the map induced by the simplicial inclusion and q is

the quotient map.

Proof. (a) Without loss of generality, assume that v = {1}. Since LinkK(1) and RestK(1)

are on the vertex set {2, . . . ,m}, FLink ' ZLinkK(1), FRest ' ZRestK(v) by Lemma 4.5.3.

Since S1 acts on ZStarK(1) freely, its quotient ZStarK(1)/S
1 is homotopy equivalent to the

Borel construction ES1×S1ZStarK(1), where ZStarK(1) = D2×ZLinkK(1). Since S1 acts on

ZLinkK(1) freely, FStar = ZStarK(1)/S
1 ' ES1×S1ZStarK(1) ' ES1×S1 (D2×ZLinkK(1)) '

ZLinkK(1)/S
1.

(b) It suffices to identify the maps between these fibres. Since s1 = ±1, the matrix

Λ representing the projection Tm −→ Tm/S1 is given by
(
−s1s Im−1

)
with s =

(s2, . . . , sm)t. Therefore, the composite BTm−1 Bj−→ BTm −→ B(Tm/S1) is the identity

map, where j is an inclusion of Tm−1 to the last m− 1 coordinates of Tm. Thus for L

being LinkK(1) or RestK(1), the composite (BS1, ∗)L −→ BTm
BΛ−→ B(Tm/S1) is the

standard inclusion (BS1, ∗)L −→ BTm−1 if Tm−1 is identified with Tm/S1. Therefore,

the map between the fibres FLink −→ FRest is the inclusion between the corresponding

moment-angle complexes ZLink
ι−→ ZRest.

There exists an induced free circle action on ZLinkK(1) given by g · (z2, . . . , zm) = (gs2 ·
z2, . . . , g

sm · zm). We first note that Im s = {(ts22 , . . . , t
sm
m ) | (t2, . . . , tm) ∈ Tm−1} is
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a circle subgroup of Tm−1. Because we assume that {1} ∈ K, by Lemma 4.2.1, the

freeness condition of a circle action on ZK implies that gcd(s2, . . . , sm) = 1. To see that

this induced action is free, send (z2, . . . , zm) ∈ ZLinkK(1) to (0, z2, . . . , zm) ∈ ZStarK(1).

The isotropy group of (0, z2, . . . , zm) under the original S1-action by (s1, s2, . . . , sm) is

equal to the isotropy group of (z2, . . . , zm) under the induced S1-action by (s2, . . . , sm).

Since the original S1-action acts on ZStarK(1) freely, the isotropy group of (0, z2, . . . , zm)

is trivial, which means that the S1-action on ZLinkK(1) by (s2, . . . , sm) is free.

This circle subgroup of Tm−1 has an associated integral matrix π representing the quo-

tient map Tm−1 −→ Tm−1/S1. There is a homotopy commutative diagram of fibrations

ZLinkK(1) (BS1, ∗)LinkK(1) B(Tm/S1)

ZLinkK(1) (BS1, ∗)LinkK(1) BTm−1

ZLinkK(1)/S
1 (BS1, ∗)LinkK(1) B(Tm−1/S1)

ZLinkK(1)/S
1 BS1 × (BS1, ∗)LinkK(1) BS1 ×B(Tm−1/S1)

(BΛ)◦i

'

q

η

Bπ

γ=(Bπ)◦η

j2 j2

id×γ

(4.25)

where the top square is obtained by Tm/S1 being identified with Tm−1, the second

square is due to Lemma 4.5.2, q is a quotient map and j2 is an inclusion into the second

coordinate.

In fact, the homotopy fibration at the bottom row in (4.25) is equivalent to the homotopy

fibration obtained by mapping (BS1, ∗)StarK(1) to B(Tm/S1)

FStar −→ (BS1, ∗)StarK(1) (BΛ)◦i−→ B(Tm/S1).

The relation between (s2, . . . , sm) and π implies that Tm/S1 is isomorphic to Im s×Imπ,

where Im s and Imπ are torus groups with rank 1 and m− 2, respectively. Thus there

are isomorphisms Tm/S1 M1−→ Im s× Imπ
M2−→ S1 × Tm−2, which are represented by an

(m− 1)× (m− 1)-integral invertible matrices M1 and M2. Let M = M2M1. Composing

BM with (BΛ) ◦ i, we have a diagram of homotopy fibrations

FStar (BS1, ∗)StarK(1) B(Tm/S1)

F (BS1, ∗)StarK(1) BS1 ×BTm−2

(BΛ)◦i

BM

(BM)◦(BΛ)◦i

(4.26)

where the left square is homotopy commutative and the right one is commutative and

all vertical maps are homotopy equivalences.
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Since (BS1, ∗)StarK(1) = BS1 × (BS1, ∗)LinkK(1), the composite (BM) ◦BΛ ◦ i = id× γ.

Combining these homotopy commutative diagrams (4.25) and (4.26), the simplicial

inclusion LinkK(1) −→ StarK(1) induces a quotient map of the fibres ZLinkK(1)
q−→

ZLinkK(1)/S
1.

In some special case, the map ZLinkK(v) −→ ZRestK(v) is null homotopic. For example, if

for some v ∈ K such that LinkK(v) = ∅, then ZLinkK(v) −→ ZRestK(v) is null homotopic

([23, Lemma 3.3]). If so, there is a homotopy splitting of the quotient ZK/S1.

Corollary 4.5.5. Let K and S1 satisfy the assumption in Theorem 4.5.4. Suppose that

for the same vertex v, the map ZLinkK(v) −→ ZRestK(v) is null homotopic. Then there

exists a homotopy splitting ZK/S1 ' ZRestK(v) ∨ Cq, where Cq is the homotopy cofibre

of the quotient map ZLinkK(v)
q−→ ZLinkK(v)/S

1.

In particular, if LinkK(v) = ∅, then ZK/S1 ' ZRestK(v) ∨ S2 ∨ (S1 ∗ Tm−2).

Proof. If the map ZLinkK(v) −→ ZRestK(v) is null homotopic, there is an iterated homo-

topy pushout

ZLinkK(v) ∗ ZRestK(v)

ZLinkK(v)/S
1 Cq ZK/S1.

q

Thus the first statement follows.

If LinkK(v) = ∅, then ZLinkK(v) ' Tm−1 and StarK(v) = {v}. Consider the following

diagram of fibration sequences

Z∅ ∗ B(Tm/S1)

Z∅/S1 BS1
v B(Tm/S1)

ΩBTm−2 BS1
v BS1 ×BTm−2.

q

p ' '

id×∗

Here the top diagram between homotopy fibrations is induced by ∅ −→ {v} and the

bottom diagram is an equivalence of fibration sequences, proved as a special case of

diagram (4.26) in Theorem 4.5.4, due to the isomorphism Tm/S1 ∼= S1×Tm−2. Since p

is a homotopy equivalence, we have Cq ' Cpq. Note that the composition pq is induced by

projecting Tm/S1 −→ Tm−2. Precisely, it is the map Tm/S1
∼=−→ S1×Tm−2 p2−→ Tm−2.

Therefore, it remains to identify the homotopy cofibre of p2.
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Let π2 : X×Y −→ Y be a projection, where X and Y are two connected CW-complexes.

Consider the following homotopy commutative diagram

X × Y X ∗

Y X ∗ Y Cπ2

π1

π2

where the left and right diagrams are homotopy pushouts. Since X −→ X ∗ Y is null

homotopic, Cπ2 ' ΣX ∨X ∗ Y . Thus Cq ' ΣS1 ∨ (S1 ∗ Tm−2).

Example 4.5.6. Denote by Zm the moment-angle complex corresponding to m disjoint

points. If S1 acts freely on Zm by (s1, . . . , sm) with some sj = ±1, then Zm/S1 '
Zm−1 ∨ S2 ∨ (S1 ∗ Tm−2).

4.5.2 Homotopy types of cofibres

In this section, we determine homotopy cofibres Ck,m of quotient maps qk,m : Z∆k
m
−→

Z∆k
m
/S1

d under the diagonal action. Note that if K = ∆k
m is on the vertex set {1, . . . ,m},

then LinkK{1} has vertex set {2, . . . ,m} and is simplicially isomorphic to ∆k−1
m−1. Thus

we have a pushout of simplicial complexes

∆k−1
m−1 ∆k

m−1

(1) ∗∆k−1
m−1 ∆k

m.

This pushout implies homotopy pushouts of the corresponding moment-angle complexes

and of their quotient spaces under the diagonal action (Lemma 2.3.29)

S1 ×Z∆k−1
m−1

S1 ×Z∆k
m−1

Z∆k−1
m−1

Z∆k
m

id×∗

∗×id fk,m

Z∆k−1
m−1

Z∆k
m−1

Z∆k−1
m−1

/S1
d Z∆k

m
/S1

d

'∗

qk−1,m−1 gk,m (4.27)

where fk,m is a map induced by the simplicial inclusion ∆k
m−1 −→ ∆k

m and the map

gk,m is induced by fk,m between the quotient spaces.

The left diagram in (4.27) implies an iterated homotopy pushout

S1 ×Z∆k−1
m−1

S1 S1 ×Z∆k
m−1

Z∆k−1
m−1

S1 ∗ Z∆k−1
m−1

Z∆k
m

∗×id fk,m
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which induces the following iterated homotopy pushout after pinching out S1

S1 n Z∆k−1
m−1

∗ S1 n Z∆k
m−1

Z∆k−1
m−1

S1 ∗ Z∆k−1
m−1

Z∆k
m
.

∗nid f̄k,m

hk,m

(4.28)

Thus the right square of (4.28) implies a splitting homotopy cofibration S1nZ∆k
m−1

f̄k,m−→
Z∆k

m
−→ Cf̄k,m , where the homotopy cofibre Cf̄k,m is homotopic to S1 ∗ Z∆k−1

m−1
.

Since the map Z∆k−1
m−1
−→ Z∆k

m−1
is null homotopic, the right homotopy pushout in (4.27)

also implies an iterated homotopy pushout

Z∆k−1
m−1

∗ Z∆k
m−1

Z∆k−1
m−1

/S1
d Ck−1,m−1 Z∆k

m
/S1

d .

qk−1,m−1 gk,m

h′k,m

(4.29)

The right square of (4.29) implies a splitting homotopy cofibration Z∆k
m−1

gk,m−→ Z∆k
m
/S1

d −→
Cgk,m , where the homotopy cofibre Cgk,m is homotopic to Ck−1,m−1.

Lemma 4.5.7. There exists a homotopy equivalence Z∆k
m
/S1

d ' Z∆k
m−1
∨ Ck−1,m−1,

where Ck−1,m−1 is the homotopy cofibre of the quotient map Z∆k−1
m−1
−→ Z∆k−1

m−1
/S1

d .

Hence, to determine the homotopy type of Z∆k
m
/S1

d , it suffices to determine the homo-

topy type of Ck,m.

Lemma 4.5.8. There exists a homotopy commutative diagram

S1 n Z∆k
m−1

Z∆k
m−1

Z∆k
m

Z∆k
m
/S1

d

Φ̄−1

f̄k,m gk,m

qk,m

(4.30)

where Φ̄−1 is induced by the map S1 ×Z∆k
m−1

Φ−1

−→ Z∆k
m−1

given by Φ−1(t, z) = t−1 · z.

Proof. The simplicial inclusion ∆k
m−1 −→ ∆k

m gives rise to a commutative diagram

S1 ×Z∆k
m−1

S1 ×S1
d
Z∆k

m−1

Z∆k
m

Z∆k
m
/S1

d

α

fk,m β

qk,m
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where the horizontal maps α and qk,m are quotient maps and β is a map between quotient

spaces induced by fk,m. By Lemma 4.5.3, there is a homotopy equivalence

S1 ×S1
d
Z∆k

m−1

η
' Z∆k

m−1

where η sends [(t, z)] to Φ−1(t, z). It follows easily that η ◦ α(t, z) = t−1 · z = Φ−1(t, z).

Thus, replacing S1 ×S1 Z∆k
m−1

by its homotopy equivalent space Z∆k
m−1

due to η, there

is a homotopy commutative diagram,

S1 ×Z∆k
m−1

Z∆k
m−1

Z∆k
m

Z∆k
m
/S1

d

Φ−1

fk,m β◦η
qk,m

where β◦η coincides the map gk,m in the diagram (4.27), since they are the maps induced

by fk,m after we have chosen an certain homotopy type of quotient spaces.

Since the restriction of Φ−1 to the first coordinate S1 is null homotopic, we obtain the

homotopy commutative diagram in the statement.

The homotopy commutative diagram (4.30) gives rise to the following homotopy com-

mutative diagram (see [38, Theorem 7.6.3])

S1 n Z∆k
m−1

Z∆k
m−1

S1 ∗ Z∆k
m−1

Z∆k
m

Z∆k
m
/S1

d Ck,m

Cf̄k,m Cgk,m Qk,m

Φ̄−1

f̄k,m gk,m

qk,m

rk,m r′k,m
φk,m

(4.31)

where each row and column is a homotopy cofibration. The homotopy pushouts (4.28)

and (4.29) imply that Cf̄k,m ' S1 ∗ Z∆k−1
m−1

and Cgk,m ' Ck−1,m−1 and the first and

second columns of (4.31) are splitting homotopy cofibrations.

We will determine the homotopy type of Ck,m. The idea is to find simplicial complexes

Lkj,m such that their quotient spaces under diagonal actions give the homotopy type of

the cofibre of the quotient map. We firstly identify the homotopy type of maps φk,m.

Lemma 4.5.9. Let K = ∆k
m and Lk1,m = K ∪∆{1,2,...,m−1}. Then Cf̄k,m ' ZLk1,m and

ZLk1,m/S
1
d ' Cgk,m. Under these homotopy equivalences, the maps φk,m are equivalent to

the quotient maps ZLk1,m −→ ZLk1,m/S
1
d.
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Proof. Since K ∩∆{1,2,...,m−1} = ∆k
m−1, we have a pushout of simplicial complexes

∆k
m−1 ∆{1,2,...,m−1}

∆k
m Lk1,m.

There are two homotopy pushouts of topological spaces, one of moment-angle complexes

and one of quotient spaces of moment-angle complexes

Z∆k
m−1
× S1 S1

Z∆k
m

ZLk1,m

∗×id

fk,m and

Z∆k
m−1

∗

Z∆k
m
/S1

d ZLk1,m/S
1
d .

gk,m

Pinching out S1 in the left pushout above, we have a homotopy cofibration

Z∆k
m−1

o S1 f̄k,m−→ Z∆k
m
−→ ZLk1,m . (4.32)

Taking the corresponding quotient spaces of (4.32) and the homotopy commutative

diagram (4.31), there exists a homotopy commutative diagram of homotopy fibrations

Z∆k
m−1

o S1 Z∆k
m

ZLk1,m

Z∆k
m−1

Z∆k
m
/S1

d ZLk1,m/S
1
d .

f̄k,m

qk,m

gk,m

Thus the maps φk,m in (4.31) are quotient maps up to homotopy and Cf̄k,m ' ZLk1,m
and ZLk1,m/S

1
d ' Cgk,m ' Ck−1,m−1.

We have identified the homotopy type of Ck−1,m−1 as ZLk1,m/S
1
d . We will continue to

show that the homotopy cofibre Ck,m has the following form.

Theorem 4.5.10. There exists homotopy equivalences

Ck,m ' CP k+2 ∨ (
k+1
∨
i=1

S2i−1 ∗ Z∆k+1−i
m−i

) ∨ (S2k+3 ∗ Tm−k−2).

The main idea of the proof of Theorem 4.5.10 is to construct a sequence of simplicial

complexes Lkj,m and iterate to determine the homotopy types of their quotient spaces

under the diagonal action. We give an explicit construction of these simplicial complexes

Lkj,m from the k-skeleton ∆k
m.
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Denote by ∆{i1,...,ip} a simplex on vertices {i1, . . . , ip}. Let Lk0,m = ∆k
m. Define Lk1,m =

∆k
m ∪∆{1,2,...,m−1} and Lkj,m = Lkj−1,m ∪∆{1,...,m̂−j+1,...,m}, where ̂m− j + 1 means that

this vertex is omitted.

We first prove that the simplicial inclusion Lk−1
j,m −→ Lkj,m induces a null homotopic map

on corresponding moment-angle complexes.

Lemma 4.5.11. For 1 ≤ j ≤ k+1, the inclusion J : ZLk−1
j,m
−→ ZLkj,m is null homotopic.

Proof. Let K =
⋃

m−j+1≤q≤m
∆{1,...,q̂,...,m−1}. Thus ZK = (

∏
m−j

D2)×Z∂∆j−1 , where ∂∆j−1

is the boundary of a simplex on vertices {m− j + 1, . . . ,m}. Note that Lkj,m = ∆k
m ∪K

and ZLkj,m = Z∆k
m
∪ ZK .

First, there is a filtration of simplicial complexes ∆k−1
m ⊆ (1)∗∆k−1

m−1 ⊆ ∆k
m, where ∆k−1

m−1

in the middle is on vertices {2, . . . ,m}, which implies a filtration of simplicial complexes

Lk−1
j,m ⊆ ((1) ∗∆k−1

m−1) ∪K ⊆ Lkj,m. In particular, ((1) ∗∆k−1
m−1) ∪K = (1) ∗ (∆k−1

m−1 ∪K1),

where K1 is the full subcomplex of K on vertices {2, . . . ,m}. Thus, the inclusion J

factors through the corresponding moment-angle complexes

ZLk−1
j,m

i1−→ D2 × (Z∆k−1
m−1
∪ ZK1)

i′1−→ ZLkj,m .

By the construction of Lkj,m, ∆k−1
m−1 ∪K1 = Lk−1

j,m−1 which is a full subcomplex of Lk−1
j,m

on vertices {2, . . . ,m}. Denote by r1 the retraction ZLk−1
j,m
−→ ZLk−1

j,m−1
. Then the map

i1 factors through r1 and a coordinate inclusion ι1 : ZLk−1
j,m−1

−→ D2 × ZLk−1
j,m−1

up to

homotopy. Namely, there exists a diagram

ZLk−1
j,m

ZLk−1
j,m−1

D2 ×ZLk−1
j,m−1

ZLkj,m

i1
r1 J

ι1 i′1

where the left triangle is homotopy commutative and the right one is commutative.

In particular, the composition i′1ι1 coincides with the map induced by the simplicial

inclusion Lk−1
j,m−1 −→ Lkj,m which has a filtration Lk−1

j,m−1

j2−→ Lkj,m−1

j′2−→ Lkj,m.
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The same strategy applies for Lk−1
j,m−1

j2−→ Lkj,m−1. Repeating the above procedure, there

are diagrams for 1 ≤ q ≤ m− k − 1

ZLk−1
j,m−q+1

ZLk−1
j,m−q

D2 ×ZLk−1
j,m−q

ZLkj,m−q+1

ZLkj,m−q

iq
rq jq

ιq

jq+1

i′q

j′q+1

(4.33)

where each Lk−1
j,m−q is a full subcomplex of Lk−1

j,m−q+1 on vertices {q + 1, . . . ,m}, the top

left triangle is homotopy commutative and the other two are commutative.

If q = m − k − 1, observe the composition ZLk−1
j,k+1

jm−k−→ ZLkj,k+1

j′m−k−→ ZLkj,k+2
. Since

Lkj,k+1 is a full subcomplex of Lkj,k+2 on vertices {m− k, . . . ,m}, it contains all subsets

of {m−k, . . . ,m} with cardinality at most k+1. Thus Lkj,k+1 is a simplex, which means

that jm−k is null homotopic. Chasing the homotopy commutative diagram (4.33), jm−k

is a factor of J up to homotopy. Hence, J is null homotopic.

Proposition 4.5.12. There exist homotopy equivalences ZLkj,m ' S1 ∗ ZLk−1
j−1,m−1

and

ZLkj,m/S
1
d ' Cqk−1

j−1,m−1
, where Cqk−1

j−1,m−1
is the homotopy cofibre of the quotient map

ZLkj,m
qkj,m−→ ZLkj,m/S

1
d. Consequently, we have the homotopy types of the following spaces

ZLkj,m '

S
2j−1 ∗ Z

∆k−j
m−j

if 1 ≤ j ≤ k + 1

S2k+3 if j = k + 2

and

ZLkj,m/S
1
d '


CP k+1 ∨ (

k
∨
i=j
S2i−1 ∗ Z∆k−i

m−i−1
) ∨ (S2k+1 ∗ Tm−k−2) if 1 ≤ j ≤ k + 1

CP k+1 if j = k + 2.

Proof. If 1 ≤ j ≤ k + 1, observe that LinkLkj,m
(m) = Lk−1

j−1,m−1 and RestLkj,m
(m) =

∆{1,...,m−1}. We have two homotopy pushouts of corresponding moment-angle complexes

and their quotient spaces under the diagonal action

ZLk−1
j−1,m−1

× S1 S1

ZLk−1
j−1,m−1

ZLkj,m

∗×id

id×∗ and

ZLk−1
j−1,m−1

∗

ZLk−1
j−1,m−1

/S1
d ZLkj,m/S

1
d .

qk−1
j−1,m−1



104 4.5. Homotopy types of partial quotients

Thus ZLkj,m ' S
1∗ZLk−1

j−1,m−1
and ZLkj,m/S

1
d ' Cqk−1

j−1,m−1
. Iterating ZLkj,m ' S

1∗ZLk−1
j−1,m−1

,

we obtain the homotopy equivalences ZLkj,m ' S
2j−1 ∗ Z

∆k−j
m−j

for 1 ≤ j ≤ k + 1.

Next consider that LinkLkj,m
(1) = Lk−1

j,m−1 and RestLkj,m
(1) = Lkj,m−1. Consider the

homotopy pushouts of corresponding moment-angle complexes and their quotient spaces

under the diagonal action

S1 ×ZLk−1
j,m−1

S1 ×ZLkj,m−1

ZLk−1
j,m−1

ZLkj,m

id×∗

∗×id fkj,m
and

ZLk−1
j,m−1

ZLkj,m−1

ZLk−1
j,m−1

/S1
d ZLkj,m/S

1
d .

'∗

qk−1
j,m−1

gkj,m

By Lemma 4.5.11, the simplicial inclusion LinkLkj,m
(1) −→ RestLkj,m

(1) induces a null

homotopic map on corresponding moment-angle complexes. Thus, there are two splitting

homotopy cofibrations

S1 n ZLkj,m−1

f̄kj,m−→ ZLkj,m −→ S1 ∗ ZLk−1
j,m−1

ZLkj,m−1

gkj,m−→ ZLkj,m/S
1
d −→ Cqk−1

j,m−1
.

Thus, there are homotopy equivalences

ZLkj,m ' S
1 ∗ ZLk−1

j,m−1
∨ S1 n ZLkj,m−1

and Cf̄kj,m
' S1 ∗ ZLk−1

j,m−1
' ZLkj+1,m

ZLkj,m/S
1
d ' ZLkj,m−1

∨ Cqk−1
j,m−1

and Cgkj,m
' Cqk−1

j,m−1
' ZLkj+1,m

/S1
d .

Iterating the homotopy equivalence ZLkj,m/S
1
d ' ZLkj,m−1

∨Cqk−1
j,m−1

' ZLkj,m−1
∨(ZLkj+1,m

/S1
d),

we have

ZLkj,m/S
1
d ' ZLkj,m−1

∨ ZLkj+1,m−1
∨ . . . ∨ ZLkk+1,m−1

∨ (ZLkk+2,m
/S1

d). (4.34)

In the end, we identify the homotopy type of ZLkk+2,m
/S1

d .

If k = 0, then L0
2,m = ∆{1,...,m−1} ∪∆{1,...,m−2,m}, where two (m− 2)-simplices are glued

together along one common facet ∆{1,...,m−2}. In this case, we have

ZL0
2,m

= (
∏
m−2

D2)× (D2, S1)∂∆1 ' S1 ∗ S1.

Since the diagonal action on ZK is free, the genuine quotient space has the same homo-

topy type as its homotopy quotient. Hence, there is a homotopy equivalence

ZL0
2,m
/S1

d ' ES1 ×S1
d
ZL0

2,m
= ES1 ×S1

d
((
∏
m−2

D2)× (D2, S1)∂∆1
) ' ES1 ×S1

d
(D2, S1)∂∆1 ' CP 1.
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In general, the simplicial complex Lkk+2,m =
m⋃

j=m−k−1

∆{1,...,ĵ,...,m}, where k+ 2 simplices

of dimension m− 2 (the “first” k + 2 facets of ∆m−1) are glued along the common face

∆{1,...,m−k−2}. Thus, ZLkk+2,m
= (

∏
m−k−2

D2) × (D2, S1)∂∆k+1
. The diagonal action on

ZLkk+2,m
implies that the genuine quotient space has the same homotopy type with its

homotopy quotient. Hence, we have

ZLkk+2,m
/S1

d ' ES1 ×S1
d
ZLkk+2,m

= ES1 ×S1
d

((
∏

m−k−2

D2)× (D2, S1)∂∆k+1
) ' (D2, S1)∂∆k+1

/S1
d ' CP k+1.

By (4.34), there is a homotopy equivalence

ZLkj,m/S
1
d ' CP k+1 ∨ ZLkj,m−1

∨ ZLkj+1,m−1
∨ . . . ∨ ZLkk+1,m−1

' CP k+1 ∨ (S2j−1 ∗ Z
∆k−j
m−j−1

) ∨ (S2j+1 ∗ Z
∆k−j−1
m−j−2

) ∨ . . . ∨ (S2k+1 ∗ Tm−k−2)

' CP k+1 ∨ (
k
∨
i=j
S2i−1 ∗ Z∆k−i

m−i−1
) ∨ (S2k+1 ∗ Tm−k−2).

Now we prove Theorem 4.5.10.

Proof of Theorem 4.5.10. The homotopy commutative diagram (4.31) shows that Ck,m '
ZLk+1

1,m+1
/S1

d . By Proposition 4.5.12,

Ck,m ' CP k+2 ∨ (
k+1
∨
i=1

S2i−1 ∗ Z∆k+1−i
m−i

) ∨ (S2k+3 ∗ Tm−k−2).

Corollary 4.5.13. The homotopy type of Z∆k
m
/S1

d is Z∆k
m−1
∨ Ck−1,m−1.

Proof. The proof follows from Corollary 4.5.5.
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