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The proposal is to put on top of a conventional slew motor in a piggy~-
back fashion a tracking motor that can develop high torques over a limited
range. Such a system will satisfy the required high tracking performance
but it presents a new control action problem. A solution to the problem is
proposed involving a microprocessor-based monitor to realign the slow motor
occasionally. When the tracking system is designed to operate on board
ship, then two signals need consideration: The absolute target motion in
space and the disturbance from ship rolling. The monitor is mainly to
model these motions. The target motion and ship rolling are modelled with
a quadratic polynomial and an autoregressive model, respectively. The
parameters of the models are estimated in real-time using a Finite Memory
Kalman Filter. The theory of the filter is that the parameters are estimated
based on a finite number of past measurements such that the expected
estimation error squares is minimum,.

Anticipated target motion and ship rolling can be predicted using the
estimated models. An optimal control strategy using the estimated models
is then calculated. The control action is optimal in the sense that the
probability of target loss weighted with the frequency of realigning the
slew motor is minimal. The tracking motor responds directly to the target
motion and disturbance. However, certain parameters of the tracking motor

could be up~dated by the monitor to improve tracking performance.
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SYMBOLS

Included in this list are some of the symbols used throughout
the thesis with an indication in parentheses of the chapter in
which they appear,
A Transition matrix (2Y(3) (D
B Delay operator z"1 (2)
Control matrix (3)
C Controlled output (1)
Observation matrix (2)
Time shifted matrix (3)
D Disturbance (1)
Damping coefficient (1)
Observation matrix (3)
G Transfer function (1)

Gain matrix (3)

I Moment of inertia (1)
J Cost function (5)
K Gain matrix (3)
M Augmented observation matrix (3)
P Estimation error covariance matrix (3)
Q Covariance matrix (2)
R Reference input (1)
Covariance matrix (2) (3)
S Time shift matrix (2)
Augmented measurement noise covariance matrix (3)
T Sampling period (2)
U Augnmented measurement vector (3) 5
28,781,8, parameters (2)(3)(5)
d observation vector (3)
2 altitude (2)
window length (3)(4)
p Probability density function (2) (5)
Lead time (4)
r Weight ratio (5)(6)
t time in general (2)(4)(5)
to current time (5)

e AV -



t Prediction period (5)

up Control vector (3)
Velocity (2)
White noise (2) (3)(4) (6)
v Measurement noise (2)(3)(4)
w Weight (5)
x State vector (23 (3) L
N4 Noise free measurement (3)
z Measurement (2)(3)(4)(5)
g Parameter vector (2)(3)
Y Autoccovariance (2)
€ Error (1)(3)(8)
8 Angular position (2)
Moving~average parameters (2)(3)(4)
60 Initial slew motor position (5)
SS Slew motor position (5%
BQ Limit of tracking motor (5)
GT Target position (5)
0 Correlation coefficient (2)

e Variance (2)(5)

73 Autoregressive parameters (2)(3)(4)(8)
it Autoregressive parameters (6)
w Plant noise (2)
&
Superscribe
~ Estimate

o

Estimation error
* Optimal

T Transpose



CHAPTER 1
INTRODUCTION

Radar is an acronym for Radio Detection and Ranging. It is an active
device that operates by radiating electromagnetic energy, and detecting the
presence and character of the echo returned from reflecting objects. Radars
can be categorised as; search radars and tracking radars., As the name implies,
a search radar is planned and designed with emphasis on detecting target
presence, It may also provide some coarse information regarding the target.
A tracking radar emphasises information extraction, that is, parameter
estimation, from the target echo, It tries to estimate with sufficient
accuracy the significant target parameters such as range, range rate, angle,
and angular velocity once the target presence is established. Siace
present day radars can perform both the functions adequately, such a binary
classification of radars is not always possible.

There are two phases of present day operation, acquisition phase and
tracking phase. In the acquisition phase, the antenna is being rotated
continuously to search for targets. Once the target presence is established
the radar will be switched to the tracking mode which will keep the antenna
in line with the target. Between the two phases, the tracking task is harder
to achieve in terms of positioning the antenna accurately. The accuracy
of the antenna is generally obtained by means of electric, or hydraulic,

servomechanism which keeps the antenna in track with targets.

1.1 Conventional Tracking Servo

The simplest model of an angular positional servo used in tracking
systems is as shown in Figure 1.1. It is designed to follow an input
command. The system consists of a controller, and a motor, electric or
electro~-hydraulic, to position the load.

In real life, disturbances such as winds, variable friction levels
do exist affecting the performance of the servo. The situation can
be visualised as in Figure 1.2.

Suppose the transfer function of the controller is Gj(s), and the
motor and load dynamics is Gz(s), the trangfer function between the output

position of the load, C, and the input command, R, is:

C —
E(s) = (1.1)

1
Gl(s)Gz(s)
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It tends to unity as Gl(s) Gz(s) tends to infinity. In other
words, a good closed-loop system asks for an open loop gain as high as
possible. Now consider the effect of the disturbance, D. Ideally the
value of the output, C, due to D should be zero. In this instance the

transfer function between the output and the disturbance is:

Gz(s)
1 + Gl(s)Gz(s)

%(s) (1.2)

The effect of the disturbance, D, on the output tends to zero if
Gl(s) tends to infinity. Therefore, it is seen that the requirements
to follow an input, C, and reject a disturbance, D, in general do not
conflict; they both require Gl(s) to be as large as possible. However,
such is not the case if a noise, N, originates at the same point as the
true input, R. Thé transfer function between the output, C, and the noise,
N, is exactly the same as that for the output, C, and the input, R, given
in equation 1.1. For the output, C, tends to zero for any given noise, N,

Gl(s)Gz(s) must also tend to zero. This is clearly totally incom-
patible with the prime task of following the target accurately.

From classical linear control theory the effect of disturbances, D,
(e.g. wind, etc.) can be made small either by using high system gain or
by increasing the type number of the controller. Besides the ability of
rejecting disturbances, a high system gain also contributes to faster
response, At present, the general design practise is to design the
system transfer function (or fllter) with the highest gain that the noise,

N, will have minimal effect on the output performance.

1.2 Dual Drive Tracking Servo

A novel D.C. electric motor has recently been proposed [12,42].
It has a gain characteristic much higher than conventional drives.
Higher precision and faster response for tracking radar seems possible.
Unfortunately, this motor has a disadvantage: It is capable of delivering
a tremendously high torque only over a limited angle. Outside this
working range the generated torque decreases drastically. One solution
to compensate for this is to couple the high torque motor with a conven-
tional motor in a piggy-back fashion. Both motors complement each other
to give a superior overall performance on accuracy. The new high torque
motor is used as a tracking motor responding to targets whereas the
conventional drives acts as a slew motor positioning the tracking motor
to favourable position in target tracking., Such novel configuration will

have a high system gain much higher than previously obtained without
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gearing. However, conventional control strategy is no longer applicable
to this novel dual drive configuration. A new strategy 1is required to
explore the optimal benefit from the novel drive.

The simplest way of implementing the dual drive tracking servo-
mechanism is as shown in Figure 1.3. Each drive is designed as a tracking
servo with feedbacks forming a control loop. The tracking motor will
have a higher bandwidth than the slew motor loop. The slew motor responds
directly to the command signal. The tracking loop responds only to the
error signal between the output from the slew motor and the input. The
overall system output is the sum of both control loops. The system then
tracks targets with the coarse adjustment from the slew motor in conjunc~
tion with the fine adjustment of the tracking motor. This strategy is
simple, but the complexity of the system has increased. The physical
construction of the newly proposed high torque motor imposes it to be
mounted on top of the slew motor. Thus, all torques generated by the
tracking motor must be transmitted via the slew motor which itself does
not possess a bandwidth as high as the tracking motor. This coupling
effect between the motors is difficult to eliminate. Hence, unwanted noise
is inevitably induced within the whole system which has adverse consequences
possibly the loss of target. The slew motor is then the weakest link

within the whole system.

SLEW
MOTOR
SLEW OUTPRPUT
- MOTOR
LOOPR

/

INPUT OVERALL
COMMAND OUTPUT

ot +

TRA_CTK\NG
ﬁggSR TRACKING
MOTOR
INPUT QUTPUT

Figure 1.3 Simple Dual Drive Tracking Servo.



With the advance intoday's microelectronics, a more direct approach
can be considered. A microprocessor-based monitor is being integrated into
the system as in Figure 1.4. The tracking loop will still respond directly
to the error signal between the output of the slew motor and the input
command. Its parameters will be adaptively adjusted by the monitor to
accommodate the varying incoming signals. On the other hand, the slew
motor is now relegated to a supporting role. It will remain inactive most
of the time. Its main task is to provide a rigid base which the tracking
motor can react upon. Occasionally it will be activated when the tracking
motor will probably lose its target by reaching its limits.

The philosophy behind the proposed control strategy is to tackle
the weakest link of the system, the slew motor, directly. It has already
been pointed out that the slew motor itself cannot transmit all the torques
developed by the tfacking motor. The only solution to it is to clamp the
output of the slew motor by an external device, such as a brake. Once
the slew motor is clamped, the tracking motor has a rigid base to react
upon. It can then track the target with its high accuracy. Since the
slew motor has been isolated from the system the coupling effect is
virtually completely eliminated. However, the slew motor cannot be
clamped forever because of the limited working range of the tracking
motor. A way to get round this is to realign the tracking motor
occasionally by the slew motor. The whole policy of realignment is to
keep the frequency of putting the slew motor in action to a minimum that
the high performance of the tracking motor will not be deteriorated.

Even when realignment takes place the duration will be minimal,

To implement the control strategy, a microprocessor-based monitor
is called for. The monitor samples the input signal. With a crude model
of the input signal already stored in the memory of the monitor the
parameters of the model are egstimated in real-time based on a finite past
sampled data. A crude model is used because it is intended to work with
all sorts of targets. Thus, exact model is not possible. Furthermore,
the input signal may consist of non-gtationary disturbances., Such
disturbances may, however, be approximated by a stationary model over a
finite length of the time history. Therefore, discarding the very old
sampled data in the estimation process is very important. A finite
memory Kalman filtering algorithm is then developed to estimate the
parameters based on the most recently sampled data recursively. The
input signal within a prediction period ahead is forecasted by extra-
polating the estimated model. The variance of the predicted trajectory

is supplied from the parameter estimation algorithm. Assuming the
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predicted trajectory as gaussian, the probability of target loss at any
time within the prediction period can be evaluated. The monitor makes
decisions when and where the slew motor will be realigned within the
prediction period. The decisions are made by weighing the probability

of target loss and the frequency of realignments. On the whole, modelling
is the first step to superior performance in this strategy. The input
signal that the servomechanism is supposed to work with in this thesis

is described in the next section.

1.3 Working Environment

The tracking servomechanism is aimed to be working on board, and
to be driving an antenna. The anticipated working situation is visualised
as in Figure 1.5. The only signal obtained from the radar isg the angular
error, ¢, between fhe target and the electrical null axis of the antenna.
The position of the antenna, ¢, relative to the ship is the output from
the tracking servomechanism. The axis of the ship is, however, not
stationary in space. The wave causes the ship to roll with an angle,®
Normally, the target will be far away, the centres of ship rolling
and the antenna can be treated concentric. The absolute position of the

target at a particular time can be re-established by the relationship:
Y = ¢ + 6 + ¢ (1.3)

It is proposed that the absolute position of the target will be
modelled rather than its relative position to the ship. This is because
the absolute measurements can be modelled by deterministic model. Whereas
the relative measurements consist of the rolling motion, 6, which is

stochastic in nature.
¥ = ¥ + 8 (1.4)
Measurement noise, such as thermal noise, is always associated with
all types of sensors. The measured target position will be corrupted

with noise as:

¥ = ¥ 4+ n (1.5)






In practice, wind loading is the main disturbance on the antenna.
This could be eliminated by employing a radome. The complete block
diagram of the servomechanism with the slew motor out of action is shown
in Figure 1.6. The output position of the servomechanism, ¢, is
related to the ship rolling and the demanded absolute position as:
G, (s) G (s) + Ts*

o = 5 v - 5 3] (1.86)
Is™ + Ds + Gc(s) Is™ + Ds + Gc(s)

1.4 Conclusions

A novel dual drive tracking servomechanism is proposed. This
configuration is largely imposed by the non-linearity of a newly proposed
high gain motor. This motor is superior to conventional motors without
gearing, but it haé a limited working range. In the proposed configuration
a conventional slew motor is employed in realigning the tracking motor
from time to time.

In the working environment of the servomechanism, two motions need
consideration. They are the target and the ship rolling motions. Re-
alignments are decided on the predictions of these two motions.

In equation 1.6, neglecting the term associating with the absolute
target position, ¥, it was seen that the ship rolling motion will be
counter~balanced passively if the system is very lightly damped, i.e.

D tends to zero giving:
b = -8 (1.7)

It is then tempting to suggest that if the system is to respond
to a low bandwidth target, for instance & satellite, there will be no
need to have a stabilising platform., However, it is not really the case

in practice as there is friction between mechanical parts.



CHAPTER 2
SIGNAL MODELLING

The proposed strategy is described in the last chapter. It's main task
is to determine when and where the slew motor should be realigned in order
to minimise the possibility of losing the target due to the non-linearity
of the tracking motor. If a realignment is called for, the tracking system
is more concerned with the possible position of the target in the future than
the target in the past, i.e. a prediction on the target trejectory is
essential in the process of decision making. Mathematical modelling is
thus the essence of the work of the project. The incoming demand signal is
modelled by mathematical models on a microprocessor-based monitor. The
optimal control law is derived based on the prediction models. Hence the
models for the incoming demand signal must possess the appropriate
characteristics of the actual signal. Unfortunately, it is sometimes
impossible, or impracticable, to fit a model with the exact characteristics
of the incoming signal. Normally, a highly accurate model can only be
used at the expense of complexity, which in turn increases the computation
time. Furthermore, the target can be of any type. No single mathematical
model can cover all types of targets exactly. A general low order model is
a good compromise between complexity and exactness. This, however, imposes
a restriction that the motions can only be modelled within a short time
interval since parameters of this model must vary with time.

An analysis of the incoming signal is necessary before proceeding to
model building. As it has been already discussed in Chapter 1, besides the
target motion, a model of the ship rolling motion is also required. 1In real
life the target will be in a three~dimensional space. The tracking system
will then have two degrees of freedom: The bearing and the azimuth. In
order to avoid the coupling effect between the two degrees of freedon,

only the azimuth of the target on a two-dimensional
plane is considered. The performance of this dual-drive tracking servo-

mechanism is evaluated upon the angular error on this two-dimensional plane.

2.1 Target Flying at Constant Speed, Constant Velocity

In general, a targetflies at a constant speed and at a constant
altitude for most of the time to conserve fuel. Manoceuvres will only
take place when it is necessary. Referring to Figure 2.1, a target is
flying at constant speed, u, at constant altitude, %£. The angular

profile of the tracker is:
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2.2 Constant Velocity Model

Most tactical weapons' guidance systems require accufate tracking
of manceuvrable targets such as aircraft, ships and submarines. In
the process of modelling the targets, one assumption is generally used:
It is commonly assumed that targets, without manoeuvring, follow straight
line constant velocity trajectories. In the 1970's, Singer [43, 44]
first presented a model that accounted for the manoeuvre capability in a
simple way. Basically, the model is still based on the consideration
that tergets normally move at constant velocity, either linear or
angular. Turns, evasive manceuvres and accelerations due to atmospheric
turbulence may be viewed as perturbations upon the constant velocity
trajectory. These perturbations are assumed to have a probability density
as shown in Figure 2.2. The quantity Amax is the maximum acceleration

which the target can withstand.

pouwd
\
' N
[~ CPp + 2P0
‘“—-"_““——"————-
‘P’ / 2 Amay 4 P
~Amax Amax u

Figure 2.2 Probability density of Target Manoceuvre.

After the whitening of the perturbations, the model (for one

dimension) is given as:

It

x(k+1) A(k+1, k) x(k) + G w(k) (2.4)

z(k+1)

It

C x (k+1) v oK) : (2.5)

-12- &



xT(k) = ( x(k)  x(k)  u(k) ) (2.6)
cT = (0 0 1) ¢2.7)
C = ( 1 0 0 ) (2.8)
1 T 0
Alk+1,k) = 0 1
0 0 o] (2.9)

The term u(k) is the perturbation (manoceuvre) w(k) and v(k)

are gaussian white noise with

"
Q
~
=
1
©
[+
~

E [ wk) o (] (2.10)

i

11¢:9)

and

1
Q

R(k) E [ v v o] (2.11)

The values for the manoeuvre variance, omz, and the correlation
coefficient, 0, depend on the manoceuvre characteristics of the targets
being tracked. The correlation coefficient assures that as time between
manoceuvre samples increases, the correlation between these samples
decreases,

The model presented by Singer is a good model combining simplicity
with reliable representation of the modelled phenomena. However, the
model is by no means without flaws. First of all, the implementation of
the model is restricted to one class of targets once the quantity of
maximum acceleration, the manoeuvre variance and the correlation coeffi-
cient are chosen a priori. The model is thus not a general one.
Furthermore, as pointed out in the last section, the bearing rate and
acceleration between the target and the tracker will not be constant
even with the target flying at constant velocity, and conétant altitude.
The assumption of constant angular velocity is only justified if the
target is far away. This can be seen from (2.1) and (2.2). Therefore,
if the target is at close range, the model becomes insufficient. Now-
adays, conventional tracking systems have to switch between models,

close range and long range models.

-13- 5



2.3 Quadratic Polynomial Model

Restating (2.1) here

-1

8(t) = + tan C%t - -9 (2.12)

I

2
u *o

Considering a short time interval only, the term (zt - z*) will

have an absolute value of less than unity, hence:

X

T u o 1l u 0,3

0(t) ~ = S - - =& - 2

B = =+ Gt- - FG - % .

x x x
~ I _ o, 1 03 _ 02 u u

0(t) = 3 Tt 3 ) 7 gt o+ ot o+

oo u 2 .2 1 u3 .3

(z—)fz) t -3 Cz) tT ... (2.13)

In view of (2.13) and the drawbacks of the constant velocity
model, a quadratic polynomial may also be used to model the target

trajectory. The model is:

2
= . 4
z(t) a, + alt + azt (2.14)
where,
z2(t) = angular position of target at time (t)
ao, al, a2 = paraneters
t = time

This quadratic polynomial model is very simple in concept. A
curve is being fitted to the measurements. It is also capable of coping
with the changes of the target characteristics that occurs with the
target range. On top of thisg, this model has no restriction on the type
of target being tracked. However, the model is not good enough to
accommodate a manoeuvring target. One of the possible ways to get
round thig problem is to apply a window to the measurements so that the
estimated parameters, ﬁo, al and ﬁz depend only on the measurements
inside the window. The use of the model also imposes an assumption that
the parameters are time-invariant within the estimating period but can

vary with time over long periods.

-14- .



It is shown in Section 2.4 that this quadratic polynomial is closely
related to the constant velocity model presented by Singer. If the
parameters of the quadratic polynomial model is assumed to be random,
the quadratic polynomial is identical to the constant velocity model with
a very fast sampling rate.

The polynomial model needs to be rewritten in state-space form in
order to facilitate the parameter estimation. 1In state-space form, the

model (2.14) can be written as:

x(t) = 0 (2.15)
T
z(t) = d (t) =x(t) + v(t) (2.16)
where
x(t) = (a a a. ) (2.17)
o} 1 2 ’ :
T,. 2
da(ty = (1 t t ) (2.18)
z(t) = nmeasured signal at time, t ;
and v(t) = measurement noise at time, t.
In discrete time form:
x(k+1) = x(k) (2.19)
z(k+1) = g?(k+1) x(k+1) + v(k+l) (2.20)
where
T 2 2
d” (k) = (1 kT k' T) : (2.21)

with sampling time T.



There is one problem in association with this model. Since the
vector d(k) involves time it will become unacceptably large as time
progresses. Eventually the values of the vector d(k) will be too large
for a digital computer to handle. One method to overcome this is the
shifting of the time axis forward after each estimation interval, i.e.
the vector d(t) becomes constant in each parameter estimation process.

For instance if the model is time shifted one step backwards,

x'(k+1l) = S x (k+1) (2.22)
where
x'(k+l) = time-shifted state vector, and
1 T T2
S = 0 1 2T
o] o] 1 (2.23)

2.4 Constant Acceleration Model

Re-defining the state vector in (2.17) as
ET(k) = ( a a 2a )
= (b b b,) (2.24)

The polynomial model becomes:

x(k+1) = x (k) (2.25)

2(k+1) = d (k+1)  x(k+1)  +  y(k+l) (2.26)
where

) = (1 kT HxD?Z ) (2.27)

and the time shift matrix S becomnes:

1 T %Tz
S = 1 T
0 1 (2.28)

~16-



Combining the time shift operation, kT = (n+1)T, with the

polynomial model

[

and

i

z(kT)

z(kT)

Therefore

z(k) = (

glives:
1 T %Tz
0 1 T
0 0 1
z((n+1)T)
1 2
(1 (n+1)T (n+1)T] )
3 2
(1 nT z(nT)™) 1
0
0
1 2
(1 nT z(aT)™) b°
b1
b2
(
b 1 T
(o]
bl = 0 1
b2 0 0
(n+1)T
1 nT (nT)z) a
%1
¢y
k

-17-

b
o
b1
bz
kT
bo +  v(kT)
b1
b
2 kT
2
T 3T [ b
ol
1 T
bl
0 1 b2
+ v(kT)
n+1)T
%Tz b
o
T b1
1
by
+ v(k)

(2.29)

v(kT)

(2.30)

(2.31)

(2.32)



+3
-

3
>

and [ o \ 1 2 b
o
al = 0 1 T b1
o, 0 0 1 b2 -
kT
= /1 T 172 1 T it b,
0 1 T 0 1 T bl
0 0 1 0 6] 1 bz
(k-1)T
= 1 T 172 o
o
0 1 T al
0 0 1 az
(kx-1)T (2.33)
The whole polynomial model can be reduced with k setting to zero
x (k+1) = 8 x(k) (2.34)
T
z(k+1) = 4 x(k+l) + v(k+l) (2.35)
where
xT(k) = (a o o) (2.36)
o 1 2 !
T
and d = (1 o] 0 ) (2.37)
The model (2.34) and (2.35) is now a Newtonian one. The elements

of the state vector, x, are the position (ao), velocity (al) and
acceleration (az). From the matrix S, which is now the transition matrix,

it imposes that the acceleration (uz) to be constant.

~18-



It is shown in [43] that the constant velocity model can be

reduced to:
x(k+1) = 8 x(k) + g(k) (2.38)

(2.38) is identical to (2.34) except that a white noise sequence term
w(k) is introduced. This in effect allows the parameters to be random
variables, (2.38) is derived by discretizing a continuous time counter-
part, with an assumption that the product of the sampling period and the
reciprqcal of the acceleration time constant of the target is small.

In this section, the constant acceleration model is actually derived
from the quadratic model in the previous section. That is, the constant
acceleration model can actually be treated as fitting a quadratic curve
to the data. If the parameters of the quadratic model be treated as
random variables, the quadratic model becomes a constant velocity model

as presented by Singer.

2.5 Deterministic Model for Target Motion

The tracking system is supposed to work with all sorts of targets,
When the system is tracking a target, i1t has no clear idea of what class
and type of targets it is tracking. In view of this, the model for the
target motion must be general and be capable of handling every class of
target. Fortunately, nearly all types of targets follow a straight or
nearly straight trajectory with constant velocity. Manoeuvres only
occur occasionally. If a reasonable model of the target is known, its
whole trajectory can be determined with sufficient confidence once its
initial position is known. Thus, a deterministic model is considered
to be appropriate in modelling the target motion.

It was shown in the last three sections that the quadratic
polynomial model, the constant velocity model and the congtant accelera-
tion model are very similar to each other. There is actually nothing to
distinguish between the quadratic polynomial model and the constant
acceleration model as one can be derived from another. However, from
the point of parameter estimation using Kalman filtering, the constant
acceleration model is easier to implement than the quadratic polynomial
model. The constant acceleration model was finally proposed for modelling
the target motion. Although the constant velocity model 1s commonly used.
It was not chosen because the constant velocity model is not truely a
general model. It will not cover all classes of targets without modifica-

tion. It needs the knowledge of the class of target being tracked. For
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generality this information was not assumed in this work. The constant
acceleration model is not without problem. It imposes an assumption that
the acceleration is constant. This is clearly not the case as pointed
out in Section 2.1. There are two possible solutions to it. The
parameters of the model may be treated as random variables as in (2.38)
and are estimated based on the infinite past measurements. Alternatively,
the parameters of the constant acceleration model may be treated as
invariable over a finite window of the measurements and are estimated based
only on the measurements within the window. The former solution, however,
still requires some knowledge about the target, which is agsumed un-
available, so as to establish the variance of the introduced plant noise
term in (2.38). It is then the second solution which is adopted for this
work.

It seems reasonable to treat the parameters of the constant
acceleration model to be random variables and to be estimated baged on a
finite window of the measurements. This is not chosen because of the
difficulty in establishing a stable filtering algorithm for such conditions.
In the derivation of such an algorithm, the correlation between the past
plant noise and the estimation error is required. It is the inability of
establishing this correlation that hinders the development of the
algorithm (Appendix B). In the case of Kalman filtering algorithm, the
introduction of a plant noise term to the model is in effect preventing
the covariance matrix becoming zero [32, 35, 47] . It is pointed out
in Chapter 3 that the introduction of a window stops the covariance matrix
from decreasing, too. Thus, if both plant noise and windowing be
introduced simultaneously, it is suspected that the covariance matrix
might be forced to increase, which in turn increases the gain, and thus
would cause instability to the algorithm.

It is interesting to mention here that the polynomial model can be
formulated as a stochastic process: An integrated moving-average process

(Section 2.9).

2.6 Autoregresgsive - Moving - Average (ARMA) Model

ARMA models are stochastic models based on the idea of Yule [49]
that a stationary time series in which successive values are highly
dependent can be usefully regarded as generated from a series of
independent inputs. These inputs are usually assumed to be white noise.
The concept can be visualised as a white noise sequence passing through
a linear filter. The shaped output from the filter will then resemble
the properties of the stochastic process, (Figure 2.3). The mentioned

linear filter may be an ARMA model.
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Mathematically, Figure 2.4, an ARMA model is of the form:

where

and

order

part.

$(B)

¢ (B)

8(B)

2(t)

u(t)

8's

The

z(t) = B(B) u(t) (2.39)
— 2 m
= 1 + $,B + ¢2 B™ + . ., + ¢mB ;
= 9 + 6B + 8B 4 +08Y .
o 1 2 e n ’

measured signal at time, t

= gaussian inaccessible input at time, t
= delay operator (zul)

= autoregressive coefficients

= moving -~ average coefficients

model is normally referred to as an ARMA(m,n) where m is the

of the autoregressive part and n is the order of the moving-average

The process may be thought of in two ways. Namely:

i)

ii)

As a mth order autoregressive (AR(m)) process

¢(B) z(t) = e(t) (2.40)

with e(t) following the nth order moving average (MA(n)) process

e(t) = 8(B) u(t) (2.41)

As a nth order moving-average process

z(t) = 6(B) b(t) (2.42)

with b(t) following the mth order autoregressive process

$(B) Db(t) = wult) : (2.43)

So that,
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Figure 2.7 Model of Ship Motion in S-domain.

Applying the Z~transformation, B = e ~ (2.47)

the transfer function in (2.46) becones:

2 3 4 5 6
60 + els + 62B + 633 + 948 + GSB + SGB

1+ ¢1B + ¢2B2 + ¢333 + ¢4B4 + ¢585 + ¢GBG

z —
E(B) = (2.48)

thus, (2.48) indicates that an ARMA(6,6) will describe the ship motion

fully.
The ARMA model can be reduced to the state-space form [29] of

It

x (k+1) A(k+1,k) x(k) + C ( u(k+1) (2.49)

u(k)

1}

z(k+1) g? x(k+1) » (2.50)
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where; 0 (o] 0 ~¢6
1 0 0 -¢5
0 0 (0] -¢4
A(k+1l,k) = 0 1 0 _¢3 (2.51)
0 0 0 -9,
) 0 1 -,
cl = 0 0 ° 9 (2.52)
o 5 e4 3 e2 el
T
da° = (o ) 0 1) (2.53)
and the states are:
xl(k+1) = ~¢6 xs(k) + 66 u(k)
xz(k+1) = xl(k) - ¢5 xe(k) + 5 u(k)
x3(k+1) = xz(k) - ¢4 xe(k) + 4 u(k)
x4(k+1) = x3(k) - ¢3 x6(k) + 3 u(k) (2.54)
xs(k+l) = x4(k) - ¢2 xs(k) + o u(k)
x6(k+1) = xs(k) - ¢1 xs(k) + 1 u(k) + 90 u(k+1)

In this form, the parameters ¢'s and 6's in (2.51) and (2.52) can

only be identified by an extended Kalman Filter algorithm [24, 32, 35,

40, 46, 47]. Not only is the estimate of the state vector x(k+1)
’ ——

redundant, the overhead in computation is high. The parameters must
be augmented into the state vector thus pushing the effective system to

an order of eighteen.
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A simpler way to estimate the parameters @'s and 6's without

estimating the states is to rearrange (2.42) as

6 6

z¢(k) = - I ¢, z(k~-i) + z 61 u(k-1i) + 06 u(k) (2.55)

i=1 * i=1 °

T
= 4B+ 8 uk) (2.56)
where
Q?(k) = ( =z(k-1l) -z(k-2) ceer =z(k-6) ulk-1l) uck-2) . . u(k-6))
(2.57)
T —r

B = ¢1 ¢2 R ¢6 el 92 cees 66 ) (2.58)

By the assumption of stationarity, the ARMA process can be

written mathematically as:

]

B(k-1) (2.59)

B(K)
2(k) = di(k) B(k) + 8, () u(k) (2.60)

with a priori statistics

Efu)] = 0 ; E [u@ up] = S (2.61)

(2.59) and (2.60) are suitable for Kalman filtering to estimate
the parameter vector B. No redundant operation exists in the algorithm
because of the elimination of the state vector.

When implementing the model (2.59) and (2.60) to both canonical
Kalman filter and Finite Memory Kalman filter in section 3.4, it was
found that there are difficulties in estimating the moving average
parameters to a satisfactory level in most cases. It is suspected that
this is due to the interaction between the poles and zeroes. This
deficiency is described further in Chapter 3. Due to this problem, an
AR model was adopted to approximate the ship rolling instead. Assuming
an ARMA model to be invertable, it can be written as an infinite order
autoregressive model, such that:

o™l 3 s@) z(x) = uk) . (2.62)
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¢1(B) z, (k) 81(8) ul(k) (2.65)

. ) . 6
¢2(B) zz(k) ez(B) uz(k) (2.66)
zl(k) may be considered to be the signal and zz(k) to be coloured
noise. The sum of zl(k) and zz(k) is the observed signal plus noise,

and is given by:
y(k) = zl(k) + zz(k) (2.67)

Substituting for zl(k) and zz(k) from (2.65) and (2.66) into (2.67)
yields:

-1 -1

yk) = ¢ (B 91(8) u, (k) + ¢ (B) GZ(B) u, (k)

= 8 8
¢1(B) ¢2(B) y(k) ¢2(B) l(B) ul(k) + ¢1(B) Z(B) uz(k)
(2.68)
The right hand side of (2.68) forms the sum of two moving average
processes which may be represented by a single moving average process
allowing (2.68) to be written sas:

¢3(B) y(k) = 63(B) u3(k) (2.69)

where u3(k) is another white noise process. Therefore the additive
noise u,(k) is included in the coefficients of ¢3(B) and 83(B).
Consequently, there is no difference between signal noise and measurement

noise. The above fact is shown by Box and Jenkins [8] in more detail.

2.9 Polynomial as Stochastic Model

Following the same procedure as in Section 2.4, the polynomial

model (2.19) and (2.20) with time shift (2.22) can be written as:

a 1 T T2 a
[ [
a1 = (o] 1 2T al (2.70)
a2 0 0 1 az
(k+1)T kT
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y((k+1)T) = (1 0 0) a + v((k+1)T) (2.71)

%
2
(k+1)T
Introducing plant noise to (2.70):
a 1 T T2 a w
o o o}
= W .
a, 0 1 2T &y + 1 (2.72)
a2 0 (0] (0] a2 wz
(k+1)T kT kT

where W wl and W, are mutually independent gaussian white noise processes.

Transforming (2.71) and (2.72) to Z-format:

1 T T2 ao wo
I - z-1
0 1 2T al = wl (2.73)
0 0 1 az wz
z z
v, = (1 0 0) a + v, (2.74)
81
a2 z
From (2.73)
-1
a 1 T Tz W
(o] (o]
-1 0 27T
al = I - z wl
o} 1
a, Wo | g
-1
1-z"1 1zt 2zt © \
o)
=1 o 1-z"1 27zt 0, (2.75)
-1
0 0 1-2 w2 z
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1~z -Tz -T
1-7 % otz t = (1-2h83 (2.76)
det -1
0 1-2z
Therefore:
-1
l—z_1 -Tz“1 --'I’zz_1
0 l—z»1 --2Tz_1
o} o} 1-2"%
(1-z'1)Z Tz'l(l—z'l) Tzz'1(1+z'1)
— 1.___ — -
-1.3 o} (1-z 1)2 2Tz Y (1-2 1) (2.77)
(1-z )
o} 0 (1-z"1>2
Substituting (2.77) into (2.74) yields:
(1-z" 43 v, = | (1-z"H% 1z ta-27h Tzz“1(1+z'1)) ®©
2 o
“y
LL),)
-1.3 <
+ (l-z ) vz
-1.2 -1 -1 2 -1 -1
= - - [
(1-z ) woz + Tz (1-z ) wlz + Tz (l+z ) 5,
r (12 H3 v (2.78)
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On the right hand side of (2.78) the terms and v,

oz’ Y1z’ Y2z
are all white noises which can be grouped and can be represented by

one single moving average process, Thus (2,78) can be viewed as an
Integrated moving average process. The coefficients of the equivalent
process can be determined by equating the autocovariances of the process,

The autocovariances of the right hand side of (2.78) are:

Y = 60 2 + 2 Tz g 2 + 2 T4 o} 2 + 20 0 2
o o 1l 2 v
2
Y = «4 0 2 - T2 o 2 + T o 2 - 15 ¢
1 o 1 2 v
= g 2 + 20 2
Yo o v (2.79)
= g 2
Y3 v
= 0 > 4
YJ J
where
Var = 2
ar [Yz] T %
_ 2
Var [wlz] = 01
v = 0 2
ar [y, ] 2
2
Var [ vz] = crv

Since the highest order among the four moving average processes
on the right hand side of (2.78) is three the equivalent single moving
average process is of the order three [8]. Assuming the equivalent

single moving average process is

v = (6 + 8,2 +6,2° +8 z )  a(k) (2.80)
with a(k) being a white noise process having the statistics of

E [a(k)] = 0

Var [a(k)] = 1.
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The autocovariances of the equivalent process (2.80) are:

Yo‘ = 602 + 612 + 622 + 632

Yl' = 9081 + 8162 + 6263

Yz' = 6062 + 6183 (2.81)
Yg' = 858

Y,0 =0 R

The coefficients 60, 61, 82, and 63 can then be evaluated by

equating (2.79) and (2.81).

The above analysis indicates that a polynomial model with its
parameters as random variables is equivalent to an integrated moving
average process., An m-order polynomial can be treated as an IMA(O,m,m)
process., Since an integrated moving average process can be used with
non-stationary time series [8] it is also true in the case of polynomial

models.

2,10 Conclusions

A constant acceleration model was proposed for the target motion.
Basically the constant acceleration model and the quadratic polynomial
model are identical but are presented in different forms. Thus, the
modelling of the target motion can be visualised as a quadratic curve
fitting exercise.

The proposed model imposes an assumption of constant acceleration.
This assumption can, however, be relaxed by windowing the measurements.
The proposed model requires no a priori knowledge about the target as
opposed to the constant velocity model advocated by Singer. The constant
acceleration model can then be a truely general model,

The case of constant acceleration model with plant noise
introduced was dropped by two reasons., The variance of the plant noise
must be related to the characteristics of the target being tracked. Thus,
an a priori knowledge of the target, which is assumed unavailable, is
required to establish the required variance.

Secondly, the introduction of plant noise and the use of windowing
both have similar effect on the parameter estimation process, namely

preventing the covariance matrix of the estimation error from being zero.
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Furthermore, it is easier to interpret the physical meaning of a window
than the variance of a white noise.

A stochastic AR model was proposed for the ship rolling motion.

In the early stage, it was thought that, based on the knowledge of the
spectrum of the motion, an ARMA(6,6) process will fit the ship rolling
motion fully. However, in the process of estimating the parameters using
a recursive filtering algorithm, such as Kalman filter, a suspect poles
and zeroes interaction causes difficulties in estimating the moving
average parameters in the ARMA model., A sixth order AR model was
demonstrated to be adequate in estimating an ARMA(6,6) model in the
simulation trials. Windowing is also suggested in the modelling of ship
motion because of the non-stationary characteristic of the motion. It
must be stressed that the order of the AR model must be chosen based on
experiments with actual ship rolling motion., Throughout the work of this
thesis, the ship rolling motion is assumed to be generated by passing a
white noise process through three parallel second order linear filters

as in Figure 2.7.

From the derivation in Section 2.9, it was found that a polynomial
model may actually be viewed as an integrated moving average model.
Hence, a non-stationary process may actually be modelled using polynomial
fitting., This confirms further that polynomial models can cover all

types of events.
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CHAPTER 3
FINITE MEMORY FILTERING

Every measurement will inevitably be corrupted with unwanted noise.
This noise ought to be filtered out in some way, and furthermore, the
parameters of the models need to be up-dated frequently. In modelling the
two input signals: target trajectory and ship rolling motion, low order
models are used. Also, the parameters may be time varying over long periods
of time. Therefore, the filtering algorithm that is to be employed must
be capable of rejecting the noise and give an estimate of the parameters.
More important, the algorithm must be in a recursive form because this
will require less computation time which best suits real-time applications.
The well established Kalman Filter named after R.E. Kalman [25, 26] who
developed it in the 1960's is an optimal linear filter algorithm. In fact,
many other filters algorithms, e.g. Bayes filter algorithm, the Least Squares
estimator, the minimum variance estimator, etc., can be treated as equivalent
to the Kalman filter. However, the original Kalman filter gives an estimate
based on the whole infinite past history of sampled signals, Thus a modified
version of the Kalman filter that only uses finite past data was required

for this work.

3.1 Model for Random Processes

Let x(k) be the random state vector of time kT, where T is an
arbitrary sample time. x(k) is assumed to obey the following recursive

relationship.

x(k+1) = A(k+1l,k) x(k) + B(k) u(k) (3.1)
where x(.) is nxl vector, u(.) is pxl vector. A(k+l,k) is a nxn transi-
tion matrix, B(.) is a nxp control matrix.

The measurement at time (k+1)T is denoted by:

z(k+1) = D(k+1) x(k+1) + v (k+l) (3.2)

Here z(.) and v(.) are mxl vectors and D(.) is a mxn observation matrix.

v(.) is a gaussian random variable with mean value zero. 1i.e.

E [vix)] = O (3.3)















with

In the experiment, (3.21) and (3.22) were re-written

in the vector form:

x(k+l) = x(k) (3.
T
z(k+l) = d (k+1) x(k+l) + V(k+1) (3.
where xT(k+1) = (a a a_ ) (3
= - ) 1 2 "k+l ’
T 2
A (k+1) = (1 (k+1) (k+1)" ) (3.
For the first f+1 measurements, a canonical form of
Kalman filter was used. From the (2+2)th measurements onwards,
the estimation was switched to the Finite Memory Kalman Filter.
this case the complexity of the algorithm has been reduced due
the simplicity of (3.23) - the transition matrix is an identity
matrix, The algorithm becomes:
T T -1
G(k+1) = P(k/k,L) M (k+1) DW(k+1) P(k/k,%) M Tk+1) + S(k+1)]
(3.
£(k+1/k+1,2) = [I - G(k+1) M(k+1)] #£(k/k,?2) + G(k+1) U(k+1)
(3.
P(k+1/k+1,8) = {I ~ G(k+1) M(k+1)] P(k/k, %) (3.
T
M(k+1) = (_g (k+1))
g?(k-%) (3.
S(k+1) = R(k+1) 0 )
0 -R(k+1) (3.
U(k+1) = z(k+1)
z(k~-2) (3.

However (3.26) is undesirable for computation since the
term (k+1)2 will soon become exceptionally large. The parameter
vector was then time shifted after each cycle of the whole

algorithm

x"(k+l) = C x(k+l) (3.

-40- N

23)

24)

25)

26)

In

to

27)

28)
29)

30)

31)

32)

33)



where x'(k+1) time-shifted state vector,

and 1 1 1
cC = 0 1 2 (3.34)
0 0 1

The matrix C in (3.33) is the same as the matrix S in
(2.28). 1In each time-shift operation, the covariance matrix hasg
to be up-dated, too.

P'(k+1/k+1,2) = C P(k+1/k+1,0) CT (3.35)

With the help of the time-shift operation, (k+1) and
(k+l)2 remain constant throughout the whole simulation trial.

The estimate, ao, al and az are plotted against time in
Figures 3.4, 3.5 and 3.6. 1In Figure 3.4, it clearly shows that the
estimation with a memory length of a hundred data points adapts to
sudden changes in parameters easily whereas the one with memory
length of four hundred data points shows difficulty in accommodating
the step changes in ao. The results reveal that a Finite Memory
Kalman Filter with suitable window length gives good estimation
even with a model that does not anticipate any external disturbances.
However, the uncertainty associated with the estimates is highly
dependent upon the window length, which can be observed from
Figures 3.10, 3.11 and 3.12. If the window length is so short that
it is in the same order as the degrees of freedom in the
estimation process, the uncertainty will be unacceptable.

The results from the above experiment are also applicable
to the proposed constant acceleration model since the polynomial
model is exactly the same as the proposed model. By treating the
gtate vector as the coefficients of the polynomial, the true state
vector will then be invariant with time. It then allows a clearer
view in the performance of the estimator during the whole experiment.
If the constant acceleration model wags used, the first two elements
in the state vector will be time dependent and will become very

large eventually.



The performance of the parameter estimator may be improved
by making the window length adaptive to sudden target manoeuvres
and to unmatching model order (Figure 3.3). If target menoeuvres
exist , shorter window length will accelerate the adaption of
parameter changes. If the model order is too low, once again a
shorter window length will remedy the deficiency. The criterion
used in the adaptor may be to minimise the mean square error of
the estimator by means of the windowing length. 1If a longer window
length is desired, a canonical Kalman Filter will be implemented
instead of the finite memory version., If a shorter window length
is required, an algorithm for dropping old measurements only (such
as one in Appendix B), will be used together with the finite

memory Kalman Filter.

ADAPTOR
ADJUST 3
WINDOW PERFORMANCE %
LENGTH |
RAW WINDOWED -
MEASUREMENT MEASUREMENT ESTIMATE
- WINDOWING ESTIMATOR

Figure 3.3 Adaptive Window Length.

3.4.2 Implementation of ARMA Models

Restating the state-space form of an ARMA(m,n) model
(2.59) and (2.60) here:

[i}

Bk)
z(k)

8(k-1) (3.36)
aT(k) B(k) + 6_(K)  uk) (3.37)

[i}

B8 and d are (m+n)xl vectors. z, 60 and u are scalar.

(3.36) and (3.37) are similar to (3.23) and (3.24). Hence,
the Finite Memory Kalman Filter algorithm may be applied to
estimate the parameter vector . It is shown by Box and Jenkins

(8] that the input u(k) can be obtained from the one-step ahead

prediction error, i,e,
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n

~ m A A
8 (k) uk) = z(k) + I ¢, (k) z(k-i) - L 6, (k) u(k-i)
e} i . i
i=1 i=1
(3.38)
Therefore:
1
u(k) = = e(k) (3.39)
6 (k)
o
where;
m " n ~
e(k) = z(k) + I ¢i(k) z(k-i) - L 8 (k) u(k-i)
1=1 i=1 1

(3.40)

The parameter eo(k) is estimated from (3.39) using the

assumption that u(k) is white and with unit spectral height.
. 2 ot 2 _ 2
E[| o, um|] = 8 ") = E[e“(0)] (3.41)

where

E[ez(k)] can be computed as E[ez(k)] =

(3.42)
(2+1) is the number of data points that the estimate § and 60
are based on. The estimation algorithm as (3.27), (3.28) and

(3.29).

B(k+1/k+l,0) = [I - G(x+1) M+1)]  BGs/k,8) + G(k+1) U(k+1)
(3.43)
G(e+1) = P(k/k,L) M (k+l) [MCk+1) P(k/k,l)‘MT(k+1) +
-1
S (k+1) | (3.44)
P(k+1/k+1,%) = [I - G(k+1) M(k+1)] P(k/k,2) (3.45)
~2
with S(k+1) = e°<k+1) 0
(3.46)
AR
0 -0 _(k-2)
(o]



These, in conjunction with (3.39) and (3.42), form a
complete algorithm for identifying the parameters of the ARMA
model,

This formation of ARMA model, (3.36) and (3.37) was first
appeared in Srinath and Rejacekaran [46]. They originally gave
one example employing the canonical Kalman filter to estimate the
parameters. It has been extended here to the Finite Memory
Kalman Filter. The combination of (3.36), (3.37) and Kalman
Filter is the most efficient one. Box and Jenkins [8] sugges ted
an algorithm which is not suitable for on-line implementation and
requires human interference and pattern recognition. Lee [29] and
Gersch [19} attacked the problem of estimating the autoregressive
parameters of a mixed ARMA model. However no attempt was made by
either to estimate the moving-average parameters. Mehra [33] ,
Krause and Graupe [28] estimate the parameters by forming the ARMA

model to the state-space form as:

u (k+1)
u (k)

i

x(k+1) Ak+1,k)  x(k) + B( (3.47)

and

z(k+1) _? x(k+1) (3.48)
where the parameters of the ARMA model are in the matrices A and
B, The estimation becomes & non-linear problem.

The algorithm, (3.43), (3.44) and (3.45) was used on
several types of ARMA processes both in the expanding memory form
and finite memory form. The estimates are all plotted out in Figures
3.13 to 3.34. The mean absolute percentage error (MAPE) are listed
in Tables 3.1 and 3.2, Srinath and Rejacekaran [46] gave only an
example of a simple ARMA(2.1) as the one in Figure 3.15. They
showed that the estimates are consistent. The estimates converge to
the true value with probability one. From the results, it is clear
that convergence is guaranteed. 'The rate of convergence is, however,
linked to the individual model. The most disturbing discovery
was from the four ARMA(2.1) processes. It was found that if
the poles and zeroces are located on the same side of the imaginary
axis on the z-plane, the rate of convergence is terribly slow,
(Figures 3.19, 3.22). This has the implication that the adaptation
to changes in parameters will be poor. When the same processes used

in finite memory algorithm the estimates fluctuated widely around
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the true values (Figures 3.28, 3.32). One possible explanation

to this phenomenon is there exists some sort of pole and zero
interaction. Therefore, from a numerical estimation point of view,
it concluded that the ARMA process is not a suitable choice for
modelling the stochastic ship rolling even though it is parsimonious.
It is then envisaged that a higher order AR model may be more

suitable, to approximate the parsimonious ARMA model.

3.5 Conclusions

A finite memory version of the Kalman filter is presented in this
chapter. The finite memory version resembles the canonical Kalman filter.
It possesses the merits of the Kalman filter and removes some problems
inherited with the Kalman filter,

It is noted that both the canonical Kalman filter and the finite
memory version shown in Figure 3.2 closely resemble the original structure
of the system model, (3.1) and (3.2). In the case of the canonical Kalman
filter, it is driven by the innovation Z(k+1l/k). In the finite memory
version case, it is driven by two innovations, Z(k+1/k,%) and Z(k-2/k,%).
Both Z(k+1/k) and Z(k+1/k,) are identical. 1In both algorithms, the
estimates are up-dated with the prediction together with the weighted
innovations,

The Finite Memory Kalman Filter has its own defects. Firstly,
if a window of £ data points is planned, the first { measurements must
be filtered with a canonical Kalman filter or some other filtering
algorithms. It is because in the first { measurements, no old measurement
is to be discarded. It must be stressed that initialising the old
measurements with zeroes cannot be used during the first I measurements
due to the properties of the gain matrix and the covariance matrix
described in later paragraphs. During the first { measurements, the
Finite Memory Kalman filter may still be used only by setting the
terms in D(k-2) in (3.11) to zero., This arrangement turns the filter
to a canonical Kalman filter. However, a high proportion of the compu-
tation time is wasted in multiplying numbers with zero. From the (%+1)th
measurement onwards the normal Finite Memory Kalman filter can then be
used. The second imperfection of the Finite Memory Kalman filter is
the inability of removing old measurement alone. It is because the
algorithm is derived based on the one step prediction. The closely
related algorithm for removing old measurements only is in a slight
different form and is presented in Appendix B, This measurement

removal algorithm is very useful if adaptive windowing is employed.
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The gains, KX(k+1) and G(k+1), of both algorithm depend on the
signal to noise ratio. 1In general, the gain decreases as the measurement
noise variance increases. This result is intuitively appealing, since
as R(.) increases, the gain will decrease in order to avoid introducing
excessive measurement noise into the estimate. In the case of the
canonical Kalman Filter, it can be shown that [40] the gain, K(J),
asymptotically approaches zero for large j. As K(.) approaches zero,
the error covariance matrix, P(.), appraoches zero, too. Eventually the
estimation procedure becomes decoupled from, or independent of, the
measurement, It enters a condition known as data saturation. This
condition can lead to serious divergence problems. One of the major
causes of divergence is inaccuracies in the modelling process used to
determine the system and measurement model, due to failure of linearisa-~
tion, lack of complete knowledge of the physical problem or the
simplifying assumptions necessary for mathematical tractability. Errors
in the statistical modelling of noise variances and means or unknown
input may also lead to divergence. A plant noise, w(.), in the system
model, introduced either from the numerical or modelling points of view,
prevents the occurance of such divergence. The presence of the plant
noise inhibits the gain matrix being zero and sets a lower bound on the
covariance matrix. The gain matrix, with plant noise added, decreases
as the variance of the plant noise, Q(.), decrecases. However, it still
has the problem of the need to assess the variance of the plant noise.
On the other hand, the Finite Memory Kalman filter has a built-in
property of gtopping the gain and covariance matrices of going to zero
due to the term -R(k~-g) in (3.12). If the measurement noise is
stationary, i.e. R is constant over time, the gain matrix and the covar-
lance matrix also will be constant once the Finite Memory Kalman Filter
starts, as in the case of the parameter estimation example given in
Section 3.4.1 (Figures 3.7 - 3.12). The constant covaraince matrix
can be explained from the view of a Least Square estimation method
since Kalman Filter is also a least square estimator. The covariance
depends only on the number of available data points. The more data
points, the more accurate the estimate.

Another source of divergence is round-off errors, inherent in any
digital implementation of the filter algorithm, which may cause the
error variance matrix to lose its positive definiteness or gsymmetry. This
sort of divergence is still associated with the Finite Memory Kalman
Filter. One possible way to get around of this sort of divergence is

to form an expression calculating the square root of the covariance
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matrix instead of the actual covarinace matrix [ 37, 40]. Where the
covariance matrix is required in the algorithm, the square of the square
root covariance matrix is used which guarantees symmetry.

The Finite Memory Kalman filter is superior to the canonical Kalman
filter with plant noise incorporated in the system model on the basis
that it adapts to any changes in the state which is not anticipated in the
system model more easily. 1In Figures 3.4 and 3.5 it can be found that
the Finite Memory Kalman filter adapts to the new parameter quickly after
one window length. This shows that the algorithm actually gives
estimates based on the measurements inside the window. One might argue
that the canonical Kalman filter with appropriate plant noise in the system
model can have the same, or even better, response to the changes.
However, if the plant noise has a large variance the response to sudden
changes is fast, but with penalties of high uncertainty and large
proportions of measurement noise on the estimate. On the other hand,
if the plant noise variance is low, the opposite is true. There is no
guidelines on setting the variance.

Due to the incapability of the Finite Memory Kalman filter to start
the estimation process, the algorithm is therefore powerless to remedy
the error introduced in the initial guess of the state. There are ways
of minimizing, or eliminating, the initial error. 1If the canonical
Kalman filter is used to start the process, the initial error effect can
be minimized by using very large initial covariance matrix implies
there is no confidence on the initial guegs of the state. However, if
the window length is short compared with the time constant of the
canonical Kalman Filter, the covariance matrix may still be artifically
very high in entering the Finite Memory Kalman Filter. This may then
affect the performance of the algorithm, The best way to eliminate the
initial error is to apply either a Bayes Filter [35} or a non-recursive
Least Squares Estimator on the first few measurements to provide a better
estimate before starting the Kalman filter. Although the Bayes Filter
is essentially the same as the Kalman Filter [35], the formulation of the
Bayes Filter allows it to be started with no a priori data.

The developed Finite Memory filtering is not the only way of
tackling the problems of mismatching models and sudden changes in model
parameters. A Fading Memory Kalman filter described by Morrison [35] has
a similar effect as the Finite Memory version. The Fading Memory Kalman

Filter is derived from minimising the cost.
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k-1 t, -t
Min J Min T ~1 k. k-1
= z -1 R ~i - .
Eﬂk/k) zﬁk/k) . U™ (k-i) (krl) H(kri) 8 (3.49)
where

Uk-i) = z(k-i) - D(k~-1i) A(k-i,k) x(k/k) (3.50)
t, -t

The characteristic of this cost function is the term B where

0%8<1. The observation z(k-i) is being made to enter into the estimate
of x(k/k) with an importance depending on its staleness (i.e. the
ela d ti -

psed time (tk tk-i 8
the stress function Bk 'k~i with B<1 means that thememory length does

) since z(k-i) was obtained). The introduction of

not expand steadily as in the case of the canonical Kalman filter, but
that the observations are forgotten or discounted at a rate exponentially
proportional to their age. At the extreme when B=1, the Fading Filter
becomes a canonical Kalman filter. At the other extreme, when B=0, the
estimate is based purely on the single most recent observation. This
then suggests that by making B sufficiently small the effective menmory
length can be kept sufficiently short. However, the exact window length
is not available,

Both the Fading Memory Filter and the Finite Memory Filter have
their usefulness and weakness. The Finite Memory Kalman Filter cannot
work with system models having & plane noise term. This is due to the
inability to establish the correlations between the estimation error and
the plant noise in the past., However, it can be certain that any error
arises from a sudden change in the state is completely eliminated from
the estimates after a time equivalent to one window length. The Fading
Memory Filter, on the other hand, cannot provide the same guarantee on
the estimates but can work with models having plant noise in it.

The most intriguing result from the experiments was the behaviour
of the algorithms in estimating the parameters of ARMA models. It was
found that the moving average part, é's, were in general more difficult
to converge to the true value than their counterparts &‘s. Moreover,
the positions of the poles and zeroes of the ARMA models do play a part
in the performance of the algorithms. It suggests that there are pole and
zero interactions in the algorithm. Nevertheless, the results indicated
that the Finite Memory Kalman Filter is a useful tool with a lot of

potential.
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CHAPTER 4
FORECASTING
Prediction of the input signal, target motion and ship rolling, plays
an important part in deciding the optimum strategy opted for the slew
motor control loop. The minimum variance forecast of both motions is

developed in this chapter.

4.1 Deterministic Model

In Chapter 2, a constant acceleration model was proposed for the

target trajectory. The model is:

x(k+1) = A(k+l,k) x(k) (4.1)
z(k+1) = g? x(k+1) + v(k+l) (4.2)
where T %Tz
A(k+1,k) = T (4.3)
0 1
a¥ = (1 o0 o) (4.4)

The best estimate X(k/k,2) is given by the Kalman Filter algorithm
described in the lsst chapter. This is the best estimate of the state
at time k based upon § measurements from the k-f to time k inclusive.

The Orthogonal Projection Lemma [32]; states that the linear
minimum variance estimate of the state based on the measurements is the
orthogonal projection of the state onto the linear measurement space.
Denoting the measurement space by Y(k), the estimate R(k/k,2) is in

the space of Y(k), i.e. X(k/k,%) € Y(k). The estimation error,
i(k/k,l) is orthogonal to the vector space Y(k). Thus, if y is any

vector in Y(k);
~T
E[ £ (k/k,2) y] =0 (4.5)
The predicted target position at time k+p will be:

R(k+p/k,L) = A(k+p,k) R(k/k,.) (4.6)
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Since g(k/k,z) belongs to the measurement space Y(k) any

linear transformation of_g(k/k,ﬁ) will also be belonging to the vector

space Y(k). §1k+p/k,2) in (4.6) is truely a linear transformation of

%(k/k,2) and hence belongs to the vector space Y(k), too.

Considering any vector y which belongs to the vector space Y(k)

and defining T as:

T = E [{z(k+p) - ACk+p,K) X(k/k, D}  y ]
from (4.1)
x(k+p) = A(k+p,k) x(k)

and the decomposition of x(k)

x(k) = R(&/k,H + %x(k/k, Y

(4.7) becomes:

T = E [g:_T(k/k,JL) AT(k+p.k> v ]

The term AT(k+p,k)X is a linear transformation of ¥

4.7

(4.8)

(4.9

(4.10)

T
A" (k+p,K)y

is in the vector space Y(k), but X(k/k, £) is orthogonal to the vector

space Y(k). Thus, T in (4.10) is zero showing that %(k+p/k, 2) in (4.6)

is an orthogonal projection of x(k+p) onto the measurement space Y(k).

The prediction %(k+p/k, ) is also a minimum variance forecast because

of the orthogonal projection lemma. The covariance matrix of the

forecast is:

Var (2(k+p/k, 2))

Therefore:
~ T
z(k+p) = d £(k+p/k,l)
and
Var(2(k+p)) = gT A(k+p,k) P(k/k, D AT(k+p,k) d

Var (A(k+p,k) R(k/k, 1))

A(k+p,k) P(k/k, %) AT(k+p,k)

(4.11)

(4.12)

(4.13)

The variance of the predicted target position increases to the

fourth power of the lead time p.
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Assuming the measurement noise v(k) in (4.2) is gaussian, the
measurement z(k) will also be gaussian. Any linear combination of a set
of gaussian distributed random variables is also gaussian. Hence, the
estimate_g(k/k,z) and the forecast_g(k+p/k,2), which are the linear
combination of the measurements, are gaussian, too. Consequently the
forecast 2(k+p) might be treated as gaussian.

One must be cautious that the above statements are made on the
assumption that the model fits the target trajectory exactly. In fact,
this is not the case. Converting the constant acceleration model back

to polynomial form,
2
z(k+p) = a + al(k+p) + az(k+p) (4.14)

But, as presented in Chapter 2, the target trajectory will only be

represented exactly by an infinite power series, i.e.

z¥(k+p) = ao + al(k+p) + a2(k+p)2 N (4.15)

Thus, the true prediction error is:

it

Z* (k+p) z*¥(k+p) -~ z(k+p) + z(k+p) =~ Z(k+p)

i

0[(k+p)3] + Z(k+p)

= &+ B () + EGep? + 0[kep?) (4.16)

The estimates from the Kalman Filter algorithm are then not truely
unbiased. Therefore, the forecast is biased with Zz*(k+p). (4.13) can
only be viewed as the lower bound variance of the forecast. The bias can
however, be reduced by using short window length.

It is then necessary to emphasise that the lead time, p, should not
be too large. Otherwise, the bias of the forecast will be too large.
Furthermore, the confidence on the forecasts reduces quickly with time

as can be noted from the expression of the lower bound variance.
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4.2 Stochastic Model

The prediction of ARMA type models has been thoroughly discussed
by Box and Jenkins. It is briefly described in this section.
An ARMA process can always be expressed as an infinite order moving

average (MA) process.

z(k) = 60 u(k) + 61 ulk-1) + . . . + en u(k-n) + . ., . (4.17)
or as an infinite order autoregressive (AR) process:

z(k) + ¢1 z(k-1) + . . . + ¢m z(k-m) + . . . = 90 ulk) (4.18)

Let the present time be t, a forecast at time t+p which is to be a
linear furction of current and previous measurements z(t), z(t-1), z(t-2),
+ « +, will also be a linear function of current and previous random
inputs u(t), u(t-1), u(t-2)....

Suppose the best forecast at t+p is:

~ ~ ~

z(t+p) = Gp u(t) + 9p+1 u(t-1) + 6p+2 u(t-2) + . . . (4.19)

Using (4.17), the prediction error is:

zZ(t+p) = z(t+p) -~ Z(t+p)
= eo u(t+p) + 61 u(t+p-1) + ., . ., + ep-l u(t+l)
r {8 -6 .} u(t- 4,20
+ o p+3 p+3 (t-9 ( )

Using the assumption that u(t) is a zero mean white noise and
2
E [ut)] = o (4.21)

The variance of the prediction error is:

2 2 2
var [2(tp)] = (8 T+ 8.7+ L.+ epfl) o, (4.22)
© 2
. 2
+ I {6 - } o
j=o P¥d  pH u
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It will be minimised by setting © =6 . Then the optimum
p+j p+J

prediction error is:

z(t+p) 60 u(t+p) + 61 u(t+p+1) + . . .+ ep—l u(t+l) (4.23)

Then:

;( t+p)

ep u(t) + 6p+1 u(t-1) + . .

E [z(t+p/t)] (4.24)
where E [z(t+p/t)] denotes the conditional expectation of z(t+p) given
knowledge of all the z's up to time, t. Thus, the minimum variance
forecast for time t+p is the conditional expectation of z(t+p) at time

t.

Since E [ ;(t+p)] = 0 (4.25)

the forecast is unbiased. The variance of the prediction error is then:

~ 2 2 2 2
Var (z(t+p)) = (e° + 81 + .. .. +ep_1) Gu (4.26)
From (4.23), it shows that:
u(t+1l) = z(t+l) / 80. (4.27)

Once again, the forecast is unbiased and has minimum variance only
if the order of the model matches the time series. A low order AR model
may still give a small bias if the ship rolling motion is closely an
invertable ARMA model.

The simplest and most efficient way to obtain a forecast for time t+p
at current time, t, is through the difference equation of the model. In
the case of an AR(m) model (4.18) is used. The measurements z(t-j), J=0, 1,
+ + « , m which have already happened are left unchanged. The measurements,
z(t+J), J=i, 2, . . ., p-1, which have not yet happened are replaced by their
forecast z(t+j). The random input u(t+p) which have not happened is replaced
by its expected value, zero. The process can then be predicted recursively
into the future. The lower bound variance is available from (4.26). The

coefficients 80, G .y can easily be evaluated from (4.28) recursively.

ll
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8 = 1/¢

[o] [o]
8, = (=4, 8)/6,
By = (9y 8, -6, 0D/4,
J
O = S 6 8/, 3 1<isam
m
and ej = —(§=1¢i em-i)/¢o ; J>m (4.28)

4.3 Conclusions

In this chapter, the minimum variance predictions for the target
trajectory and the ship rolling motion were shown based on the chosen
models, constant acceleration model and autoregressive model. These
forecasts are normally biased due to the unmatching models, Thus, the
target trajectory and the ship rolling motion are predicted in a sub-
optimal way. The significance of the biases can be reduced by fitting
the model to the motions over a short period of time, and also by
not predicting the motions too far ahead. The latter restriction is
not unrealistic. If the motions are predicted too far into the future,
the variance on the forecasts will become so high that there is no

point of considering them in the determination of the control strategy.
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CHAPTER 5

DECISION MAKING

The strategy proposed for the novel dual drive tracking servomechanism
was described in Section 1.2. It reduces the complexity of the novel
system to a single drive system mogt of the time. The slew motor will only
be put into action if and only if there is & high possibility of losing
the target. The main theme is to realign the slew motor as infrequently as
possible while keeping the tracking error down to a minimum, The decision
making process is to determine the optimal time and optimal position for the
slew motor if realignment is required. The word "optimal" has no absolute
meaning. It implies that there must be some kind of measure based on which
the decision is superior to all the other alternatives. A decision which
is optimum in one measure may not necessarily be optimum in another measure.
Thus, the choice of the measure must be closely related to the particular
application. The measure must be able to reflect the relative importance
of the various objectives. In the case of the dual drive tracking servo-
mechanism, the criteria in determining the optimal strategy for the slew
motor are to track the target at high accuracy and minimum interference from
the slew motor. The interference arises from the combination of the proposed
piggy-back configuration and the fact that the slew motor has a lower torque
characteristic, and hence a lower bandwidth, than the tracking motor, If
the output shaft of the slew motor is not clamped by external means, the
tracking motor will not have a firm base to react any generated torque to
its inertial load. The proposed method of eliminating the interference is to
apply a brake on the slew motor output shaft when it is de-activated.

The non-linearity of the proposed cost funcation makes a complete analytical
solution to the optimisation very difficult. In Section 5.2, an approximation
is available for the optimal position of the slew motor between two
realignments. Alternatively, if the number of realignments is constrained to
one (Section 5.3) the optimal amount of realignment, but not the optimal time,
can be expressed analytically. The proof of this expression is by mathematical

induction from an approximate solution.

5.1 Proposed Cost Function

One possible cost function based on the previously mentioned

criteria was proposed:

J = wl(t) { 1-pr (es(t) - ez < GT(t) < Gs(t) + eﬁ) } dt
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P 2

NN sign(,e;(t) - e (N} at (5.1)
t
o
where b
Pr (asx<b) = [ px d
a
p(x) = probability density function of x
and -1 %<0
sign(x) = 0 %=0
1 x>0

The proposed cost function only considers the predicted trajectory
of the target relative to the ship, eT(.>, over a prediction period ahead
from the current time, to’ to the end of the period, tp. The first
definite integral is the weighted sum of the probability of target loss
over the period to to tp. The second integral, which involves the
sign function, relates to the number of realignments within the same
period. The term Gs+(t) is the slew motor position at a time interval
infinitesimal small after the time t and es_(t) is the slew motor position
at a time interval infinitesimal small before the time t. The appearance
of the sign function is due to the fact that only the number of realign-
ments is important. The amount of each realignment is of no importance
from the point of interference once the time of realignment is fixed.

The terms wl(.) and w2(.) are time variant weighting factors on the
probability of target loss and number of realignments, respectively.

The weighting factors wl(.) and w2(.) put different emphasis on the
two objectives: probability of target loss and frequency of realignments,
according to the requirements of the system. A target will first appear
on the radar when it is still very far away. During this stage, the
accuracy on tracking the target may not be so crucial. Should the target
be lost during this time there will be sufficient time to re-~establish
the presence of the target on the radar. In other words, frequent re-
alignments of the slew motor is acceptable. As time progresses, with the
target moving closer and closer the risk of losing the target is
becoming progressively greater. A lot of damage may be done if the
target were lost during the second stage, when the target is extremely
close to the radar, the driving system of the antenna is no longer capable

of the high rate of movement to keep up with the target. Even the novel
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drive will not have the physical characteristics required to cope with
the situation in the final stage. Hence, the performance of the tracking
servomechanism is not considered during the closing stage of the tracking.
The profile of the acceptable risk in the first and second stages of an
engagement with a target may be treated as an exponential function as
shown in Figure 5.1. The weighting factors wl(.) and w2(.) will then

increase exponentially in the forms of:

wl(T) Q [l - C1 exp (- al T)] (5.2)

W, (1) R [1- C_exp (- a, ] (5.3)
where the origin of T is the time of the target's initial appearance on
the radar,

The control variable of the cost function is the predicted
trajectory of the slew motor during the prediction period. The resulting
trajectory for the slew motor will not be a continuous function. An
idealised slew motor trajectory will be of the form as shown in Figure
5.2, The slew motor is assumed to be able to perform an ideal step
movement, The anticipated slew motor trajectory is a summation of a geries
of step functions occuring at different, unevenly spaced, time intervals.
The optimisation problem is to determine the number of realignments
within the prediction period, and the timing and amount of each realign-
ment. To the knowledge of the author, this cost function is unique to
this work. No optimisation of this form has yet been treated: Due to
the peculiar non-linearity and the uncertainty of the degrees of freedom
on the control variable, it is envisaged that an analytical solution is
not feasible. It will therefore be necessary to resort to numerical
methods, Before an attempt on the numerical solution to the problemn,
the characteristics of the proposed cost function with certain assumptions
were studied. It gave some insight to the behaviour of the cost

function.

5.2 Optimal Position for Slew Motor between Two Realignments

In Figure 5.2, if the times of two consecutive realignments, ty, and
ty, were known, the slew motor posgition between these two realignments

must be optimal. The cost function for the time intervals concerned is:

= I - -
J = w(t) {1 - Pr (6,(t) - 8, € 8.(t) < 6 () + eg)} dt

1 (5.4)
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As it is reasonable to assume that the measurement noise in the
signal is gaussian., Together with the fact that the estimates obtained
from the finite memory Kalman filter are linear combinations of the
measured data, the predicted signal will also be gaussian. Therefore,

the probability density function of being on target at time t ig:

) ~(8,(t) - B_()?
P (1)) = ———— exp { 5 } (5.5)
YT a(t) 2 o(t)

A~

2
where GT(t) and 0 (t) are the mean and variance of the target position

at time t. Thus (5.4) becones:

t 0 +6
2 g £

Jg = 1 w(t) { 1.0- 7 p(O,(t)) d8 (1) } dt (5.6)
tl es—ez )

The optimal slew motor position, es*, is obtained by minimising (5.6),

i.e, setting the derivative w.r.t. Gs to zero.

- = 0 (5.7)

Differentiating (5.5) w.r.t. Gs gives:

2
a7 _
a5 = - 1wl pe(enly Lo - PO, o} at
s t) s L s L
(5.8
Hence if es is optimal:
t2 fz
! w(t) p(8L (e "y dt = ! w(t) p(8 ()], v, dt
L s 1 s (5.9)
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Substituting (5.5) into (5.9)

2 B % + 0 - 0 (t)
S w(t) exp { -} (=2 g T 2} at
t Y21 a(t) o(t)
ty . 8% - 8, = 8.()

= ———  exp { ~% ( ) } dt
t Y21 o(t) o(t)

In order to obtain an approximate explicit expression for Gs*, the
exponential function is approximated by the first two terms of its

Binomial series:
exp{~x) = 1 - x

and (5.10) reduces to:

t

2 8 % + 8 -6 (t)
W(E g g o8 ) T2y 4
t) o(t) o(t)
2 (t) 8% - 8y - 8 ()
= I Hy (-t ¢ 1 dt
t a(t)
1
Or tz
! ¥ a x4+ b - 0 (t))2 dt
32 s L T
ti o7 (L)
t,
= 0 ED a6 - een? a
t 6 (t) N
1
t t
2 2 .
I w;t) 6 * dt = J W;t) 6, () dt
t1 o (t) s t1 cT(t)
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Therefore the optimal slew motor position is given by:

ty

! w(t) 6.(t) dt

t o3¢t)
8 * = (5.12)
s t

2

i w(t) dt

tl o3¢ty

A

If GT(t) is given in discrete form between intervals a and b

b ~

% wi) 8, (1)

i=a  o3(1)
o _* = (5.13)
s ; w(i)

i=a  o03(1)

(5.13) and (5.14) show that the variances of the forecast play an
important role in determining the optimal slew motor position. The
forecasts with higher variances (i.e. less confidence) will contribute
less to the optimal value. If the terms w(t) and o(t) are constant
with time, the optimal position will simply be the mean value of the
forecasts within the time period. This is actually the case due to

the symmetry of the gaussilan probability density function.

5.3 One Realignment During the Prediction Period

In (5.1), the weighting of the realignments are explicitly
expressed in the cost function. However, the cost function may be
simplified by constraining one realignment within the prediction period.

(5.1) can be rewritten as:

t
p
= | - -
J . w(t) { 1.0 Pr(es(t) ez sGT(t) < Gs(t) +8£) dt
o (5.14)

The weighting on the number of realignments can now be implicitly
introduced by varying the duration of the prediction period. One realign-
ment within a long period will mean less interference from the slew
motor. Thus, the probability of keeping track with the target is higher.
On the other hand, one realignment within a short duration will result

with frequent positioning of the slew motor overall. Since minimising
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(5.14) is the same as maximising:

‘o
1
g =1

t
(o}

The optimisation is concentrated on (5.15) only.

w(t) pr(es(t) - 8Q <

GT(t) <

forecasts, GT(t), to be normally distributed as

(

Again,

eT(t)-eT(t)

o(t)

t 8 (t)+8
o 8 2
b= 1 __/:w_(_t_)__ ! exp (-3
to 21 a(t) 0 (t)-0
s L
ST(t) - GT(t)
Let z =
Y2 o(t)
d 6,.(t)
dz =  —t
V2 o(t)
Substituting (5.17) and (5.18) into (5.16) yields:
t z
P 2
Jl = w;t) exp (—zz) dz dt
to z1
where
) es(t) - 92 - GT(t)
Zl =
Y2 o(t)
es(t) + e2 - GT(t)
z, =

V2 o(t)

By definition,

erf(x) =

VR

the error function is

exp(—wz) dw

The cost function (5.19) becones:
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9s(t) + 62 ) dt

)

2

(5.15)

assuming the

in Section 5.2:

1 d 6,(t) dt
(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)



p
b= T XY o ifa) - erf(z.) } dt (5.23)
: 2 2 1
(o]

Since the slew motor position, Gs(t), is assumed to be a step function as
Gs(t) = 60 + A0 u(t-t) (5.24)

where 60 is the initial slew motor position at time to’ A8 is the
amount of the realignment and

1 t>t
u(t-1) = { (5.25)

o t<t
The control variables of the cost function are A8 and T. The optimal
values of A6 and T are obtained by differentiating the cest function w.r.t.
A6 and T and by equating them to zero regpectively. i.e.

1

1
_8..‘1 = O . _a_g.._.- =

9T ! A8

Differentiating (5.23) w.r.t. T gives

t
1 P
8 . g wlt) 3 -8
o = . 2 { Py erf(zz) Y. erf(zl) } dt (5.26)
o
and differentiating (5.23) w.r.t. Af gives
t
1 p
od It w(t) 9 3
— = e —— earf -~ e orf dt 5.27
346 . 2 {gag oFH(2p) - g5 eri(z) ) (5.27)
o

(5.26) and (5.27) can be simplified by approximating the error function
by a MacLaurin series

7
x

erf(x) = %? (x - + .0 ) (5.28)

o
o
(o]
w

Consider the first two terms only in (5.28), and substitute into (5.26)

yields:
1 tp z 3 z 3
ad . w(t) 3 2 1
ot . e 37 (% 3 Zy v T30 at
o
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+ A 2 3
) P w(ty 8 { 28, i 8, (8,(t) - 8,.(t)) ) 0, g
to TV °T ;2 og(t) /2 Ga(t) 3/2 osct)
(5.29)
Using the expression (5.24)

T N 2
235 _ 3 w(n 28, AT
ot ot t % V2 o(ty Y2 o3t

623
]
3v2 ¢°(t)
t A 2
L o !p w(t) { 29, By (8, + 88 - 8,(1))
at T / V2 o(t) Vo o3t
6 3
£
S ] .
3/2 o (t)
A 2 3
aJ1 _ WD { 292 i e2 (6 - GT(T)) ) 82 }
ot vn Y2 o(1) Ve 03(1) 3v2 03(1)
A 2 3
) W) [ 262 i 62 (90 + AB - OT(T)) i ez }
v Y2 a(1) V2 o3n) 3v2 o°(1)
(5.30)
Equating (5.30) to zero yields:
(6 -6 = (0 +46-06 ()2 OR
o) T o) T
b8 = 2( 8,(0) - ) (5.31)
Similarly, (5.27) becomes:

T A 2 3
3at 3 ;oW 28, 8y 8y = 87T % '
o L L - - A g
948 940 t /m Y2 o(1) V2 62(1) 3v2 53(1)
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t 3 2

o Poww 26, 8y (B, + 88 - 6 (T))

940 T /m V2 o(1) Y2 o3¢n)

613

- 3 }odt

372 (1)

oV
aJl P 2 w(t) eQ, A
m = - f "——5'—"'——*-—' (6 + AS - GT(t)) dt (5.32)
g (t)

Equating (5.32) to zero yields:

t

p R

! W;t) (6 +48 - 8.() dt = 0 (5.33)
T o (t)

The optimal values of t and A8 are obtained by solving (5.31) and (5.33).

Now consider the error function to be approximated by the first

three terms in (5.28), the cost function (5.23) becomes:

3 5
Ao Tow ¢ 28, _ ° . %,
t, /m V2 5(t) 3v2 o3(t) 202 5°(t)
o 2 6
b - Ly o - 8(tn?
3v2 o7(t) V2 o (t)
e A
+ ———-§——~ T ST(t))4 b at
4/2 ¢7(t)
t 3 5
+ P o ( 262 _ 62 N ez
T m V2 o(t) 3v2 oo(t) 20v2 0°(t)
3
0 6 N
v (—% - - 2 —) (o + 40 - 6,67
2v/2 g°(t) V2 o (t)
%, . .
+ (6 + AQ -~ 6_(1)) } dt (5.34)
5 T
4v2 o7 (t)
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The analysis shows that the amount of realignment can easily be
obtained from (5.31) once the time of realignment is known. However,
the difficulty is to determine the time of realignment which depends on
the predicted trajectory and its associated variance. In the view of this,
analytical solution is not feasible. However, the optimisation of (5.14)
or (5.15) reduces to a one-dimensional problem with a constraint of (5.31).
This can be done by numerical methods more easier than the original cost
function (5.1).

The characteristics of the cost function (5.15) were studied by
assuming the target trajectory to be a quadratic polynomial:

2

z(t) = ao + alt + azt (5.36)

and the variance of the forecast was:

Var (z(t)) = bO + blt + b2t2 + b3t3 + b4t4 (5.37)

This trajectory and variance correspond to the case where there
is no ship rolling motion, The shapes of the cost function under three
different target trajectories were plotted in Figures 5.4 ~ 5.6. The
plots showed the variation of the cost function at various times of
realignment and with various amounts of realignment. The initial position
of slew motor at time to were zero in all three cases. The coefficients
of the polynomials (5.36) and (5.37) were shown under the plots. TAR
means target trajectory and VAR stands for variance. From the three

graphs, it showed that the cost function is a nice surface having

only one single maxima.

5.4 Dynamic Programming Method

Restating the proposed cost function here:

t
P
- I - _
J = . wl(t) { 1-pPr (es(t> eZ g eT(t) < es(t) + ez) 1 dt
[o]
tp . _ 2
+ wo(t) {  sign (8,7 (t) - o, (1)) } dt (5.38)
t
o]
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The anticipated slew motor trajectory will be:

n
Gs(t) = 60 + §=1 Aei u(t + ti) (5.39)
where n is the number of realignments. Both (5.38) and (5.39) are
discontinuous functions., Furthermore, the forecasts of the motions will

be discrete because of the models used. It is then appropriate to solve

the optimal trajectory by means of numerical methods. In discrete form

the cost function (5.38) is:

N
p
J = Zzo wl(m) { 1‘~ Pr (es(m) - 82 < eT(m) < es(m) + GQ) }
N
p 2
+ Zzl wz(m) { sign (es(m) - es(m—l) } (5.40)

The problem becomes a Np-variable one determining the optimal values
for es(m), m=0, 1, 2, . . ., Np. This Np-variable may be solved by the
application of a few classical unconstrained optimisation techniques.

For instance, the direct search methods [38] may be applied to the problem.
However, these methods are not practical in association with problems
having large numbers of variables. They will demand huge computation time
before the result converged. Other more powerful and faster methods, such
as the conjugate gradients method, etc. [15, 16, 17, 38] , are handicapped
by the highly non-linear cost function. These methods generally require a
cost function to be continuous and continuously differentiable.

The Np-varisble problem may be viewed as a serial multistage decision
problem, It can be represented in block diagram form as gshown in Figure 5.7,
Considering a single stage, i, it is characterised by an input paramters,
es(i-l), a decision variable, Aei, and an output parameters, es(i),
representing the outcome obtained as a result of making the decision. There

is a return function, J which measures the effectiveness of the decision.

]
The objective of the muitistage decision problem is, therefore, to find Aeo,
Ael, . . . , S0 as to optimise some function of the individual stage return
100 JNp)' The function for this particular Np-
variable problem is the summation of all the return functions.

functions, f(Jo, J

J = ? Ji(es(i—l), Aei) (5.41)
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which is the cost function (5.40). Each return function is:

J; (6 (1=, 46)) = w (i) {1 - Pr (8_(1) - 8, < 0,(4) < 6 (1) + 6,)}
2
+ w,(d) { sign (6_(i-1) - es(i))} (5.42)
T. J Ji N IR Inp
] ] ]
©. o | pmeccmamy L et Np- o Np i
I | |
.Y=N A8, A8 8Oy, ., =N

Figure 5.7 Multistage Decision Problem

The relationship between the input and the output parameters
is: B (1) = 6 (i~1) + A6 (5.43)
s -] i
Thus, a realignment at time interval, i, is represented by a non

zero A6,
i

The method of Dynamic Programming is a mathematical technique well
suited for the optimisation of multistage decision problems. This
technique was developed by Bellman in the early 19550's [3]. The method
makes use of the concept of sub-optimisation and the principle of
optimality in solving the problem. The statement of the principle of
optimality is {38]:

"An optimal policy (or a set of decisions), has the property that

whatever the initial state and initial decision are, the resulting

decisions must constitute an optimal policy with regard to the

state resulting from the first decision".
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The process of optimisation is carried out in the reverse order
as illustrated in Figure 5.8. The first sub-problem starts at the final
stage, 1 = Np. The cost function JNp is a function of the input parameter
GS(Np—l) and the decision AeNp' Once the parameter GS(Np—l) is specified,
the decision must be made irrespective of what happens in the other stages.
Therefore, the optimal cost function depends only on the input parameter,
GS(Np -1). 1i,e.
Min
* 8 (Np- = .
T*p (8, (Np-1) ) A8 {JNp} (5.44)
Np
The next sub-problem is to group the last two stages together. The
optimal cost function is then a function of the input parameter, es(Np~2).

i.e.

_ Min "
(9S (p - 2) ) = AB AB {J + J } (5.45)

J
Np-1, Np Np-1 Np

e
Np-1

The principle of optimality requires that Aewp be selected so as to

optimise JNp for a given es(Np-l). Since es(Np—l) can be obtained once
es(Np—Z) is specified and the decision AeNp_l is made. Thus, the
optimisation of this second stage becomes:
Min
* 8 "2 = + * e & - I,
Typ-1 (B (Np=2) ) By, { INp-1 Tip (8 (M 1N} (5.46)

Similarly, the idea can be extended to the ith sub-problem which is

defined as:

Min
88, 88, , ..., a8, LIy It 2 0d

J*i (es(i-l)) ,
i i~1

(5.47)

The principle of optimality allows the problem to be simplified as:

. Min _
J*i(es(i~1)) = Aei {Ji + J;+ (@S(i)) + ...+ J§p <es (Np~1) ) 1}

(5.48)

1

Therefore, by applying the principle of optimality, the original
multi-variables optimisation problem of (5.47) is decomposed into a

series of separate problems, each involving only one decision variable.
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Sy (Np.3) O¢ (Np.3) S5(Np-)) Ss (Np)
s Np-z NP" NP S

SN

INCINT A .., A,

a) Original problem

e 0T 0T 1
I
s Nop-3) g (Np-2) E40Np-) B¢ (Np)
¢ N S N N
| !
o - 1 4
£SOy, 8O\, ., NI

b) Principle of optimality applied to last

r—-—— "=~~~ "=~ |
es(Np-a) es(Np—z_3 es(Np-l) es( NP)
(> = Ne-s —=  Ne- = Ne —7—=
[ {
Lo e e b e e - - - -
AO\,., INCINT NN

c) Principle of optimality applied to last
two components

r"""""™"-"-""-"="--"-"—-=-=-="—""—™== === = —
S (0) es(Np-z) es(NP—\) O (Np)
= Ne Ny e
| !
e e P e —_——
ae, NI BB\,
d) Finally +the entire system is optimised

Figure 5.8 Illustration of principle of
optimality
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The implementation of dynamic programming method to the cost function
(5.40) must resort to tabulation form., This is totally due to the odd
characteristic of the cost function. The optimal cost function in each
sub-problem is not a continuous function of the input variable es(i~1).

At each stage, the relationship between the return function Ji and the
decision Aei for a given input Gs(i—l) is shown in Figure 5.9, There is

a gingular point at A6 = 0, The depth of the 'ditch' at the singular point
is the weighting on a realignment at this stage. A change of the input
es(i~1) will only shift the curve to the right or left without changing
the overall shape, except that the singular point remains at 49 = O,

A discrete range of possible values of the input variable eéi—l) is given
in each sub-problem. A table of optimal decisions and the corresponding
cost functions is then constructued for the values of eéi—l) as shown

in Figure 5.10. The sub-optimisation for a given value of Gs(i—l) is done
by searching through a range of values of the decision Aei and by picking
out the optimum. An input Gs(i~1) and a decision Aei will fix the output
es(i). The optimal decisions from stage i+l to the final stage will then
be found from the tables set up in previous sub-problems. The cost

function for the given pair, Gs(i—l) and AG can be evaluated using (5.48)

,
The optimal decision Ae; and 1ts corresponding cost function J;(@S(i—l))
are then registered in the row of the table associated with the input
es(i~1). Since the initial value, 60, is known the optimal value Ae*1 is
then looked up from the table for stage 1. At this stage, es<1> is then
fixed and A6*2 can be found from the table of stage 2, and so on. The

optimal decigions, A6* AB*_, . . ., ABx are then determined. The
2 Np

)

step sizes of es(i—l) ind Aei are compromised with the time to compute

the tables, The number of tables required to determine the optimal slew

motor trajectory is the number of time intervals in one prediction period.
The dynamic programming method was simulated on the proposed cost

function. The forecasts of the motion was deliberately chosen to be a

sine wave with unit amplitude, It was so chosen because the total motion of

the predicted target trajectory and the predicted ship rolling motion may

be decomposed into two or three sine wave components. The actual amplitude

ig immaterial, only the number of realignments is interesting. The variances

of the forecasts followed the expression:

Gz(n) = 1.0 4+ 0.05n (5.49)









The expressions for the two weightings in the cost function were

set as:

[}

w, (n) 1.0 {1 - exp (-0.01 n)} (5.50)

[}

w2(n) 0.01 {1 - exp (-0.01 n)} (5.51)
In effect, the weightings had a ratio of a hundred irrespective

of the lead time. The limit on the tracking motor was set to 0.5,

and the initial slew motor position was 60 = 0. The step sizes of

es(i-l) and Aei in each sub-problem were both fixed at 0.1 and within

the range of -2.0 to 2.0. The resulting slew motor trajectory was then

determined as in Figure 5.11.

5.5 Numerical Search Method

In the previous section, the cost function was optimised by the
use of dynamic programming method in tabular form. It constrained the
possible positions of the slew motor and the amount of realignment in
each sub-problem to a set of discrete values. However, the movement of
the slew motor is not constrained to these values., It is possible that
the optimal trajectory of the slew motor obtained from the previous section
is not the true optimal value due to the discretisation process.
Furthermore, the computation time required in constructing the tables
will be unbearably long for a real-time application. The computation
time is proportional to the number of time intervals within the prediction
period and the product of the numbers of discrete points in the possible
slew motor position and the amount of realignments,. By increasing the
Step sizes of the slew motor positions and the amount of realignments,
the computation time can be reduced, but the correctness of the obtained
optimal solution is doubtful. Ideally, from the computation point of
view, it is desired to have a recursive algorithm performing the
optimisation. Due to the variation in the forecasts after each filtering
and the non-linearity of the cost function, only a non-recursive
nunerical search method was established for optimising the proposed cost
function.

The development of the search method is based on the results
obtained in Sections 5.2 and 5.3. If the timings of the realignments
are given, the optimal slew motor positions between two consecutive
realignments are governed by the expression (5.13). The amount of each

realignment is also governed by the expression (5.31). The effect of

-123~



any variation in the slew motor position at one stage may not be
propagated to other stages far away from the origin of variation.

This is partially due to the step changes in the optimal slew motor
trajectory. The realignments act as buffers partially isolating the
steps of the slew motor trajectory from each other. The whole
prediction period can be divided into regions with the realignments as
their boundaries.

The developed numerical search method was a result of logical
analysis of the problem. Mathematical proof of the validity of the
algorithm has not yet been established. However, the results from the
algorithm was compared with the one obtained from the dynamic
programming method mentioned in the previous section. It showed that
the results obtained from the numerical search method gave a better cost
function value when compared with the dynamic programming results
(Figures 5.11 and 5.12). The algorithm is explained in the following
paragraphs.

The philosophy of the algorithm is to first divide the whole
prediction period into several regions, At each boundary a realignment
is assumed. Therefore, the corresponding slew motor position in each
region can then be determined by obtaining the weighted mean within that
region by means of (5.13). The assumed number of regions is so chosen
that it is actually more than the anticipated optimal number of realignments.
The next step is to merge two realignments into one if it gives a better
cost function value by doing so. It then adjusts the timings of the
remaining realignments. Finally, the decision of moving the slew motor
at current time is made by considering the slew motor position in the
first region only. It assumes that by this time, the timings of the
realignments are optimal, and hence the regions separated by the
realignments are independent to each other. Based on this approach, the
algorithm is divided into four stages (5.15).

In the first stage, the potential realignments are established by
making use of the expression (5.31) which states that the optimal amount
of realignment is twice the difference between the target position and the
slew motor position at the time of realignment. Several assumptions are
made during this stage. It first assumes that any decision on realignments
is correct and the realignment defines the boundary of a region. Once
a realignment igs established, the regions before the realignment are
ignored in the determination of next realignment. The task then
concentrates on the forecasts after the realignment until another realign-

ment is established. The decision on a realignment is based on the compar
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-ison of two costs Ja and J, .

b
i-1 N )
= - 6 -8 <686 < 0 ) )
I, z wok) {1 -Pr (6 -0 <8 (X 18 (5.52)
k=t
r
and i-1 )
I, = z wl(k) {1-pr (8% - e2 < ST(k) < 6% 4 eﬁ) }
k-t
r
+ W, (1) (5.53)

where tr is the time of last realignment and i is the prediction time
interval under consideration. The cost Ja assumes no realignment at
time i, whereas Jb assumes there is one. The term 6* in Jb ig the
optimal slew motor position between last realignment at time t. and a
realignment at time i. Its value is determined by the expression (5.13)
The term 91 in Ja is the slew motor position from time tr if there is

no realignment at time i, In both costs, Ja and J the probability of

b'
losing the target at time i is not included. It is assumed that if

a realignment occurs at time i the slew motor will be moved to position
61,
parison between the J, and Jb' The term 61 is evaluated recursively

The crucial part is to give a value to 61, in order to allow a com-

following the expression:
B, = 6, + 2 (B(4) - 6)) (5.54)
The term 61 is re-initialised every time after a realignment is
established. The recursion starts with the value of the forecast at the time
of last realignment, The flow chart of this stage is as shown in Figure
5.16. The predicted slew motor trajectory during the first stage is not
the optimal one. The number of realignments determined in this stage
is highly probable to be more than the optimum., This is because of the
choice of the values for 61 in the process. As shown in Figure 5.13,
the position of 61 will amost certainly have a higher probability of losing
the target. Unless the weight on a realignment is very large or the

forecasts are nearly flat, a realignment is likely to be set.
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The third stage adjusts one by one the timing of the realingments
determined in the second stage. It evaluates the change in cost function
if a realignment is brought forward, or is postponed, one interval. If
a change in the time of the realignment gives a smaller cost, the
realignment is changed accordingly until the cost is minimum. The process
is described in Figure 5.18. Referring to Figure 5.14, the third stage
only concentrates at the time between t. and t, in the testing of the

1 3
realignment at t_.

2

The final stage makes the decision whether there should be an actual
realignment at current time. The previous three stages are intended to
divide the whole prediction period into regions separated by the realign-
ments, However, all three previous stages assume a realignment at current
time. The final stage is to determine the validity of this assumption.
After the third stage of the search method, the slew motor position of the
first region will be the weighted mean of the forecasts within that region
according to expression (5.13). This value 6* will be different from the

initial value of the slew motor position, eo. Therefore, a decision is

made between the two costs:

t,-1
J, = I wo(k) { 1 - Pr (8% - 6, < 8g(k) g 8% + 92)}+ W, (0)
k=0
(5.55)
and tl~l
Jb = izo wl(k) {1~ Pr (90 - Oﬁ < GT(k) < 60 + 92)} (5.56)

where tl is the time of the first realignment. Ja assumes a realignment
at current time and Jb agssumes the slew motor remains at its initial posi-
tion. The summation term in Ja must be smaller than Jb since 6% is the
optimum position in the first region. Therefore, if wz(o) is very large,
the decigion is to keep the slew motor at its initial position. Other-
wise, the slew motor will be commanded to the position 6 *. 1In fact, if
the decision is to keep the slew motor position at its initial position,
the timing of the realignments obtained from the previous stages will not
be optimum, particularly the first few realignments due to the new slew
motor position in the first region. The realignments will be brought
earlier. However, this alteration will be small. Furthermore, the
changes on the future realignment is immaterial since the main objective

is to determine the optimum position of the slew motor at current time.
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The numerical search method was tested using the same set of
parameters in the case of dynamic programming method. The result was
plotted out in Figure 5.12. The comparison of the results illustrated
that the search method gave a smaller cost. The search method performs
better over the dynamic programming method is mainly due to the absence
of the discretisation on the possible positions for the slew motor. The
slew motor is no longer restricted to a set of values as in the case of
the dynamic programming method. In the computation point of view, the
search method also performs better than the dynamic programming method.
The search method requires less memory size as compared with the dynamic
programming method which requires a series of tables. The dissappearance
of the tables reduces the huge computation time in generating these tables.
In the search method, there is no need to compute the whole cost function
at any one time since the prediction period is geparated into regions.
Moreover, the partial cost function required in the search method can be

evaluated recursively which reduces the computation time further.

5.6 Conclusions

A cost function was finally proposed. It incorporates the
probabilities of losing the target and the frequency of realignments.
The weightings on both terms vary exponentially with time. This is
because of the physical requirement in tracking moving targets. However,
the cost function is a discontinuous function. Analytical solution is
not available, except in a few circumstances, in the optimisation process.
Among the well established optimisation techniques, only did the dynamic
programming method seem feasible at a time. Later, it was found that
the results from the dynamic programming method were not truely optimal,
A numerical search method was finally established which was shown experi-
mentally to be superior than the dynamic programming method. Experimentally
and logically, the numerical search method was proved to be the best

possible way. However, a mathematical prove is not completed.
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CHAPTER 6

DIGITAL SIMULATIONS

Digital simulation of target tracking by the proposed dual-drive tracking
servomechanism is essential to establish the performance and the validity
of the proposed control policy. Furthermore, the proposed cost function
is given in its general form only in the last chapter. The parameters
of the weighting profiles on the probability of losing the target and on the
frequency of realignments have yet to be determined, particularly the
ratio between them. Putting too much emphasis on either one of the object~
ives of the cost function will result in poor tracking performance. It is,
therefore, necessary to choose an optimal set of the parameters by means
of digital simulation. The digital simulation was planned as a preliminary
evaluation of the proposed control policy before the whole work ig tested
on a scaled demonstration rig. The whole specifications of the rig is
listed in the next chapter. It is sufficient, at this stage, to mention
that the demonstration rig is designed to run four times glower than the

full size proposed system.

6.1 Shig Motion

There was no authentic ship rolling motion available for experiments.
The ship motion could only be generated by passing a random white noise
through three filters in parallel as described in Figure 2.7 of Chapter 2.
Each filter is a second order system possessing different natural
frequencies and damping ratios. Since all simulated motions are slowed
down by a factor of four the scaled ship motion will then have three
dominant frequencies four times slower than the true motion., By trial-
and-error method, it was eventually agreed that the three filters should
have the characteristics listed in Tabel 6~1. A typical time history of

the scaled motion and its spectrum are shown in Figure 6.1 and Figure 6.2.
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Filter 1 Filter 2 Filter 3

Natural 0.04167 0.03571 0.03125
Frequency (Hz)

Damping ratio 0.05 0.01 0.06

Gain 0.4 0.5 0.4

Table 6~1 Characteristics of Ship Motion Generator

Filters.

It was, as discussed in Chapter 2, the ship motion is possibly
best approximated by an autoregressive-moving-average model, ARMA(6,6).
However, the parameter estimation process forces an autoregressive
model, AR, to be used instead since the filtering algorithm has
problems in tracking the parameters in the moving-average part.
Theoretically, an ARMA(6,6) model can be represented by an infinite
order of AR model. In practice, one has to compromise the order
between accuracy and computation time. The computation time increases
rapidly with the order of the model. 1In order to choose a reasonable order
for the AR model to model the ship motion, the mean squares errors in
estimating the simulated ship motion using various orders were studied.
The results were plotted in Figure 6.3 and Figure 6.4. TFigure 6.3
shows the effect of the sampling rates on the accuracy with various
orders. On the other hand, the effect of the data length in estimating
the parameters under various model orders is shown in Figure 6.4. Both
graphs illustrate that the mean square errors decrease exponentially with
model order, This follows from the fact that an invertable ARMA model
can be written as a converging infinite order autoregressive model as

mentioned in Section 2.,7. Reiterating, an ARMA model is represented by

$(B) z(k) = 6(B) u(k) (6.1)

(6.1) can be expressed as :

67 ) #®) 2(x) = (k) 6.2)
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OR (k) = -1 by 2=1) o+ B (k)

1

- I *i zZ(k-i) + 8 (k) + ¢ (6.3)
i=1

If the roots of 6(B) lie outside the unit circle in the B~plane
(6.3) is a converging series. 7
with the order p. In Figure 6.3, it revealed that the mean squares errors
are insensitive to the sampling rates, This is becsuse the sampling rates,
tried in the experiments, were much higher than twice the highest dominant
frequency of the ship motion. This means that the ship motion was sampled
without aliasing effect. The characteristicgs of any ARMA process are
related to the positions of the poles in the B-plane regardless of the
sampling rate. As long as the roots of 6(B) are outside of the unit
circle, an AR process is sufficient to approximate the ARMA process.
Figure 6.4 showed that the windowing length does not play a significant
part in the estimation. This is because there were enough data points to
perform the estimation. It is therefore suggested that the orders of
four to eight may be chosen to model the ship motion. No significant
improvement on accuracy can be benefitted from using higher order. It
must, however, emphasize that the true ship rolling motion is not exactly
an ARMA(6,6) process. Therefore, the suggested order is only true in the
case of the simulated motion generated from three parallel filters. A

sixth order AR model was used throughout the digital simulation.

6.2 Implementation and Simulation Results

The main objective of the simulations was to evaluate the
performance of the proposed control policy. Besides, the sinulations
were used to gtudy the proposed cost function. The cost function
proposed in the previous chapter is only in its general form. The
profiles of the weights and some parameters have not yet been fixed for
optimum tracking performance. There are at least nine variables in all
in the simulation. Six of them are in the cost function and the seventh
one is the target dynamics. The lengths of prediction period and window
may also affect the performance. Thousands of simulation runs are
required to study the effect of each variable on the performance. It
was not possible to perform so many simulation runs in the time
available. Therefore, a preliminary study of the variables was performed

to pick out the essential ones.
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Considering the weights in the cost function:

w (1) = Q[ 1- C exp(-a,1)] (6.4)
1 1 1
wo(t) = R[1- C, exp(-a,D)] (6.5)
there are six variables, Q, R, Cl’ Cz, a, and 859 that have to be

determined. The reason of having the weights in the cost function is
to put different emphasis on different objectives. In this case, there
are only two objectives -~ minimum probability of losing the target, and
minimum number of realignments. It is the ratio between the weights
which is important. The ratio can be constant throughout an engagement
because the relative importance between the two objectives remains

constant. Therefore, the two weights can then be reduced to

Wl(T) 1 - exp (-arT) (6.6)

WZ(T) r wl(r) (6.7)
where a is time constant and r is the ratio between the two weights.

The profiles of the weights remain to be an exponential decay to reflect
the acceptable risk at various time during an engagement. Thus, only
two variables need consideration in the weights,

Among the other parameters in the simulation, the target trajectory
and the ship motion cannot be ignored. These two are the essgential
signals in the evaluation of the proposed control strategy performance.

The length of the prediction period was not chosen to be studied
at this stage because it was felt that it is meaningless to have a very
long prediction period as the confidence on the forecast decreases as
the fourth power of the lzad time. Moreover, the optimal predicted slew
motor trajectory is a series of step functions. The decision on a
realignment at current time will not be affected by the length of the
prediction period. The decision ig mainly due to the forecasts between
the current time and the first predicted realignment.

From the result in the last section, the window length will have
little effect on the estimation process. Hence, it can also be ignored

at this stage of simulation.
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In summary, there are only four essential variables in the

simulation. They are:

i) target trajectory
ii) ship rolling motion
iii) ratio between the two weights

iv) decaying time constant of the weight profile

The simulation was performed as shown in Figure 6.5. Each cycle
involved the generation of the gsimulated target trajectory and the ship
motion, the parameters estimation using either the canonical Kalman
filter or the finite memory version, the prediction of the motions,
optimisation of the cost function, and finally the realignment of the
slew motor if needed. The simulation program was written in modular form
and FORTRAN was the chosen language. Each module performed one
particular task. The main body of the program then comprised of a series
of subroutine calls. Writing in modular form simplifies the development
of programs. It permits programs to be debugged more easily and they are
less prone to errors. Each subroutine can be tested individually for
error., However, there is a price to pay. It generally requires more
computation time than those programs written in pipe-~line form.

The significance of the selected variables were studied
individually. One of the four variables was varied while the other three
were kept fixed. In all, five sets of simulations were carried out.
Among them, three different target trajectories, three different ship
rolling motions, five different decaying time constants and five
different weight ratios were used.

The simulated target trajectory was shown in Figure 6.6. The
target was assumed to be flying at constant altitude with constant
velocity initially. After a certain time, the target performed a
manoeuvre by initiating a constant acceleration and a change in the
heading., This kind of trajectory is clogely related to a typical
engagement, except that the true trajectory should be smoother at the
transition between the pre-manoeuvre and the post-manoceuvre period. The
parameters of the three target trajectories used in the simulation were
listed in Table 6-2. One of the three trajectories represented a
target flying at constant altitude with constant velocity during the
whole engagement. The accelerations and angles of manoeuvres in the

second and the third trajectories were chosen randomly. The acceleration
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. Target Trajectory
Parameter Unit 1st and ard
Distance from tracker
at initial engagement m 50,000 50, 000 50, 000
Altitude at initial
engagement m 1,000 1,000 1,000
Velocity at initial
engagement m/s 150.0 150.0 150.0
Heading at initial o
engagement 0.0 0.0 0.0
Starting time of
manoeuvre s 0.0 46.0 66.0
Duration of
manoeuvre s 0.0 144.0 80.0
Acceleration of 2
manoeuvre m/s 0.0 5.46 2.54
Change of heading o
of manoeuvre 0.0 36.9 79.2

TABLE 6-2

Target Trajectories Tested
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Since any measurement is always corrupted by noise the observations
of the target were assumed to have a variance of five degrees. Each
simulation run lasted two hundred seconds in scaled time. The working
range of the tracking motor was limited to five degrees.

As a convenient means of representing the success/failure of the
technique, the percentage of time that the tracker lost its target and
the percentage of realignment time were evaluated., The interaction between
the slew motor and the tracking motor was ignored in the simulation. It
was assumed that the realignment was taken instantly. The percentages
from the simulation runs were listed in Tables 6-4 to 6-8. The five
weight profiles used in the simulations were plotted in Figure 6.7. A
selection of the simulation runs were graphically shown in the Appendix.

A typical simulation result is shown in Figures 6.13, 6.14, and 6,15,

6.3 Conclusions

From the simulation results (Figures 6.123, 6.14, 6.15 and Appendix
C) they illustrate that the estimations of the target trajectory and the
ship motion were very effective. Throughout the simulation, the estimated
combined motion was very close to the noise free motion. This indicates
that the sixth order autoregressive model was adequate in modelling the
autoregressive-moving-average process. The prediction of the combined
motion was also capable of indicating the trend of the motion (Figure 6.14).
The simulated ship rolling motlon seemed to be unrealistically random,

The true ship rolling motion might not fluctuate as violently as simulated.

The simulation results (e.g. Figure 6.13) also revealed.that the
simulated ship rolling motion dominated the performances due to its wild
fluctuations. In comparison, the target trajectory was smoother than the
ship motion. Thus, the ship rolling motion was the main cause that the
proposed tracking system would lose its target. Work has to be
concentrated on the problems associated with the ship rolling motion.
Particularly, it would be beneficial to investigate the possibility of
modelling the ship motion with a deterministic model, e.g. a polynomial
function,

The results in Tables 6-4 to 6-8 showed that the performance was
insensitive to the weight profile. This may be the result of the applica-
tion of a short prediction period. However long predictions are not recomm-
ended. It is partly because the models used in the estimation process
do not match the motions exactly. Long prediction periods will then
inevitably incur large biases on the forecasts near the end of the

prediction period. Furthermore, the confidence on the forecasts drops at
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a rate to the fourth power of the lead time. Therefore it is feasible
to use an uniform weighting instead of an exponential one. This simplifies

the cost function to:

Np
J= I {1-rpr (Gs(t+m) - 95Z < GT(t+m) < es(t+m) + 82)}
m=0
Np
+ W I sign (6_(t+m) - 0_(t+m-1) | (6.8)
n=1

There is a spin-off of employing an uniform weight profile. The
time constants of the five profiles used in the simulation were chosen
based on an assumption that the engagement lasted for two hundreds
seconds in scaled time. The absolute values of the time constants are
meaningless to the cost function., It is the ratio between the rise time
and the duration of an engagement which is important. A long rise time
with a long engagement will have the same effect as a short rise time with
a short engagement. The two profiles may be exactly the same if they are
plotted with the time axis normalised. In real life, the duration of an
engagement is an uncertainty. There is no way to determine the
duration of an engagement at the time a target is first established.
Hence, it is impossible to establish the time constant for the weight
profile. The problem of the uncertainty on the duration of an engagement
is completely eliminated by employing an uniform weight profile over the
whole engagement.

The results in Figures 6.8 to 6.12 demonstrated nicely that the
percentage of misg is inversely related to the percentage of realignment,
Frequent realignment gives low percentage of miss and vice versa. The
results also revealed that as the weight ratio increased, i.e. the
emphasis on the realignment increased, the percentage of miss changed from
low to high with a sharp transition within the range of weight ratio of
one to three. On the other hand the percentage of realignment moved from
high to low more gently. By plotting the axis of weight ratio in
logarithmic as it was in Figures 6.8 to 6,12, the percentage of realignment
demonstrated an exponential relationship with the weight ratio. If the
weight ratio was very high, i.e. the realignment was more heavily weighted,
no realignment would take place. The misses would be saturated at its
maximum value. This maximum value of percentage in miss depended on the

motion. On the other hand, a very small weight ratio would give a zero

) miss in the simulation is when the target not covered by the

tracking motor.
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percentage of miss, but a high percentage of realignment dependent on the
motion, too. The objective of the control strategy is to have minimum
realignments and minimum misses. Therefore, the best weight ratio could
be the cross-~over point of the two curves of realignments and misses.
Figures 6.8 to 6.12 suggested that such a cross-over point occurred at a
weight ratio of between two and three regardless of the target trajectory
and the ship motion. This means that the realignments was best weighted
twice, or triple, the probability of losing target.

The simulation results also suggested that the restriction of one
realignment within the prediction period was justified. The three
dimensional plots of the evolution of the predicted slew motor trajectory
(e.g. Figure 6.15) showed that, at most, only one realignment was
predicted at each stage. This phenomenon might be due to the
characteristic of the forecasts. In Figure 6.14, it showed that the
forecasts at one time behaved like an exponential function., The forecasts
tended to settle down to a steady state value. The steady state pheno-
menon is the typical characteristic of the stochastic autoregressive
model [8}. It was also due to the fact that the changes in the target
trajectory was insignificant compared with the ship motion. The heavily
damped transient of the forecasts was the characteristic of the estimated
autoregressive model. This steady state phenomenon in the forecasts also
substantiates the previous point that long prediction period ig not
necessary. Once the forecast settles down to its steady state, the
predicted slew motor trajectory will then remain constant. Therefore,
any realignment is likely to take place during the transient. It is
unreasonable to expect more than one realignment during the transient
if the working limit of the tracking motor is comparable with the changes
in the forecasts. 1In Figure 615, it also revealed that the predicted slew
motor trajectory at one stage was not closely related to the one predicted
in the previous stage. This made it hard to devise a recursive method
to up-date the predicted slew motor trajectory. The uncorrelation might
be because of the unrealistically fluctuated ship motion.

The reason of using three different ship rolling motion was to
study the consistance of the simulation results. It also aimed to
eliminate any possibility that one ship motion was favourable to the
proposed control strategy. However, the results showed consistent

performance over the three simulated ship rolling motion.
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In summary, the simulation results suggested that the cost
function could have an uniform weight with a weight ratio between two
and three. The results also pointed to the application of a short prediction
period. The exact length of the period depends on the characteristic
of the estimated autoregressive model., It happened that a prediction
period of forty data points was sufficient. The simulation results
also revealed that the restriction of one alignment is realistic.
Therefore the task of optimisation can then be simplified. It will then
only involve the search of the point where the amount of realignment is
twice the difference between the present slew motor position and the

forecast. This will then reduce the computation overhead further.

Target Trajectory

1st 2nd 3rd
l1st ship motion Table 6-4 Table 6-5 Table 6-6
Fig. 6.8 Fig. 6.9 Fig. 6.10
2nd ship motion Table 6-7 / /
Fig., 6.11 / /
3rd ship motion Table 6~8 /
Fig. 6.12

Table 6-3 Index to Tables 6~4 to 6-8 and
Figures 6.8 to 6.12.
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Weight Reciprocal of Weight Profile Time Constant.

Ratio 0.1 0.025 0.01 0.005 0.0025
0.1 61.6 61.2 61.2 61.2 61.2
0.5 41.2 41.6 41.4 41.4 41.6
1.0 32.3 32.2 32.4 32.4 32.4
2.0 20.4 20.8 21.0 21.6 21.6
3.5 12.2 12.6 12.6 12.6 12.6
5.0 7.0 7.2 7.4 7.4 8.6
10.0 0.6 0.6 0.6 0.6 0.6
20.0 0.0 0.0 0.0 0.0 0.0

PERCENTAGE OF REALIGNMENTS

Weight Reciprocal of Weilight Profile Time Constant.
Ratio 0.1 0.025 0.01 0.005 0.0025
0.1 1.0 1.0 1.0 1.0 1.0
0.5 3.8 4.2 4.4 4.4 4.0
1.0 7.8 7.4 7.4 7.4 7.4
2.0 14.4 14.0 13.8 13.6 13.8
3.5 40.6 38.6 38.8 38.8 38.8
5,0 60.4 59.8 59.6 59.6 52,4
10.0 74.8 74.8 74.8 74.8 74.8
20.0 75.2 75.2 75.2 75.2 75,2

PERCENTAGE OF MISS

Weight on Realignments
Weight on Probability of Target Loss

Note:~ x =

Weight Profile = 1.0 - 0.99 x Exp(-Axt)

Table 6-4 Simulation Results
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Weight Reciprocal of Weight Profile Time Constant.

Ratio 0.1 0.025 0.01 0.005 0.0025
0.1 58.4 58.4
0.5 41.8 42.2 42.0 42.0 42.0
1.0 32.4 32.4 32.6 32.6 32.6
2.0 21.8 22.2 21.6 22.4 22.4
3.5 12.4 12.8 12,8 12.8 12.8
5.0 6.2 6.4 6.4 6.2 7.4
10.0 1.2

20.0 0.2

PERCENTAGE OF REALIGNMENTS.

Weight Reciprocal of Weight Profile Time Constant.
Ratio 0.1 0.025 0.01 0.005 0.0025
0.1 1.0 1.0
0.5 4.0 4.4 4.8 4.8 4.8
1.0 8.4 8.0 8.0 8.0 8.0
2.0 15.0 14.6 14.8 14.8 15.0
3.5 41.0 39.0 39.2 39.2 39.2
5.0 64.6 64.0 64.0 64.8 60.8
10.0 76.0

20.0 86.2

PERCENTAGE OF MISS

Note:= x = Weight on Realignments
' Weight on Probability of Target Loss

Weight Profile = 1.0 - 0,99 x Exp(-Axt)

Table 6-5 Simulation Results
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Weight Reciprocal of Weight Profile Time Constant

Ratio 0.1 0.025 0.01 0.005 0.0025
0.1 59.0
0.5 40.2 40.2 40.4
1.0 31.4 31.2 31.4
2.0 22.8 22.8 23.4
3.5 13.6 13.6 14.4
5.0 8.0 7.6 8.0
10.0 1.2
20.0
PERCENTAGE OF REALIGNMENTS
Weight Reciprocal of Weight Profile Time Constant
Ratio 0.1 0.025 0.01 0.005 0.0025
0.1 1.0
0.5 4.2 4.0 4.2
1.0 7.4 7.4 7.4
2.0 14.6 14.8 14.4
3.5 37.8 37.4 37.0
5.0 61.0 €1.4 60.8
10.0 74.8
20.0

PERCENTAGE OF MISS

_ Weight on Realignments

lote: -

Weight Profile = 1,0 - 0.99 x Exp(-Axt)

Table 6-6

Simulation Results

" Weight on Probability of Target Loss
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Weight Reciprocal of Weight Profile Time Constant
Ratio 0.1 0.025 0.01 0.005 0.0025
0.1
0.5 43.6 44,2 44.0 44.0 43.8
1.0 33.2 33.6 33.8 33.8 33.6
2.0 22.6 22.8 22.0 22,4 22.6
3.5 15.0 14.8 14.8 14.8 15.0
5.0 7.4 7.6 7.4 7.4 7.4
10.0
20.0

PERCENTAGE OF REALIGNMENTS
Weight Reciprocal of Weight Profile Time Constant
Ratio 0.1 0.025 0.01 0.005 0.0025
0.1
0.5 3.8 3.6 3.6 3.6 3.6
1.0 5.8 6.0 5.8 5.8 5.8
2.0 14.8 14.8 14.¢6 14.6 14.6
3.5 28.0 27.0 26.8 27.0 27.2
5.0 46.6 46.6 46.8 46,8 46,6
10.0
20.0

PERCENTAGE OF MISS
Note: - Weight on Realignments

Weight Profile

Weight on Probability of Target Loss

= 1,0 - 0.99 x Exp(-Axt)

Table 6-7 Simulation Results
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Weight Reciprocal of Weight Profile Time Constant

Ratio 0.1 0.025 0.01 0.005 0.0025
0.1

0.5 44.6 44.6 44.6 44,0 44,0
1.0 31.6 31.6 31.6 32.6 32.8
2.0 20.0 21.0 21.2 21.2 21.2
3.5 13.2 13.2 12.6 12,6 12.2
5.0 7.4 7.4 8.2 7.8 7.8
10.0

20.0

PERCENTAGE OF REALIGNMENTS

Weight Reciprocal of Weight Profile Time Constant
Ratio 0.1 0.025 0.01 0.005 0.0025
0.1

0.5 2.8 2.6 2.6 2.6 2.6
1.0 5.6 5.4 6.0 6.0 6.0
2.0 13.0 13.0 12,6 12.4 12.4
3.5 31.4 31.6 31.4 31.4 32.4
5.0 40.8 40.8 39.4 41.0 41.0
10.0

20.0

PERCENTAGE OF MISS

Weight on Realignments
Weight on Probability of Target Loss

Note:- x

Weight Profile = 1.0 - 0.99 x Exp(-Axt)

Table 6-8 Simulation Results
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CHAPTER 7

DEMONSTRATION RIG

A demonstration rig was planned from the beginning to demonstrate and
to validate the control law and the principles involved. The rig should
then possess the same characteristics as the actual system. It is not good
practice to apply any new idea on a full scale prototype without first trying
it out on a scaled down model. The eventual full size operational systenm
is proposed to be a microprocessor controlled system. A microprocessor based
monitor is the heart of the system. It is required to perform the task of
modelling, forecasting, and decision making, The monitor also sends command
signals to realign the slew motor, Therefore, the demonstration rig should
comprise of two units: The microprocessor based monitor, and the driving

unit.

7.1 Specification of Demonstration Rig

It was mentioned that the demonstration rig is only a scaled model
of the actual proposed system. The scaling is applied to the physical
dimensions and time. The scaling on the physical dimensions permits any
physical simulation to be performed without the requirement of large
power sources. It also allows the simulation to be carried out in a
laboratory. The microprocessor for the demonstration rig is only a
general one. The computing power is not as powerful as the moét
sophisticated one available at the present time. Hence, a time scaling
is necessary on the demonstration rig. The scaling factors adopted were
one-fifth and one-fourth for linear physical dimension and time
respectively.

The full specifications for both actual proposed system and the

demonstration rig are:

Actual System Dem. Rig

-6
i) Accuracy (radian) 10 x 10 as high as poss.
ii) Bandwidth (Hertz)
slew motor servo as high as poss. 2
tracking motor servo 50 - 100 20
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Actual Demonstration

iii) Inertia load (kg—mz)
3

3

slew motor servo 12 19.2 x 10

tracking motor servo 0.4 0.64 x 10

iv) Working range (degree)
slew motor servo +180 +180

tracking motor servo +2.5 +2.5

7.2 Moni tor

The monitoring unit of the demonstration rig is basically a
microcomputer system., Its computer power is a single card computer supplied
by Cromenco. The single card computer was built around the versatile and
commonly used Z~80A eight-bit microprocessor. The processor runs at a
clock rate of four megahertz. The single card computer is compatible to
the industrial S-100 communication bus. Hence, a lot of peripheral
supporting hardwares are easily obtained from the existing market. The
computer board has only one kilobyte of dynamic memory. It was then
extended with a sixty~four kilobytes dynamic memory board. In order to
allow the monitor to control the motors, an analogue input/output board
was also attached to the system allowing the microcomputer system to
communicate with the real world. An eight inch dual floppy diskette
system was adopted as the mass storage media for developing required
software. An arithmetic processing unit was added to the system to
increase the speed of the system in performing the floating point
arithmetic operations. A visual display unit was used in the communication
between operators and the microcomputer. Hardcopies could be obtained
from the dot matrix printer attached to the system, The block diagram
of the microprocessor system is shown in Figure 7.1.

The computing power of this system is, however, not the fastest
available in today's microcomputer market. It has been chosen because
back-up services are easily obtained within the department of Mechanical
Engineering. It was also the most cost-effective system at the time the
system was ordered. Comparing its computing power with the more
advanced mieroprocessor system, it was initially felt that it 1s four
times slower., This is the ratio used as the scaling factor on time for
the demonstration rig, Actually, there sre a lot of factors affecting
the computing speed. For instance, the efficiency of the high level

language compilers.
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7.3 Driving Unit

The driving unit has one motor simulating the novel high gain
tracking motor. Another motor is used as the slew motor. Referring back
to Chapter 1, the servomechanism is supposed to be put on board a ship,
thus rolling causing the major disturbances. Hence the target and the
ship rolling must be simulated in the rig., The ship rolling motion is
simulated by placing the whole dual-drive servomechanism on a rocking
platform driven by a motor. The general layout of the driving unit is
as shown in Figure 7.2

The motors used in the demonstration rig are all permanent magnet
printed motors. They are d.c. machines where the wound coils of the
conventional cylindrical armatures have been replaced by layers of
flat conductors arranged in the form of a non-magnetic disc. The
conductors are punched or notched from copper sheets. The conductor
in each layer are connected together to form one continuous winding
consisting of two air cored coils in parallel. An axial magnetic field
is produced by permanent magnet pairs arranged with alternate polarity
around the armature. The main advantage of printed motors is the freedom
from the effects of iron in the armature. Because of this, the torque
produced by current flowing in the armature conductors is not limited by
any saturation effects, nor is it affected by changes in load. The use
of permanent magnets gives a linear torque-speed characteristic which is
highly desirable in servomechanism applications.

The casing of the tracking motor is mounted onto the inertia disc
of the slew motor. In order to provide a firm base for the tfacking
motor to react upon, special consideration was needed in the design of
the slew motor control loop. As proposed, the slew motor will be
isolated from the system most of the time preventing interference to the
tracking motor. Since the slew motor has a lower bandwidth than the
tracking motor all torques developed by the high gain motor may not be
transmitted through the slew motor. External locking device must therefore
be provided to clamp the shaft of the slew motor once it is in position.
A failsafe brake was chosen for this purpose. The brake will be off
only if a voltage is applied to the coil of the brake. When the slew
motor is not active the brake is kept on by not applying any voltage to

the brake.
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As shown in Figure 7.2, the motors are directly coupled to their
loads such that any gear train is eliminated. In consequence, the
non-linearity of back-lash inherited from imperfect gear teeth was not
introduced into the rig and therefore stability of the system was not
impaired.

All the motors used in the demonstration rig are controlled by
their own servo control loop. Mechanically, the slew motor and the
tracking motor have the same characteristics. Except the tracking motor

has an integral - tzchometer. It enables the tracking motor control

loop to have a higher bandwidth than the slew motor. Within the control
loops, the angular positional sensors used are all hybrid rotary
potentiometers, model number HRP 11/1E supplied by Penny and Giles.

The potentiometers have an electrical angle of 340 degrees which is more
than sufficient for the demonstration rig. The hybrid type potentiometers
are superior than the wire-wound type, or the plastic type, potentiometers
because of their virtually infinite resolution and linearity of 0.25%

In consequence, the signal-to-noise ratio is high. To complete the

servo control loops, the EM10OB servo amplifiers from McLennon were
bought. In order to tune the control loops to the required bandwidth and

performance, series compensation networks are used. Three three~term

controllers were built for this purpose.

7.4 Digcussions

The demonstration rig erected has the proposed dual-drive tracking
servomechanism simulated using two printed circuit motors. The system is
placed on a rocking platform., The ship rolling motion is to be simulated
by feeding signals to a servomechanism which drives the rocking platform.
The signals that are being fed to the rocking platform servomechanism may
be a record of a typical ship rolling motion time history made on a
magnetic tape. Since the time on the demonstration rig is scaled the
magnetic tape must be played back at a scaled down speed. At present,
there is nothing on the demonstration rig that simulates the target.
It was first planned to feed the target position signal directly to the
monitor through one of the analogue input ports using a magnetic tape
recorder. A pre-determined target trajectory is recorded on the magnetic
tape. However, the demonstration rig has been designed that the target
may eventually be simulated by a light source driven by a fourth motor
as indicated in Figure 7.2. A light sensor array may then be attached
onto the inertia disc of the tracking motor to pick up the error signals

between the tracking motor and the target.
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It was regretted that it was not possible to do any simulation
work on the rig due to the expiry of the contract. Hopefully, this
work will be carried on in the future. If simulation is going to be
performed on the rig all the signals communicating between the driving
unit and the monitor must be within the range of 2.5 volts. This is
the working limit imposed by the hardware of the analogue input/output
device. The performance of the system may be assessed by the error
signals obtained from the light sensor array. The simulation may be
made more realistic by putting physical stoppers on the tracking motor

to restrict its working range.

~170~






CHAPTER 8

GENERAL CONCLUSIONS

It is generally true that higher accuracy and faster response in servo-
mechanisms can only be achieved by having higher system gain. Research
efforts had been devoted to the design of a novel prime mover that gives
high torque characteristics. Such a novel drive has been proposed. However,
the proposed drive only generates a tremendous torque within a limited rotation
range. A novel drive configuration was then further proposed to be applied
in tracking systems. One of the possible solutions to solve the non-linearity
of the drive is to employ the newly developed drive and a conventional drive
in a piggy-back fashion. The former is used as a tracking motor while the
latter is used as & slew motor. Such configurations then demand a new control
strategy to reduce the coupling effect between the two drives,

The whole philosophy behind the proposed control law in this thesis is to
keep the interference from the slew motor to a minimum. A microprocessor-
based monitor models the absolute target positions and the ship rolling motion.
The trends of the two signals are then predicted using the models built into its
memory. The parameters of the models are being updated constantly. A
decision is then made whether realignment is necessary to reduce the chance
of losing its target in the future. The time and position of the realignment
are evaluated by optimising a related cost function.

The whole complex tracking problem was solved by separating the
original problem into several smaller, easier and independent problems.
Each individual problem was then solved accordingly. The proposed control
law then involved the signal modelling, the model parameter estimation, the
prediction and the decision making. The implementation of the proposed
control strategy involves repeating the model parameter estimation, prediction
and decision making continually at intervals. The intervals are physically
constrained by the computing speed of the monitor. In real-time applications,
the sampling periods can only be equal to, or longer than, these intervals.

The working environment of the proposed tracking servomechanism had been
analysed in Chapter 1. It was assumed that the target motion and ship
rolling motion corrupted with noise will be the dominant signals. A constant
acceleration model, or equivalently a quadratic polynomial, was chosen in
modelling the absolute target trajectory. In essence, the target trajectory
is being fitted by a quadratic polynomial function. Such a crude model was

proposed because the tracking servomechanism is supposed to track all types
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of targets. A priori information on types of targets is out of question.

The only thing that can be certain is the trajectory must be continuous.
Modelling the target motion will, however, be appropriate only to a finite

time interval of the motion. The ship rolling motion, on the other hand,

was proposed to be modelled as an autoregressive stochastic process. This

was a subjective proposal. The only knowledge on the ship rolling available

to the author is its approximate spectrum, The autoregressive model is also
restricted to a finite length of the rolling because the ship rolling is not

a truely stationary process in nature. Stationarity can be assumed to a segment
of the infinite time series.

It is preferable to employ recursive parameter estimation algorithms
rather than batch processing since the estimation is performed on-line and a
recursive algorithm is more efficient. Time is a crucial factor. The well-
known discrete Kalman filter algorithm is very attractive. 1In view of the
finite nature of the deterministic and stochastic models, the parameters
should only be estimated from a finite number of past measurements.
Measurements that are too old must be dropped out from the estimates
completely. A finite memory version of the algorithm has been derived. The
finite memory Kalman filter can be visualised as the estimates obtained from
a length of data inside a window which moves along with time.

The finite memory version of the Kalman algorithm actually has potential
applications in a broad area. For instance, only a fixed amount of data is
available in identifying a plant. If canonical Kalman algorithm is used the
first few data points will not be used effectively due to the transient of
the filter itself, and also the initial guess of the parameter vector. On the
other hand, the finite memory version may re-use the data again to give
better estimates. It effectively reduces the error arising from wrong
initial guess. The whole finite memory Kalman filter algorithm preserves
the basic form of the canonical Kalman filter algorithm, The difference is
the introduction of the o6ld measurement to be discarded and the observation
matrix at the time of the old measurement, etc. The finite memory version
may be performed as a canonical Kalman filter by replacing certain elements
of the matrices with zeros. The finite memory algorithm cannot drop out an
old data without putting on one new measurement at the same time. Another
slightly different algorithm is required for discarding one measurement only.
The finite memory Kalman filter algorithm, however, suffers a deficiency: The
transition matrix of the system has to be projected backwards to the time
that the measurement is being dropped. This may be found to be computationally
difficult in some cases, especially in time-variant systems. The algorithm

also is required to remember the measurement, and the observation matrices at
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the times the measurements were made. The algorithm is best used
incorporated with systems having an identity matrix as the transition matrix,
and with constant observation matrices,

The finite memory Kalman filter has been actually tried out as a parameter
estimator. The results were listed in Chapter 3. This showed that by
manipulating the window length, unanticipated changes in parameters can be
easily accommodated. Short window length allowed fast response to changes.
However, too short the window length resulted with high variances. These
all agreed with what were expected. The performance of the finite memory
Kalman filter may be improved further by adopting an adaptive window. A
long window may be used to give low variance on the estimates when no un-
anticipated change is detected. Once a sudden change in the parameters occurs,
the window length may then be reduced to give a faster response to the sudden
changes in the parameters.

The canonical Kalman filter in effect has an infinite long window.
Therefore, the finite memory Kalman filter gives a faster response than the
canonical Kalman filter, when adapting to changes if both use the same system
model. However, the canonical Kalman filter can have a faster response to
changes if plant noise is introduced in the system model. The characteristic
of the derived finite memory Kalman filter is very similar to the canonical
Kalman filter working with plant noise. Both algorithms restrict the gain
matrix becoming zero, thus the estimates may never be isolated from the
measurements. The finite memory Kalman filter without plant noise is better
than the canonical Kalman filter in the sense that the window length is easier
to understand, than the variance of the plant noise. TFurthermore, measurements
may be removed from the estimates at will. The ignorance of the correlation
between estimation errors and past plant noise prevents the derivation of
a finite memory Kalman filter algorithm incorporated with plant noise in the
system model.

The cost function originally suggested was to offset the weighted prob-
ability of losing the target against the weighted realignments. Both weights
were initially proposed to be time variant. The numerical simulation results
indicated that the time variant weighting had no significant effect on the
performance for the chosen parameters. The results suggested that an uniform
weighting is sufficient. This simplifies the problem further by not requiring
the knowledge of the duration of an engagement with a target. The important
factor is however the ratio between the two weights. Too low a ratio resulted
in frequent realignments. On the other hand, the tracker lost its target more
often when the ratio was too high. The percentages of misses and

realignments both have an exponential relationship with the ratio. The
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cross-over point of the percentages of misses and realignments occurred
between the weight ratio of two to three. Within this range, neither the
realignments nor the misses would be excessive. The numerical simulation
results also justified the assumption of one realignment, at most, within

the prediction period in finding a numerical optimum of the cost function,

The above two findings enabled a simpler, and quicker, algorithm to

determine the optimal solution of the cost function. The algorithm can then make
use of the fact that the amount of realignment is twice the difference
between the predicted target position and the slew motor position at the

time of realignment. The only task is then to find the time of realignment
The determination of the optimal predicted slew motor trajectory becomes a
one-variable optimisation problem, The number of variables in the original
optimisation problem is twice the number of the time intervals inside the
prediction period if the problem is treated as a multi-stage decision process.
Otherwise, the problem has unknown numbers of variables if it is treated

as a straight forward optimisation problem.

The simulation also revealed that among the chosen ship rolling and
target models the dominant motion is the ship rolling. The frequent
realignment of the slew motor was mainly.due to the fluctuation in the
ship motion. The simulated ship rolling motion did not truely reflect the
characteristic of the real motion., Occasionally, the fluctuations were too
violent., DNevertheless, a sixth order autoregressive model was sufficient to
model the ship rolling motion. It is envisaged that the model will perform
much better if real ship rolling motion signals were used because of the
absence of the violent fluctuations,

In view of the simulation results, the proposed control strategy cannot
totally eliminate the possibility of losing its target during an engagement,.
However, this is the limitation of using the novel high torque, non-linear
drive. This is also due to the inevitable noise in the measurements. There
may be ways to reduce the possibility further. The microprocessor-based
monitor may be used to override the control strategy when the target is going
outside the working range of the tracking motor,

Initially, it was planned to validate the proposed control strategy on a
demonstration rig. The rig was commissioned and has been erected for
action. It is unfortunate that there was no time to implement the control

law completely to the rig.
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SUGGESTIONS FOR FURTHER WORK

The proposed control strategy for the novel dual drive tracking servo-
mechanism presented in this thesis is not fully developed. It is only showed
that the control strategy is feasible. Several areas of work require
further development. During the initial development of the control strategy,
some interesting points arose and required investigation.

As the simulation results suggested that one realignment is sufficient
in the optimisation process. Thus, the optimisation algorithm requires
modifications. It can be done more quickly.

The validation of the eventually developed control strategy should be
performed on the existing demonstration rig.

In the work of modelling, the effect of the ship rolling motion requires
further studies. Simulations using real ship rolling motion signals are
essential before the proposed tracking system put to service. The suggestion
of a sixth order autoregressive model for the ship motion is based on the
simulated ship motion. This must be validated with true motion signals.

The Kalman filter is generally used with a system without any constrain
on its states. 1In real-life, every system has its own limitation. Therefore,
it is interesting to see the Kalman filter in association with constraints.
This combination should increase the accuracy and the confidence in
estimating the states of the process.

As already mentioned in Chapter 3 and Appendix B, the finite memory
version of the Kalman filter cannot work with a system model having plant

noise. It may be useful if this restriction can be released.
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APPENDIX A

MATRIX INVERSION LEMMA

Let S and R be positive definite matrices not necessarily of the same

order. Let M be a matrix such that M7 R"1 M is of the same order as S,

Then: st 4 MTR_lM)_l = S - SMU(R + MSMT)_l MS (A1)

Proof:
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Corollary:

st T TR = st 4+ msmD Tt (A2)
Proof:
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APPENDIX B

KALMAN FILTERING

B.1 Model for Random Processes

Given a dynamic model of

x(k+1) = A(k+1l,k) x(k) + B(k) u(k)

and the measurement equation is

z(k+1) = D(k+l) x(k+1) + v(k+1)

where x(.) is a nxl state vector, u(.) is a pxl input vector, z(.) is a
mx]l measurement vector and‘!(.) is a mxl measurement noise vector.
A(k+1,k) is a nxn transition matrix, B(.) is a nxp control matrix and

D(.) is a mxn observation matrix. v(.) is a zero-mean gaussian random

variable., 1i.e.

el vao] = 0
and
el v v ] = RO 8
where
o J7k
S =
Jk
1 ; Jj=

The measurement noise, v(.) is assumed to be uncorrelated with the state

vector, x(.)

(B1)

(B2)

(B3)

(B4)

(B5)



B.2 Inclusion of One New Measurement

Before the derivation, it is necessary to assume that an estimate of x(k),
g(k/k,z), and its covariance matrix, P(k/k,%), are available. The notation
of.g(k/k,z) means an estimate of the state x at time interval k based on

the measurements from time intervals k-2 to k inclusive.

B.2.1 Derivation from Linear Minimum Variance Approach.

Given the estimate x(k/k,2) and its covariance matrix P(k/k,%) the
new estimate‘%(k+l/k+1,£+1) with one new measurement added is

assumed to be:

x(k+1/k+1,2+1) = x(k+1/k,8) + K(k+1) z(k+1l/k,2) (B6)
where

z(k+1/k,2) is the innovation

z(k+1/k,8) = z(k+l) - z(k+1/k,Q) (B7)
The estimate x(k+1/k+1,2+1) must satisfy the criterion that the

estimation error variance is minimum, i.e. the cost of minimisation

is:

oy
[

P(k+1/k+1,2+1)

E [_}E(k+1/k+l,£+1) _;T(k+1/k+l,l+1)] (B8)
Since the best estimate of z(k+l) is

2(k+1/k,8) = D(k+1)  x(k+1/k,2) (B9)
(B7) becomes:

z(k+1/k,2) = D(k+1) x(k+#l) + v(k+#l) - D(k+1) 2(k+1/k, 2)

= D(k+l) =x(k+1/k,2) + v(k+1) (B10)



Therefore:

x(k+1/k+1,2+1) x(k+1) - é(k+1/k+1,£+1)
= x(k+1) - é(k+1/k,2) - K(k+1) é(k+1/k,£)

= é(k+1/k,£) ~ K(k+1) D(k+1) é(k+l/k,2) ~ K(k+1) v(k+1)

I

[ I - K(k+1) D(k+1) ] x(k+1/k,2) - K(k+1) v(k+1)
(B11)
Hence, with the fact that x(k+1/k,2) and v(k+l) are uncorrelated

E[ x(k+1/k+1,2+1) g?ck+1/k+1,z+1>]

P(k+1/k+1, 2+1)

[I - B(k+1) D(k+1) ] P(k+l/k,8) [I = K(k+1) D(k+1)]T

+

K(k+1) R(k+1) KT(k+l) (B12)

where

P(k+1/k, %) A(k+1,k) P(k/k, %) AT(k+l,k) (B13)

]

expanding (B12)

i

P(k+1/k+1, 8+1) P(k+1/k, L) - K(k+1) D(k+1) P(k+1/k,2)

T T
P(k+1/k,2) D (k+1) K (k+1)

K(k+1) [ D(k+1) P(k+1/k,2) Dl (k+1) + R(k+1)] k7T (k+1)

-+
(B14)
Completing the square gives:
P(k+1/k+1, 2+1) =
[K(k+1) - V] [D(k+1) P(k+l/k,2) D (k+1) + R(k+D)] [K(k+1) - v] T
- V[ D(k+1) P(k+1/k,%) D' (k+1) + R+ VT + P(r+1/k, ) (B15)



where V must satisfy the expression:
V [D(k+1) P(k+1/k,2) DT (k+1) + R(k+1)] = P(k+1/k,2) pT (k+1) (B16)
From (B15), it will be minimum if K(k+1) = V and hence:

K(k+1) = P(k+1/k,2) D> (k+1) [D(k+1) P(k+1/k,2) DL (k+1) + R(k+1)]‘l

(B17)

and

P(k+1/k+1,2+1) = [I - K(k+1) DT(k+1)] P(k+1/k, %) (B18)
Together with the fact that:

é(k+1/k,£) = A(k+l,k) é(k/k,l) + B(k) u(k) (B19)
(B6), (B13), (B17), (B18) and (B19) form a complte algorithm.

B.2.2 Derivation from weighted Least Squares Approach
From the model (B1)

x(k+1) = A(k+1l,k) x(k) + B(k) u(k)
after rearranging gives

x(k) = A(k,k+1) x(k+1) - A(k,k+1) B(k) u(k) (B20)
Extending the time interval backward to k-g

x(k-2) = A(k-2,k+1) x(k+1) - B(k-2,k+1) (B21)
where x

B(k-2,k+1) = I A(k-2, 3+1) B(J) u(J) (B22)

3=k~

From the measurement equation (B2)

z(k-2) = D(k-2) A(k-2,k) x(k) - D(k-2) B(k-2,k) + V(k-%) (B23)



Consider the measurements from interval k-% to k inclusive, let

Z(k)

N(k)

V(k)

and

Qk) =

1

R(k~-1)

z(k-2) + D(k-2) B(k-2,k)
z(k=-2+1) + D(k-2+1) B(k-2+1,k)

z(k-1) + D(k-1) B(k-1,k)
z(k)

D(k-2%) A(k-2,k)
D(k-2+1) A(k-%+1,k)

D(k-1) A(k-1,k)
D(k)

v(k=-2)
x(k—£+1)

v(k-1)
v(k)

R(k~% +1) 0

R(k-1)
R(k)



Then
Z(k) = N(k) x(k) + V(k) (B24)
In the case of weighted Least Squares estimation the cost function is:
~ T -1 A
J o= [z00 - N®) x(k/k, 0] Q (o) [Z(k) - NG x(k/k, )] (B25)
The estimator that minimises the cost is [35]

P(k/k, %) NT (k) Q_l(k) Z(k) (B26)

x(k/k, %)

and

Pe/k,2) = [N Qla naw]T (B27)

When one new measurement is available, (B24) is augmented to:

Z(k) + N(k) ACk,k+1) B(k) u(k) | _ | N(k) ACk,k+1) | x(k+1) + [ V(k)
z(k) ) ( D(k+1) / ( vV (k+1)
(B28)
The weighted Least Squares estimate of x(k+1) is then:
x(k+1/k+1, £+1)
, T T T -1
= P(k+1/k+1,%+1) | (A (k,k+1) N (k) D" (k+1)) ( Q (x) . O
0 R (k+1)
Z(k) + N(k) A(k,k+1) B(k) u(k)
x ( z(k+1) )
= P(k+1/k+1,2+1) [AT<k,k+1) N @ ek) zek)
T T -1
+ A (k,k+1) N (k) Q (k) N(k) A(k,k+1) B(k) u(k)
T -1
+ D (k+1) R (k+1) z(k+1)] (B29)

where

P(k+1/k+1,2+1)



-1

i

{ (AT(k,k+1) N (k) D(k+1) ) < Q-l(k) 0 <N(k) A(k,k+1)>}
0 R_l(k+l) D(k+1)

-1
[ aTa,se1) 800 @Mk NG AGK,k+1) + DT(k+1) R I(k+l) D(k+1) ]

it

(B30)
Substitute (B26) and (B27) into (B29) gives

.é(k+l/k+1,2+1)

= P(k+1l/k+1, 2+1) [AT(k,k+1) Pﬂl(k/k,l).i(k/k,l)
T -1

+ A (k,k+1) P (k/k,L) A(k,k+1) B(k) u(k)

“lkel)  z(kel) ]

T
+ D (k+l) R
= P(k+1/k+1,2+1) [AT(k,k+1> p'lck/k,z) A(k,k+1) (A(k+1,k) X(k/k,L)
+ B(k) u(k))

+ Dl(k+1) R L(k+1) z(k+1) ]

= P(k+1/k+1,2+1) [P-l(k+1/k,£)‘§(k+l/k,£) + DT(k+1)R'1(k+1)_5<k+1)]

(B31)
Substitute (B27) into (B30) gives:
P(k+1/k+1, 2+1)
T -1 T -1 -1
= [A (k,k+1) P U(k/k,2) A(k,k+1) + D (k+1) R ~(k+1) D(k+1) ]
= [p“lck+1/k,z) + DY(k+1) R Y(k+1) D(k+1) -1 (B32)
Applying the Inversion lemma, Appendix A, to (B32):
P(k+1/k+1,2+1) = P(k+1l/k,L)
T T -1
~P(k+1/k,?) D" (k+1) [ D(k+1) P(k+1/k,2) D (k+1) + R(k+1)]
x D(k+1) P(k+1/k,2) (B33)



-1
Let K(k+1) = P(k+1/k+1,82+1) DT(k+1) R ~(k+1) (B34)
{B31) becomes:

.é(k+1/k+1,2+1) = PQe+l/k+1,0+¢1) P l(k41/k,0) R(k+1/k, L)
+ K(k+1) z(k+1)

= [I - K(x+1) D(k+1)] _é(k+l/k,2) + K(k+1) z(k+1) (B35)
From the Inversion lemma again, it can be shown that:

[p'1<k+1/k,z) + DT (k+1) R™I(k41) D(k+1)]'1 DT (k+1) R (k+1)

= P(k+1/k,%) D (k+1) [D(k+1) P(k+1/k,2) D (k+1) + R(k+1)] > (B36)
Hence;

K(k+1) = P(k+1/k,2) D (k+l) [D(k+1 P(k+1/k,8) D (k+1) + R(k+1)]'1 (B37)

and

P(k+1/k+1,2+1) = [I - K(k+1) D(k+1)] P(k+1/k,2) (B38)

Therefore, (B6), (B13), (B19), (B37) and (B38) form the complete algorithm

which corresponds toc the algorithm in the last section.

B.2.3 Summary of the Algorithm for Adding One New Measurement

P(k+1/k,8) = A(k+l,k) P(k/k,2) Al(k+1,k) (B39)
x(k+l/k,0) = A(k+l,k) X(k/k, L) + B(k) u(k) (B40)
K{k+1) = P(k+1/k,) D (k+1) [D(k+1) P(k+1/k,2) DT (k+1)

+ R(k+1)]"1 (B41)
X(k+1/k+1,2+1) = [I - K(k+1) D(k+1)] éﬁk+1/k,2)

+ K(k+1) z(k+1) (B42)
P(k+1) = [I - K(k+1) D(k+1)] P(k+1/k,2) (B43)



B.3 Dropping of One Old Measurement

~

It is assumed that an estimate of x(k), x(k/k,%), and its covariance matrix,
P(k/k,%), are available. The objective is to develop the algorithm for

the removal of the data at time k-{ from the estimate.

B.3.1 Derivation from Linear Minimum Variance Approach

Given the estimate x(k/k,{) and its covariance matrix P(k/k,%), the
new estimate x(k/k,%-1) with one old measurement at time k~% removed is
assumed to be:

é(k/k,l—l) = .é(k/k,ﬁ) - K(k-2) z(k-2/k,%) (B44)

where

_é(k-l/k,l) = z(k-1) ~_;(k—£/k,2) (B45)

The estimatelg(k/k,z—l) must satisfy the criterion that the estimation error

variance is minimum, i.e. the costvfor minimisation is:

J = P(k/k,2-1)

= E[x(k/k,2-1) x (k/k,2-1) ] (B46)
Substitute (B2) and (B21) into (B45):

2(k=0/k,0) = z(k-2) - 2(k-2/k,)

= D(k-2) x(k-2) + v(k-2) - D(k-%) x(k-2/k, )

= D(k-2) A(k-£,k) x(k) - D(k-£) B(k-£,k)

+ V(k-2) - D(k-2) A(k-2%,k) g(k/k,l)

+ D(k=-2) B(k-2,k)

= D(k4) A(k-g,k) x(k/k,0) + v (k-g) (B47)



Hence
x(k/k,8~1) = £(k/k,2) ~ K(k=2) D(k-2) A(k-2,k) é(k/k,%)

- K(k-2) v(k-2)

Or
20 - x(k/k,2-1) = x(k) - x(k/k,2) + K(k-2) v(k-2)

+ K(k-2) D(k-%) A(k-2,k) éﬂk/k,ﬁ)

x(k/k,2-1) = [ T + K(k-2) D(k-2) A(k-2,k)] x(k/k,2) + K(k-1) v (k-2)
(B48)

A

Since the estimate x(k/k,%) is based on the measurements from interval k-%
to k, the estimation error x(k/k,%) is correlated with the measurement
noise v(k-%). However the estimate x(k/k,%-1) does not involve the
measurement z(k-%) and x(k/k,%-1); therefore has no relation with v(k-2).
Thus:
- ~T T T

E[x(k/k,2-1) x (k/k,2-1)] + E[K(k-2) v(k-2) v (k-2) K (k-2)]

= [I + K(k-2) D(k-2) A(k-2,K)] P(k/k,2) [T + K(k-2) D(k-2) A(k-%,%)]"

P(k/k,2~-1) + K(k-2) R(k-2) KT(k—R)

= [I + K(k-2) D(k-2) A(k-2,k)] P(k/k,%) [I + K(K-2) D(k-2) ACk-2,k) ]°

P(k/k,%-1)

= [1 + K(k-2) D(k-2) A(k-2,k)] P(k/k,2) [I + K(k-2) D(k-2) A(k—z,k)]T

T

- K(k-2) R(k-%) K (k-2) (B49)

Completing the square gives:

P(k/k,2-1)

= [KGk=0) + V] [D-0) ACk=g,k) P(k/k,0) A (k-2,K) D' (k-g) - R(k-2) ]

x [K(k-2) + V]



-v [D(k-2) ACk-2,k) P(k/k,2) A (k-2,k) D (k-2) - R(k-2)] V'

+ P(k/k,2)

where V must satisfy:

v [D(k-2) A(k-2,k) P(k/k,%) AT(k-2,k) D (k-2) - R(k-2) ]

i

P(k/k, %) AT(k-l,k) DT(k—Z)

From (B50) then, it will be minimum if K(k-%¢) = -V, Thus:

K(k-2) = -P(k/k,&) A (k-2,k) D> (k-2)

x [D(k-2) ACk-2,k) P(k/k,2) A (k-2,k) D (k=) - R(k-2)]

and

1

P(k/k,2-1) = [ I + K(k-2) D(k-2) A(k-2,k)] P(k/k,%)

and (B44) can be rewritten as:

‘é(k/k,l—l) = [ I + K(k-2) D(k-2) A(k-2,k)] x(k/k,%)

- K(k-2) (z(k-%) + D(k-2) B(k-%,k))

Thus (B52), (B53), and (B54),

together with the system and measurement

(B50)

(B51)

(B52)

(B53)

(B54)

equations form a complete algorithm for removing one measurement at time k-%.

B.3.2 Derivation from weighted Least Squares Approach

With (B21) and (B22),

Z(k)

let

2(k~-2+1) + D(k=-2+1) B(k-2+1,k)
z(k-2+2) + D(k=-2+2) B(k-2+2,k)

.

z(k~1) + D(k-1) B(k-1,k)
z(k)
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D(k—-2+1) A(k-2+1,k)
D(k-+2) A(k~2+2,k)

N(k) =
D(k-1) A(k-1,k)
D(k)
V.(k=2+1)
V (k- 2+2)
V(k) =

V (k-1)
Y (k)

and

R(k-g+1)
R(k-9+2) 0
Qk) =
0
R(k-1)
R(k)
Then
Z(k) = N(k) x(k) + V(k) (B55)
With the cost
~ T _.l ~
T o= [z(k) - N(k) x(k/k,2-1)]0 Q () [Z(k) - N(K) x(k/k,2-1)] (B56)
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The weighted Least Squares estimator that minimises (B56) is [35]

x(k/k,4-1) = P(k/k,2-1) N (k) @ (k) Z(k) (B5T)
where
T -1 -1
P(k/k,8~1) = [ N (k) @ (k) N(X)] (B58)

Together with the old measurement at time interval k-2

2z(k-2) + D(k-2) B(k-%,k) ( D(k-2%) A(k-£%,k) .E(k)ﬁ_.z(k-k) (B59)
Z(k) N(k) V(k)
The corresponding weighted least squares estimate is:
) T T T -1
x(k/k,2) = P(k/k,%) | (A" (k-2,k) D" (k-%) NT(k)) R (k-2) O
0 e
2z(k-2) + D(k-2) B(k-2,k)
Z(k)
T T ~1
= P(k/k,?) [A (k-2,k) D (k-2) R ~(k-2) (z(k-2) + D(k-2) B(k-2,k))
F N QR zZ(k)] (B60)
e (AT(k-l k) DT(k-Z) NT(k)) 'R“l(k-z) 0 D(k-2%) A(k-2,k
P(k/k,%) = ! ) - -2,k)
0 e N()
= [ AT(k-2,1 D (k-2) R 1(k-2) D(k-2) A(k-2,k)
N QT rao Nao ]7E (B61)



Substituting (B58) into (B61) gives:

P(k/k,4-1) = [P T(k/k,0) - A (k-2,k) D (k-2) R L(k-2) D(k-2) A(k-z,k)]_l
(B62)

Applying the Inversion Lemma in Appendix A to (B62):
P(k/k,2-1) = P(k/k-2)

- P(k/k,8) AT(k-%,k) D (k-2) [D(k-2) A(k-2) P(k/k,L) ATx-2,%) DT(k-2)

- R(k-z)]'l D(k-9) A(k-£,k) P(k/k,32) (B63)

Let
T T
K(k-2) = -P(k/k,2) A (k-%£,k) D" (k-2)
T T -1

x [D(k-2) A(k-%,k) P(k/k,?2) A (k-%,k) D (k-£) - R(k~2) ] (B64)
Thus

P(k/k,2-1) = [I + K(k-2) D(k-2) A(k-2,k)] P(k/k,2) (B65)

Also from the Inversion Lemma

[P ks, 0 - AT(k=2,%) DT(k-2) R 1(k-2) D(k-2) AGk-2,10] 7*
x A(k-2,k) D (k-2) R (k-9
= -P(k/k,2) A (k-2,k) D' (k-1)
T T -1
x [D(k-2) A(k-2,k) P(k/k,2) A (k-£,k) D (k-2) - R(k-2)] (B66)
together with (B57)
~ -1 - T T
x(k/k,2) = P(k/k,2-1) [P (k/k,8) x(k/k,8) - A (k-2,k) D (k-)
RTN(k-2) (z(k-2) + D(k-2)8(k- ,k)) ]
= [T+ K(k-2) D(k-2) AGk-2,10] x(k/k,2)
-~ K(k-2) (z(k-g2) + D(k-2) B(k-2,k)) (B67)
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Therefore (B64), (B65), (B67) together with the system and measurement
equations corresponds to the algorithm developed from the minimum

variance approach.

B.3.3. Summary of Algorithm for Removing 0ld Measurement

K(k-L) = -P(k/k, 1) AT(k-Q,k) DT(k-Q)

x [D(k-2) A(k-2,k) P(k/k, ) AT(k-2,k) D:(k-2)

- Rx-0)] 77 (B68)
P(k/k,2-1) = [I + K(k-2) D(k-2) A(k-2,k)] P(k/k,?) (B69)
x(k/k,2-1) = [I + K(k-2) D(k-2) A(k-2,k)] x(k/k,2)

- K(k-2) (z(k-2) + D(k-2) B(k-,k)) (B70)

B.4 Moving Window

It is proposed to use a data window of 2+1 measurements. The estimate
of x(k+1), éﬂk+1/k+1,2), is based on the measurements from time interval
k-2+1 upto k+1 inclusive. When cne new measurement is available, the
estimate of the state is up-dated, but at the same time the oldest

measurement is dropped.

B.4.1 Derivation from Linear Minimum Variance Approach

For the estimate to be a linear combination of the measurement,

the new estimate will have the form:
_;i(k+1/k+1,2) = X(k+1/k,2) + K(k+1) é(k+1/k,2) - K(k-2) z(k-2/k,2) (B71)

in which

[}

2(k+1/k, 0) 2(k+1)- z(k+1/k, )

z(k+1) - D(k+1)£(k+1/k,2)

i

D(k+1) x(k+1/k,8) + Vv (k+1) (B72)
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and
é(k—l/k,z) = z(k-8) - é(k—ﬁ/k,l)
= z(k-%) - D(k-2) A(k~2,k+1)_£(k+l/k,2)
+ D(k~2) B(k-L,k+1)
= D(k-2) A(k-L,k+1) X(k+1/k,2) + v(k-2) (B73)

Therefore;

x(k+1/k+1, 2) x(k+1) - x(k+1/k+1,%)

= x(k+1/k,%) - K(k+1) z(k+1/k,2)

+ K(k-2) z(k-2/k,2)

= [I - K(k+1) D(k+1) + K(k-2) D(k-2) A(k-2,k+1)]
x(k+1/k, 2)

- K(k+l) v(k+1) + K(k-2) v(k-2) (B74)

~

In (B74), x(k+1/k,%) is the estimation error based on the measurements
from k-£ to k, Thus, it is correlated with the measurement noise at k-%.
However, the estimation error é(k+l/k+1,2) is based on the mesasurements
from k-2+1 to k+1. The estimate é(k+l/k+1,2) is totally unrelated with

the measurements made before the interval k-2+1. Thus:
E [x(k+1/k+1,0) x (k+1/k+1,2)] + K(k-2) E[ v(k-2) vT(k-2)] KT(k-L)

[I - K(k+1) D(k+1) + K(k-2) D(k-2) A(k-2,k)] E[ x(k+1/k,2) éT(k+l/k,£)]

It

x [I - K(k+1) D(k+1) + K(k-2) D(k-2) A(k-2,1)]

+

K(k+1) E[v(s+1) v (k+1)] KX (k+1)
P(k+1/k+1,8) + K(k-2) R(k-2) K> (k-2)

= [I - K(k+1) D(k+1) + K(k-£) D(k-1) A(k-2,k)] P(k+1/k, 1)
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x [T - K(k+1) DOk+1) + R(k-2) D(k-2) ACk-2,Kk)]

+ K(k+1) R(k+1) KT(k+1)

Let G = (K(k+1) -K(k-%))
M =< D(k+1) )
D(k+1) A(k-2,k)
U =( z(k+1) )
z(k=£) + D(k-2) B(k-2,k+1)
and § = (R(k+1) 0 )
0 -R(k-12)

(B71) and (B75) can be simplified as:

[

% (k+1/k+1,2) [1 - oM] x(k+1/k,2) - GU
and

P(k+1/k+1, ) [T - oM] Pex+1/k,2) [1 - on]T + asaT

i

Completing the square of (B81)
T T
P(k+1/k+1,2) = [G - V] [M Pr+l/k,0) M + 8] [6 - V]
T T
-V [M P(k+1/k,8) M + S] V' + P(k+1/k,2)

With V satisfying the expression:

T T

V [M P(k+1/k,2) M + S] = P(k+l/k,0) M

From (B82), P(k+1l/k+1,2) is minimum if G = V.

(B75)

(B76)

(B77)

(B78)

(B79)

(B80)

(B81)

(B82)

(B83)



Thus:

T —
G = P(k+l/k,0) ML [M PCk+1/k, ) M7 + ]t (B84)
and
P(k+1/k+1,2) = [I - GM] P(k+1/k,R) (B85)
B.4.2 Derivation from Weighted Least Squares Approach

With (B21) and (B22), let:

2Z(k-2+1) + D(k-2+1) B(k-2+1,k)
Z(k-2+2) + D(k-4+2) B(k-2+2,k)

Z(k) =

z(k-2) + D(k-2) B(k-2,k)
z(k-1) + D(k-1) B(k-1,k)

D(k-%+1) A(k-2+1,k)
D(k-2+2) A(k-2+2,k)

N(k) =

D(k-2) A(k-2,k)
D(k-1) A(k-1,k)

v (k-2+1)
v(k-2+2)

V(k) =

v (k-2)
v(k-1)



and

R(k-2+1)
R(k-2+2) 0
Qk) =
0 R(k-2)
R(k-1)
Therefore:
Z(k) + N(k) A(k,k+1) B(k) u(k) (N(k) A(k,k+1))
2(5) - D(k+1) 2(e+D)
+ VK (B86)
v (k+1)
and

i

(E(k-Z) + D(k-2) B(k-z,k))

< P(k~2) A(k—ﬁ,k)) % (k)
Z(k)

N(k)

v -
+ ('—(k 2’) (B87)
V(k)

From (B86), the weighted least squares estimate is:

e )

X(kHl/kel,0) = P(k+l/k+1,0) | (ATCk,k+1) NT(R)  DT(k+1)) »
0 R (k+D)

Z(k) + N(k) A(k,k+1) B(k) g(k))
z(k+1)

= P(R+1/k+1, 1) [ATC, kD) NTGR) @ l(k) Z(k)



+ Dl(k+1) R-l(k+1).5(k+1)

+ AT(k,k+1) NT(k) Q"l(k) N(k) A(k,k+1) B(k) E(k)] (B88)
With:
T T T -1
P(k+1/k+1,8) = (A" (k,k+1) N (k) D (k+1)) {Q (k) 0
( 0 R (k+1)

N(k) A(k,k+1)) -1
( D(k+1)

[AT(k,k+1) NTk) @ (k) N(k) ACk,k+1)

DT (k+1) B S(k+1) D(k+1)] 7 (B89)

+

From (B87), the corresponding weighted least squares estimate is:

x(k/k,0) = PCk/k,2) | (AT(k-2,k) DT(k-2)  NT(ky) /R Lck-2) 0 )
0 Q)
«g(k~z) + D(k-2) B(k—z,k))
* Z(k)
= PGk, 0 [AT(k-2,8) D (k-2) R (k-0
x  (z(k-2) + D(k-2) B(k-£,k))
N Q) z(k) ] (B90)
With
P(k/kp) = | (A (k-2,k) DT(k-2) N (k)) /R F(k-g) 0 )
0 Q)

(D(k~£) A(k~2.k)) -1
x N(k)



= [a%k-2,10 D (k-2) R™1(k-2) D(k-2) ACk-2,k)

s v e nao ] (B91)
From (B90)
T -1 -1 .
N Q (k) Z(k) = P M(k/k, ) A(k/K,%) - D(k-2) B(k-L,k)

- ATe-2,50 DT(-0) BTH(k-0) m(k-2) (B92)
Substituting (B21) into (B92) gives:
T -1 -1 n
N(k) Q (k) Z(k) = P “(k/k,%) A(k,k+1l) x(k+1/k,2)
T -1
= N(k) Q "(k) N(k) A(k,k+1) B(k) u(k)
- AT(k—Q,k) DT (k-1) R-l(k—z).g(k—z)
T T -1
- A"(k-2,k) D (k-2) R ~(k-%) D(k-2) B(k-%,k+1) (B93)
Substituting (B93) into (B8S)
é(k+1/k+1,z) = P(k+1l/k+1,2) [p"lck+1/k,z) x(k+1/k, )
T -1
+ D (k+1) R ~(k+1) z(k+l)
- aTk-2,%+1) k-0 R (k-0 (z(k-2)
+ D(k-2) B(k-2,k+1)) ] (B94)
Adding and subtracting the terms (DT(k+1) R-l(k+1) D(k+l).£(k+1/k,2)) and

(AT(k-Z,k+l) DT(k-Q) R_l(k-ﬂ) D(k-2) A(k~L,k+1) x(k+1/k,%)) in the right
hand side of (B94), and together with the introduction of:

D(k-2) A(k-%,k+1)

v
=
i

D(k+1)



(—R(k—l) 0 )
5 = 0 R(k+1)
and
U = z(k=-2) + D(k-£) B(k-2,k+1)
( z(k+1)

(B94) becomes:

x(k+1/k+1,8)

From (B91)

N @ ) Nek)

+

P(k+1/k+1,2) [(P-l(k+l/k,£) + MTS*IM).é(k+1/k,2)

T

= p‘l(k/k,z)

- AT(k-2,k) DT(k-2) R Y(k-2) D(k-2) A(k-2,k)

Substituting (B96) into (B89) gives:

P(k+1/k+1,2R)
Thus:

x(k+1/k+1,2)

Let G = P(k+1/k+1,%) MTs”

(B98) becomes:

~

x(k+1/k+1,2)

Applying the Inversion Lemma to (B97) gives:

P(k+1/k+1, %)

+

- P(k+1/k,8) MI(M P(k+1/k, )M + §)

X

[p'l (k+1/k,2) + MTs'1M]

%(k+1/k, 2)

P(+1/k+1,2) NS

1

[1 - au] x(k+1/k,2) + GU

P(k+1/k, %)

M P(k+1/k,2)

|

1

(U - M x(k+1/k,2))

.21

s~ - M x(k+1/k,2)) ]

-1

-1

(B95)

(BS6)

(B97)

(B98)

(B99)

(B100O)

(B101)



From the Inversion Lemma, using the relationship:

e kr1/x,0) + mos iy Tt mTsTt

P(k+1/k,2) Mt (m P(k+1/k, ) Mt o+ gyt

(B99) and (B101l) can be rewritten as:
-1
G = P(k+l/k,2) M° [ M P(k+l/k,2) Mt o4 s]

and

P(k+1/k+1,8) = [I - GM] P(k+1/k,28)
Therefore (B98) can be rewritten as:
x(k+1/k+1,8) = [I - GM] x(k+1/k,8) + GU

Hence (B13), (B19), (B103), (B104) and (B105) form the algorithm

corresponding to the one derived from the minimum variance approach.

B.4.3 Summary of Algorithm for Moving Window

x(k+1/k, 2) ACk+1,k)  x(k/k,2) + B(k) u(k)

P(k+1/k,2) = A(k+1,k) P(k/k,Q) AT(k+l,k)

T -1

G = P(k+l/k,8) M' [M P(k+l/k,2) M + §]

P(k+1/k+1,4) [I - GM] P(k+1/k,R)

%(k+1/k+1,2) [1 - 6M] x(k+1/k,8) + GU

i

with

D(k+1)

M =
(D(k—l) A(k-2,k+1)

(B102)

(B103)

(B104)

(B105)

(B106)

(B107)

(B108)

(B109)

(B110)



(R(k+1) 0
s = 0 -R(k-z))

v = z(k+1) )
(_5<k-z) + D(k-2) B(k-2,k+1)
and
G = (K(k+1) ~-K(k-2)).

B.5 Gains for Moving Window

T -
In (B108) the term [MP(k+1/k,2) M + S] 1 can be expanded as:

P et 2) M +s]70

1;

(D(k+1) ) P(k+l/k,2) (D (k+1) A (k-%,k+1) D (k-2))
D(k-2) A(k-2,k+1)

(R(k+1) o} -1
* 0 —R(k-2)
i 1-1
a [
= d
= ’.e ]
\.f -
where;
a = D(k+1) P(k+1l/k,L) DT(k+l) + R(k+1) (B112)
b = D(k-2) A(k-2,k+1) P(k+1/k,%) DL (k+1) (B113)



¢ = D(k+1) P(k+1/k,%) AT(k—E,k+1) DT(k—Q)

d = D(k-2) A(k-2,k+1) P(k+1l/k,2) A’ (k-%,k+1) Di(k-2) - R(k-2)

e = [a - cd-lb 1*1

£ = -d

g = -a

Yy [a - ca™?b]

"o [a - bale] 7t

h o= [d-bate]?

Therefore (B108) becomes:

K(k+1)

-K(k-2)

(B120) and

K(k+1)

= P(k+l/k,8) [DT(k+1) e + AT(k-2,k+1) D (k-2) £]
= P(k+1l/k,%) [DT(k+1) g + AT(k-2,k+1) D (k-2) h]

(B121) can be rewritten as:

+ K(k-2) D(k=-2) A(k-%,k+1) P(k+1/k,%) DT(k+l)

»

»

»

In (B122),

K(k~2)

[D(k-2) A(k-%,k+1) P(k+1/k,2) AT(k-2,k+1) DT(k-2) - R(k-2) ]

[ D(e+1) P(k+1/k,1L) DT(k+1) + R(k+1)] T

= P(k+1/k,%) AT(k—ﬁ,k+l) DT(k—l)

[D(k-2) A(k-2,k+1) P(k+1/k,%) AT(k-2,k+1) D (k-2) - R(k-1) 17

K(k+1) D(k+1) P(k+1l/k,%) AT(k—Z,k+l) DT(k-Q)

P(k+1/k,%) D (k+1) [D(x+1) P(k+1/k, 2) DT (k+1) + R(k+1)]'1

1

-1

(B114)

(B115)

(B116)

(B117)

(B118)

(B119)

(B120)

(B121)

(B122)

(B123)

the first term on the right hand side is the gain of adding one

new measurement, (B41). In (B123), the first term on the right hand side is

the gain of removing one old measurement, (B68). Thus, the gains of moving

window are related to, but are more complicated than,

and removing measurements separately.

the gains of adding



B.6 Model with Plant Noise

Occasionally, due to the existence of disturbances in the system or the
inadequate knowledge of the complete system, model presented in Section B.1
becomes inappropriate. The model is modified with the introduction of a

plant noise, w(k).

x(k+1)

1l

A(k+1,k) x(k) + B(k) u(k) + C(k) ¥(k) (B124)

1l

2(k+1) D(k+1) x(k+l) + V(k+1) (B125)

The plant noise, w(k) is generally assumed to be a zero mean gaussian

random process, uncorrelated with the measurement noise.
ie. E[wx | = o0 (B126)
T
B lat 2 @] = am s, (B127)

The model is illustrated in Figure B-1,

Oke+1d
vik+)
k)
: ZCk* 1)
UK + X k1) A ZClk+
et B (KD +
-
X ‘
Alk+t, k) z"

Figure B-1 Model With Plant Noise.
B.25



B.6.1 Finite Memory Filtering Algorithm for Models with Plant Noise

~

It is assumed that an estimate of x(k), x(k/k,%) and its
covariance, P(k/k,%), are available a priori. The finite memory
filtering involves the removal of old measurement at k-{, it is therefore
necessary to project x(k) and é(k/k,l) back to the time interval k-2.
Re-arranging (B124)

x(k) = A(k,k+1) x(k+1) =~ A(k,k+1) B(k) u(k)
- A(k,k+1) C(k) W(k) (B128)

Extending the time interval backward to k-2

i

x (k-2) A(k-2,k+1) x(k+l) =~ B(k-£,k+1)

Bw (k-2,k+1) (B129)

1}

where B(k-2,k+1)

X
z A(k-£,3+1) B(J) u(d)
3=k~

and Bw(k—ﬁ,k+1) A(k-2,3+1) C(J) ()

i
. MW

=k-%

Since w(j) is a random process, the best projection of x(k/k,%) back to

k-2, x(k-%/k,%), is given as:
x(k-2/k,8) = A(k-2,k+1) x(k+1/k,%) - B(k-%,k+1) (B130)

From the measurement equation (B125) the actual and estimated measurements

at k-4 are:
z(k-2) = D(k-2) A(k-2,k) x(k) - D(k-2) B(k-2,k)
- Dk~ B (k-2,k) + y(k-£) (B131)
_;_(k-i/k,sl) = D(k-1) A(k-2,k) é(k—z/k,z) - D(k-2) B(k-%,k) (B132)



Assuming, the estimate of the new states is of the form as (B71)

~ ~

X (k+1/k+1,2) x(k+1/k,2) + K(k+1) z(k+1/k,R)

- K(k—l)_é(k—l/k,%) (B133)
in which
:z—(k-f-l/k,ﬂ,) = __z_(k+l)—__;_(k+l/k,2)
= D(k+1)_;5(k+1/k,£) + V(k+1) (B134)
and
_;_(k-z/k,z) = z(k-2) - z(k-2/k,L)
= D(k-2) A(k-2,k+1) é(k+l/k,£)
-  D(k-2) Bw(k—ﬁ,k+1) + V(k-2) (B135)
Therefore:

il

x(k+1/k+1,0) x(k+1) - x(k+1/k+1,)

= x(k+1/k,%) - K(k+1) z(k+1/k,2)

+ K(k-2) z(k-1/k,2)
= [I - K(k+1) D(k+1) + K(k-2) D(k-2) ACk-2,k+1)] x(k+1/k,2)
- K(k+1) V(k+l) + K(k-2) V(k-2)

- K(k-2) D(k-42) Bw(kuﬁ,k) (B136)

In order to find the minimum variance estimate of x(k+1), the covariance

A

must be minimised. The covariance matrix of x(k+1/k+1,2) is:

PUctl/k+l,2) = E[xCe+l/k+1,2) X (ktl/k+1,0)] (B137)



It involves the correlation between the past plant noigse and the estimation

error X(k+1l/k,%).

It is the ignorance of this correlation that hinders the derivation of
the algorithm. It was attempted to assume that they are uncorrelated.

Such an assumption was not justified and the derived algorithm diverged when
tested with a model with plant noise,.

From the Kalman filtering point of view, the introduction of a plant
noise in the model is to prevent the gain going to zero. Once the gain is
zero, the estimation process is totally independent from the measurements.
This phenomenon is referred as data saturation, The finite memory Kalman
filter, on the other hand, keeps the gain at a constant value even without
the introduction of the plant noise. This is because the finite memory
Kalman filter can be treated as a weighted least squares estimator. Its
covariance matrix and gain depend on the length of the data window only.
Therefore, it is unnecessary to introduce a plant noise in the model if a
finite memory Kalman filter is used. However, if the introduction of the
plant noise is inevitable and a finite memory Kalman filter is called for,
the system may then be remodelled as a combination of two systems, a
deterministic model based on the measurable inputs and a stochastic model
to cover the random disturbances. Both models will then have no plant noise
and the finite memory Kalman filter can be used. This is very similar

to the work presented in this thesis.



APPENDIX C

DIGITAL SIMULATION RESULTS

Figure Target Ship Weight Reciprocal of
Motion Motion ratio (x) Decay time (a)
1 1 1.0 0.1
. 1 1 2.0 0.1
. 1 1 5.0 0.1
1 1 2.0 0.025
1 1 2.0 0.0025
. 2 1 2.0 0.025
. 3 1 2.0 0.025
. 1 2 2.0 0.025
1 3 2.0 0.025
Note:~

1) The parameters of the target motion is referred to Table 6-2.

2) The three ship motions are generated by passing three different

random sequence to three parallel filters described in Table 6-1.

3) The weight ratio, x, is defined as:

weight on realignments
weight on probability of target loss

4) The weight profile used is of the form:

w(t) = 1.0 - 0.99 x Exp(-Axt)

where the origin of t is at the initial engagement of a target.
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