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ABSTRACT 

Faculty of Engineering and Applied Science 

Doctor of Philosophy 

"DUAL DRIVE TRACKING SERVOMECHANISM" 

by Ronnie Chi-nang Leung 

The proposal is to put on top of a conventional slew motor in a piggy-

back fashion a tracking motor that can develop high torques over a limited 

range. Such a system will satisfy the required high tracking performance 

but it presents a new control action problem. A solution to the problem is 

proposed involving a microprocessor-based monitor to realign the slow motor 

occasionally. When the tracking system is designed to operate on board 

ship, then two signals need consideration: The absolute target motion in 

space and the disturbance from ship rolling. The monitor is mainly to 

model these motions. The target motion and ship rolling are modelled with 

a quadratic polynomial and an autoregressive model, respectively. The 

parameters of the models are estimated in real-time using a Finite Memory 

Kalman Filter, The theory of the filter is that the parameters are estimated 

based on a finite number of past measurements such that the expected 

estimation error squares is minimum. 

Anticipated target motion and ship rolling can be predicted using the 

estimated models. An optimal control strategy using the estimated models 

is then calculated. The control action is optimal in the sense that the 

probability of target loss weighted with the frequency of realigning the 

slew motor is minimal. The tracking motor responds directly to the target 

motion and disturbance. However, certain parameters of the tracking motor 

could be up-dated by the monitor to improve tracking performance. 
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SYMBOLS 

Included In this list are some of the symbols used throughout 
the thesis with an Indication in parentheses of the chapter In 
which they appear. 

A Transition matrix (2)(3)(4) 

B Delay operator (2) 

Control matrix (3) 

C Controlled output (1) 

Observation matrix (2) 

Time shifted matrix (3) 

D Disturbance (1) 

Damping coefficient (1) 

Observation matrix (3) 

G Transfer function (1) 

Gain matrix (3) 

I Moment of Inertia (1) 

J Cost function (5) 

K Gain matrix (3) 

M Augmented observation matrix (3) 

P Estimation error covarlance matrix ( 3 ) 

Q Covarlance matrix (2) 

R Reference Input (1) 

Covariance matrix (2) (3) 

S Time shift matrix (2) 

Augmented measurement noise covariance matrix (3) 

T Sampling period (2) 

Augmented measurement vector (3) * U 

*o'*l'*2 parameters (2)(3)(5) 

d observation vector (3) 

& altitude (2) 

window length (3)(4) 

p Probability density function (2) (5) 

Lead time (4) 

r Weight ratio (5)(6) 

t time in general (2)(4)(5) 

t current time (5) 
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t Prediction period (5) 

u Control vector (3) 

Velocity (2) 

White noise (2)(3)(4)(6) 

V Measurement noise (2)(3)(4) 

w Weight (5) 

X State vector (2)(3)(4) 

y Noise free measurement (3) 

z Measurement (2)(3)(4)(5) 

6 Parameter vector (2)(3) 

Y Autocovariance (2) 

e Error (1)(3)(6) 

8 Angular position (2) 

Moving-average parameters (2)(3)(4) 

Initial slew motor position (5) 

8 Slew motor position (5) 
S 

8p Limit of tracking motor (5) 

Target position (5) 

Correlation coefficient (2) 

0% Variance (2)(5) 

0 Autoregressive parameters (2)(3)(4)(6) 

^ Autoregressive parameters (6) 

w Plant noise (2) 

Superscribe 

A Estimate 

Estimation error 

* Optimal 

T Transpose 
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CHAPTER 1 

INTRODUCTION 

Radar is an acronym for Radio Detection and Ranging. It is an active 

device that operates by radiating electromagnetic energy, and detecting the 

presence and character of the echo returned from reflecting objects. Radars 

can be categorised as; search radars and tracking radars. As the name implies, 

a search radar is planned and designed with emphasis on detecting target 

presence. It may also provide some coarse information regarding the target. 

A tracking radar emphasises information extraction, that is, parameter 

estimation, from the target echo. It tries to estimate with sufficient 

accuracy the significant target parameters such as range, range rate, angle, 

and angular velocity once the target presence is established. Si.\c<& 

present day radars can perform both the functions adequately, such a binary 

classification of radars is not always possible. 

There are two phases of present day operation, acquisition phase and 

tracking phase. In the acquisition phase, the antenna is being rotated 

continuously to search for targets. Once the target presence is established 

the radar will be switched to the tracking mode which will keep the antenna 

in line with the target. Between the two phases, the tracking task is harder 

to achieve in terms of positioning the antenna accurately. The accuracy 

of the antenna is generally obtained by means of electric, or hydraulic, 

servomechanism which keeps the antenna in track with targets, 

1.1 Conventional Tracking Servo 

The simplest model of an angular positional servo used in tracking 

systems is as shown in Figure 1.1, It is designed to follow an input 

command. The system consists of a controller, and a motor, electric or 

electro-hydraulic, to position the load. 

In real life, disturbances such as winds, variable friction levels 

do exist affecting the performance of the servo. The situation can 

be visualised as in Figure 1,2, 

Suppose the transfer function of the controller is Gi(s), and the 

motor and load dynamics is G^Cs), the transfer function between the output 

position of the load, C, and the input command, R, is: 

f ( s ) = J ( 1 . 1 ) 

G^(s)G2(S) ^ 
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qure 1.1 Simple positional servo 
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iqure 1.2 Servo with disturbances 



It tends to unity as G^(s) GgCs) tends to infinity. In other 

words, a good closed-loop system asks for an open loop gain as high as 

possible. Now consider the effect of the disturbance, D, Ideally the 

value of the output, C, due to D should be zero. In this instance the 

transfer function between the output and the disturbance is: 

C ^2(8) 

5**' - 1 + G^(s)0^(.) (12) 

The effect of the disturbance, D, on the output tends to zero if 

G^(s) tends to infinity. Therefore, it is seen that the requirements 

to follow an input, C, and reject a disturbance, D, in general do not 

conflict; they both require G^(s) to be as large as possible. However, 

such is not the case if a noise, N, originates at the same point as the 

true input, R. The transfer function between the output, C, and the noise, 

N, is exactly the same as that for the output, C, and the input, R, given 

in equation 1,1, For the output, C, tends to zero for any given noise, N, 

G^(s)G^(s) must also tend to zero. This is clearly totally incom-

patible with the prime task of following the target accurately. 

From classical linear control theory the effect of disturbances, D, 

(e.g. wind, etc.) can be made small either by using high system gain or 

by increasing the type number of the controller. Besides the ability of 

rejecting disturbances, a high system gain also contributes to faster 

response. At present, the general design practise is to design the 

system transfer function (or filter) with the highest gain that the noise, 

N, will have minimal effect on the output performance, 

1,2 Dual Drive Tracking Servo 

A novel D.C, electric motor has recently been proposed [l2,42]. 

It has a gain characteristic much higher than conventional drives. 

Higher precision and faster response for tracking radar seems possible. 

Unfortunately, this motor has a disadvantage: It is capable of delivering 

a tremendously high torque only over a limited angle. Outside this 

working range the generated torque decreases drastically. One solution 

to compensate for this is to couple the high torque motor with a conven-

tional motor in a piggy-back fashion. Both motors complement each other 

to give a superior overall performance on accuracy. The new high torque 

motor is used as a tracking motor responding to targets whereas the 

conventional drives acts as a slew motor positioning the tracking motor 

to favourable position in target tracking. Such novel configuration will 

have a high system gain much higher than previously obtained without 
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gearing. However, conventional control strategy is no longer applicable 

to this novel dual drive configuration, A new strategy is required to 

explore the optimal benefit from the novel drive. 

The simplest way of implementing the dual drive tracking servo-

mechanism is as shown in Figure 1,3, Each drive is designed as a tracking 

servo with feedbacks forming a control loop. The tracking motor will 

have a higher bandwidth than the slew motor loop. The slew motor responds 

directly to the command signal. The tracking loop responds only to the 

error signal between the output from the slew motor and the input. The 

overall system output is the sum of both control loops. The system then 

tracks targets with the coarse adjustment from the slew motor in conjunc-

tion with the fine adjustment of the tracking motor. This strategy is 

simple, but the complexity of the system has increased. The physical 

construction of the newly proposed high torque motor imposes it to be 

mounted on top of the slew motor. Thus, all torques generated by the 

tracking motor must be transmitted via the slew motor which itself does 

not possess a bandwidth as high as the tracking motor. This coupling 

effect between the motors is difficult to eliminate. Hence, unwanted noise 

is inevitably induced within the whole system which has adverse consequences 

possibly the loss of target. The slew motor is then the weakest link 

within the whole system. 

S L E W 
M O T O R 
O U T P U T 

INPUT 
C O M M A N D 

T R A C K I N G 
M O T O R 
O U T P U T 

TRACKING 
MOTOR 
1 N P u T 

S L E W 
M O T O R 
L O O P 

Figure 1.3 Simple Dual Drive Tracking Servo, 



With the advance in today's microelectronics, a more direct approach 

can be considered. A microprocessor-based monitor is being integrated into 

the system as in Figure 1.4. The tracking loop will still respond directly 

to the error signal between the output of the slew motor and the input 

command. Its parameters will be adaptively adjusted by the monitor to 

accommodate the varying incoming signals. On the other hand, the slew 

motor is now relegated to a supporting role. It will remain inactive most 

of the time. Its main task is to provide a rigid base which the tracking 

motor can react upon. Occasionally it will be activated when the tracking 

motor will probably lose its target by reaching its limits. 

The philosophy behind the proposed control strategy is to tackle 

the weakest link of the system, the slew motor, directly. It has already 

been pointed out that the slew motor itself cannot transmit all the torques 

developed by the tracking motor. The only solution to it is to clamp the 

output of the slew motor by an external device, such as a brake. Once 

the slew motor is clamped, the tracking motor has a rigid base to react 

upon. It can then track the target with its high accuracy. Since the 

slew motor has been isolated from the system the coupling effect is 

virtually completely eliminated. However, the slew motor cannot be 

clamped forever because of the limited working range of the tracking 

motor. A way to get round this is to realign the tracking motor 

occasionally by the slew motor. The whole policy of realignment is to 

keep the frequency of putting the slew motor in action to a minimum that 

th.e high performance of the tracking motor will not be deteriorated. 

Even when realignment takes place the duration will be minimal. 

To implement the control strategy, a microprocessor-based monitor 

is called for. The monitor samples the input signal. With a crude model 

of the input signal already stored in the memory of the monitor the 

parameters of the model are estimated in real-time based on a finite past 

sampled data, A crude model is used because it is intended to work with 

all sorts of targets. Thus, exact model is not possible. Furthermore, 

the input signal may consist of non-stationary disturbances. Such 

disturbances may, however, be approximated by a stationary model over a 

finite length of the time history. Therefore, discarding the very old 

sampled data in the estimation process is very important, A finite 

memory Kalman filtering algorithm is then developed to estimate the 

parameters based on the most recently sampled data recursively. The 

input signal within a prediction period ahead is forecasted by extra-

polating the estimated model. The variance of the predicted trajectory 

is supplied from the parameter estimation algorithm. Assuming the 
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predicted trajectory as gaussian, the probability of target loss at any 

time within the prediction period can be evaluated. The monitor makes 

decisions when and where the slew motor will be realigned within the 

prediction period. The decisions are made by weighing the probability 

of target loss and the frequency of realignments. On the whole, modelling 

is the first step to superior performance in this strategy. The input 

signal that the servomechanism is supposed to work with in this thesis 

is described in the next section. 

1.3 Working Environment 

The tracking servomechanism is aimed to be working on board, and 

to be driving an antenna. The anticipated working situation is visualised 

as in Figure 1.5. The only signal obtained from the radar is the angular 

error, e, between the target and the electrical null axis of the antenna. 

The position of the antenna, (f>, relative to the ship is the output from 

the tracking servomechanism. The axis of the ship is, however, not 

stationary in space. The wave causes the ship to roll with an angle,0 . 

Normally, the target will be far away, the centres of ship rolling 

and the antenna can be treated concentric. The absolute position of the 

target at a particular time can be re-established by the relationship: 

Y = * + 8 + E (1.3) 

It is proposed that the absolute position of the target will be 

modelled rather than its relative position to the ship. This is because 

the absolute measurements can be modelled by deterministic model. Whereas 

the relative measurements consist of the rolling motion, 6, which is 

stochastic in nature. 

Tp = V + 8 (1.4) 

Measurement noise, such as thermal noise, is always associated with 

all types of sensors. The measured target position will be corrupted 

with noise as: 

= Y + n (1.5) 
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Figure 1.5 Annular relationship of 
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In practice, wind loading is the main disturbance on the antenna. 

This could be eliminated by employing a radome. The complete block 

diagram of the servomechanism with the slew motor out of action is shown 

in Figure 1.6. The output position of the servomechanism, (j), is 

related to the ship rolling and the demanded absolute position as: 

G (8) G (8) + Is* 
4) = — 5 ^ - — 2 8 (1.6) 

Is + D s + G ( s ) Is + D s + G ( s ) 
c c 

1.4 Conclusions 

A novel dual drive tracking servomechanism is proposed. This 

configuration is largely imposed by the non-linearity of a newly proposed 

high gain motor. This motor is superior to conventional motors without 

gearing, but it has a limited working range. In the proposed configuration 

a conventional slew motor is employed in realigning the tracking motor 

from time to time. 

In the working environment of the servomechanism, two motions need 

consideration. They are the target and the ship rolling motions, Re-

alignments are decided on the predictions of these two motions. 

In equation 1.6, neglecting the term associating with the absolute 

target position, Y, it was seen that the ship rolling motion will be 

counter-balanced passively if the system is very lightly damped, i.e. 

D tends to zero giving: 

(1.7) 

It is then tempting to suggest that if the system is to respond 

to a low bandwidth target, for instance a satellite, there will be no 

need to have a stabilising platform. However, it is not really the case 

in practice as there is friction between mechanical parts. 
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CHAPTER 2 

SIGNAL MODELLING 

The proposed strategy is described in the last chapter. It's main task 

is to determine when and where the slew motor should be realigned in order 

to minimise the possibility of losing the target due to the non-linearity 

of the tracking motor. If a realignment is called for, the tracking system 

is more concerned with the possible position of the target in the future than 

the target in the past, i.e. a prediction on the target trejectory is 

essential in the process of decision making. Mathematical modelling is 

thus the essence of the work of the project. The incoming demand signal is 

modelled by mathematical models on a microprocessor-based monitor. The 

optimal control law is derived based on the prediction models. Hence the 

models for the incoming demand signal must possess the appropriate 

characteristics of the actual signal. Unfortunately, it is sometimes 

impossible, or impracticable, to fit a model with the exact characteristics 

of the incoming signal. Normally, a highly accurate model can only be 

used at the expense of complexity, which in turn increases the computation 

time. Furthermore, the target can be of any type. No single mathematical 

model can cover all types of targets exactly. A general low order model is 

a good compromise between complexity and exactness. This, however, imposes 

a restriction that the motions can only be modelled within a short time 

interval since parameters of this model must vary with time. 

An analysis of the incoming signal is necessary before proceeding to 

model building. As it has been already discussed in Chapter 1, besides the 

target motion, a model of the ship rolling motion is also required. In real 

life the target will be in a three-dimensional space. The tracking system 

will then have two degrees of freedom: The bearing and the azimuth. In 

order to avoid the coupling effect between the two degrees of freedom, 

only the azimuth of the target on a two-dimensional 

plane is considered. The performance of this dual-drive tracking servo-

mechanism is evaluated upon the angular error on this two-dimensional plane, 

2.1 Target Flying at Constant Speed, Constant Velocity 

In general, a target flies at a constant speed and at a constant 

altitude for most of the time to conserve fuel. Manoeuvres will only 

take place when it is necessary. Referring to Figure 2.1, a target is 

flying at constant speed, u, at constant altitude, I. The angular 

profile of the tracker is: 

- 1 0 -



)(t) = - tan ^ (yt ( 2 . 1 ) 

The angular velocity is; 

)(t) = — sin 8(t) 

= % sin^ 0(t) ( 2 . 2 ) 

Th.e acceleration of the tracker can be written as; 

l(t) = 
deq) 
dt 

2u 
cos 6(t) sin 8(t) sin G(t) 

= — sin 2 6(t) sin 9(t) 

sin 2 0(t) (2.3) 

C R O S S I N G 
P O I N T 

TJ 

U 
T A R G E T 

Figure 2.1 Angles associated with tracking a target flying at constant 

altitude. 

It is seen therefore, that even for apparently straightforward 

cases of a constant speed target flying at constant altitude, the 

angular rate and the angular acceleration of the tracker is not constant. 

- 1 1 -



2.2 Constant Velocity Model 

Most tactical weapons' guidance systems require accurate tracking 

of manoeuvrable targets such as aircraft, ships and submarines. In 

the process of modelling the targets, one assumption is generally used: 

It is commonly assumed that targets, without manoeuvring, follow straight 

line constant velocity trajectories. In the 1970's, Singer [43, 44] 

first presented a model that accounted for the manoeuvre capability in a 

simple way. Basically, the model is still based on the consideration 

that targets normally move at constant velocity, either linear or 

angular. Turns, evasive manoeuvres and accelerations due to atmospheric 

turbulence may be viewed as perturbations upon the constant velocity 

trajectory. These perturbations are assumed to have a probability density 

as shown in Figure 2.2. The quantity A is the maximum acceleration 
' max 

which the target can withstand. 

/•Cu) 

. Pz 

' A, y/ 2 A max 

"•ma.* U 

Figure 2.2 Probability density of Target Manoeuvre. 

After the whitening of the perturbations, the model (for one 

dimension) is given as: 

x(k+l) = A(k+1, k) x(k) + G w(k) 

z(k+l) = C x(k+l) + V (k) 

(2.4) 

(2.5) 
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where; 

X (k) = ( x(k) x(k) u(k) ) ( 2 . 6 ) 

G ( 0 0 1 ) (2.7) 

C ( 1 0 0 ) (2.8) 

1 T 0 

A(k+l,k) = 0 1 1 

0 0 p (2.9) 

The term u(k) is the perturbation (manoeuvre) w(k) and v(k) 

are gaussian white noise with 

Q(k) = E [ u(k) u^^k)] 0 2 (1 _ p2) 
%n 

( 2 , 1 0 ) 

and 

R(k) = E [ v(k) v^Vk)] ( 2 . 1 1 ) 

2 
The values for the manoeuvre variance, a , and the correlation 

ni 

coefficient, p, depend on the manoeuvre characteristics of the targets 

being tracked. The correlation coefficient assures that as time between 

manoeuvre samples increases, the correlation between these samples 

decreases. 

The model presented by Singer is a good model combining simplicity 

with reliable representation of the modelled phenomena. However, the 

model is by no means without flaws. First of all, the implementation of 

the model is restricted to one class of targets once the quantity of 

maximum acceleration, the manoeuvre variance and the correlation coeffi-

cient are chosen a priori. The model is thus not a general one. 

Furthermore, as pointed out in the last section, the bearing rate and 

acceleration between the target and the tracker will not be constant 

even with the target flying at constant velocity, and constant altitude. 

The assumption of constant angular velocity is only justified if the 

target is far away. This can be seen from (2,1) and (2.2). Therefore, 

if the target is at close range, the model becomes insufficient. Now-

adays, conventional tracking systems have to switch between models, 

close range and long range models. 
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2.3 Quadratic Polynomial Model 

Restating (2.1) here 

e ( t ) = ^ + tan ^ (jt - -p) (2.12) 

XQ 

Considering a short time Interval only, the term (—t - — ) will 

have an absolute value of less than unity, hence: 

8(t) =% ^ i - J%)3 + . . ̂  

8(t) 2 _ _o + 1 (_0)3 _ (_0)2 + 

- i (7)^ ' ' ' (2 13) 

In view of (2.13) and the drawbacks of the constant velocity 

model, a quadratic polynomial may also be used to model the target 

trajectory. The model is: 

z(t) = a^ + a^t + a^t^ (2.14) 

where, 

z(t) = angular position of target at time (t) 

^o' *i, Bg ~ parameters 

t = time 

This quadratic polynomial model is very simple in concept. A 

curve is being fitted to the measurements. It is also capable of coping 

with the changes of the target characteristics that occurs with the 

target range. On top of this, this model has no restriction on the type 

of target being tracked. However, the model is not good enough to 

accommodate a manoeuvring target. One of the possible ways to get 

round this problem is to apply a window to the measurements so that the 

estimated parameters, and depend only on the measurements 

inside the window. The use of the model also imposes an assumption that 

the parameters are time-invariant within the estimating period but can 

vary with time over long periods. 

-14-



It is shown in Section 2.4 that this quadratic polynomial is closely-

related to the constant velocity model presented by Singer. If the 

parameters of the quadratic polynomial model is assumed to be random, 

the quadratic polynomial is identical to the constant velocity model with 

a very fast sampling rate. 

The polynomial model needs to be rewritten in state-space form in 

order to facilitate the parameter estimation. In state-space form, the 

model (2.14) can be written as: 

Act) = 0 (2.15) 

z(t) = ^^(t) x(t) + v(t) (2.16) 

where 

x'^(t) = ( a^ Sg ) ; (2.17) 

d'^Ct) = ( 1 t t" ) ; (2.18) 

z(t) = measured signal at time, t ; 

and v(t) = measurement noise at time, t. 

In discrete time form: 

x(k+l) = x(k) (2.19) 

T 
z(k+l) = ^ (k+1) x(k+l) + v(k+l) (2.20) 

where 

d^Ck) = ( 1 kT k^T^) (2.21) 

with sampling time T. 

-1£ 



There is one problem in association with this model. Since the 

vector ̂ (k) involves time it will become unacceptably large as time 

progresses. Eventually the values of the vector ̂ (k) will be too large 

for a digital computer to handle. One method to overcome this is the 

shifting of the time axis forward after each estimation interval, i,e, 

the vector _d(t) becomes constant in each parameter estimation process. 

For instance if the model is time shifted one step backwards, 

x'(k+l) = S X (k+1) ( 2 . 2 2 ) 

where 

X'(k+1) = time-shifted state vector, and 

1 

8 = 0 

0 

T T^ ^ 

1 2T 

0 1 (2.23) 

2.4 Constant Acceleration Model 

Re-defining the state vector in (2,17) as 

x ^ ^ k ) = ( 
*o 

= ( 
^2> (2.24) 

The polynomial model becomes: 

x(k+l) = X (k) (2.25) 

z(k+l) = d * ( k + l ) 3c(k+l) + v(k+l) (2.26) 

where 

T 
d (k) ( 1 kT i(kT)2 ) (2.27) 

and the time shift matrix S becomes: 

1 1 T 

S = 0 1 T 

0 0 1 i ( 2 . 2 8 ) 
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Combining the time shift operation, kT = Cn+1)T, with the 

polynomial model gives: 

'o \ 

b. 

/ 1 T iT 

0 1 T 

I 0 0 1 

Cn+1)T 

I b. 

kT 

(2.29) 

and 

z(kT) z((n+l)T) 

z(kT) 

( 1 

( 1 

(n+l)T J[(n+1)T] ) j \ + v(kT) 

nT 

\ '̂ 2 
kT 

i(nT)2) ^ ^ . 

0 1 T 

\ 0 0 1 

I \ \ 

tbsi / 
kT 

v(kT) 

= ( 1 nT ) / b 
o 

\ \ I 

+ v(kT) 

(n+l)T 

(2.30) 

Let 
l^o\ 1 "o \ 

, 

U J 

kT (n+l)T 

/ 1 T iT2\ 

0 1 T 

I 0 0 1 i 

I \ \ 

\ bg I 
kT 

(2,31) 

Therefore 

z(k) ( 1 nT (nT)2) % + v(k) 

(2.32) 
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and a \ 
o 

\ 
kT 

1 T 

0 1 T 

\ 0 0 1 1 

/ 1 T 1 

0 1 T 0 

\ 0 0 1 1 \ 0 

/1 T AT2 \ °o \ 

0 1 T 

\ 0 0 , / \ a, / 

kT 

T 

1 

0 

T 

1 

\ \ 

\ ^2/ 
(k-l)T 

(k-l)T (2.33) 

The whole polynomial model can be reduced with k setting to zero 

X (k+1) 

z(k+l) 

S x(k) 

d x(k+l) + v(k+l) 

(2.34) 

(2.35) 

where 

T 
X ( k ) <°0 °1 °2> (2.36) 

( 1 0 0 ) C2.37) 

The model (2.34) and (2,35) is now a Newtonian one. The elements 

of the state vector, x, are the position (ot̂ ), velocity Ca^) and 

acceleration (a ). From the matrix S, which is now the transition matrix, 

it imposes that the acceleration (a^) to be constant. 

and d 
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It is shown in [43] that the constant velocity model can be 

reduced to: 

x(k+l) = S x(k) + u(k) (2.38) 

(2,38) is identical to (2.34) except that a white noise sequence term 

y(k) is introduced. This in effect allows the parameters to be random 

variables. (2.38) is derived by discretizing a continuous time counter-

part, with an assumption that the product of the sampling period and the 

reciprocal of the acceleration time constant of the target is small. 

In this section, the constant acceleration model is actually derived 

from the quadratic model in the previous section. That is, the constant 

acceleration model can actually be treated as fitting a quadratic curve 

to the data. If the parameters of the quadratic model be treated as 

random variables, the quadratic model becomes a constant velocity model 

as presented by Singer. 

2.5 Deterministic Model for Target Motion 

The tracking system is supposed to work with all sorts of targets. 

When the system is tracking a target, it has no clear idea of what class 

and type of targets it is tracking. In view of this, the model for the 

target motion must be general and be capable of handling every class of 

target. Fortunately, nearly all types of targets follow a straight or 

nearly straight trajectory with constant velocity. Manoeuvres only 

occur occasionally. If a reasonable model of the target is known, its 

whole trajectory can be determined with sufficient confidence once its 

initial position is known. Thus, a deterministic model is considered 

to be appropriate in modelling the target motion. 

It was shown in the last three sections that the quadratic 

polynomial model, the constant velocity model and the constant accelera-

tion model are very similar to each other. There is actually nothing to 

distinguish between the quadratic polynomial model and the constant 

acceleration model as one can be derived from another. However, from 

the point of parameter estimation using Kalman filtering, the constant 

acceleration model is easier to implement than the quadratic polynomial 

model. The constant acceleration model was finally proposed for modelling 

the target motion. Although the constant velocity model is commonly used. 

It was not chosen because the constant velocity model is not truely a 

general model. It will not cover all classes of targets without modifica-

tion. It needs the knowledge of the class of target being tracked. For 
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generality this information was not assumed in this work. The constant 

acceleration model is not without problem. It imposes an assumption that 

the acceleration is constant. This is clearly not the case as pointed 

out in Section 2.1. There are two possible solutions to it. The 

parameters of the model may be treated as random variables as in (2.38) 

and are estimated based on the infinite past measurements. Alternatively, 

the parameters of the constant acceleration model may be treated as 

invariable over a finite window of the measurements and are estimated based 

only on the measurements within the window. The former solution, however, 

still requires some knowledge about the target, which is assumed un-

available, so as to establish the variance of the introduced plant noise 

term in (2.38). It is then the second solution which is adopted for this 

work. 

It seems reasonable to treat the parameters of the constant 

acceleration model to be random variables and to be estimated based on a 

finite window of the measurements. This is not chosen because of the 

difficulty in establishing a stable filtering algorithm for such conditions. 

In the derivation of such an algorithm, the correlation between the past 

plant noise and the estimation error is required. It is the inability of 

establishing this correlation that hinders the development of the 

algorithm (Appendix B). In the case of Kalman filtering algorithm, the 

introduction of a plant noise term to the model is in effect preventing 

the covariance matrix becoming zero [32, 35, 47] . It is pointed out 

in Chapter 3 that the introduction of a window stops the covariance matrix 

from decreasing, too. Thus, if both plant noise and windowing be 

introduced simultaneously, it is suspected that the covariance matrix 

might be forced to increase, which in turn increases the gain, and thus 

would cause instability to the algorithm. 

It is interesting to mention here that the polynomial model can be 

formulated as a stochastic process: An integrated moving-average process 

(Section 2.9). 

2.6 Autoregressive - Moving - Average (ARMA) Model 

ARMA models are stochastic models based on the idea of Yule [49] 

that a stationary time series in which successive values are highly 

dependent can be usefully regarded as generated from a series of 

independent inputs. These inputs are usually assumed to be white noise. 

The concept can be visualised as a white noise sequence passing through 

a linear filter. The shaped output from the filter will then resemble 

the properties of the stochastic process, (Figure 2.3). The mentioned 

linear filter may be an ARMA model. 
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Figure 2.3 R e p r e s e n t a t i o n of a time series 
as output from a linear filter 
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d) 

Figure 2.4 ARHA model 
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Mathematically, Figure 2.4, an ARMA model is of the form: 

4(B) z(t) = 0(B) u(t) (2.39) 

where 

(f)(B) - 1 + (f)-B + ^ B + . . . + <}] B ; 

6(5) = 8 + 8 B + + . . . + 6 -
o J. z n ' 

z(t) = measured signal at time, t 

u(t) = gaussian inaccessible input at time, t 

B = delay operator (z ^) 

(j)'s = autoregressive coefficients 

and e ' s = moving - average coefficients 

The model is normally referred to as an ARMA(m,n) where m is the 

order of the autoregressive part and n is the order of the moving-average 

part. The process may be thought of in two ways. Namely: 

i) As a mth order autoregressive (AR(m)) process 

<f'(B) 2( t) = e(t) (2.40) 

with e(t) following the nth order moving average (MA(n)) process 

e(t) = 8(B) u(t) (2.41) 

ii) As a nth order moving-average process 

z(t) = 8(B) b(t) (2,42) 

with b(t) following the mth order autoregressive process 

(j)(B) b(t) = u(t) (2.43) 

So that, 
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*(B) z(t) = 8(B) *(B) b(t) 

= 8(B) u(t) (2.44) 

The ARMA(m,n) process is defined as a stationary process only 

if the characteristic equation (()(B) = 0 has all its roots lying outside 

the unit circle in the Z ^ - plane [s] . Similarly, the process is said 

to be invertible if the roots of 6(B) = 0 lie outside the unit circle in 
— 2 

the Z plane. 

2.7 Stochastic Model for Ship Rolling Motion 

The ship rolling motion behaves differently from the target 

motion. The waves of an open sea is generated by random influences, 

such as winds, gust, and atmospheric changes, etc. The waves in turn 

roll the ship that is sitting on the sea. Therefore, the ship rolling 

motion can be treated stochastic. The idea of Yule [49] is then suitable 

in applying to the modelling of the ship rolling motion. It is known 

that the spectrum of the motion is dominated by three frequencies with 

periods of six, seven and eight seconds as shown in Figure 2.5. 

Another property of the motion is that it is not truely a stationary 

process. However, it may be treated stationary over a finite period 

of the motion. 

Figure 2.5 Spectrum of Ship Rolling Motion. 

Clearly the model for the ship rolling motion must demonstrate 

a similar spectrum. Consider a transfer function, in S-domain: 
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H(s) = 
Ks 

2 
s + as + b 

(2.45) 

It has a peaky frequency response at frequency if the damping 

is light (Figure 2.6). The coefficient K scales the general shape of 

the frequency response. The coefficient a, which is the product of the 

damping ratio and the natural frequency, governs the peaky shape of 

the response, b is the square of the natural frequency. The position 

of the peak is determined by the damping ratio and the natural frequency. 

For a lightly damped filter, the peak will be very close to the natural 

frequency. 

iHfs)) 

KS 

Figure 2.6 Typical Frequency Response of H(s) = 
s + as + b 

If three of these transfer functions, each having different 

coefficients, the ship rolling motion can be modelled by forming the 

three transfer functions in parallel (Figure 2.7). The result transfer 

function is: 

5 4 3 2 
2 n s + n s + n^s + n s + n s 
—(s) = — —— 
u^ ' 6 . 5 . 4 . 3 2 s + d s + d s + d s + d s + d s + d 

O ^ O 6 1 O 

(2.46) 
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uct> 

K, S 

Figure 2.7 Model of Ship Motion in S-domain. 

Applying the Z-transformation, B = e 

the transfer function in (2.46) becomes: 

(2.47) 

e + 0 , B + El + 6 3 ^ + e + e + ei B* 
= o 1 2 3 4 5 6_ 

u - . - -,2 . , „3 . , „4 , , _6 1 + 4i.B 4- (|) B + (J) B + B + (j) B + <j) B" 
J. ^ o 4 5 6 

(2.48) 

thus, (2.48) indicates that an ARMA(6,6) will describe the ship motion 

fully. 

The ARMA model can be reduced to the state-space form [29] of 

x(k+l) = A(k+l,k) x(k) + C u(k+l) 
u(k) 

(2.49) 

z(k+l) = d x(k+l) (2.50) 
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where; 0 0 0 0 0 
-•e 1 

1 0 0 0 0 

0 1 0 0 0 
-*4 

A(k+l,k) = 
0 0 1 0 0 

-'̂ 3 

0 0 0 1 0 
-*2 

0 0 0 0 1 
-*1 1 

= 0 0 0 0 0 e 
0 

®6 % ®4 ®3 ®2 ' 1 / 

/ = ( 0 0 0 0 0 1 ) 

(2.51) 

(2.52) 

(2.53) 

and the states are: 

x^(k+l) Xg(k) + 9g u(k) 

XgCk+l) x^(k) 4»g Xg(k) + 8 u(k) 

X2(k+1) = XgCk) Xg(k) + 8 u(k) 

x^(k+l) XgCk) Xg(k) + 8g u(k) (2.54) 

Xg(k+1) XjXk) <t>2 Xg(k) + 82 u(k) 

Xg(k+1) XgXk) Xg(k) + u(k) + 8 u(k+l) 

In this form, the parameters <j>'s and O's in (2.51) and (2.52) can 

only be identified by an extended Kalman Filter algorithm [24, 32, 35, 

40, 46, 47]. Not only is the estimate of the state vector x(k+l) 

redundant, the overhead in computation is high. The parameters must 

be augmented into the state vector thus pushing the effective system to 

an order of eighteen. 
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A simpler way to estimate the parameters 0*6 and B's without 

estimating the states is to rearrange (2.48) as 

6 
2(k) - - E (j) z(k-i) + E e u(k-i) + 0 u(k) (2.55) 

1=1 ^ 1=1 1 ° 

d^(k) _g + 8^ u(k) (2.56) 

where 

T 

A ~ ( -z(k-l) -z(k-2) .... -z(k-6) u(k-l) u(k-2) . . u(k-6)) 

(2.57) 

- " ( "̂ 6 ®2 ) (2.58) 

By the assumption of statlonarlty, the ARMA process can be 

written mathematically as: 

g/k) = 6Xk-l) (2.59) 

z(k) = ^^(k) ^(k) + Gg^k) u(k) (2.60) 

with a priori statistics 

E [u(k)] = 0 ; E [u(k) u(j)] = 6 
jk ( 2 . 6 1 ) 

(2.59) and (2.60) are suitable for Kalman filtering to estimate 

the parameter vector _g. No redundant operation exists in the algorithm 

because of the elimination of the state vector. 

When implementing the model (2.59) and (2.60) to both canonical 

Kalman filter and Finite Memory Kalman filter in section 3.4, it was 

found that there are difficulties in estimating the moving average 

parameters to a satisfactory level in most cases. It is suspected that 

this is due to the interaction between the poles and zeroes. This 

deficiency is described further in Chapter 3. Due to this problem, an 

AR model was adopted to approximate the ship rolling instead. Assuming 

an ARMA model to be invertable, it can be written as an infinite order 

autoregressive model, such that; 

9 ^ (B) 4>(B) z(k) = u(k) (2.62) 
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or: zCk) = - Z 
1=1 

z(k-l). + 0 uCk) C2.63) 

= - Z 

1=1 

zCk-1) + u(k) + E (2.64) 

Since forms a convergent series, e may be made arbitrarily 

small for a finite p [s]. The value of p to be used can be determined 

by using an AR(p) model to track a time series of ship rolling motion 

such that the mean squares error will be minimum. In fact, from the 

results In Chapter 6, the mean squares error decreases exponentially 

with, p, as in Figure 2.8, when an AR(p) model is used to track an 

ARMA(6,6) model. Thus, there is a limit on p that no significant 

improvement will be achieved by going to a higher order. 

a: 

s 
cc 
ui 

(/) 
Lli 
(Z < 
3 
0 
(/} 

z 
ui 

P 

Figure 2.8 Typical Relationship between Mean Squares error and 
order p. 

2.8 Measurement Noise in ARMA Models 

So far, the ARMA and AR models mentioned in last section have not 

explicitly Included the measurement noise. In fact, the effect of 

measurement noise is in general Included In the parameters of the models. 

Considering a process with two white noise inputs u (k) and u (k). Each 
1 2 

of these inputs is filtered by the following models to give outputs z^(k) 

and z^Ck), respectively: 
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*i(B) z^(k) = 8 (B) u^Ck) 

4^(B) z (k) igCB) UgCk) 

(2.65) 

( 2 . 6 6 ) 

z^(k) may be considered to be the signal and ^^(k) to be coloured 

noise. The sum of z^(k) and z^dc) is the observed signal plus noise, 

and is given by: 

y(k) = z^(k) + ZgCk) (2.67) 

Substituting for z^(k) and ^^(k) from (2.65) and (2.66) into (2.67) 

yields: 

y(k) = (B) 8^(B) Ui(k) + fg'l (B) e^CB) U2(k) 

4^(B) Og/B) y(k) = fgCB) 8^(B) u^(k) + 4^(B) S^/B) u^/k) 

(2.68) 

The right hand side of (2.68) forms the sum of two moving average 

processes which may be represented by a single moving average process 

allowing (2.68) to be written as: 

fgCB) y(k) = 82(B) Ug(k) (2.69) 

where Ug(k) is another white noise process. Therefore the additive 

noise u„(k) is included in the coefficients of #1 (B) and 8 (B). 
^ 3 3 

Consequently, there is no difference between signal noise and measurement 

noise. The above fact is shown by Box and Jenkins [s] in more detail. 

2.9 Polynomial as Stochastic Model 

Following the same procedure as in Section 2.4, the polynomial 

model (2.19) and (2.20) with time shift (2.22) can be written as: 

/ % 

1 

I 
(k+l)T 

1 T T^ 

0 1 2T 

\ 0 0 1 

/ % \ 

(2.70) 

\ â  

kT 
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y((k+l)T) = C 1 0 ) / a o \ 
+ v((k+l)T) 

Ck+1)T 

(2.71) 

I a 

\ J 

plant noise to (2.70) 

/ 1 T T^ 

0 1 2T 

I 0 0 0 

(k+l)T 

\ a„ / 

kT 

\ Wg/ 

kT 

(2.72) 

Where and are mutually independent gaussian white noise processes. 

Transforming (2.71) and (2.72) to Z-format: 

1 T T2\ 

0 1 2T 

\ 0 0 1 

/ a 

^2 I 

"o \ 

\ "2 / 

(2.73) 

y = ( 1 0 0 ) / a \ + v_ 

2 ' z 

(2.74) 

From (2.73) 

I a o\ 
I - z 

1 T T^ 

0 1 2T 

\ 0 0 1 

- 1 

^o \ 

1 

\ ^2 I Z 

/ 1-r^ 
-1 

- T Z - T ^ Z 

0 1-z-l - 2 T Z 

\ 0 0 l-z~ 

/ W o \ 

2 I z 

(2.75) 
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det 

— 1 — 1 _2 
1-z -Tz -T z 

-1 
0 1-z -2Tz 

0 0 1-z 

- 1 1 - z-1) 3 (2.76) 

Therefore: 

- 1 

I 1-z 

0 

-Tz 

1-z 

- T S Z - L 

-2Tz 
- 1 

- 1 

0 1-z 

0 

\ 0 

Tzr^Cl-zTl) T2z"l(l+z"l)\ 

- 1 - 1 
2Tz (1-z ) 

(i-zri)2 / 

(2.77) 

Substituting (2.77) into (2.74) yields: 

d-z"^)^ Yg = (l-zrl)2 Tz-l(i_z-l) T2zrl(l+z"l)) / \ 

\ s I 
+ d-z"^)^ V, 

= d-z"^)^ OJ + Tz"^ d-z"^) «, + T^z"^ d+z"^)a)^ 
OZ Iz 

-1 3 
+ (1-z ) V, (2 .78) 
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On the right hand side of (2.78) the terms o) , o), , a)„ and v_ 
oz X z Zz 

are all white noises which can be grouped and can be represented by 

one single moving average process. Thus (2,78) can be viewed as an 

Integrated moving average process. The coefficients of the equivalent 

process can be determined by equating the autocovariances of the process. 

The autocovariances of the right hand side of (2.78) are: 

2 9 2 4 2 2 
Y = 6 a + 2 T a, + 2 T a„ + 20 a 
0 o 1 2 v 

Y = -4 0 ^ 0 ^ + T^ 0 - 15 a ^ 
1 o 1 2 v 

Ys = + 2 (2.79) 

2 
Y* = -o. 
'3 V 

Yj = 0 j ^ 4 

where 

Var rw ] = o 
L ozj o 

2 

["2j - S ' 

2 
Var [ ] = o 

Since the highest order among the four moving average processes 

on the right hand side of (2.78) is three the equivalent single moving 

average process is of the order three [s]. Assuming the equivalent 

single moving average process is 

y'(k) = (8 + e^z ^ + 6gZ ^ + 8gZ ^) a(k) (2.80) 

with a(k) being a white noise process having the statistics of 

E [a(k)] = 0 

Var [a(k)] = 1, 
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The autocovariances of the equivalent process (2.80) are: 

I'o' ' 

- »o«l * + G2S3 

Y2' = V 2 + 

I's' " ®o®3 

Yj' = 0 j > 4 

The coefficients 0^, 6^, 8^, and 0^ can then be evaluated by-

equating (2.79) and (2.81). 

The above analysis indicates that a polynomial model with its 

parameters as random variables is equivalent to an integrated moving 

average process. An m-order polynomial can be treated as an IMA(0,m,ra) 

process. Since an integrated moving average process can be used with 

non-stationary time series [s] it is also true in the case of polynomial 

models. 

2.10 Conclusions 

A constant acceleration model was proposed for the target motion. 

Basically the constant acceleration model and the quadratic polynomial 

model are identical but are presented in different forms. Thus, the 

modelling of the target motion can be visualised as a quadratic curve 

fitting exercise. 

The proposed model imposes an assumption of constant acceleration. 

This assumption can, however, be relaxed by windowing the measurements. 

The proposed model requires no a priori knowledge about the target as 

opposed to the constant velocity model advocated by Singer. The constant 

acceleration model can then be a truely general model. 

The case of constant acceleration model with plant noise 

introduced was dropped by two reasons. The variance of the plant noise 

must be related to the characteristics of the target being tracked. Thus, 

an a priori knowledge of the target, which is assumed unavailable, is 

required to establish the required variance. 

Secondly, the introduction of plant noise and the use of windowing 

both have similar effect on the parameter estimation process, namely 

preventing the covariance matrix of the estimation error from being zero. 
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Furthermore, it is easier to interpret the physical meaning of a window 

than the variance of a white noise, 

A stochastic AR model was proposed for the ship rolling motion. 

In the early stage, it was thought that, based on the knowledge of the 

spectrum of the motion, an ARMA(6,6) process will fit the ship rolling 

motion fully. However, in the process of estimating the parameters using 

a recursive filtering algorithm, such as Kalraan filter, a suspect poles 

and zeroes interaction causes difficulties in estimating the moving 

average parameters in the ARMA model. A sixth order AR model was 

demonstrated to be adequate in estimating an ARMA(6,6) model in the 

simulation trials. Windowing is also suggested in the modelling of ship 

motion because of the non-stationary characteristic of the motion. It 

must be stressed that the order of the AR model must be chosen based on 

experiments with actual ship rolling motion. Throughout the work of this 

thesis, the ship rolling motion is assumed to be generated by passing a 

white noise process through three parallel second order linear filters 

as in Figure 2.7. 

From the derivation in Section 2.9, it was found that a polynomial 

model may actually be viewed as an integrated moving average model. 

Hence, a non-stationary process may actually be modelled using polynomial 

fitting. This confirms further that polynomial models can cover all 

types of events. 
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CHAPTER 3 

FINITE MEMORY FILTERING 

Every measurement will inevitably be corrupted with unwanted noise. 

This noise ought to be filtered out in some way, and furthermore, the 

parameters of the models need to be up-dated frequently. In modelling the 

two input signals: target .trajectory and ship rolling motion, low order 

models are used. Also, the parameters may be time varying over long periods 

of time. Therefore, the filtering algorithm that is to be employed must 

be capable of rejecting the noise and give an estimate of the parameters. 

More important, the algorithm must be in a recursive form because this 

will require less computation time which best suits real-time applications. 

The well established Kalman Filter named after R.E. Kalman[ 25, 26] who 

developed it in the 1960's is an optimal linear filter algorithm. In fact, 

many other filters algorithms, e.g. Bayes filter algorithm, the Least Squares 

estimator, the minimum variance estimator, etc., can be treated as equivalent 

to the Kalman filter. However, the original Kalman filter gives an estimate 

based on the whole infinite past history of sampled signals. Thus a modified 

version of the Kalman filter that only uses finite past data was required 

for this work. 

3.1 Model for Random Processes 

Let x,(k) be the random state vector of time kT, where T is an 

arbitrary sample time. 3c(k) is assumed to obey the following recursive 

relationship. 

x(k+l) = A(k+l,k) x(k) + B(k) u(k) (3.1) 

where 3£ (.) is nxl vector, ja ( .) is pxl vector. A(k+l,k) is a nxn transi-

tion matrix, B(.) is a nxp control matrix. 

The measurement at time (k+l)T is denoted by: 

z(k+l) = D(k+1) x(k+l) + v(k+l) (3.2) 

Here ^(.) and ][(.) are mxl vectors and D(.) is a mxn observation matrix. 

v(.) is a gaussian random variable with mean value zero. i.e. 

E [v(k)] = 0 (3.3) 
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and E[ vCk) v (j) ] = RCk) 6 
jk 

where; 6. jk 
j=k 

(3.4) 

(3.5) 

Tlie Measurement noise, v^.) is assumed to be uncorrelated with 

the state vector, jc(.) . The initial state vector is assumed to be 

random with a guassian distribution and is independent to the measurement 

noise. 

3.2 Statement of Problem 

The problem is to estimate the value of the state vector x(k) in 

the model (3.1) given the data from time k-£ up to the current time, 

i.e. z(k), ^(k-1), ^(k-2), . . ., ̂ (k-&) and ^(k-1), u(k-2), . . 

u(k-£-l), where &+1 is the number of data for estimation (Figure 3.1). 

The notation x(k/j,J!,) is used to mean the estimate of x(k) based on &+1 

data points from time instant j-& upto and including the time j. The 

time k will always be greater than or equal to j. i.e. the state vector 

is estimated at current time and is predicted into the future. 

H 
z 
UJ 
Z: 
ai 
K 
3 
cn 

X X 

W I N D O W L E N G T H 

TIME 

Figure 3.1 Windowing of Time Series 
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The developed estimator should he a linear combination of the 

measurements and would give minimum variance of error. In other 

words, it is going to be a linear minimum variance estimator. 

3.3 Finite Memory Kalman Filter 

Based on the idea of adding one new measurement and dropping one 

old measurement from the estimate simultaneously a finite memory version 

of the Kalman filter can then be developed either from a minimum variance 

approach or from a Least Squares approach, etc. The algorithm of the 

Finite Memory Kalman filter is stated without proof as follows: 

x(k+lA,^) = A(k+l,k) x(k/k,Z) + B(k) u(k) (3.6) 

P(k+l/k,&) = A(k+l,k) P(k/k,Z) A^(k+l,k) (3.7) 

G(k+1) = P(k+l/k,&) M^(k+1) [M(k+1) P(k+l/k,&) M^(k+1) + S(k+1)]~^ 

(3.8) 

x(k+l/k+l,2) = [l - G(k+1) M(k+1)] x(k+l/k,£) + G(k+1) U(k+1) 

(3.9) 

P(k+l/k+l,&) = [l - G(k+1) M(k+1)] P(k+l/k,&) (3.10) 

with M(k+1) = 

S(k+1) = 

D(k+1) I 

D(k-£) A(k-&, k+1) I (3.11) 

R(k+1) 0 

0 -R(k-£) (3,12) 

U(k+1) = / _z(k+l) 

i _ z ' ( k - J l ) / (3.13) 

_z'(k-£) = _z(k-Jl) + D(k-Jl) g(k-&,k+l) (3.14) 

and g(k-&, k+1) = A(k-£, k-£-l) 3(k-£-l,k) 

+ A(k-2, k+1) B(k) u(k) 
— B(k-&-l) ju^k-2-1) (3.15) 

The term g(k-&, k+1) arises from the projection of the new 

estimate back to the time of the old measurement being dropped out of 

the window. The whole algorithm preserves the appearance of the canonical 

Kalman filter, but with the sizes of the variance matrix S(.) and the 
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vectors UC.) and M(.) being doubled. The whole derivation can be 

found in Appendix B. The block diagram of the filter is shown in 

Figure 3.2a. 

For completeness, the canonical form of the Kalman filter for the 

same set of system and observation equations (3.1) and (3.2) is given 

below: 

&(k+l/k) = A(k+l,k) &(k/k) + B(k) u(k) (3.16) 

P(k+1A) = A(k+l,k) P(k/k) A^(k+l,k) (3.17) 

K(k+1) = P(k+l/k) D^\k+1) [D(k+1) P(k+l/k) D^(k+1) + R(k+1)]~^ 

(3.18) 

^(k+l/k+1) = [l - K(k+1) D(k+1)] x(k+l,k) + K(k+1) _z(k+l) (3.19) 

P(k+l/k+l) = [l - K(k+1) D(k+1)] P(k+l/k) (3.20) 

The block diagram of the canonical Kalman filter is shown in 

Figure 3.2b. By comparison, if the vector D(k-&) in (3.11) is set to be 

a null vector, both algorithms give the same result. 

3.4 Experimental Results 

3.4.1 Implementation on Deterministic Model. 

The developed Finite Memory Kalman Filter algorithm was 

it as a parameter est 

a^ of a quadratic polynomial 

tried out as a parameter estimator. The parameters, a^, and 

y(t) = a^ + a^t + a^t^ (3.21) 

were estimated from the measurements: 

z(t) = yCt) + v(t) (3.22) 

where the measurement noise, v(t), has a variance, R, of 10.0. 
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In the experiment, (3.21) and (3.22) were re-written 

in the vector form: 

x(k+l) = x(k) (3.23) 

T 
z(k+l) = d (k+1) 3c(k+l) + v(k+l) (3.24) 

where x^(k+l) = ( a^ )^^^ (3,25) 

d^(k+l) = ( 1 (k+1) (k+1)^ ) (3.26) 

For the first &+1 measurements, a canonical form of 

Kalman filter was used. From the (£+2)th measurements onwards, 

the estimation was switched to the Finite Memory Kalman Filter. In 

this case the complexity of the algorithm has been reduced due to 

the simplicity of (3.23) - the transition matrix is an identity 

matrix. The algorithm becomes: 

G(k+1) = P(k/k,£) M^Ck+l) [M(k+1) P(k/k,£) m'̂ CJc+l) + S(k+1)]"^ 

(3.27) 

x(k+l/k+l,i) = [l - G(k+1) M(k+1)] x(k/k,£) + G(k+1) U(k+1) 

(3.28) 

P(k+1A+1,£) = [l - G(k+1) M(k+1)] P(k/k,&) (3.29) 

with M(k+1) = d^(k+l)\ 

\d'^(k-£)/ (3,30) 

S(k+1) = I R(k+1) 0 

\ 0 -R(k+1) 

U(k+1) = z(k+l) 

z(k-i) 

(3.31) 

(3.32) 

However (3.26) is undesirable for computation since the 
2 

term (k+1) will soon become exceptionally large. The parameter 

vector was then time shifted after each cycle of the whole 

algorithm 

x'(k+l) = C x(k+l) (3.33) 
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where x'(k+1) = time-shifted state vector, 

and 1 1 1 

C = 0 1 2 

\ 0 0 1/ 

(3.34) 

The matrix C in (3.33) is the same as the matrix S in 

(2.28). In each time-shift operation, the covariance matrix has 

to be up-dated, too. 

P'(k+l/k+l,&) = C P(k+1A+1,£) (3.35) 

With the help of the time-shift operation, (k+1) and 
2 

(k+1) remain constant throughout the whole simulation trial. 

The estimate, a^, a^ and a^ are plotted against time in 

Figures 3.4, 3.5 and 3.6. In Figure 3.4, it clearly shows that the 

estimation with a memory length of a hundred data points adapts to 

sudden changes in parameters easily whereas the one with memory 

length of four hundred data points shows difficulty in accommodating 

the step changes in a^. The results reveal that a Finite Memory 

Kalman Filter with suitable window length gives good estimation 

even with a model that does not anticipate any external disturbances. 

However, the uncertainty associated with the estimates is highly 

dependent upon the window length, which can be observed from 

Figures 3.10, 3.11 and 3.12. If the window length is so short that 

it is in the same order as the degrees of freedom in the 

estimation process, the uncertainty will be unacceptable. 

The results from the above experiment are also applicable 

to the proposed constant acceleration model since the polynomial 

model is exactly the same as the proposed model. By treating the 

state vector as the coefficients of the polynomial, the true state 

vector will then be invariant with time. It then allows a clearer 

view in the performance of the estimator during the whole experiment. 

If the constant acceleration model was used, the first two elements 

in the state vector will be time dependent and will become very 

large eventually. 
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The performance of the parameter estimator may be improved 

by making the window length adaptive to sudden target manoeuvres 

and to unmatching model order (Figure 3.3), If target menoeuvres 

exist , shorter window length will accelerate the adaption of 

parameter changes. If the model order is too low, once again a 

shorter window length will remedy the deficiency. The criterion 

used in the adaptor may be to minimise the mean square error of 

the estimator by means of the windowing length. If a longer window 

length is desired, a canonical Kalman Filter will be implemented 

instead of the finite memory version. If a shorter window length 

is required, an algorithm for dropping old measurements only (such 

as one in Appendix B), will be used together with the finite 

memory Kalman Filter. 

A D J U S T 
W t M O O W 
L E N G T H 

PERFORMANCE 

R A W 
MEASUREMENT 

W I N D O W E D 
MEASUREMENT E S T I M A T E 

ADAPTOR 

ESTIMATOR WINDOWING 

Figure 3.3 Adaptive Window Length. 

3.4.2 Implementation of ARMA Models 

Restating the state-space form of an ARMA(m,n) model 

(2.59) and (2.60) here: 

_B(k) = _$(k-l) 

z(k) = d^(k) ^(k) + I 

and d are (m+n)xl vectors. z, 

(k) u(k) 

1 and u are scalar. 

(3.36) 

(3.37) 

(3.36) and (3.37) are similar to (3.23) and (3.24). Hence, 

the Finite Memory Kalman Filter algorithm may be applied to 

estimate the parameter vector . It is shown by Box and Jenkins 

[s] that the input u(k) can be obtained from the one-step ahead 

prediction error, i,e. 
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m ^ n . 
3 (k) u(k) = zCk) + Z 4\(k) z(k-i) - E 8. (k) u(k-i) 

1=1 ^ i=l ^ 

(3.38) 

Therefore: 

u(k) = -7—i— e(k) (3.39) 
6 0 0 
o 

where; 

m n 
e(k) = z(k) + E (j) (k) z(k-i) - I 6 (k) u(k-i) 

^ (3.40) 

The parameter 8 (k) is estimated from (3.39) using the 

assumption that u(k) is white and with unit spectral height. 

E[| e^(k) u(k)|2] = 8^2(k) = E[E2(k)] (3.41) 

where £ ^ 

E[e^(k)] can be computed as E[e^(k)] = ~ ^ (k-i) 

(3.42) 

(£+1) is the number of data points that the estimate 6 and 0 
— o 

are based on. The estimation algorithm as (3.27), (3.28) and 

(3.29). 

g/k+l/k+l,&) = [l - G(k+1) M(k+1)] ^(k/k,i) + G(k+1) u(k+l) 

(3.43) 

G(k+1) = P(k/k,&) MT(k+l) [M(k+1) P(k/k,&) MF(k+l) + 

S(k+1)] "1 (3.44) 

P(k+l/k+l,A) = [l - G(k+1) M(k+1)] P(k/k,&) (3,45) 

with S(k+1) = 

\ 0 -8 (k-&) / 
o ' 

^ m 
8 (k+1) 0 

(3.46) 
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These, in conjunction with (3.39) and (3,42), form a 

complete algorithm for identifying the parameters of the ARMA 

model. 

This formation of ARMA model, (3.36) and (3.37) was first 

appeared in Srinath and Rejacekaran [46]. They originally gave 

one example employing the canonical Kalman filter to estimate the 

parameters. It has been extended here to the Finite Memory 

Kalman Filter. The combination of (3.36), (3.37) and Kalman 

Filter is the most efficient one. Box and Jenkins [8] suggested 

an algorithm which is not suitable for on-line implementation and 

requires human interference and pattern recognition. Lee [29] and 

Gersch [l9] attacked the problem of estimating the autoregressive 

parameters of a mixed ARMA model. However no attempt was made by 

either to estimate the moving-average parameters. Mehra [33] , 

Krause and Graupe [28] estimate the parameters by forming the ARMA 

model to the state-space form as: 

x(k+l) = A(k+l,k) x(k) + B 
u (k+1) 
u (k) 

(3.47) 

and 

z(k+l) = d'̂  x(k+l) (3.48) 

where the parameters of the ARMA model are in the matrices A and 

B. The estimation becomes a non-linear problem. 

The algorithm, (3.43), (3.44) and (3.45) was used on 

several types of ARMA processes both in the expanding memory form 

and finite memory form. The estimates are all plotted out in Figures 

3,13 to 3,34. The mean absolute percentage error (MAPE) are listed 

in Tables 3.1 and 3.2. Srinath and Rejacekaran [46] gave only an 

example of a simple ARMA(2.1) as the one in Figure 3.15. They 

showed that the estimates are consistent. The estimates converge to 

the true value with probability one. From the results, it is clear 

that convergence is guaranteed, 'The rate of convergence is, however, 

linked to the individual model. The most disturbing discovery 

was from the four ARMA(2,1) processes. It was found that if 

the poles and zeroes are located on the same side of the imaginary 

axis on the z-plane, the rate of convergence is terribly slow, 

(Figures 3,19, 3,22), This has the implication that the adaptation 

to changes in parameters will be poor. When the same processes used 

in finite memory algorithm the estimates fluctuated widely around 
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the true values (Figures 3,28, 3.32). One possible explanation 

to this phenomenon is there exists some sort of pole and zero 

interaction. Therefore, from a numerical estimation point of view, 

it concluded that the ARMA process is not a suitable choice for 

modelling the stochastic ship rolling even though it is parsimonious. 

It is then envisaged that a higher order AR model may be more 

suitable, to approximate the parsimonious ARMA model. 

3.5 Conclusions 

A finite memory version of the Kalman filter is presented in this 

chapter. The finite memory version resembles the canonical Kalman filter. 

It possesses the merits of the Kalman filter and removes some problems 

inherited with the Kalman filter. 

It is noted that both the canonical Kalman filter and the finite 

memory version shown in Figure 3.2 closely resemble the original structure 

of the system model, (3,1) and (3,2), In the case of the canonical Kalman 

filter, it is driven by the innovation ̂ (k+l/k). In the finite memory 

version case, it is driven by two innovations, _2(k+l/k,2,) and £(k-£/k,Jl) , 

Both z/k+l/k) and z(k+l/k,&) are identical. In both algorithms, the 

estimates are up-dated with the prediction together with the weighted 

innovations. 

The Finite Memory Kalman Filter has its own defects. Firstly, 

if a window of £ data points is planned, the first i measurements must 

be filtered with a canonical Kalman filter or some other filtering 

algorithms. It is because in the first I measurements, no old measurement 

is to be discarded. It must be stressed that initialising the old 

measurements with zeroes cannot be used during the first £ measurements 

due to the properties of the gain matrix and the covariance matrix 

described in later paragraphs. During the first I measurements, the 

Finite Memory Kalman filter may still be used only by setting the 

terms in D(k-£) in (3,11) to zero. This arrangement turns the filter 

to a canonical Kalman filter. However, a high proportion of the compu-

tation time is wasted in multiplying numbers with zero. From the (£+l)th 

measurement onwards the normal Finite Memory Kalman filter can then be 

used. The second imperfection of the Finite Memory Kalman filter is 

the inability of removing old measurement alone. It is because the 

algorithm is derived based on the one step prediction. The closely 

related algorithm for removing old measurements only is in a slight 

different form and is presented in Appendix B. This measurement 

removal algorithm is very useful if adaptive windowing is employed. 
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The gains, K(k+1) and G(k+1), of both algorithm depend on the 

signal to noise ratio. In general, the gain decreases as the measurement 

noise variance increases. This result is intuitively appealing, since 

as R(.) increases, the gain will decrease in order to avoid introducing 

excessive measurement noise into the estimate. In the case of the 

canonical Kalman Filter, it can be shown that [4o] the gain, K(j), 

asymptotically approaches zero for large j. As K(.) approaches zero, 

the error covariance matrix, P(.), appraoches zero, too. Eventually the 

estimation procedure becomes decoupled from, or independent of, the 

measurement. It enters a condition known as data saturation. This 

condition can lead to serious divergence problems. One of the major 

causes of divergence is inaccuracies in the modelling process used to 

determine the system and measurement model, due to failure of linearisa-

tion, lack of complete knowledge of the physical problem or the 

simplifying assumptions necessary for mathematical tractability. Errors 

in the statistical modelling of noise variances and means or unknown 

input may also lead to divergence. A plant noise, ^(.), in the system 

model, introduced either from the numerical or modelling points of view, 

prevents the occurance of such divergence. The presence of the plant 

noise inhibits the gain matrix being zero and sets a lower bound on the 

covariance matrix. The gain matrix, with plant noise added, decreases 

as the variance of the plant noise, Q(.), decreases. However, it still 

has the problem of the need to assess the variance of the plant noise. 

On the other hand, the Finite Memory Kalman filter has a built-in 

property of stopping the gain and covariance matrices of going to zero 

due to the term -R(k-£) in (3.12). If the measurement noise is 

stationary, i.e. R is constant over time, the gain matrix and the covar-

iance matrix also will be constant once the Finite Memory Kalman Filter 

starts, as in the case of the parameter estimation example given in 

Section 3.4.1 (Figures 3.7 - 3.12). The constant covaraince matrix 

can be explained from the view of a Least Square estimation method 

since Kalman Filter is also a least square estimator. The covariance 

depends only on the number of available data points. The more data 

points, the more accurate the estimate. 

Another source of divergence is round-off errors, inherent in any 

digital implementation of the filter algorithm, which may cause the 

error variance matrix to lose its positive definiteness or symmetry. This 

sort of divergence is still associated with the Finite Memory Kalman 

Filter, One possible way to get around of this sort of divergence is 

to form an expression calculating the square root of the covariance 
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matrix instead of the actual covarinace matrix [37, 40], Where the 

covariance matrix is required in the algorithm^ the square of the square 

root covariance matrix is used which guarantees symmetry. 

The Finite Memory Kalman filter is superior to the canonical Kalman 

filter with plant noise incorporated in the system model on the basis 

that it adapts to any changes in the state which is not anticipated in the 

system model more easily. In Figures 3.4 and 3.5 it can be found that 

the Finite Memory Kalman filter adapts to the new parameter quickly after 

one window length. This shows that the algorithm actually gives 

estimates based on the measurements inside the window. One might argue 

that the canonical Kalman filter with appropriate plant noise in the system 

model can have the same, or even better, response to the changes. 

However, if the plant noise has a large variance the response to sudden 

changes is fast, but with penalties of high uncertainty and large 

proportions of measurement noise on the estimate. On the other hand, 

if the plant noise variance is low, the opposite is true. There is no 

guidelines on setting the variance. 

Due to the incapability of the Finite Memory Kalman filter to start 

the estimation process, the algorithm is therefore powerless to remedy 

the error introduced in the initial guess of the state. There are ways 

of minimizing, or eliminating, the initial error. If the canonical 

Kalman filter is used to start the process, the initial error effect can 

be minimized by using very large initial covariance matrix implies 

there is no confidence on the initial guess of the state. However, if 

the window length is short compared with the time constant of the 

canonical Kalman Filter, the covariance matrix may still be artifically 

very high in entering the Finite Memory Kalman Filter. This may then 

affect the performance of the algorithm. The best way to eliminate the 

initial error is to apply either a Bayes Filter [ss] or a non-recursive 

Least Squares Estimator on the first few measurements to provide a better 

estimate before starting the Kalman filter. Although the Bayes Filter 

is essentially the same as the Kalman Filter [ss], the formulation of the 

Bayes Filter allows it to be started with no a priori data. 

The developed Finite Memory filtering is not the only way of 

tackling the problems of mismatching models and sudden changes in model 

parameters. A Fading Memory Kalman filter described by Morrison [ss] has 

a similar effect as the Finite Memory version. The Fading Memory Kalman 

Filter is derived from minimising the cost. 
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x(k/k^ = S A ) f B-'ck-i) U(k-l) s'" '"-^3.49) 
— — i=o 

where 

U(k-i) = £(k-i) - D(k-i) A(k-i,k) x(k/k) (3.50) 

t -t 

The characteristic of this cost function is the term g where 

0<3$1. The observation _z<k-i) is being made to enter into the estimate 

of 3c(k/k) with an importance depending on its staleness (i.e. the 

elapsed time since z(k-i) was obtained). The introduction of 

the stress function 3 k ^k-i with B<1 means that thememory length does 

not expand steadily as in the case of the canonical Kalman filter, but 

that the observations are forgotten or discounted at a rate exponentially 

proportional to their age. At the extreme when 6=1, the Fading Filter 

becomes a canonical Kalman filter. At the other extreme, when 6=0, the 

estimate is based purely on the single most recent observation. This 

then suggests that by making 6 sufficiently small the effective memory 

length can be kept sufficiently short. However, the exact window length 

is not available. 

Both the Fading Memory Filter and the Finite Memory Filter have 

their usefulness and weakness. The Finite Memory Kalman Filter cannot 

work with system models having a plane noise term. This is due to the 

inability to establish the correlations between the estimation error and 

the plant noise in the past. However, it can be certain that any error 

arises from a sudden change in the state is completely eliminated from 

the estimates after a time equivalent to one window length. The Fading 

Memory Filter, on the other hand, cannot provide the same guarantee on 

the estimates but can work with models having plant noise in it. 

The most intriguing result from the experiments was the behaviour 

of the algorithms in estimating the parameters of ARMA models. It was 

found that the moving average part, 8's, were in general more difficult 

to converge to the true value than their counterparts ^'s. Moreover, 

the positions of the poles and zeroes of the ARMA models do play a part 

in the performance of the algorithms. It suggests that there are pole and 

zero interactions in the algorithm. Nevertheless, the results indicated 

that the Finite Memory Kalman Filter is a useful tool with a lot of 

potential. 
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CHAPTER 4 

FORECASTING 

Prediction of the input signal, target motion and ship rolling, plays 

an important part in deciding the optimum strategy opted for the slew 

motor control loop. The minimum variance forecast of both motions is 

developed in this chapter. 

4.1 Deterministic Model 

In Chapter 2, a constant acceleration model was proposed for the 

target trajectory. The model is: 

x(k+l) = A(k+l,k) x(k) (4.1) 

z(k+l) = d^ x(k+l) + v(k+l) (4,2) 

where 
/ 1 T 

A(k+l,k) = 
0 1 T 

\ 0 0 1 

(4.3) 

d^ = ( 1 0 0 ) ( 4 , 4 ) 

The best estimate x(k/k,jt) is given by the Kalman Filter algorithm 

described in the last chapter. This is the best estimate of the state 

at time k based upon £ measurements from the k-Z to time k inclusive. 

The Orthogonal Projection Lemma [32]; states that the linear 

minimum variance estimate of the state based on the measurements is the 

orthogonal projection of the state onto the linear measurement space. 

Denoting the measurement space by Y(k), the estimate x(k/k,£) is in 

the space of Y(k), i.e. x(k/k,£) e Y(k). The estimation error, 

x(k/k,^-) is orthogonal to the vector space Y(k). Thus, if y is any 

vector in Y(k); 

E [ x^(k/k,&) y] = 0 (4,5) 

The predicted target position at time k+p will be: 

x(k+p/k,f,) = A(k+p,k) ^(k/k,£) (4.6) 
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Since x(k/k,Jl) belongs to the measurement space Y(k) any 

linear transformation of x(k/k,Jl) will also be belonging to the vector 

space Y(k). xXk+p/k,&) in (4.6) is truely a linear transformation of 

3c(k/k, Z) and hence belongs to the vector space Y(k) , too. 

Considering any vector y which belongs to the vector space Y(k) 

and defining T as: 

T = E [{x(k+p) - A(k+p,k) &(k/k,£)}^y] (4.7) 

from (4.1) 

x(k+p) = A(k+p,k) x(k) (4.8) 

and the decomposition of 2£(k) 

x(k) = &(k/k, 2) + S(k/k, £) (4.9) 

(4.7) becomes: 

T = E [x'^(k/k, £) A^(k+p,k) y ] (4.10) 

T T 
The term A (k+p,k)y is a linear transformation of y. A (k+p,k)y 

is in the vector space Y(k), but X(k/k, £) is orthogonal to the vector 

space Y(k). Thus, T in (4.10) is zero showing that x/k+p/k,&) in (4.6) 

is an orthogonal projection of x(k+p) onto the measurement space Y(k). 

The prediction &(k+p/k, £) is also a minimum variance forecast because 

of the orthogonal projection lemma. The covariance matrix of the 

forecast is: 

Var (&(k+p/k, &)) = Var (A(k+p,k) «(k/k,£)) 

= A(k+p,k) P(k/k,&) A^(k+p,k) (4,11) 

Therefore: 

z(k+p) = d^ X(k+p/k, A) (4.12) 

and 

Var(2(k+p)) = d^ A(k+p,k) P(k/k, £) A^(k+p,k) d (4.13) 

The variance of the predicted target position increases to the 

fourth power of the lead time p. 
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Assuming the measurement noise v(k) in (4.2) is gaussian, the 

measurement z(k) will also be gaussian. Any linear combination of a set 

of gaussian distributed random variables is also gaussian. Hence, the 

estimate x(k/k,£) and the forecast ,x(k+p/k,&), which are the linear 

combination of the measurements, are gaussian, too. Consequently the 

forecast z(k+p) might be treated as gaussian. 

One must be cautious that the above statements are made on the 

assumption that the model fits the target trajectory exactly. In fact, 

this is not the case. Converting the constant acceleration model back 

to polynomial form, 

2 
z(k+p) = a^ + a^(k+p) + a^Ck+p) (4.14) 

But, as presented in Chapter 2, the target trajectory will only be 

represented exactly by an infinite power series, i.e. 

z*(k+p) = a^ + a^(k+p) + a (k+p)^ + . . . (4.15) 

Thus, the true prediction error is: 

z*(k+p) = z*(k+p) - z(k+p) + z(k+p) - z(k+p) 

= o[(k+p)^j + z(k+p) 

= a^ + a^(k+p) + agCk+p)^ + o[(k+p)^] (4,16) 

The estimates from the Kalman Filter algorithm are then not truely 

unbiased. Therefore, the forecast is biased with z*(k+p). (4.13) can 

only be viewed as the lower bound variance of the forecast. The bias can 

however, be reduced by using short window length. 

It is then necessary to emphasise that the lead time, p, should not 

be too large. Otherwise, the bias of the forecast will be too large. 

Furthermore, the confidence on the forecasts reduces quickly with time 

as can be noted from the expression of the lower bound variance. 
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4.2 Stochastic Model 

The prediction of ARMA type models has been thoroughly discussed 

by Box and Jenkins. It is briefly described in this section. 

An ARMA process can always be expressed as an infinite order moving 

average (MA) process. 

z(k) = 6 u(k) + 8, u(k-l) + , , , + 6 u(k-n) + . . . (4.17) 
o 1 n 

or as an infinite order autoregressive (AR) process: 

z(k) + 6 z(k-l) + . . . + (j) z(k-m) + . . . = 0 u(k) (4.18) 
1 m o 

Let the present time be t, a forecast at time t+p which is to be a 

linear function of current and previous measurements z(t), z(t-l), z(t-2), 

. . ., will also be a linear function of current and previous random 

inputs u(t), u(t-l), u(t-2).... 

Suppose the best forecast at t+p is: 

z(t+p) = 6 u(t) + 6 u(t-l) + 0 „ u(t-2) + , . . (4,19) 
p p+l p+2 

Using (4.17), the prediction error is: 

z(t+p) = z(t+p) - z(t+p) 

3 u(t+p) + 6 u(t+p-l) + . . . + 0 , u(t+l) 
o 1 p-l 

+ % { 8 - 8 ^4} u(t-j) (4.20) 
j=o P+J 

Using the assumption that u(t) is a zero mean white noise and 

E [u^(t)] = (4.21) 

The variance of the prediction error is; 

Var rz(t+p)l = (0 ^ + 0 ^ + . . . + 0 ^ ) a ^ (4.22) 

o 1 p-l u 
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It will be minimised by setting 9^^^ ~®p+j' Then the optimum 

prediction error is: 

z(t+p) = 6 u(t+p) + 0 u(t+p^l) + . . . + 6 , u(t+l) (4.23) 
o i p-1 

Then: 

z(t+p) = 0 u(t) + 0 , u(t-l) + . 
P P+1 

= E [z(t+p/t)] (4.24) 

where E [z(t+p/t)] denotes the conditional expectation of z(t+p) given 

knowledge of all the z's up to time, t. Thus, the minimum variance 

forecast for time t+p is the conditional expectation of z(t+p) at time 

t. 

Since E [ z(t+p)] = 0 (4.25) 

the forecast is unbiased. The variance of the prediction error is then: 

Var (z(t+p)) = (0 ^ + 9 ^ + . . . . +0 ^ ) a ^ (4,26) 

o 1 p-1 u 

From (4.23), it shows that: 

u(t+l) = z(t+l) / 8 . (4.27) 

Once again, the forecast is unbiased and has minimum variance only 

if the order of the model matches the time series. A low order AR model 

may still give a small bias if the ship rolling motion is closely an 

invertable ARMA model. 

The simplest and most efficient way to obtain a forecast for time t+p 

at current time, t, is through the difference equation of the model. In 

the case of an AR(m) model (4.18) is used. The measurements z(t-j), j=0, 1, 2, 

. . , , m, which have already happened are left unchanged. The measurements, 

z(t+j), j=l, 2, . . p-1, which have not yet happened are replaced by their 

forecast z(t+j). The random input u(t+p) which have not happened is replaced 

by its expected value, zero. The process can then be predicted recursively 

into the future. The lower bound variance is available from (4.26). The 

coefficients 0^, 0^, . . can easily be evaluated from (4.28) recursively. 
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(-*2 Go - *1 

j 
3. = -(Z *. 8 ,)/* ; 1 <j ( m 
J i-l ^ ° 

m 
and 8 = -(E <f). 9 )/ip ; j>m (4.28) 

J 1=1 ^ ° 

4.3 Conclusions 

In this chapter, the minimum variance predictions for the target 

trajectory and the ship rolling motion were shown based on the chosen 

models, constant acceleration model and autoregressive model. These 

forecasts are normally biased due to the unmatching models. Thus, the 

target trajectory and the ship rolling motion are predicted in a sub-

optimal way. The significance of the biases can be reduced by fitting 

the model to the motions over a short period of time, and also by 

not predicting the motions too far ahead. The latter restriction is 

not unrealistic. If the motions are predicted too far into the future, 

the variance on the forecasts will become so high that there is no 

point of considering them in the determination of the control strategy. 
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CHAPTER 5 

DECISION MAKING 

The strategy proposed for the novel dual drive tracking servomechanism 

was described in Section 1.2. It reduces the complexity of the novel 

system to a single drive system most of the time. The slew motor will only 

be put into action if and only if there is a high possibility of losing 

the target. The main theme is to realign the slew motor as infrequently as 

possible while keeping the tracking error down to a minimum. The decision 

making process is to determine the optimal time and optimal position for the 

slew motor if realignment is required. The word "optimal" has no absolute 

meaning. It implies that there must be some kind of measure based on which 

the decision is superior to all the other alternatives. A decision which 

is optimum in one measure may not necessarily be optimum in another measure. 

Thus, the choice of the measure must be closely related to the particular 

application. The measure must be able to reflect the relative importance 

of the various objectives. In the case of the dual drive tracking servo-

mechanism, the criteria in determining the optimal strategy for the slew 

motor are to track the target at high accuracy and minimum interference from 

the slew motor. The interference arises from the combination of the proposed 

piggy-back configuration and the fact that the slew motor has a lower torque 

characteristic, and hence a lower bandwidth, than the tracking motor. If 

the output shaft of the slew motor is not clamped by external means, the 

tracking motor will not have a firm base to react any generated torque to 

its inertial load. The proposed method of eliminating the interference is to 

apply a brake on the slew motor output shaft when it is de-activated. 

The non-linearity of the proposed cost funcation makes a complete analytical 

solution to the optimisation very difficult. In Section 5.2, an approximation 

is available for the optimal position of the slew motor between two 

realignments. Alternatively, if the number of realignments is constrained to 

one (Section 5.3) the optimal amount of realignment, but not the optimal time, 

can be expressed analytically. The proof of this expression is by mathematical 

induction from an approximate solution. 

5.1 Proposed Cost Function 

One possible cost function based on the previously mentioned 

criteria was proposed: 

t 
,P 

t 
o 

w^(t) { 1 - Pr (8g(t) - 8^ $ e^/t) 3 8g(t) + 8^) } dt 
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1 2 
WgCt) { sign(8g (t) - (t))} dt (5.1) 

where . 
b 

Pr (a $ X $ b) = ^ p(x) dx 
a 

p(x) = probability density function of x 

and 

sign(x) 
-1 x<0 

0 x=0 

1 x>0 

The proposed cost function only considers the predicted trajectory 

of the target relative to the ship, 6^(,)i over a prediction period ahead 

from the current time, t^, to the end of the period, t^. The first 

definite integral is the weighted sum of the probability of target loss 

over the period t^ to t^. The second integral, which involves the 

sign function, relates to the number of realignments within the same 

period. The term 8g*(t) is the slew motor position at a time interval 

infinitesimal small after the time t and 9^ (t) is the slew motor position 

at a time interval infinitesimal small before the time t. The appearance 

of the sign function is due to the fact that only the number of realign-

ments is important. The amount of each realignment is of no importance 

from the point of interference once the time of realignment is fixed. 

The terms w^(.) and w^C.) are time variant weighting factors on the 

probability of target loss and number of realignments, respectively. 

The weighting factors w^(.) and WgC.) put different emphasis on the 

two objectives: probability of target loss and frequency of realignments, 

according to the requirements of the system. A target will first appear 

on the radar when it is still very far away. During this stage, the 

accuracy on tracking the target may not be so crucial. Should the target 

be lost during this time there will be sufficient time to re-establish 

the presence of the target on the radar. In other words, frequent re-

alignments of the slew motor is acceptable. As time progresses, with the 

target moving closer and closer the risk of losing the target is 

becoming progressively greater, A lot of damage may be done if the 

target were lost during the second stage, when the target is extremely 

close to the radar, the driving system of the antenna is no longer capable 

of the high rate of movement to keep up with the target. Even the novel 
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drive will not have the physical characteristics required to cope with 

the situation in the final stage. Hence, the performance of the tracking 

servomechanism is not considered during the closing stage of the tracking. 

The profile of the acceptable risk in the first and second stages of an 

engagement with a target may be treated as an exponential function as 

shown in Figure 5.1. The weighting factors w^(.) and w^(.) will then 

increase exponentially in the forms of: 

( t ) = Q [ L - exp (- a^ t ) ] (5.2) w. 

w ( t ) = R [l - C exp (- a t ) 1 (5.3) 
2 ^ 

where the origin of t is the time of the target's initial appearance on 

the radar. 

The control variable of the cost function is the predicted 

trajectory of the slew motor during the prediction period. The resulting 

trajectory for the slew motor will not be a continuous function. An 

idealised slew motor trajectory will be of the form as shown in Figure 

5.2. The slew motor is assumed to be able to perform an ideal step 

movement. The anticipated slew motor trajectory is a summation of a series 

of step functions occuring at different, unevenly spaced, time intervals. 

The optimisation problem is to determine the number of realignments 

within the prediction period, and the timing and amount of each realign-

ment. To the knowledge of the author, this cost function is unique to 

this work. No optimisation of this form has yet been treated. Due to 

the peculiar non-linearity and the uncertainty of the degrees of freedom 

on the control variable, it is envisaged that an analytical solution is 

not feasible. It will therefore be necessary to resort to numerical 

methods. Before an attempt on the numerical solution to the problem, 

the characteristics of the proposed cost function with certain assumptions 

were studied. It gave some insight to the behaviour of the cost 

function. 

5.2 Optimal Position for Slew Motor between Two Realignments 

In Figure 5.2, if the times of two consecutive realignments, t^, and 

tg, were known, the slew motor position between these two realignments 

must be optimal. The cost function for the time intervals concerned is; 

J = ' w(t) { 1 - Pr (8g(t) - 6^ < e^Xt) $ 8g(t) + 8^)} dt 

^1 (5.4) 
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As it is reasonable to assume that the measurement noise in the 

signal is gaussian. Together with the fact that the estimates obtained 

from the finite memory Kalman filter are linear combinations of the 

measured data, the predicted signal will also be gaussian. Therefore, 

the probability density function of being on target at time t is: 

. -(e-Ct) - G (t))2 
p(6 (t)) = exp { i — } (5,5) 

a(t) 2 a (t) 

2 

where 6^(t) and a (t) are the mean and variance of the target position 

at time t. Thus (5.4) becomes: 

^2 
= f *(t) { 1.0 - ; p(8m(t)) d6 (t) } dt (5.6) 

The optimal slew motor position, 8 *, is obtained by minimising (5.6), 

i.e. setting the derivative w.r.t. 9^ to zero. 

If = 0 (5.7) 

Differentiating (5.6) w.r.t. 9^ gives: 

35 ' - I • " > ' +6. - P<«T<"'le -e ' 
S t ^ S 2 8^ & 

(5.8) 

Hence if 8 is optimal: 

, "=2 

' »(« P(e^(t))lg dt = ' .(t) p(9^<t))|g dt 

s « t^ s £ 
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Substituting (5.5) into (5.9) 

t^ /2ir a(t) CT(t) 

> ,,, , ,1 , V i A ^ 2 i ^ , 2 

t. /2tt a(t) ait) 

In order to obtain an approximate explicit expression for 8^*, the 

exponential function is approximated by the first two terms of its 

Binomial series: 

exp(-x) = 1 - X (5.11) 

and (5.10) reduces to: 

> W U , , , , J 

t^ CT(t) a(t) 

a(t) 

' (8 * + 8 _ 8 (t))2 dt 

t; G"(t) * * T 

= ; (8 * _ 8 _ dt 

o3(t) * 

;= zijl 8 , dt = fill GyCt) dt 

t^ a (t) t^ a (t) 
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Therefore the optimal slew motor position is given by: 

3 * 
s 

^2 
; w(t) 

o3(t) 
3^(t) dt 

(5.12) 

w(t) 
dt 

If 6^(t) is given in discrete form between intervals a and b 

b 
Z L ( i ) T' 

Gg* = b (^13) 

i=a a^(i) 

w(i) 
E 
i=a o3(i) 

(5.13) and (5.14) show that the variances of the forecast play an 

important role in determining the optimal slew motor position. The 

forecasts with higher variances (i.e. less confidence) will contribute 

less to the optimal value. If the terms w(t) and a(t) are constant 

with time, the optimal position will simply be the mean value of the 

forecasts within the time period. This is actually the case due to 

the symmetry of the gaussian probability density function. 

5.3 One Realignment During the Prediction Period 

In (5.1), the weighting of the realignments are explicitly 

expressed in the cost function. However, the cost function may be 

simplified by constraining one realignment within the prediction period. 

(5.1) can be rewritten as: 

t 
P 

J = J w(t) { 1.0 - Pr(8g(t) - $0^(t) < 8g(t) +6 ) dt 

(5.14) 

The weighting on the number of realignments can now be implicitly 

introduced by varying the duration of the prediction period. One realign-

ment within a long period will mean less interference from the slew 

motor. Thus, the probability of keeping track with the target is higher. 

On the other hand, one realignment within a short duration will result 

with frequent positioning of the slew motor overall. Since minimising 
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(5.14) is the same as maximising: 

t 
1 fP 

J = J w(t) Pr(8g(t) - 8^ < e^/t) < 8g(t) + 8^ ) dt (5.15) 
t 
o 

The optimisation is concentrated on (5.15) only. Again, assuming the 

forecasts, 0^(t), to be normally distributed as in Section 5.2: 

\ 6 ( « -

(5.16) 

8 (t) - 8 (t) 

Let 2 = (5.17) 
^ 0(t) 

d 8 (t) 
dz = (5.18) 

/2 a(t) 

Substituting (5.17) and (5.18) into (5.16) yields; 

^2 

^ ^ (-z^) dz dt (5.19) 

^o =1 

where 

Gg(t) - 8 - 6 (t) 
z = (5.20) 

a(t) 

0 (t) + 6 - Q (t) 
2 = (5.21) 

/2 a(t) 

By definition, the error function is 

2 * 2 

erf(x) ~ "7̂  / exp(-w ) dw (5.22) 
o 

The cost function (5.19) becomes: 
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t 

^ { erfCZg) - erf(z^) } dt (5.23) 

Since the slew motor position, G^Ct), is assumed to be a step function as 

Ggft) = u(t-T) (5.24) 

where 8^ is the initial slew motor position at time t , A8 is the 

amount of the realignment and 

1 t>x 

= < O t<T (5.25) 

The control variables of the cost function are A8 and t. The optimal 

values of A0 and t are obtained by differentiating the cost function w.r.t. 

Ae and t and by equating them to zero respectively, i.e. 

1^' = ° ^ 1 ! ^ = 0 

Differentiating (5.23) w.r.t. T gives 

1 tp 

^ erf(z^) } dt (5.26) 

o 

and differentiating (5.23) w.r.t. A8 gives 

M e ' ^ 4 ^ ( " A " (5-27) 

o 

(5.26) and (5.27) can be simplified by approximating the error function 

by a MacLaurin series 

erf(x) = (x - 2 - + 5^^ _ + . , . > (g gg. 

Consider the first two terms only in (5.28), and substitute into (5.26) 

yields: 

, t 3 3 
3J _ fP *(t) 3 =2 =1 ^ ^ 
3T - ^ 7%-- ^7 (=2 - -3- - =1 + -3-) dt 

t 
o 

- 1 0 8 -



w(t2. 
~~7it 

29, 

9 t ^ /2 act) 

xt)) 
z 

/z a Ct) 3/2 a ct) 

(5.29) 

} dt 

Using the expression (5.24) 

3J 
3 t 3 t 

w(t) 
"Trr 

20, 

/2 a(t); /2 a^(t) 

3/2 a^(t) 
dt 

3 t 

w(t) 
/TT 

28, 

/2 act) 

(Bp + AG - 8,(t))' 

/2 a^(t) 

3/2 a (t) 
dt 

3J 
3 t 

W(T) 
29, ^ (80 /T)) 

/2 a(T) / 2 a ( t ) 3 / 2 O ( T ) 

W ( t ) 

/ t t 

29, 

- /2 a ( t ) 

), (8 + A 8 
X, o 

/2 a^(T) 3/2 a ( t ) 

Equating (5.30) to zero yields: 

(5.30) 

( 8, - 8,(T» C 8g + A8 - 8yCT))' OR 

A8 = 2( 8^X7) - 8 ) (5.31) 

Similarly, (5.27) becomes; 

3 3J 
9A8 aA8 

T 

J 

t 

W( t) 
/ i t 

28, (8, - 8,(T))' 

/2 a ( t ) /2 a^(T) 3/2 a"(T) 
}d-
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^ »Ct) , "l '•"o * " -

SAG ^ "7w 
/ 2 a ( t ) / 2 a ^ t x ) 

3/2 a ( t ) 

} dt 

3jl *p / 2 w ( t ) 8^ 

; g (8^ + A8 - 8^(t)) dt (5.32) 

T 0 (t) 

Equating (5.32) to zero yields: 

t 
w^ t) ^ 

' — = — ( e + AG - 8 ( t ) ) d t = 0 ( 5 . 3 3 ) 

T o^U:) ° T 

The optimal values of T and A0 are obtained by solving (5.31) and (5.33) 

Now consider the error function to be approximated by the first 

three terms in (5.28), the cost function (5.23) becomes: 

/ , J ^ ^ ^ 
/r 

t^ /2 a(t) 3/2 a^(t) 20/2 a5(t) 

P, 0 2 
+ ( ^ ; — ) (9 - e^xt))^ 

3/2 a (t) /2 a (t) 

* (G. - } dt 
4/2 a®(t) ° 

fp w(t) , 

T T T " ^ : + /2 a(t) 3/2 a (t) 20/2 a (t) 

84^ * 2 
+ ( ; ) (8^ + AG - GmCt)) 

2/2 a (t) /2 a (t) 

+ ^ (8 + A9 - 8 (t))^ } dt (5.34) 
4/2 aS(t) ° T 
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Differentiating (5.34) w.r.t. x and equating it to zero yields: 

. 2 
^ - GfCT)) 

2/2 a (T) /2 a^CT) 

a /\ 4 

- ( - - ^ ) (0 + A6 - 6 (T))^ 
2 / 2 cr̂ (T) / 2 CT (T) 

^ (6 + A8 - 8_(T))4 

4 / 2 a (T) 
(5.35) 

It is clear that (5.31) is also a solution to (5.35) regardless of the 

number of terms taken in approximating the error function. Hence, by 

the method of mathematical induction, the optimal amount of realignment, 

AS is exactly twice the difference between the forecast at the time of 

realignment and the current slew motor position. This statement holds 

even the exact integral for the error function is used. 

2 
0 
t-
w 
o 
a 

or 
0 
h 
o 
5 

3 
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<0 

erC%) 

FCWEC^STS 
SLEW MOTOR 
TRAJECTORY 

T I M E 

Figure 5.3 Realignment of Slew Motor, 
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The analysis shows that the amount of realignment can easily be 

obtained from (5.31) once the time of realignment is known. However, 

the difficulty is to determine the time of realignment which depends on 

the predicted trajectory and its associated variance. In the view of this, 

analytical solution is not feasible. However, the optimisation of (5.14) 

or (5.15) reduces to a one-dimensional problem with a constraint of (5.31). 

This can be done by numerical methods more easier than the original cost 

function (5.1). 

The characteristics of the cost function (5.15) were studied by 

assuming the target trajectory to be a quadratic polynomial: 

2 

z(t) = a^ + a^t + a^t (5.36) 

and the variance of the forecast was: 

Var (z(t)) = b^ + b^t + bgt^ + b^t^ + b^t^ (5.37) 

This trajectory and variance correspond to the case where there 

is no ship rolling motion. The shapes of the cost function under three 

different target trajectories were plotted in Figures 5.4 - 5.6. The 

plots showed the variation of the cost function at various times of 

realignment and with various amounts of realignment. The initial position 

of slew motor at time t were zero in all three cases. The coefficients 
o 

of the polynomials (5.36) and (5.37) were shown under the plots. TAR 

means target trajectory and VAR stands for variance. From the three 

graphs, it showed that the cost function is a nice surface having 

only one single maxima. 

5,4 Dynamic Programming Method 

Restating the proposed cost function here: 

t 
) 

*^(t) { 1 - Pr (8g(t) - 8^ $ e^/t) < 8g(t) + 8^) } dt t 

W2(t) { sign (6^ (t) - 0^ (t)) } dt (5,38) 

o 
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The anticipated slew motor trajectory will be: 

n 
8_(t) = 8 + Z A8 u(t + t ) (5.39) 
® ° 1=1 1 1 

where n is the number of realignments. Both (5.38) and (5.39) are 

discontinuous functions. Furthermore, the forecasts of the motions will 

be discrete because of the models used. It is then appropriate to solve 

the optimal trajectory by means of numerical methods. In discrete form 

the cost function (5.38) is: 

N 

Z * (m) { 1 - Pr (8 (m) - 8 < 8 (m) < 8 (m) + 8 ) } 
•i- S A/ i S X/ 

p 
c 
m=0 

N 
P 

• 

m=l 
+ E W2(m) { sign (e^(m) - 8 (m-1) (5.40) 

The problem becomes a Np-variable one determining the optimal values 

for 8g(m), ra=0, 1, 2, , . ., Np. This Np-variable may be solved by the 

application of a few classical unconstrained optimisation techniques. 

For instance, the direct search methods [ss] may be applied to the problem. 

However, these methods are not practical in association with problems 

having large numbers of variables. They will demand huge computation time 

before the result converged. Other more powerful and faster methods, such 

as the conjugate gradients method, etc. [l5, 16, 17, 38] , are handicapped 

by the highly non-linear cost function. These methods generally require a 

cost function to be continuous and continuously differentiable. 

The Np-variable problem may be viewed as a serial multistage decision 

problem. It can be represented in block diagram form as shown in Figure 5.7. 

Considering a single stage, i, it is characterised by an input paramters, 

8g(i-l), a decision variable, A8^, and an output parameters, 9^(i), 

representing the outcome obtained as a result of making the decision. There 

is a return function, J^, which measures the effectiveness of the decision. 

The objective of the multistage decision problem is, therefore, to find A8^, 

A8^, , . , , so as to optimise some function of the individual stage return 

functions, f(J , J., . , . , J„ ). The function for this particular Np-
O 1 Np 

variable problem is the summation of all the return functions. 

N 
P 

J = Z J,(8 (1-1), A8.) (5.41) 

1=0 ' ' 
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which is the cost function (5.40). Each return function is: 

= w^Ci) {1 - Pr (8 (1) - 6^ $ 6 (1) < 8 (i) + 8 ) } 

+ w (i) { sign (8 (1-1) - 9 (1))} 2"-' ' ""s'"-"/ ~ (5.42) 

AG. 

J , 3i 3Vjp-i 

AS. AGL A©i N f - 1 
AO, Hp 

Figure 5.7 Multistage Decision Problem 

The relationship between the input and the output parameters 

is: 8g(i) = e^(i-l) + A8 (5.43) 

Thus, a realignment at time interval, i, is represented by a non 

zero AQ^. 

The method of Dynamic Programming is a mathematical technique well 

suited for the optimisation of multistage decision problems. This 

technique was developed by Bellman in the early 1950's [s]. The method 

makes use of the concept of sub-optimisation and the principle of 

optiraality in solving the problem. The statement of the principle of 

optimality is [ssj : 

"An optimal policy (or a set of decisions), has the property that 

whatever the initial state and initial decision are, the resulting 

decisions must constitute an optimal policy with regard to the 

state resulting from the first decision". 
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The process of optimisation is carried out in the reverse order 

as illustrated in Figure 5.8. The first sub-problem starts at the final 

stage, i = Np. The cost function is a function of the input parameter 

®g(Np-l) and the decision AG^ . Once the parameter 6^(Np-l) is specified, 

the decision must be made irrespective of what happens in the other stages. 

Therefore, the optimal cost function depends only on the input parameter, 

Gg(Np - 1). i.e. 

J'Np ) = "5°^ ( % ) (5.44) 

The next sub-problem is to group the last two stages together. The 

optimal cost function is then a function of the input parameter, 0 (Np-2). 

i.e. 

<®s "'•> - 2) ) - M ( V l " 
Np-1, Np 

The principle of optimality requires that be selected so as to 

optimise for a given 9^(Np-1). Since 6^(Np-1) can be obtained once 

9 (Np-2) is specified and the decision A9„ , is made. Thus, the 
s Np-1 
optimisation of this second stage becomes: 

• ' V l '"s ' = A9° , ( V l * •'np (5.46) 
Np-1 ^ 

Similarly, the idea can be extended to the ith sub-problem which is 

defined as: 

" i ' 46°, 49^_^ ^ 

(5.47) 

The principle of optimality allows the problem to be simplified as: 

J.^<e^(i-l)) . {J^ + (6^(1)) + ... + J.p (6^ (Np-1) ) } 

^ (5.48) 

Therefore, by applying the principle of optimality, the original 

multi-variables optimisation problem of (5.47) is decomposed into a 

series of separate problems, each involving only one decision variable. 
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The implementation of dynamic programming method to the cost function 

C5.40) must resort to tabulation form. This is totally due to the odd 

characteristic of the cost function. The optimal cost function in each 

sub-problem is not a continuous function of the input variable 6^(i-l). 

At each stage, the relationship between the return function and the 

decision A8 for a given input 8^(1-1) is shown in Figure 5.9. There is 

a singular point at A6 = 0. The depth of the 'ditch' at the singular point 

is the weighting on a realignment at this stage, A change of the input 

6g(i-l) will only shift the curve to the right or left without changing 

the overall shape, except that the singular point remains at AS = 0. 

A discrete range of possible values of the input variable 9^,1-1) is given 

in each sub-problem. A table of optimal decisions and the corresponding 

cost functions is then constructued for the values of 9(i-l) as shown 
s 

in Figure 5.10. The sub-optimisation for a given value of 6^(i-l) is done 

by searching through a range of values of the decision AG and by picking 

out the optimum. An input 0^(i-l) and a decision AG will fix the output 

8g(i). The optimal decisions from stage i+1 to the final stage will then 

be found from the tables set up in previous sub-problems. The cost 

function for the given pair, O^(i-l) and A8 , can be evaluated using (5.48) 

The optimal decision AG* and its corresponding cost function J|(6^(i-1)) 

are then registered in the row of the table associated with the input 

Gg(i-l). Since the initial value, 6^, is known the optimal value AG* is 

then looked up from the table for stage 1. At this stage, G (1) is then 

fixed and AG* can be found from the table of stage 2, and so on. The 

optimal decisions, AG*^, AG*^, . . ., AG*^ are then determined. The 

step sizes of 9^(i-l) and A0^ are compromised with the time to compute 

the tables. The number of tables required to determine the optimal slew 

motor trajectory is the number of time intervals in one prediction period. 

The dynamic programming method was simulated on the proposed cost 

function. The forecasts of the motion was deliberately chosen to be a 

sine wave with unit amplitude. It was so chosen because the total motion of 

the predicted target trajectory and the predicted ship rolling motion may 

be decomposed into two or three sine wave components. The actual amplitude 

is immaterial, only the number of realignments is interesting. The variances 

of the forecasts followed the expression: 

a^(n) = 1.0 + 0,05 n (5.49) 
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The expressions for the two weightings in the cost function were 

set as: 

w^Cn) = 1.0 {1 - exp (-0.01 n)} (5.50) 

WgOn) = 0.01 {1 - exp (-0.01 n)} (5.51) 

In effect, the weightings had a ratio of a hundred irrespective 

of the lead time. The limit on the tracking motor was set to 0.5, 

and the initial slew motor position was 8 = 0. The step sizes of 

8g(i-l) and in each sub-problem were both fixed at 0.1 and within 

the range of -2.0 to 2.0, The resulting slew motor trajectory was then 

determined as in Figure 5.11. 

5.5 Numerical Search Method 

In the previous section, the cost function was optimised by the 

use of dynamic programming method in tabular form. It constrained the 

possible positions of the slew motor and the amount of realignment in 

each sub-problem to a set of discrete values. However, the movement of 

the slew motor is not constrained to these values. It is possible that 

the optimal trajectory of the slew motor obtained from the previous section 

is not the true optimal value due to the discretisation process. 

Furthermore, the computation time required in constructing the tables 

will be unbearably long for a real-time application. The computation 

time is proportional to the number of time intervals within the prediction 

period and the product of the numbers of discrete points in the possible 

slew motor position and the amount of realignments. By increasing the 

step sizes of the slew motor positions and the amount of realignments, 

the computation time can be reduced, but the correctness of the obtained 

optimal solution is doubtful. Ideally, from the computation point of 

view, it is desired to have a recursive algorithm performing the 

optimisation. Due to the variation in the forecasts after each filtering 

and the non-linearity of the cost function, only a non-recursive 

numerical search method was established for optimising the proposed cost 

function. 

The development of the search method is based on the results 

obtained in Sections 5.2 and 5.3. If the timings of the realignments 

are given, the optimal slew motor positions between two consecutive 

realignments are governed by the expression (5.13). The amount of each 

realignment is also governed by the expression (5.31). The effect of 
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any variation in the slew motor position at one stage may not be 

propagated to other stages far away from the origin of variation. 

This is partially due to the step changes in the optimal slew motor 

trajectory. The realignments act as buffers partially isolating the 

steps of the slew motor trajectory from each other. The whole 

prediction period can be divided into regions with the realignments as 

their boundaries. 

The developed numerical search method was a result of logical 

analysis of the problem. Mathematical proof of the validity of the 

algorithm has not yet been established. However, the results from the 

algorithm was compared with the one obtained from the dynamic 

programming method mentioned in the previous section. It showed that 

the results obtained from the numerical search method gave a better cost 

function value when compared with the dynamic programming results 

(Figures 5.11 and 5.12). The algorithm is explained in the following 

paragraphs. 

The philosophy of the algorithm is to first divide the whole 

prediction period into several regions. At each boundary a realignment 

is assumed. Therefore, the corresponding slew motor position in each 

region can then be determined by obtaining the weighted mean within that 

region by means of (5.13). The assumed number of regions is so chosen 

that it is actually more than the anticipated optimal number of realignments. 

The next step is to merge two realignments into one if it gives a better 

cost function value by doing so. It then adjusts the timings of the 

remaining realignments. Finally, the decision of moving the slew motor 

at current time is made by considering the slew motor position in the 

first region only. It assumes that by this time, the timings of the 

realignments are optimal, and hence the regions separated by the 

realignments are independent to each other. Based on this approach, the 

algorithm is divided into four stages (5.15). 

In the first stage, the potential realignments are established by 

making use of the expression (5.31) which states that the optimal amount 

of realignment is twice the difference between the target position and the 

slew motor position at the time of realignment. Several assumptions are 

made during this stage. It first assumes that any decision on realignments 

is correct and the realignment defines the boundary of a region. Once 

a realignment is established, the regions before the realignment are 

ignored in the determination of next realignment. The task then 

concentrates on the forecasts after the realignment until another realign-

ment is established. The decision on a realignment is based on the compar 
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-ison of two costs J and J, . 
a b 

1—1 /\ 
^ w^(k) { 1 - Pr (0^ - 8% < GyCk) 3 8^ + 8^) } C5.52) 

and 
i-1 

J = Z w ( k ) { 1 - Pr ( 8 * - 8 3 8_Xk) 3 8 * + 8 . ) } 
B 1 & T % 

+ WgCi) (5.53) 

where t^ is the time of last realignment and i is the prediction time 

interval under consideration. The cost assumes no realignment at 

time i, whereas Jy assumes there is one. The term 8* in is the 

optimal slew motor position between last realignment at time t^ and a 

realignment at time i. Its value is determined by the expression (5.13) 

The term 8^ in is the slew motor position from time t^ if there is 

no realignment at time i. In both costs, and J^, the probability of 

losing the target at time i is not included. It is assumed that if 

a realignment occurs at time i the slew motor will be moved to position 

9^, The crucial part is to give a value to 0^, in order to allow a com-

parison between the and . The term 8^ is evaluated recursively 

following the expression: 

1 
+ 2 (6^(i) - e^) (5.54) 

The term 0^ is re-initialised every time after a realignment is 

established. The recursion starts with the value of the forecast at the time 

of last realignment. The flow chart of this stage is as shown in Figure 

5.16. The predicted slew motor trajectory during the first stage is not 

the optimal one. The number of realignments determined in this stage 

is highly probable to be more than the optimum. This is because of the 

choice of the values for 8 in the process. As shown in Figure 5,13, 

the position of 0^ will amost certainly have a higher probability of losing 

the target. Unless the weight on a realignment is very large or the 

forecasts are nearly flat, a realignment is likely to be set. 
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The second stage in the search method is aimed at removing the 

redundant realignments. It checks two realignments in succession at 

times t^ and t^ whether they can be replaced by one realignment at t^ 

between the two (Figure 5.14). The time for the new realignment is 

approximated at the time that the forecast is equal to or larger than the 

average value of the predicted slew motor positions before the realignment 

at time t^ and after the realignment at time t^. The flow chart of the 

second stage is shown in Figure 5.17. 

L E A D T I M E 

STAGE I 

- - STAGE 2 

Figure 5.14 Removing Redundant Realignments. 
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The third stage adjusts one by one the timing of the realingments 

determined in the second stage. It evaluates the change in cost function 

if a realignment is brought forward, or is postponed, one interval. If 

a change in the time of the realignment gives a smaller cost, the 

realignment is changed accordingly until the cost is minimum. The process 

is described in Figure 5.18, Referring to Figure 5.14, the third stage 

only concentrates at the time between t^ and t^ in the testing of the 

realignment at t^. 

The final stage makes the decision whether there should be an actual 

realignment at current time. The previous three stages are intended to 

divide the whole prediction period into regions separated by the realign-

ments. However, all three previous stages assume a realignment at current 

time. The final stage is to determine the validity of this assumption. 

After the third stage of the search method, the slew motor position of the 

first region will be the weighted mean of the forecasts within that region 

according to expression (5.13). This value 6* will be different from the 

initial value of the slew motor position, 8 . Therefore, a decision is 

made between the two costs: 

J* = Z w^Ck) { 1 - Pr (8* - 8^ 3 S^Ck) 3 8* + 8^)}+ w^Co) 
k=0 

and t^-1 

(5.55) 

J = E * (k) { 1 - Pr (8_ - 8, < 8T(k) $ 8 + 8,)} (5.56) 
b 1 o 2 T o A 

where t^ is the time of the first realignment. assumes a realignment 

at current time and assumes the slew motor remains at its initial posi-

tion. The summation term in J must be smaller than J since 8* is the 
® b 

optimum position in the first region. Therefore, if is very large, 

the decision is to keep the slew motor at its initial position. Other-

wise, the slew motor will be commanded to the position 6 *. In fact, if 

the decision is to keep the slew motor position at its initial position, 

the timing of the realignments obtained from the previous stages will not 

be optimum, particularly the first few realignments due to the new slew 

motor position in the first region. The realignments will be brought 

earlier. However, this alteration will be small. Furthermore, the 

changes on the future realignment is immaterial since the main objective 

is to determine the optimum position of the slew motor at current time. 
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The numerical search method was tested using the same set of 

parameters in the case of dynamic programming method. The result was 

plotted out in Figure 5.12. The comparison of the results illustrated 

that the search method gave a smaller cost. The search method performs 

better over the dynamic programming method is mainly due to the absence 

of the discretisation on the possible positions for the slew motor. The 

slew motor is no longer restricted to a set of values as in the case of 

the dynamic programming method. In the computation point of view, the 

search method also performs better than the dynamic programming method. 

The search method requires less memory size as compared with the dynamic 

programming method which requires a series of tables. The dissappearance 

of the tables reduces the huge computation time in generating these tables. 

In the search method, there is no need to compute the whole cost function 

at any one time since the prediction period is separated into regions. 

Moreover, the partial cost function required in the search method can be 

evaluated recursively which reduces the computation time further. 

5.6 Conclusions 

A cost function was finally proposed. It incorporates the 

probabilities of losing the target and the frequency of realignments. 

The weightings on both terms vary exponentially with time. This is 

because of the physical requirement in tracking moving targets. However, 

the cost function is a discontinuous function. Analytical solution is 

not available, except in a few circumstances, in the optimisation process. 

Among the well established optimisation techniques, only did the dynamic 

programming method seem feasible at a time. Later, it was found that 

the results from the dynamic programming method were not truely optimal. 

A numerical search method was finally established which was shown experi-

mentally to be superior than the dynamic programming method. Experimentally 

and logically, the numerical search method was proved to be the best 

possible way. However, a mathematical prove is not completed. 
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CHAPTER 6 

DIGITAL SIMULATIONS 

Digital simulation of target tracking by the proposed dual-drive tracking 

servomechanisn is essential to establish the performance and the validity 

of the proposed control policy. Furthermore, the proposed cost function 

is given in its general form only in the last chapter. The parameters 

of the weighting profiles on the probability of losing the target and on the 

frequency of realignments have yet to be determined, particularly the 

ratio between them. Putting too much emphasis on either one of the object-

ives of the cost function will result in poor tracking performance. It is, 

therefore, necessary to choose an optimal set of the parameters by means 

of digital simulation. The digital simulation was planned as a preliminary 

evaluation of the proposed control policy before the whole work is tested 

onascaled demonstration rig. The whole specifications of the rig is 

listed in the next chapter. It is sufficient, at this stage, to mention 

that the demonstration rig is designed to run four times slower than the 

full size proposed system. 

6.1 Ship Motion 

There was no authentic ship rolling motion available for experiments, 

The ship motion could only be generated by passing a random white noise 

through three filters in parallel as described in Figure 2.7 of Chapter 2. 

Each filter is a second order system possessing different natural 

frequencies and damping ratios. Since all simulated motions are slowed 

down by a factor of four the scaled ship motion will then have three 

dominant frequencies four times slower than the true motion. By trial-

and-error method, it was eventually agreed that the three filters should 

have the characteristics listed in Tabel 6-1. A typical time history of 

the scaled motion and its spectrum are shown in Figure 6.1 and Figure 6.2. 
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Time 

Figure 6.1 Time series of scaled ship motion 
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Figure 6.2 Spectrum of scaled ship motion 
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Filter 1 Filter 2 Filter 3 

Natural 0.04167 
Frequency (Hz) 

0.03571 0.03125 

Damping ratio 0.05 0.01 0.06 

Gain 0,4 0.5 0.4 

Table 6-1 Characteristics of Ship Motion Generator 

Filters. 

It was, as discussed in Chapter 2, the ship motion is possibly 

best approximated by an autoregressive-moving-average model, ARMA(6,6). 

However, the parameter estimation process forces an autoregressive 

model, AR, to be used instead since the filtering algorithm has 

problems in tracking the parameters in the moving-average part. 

Theoretically, an ARMA(6,6) model can be represented by an infinite 

order of AR model. In practice, one has to compromise the order 

between accuracy and computation time. The computation time increases 

rapidly with the order of the model. In order to choose a reasonable order 

for the AR model to model the ship motion, the mean squares errors in 

estimating the simulated ship motion using various orders were studied. 

The results were plotted in Figure 6.3 and Figure 6.4. Figure 6.3 

shows the effect of the sampling rates on the accuracy with various 

orders. On the other hand, the effect of the data length in estimating 

the parameters under various model orders is shown in Figure 6.4. Both 

graphs illustrate that the mean square errors decrease exponentially with 

model order. This follows from the fact that an invertable ARMA model 

can be written as a converging infinite order autoregressive model as 

mentioned in Section 2.7. Reiterating, an ARMA model is represented by 

*(B) z(k) )(B) iu(k) ( 6 . 1 ) 

(6.1) can be expressed as : 

- 1 
(B) *(B) z(k) u (k) ( 6 . 2 ) 
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OR (k) - Z \p z(k-i) + e u,(k) 
i=l ° 

P 
Z 
i=l 
Z zCk—i) + 6^ -t(k) + e (6.3) 

If the roots of 6(5) lie outside the unit circle in the B-plane 

(6.3) is a converging series. The truncation error e decreases 

with the order p. In Figure 6.3, it revealed that the mean squares errors 

are insensitive to the sampling rates. This is because the sampling rates, 

tried in the experiments, were much higher than twice the highest dominant 

frequency of the ship motion. This means that the ship motion was sampled 

without aliasing effect. The characteristics of any ARMA process are 

related to the positions of the poles in the B-plane regardless of the 

sampling rate. As long as the roots of 6(B) are outside of the unit 

circle, an AR process is sufficient to approximate the ARMA process. 

Figure 6.4 showed that the windowing length does not play a significant 

part in the estimation. This is because there were enough data points to 

perform the estimation. It is therefore suggested that the orders of 

four to eight may be chosen to model the ship motion. No significant 

improvement on accuracy can be benefitted from using higher order. It 

must, however, emphasize that the true ship rolling motion is not exactly 

an ARMA(6,6) process. Therefore, the suggested order is only true in the 

case of the simulated motion generated from three parallel filters. A 

sixth order AR model was used throughout the digital simulation. 

6.2 Implementation and Simulation Results 

The main objective of the simulations was to evaluate the 

performance of the proposed control policy. Besides, the simulations 

were used to study the proposed cost function. The cost function 

proposed in the previous chapter is only in its general form. The 

profiles of the weights and some parameters have not yet been fixed for 

optimum tracking performance. There are at least nine variables in all 

in the simulation. Six of them are in the cost function and the seventh 

one is the target dynamics. The lengths of prediction period and window 

may also affect the performance. Thousands of simulation runs are 

required to study the effect of each variable on the performance. It 

was not possible to perform so many simulation runs in the time 

available. Therefore, a preliminary study of the variables was performed 

to pick out the essential ones. 
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Considering the weights in the cost function: 

(T) = Q[ 1 - expC-a (6 .4 ) 

w^Ct) = r[ 1 - Cg expC-a^T)] (6.5) 

there are six variables, Q, R, C^, C^, a^ and a^, that have to be 

determined. The reason of having the weights in the cost function is 

to put different emphasis on different objectives. In this case, there 

are only two objectives - minimum probability of losing the target, and 

minimum number of realignments. It is the ratio between the weights 

which is important. The ratio can be constant throughout an engagement 

because the relative importance between the two objectives remains 

constant. Therefore, the two weights can then be reduced to 

w^(t) = 1 - exp (-at) (6.6) 

WgC?) = r w (T) (6.7) 

where a is time constant and r is the ratio between the two weights. 

The profiles of the weights remain to be an exponential decay to reflect 

the acceptable risk at various time during an engagement. Thus, only 

two variables need consideration in the weights. 

Among the other parameters in the simulation, the target trajectory 

and the ship motion cannot be ignored. These two are the essential 

signals in the evaluation of the proposed control strategy performance. 

The length of the prediction period was not chosen to be studied 

at this stage because it was felt that it is meaningless to have a very 

long prediction period as the confidence on the forecast decreases as 

the fourth power of the lead time. Moreover, the optimal predicted slew 

motor trajectory is a series of step functions. The decision on a 

realignment at current time will not be affected by the length of the 

prediction period. The decision is mainly due to the forecasts between 

the current time and the first predicted realignment. 

From the result in the last section, the window length will have 

little effect on the estimation process. Hence, it can also be ignored 

at this stage of simulation. 
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In summary, there are only four essential variables in the 

simulation. They are: 

i) target trajectory 

ii) ship rolling motion 

iii) ratio between the two weights 

iv) decaying time constant of the weight profile 

The simulation was performed as shown in Figure 6.5. Each cycle 

involved the generation of the simulated target trajectory and the ship 

motion, the parameters estimation using either the canonical Kalman 

filter or the finite memory version, the prediction of the motions, 

optimisation of the cost function, and finally the realignment of the 

slew motor if needed. The simulation program was written in modular form 

and FORTRAN was the chosen language. Each module performed one 

particular task. The main body of the program then comprised of a series 

of subroutine calls. Writing in modular form simplifies the development 

of programs. It permits programs to be debugged more easily and they are 

less prone to errors. Each subroutine can be tested individually for 

error. However, there is a price to pay. It generally requires more 

computation time than those programs written in pipe-line form. 

The significance of the selected variables were studied 

individually. One of the four variables was varied while the other three 

were kept fixed. In all, five sets of simulations were carried out. 

Among them, three different target trajectories, three different ship 

rolling motions, five different decaying time constants and five 

different weight ratios were used. 

The simulated target trajectory was shown in Figure 6.6. The 

target was assumed to be flying at constant altitude with constant 

velocity initially. After a certain time, the target performed a 

manoeuvre by initiating a constant acceleration and a change in the 

heading. This kind of trajectory is closely related to a typical 

engagement, except that the true trajectory should be smoother at the 

transition between the pre-manoeuvre and the post-manoeuvre period. The 

parameters of the three target trajectories used in the simulation were 

listed in Table 6-2. One of the three trajectories represented a 

target flying at constant altitude with constant velocity during the 

whole engagement. The accelerations and angles of manoeuvres in the 

second and the third trajectories were chosen randomly. The acceleration 
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Figure 6.6 Simulated Target Trajectory 

were taken from the range of 0 to 9g, whereas the changes in the angle of 
o o 

heading were within the range of O to 90 , The times of the manoeuvres 

took place were also randomly chosen. The trajectories assumed the 

target to be able to change its acceleration and angle of heading 

instantly at the times of manoeuvres. 

The ship rolling motion was created by passing a pseudo random 

number sequence to three parallel filters with characteristics as shown 

in Table 6-1. Three different time history of the ship rolling motion 

were achieved by using three different pseudo random number generators. 

Besides the four selected variables, there were other parameters 

needed to be fixed a priori. First of all, a sampling period of 0.4 

seconds was chosen for the simulation. Because of the scaling factor in time, 

the full size system would be sampling at a rate of 0.1 second, i.e. 

the highest possible bandwidth of the motion that the slewing system 

could cover was five Hertz -. The track motor would, however, have a 

much higher bandwidth. 

The window length used was fifty data points long, and the 

prediction period was chosen as forty data points. The chosen window 

length and prediction period were mainly governed by the limitation of the 

computer storage and the time to perform the optimisation. Nevertheless, 

a prediction period of sixteen seconds in simulation, sixty-four seconds 

in real-time, should be long enough to anticipate the slew motor 

trajectory. In real-time, a target moving at a speed of Mach 2 will 

cover over forty-three thousand meters in sixty-four seconds. 
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Parameter Unit 
Target 
1st 

Trajectory 
2nd 3rd 

Distance from tracker 
at initial engagement m 50,000 50,000 50,000 

Altitude at initial 
engagement m 1,000 1,000 1,000 

Velocity at initial 
engagement m/s 150.0 150.0 150.0 

Heading at initial 
engagement 

o 
0.0 0.0 0.0 

Starting time of 
manoeuvre s 0.0 46.0 66.0 

Duration of 
manoeuvre s 0.0 144.0 80.0 

Acceleration of 
manoeuvre m/s^ 0.0 5.46 2. 54 

Change of heading 
of manoeuvre 

o 
0,0 36. 9 79.2 

TABLE 6-2 Target Trajectories Tested 
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Since any measurement is always corrupted by noise the observations 

of the target were assumed to have a variance of five degrees. Each 

simulation run lasted two hundred seconds in scaled time. The working 

range of the tracking motor was limited to five degrees. 

As a convenient means of representing the success/failure of the 

technique, the percentage of time that the tracker lost its target and 

the percentage of realignment time were evaluated. The interaction between 

the slew motor and the tracking motor was ignored in the simulation. It 

was assumed that the realignment was taken instantly. The percentages 

from the simulation runs were listed in Tables 6-4 to 6-8. The five 

weight profiles used in the simulations were plotted in Figure 6.7. A 

selection of the simulation runs were graphically shown in the Appendix. 

A typical simulation result is shown in Figures 6.13, 6.14, and 6.15. 

6.3 Conclusions 

From the simulation results (Figures 6.13, 6.14, 6.15 and Appendix 

C) they illustrate that the estimations of the target trajectory and the 

ship motion were very effective. Throughout the simulation, the estimated 

combined motion was very close to the noise free motion. This indicates 

that the sixth order autoregressive model was adequate in modelling the 

autoregressive-moving-average process. The prediction of the combined 

motion was also capable of indicating the trend of the motion (Figure 6.14). 

The simulated ship rolling motion seemed to be unrealistically random. 

The true ship rolling motion might not fluctuate as violently as simulated. 

The simulation results (e.g. Figure 6.13) also revealed that the 

simulated ship rolling motion dominated the performances due to its wild 

fluctuations. In comparison, the target trajectory was smoother than the 

ship motion. Thus, the ship rolling motion was the main cause that the 

proposed tracking system would lose its target. Work has to be 

concentrated on the problems associated with the ship rolling motion. 

Particularly, it would be beneficial to investigate the possibility of 

modelling the ship motion with a deterministic model, e.g. a polynomial 

function. 

The results in Tables 6-4 to 6-8 showed that the performance was 

insensitive to the weight profile. This may be the result of the applica-

tion of a short prediction period. However long predictions are not recomm-

ended. It is partly because the models used in the estimation process 

do not match the motions exactly. Long prediction periods will then 

inevitably incur large biases on the forecasts near the end of the 

prediction period. Furthermore, the confidence on the forecasts drops at 
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a rate to the fourth power of the lead time. Therefore it is feasible 

to use an uniform weighting instead of an exponential one. This simplifies 

the cost function to: 

Np 

E 
m=0 

J = E { 1 - Pr (GgCt+m) - 8^ < 8^(t+m) < 8 (t+m) + 8^)} 

Np 
E 
m=l 

+ W E I sign (8g(t+m) - 6^(t+m-l)| (6.8) 

There is a spin-off of employing an uniform weight profile. The 

time constants of the five profiles used in the simulation were chosen 

based on an assumption that the engagement lasted for two hundreds 

seconds in scaled time. The absolute values of the time constants are 

meaningless to the cost function. It is the ratio between the rise time 

and the duration of an engagement which is important. A long rise time 

with a long engagement will have the same effect as a short rise time with 

a short engagement. The two profiles may be exactly the same if they are 

plotted with the time axis normalised. In real life, the duration of an 

engagement is an uncertainty. There is no way to determine the 

duration of an engagement at the time a target is first established. 

Hence, it is impossible to establish the time constant for the weight 

profile. The problem of the uncertainty on the duration of an engagement 

is completely eliminated by employing an uniform weight profile over the 

whole engagement. 

The results in Figures 6.8 to 6.12 demonstrated nicely that the 

percentage of miss^ is inversely related to the percentage of realignment. 

Frequent realignment gives low percentage of miss and vice versa. The 

results also revealed that as the weight ratio increased, i.e. the 

emphasis on the realignment increased, the percentage of miss changed from 

low to high with a sharp transition within the range of weight ratio of 

one to three. On the other hand the percentage of realignment moved from 

high to low more gently. By plotting the axis of weight ratio in 

logarithmic as it was in Figures 6.8 to 6.12, the percentage of realignment 

demonstrated an exponential relationship with the weight ratio. If the 

weight ratio was very high, i.e. the realignment was more heavily weighted, 

no realignment would take place. The misses would be saturated at its 

maximum value. This maximum value of percentage in miss depended on the 

motion. On the other hand, a very small weight ratio would give a zero 

+A miss in the simulation is when the target not covered by the 

tracking motor. 
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percentage of miss, but a high, percentage of realignment dependent on the 

motion, too. The objective of the control strategy is to have minimum 

realignments and minimum misses. Therefore, the best weight ratio could 

be the cross-over point of the two curves of realignments and misses. 

Figures 6.8 to 6.12 suggested that such a cross-over point occurred at a 

weight ratio of between two and three regardless of the target trajectory 

and the ship motion. This means that the realignments was best weighted 

twice, or triple, the probability of losing target. 

The simulation results also suggested that the restriction of one 

realignment within the prediction period was justified. The three 

dimensional plots of the evolution of the predicted slew motor trajectory 

(e.g. Figure 6.15) showed that, at most, only one realignment was 

predicted at each stage. This phenomenon might be due to the 

characteristic of the forecasts. In Figure 6.14, it showed that the 

forecasts at one time behaved like an exponential function. The forecasts 

tended to settle down to a steady state value. The steady state pheno-

menon is the typical characteristic of the stochastic autoregressive 

model [s]. It was also due to the fact that the changes in the target 

trajectory was insignificant compared with the ship motion. The heavily 

damped transient of the forecasts was the characteristic of the estimated 

autoregressive model. This steady state phenomenon in the forecasts also 

substantiates the previous point that long prediction period is not 

necessary. Once the forecast settles down to its steady state, the 

predicted slew motor trajectory will then remain constant. Therefore, 

any realignment is likely to take place during the transient. It is 

unreasonable to expect more than one realignment during the transient 

if the working limit of the tracking motor is comparable with the changes 

in the forecasts. In Figure 6j5, it also revealed that the predicted slew 

motor trajectory at one stage was not closely related to the one predicted 

in the previous stage. This made it hard to devise a recursive method 

to up-date the predicted slew motor trajectory. The uncorrelation might 

be because of the unrealistically fluctuated ship motion. 

The reason of using three different ship rolling motion was to 

study the consistance of the simulation results. It also aimed to 

eliminate any possibility that one ship motion was favourable to the 

proposed control strategy. However, the results showed consistent 

performance over the three simulated ship rolling motion. 
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In summary, the simulation results suggested that the cost 

function could have an uniform weight with a weight ratio between two 

and three. The results also pointed to the application of a short prediction 

period. The exact length of the period depends on the characteristic 

of the estimated autoregressive model. It happened that a prediction 

period of forty data points was sufficient. The simulation results 

also revealed that the restriction of one alignment is realistic. 

Therefore the task of optimisation can then be simplified. It will then 

only involve the search of the point where the amount of realignment is 

twice the difference between the present slew motor position and the 

forecast. This will then reduce the computation overhead further. 

Target Trajectory 

1st 2nd 3rd 

1st ship motion Table 6-4 Table 6-5 Table 6-6 

Fig. 6.8 Fig. 6.9 Fig. 6.10 

2 nd ship motion Table 6-7 / / 

Fig. 6.11 / / 

3rd ship motion Table 6-8 / / 

Fig. 6.12 / / 

Table 6^3 Index to Tables 6-4 to 6-8 and 

Figures 6.8 to 6.12. 
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Weight Reciprocal of Weight Profile Time Constant. 

Ratio 0.1 0,025 0.01 0.005 0.0025 

0,1 61.6 61.2 61.2 61. 2 61.2 

0. 5 41.2 41.6 41.4 41.4 41,6 

1.0 32.3 32,2 32.4 32.4 32.4 

2.0 20. 4 20. 8 21.0 21.6 21.6 

3.5 12.2 12.6 12.6 12.6 12.6 

5.0 7.0 7.2 7.4 7.4 8.6 

10.0 0.6 0.6 0.6 0.6 0.6 

20,0 0.0 0.0 0.0 0.0 0.0 

PERCENTAGE OF REALIGNMENTS 

Weight Reciprocal of Weight Profile Time Constant. 

Ratio 0,1 0.025 0.01 0.005 0.0025 

0.1 1.0 1,0 1.0 1.0 1.0 

0.5 3.8 4.2 4.4 4.4 4.0 

1.0 7.8 7.4 7.4 7.4 7.4 

2.0 14.4 14.0 13.8 13.6 13.8 

3.5 40.6 38.6 38. 8 38.8 38.8 

5.0 60.4 59.8 59.6 59.6 52.4 

10.0 74.8 74.8 74.8 74.8 74.8 

20.0 75.2 75.2 75.2 75.2 75. 2 

Note:- X = 

PERCENTAGE OF MISS 

Weight on Realignments 
Weight on Probability of Target Loss 

Weight Profile = 1.0 - 0.99 x Exp(-Axt) 

Table 6-4 Simulation Results 
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Weight Reciprocal of Weight Profile Time Constant. 

Ratio 0.1 0.025 0.01 0.005 0.0025 

0.1 58.4 58.4 

0. 5 41.8 42.2 42.0 42.0 42.0 

1.0 32.4 32.4 32.6 32.6 32.6 

2,0 21. 8 22.2 21.6 22.4 22.4 

3,5 12,4 12.8 12,8 12.8 12.8 

5.0 6.2 6.4 6,4 6.2 7.4 

10.0 1,2 

20,0 0.2 

PERCENTAGE OF REALIGNMENTS. 

Weight 

Ratio 

Reciprocal of Weight Profile Time Constant. Weight 

Ratio 0.1 0.025 0.01 0.005 0.0025 

0.1 1.0 1.0 

0.5 4.0 4.4 4.8 4.8 4.8 

1.0 8.4 8.0 8.0 8.0 8.0 

2.0 15.0 14.6 14.8 14.8 15.0 

3.5 41.0 39.0 39.2 39, 2 39.2 

5.0 64.6 64.0 64.0 64.8 60.8 

10.0 76.0 

20,0 86.2 

PERCENTAGE OF MISS 

Note: Weight on Realignments 
Weight on Probability of Target Loss 

Weight Profile = 1.0 - 0.99 x Exp(-Axt) 

Table 6-5 Simulation Results 
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Weight 

Ratio 

Reciprocal of Weight Profile Time Constant Weight 

Ratio 0.1 0.025 0.01 0.005 0.0025 

0.1 59.0 

0. 5 40.2 40. 2 40.4 

1.0 31.4 31.2 31. 4 

2.0 22.8 22.8 23.4 

3.5 13.6 13.6 14.4 

5.0 8.0 7.6 8.0 

10.0 1.2 

20.0 

PERCENTAGE OF REALIGNMENTS 

Weight 

Ratio 

Reciprocal of Weight Profile Time Constant 

0,1 0.025 0.01 0.005 0.0025 

0.1 1.0 

0. 5 4.2 4.0 4.2 

1.0 7.4 7.4 7.4 

2.0 14.6 14.8 14.4 

3.5 37. 8 37.4 37.0 

5.0 61.0 61.4 60.8 

10.0 74.8 

20.0 

PERCENTAGE OF MISS 

Note: • 
Weight on Realignments 
Weight on Probability of Target Loss 

Weight Profile = 1.0 - 0.99 x Exp(-Axt) 

Table 6-6 Simulation Results 
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Weight Reciprocal of Weight Profile Time Constant 

Ratio 0.1 0.025 0.01 0.005 0.0025 

0.1 

0. 5 43. 6 44.2 44.0 44.0 43.8 

1.0 33.2 33.6 33,8 33. 8 33,6 

2.0 22.6 22.8 22.0 22.4 22.6 

3.5 15.0 14.8 14.8 14. 8 15.0 

5,0 7.4 7.6 7.4 7.4 7.4 

10.0 

20.0 

PERCENTAGE OF REALIGNMENTS 

Weight Reciprocal of Weight Profile Time Constant 

Ratio 0.1 0,025 0.01 0,005 0.0025 

0. 1 

0. 5 3.8 3.6 3.6 3.6 3.6 

1.0 5.8 6.0 5.8 5.8 5.8 

2.0 14.8 14.8 14.6 14.6 14.6 

3.5 28.0 27.0 26, 8 27.0 27.2 

5.0 46.6 46.6 46,8 46,8 46.6 

10.0 

20.0 

PERCENTAGE OF MISS 

Note: Weight on Realignments 
Weight on Probability of Target Loss 

Weight Profile = 1.0 - 0.99 x Exp(-Axt) 

Table 6-7 Simulation Results 
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Weight Reciprocal of Weight Profile Time Constant 

Ratio 0.1 0.025 0.01 0.005 0.0025 

0.1 

0, 5 44.6 44.6 44.6 44.0 44.0 

1.0 31.6 31.6 31.6 32.6 32.8 

2.0 2o.0 21.0 21.2 21.2 21.2 

3.5 13.2 13.2 12.6 12.6 12.2 

5.0 7.4 7.4 8.2 7.8 7.8 

10.0 

20.0 

PERCENTAGE OF REALIGNMENTS 

Weight 

Ratio 

Reciprocal of Weight Profile Time Constant Weight 

Ratio 0.1 0.025 0.01 0.005 0.0025 

0.1 

0. 5 2.8 2.6 2.6 2.6 2.6 

1.0 5. 6 5.4 6.0 6.0 GX) 

2.0 13.0 13.0 12.6 12.4 12.4 

3.5 31.4 31.6 31.4 31.4 32.4 

5.0 40.8 40.8 39.4 41.0 41.0 

10.0 

20.0 

PERCENTAGE OF MISS 

Note:- X 
Weight on Realignments 
Weight on Probability of Target Loss 

Weight Profile = 1.0 - 0.99 x Exp(-Axt) 

Table 6-8 Simulation Results 
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CHAPTER 7 

DEMONSTRATION RIG 

A demonstration rig was planned from the beginning to demonstrate and 

to validate the control law and the principles involved. The rig should 

then possess the same characteristics as the actual system. It is not good 

practice to apply any new idea on a full scale prototype without first trying 

it out on a scaled down model. The eventual full size operational system 

is proposed to be a microprocessor controlled system, A microprocessor based 

monitor is the heart of the system. It is required to perform the task of 

modelling, forecasting, and decision making. The monitor also sends command 

signals to realign the slew motor. Therefore, the demonstration rig should 

comprise of two units: The microprocessor based monitor, and the driving 

unit. 

7,1 Specification of Demonstration Rig 

It was mentioned that the demonstration rig is only a scaled model 

of the actual proposed system. The scaling is applied to the physical 

dimensions and time. The scaling on the physical dimensions permits any 

physical simulation to be performed without the requirement of large 

power sources. It also allows the simulation to be carried out in a 

laboratory. The microprocessor for the demonstration rig is only a 

general one. The computing power is not as powerful as the most 

sophisticated one available at the present time. Hence, a time scaling 

is necessary on the demonstration rig. The scaling factors adopted were 

one-fifth and one-fourth for linear physical dimension and time 

respectively. 

The full specifications for both actual proposed system and the 

demonstration rig are: 

Actual System Dem, Rig 

i) Accuracy (radian) 10 X 10 as high as poss, 

ii) Bandwidth (Hertz) 

slew motor servo 

tracking motor servo 

as high as poss, 2 

50 - 100 20 
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Actual Demonstration 

ill) Inertia load 
-3 

slew motor servo 12 19.2 x 10 
-3 

tracking motor servo 0.4 0.64 x 10 

iv) Working range (degree) 

slew motor servo ±180 ±180 

tracking motor servo ±2.5 ±2.5 

7. 2 Moni tor 

The monitoring unit of the demonstration rig is basically a 

microcomputer system. Its computer power is a single card computer supplied 

by Cromenco. The single card computer was built around the versatile and 

commonly used Z-80A eight-bit microprocessor. The processor runs at a 

clock rate of four megahertz. The single card computer is compatible to 

the industrial S-100 communication bus. Hence, a lot of peripheral 

supporting hardwares are easily obtained from the existing market. The 

computer board has only one kilobyte of dynamic memory. It was then 

extended with a sixty-four kilobytes dynamic memory board. In order to 

allow the monitor to control the motors, an analogue input/output board 

was also attached to the system allowing the microcomputer system to 

communicate with the real world. An eight inch dual floppy diskette 

system was adopted as the mass storage media for developing required 

software. An arithmetic processing unit was added to the system to 

increase the speed of the system in performing the floating point 

arithmetic operations. A visual display unit was used in the communication 

between operators and the microcomputer. Hardcopies could be obtained 

from the dot matrix printer attached to the system. The block diagram 

of the microprocessor system is shown in Figure 7.1. 

The computing power of this system is, however, not the fastest 

available in today's microcomputer market. It has been chosen because 

back-up services are easily obtained within the department of Mechanical 

Engineering. It was also the most cost-effective system at the time the 

system was ordered. Comparing its computing power with the more 

advanced microprocessor system, it was initially felt that it is four 

times slower. This is the ratio used as the scaling factor on time for 

the demonstration rig. Actually, there are a lot of factors affecting 

the computing speed. For instance, the efficiency of the high level 

language compilers. 
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7.3 Driving Unit 

The driving unit has one motor simulating the novel high gain 

tracking motor. Another motor is used as the slew motor. Referring back 

to Chapter 1, the servoraechanism is supposed to be put on board a ship, 

thus rolling causing the major disturbances. Hence the target and the 

ship rolling must be simulated in the rig. The ship rolling motion is 

simulated by placing the whole dual-drive servomechanism on a rocking 

platform driven by a motor. The general layout of the driving unit is 

as shown in Figure 7.2 

The motors used in the demonstration rig are all permanent magnet 

printed motors. They are d.c. machines where the wound coils of the 

conventional cylindrical armatures have been replaced by layers of 

flat conductors arranged in the form of a non-magnetic disc. The 

conductors are punched or notched from copper sheets. The conductor 

in each layer are connected together to form one continuous winding 

consisting of two air cored coils in parallel. An axial magnetic field 

is produced by permanent magnet pairs arranged with alternate polarity 

around the armature. The main advantage of printed motors is the freedom 

from the effects of iron in the armature. Because of this, the torque 

produced by current flowing in the armature conductors is not limited by 

any saturation effects, nor is it affected by changes in load. The use 

of permanent magnets gives a linear torque-speed characteristic which is 

highly desirable in servomechanism applications. 

The casing of the tracking motor is mounted onto the inertia disc 

of the slew motor. In order to provide a firm base for the tracking 

motor to react upon, special consideration was needed in the design of 

the slew motor control loop. As proposed, the slew motor will be 

isolated from the system most of the time preventing interference to the 

tracking motor. Since the slew motor has a lower bandwidth than the 

tracking motor all torques developed by the high gain motor may not be 

transmitted through the slew motor. External locking device must therefore 

be provided to clamp the shaft of the slew motor once it is in position. 

A failsafe brake was chosen for this purpose. The brake will be off 

only if a voltage is applied to the coil of the brake. When the slew 

motor is not active the brake is kept on by not applying any voltage to 

the brake. 
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As shown in Figure 7.2, the motors are directly coupled to their 

loads such that any gear train is eliminated. In consequence, the 

non-linearity of back-lash inherited from imperfect gear teeth was not 

introduced into the rig and therefore stability of the system was not 

impaired. 

All the motors used in the demonstration rig are controlled by 

their own servo control loop. Mechanically, the slew motor and the 

tracking motor have the same characteristics. Except the tracking motor 

has an integral tachometer. It enables the tracking motor control 

loop to have a higher bandwidth than the slew motor. Within the control 

loops, the angular positional sensors used are all hybrid rotary 

potentiometers, model number HRP 11/lE supplied by Penny and Giles. 

The potentiometers have an electrical angle of 340 degrees which is more 

than sufficient for the demonstration rig. The hybrid type potentiometers 

are superior than the wire-wound type, or the plastic type, potentiometers 

because of their virtually infinite resolution and linearity of ±0.25% 

In consequence, the signal-to-noise ratio is high. To complete the 

servo control loops, the EMIOOB servo amplifiers from McLennon were 

bought. In order to tune the control loops to the required bandwidth and 

performance, series compensation networks are used. Three three-term 

controllers were built for this purpose. 

7.4 Discussions 

The demonstration rig erected has the proposed dual-drive tracking 

servomechanism simulated using two printed circuit motors. The system is 

placed on a rocking platform. The ship rolling motion is to be simulated 

by feeding signals to a servomechanism which drives the rocking platform. 

The signals that are being fed to the rocking platform servomechanism may 

be a record of a typical ship rolling motion time history made on a 

magnetic tape. Since the time on the demonstration rig is scaled the 

magnetic tape must be played back at a scaled down speed. At present, 

there is nothing on the demonstration rig that simulates the target. 

It was first planned to feed the target position signal directly to the 

monitor through one of the analogue input ports using a magnetic tape 

recorder. A pre-determined target trajectory is recorded on the magnetic 

tape. However, the demonstration rig has been designed that the target 

may eventually be simulated by a light source driven by a fourth motor 

as indicated in Figure 7,2. A light sensor array may then be attached 

onto the inertia disc of the tracking motor to pick up the error signals 

between the tracking motor and the target. 
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It was regretted that it was not possible to do any simulation 

work on the rig due to the expiry of the contract. Hopefully, this 

work will be carried on in the future. If simulation is going to be 

performed on the rig all the signals communicating between the driving 

unit and the monitor must be within the range of 2.5 volts. This is 

the working limit imposed by the hardware of the analogue input/output 

device. The performance of the system may be assessed by the error 

signals obtained from the light sensor array. The simulation may be 

made more realistic by putting physical stoppers on the tracking motor 

to restrict its working range. 
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CHAPTER 8 

GENERAL CONCLUSIONS 

It is generally true that higher accuracy and faster response in servo-

mechanisms can only be achieved by having higher system gain. Research 

efforts had been devoted to the design of a novel prime mover that gives 

high torque characteristics. Such a novel drive has been proposed. However, 

the proposed drive only generates a tremendous torque within a limited rotation 

range. A novel drive configuration was then further proposed to be applied 

in tracking systems. One of the possible solutions to solve the non-linearity 

of the drive is to employ the newly developed drive and a conventional drive 

in a piggy-back fashion. The former is used as a tracking motor while the 

latter is used as a slew motor. Such configurations then demand a new control 

strategy to reduce the coupling effect between the two drives. 

The whole philosophy behind the proposed control law in this thesis is to 

keep the interference from the slew motor to a minimum. A microprocessor-

based monitor models the absolute target positions and the ship rolling motion. 

The trends of the two signals are then predicted using the models built into its 

memory. The parameters of the models are being updated constantly. A 

decision is then made whether realignment is necessary to reduce the chance 

of losing its target in the future. The time and position of the realignment 

are evaluated by optimising a related cost function. 

The whole complex tracking problem was solved by separating the 

original problem into several smaller, easier and independent problems. 

Each individual problem was then solved accordingly. The proposed control 

law then involved the signal modelling, the model parameter estimation, the 

prediction and the decision making. The implementation of the proposed 

control strategy involves repeating the model parameter estimation, prediction 

and decision making continually at intervals. The intervals are physically 

constrained by the computing speed of the monitor. In real-time applications, 

the sampling periods can only be equal to, or longer than, these intervals. 

The working environment of the proposed tracking servomechanism had been 

analysed in Chapter 1. It was assumed that the target motion and ship 

rolling motion corrupted with noise will be the dominant signals. A constant 

acceleration model, or equivalently a quadratic polynomial, was chosen in 

modelling the absolute target trajectory. In essence, the target trajectory 

is being fitted by a quadratic polynomial function. Such a crude model was 

proposed because the tracking servomechanism is supposed to track all types 
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of targets. A priori information on types of targets is out of question. 

The only thing that can be certain is the trajectory must be continuous. 

Modelling the target motion will, however, be appropriate only to a finite 

time interval of the motion. The ship rolling motion, on the other hand, 

was proposed to be modelled as an autoregressive stochastic process. This 

was a subjective proposal. The only knowledge on the ship rolling available 

to the author is its approximate spectrum. The autoregressive model is also 

restricted to a finite length of the rolling because the ship rolling is not 

a truely stationary process in nature. Stationarity can be assumed to a segment 

of the infinite time series. 

It is preferable to employ recursive parameter estimation algorithms 

rather than batch processing since the estimation is performed on-line and a 

recursive algorithm is more efficient. Time is a crucial factor. The well-

known discrete Kalman filter algorithm is very attractive. In view of the 

finite nature of the deterministic and stochastic models, the parameters 

should only be estimated from a finite number of past measurements. 

Measurements that are too old must be dropped out from the estimates 

completely. A finite memory version of the algorithm has been derived. The 

finite memory Kalman filter can be visualised as the estimates obtained from 

a length of data inside a window which moves along with time. 

The finite memory version of the Kalman algorithm actually has potential 

applications in a broad area. For instance, only a fixed amount of data is 

available in identifying a plant. If canonical Kalman algorithm is used the 

first few data points will not be used effectively due to the transient of 

the filter itself, and also the initial guess of the parameter vector. On the 

other hand, the finite memory version may re-use the data again to give 

better estimates. It effectively reduces the error arising from wrong 

initial guess. The whole finite memory Kalman filter algorithm preserves 

the basic form of the canonical Kalman filter algorithm. The difference is 

the introduction of the old measurement to be discarded and the observation 

matrix at the time of the old measurement, etc. The finite memory version 

may be performed as a canonical Kalman filter by replacing certain elements 

of the matrices with zeros. The finite memory algorithm cannot drop out an 

old data without putting on one new measurement at the same time. Another 

slightly different algorithm is required for discarding one measurement only. 

The finite memory Kalman filter algorithm, however, suffers a deficiency: The 

transition matrix of the system has to be projected backwards to the time 

that the measurement is being dropped. This may be found to be computationally 

difficult in some cases, especially in time-variant systems. The algorithm 

also is required to remember the measurement, and the observation matrices at 
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the times the measurements were made. The algorithm is best used 

incorporated with systems having an identity matrix as the transition matrix, 

and with constant observation matrices. 

The finite memory Kalman filter has been actually tried out as a parameter 

estimator. The results were listed in Chapter 3. This showed that by 

manipulating the window length, unanticipated changes in parameters can be 

easily accommodated. Short window length allowed fast response to changes. 

However, too short the window length resulted with high variances. These 

all agreed with what were expected. The performance of the finite memory 

Kalman filter may be improved further by adopting an adaptive window. A 

long window may be used to give low variance on the estimates when no un-

anticipated change is detected. Once a sudden change in the parameters occurs, 

the window length may then be reduced to give a faster response to the sudden 

changes in the parameters. 

The canonical Kalman filter in effect has an infinite long window. 

Therefore, the finite memory Kalman filter gives a faster response than the 

canonical Kalman filter, when adapting to changes if both use the same system 

model. However, the canonical Kalman filter can have a faster response to 

changes if plant noise is introduced in the system model. The characteristic 

of the derived finite memory Kalman filter is very similar to the canonical 

Kalman filter working with plant noise. Both algorithms restrict the gain 

matrix becoming zero, thus the estimates may never be isolated from the 

measurements. The finite memory Kalman filter without plant noise is better 

than the canonical Kalman filter in the sense that the window length is easier 

to understand, than the variance of the plant noise. Furthermore, measurements 

may be removed from the estimates at will. The ignorance of the correlation 

between estimation errors and past plant noise prevents the derivation of 

a finite memory Kalman filter algorithm incorporated with plant noise in the 

system model. 

The cost function originally suggested was to offset the weighted prob-

ability of losing the target against the weighted realignments. Both weights 

were initially proposed to be time variant. The numerical simulation results 

indicated that the time variant weighting had no significant effect on the 

performance for the chosen parameters. The results suggested that an uniform 

weighting is sufficient. This simplifies the problem further by not requiring 

the knowledge of the duration of an engagement with a target. The important 

factor is however the ratio between the two weights. Too low a ratio resulted 

in frequent realignments. On the other hand, the tracker lost its target more 

often when the ratio was too high. The percentages of misses and 

realignments both have an exponential relationship with the ratio. The 
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cross-over point of the percentages of misses and realignments occurred 

between the weight ratio of two to three. Within this range, neither the 

realignments nor the misses would be excessive. The numerical simulation 

results also justified the assumption of one realignment, at most, within 

the prediction period in finding a numerical optimum of the cost function. 

The above two findings enabled a simpler, and quicker, algorithm to 

determine the optimal solution of the cost function. The algorithm can then make 

use of the fact that the amount of realignment is twice the difference 

between the predicted target position and the slew motor position at the 

time of realignment. The only task is then to find the time of realignment 

The determination of the optimal predicted slew motor trajectory becomes a 

one-variable optimisation problem. The number of variables in the original 

optimisation problem is twice the number of the time intervals inside the 

prediction period if the problem is treated as a multi-stage decision process. 

Otherwise, the problem has unknown numbers of variables if it is treated 

as a straight forward optimisation problem. 

The simulation also revealed that among the chosen ship rolling and 

target models the dominant motion is the ship rolling. The frequent 

realignment of the slew motor was mainly,due to the fluctuation in the 

ship motion. The simulated ship rolling motion did not truely reflect the 

characteristic of the real motion. Occasionally, the fluctuations were too 

violent. Nevertheless, a sixth order autoregressive model was sufficient to 

model the ship rolling motion. It is envisaged that the model will perform 

much better if real ship rolling motion signals were used because of the 

absence of the violent fluctuations. 

In view of the simulation results, the proposed control strategy cannot 

totally eliminate the possibility of losing its target during an engagement. 

However, this is the limitation of using the novel high torque, non-linear 

drive. This is also due to the inevitable noise in the measurements. There 

may be ways to reduce the possibility further. The microprocessor-based 

monitor may be used to override the control strategy when the target is going 

outside the working range of the tracking motor. 

Initially, it was planned to validate the proposed control strategy on a 

demonstration rig. The rig was commissioned and has been erected for 

action. It is unfortunate that there was no time to implement the control 

law completely to the rig. 
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SUGGESTIONS FOR FURTHER WORK 

The proposed control strategy for the novel dual drive tracking servo-

mechanism presented in this thesis is not fully developed. It is only showed 

that the control strategy is feasible. Several areas of work require 

further development. During the initial development of the control strategy, 

some interesting points arose and required investigation. 

As the simulation results suggested that one realignment is sufficient 

in the optimisation process. Thus, the optimisation algorithm requires 

modifications. It can be done more quickly. 

The validation of the eventually developed control strategy should be 

performed on the existing demonstration rig. 

In the work of modelling, the effect of the ship rolling motion requires 

further studies. Simulations using real ship rolling motion signals are 

essential before the proposed tracking system put to service. The suggestion 

of a sixth order autoregressive model for the ship motion is based on the 

simulated ship motion. This must be validated with true motion signals. 

The Kalman filter is generally used with a system without any constrain 

on its states. In real-life, every system has its own limitation. Therefore, 

it is interesting to see the Kalman filter in association with constraints. 

This combination should increase the accuracy and the confidence in 

estimating the states of the process. 

As already mentioned in Chapter 3 and Appendix B, the finite memory 

version of the Kalman filter cannot work with a system model having plant 

noise. It may be useful if this restriction can be released. 
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APPENDIX A 

MATRIX INVERSION LEMMA 

Let S and R be positive definite matrices not necessarily of the same 

order. Let M be a matrix such that R ^ M is of the same order as S, 

Then: (S"^ + = S - SM^(R + MSM^)~^ MS (Al) 

Proof: 

,-l ..T„-l... r„ «..T,„ T -1 
(S~ + M R" M) [S - SM (R + MSM )~ MS] 

= s"^ [ S - 8M^(R + MSM'^)"^ MS ] 

+ M^R'^M [ S - SM^CR + MSM"^)"^ MS ] 

-1 -1 T T -1 T -1 
= S S - S SM (R + MSM ) MS + M R M S 

- M^R"^MSM^(R + MSM^)"^ MS 

I - M^(R + MSM^) ^ MS + M^pr^MS 

M^R'^MSM^CR + MSM"^)"^ MS 

I + M'^R~^MS - M^(R + MSM'^)"^ MS 

T -1 T T -1 
M R MSM (R + MSM ) MS 

T -1 T -1 T -1 
I + M R M S - M R R(R + MSM ) MS 

M^R'^MSM^ (R + MS 

I + M^R'^MS - M'̂ R"̂  (R + MSM^)(R + MSM"^)"^ MS 

T -1 T -1 
I + M R MS - M R MS 

= I (Q.E.D.) 



Corollary: 

-1 T -1 -1 T -1 T T -1 
(S + M R M) M R = SM (R + MSM ) (A2) 

Proof: 

-1 T -1 -1 T T -1 
(S + M R M) = S - SM (R + MSM ) MS 

-1 T -1 -1 T -1 T -1 T T -1 T -1 
M(S + M R M) M R = MSM R - MSM (R + MSM*) MSM R 

Premultiplied by (MSM^) ^ 

T -1 -1 T -1 -1 T -1 
(MSM ) M (S + M R M) M R 

-1 T -1 T -1 
= R - (R + MSM ) MSM R 

Premultiplied by (R + MSm'^) 

T T -1 -1 T -1 -1 T -1 
(R + MSM )(MSM ) M (S + M R M) M R 

T -1 T -1 
(R + MSM )R - MSM R 

T T -1 -1 T -1 -1 T -1 
(R + MSM )(MSM ) M(S + M R M) M R 

-1 T -1 -1 T -1 T T -1 
M(S + M R M) M R = MSM (R + MSM ) 

-1 T -1 -1 T -1 T T -1 
(S + M R M) M R = SM (R + MSM ) (Q.E.D.) 
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APPENDIX B 

KALMAN FILTERING 

B.l Model for Random Processes 

Given a dynamic model of 

x(k+l) = A(k+l,k) x(k) + B(k) u(k) (Bl) 

and the measurement equation is 

^(k+1) = D(k+1) x(k+l) + v(k+l) (B2) 

where x(.) is a nxl state vector, ii(.) is a pxl input vector, ^(.) is a 

mxl measurement vector and y_(.) is a mxl measurement noise vector. 

A(k+l,k) is a nxn transition matrix, B(.) is a nxp control matrix and 

D(.) is a mocn observation matrix. _v(.) is a zero-mean gaussian random 

variable, i.e. 

E[ v(k)] = 0 (B3) 

and 

E[ v(k) v^Cj) ] = R(k) 6 ^ (B4) 

where 

0 ; j/k 

^jk 
(B5) 

1 ; j=k 

The measurement noise, v(.) is assumed to be uncorrelated with the state 

vector, x(.) 



B.2 Inclusion of One New Measurement 

Before the derivation, it is necessary to assume that an estimate of ^(k), 

5(k/k,£), and its covariance matrix, P(k/k,2), are available. The notation 

of ̂ (k/k,£) means an estimate of the state x. at time interval k based on 

the measurements from time intervals k-£ to k inclusive. 

B.2.1 Derivation from Linear Minimum Variance Approach. 

Given the estimate 3£(k/k,£) and its covariance matrix P(k/k,&) the 

new estimate x/k+l/k+l,&+l) with one new measurement added is 

assumed to be: 

x(k+lA+l, Jl+1) = x(k+l/k,£) + K(k+1) ^(k+l/k,&) (B6) 

where 

z^k+l/k,&) is the innovation 

z(k+l/k,2) = z(k+l) - z(k+l/k,A) (B7) 

The estimate 3c(k+l/k+l, £+1) must satisfy the criterion that the 

estimation error variance is minimum, i.e. the cost of minimisation 

is: 

J = P(k+l/k+l,£+l) 

= E [ x(k+l/k+l,£+l) x'^(k+l/k+l,Jl+l)] (B8) 

Since the best estimate of ^(k+1) is 

2(k+l/k,&) = D(k+1) x(k+l/k,£) (B9) 

(B7) becomes: 

z(k+l/k,£) = D(k+1) x(k+l) + v(k+l) - D(k+1) x(k+l/k,£) 

= D(k+1) x(k+l/k,&) + v(k+l) (BIO) 
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Therefore: 

:x(k+l/k+l,A+l) = x(k+l) - x(k+l/k+l, £+1) 

= x(k+l) -x(k+l/k,Jl) - K(k+1) _z(k+l/k,&) 

= x(k+l/k,£) - K(k+1) D(k+1) x(k+l/k,£) - K(k+1) v(k+l) 

= [ I - K(k+1) D(k+1) ] x(k+l/k,£) - K(k+1) v(k+l) 

(BID 

Hence, with the fact that 2£(k+l/k, £) and v_(k+l) are uncorrelated 

P(k+l/k+l, £+1) = E [ x(k+l/k+l, £+1) x'^(k+l/k+l, £+1)] 

= [l - K(k+1) D(k+1)] P(k+l/k,£) [l - K(k+1) D(k+1)]^ 

+ K(k+1) R(k+1) K^^k+1) (B12) 

where 

P(k+l/k,£) = A(k+l,k) P(k/k,£) A^Ck+l.k) (B13) 

expanding (B12) 

P(k+l/k+l,£+1) = P(k+l/k,£) - K(k+1) D(k+1) P(k+l/k,£) 

- P(k+l/k,£) D^fk+l) K"(k+1) 

+ K(k+1) [ D(k+1) P(k+l/k,£) D^(k+1) + R(k+l)J K^(k+1) 

(B14) 

Completing the square gives: 

P(k+l/k+l,£+l) = 

[K(k+1) - V] [D(k+1) P(k+l/k,£) D^^k+l) + R(k+1)] [K(k+1) - v ] ^ 

- V[ D(k+1) P(k+l/k,£) D^(k+1) + R(k+l)]v^ + P(k+l/k,&) (B15) 
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where V must satisfy the expression: 

V [D(k+1) P(k+l/k,&) D^(k+1) + R(k+1)] = P(k+l/k,&) D^(k+1) (B16) 

From (B15), it will be minimum if K(k+1) = V and hence: 

K(k+1) = P(k+l/k,£) D^Ck+l) [D(k+1) P(k+l/k,&) D^Ck+l) + R(k+1)]~^ 

(B17) 

and 

P(k+l/k+l,A+l) = [l - K(k+1) D^Ck+l)] P(k+l/k,£) (B18) 

Together with the fact that: 

x(k+l/k,£) = A(k+l,k) x(k/k,£) + B(k) u(k) (B19) 

(B6), (B13), (B17), (B18) and <B19) form a complte algorithm. 

B.2.2 Derivation from weighted Least Squares Approach 

From the model (Bl) 

x(k+l) = A(k+l,k) x(k) + B(k) u(k) 

after rearranging gives 

x(k) = A(k,k+1) x(k+l) - A(k,k+1) B(k) u(k) (B20) 

Extending the time interval backward to k-£ 

x,(k-&) = A{k-£,k+l) 3c(k+l) - g(k-&,k+l) (B21) 

where 
k 

g(k-A,k+l) = Z A(k-£,j+l) B(j) u(j) (B22) 
j=k-& 

From the measurement equation (B2) 

_z(k-£) = D(k-£) A(k-£,k) x(k) - D(k-£) g(k-&,k) + v(k-£) (B23) 
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Consider the measurements from interval k-£ to k inclusive, let 

2(k) = 

z(k-&) + D(k-£) $(k-A,k) 

z(k-&+l) + D(k-&+l) B(k-&+l,k) 

^(k-1) + D(k-l) 8(k-l,k) 

z(k) 

N(k) 

V(k) = 

and 

R(k-&) 

Q(k) 

D(k-£) A(k-£,k) 

D(k-&+l) A(k-&+l,k) 

D(k-l) A(k-l,k) 

D(k) 

v(k-&) 

v(k-&+l) 

v(k-1) 

v(k) 

R(k-&+l) 

R(k-l) 

R(k) 
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Then 

Z(k) = N(k) x(k) + V(k) (B24) 

In the case of weighted Least Squares estimation the cost function is; 

J = [Z(k) - N(k) x(k/k, g,)]̂  Q"^(k) [z(k) - N(k) x(k/k,£)] (B25) 

The estimator that minimises the cost is [ss] 

x(k/k,&) = P(k/k,&) N^^k) Q~^(k) Z(k) (B26) 

and 

P(k/k,£) = [N'̂ (k) Q~^(k) N(k)]"^ (B27) 

When one new measurement is available, (B24) is augmented to: 

Z(k) + N(k) A(k,k+1) B(k) _u(k) 
z(k) 

N(k) A(k,k+1) 
D(k+1) 

x(k+l) + I V(k) 
1 V(k+1) 

The weighted Least Squares estimate of 3c(k+l) is then: 

(B28) 

x(k+l/k+l,£+1) 

= P(k+l/k+l,&+l) (A (k,k+l) N (k) D (k+D) Q~^(k) . 0 

0 R"^(k+1) 

Z(k) + N(k) A(k,k+1) B(k) u(k) 
z(k+l) 

= P(k+l/k+l,&+l) [A^(k,k+1) N^(k) Q"^(k) Z(k) 

+ A7(k,k+1) N^(k) Q~^(k) N(k) A(k,k+1) B(k) u(k) 

+ D^(k+1) R~^(k+1) z(k+l)] (B29) 

where 

P(k+l/k+l,2+l) 
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-1 

(A^(k,k+1) N^\k) D^^k+1) ) f Q"^(k) 0 \ /N(k) A(k,k+1) 

\ 0 R~^(k+1)/ \ D(k+1) 

= [ A^(k,k+1) N^Vk) Q~^(k) N(k) A(k,k+1) + rF(k+l) R"^(k+1) D(k+1)] 

(B30) 

Substitute (B26) and (B27) into (B29) gives 

%/k+l/k+l,A+l) 

= P(k+l/k+l,&+l) [A^\k,k+1) P"l(k/k,&) x(k/k,£) 

+ A^(k,k+1) P"^(k/k,£) A(k,k+1) B(k) u(k) 

+ D (k+1) R"^(k+1) ^(k+1) j 

= P(k+l/k+l,«.+!) [A^(k,k+1) p'^Ck/k.A) A(k,k+1) (A(k+l,k) x(k/k,^) 

+ B(k) u(k)) 

+ D^Ck+l) R"^(k+l)^(k+l) ] 

= P(k+l/k+l,£+l) [p"^(k+l/k,Jl) x(k+l/k,£) + D'^(k+1) R"^(k+1) z(k+l)] 

(B31) 

Substitute (B27) into (B30) gives: 

P(k+l/k+l,&+l) 

= [A^(k,k+1) p"l(k/k,&) A(k,k+1) + D^Ck+l) R"^(k+1) D(k+1)] 

= [p"l(k+l/k,A) + DT(k+l) Brl(k+1) D(k+1)] (B32) 

Applying the Inversion lemma, Appendix A, to (B32): 

P(k+l/k+l,&+l) = P(k+l/k,&) 

-P(k+l/k,A) D^(k+1)[ D(k+1) P(k+l/k,&) D^(k+1) + R(k+1)] 

X D(k+1) P(k+l/k,£) (B33) 
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Let K(k+1) = P(k+l/k+l,&+l) D^Ck+l) R"^(k+1) (B34) 

(B31) becomes: 

^ 1 
x(k+l/k+l,J?,+l) = P(k+l/k+l, J2.+ 1) P" (k+l/k,5,) x(k+l/k,£) 

+ K(k+1) _z(k+l) 

= [l - K(k+1) D(k+1)] x(k+l/k,£) + K(k+1) ̂ (k+1) (B35) 

From the Inversion lemma again, it can be shown that: 

[p"^(k+l/k,Jl) + D^Ck+l) R"^(k+1) D(k+1)]~^ D*(k+1) R~^(k+1) 

= P(k+l/k,£) D^Ck+l) [D(k+1) P(k+l/k,A) D^Ck+l) + R(k+1)]~^ (B36) 

Hence; 

K(k+1) = P(k+l/k,&) D^Ck+l) [D(k+1 P(k+l/k,£) D^(k+1) + R(k+1)]"^ (B37) 

and 

P(k+l/k+l,£+l) = [l - K(k+1) D(k+1)] P(k+l/k,A) (838) 

Therefore, (B6), (B13), (B19), (B37) and (B38) form the complete algorithm 

which corresponds to the algorithm in the last section. 

B.2.3 Summary of the Algorithm for Adding One New Measurement 

P(k+1A,£) = A(k+l,k) P(k/k,£) A * (k+ l ,k ) (B39) 

x(k+l/k,£) = A(k+l,k) x(k/k,2,) + B(k) ja(k) (B40) 

K(k+1) = P(k+l/k,&) D^Ck+l) [D(k+1) P(k+l/k,A) D*(k+1) 

+ R(k+1)] ^ (B41) 

%:(k+l/k+l,A+l) = [l - K(k+1) D(k+1)] x(k+l/k,Jl) 

+ K(k+1) ̂ (k+1) (B42) 

P(k+1) = [l - K(k+1) D(k+1)] P(k+l/k,A) (B43) 
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B.3 Dropping of One Old Measurement 

It is assumed that an estimate of 3c(k) , 3c(k/k,£), and its covariance matrix, 

P(k/k,£), are available. The objective is to develop the algorithm for 

the removal of the data at time k-Jl from the estimate. 

B.3.1 Derivation from Linear Minimum Variance Approach 

Given the estimate :x(k/k,&) and its covariance matrix P(k/k,&), the 

new estimate x,(k/k,£-l) with one old measurement at time k-& removed is 

assumed to be: 

x(k/k,£-l) = x(k/k,£) - K(k-&) z(k-A/k,&) (B44) 

where 

2(k-&/k,&) = £(k-£) - z^k-&/k,&) (B45) 

The estimate ̂ (k/k,&-1) must satisfy the criterion that the estimation error 

variance is minimum, i.e. the cost for minimisation is: 

J = P(k/k,2-l) 

= E[x(k/k,&-l) x^(k/k,2-l) ] (B46) 

Substitute (B2) and (B21) into (B45) : 

z(k-&/k,&) = z(k-&) - z(k-A/k,A) 

= D(k-&) x(k-&) + v(k-&) - D(k-£) x(k-£/k,£) 

= D(k-£) A(k-£,k) x(k) - D(k-A) g(k-A,k) 

+ v(k-£) - D(k-&) A(k-£,k) x(k/k,£) 

+ D(k-&) g(k-A,k) 

= D(k-& ) A(k-£,k) x(k/k,2) + v(k-£) (B47) 
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Hence 

x(k/k,£-l) = x(k/k,&) - K(k-&) D(k-&) A(k-£,k) x(k/k,£) 

- K(k-A) v(k-£) 

Or 

x(k) - x(k/k,£-l) = x(k) - x(k/k,£) + K(k-£) v(k-Z) 

+ K(k-Z) D(k-Z) A(k-£,k) x(k/k,Jl) 

%(k/k,&-l) = [ I + K(k-&) D(k-&) A(k-&,k)] :K/k/k,&) + K(k-A) y^k-A) 

(B48) 

Since the estimate x(k/k,Z) is based on the measurements from interval k-& 

to k, the estimation error x(k/k, jl) is correlated with the measurement 

noise ;v(k-£) . However the estimate x/k/k,2-l) does not involve the 

measurement z(k-i) and x/k/k,&-l); therefore has no relation with v(k-£). 

Thus: 

E[x(k/k,S,-l) x^(k/k,&-l)] + E[K(k-£) v(k-&) v\k-2) K^\k-&)] 

= + K(k-A) D(k-A) A(k-&,k)] P(k/k,&) [l + K(k-&) D(k-&) ACk-A.k)]^ 

P(k/k,&-l) + K(k-&) R(k-&) K^^k-A) 

= [l + K(k-&) D(k-&) A(k-&,k)] P(k/k,A) [l + K(K-&) D(k-A) A(k-&,k) 

P(k/k,£-l) 

= [l + K(k-£) D(k-A) A(k-&,k)] P(k/k,&) [l + K(k-A) D(k-&) A(k-&,k)]T 

- K(k-£) R(k-A) K^(k-A) (849) 

Completing the square gives: 

P(k/k,&-l) 

= [K(k-&) + V] [D(k-&) A(k-A,k) P(k/k,A) A^\k-&,k) D^Ck-A) - R(k-&)] 

X [K(k-il) + v]' 
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-V [D(k-il) A(k-&,k) P(k/k,£) A^(k-&,k) D*(k-&) - R(k-&)] 

+ P(k/k,&) (B50) 

where V must satisfy: 

V [D(k-&) A(k-A,k) P(k/k,&) A*(k-&,k) D^\k-&) - R(k-&)] 

P(k/k,&) A^(k-&,k) D^Ck-A) (B51) 

From (B50) then, it will be minimum if K(k-&) = -V. Thus: 

K(k-&) = -P(k/k,A) A^\k-&,k) D^(k-&) 

X [D(k-A) A(k-A,k) P(k/k,&) A7(k-&,k) D*(k-A) - R(k-&)] (B52) 

and 

P(k/k,A-l) = [ I + K(k-&) D(k-&) A(k-A,k)] P(k/k,&) (B53) 

and (B44) can be rewritten as: 

x^k/k,A-l) = [ I + K(k-&) D(k-&) A(k-&,k)] :K(k/k,&) 

- K(k-&) (z(k-2) + D(k-&) 6(k-&,k)) (B54) 

Thus (B52), (B53), and (B54), together with the system and measurement 

equations form a complete algorithm for removing one measurement at time k-A. 

B.3.2 Derivation from weighted Least Squares Approach 

With (B21) and (B22), let 

_z(k-£+l) + D(k-£+l) $(k-2+l,k) \ 

_z(k-2,+2) + D(k-&+2) g(k-&+2,k) 

Z(k) 

_z(k-l) + D(k-l) g(k-l,k) 

z(k) 
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N(k) = 

V(k) 

and 

/R(k-Afl) 

R(k-A+2) 

Q(k) = 

Then 

D(k-£+l) A(k-£+l,k) 

D(k- W ) A(k-£+2,k) 

D(k-l) A(k-l,k) 

D(k) 

yXk-2+1) 

v(k-1+2) 

v(k-l) 

V(k) 

R(k-l) 

R(k) 

Z(k) = N(k) x(k) + V(k) (B55) 

With the cost 

J = [Z(k) - N(k) x(k/k,&-l)]^ Q ^(k) [z(k) - N(k) x(k/k,&-l)] (B56) 
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The weighted Least Squares estimator that minimises (B56) is [ss] 

T -1 
x(k/k,£-l) = P(k/k,£-l) N (k) Q (k) Z(k) (B57) 

where 

P(k/k,£-l) = [ N^\k) Q"^(k) N(k)]"^ (858) 

Together with the old measurement at time interval k-£ 

z(k-Jl) + D(k-A) 6(k-£,k) 

Z(k) 

D(k-A) A(k-A,k) 

N(k) 
x(k) + 

;v(k-£) 

V(k) 
(B59) 

The corresponding weighted least squares estimate is: 

x(k/k,£) = P(k/k,£) (A^Ck-A.k) rF(k-&) N^\k)) R (k-£) 

0 Q"^(k) 

_z(k-2) + D(k-£) g(k-&,k) 

Z(k) 

= P(k/k,A) [A^Vk-A,k) D^Ck-A) R'^Ck-A) (z<k-&) + D(k-&) $Ck-&,k)) 

+ N^Ck) Q ^(k) Z(k)] (B60) 

and 

P(k/k,&) = 
(A^(k-&,k) D^\k-&) N^Ck)) 0 

0 Q"^(k)/ 

D(k-A) A(k-&,k) 

N(k) I 

- 1 

= [A7(k-&,k) D^(k-£) R"^(k-£) D(k-&) A(k-&,k) 

+ N^Ck) Q~^(k) N(k) ] (B61) 
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Substituting (B58) into (B61) gives: 

P(k/k,&-l) = [p"^(k/k,A) - A^\k-&,k) D^(k-&) R"^(k-£) D(k-£) A(k-&,k)] ^ 

(B62) 

Applying the Inversion Lemma in Appendix A to (B62): 

P(k/k,2-l) = P(k/k-&) 

P(k/k,£) A^(k-&,k) D*(k-A) [D(k-£) A(k-&) P(k/k,&) A^(k-&,k) D^(k-&) 

- R(k-Jl)]"^ D(k-£) A(k-&,k) P(k/k,£) (B63) 

Let 

K(k-A) = -P(k/k,&) A*(k-&,k) D^^k-A) 

X [D(k-A) A(k-&,k) P(k/k,&) 47(k-A,k) D^\k-A) - R(k-&)] (B64) 

Thus 

P(k/k,&-l) = [l + K(k-&) D(k-A) A(k-A,k)] P(k/k,&) (B65) 

Also from the Inversion Lemma 

[p"l(k/k,A) - A7(k-&,k) D^^k-A) BT^Ck-A) D(k-2) A(k-A,k)] 

X A^(k-&,k) DF(k-2) R~^(k-£) 

-P(k/k,A) A^\k-&,k) D^^k-A) 

X [D(k-A) A(k-A,k) P(k/k,&) A^Ck-A.k) D^(k-A) - R(k-&)] (B66) 

together with (B57) 

x(k/k,£) = P(k/k,£-l) [p ^(k/k,&) x(k/k,£) - A^(k-&,k) D^^k-&) 

Br^(k-&) (z(k-&) + D(k-2)6(k- ,k)) ] 

[l + K(k-&) D(k-A) A(k-&,k)] x/k/k,&) 

K(k-&) (z(k-&) + D(k-&) 6(k-&,k)) (B67) 
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Therefore (B64), (B65), (B67) together with the system and measurement 

equations corresponds to the algorithm developed from the minimum 

variance approach. 

B.3.3. Summary of Algorithm for Removing Old Measurement 

K(k-£) = -P(k/k,&) A^(k-&,k) D^(k-&) 

X [D(k-A) A(k-&,k) P(k/k,&) A^Ck-A.k) D^\k-A) 

- R(k-&)] ^ (B68) 

P(k/k,A-l) = [l + K(k-2) D(k-&) A(k-A,k)] P(k/k,A) (B69) 

x^k/k,&-1) = [l + E(k-&) D(k-A) A(k-A,k)] x(k/k,&) 

- K(k-&) (z(k-A) + D(k-&) g(k-A,k)) (B70) 

B.4 Moving Window 

It is proposed to use a data window of A+1 measurements. The estimate 

of 3c(k+l), 3c(k+l/k+l, £), is based on the measurements from time interval 

k-&+l upto k+1 inclusive. When one new measurement is available, the 

estimate of the state is up-dated, but at the same time the oldest 

measurement is dropped. 

B.4.1 Derivation from Linear Minimum Variance Approach 

For the estimate to be a linear combination of the measurement, 

the new estimate will have the form: 

x(k+l/k+l,£) = x(k+l/k,£) + K(k+1) z(k+l/k,(,) - K(k-&) z^k-&/k,&) (B71) 

in which 

zXk+l/k,&) = z(k+l)- ̂ (k+l/k,&) 

= z(k+l)- D(k+1) x(k+l/k, £) 

= D(k+1) xXk+l/k,&) + v_(k+l) (B72) 
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and 

_z(k-£/k,£) = z(k-£) - _z(k-Ji/k, £.) 

= z(k-A) - D(k-£) A(k-£,k+l) x(k+l/k,£) 

+ D(k-£) B(k-£,k+l) 

= D(k-&) A(k-£,k+l) x(k+l/k,£) + v(k-£) (B73) 

Therefore; 

x(k+l/k+l,£) = x(k+l) - x(k+l/k+l,£) 

= x(k+l/k,£) - K(k+1) ̂ (k+l/k,£) 

+ K(k-A) z^k-A/k,A) 

= [l - K(k+1) D(k+1) + K(k-£) D(k-£) A(k-£,k+l)] 

^(k+l/k,£) 

- K(k+1) _v(k+l) + K(k-£) Jv(k-£) (B74) 

In (B74), 3£(k+l/k,£) is the estimation error based on the measurements 

from k-£ to k. Thus, it is correlated with the measurement noise at k-£. 

However, the estimation error x(k+l/k+l,£) is based on the measurements 

from k-£+l to k+1. The estimate x/k+l/k+l,£) is totally unrelated with 

the measurements made before the interval k-£+l. Thus: 

E [x(k+l/k+l, £) x'^(k+l/k+l, £)] + K(k-£) E[ v(k-£) v'^(k-£)] KT(k-£) 

= [l - K(k+1) D(k+1) + E(k-A) D(k-&) A(k-&,k)] E[x/k+l/k,£) xT(k+l/k,&)] 

% [l - K(k+1) D(k+1) + K(k-&) D(k-&) A(k-&,k)]^ 

+ K(k+1) E {v_(k+l) v^Ck+l)] K^Ck+l) 

P(k+l/k+l,&) + K(k-&) R(k-A) K^^k-A) 

= [l - K(k+1) D(k+1) + K(k-£) D(k-£) A(k-£,k)] P(k+l/k,£) 
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X [l - K(k+1) D(k+1) + K(k-£) DCk-2) ACk-&,k)]^ 

+ K(k+1) R(k+1) K^\k+1) (B75) 

Let G = (K(k+1) -K(k-£)) , (876) 

D(k+1) \ 

\D(k+l) A(k-£,k) I 

M =/ D(k+1) 

D(k+1) A(k-£,k) I (B77) 

U =1 _z(k+l) 

l_z(k-^) + D(k-&) 6(k-£,k+l)/ (B78) 

ead 8 = 0 

\ 0 -R(k-£)/ (B79) 

(B71) and (B75) can be simplified as: 

x(k+l/k+l,£) = [l - GM] x(k+l/k,&) - GU (880) 

and 

P(k+l/k+l,&) = [l - gm] P(k+l/k,&) [l - GM] + GSG^ (881) 

Completing the square of (B81) 

P(k+l/k+l,£) = [G - v] [M P(k+l/k,£) + s] [G - v]"̂  

- V [M P(k+l/k,£) + S] + P(k+l/k,&) (882) 

With V satisfying the expression: 

V [M P(k+l/k,&) wF + S] = P(k+l/k,&) wF (883) 

From (B82), P(k+l/k+l,£) is minimum if G = V. 
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Thus: 

G = P(k+l/k,2) [M P(k+l/k,A) + S]~^ (B84) 

and 

P(k+l/k+l,&) = [L - GM] P(k+l/k,&) (B85) 

B.4.2 Derivation from Weighted Least Squares Approach 

With (B21) and (B22), let: 

Z(k) 

,z(k-2+l) + D(k-&+l) 6(k-&+l,k) 

z(k-£+2) + D(k-&+2) 6(k-£+2,k) 

z/k-2) + D(k-2) g(k-2,k) 

^(k-1) + D(k-l) B(k-l,k) 

N(k) = 

V(k) = 

D(k-&+l) A(k-&+l,k) 

D(k-£+2) A(k-£+2,k) 

D(k-2) A(k-2,k) 

D(k-l) A(k-l,k) 

v(k-&+l) 

v(k-&+2) 

v(k-2) 

v(k-l) 
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and 

R(k-£+l) 

R(k-£+2) 0 

Q(k) 

Therefore: 

R(k-2) 

RCk-1) 

/Z(k) + N(k) A(k,k+1) B(k) u(k)' 

^ z(k) 

N(k) A(k,k+1) 

D(k+1) 
x(k+l) 

V(k) 

v ( k + l ) 

(B86) 

and 

2(k-£) + D(k-£) g(k-&,k) 

Z(k) 

D(k-&) A(k-&,k) 

N(k) 
x(k) 

l(k-&) 

V(k) 
(B87) 

From (B86), the weighted least squares estimate is: 

x(k+l/k+l,£) = P(k+l/k+l,£) 
-1. 

(A^(k,k+1) N^\k) D^\k+1)) f ̂  ° 

I 0 R (k+1), 

X 

Z(k) + N(k) A(k,k+1) B(k) u(k) 

z(k+l) 

= P(k+i/k+i,&) [A/(k,k+i) N*(k) qT^Ck) z(k) 
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+ D^Ck+l) R ^(k+1) z(k+l) 

+ A^(k,k+1) N^\k) Q~^(k) N(k) A(k,k+1) B(k) u(k)] (B88) 

With: 

P(k+l/k+l,&) (A'(k,k+1) N^Vk) D^Ck+l)) /Qrl(k) 0 

0 R~^(k+1) 

N(k) A(k,k+1) 

D(k+1) 

= [A^(k,k+1) N^Ck) Q~^(k) N(k) A(k,k+1) 

+ D^(k+1) R ^(k+1) D(k+1)] (B89) 

From (B87), the corresponding weighted least squares estimate is; 

x(k/k,£) = P(k/k,£) (A^(k-&,k) D^(k-2) N^\k)) f 0 

0 Q"*(k) 

z(k-&) + D(k-&) g(k-&,k) 

Z(k) 

P(k/k,A) [A^\k-&,k) D^\k-A) Brl(k-A) 

X (z(k-A) + D(k-&) 6(k-&,k)) 

+ N^Ck) Q l(k) Z(k) ] (B90) 

With 

P(k/k^) = 

/D(k-A) A(k-A,k) 

\ N(k) 

(A^Ck-a^k) D^Ck-A) NT(k)) /R"l(k-A) 0 

I 0 

- 1 

- 1 
Q (k) 
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= [A^(k-A,k) D^(k-A) R~^(k-£) D(k-£) A(k-£,k) 

+ N^Ck) qT^Ck) N(k) ] " 1 (B91) 

From (B90) 

NT(k) Q"l(k) Z(k) = P"l(k/k,2) x(k/k,&) - D(k-A) g(k-&,k) 

- A^(k-&,k) D^\k-&) R~^(k-£) zCk-i) (B92) 

Substituting (B21) into (B92) gives: 

N^Ck) Q"l(k) Z(k) = P"l(k/k,&) A(k,k+1) x/k+l/k,A) 

- N^Ck) Q"l(k) N(k) A(k,k+1) B(k) u(k) 

- A7(k-&,k) D^Vk-&) _z(k-£) 

- A^Ck-A.k) D^Ck-A) R"l(k-&) D(k-&) 6(k-&,k+l) (B93) 

Substituting (B93) into (B88) 

x(k+l/k+l,&) = P(k+l/k+l,A) [p" (k+l/k,A) x(k+l/k,&) 

+ o'^Ck+l) R"^(k+1) _z(k+l) 

- A^(k-2,k+l) D^Ck-A) R"^(k-£) (z(k-£) 

+ D(k-&) 3(k-£,k+l)) ] (B94) 

Adding and subtracting the terms (D^(k+1) R~^(k+1) D(k+1) x(k+l/k,A)) and 
T T -1 

(A (k-£,k+l) D (k-£) R (k-2) D(k-£) A(k-£,k+l) 3c(k+l/k, £)) in the right 

hand side of (B94), and together with the introduction of: 

_ /D(k-&) A(k-&,k+l)\ 
I I 
\ D(k+1) / 
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-R(k-£) 

0 R(k+1) 

and 

z ( k - i ) + D(k-£) B(k-£,k+l) 

z(k+l) 

(B94) becomes: 

:(k+l/k+l,£) = P(k+l/k+l,£) [(P"^(k+l/k,&) + x(k+l/k,£) 

+ (IJ - M x(k+l/k,£)) ] (B95) 

From (B91) 

oT^Ck) N(k) = p"^(k/k,A) 

A^^k-&,k) D^(k-2) R~^(k-£) D(k-&) A(k-£,k) (B96) 

Substituting (B96) into (B89) gives: 

P(k+l/k+l,£) = [P (k+l/k,&) + M S" M] (B97) 

Thus: 

x(k+l/k+l,£) = x(k+l/k,£) 

+ P(k+l/k+l,£) wFs'l CU - M x(k+l/k,£)) (B98) 

Let G = P(k+l/k+l,£) (B99) 

(B98) becomes; 

:x(k+l/k+l,£) = [l - GW] x/k+l/k,£) + GU (BlOO) 

Applying the Inversion Lemma to (B97) gives: 

P(k+l/k+l,£) = P(k+l/k,£) 

- P(k+l/k,&) M^(M P(k+l/k,£)MT + S)"^ 

X M P(k+l/k,£) 
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From the Inversion Lemma, using the relationship: 

-1 T -1 -1 T -1 
(P (k+l/k,£) + M S M) M S 

= P(k+l/k,A) (M P(k+l/k,£) + S)~^ <B102) 

(B99) and (BlOl) can be rewritten as; 

G = P(k+l/k,&) wF [ M P(k+l/k,A) M'̂  + S]~^ (BIOS) 

and 

P(k+l/k+l,&) = [l - GmJ P(k+l/k,&) (B104) 

Therefore (B98) can be rewritten as: 

^(k+l/k+l,£) = [l - GM] x(k+l/k,JL) + GU (BIOS) 

Hence (B13), (B19), (B103), (B104) and (BIOS) form the algorithm 

corresponding to the one derived from the minimum variance approach. 

B.4.3 Summary of Algorithm for Moving Window 

x(k+l/k,il) = A(k+l,k) x(k/k,2) + B(k) u(k) (B106) 

P(k+l/k,&) = A(k+l,k) P(k/k,&) A (k+l,k) (B107) 

G = P(k+l/k,&) [M P(k+l/k,A) + s] 

P(k+l/k+l,&) = [L - GM] P(k+l/k,£) 

(BIOS) 

(B109) 

x(k+l/k+l,£) = [l - GM] x(k+l/k,2) + GU (BllO) 

with 

M = D(k+1) 

D(k-&) A(k-&,k+l) 
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s = 
R(k+1) 

0 -R(k-&) 

£(k+l) < 

_z(k-£) + D(k-A) 6(k-£,k+l), 

and 

G = (K(k+1) -K(k-£)). 

B.5 Gains for Moving Window 

In (BIOS) the term [MP(k+l/k,£) + s] ^ can be expanded as; 

[M P (k+l/k,&) + S]~^ 

D(k+1) 

D(k-&) A(k-&,k+l) 

P(k+l/k,A) (DT(k+l) A^\k-&,k+l) ^^(k-A)) 

R(k+1) 0 ^ 

0 -R(k-&), 

- 1 

c 

d 

where; 

D(k+1) P(k+l/k,£) D (k+1) + R(k+1) (B112) 

D(k-A) A(k-&,k+l) P(k+l/k,&) D (k+1) (B113) 
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c = D(k+1) P(k+l/k,&) A^(k-2,k+l) D^(k-&) 

D(k-&) A(k-£,k+l) P(k+l/k,£) A^(k-£,k+l) D^Ck-A) - R(k-&) 

1. 1-1 = [a - cd b ] 

d [a - cd """b] 
1. 1 -1 

-a [d - ba ^c] ^ 

— 1 " 1 — 1 
[d - ba c ] 

(B114) 

(B115) 

(B116) 

(B117) 

(B118) 

(B119) 

Therefore (BIOS) becomes: 

K(k+1) = P(k+l/k,&) [o^Ck+l) e + A*(k-&,k+l) D^(k-A) f] (B120) 

-K(k-£) = P(k+l/k,&) [o^Ck+l) g + A"(k-2,k+l) D^(k-&) h] (B121) 

(B120) and (B121) can be rewritten as: 

K(k+1) = P(k+l/k,£) D^(k+1) [D(k+1)P(k+l/k,£) D^(k+1) + R(k+1)]' 

+ K(k-£) D(k-&) A(k-£,k+l) P(k+l/k,2) D (k+1) 

X [D(k+1) P(k+l/k,A) D^Vk+1) + R(k+1)] (B122) 

- K(k-&) = P(k+l/k,&) A^\k-&,k+l) D^(k-&) 

X [D(k-£) A(k-&,k+l) P(k+l/k,£) A^(k-£,k+l) D^(k-£) - R(k-£) 

- K(k+1) D(k+1) P(k+l/k,£) A^(k-£,k+l) D^(k-£) 

X [D(k-£) A(k-£,k+l) P(k+l/k,£) A^(k-£,k+l) D'^(k-£) - R(k-&) ]"^ (B123) 

In (B122), the first term on the right hand side is the gain of adding one 

new measurement, (B41). In (B123), the first term on the right hand side is 

the gain of removing one old measurement, (B68). Thus, the gains of moving 

window are related to, but are more complicated than, the gains of adding 

and removing measurements separately. 
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B.6 Model with Plant Noise 

Occasionally, due to the existence of disturbances in the system or the 

inadequate knowledge of the complete system, model presented in Section B.l 

becomes inappropriate. The model is modified with the introduction of a 

plant noise, w(k). 

x(k+l) = A(k+l,k) x(k) + B(k) u(k) + C(k) ̂ (k) 

z(k+l) = D(k+1) x(k+l) + v(k+l) 

(B124) 

(B125) 

The plant noise, oj(k) is generally assumed to be a zero mean gaussian 

random process, uncorrelated with the measurement noise. 

i.e. E [ w(k) ] 0 

E [ w(k) W (j)] = Q(k) 6. 

(B126) 

(B127) 

The model is illustrated in Figure B-1. 

C(k) 

K + A x c u+ o 

1 yV J 
y V y 

ACW+l,k) 
XCW) 

V(k+I) 

•+A z c u + n 

Figure B-1 Model With Plant Noise. 
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B.6.1 Finite Memory Filtering Algorithm for Models with Plant Noise 

It is assumed that an estimate of 3c(k), 3c(k/k,Jl) and its 

covariance, P(k/k,&), are available a priori. The finite memory 

filtering involves the removal of old measurement at k-i, it is therefore 

necessary to project 3c(k) and 3c(k/k, £) back to the time interval k-2. 

Re-arranging (B124) 

x(k) = A(k,k+1) x(k+l) - A(k,k+1) B(k) u(k) 

- A(k,k+1) C(k) w(k) (B128) 

Extending the time interval backward to k-Z 

x(k-i) = A(k-£,k+l) x(k+l) - B(k-£,k+l) 

(k-2,k+l) (B129) 

where 3(k-£,k+l) = Z A(k-£,j+l) B(j) u(j) 
j=k-A 

and 3 (k-£,k+l) = 
k 
Z A(k-&,j+l) C(j) ,w(j) 
j=k-& 

Since w(j) is a random process, the best projection of 3c(k/k,£) back to 

k-&, x(k-Z/k,Z), is given as: 

x{k-£/k,£) = A(k-&,k+l) x(k+l/k,£) - 6(k-£,k+l) (B130) 

From the measurement equation (B125) the actual and estimated measurements 

at k-£ are: 

z(k~Z) = D(k-£) A(k-£,k) x(k) - D(k-£) g(k-&,k) 

D(k-&) g (k-&,k) + v(k-2) 
ui — 

(B131) 

z<k-&/k,&) = D(k-&) A(k-&,k) x^k-&/k,&) - D(k-&) g(k-&,k) (B132) 
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Assuming, the estimate of the new states is of the form as (B71) 

x(k+l/k+l,&) = x(k+l/k,£) + K(k+1) z^k+l/k,&) 

- K(k-A) z<k-&/k,&) (B133) 

in which 

_z(k+l/k,£) = ^z(k+l)- z(k+l/k,&) 

D(k+l)x(k+l/k,£) + v(k+l) (B134) 

and 

= z ( k - £ ) - z(k-&/k,&) 

D(k-&) A(k-A,k+1) x(k+l/k,£) 

D(k-2) g (k-&,k+l) + v(k-&) ( 8 1 3 5 ) 

Therefore: 

x^k+l/k+l,&) = 3c(k+l) - 2£(k+l/k+l, £) 

x(k+l/k,£) - K(k+l)_z(k+l/k,£) 

+ K(k-&) z(k-l/k,&) 

= [l - K(k+1) D(k+1) + K(k-&) D(k-A) A(k-£,k+l)] x(k+l/k,£) 

- K(k+1) V(k+1) + K(k-£) y(k-£) 

- K(k-A) D(k-&) g,/k-2,k) (B136) 

In order to find the minimum variance estimate of x.(k+l), the covariance 

must be minimised. The covariance matrix of x(k+l/k+l,£) is: 

P(k+l/k+l,&) = E[x(k+l/k+l,&) 2^(k+l/k+l,&)] (B137) 
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It involves the correlation between the past plant noise and the estimation 

error x.(k+l/k, &) . 

It is the ignorance of this correlation that hinders the derivation of 

the algorithm. It was attempted to assume that they are uncorrelated. 

Such an assumption was not justified and the derived algorithm diverged when 

tested with a model with plant noise. 

From the Kalman filtering point of view, the introduction of a plant 

noise in the model is to prevent the gain going to zero. Once the gain is 

zero, the estimation process is totally independent from the measurements. 

This phenomenon is referred as data saturation. The finite memory Kalman 

filter, on the other hand, keeps the gain at a constant value even without 

the introduction of the plant noise. This is because the finite memory 

Kalman filter can be treated as a weighted least squares estimator. Its 

covariance matrix and gain depend on the length of the data window only. 

Therefore, it is unnecessary to introduce a plant noise in the model if a 

finite memory Kalman filter is used. However, if the introduction of the 

plant noise is inevitable and a finite memory Kalman filter is called for, 

the system may then be remodelled as a combination of two systems, a 

deterministic model based on the measurable inputs and a stochastic model 

to cover the random disturbances. Both models will then have no plant noise 

and the finite memory Kalman filter can be used. This is very similar 

to the work presented in this thesis. 
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APPENDIX C 

DIGITAL SIMULATION RESULTS 

Figure Target Ship Weight Reciprocal of 
Motion Motion ratio (x) Decay time (a) 

C. 1 1 1 1.0 0.1 

C.2 1 1 2.0 0.1 

C, 3 1 1 5.0 0.1 

C. 4 1 1 2.0 0.025 

C.5 1 1 2.0 0.0025 

C.6 2 1 2.0 0.025 

C.7 3 1 2.0 0.025 

C.8 1 2 2.0 0.025 

C.9 1 3 2.0 0,025 

Note:-

1) The parameters of the target motion is referred to Table 6-2. 

2) The three ship motions are generated by passing three different 

random sequence to three parallel filters described in Table 6-1. 

3) The weight ratio, x, is defined as: 

weight on realignments 
X 

weight on probability of target loss 

4) The weight profile used is of the form: 

w(t) = 1.0 - 0.99 X Exp(-Axt) 

where the origin of t is at the initial engagement of a target. 
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