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Abstract

Interval-valued time series has been attracting increasing interest. There have been fruit-
ful results on mean models, but variance models largely remain unexploited. In this paper,
we propose a conditional heteroskedasticity model for the return interval process, which
aims at capturing the underlying variance structure. Under the general framework of ran-
dom sets, the model properties are investigated. Parameters are estimated by the maximum
likelihood method, and the asymptotic properties are established. Empirical application to
stocks and financial indices data sets suggests that our model overall outperforms the tradi-
tional GARCH for both in-sample estimation and out-of-sample prediction of the volatility.
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1 Introduction

It has been a while since interval-valued data analysis was investigated and developed. There
are various models and methods built upon set arithmetics, as well as under the framework of
symbolic data analysis (SDA). These works cover various topics including descriptive statistics
(Billard and Diday, 2003; Billard, 2007), linear regression (Diamond, 1990; Körner and Näther,
1998; Gil et al., 2002, 2007; González-Rodríguez et al., 2007; Blanco-Fernández et al., 2011;
Billard, 2007; Lima Neto and Carvalho, 2008, 2010; Wei et al., 2017), hypothesis testing (Mon-
tenegro et al., 2008; Sun, 2017), and multivariate analysis (Gioia and Lauro, 2006; D’Esposito et
al., 2012; Lima Neto and Anjos, 2015). Recently, there is a growing body of literature devoted
∗Corresponding author. Email: Yan.Sun@usu.edu.
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Commerce at University of South Australia, Australia.
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to interval-valued time series (e.g. Maia et al., 2008; Han et al., 2008, 2012). In particular,
asset return interval as a special interval-valued time series is believed to contain important
price fluctuation information, and thus has been increasingly investigated for volatility predic-
tion (e.g. Hu and He, 2007; He and Hu, 2009; Arroyo et al., 2011; Yang et al., 2014; Fischer et
al., 2016). Intuitively, a return interval is the range of all single point returns during a certain
time period. Two formal definitions of the daily return interval are provided in Fischer et al.
(2016). The first one defines the current day’s return interval to include all the difference val-
ues between any price of the current day and the closing price of the previous day, and is thus
called the “return-interval-from-closing-price (RICP)”. This definition does not consider the price
fluctuation in the previous day when calculating the current day’s return. To further account
for that, an alternative definition was proposed such that the return interval includes all the
differences between any two prices in two consecutive days, which is consequently called the
“return-interval-from-price-interval (RIPI)”. Let yt (s) be the (log) price of an asset at time s on
day t. Meanwhile, let yct be the closing (log) price on day t. The mathematical equations of the
two definitions are given as

RRICPt =
[
min
s
{yt (s)} − yct−1,max

s
{yt (s)} − yct−1

]
,

RRIPIt =
[
min
s
{yt (s)} −max

w
{yt−1 (w)} ,max

s
{yt (s)} −min

w
{yt−1 (w)}

]
.

Both intervals contain richer information about the daily volatility than the single closing-to-
closing return, and their potential usefulness in volatility prediction is promising. Fischer et
al. (2016) applied regression techniques for interval-valued data to build predictive models for
RRICPt , and constructed volatility forecasts based on the predicted return interval. They chose
to work with RRICPt for two reasons: 1) The size of RRIPIt is too large - on average twice as
large as that of RRICPt . 2) The width of RRIPIt is highly persistent. While the size of RRIPIt

being an issue is questionable, the persistence is indeed problematic since their method has a
regression nature. In general, however, the persistence of the return interval as a volatility proxy
may be a good thing, as opposed to be a disadvantage, given that the volatility itself has the
cluster effect. Motivated by the preceding discussion, we propose to utilize the persistence in
RRIPIt to build a variance model that directly predicts the volatility. Current results regarding
interval-valued time series mainly focus on the mean models, i.e., models that aim at making
prediction of the interval-valued mean. The variance model for conditional heteroskedasticity,
as far as the authors are aware, largely remains an unexploited area, and this study is among
the very first investigations.

The issue of assets’ volatility plays an essential role in modern finance. It provides a mea-
sured variability for the asset price over a certain period of time, and is a key parameter in
many financial applications such as financial derivatives pricing, risk assessment, and portfolio
management. The squared return of log prices used to be the “ideal” proxy of volatility, and
many return-based volatility models were proposed and, for a long time, have been very popular
and successful. The celebrated ARCH (Engle, 1982) and GARCH (Bollerslev, 1986) models are
examples of this type. Recently, as the high-frequency data become widely available, the tradi-
tional low-frequency (e.g., daily) return is no longer quite representative of the volatility. For
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example, a small low-frequency return does not necessarily imply low volatility, as the price may
fluctuate a lot and close at a similar level to the opening. On the other hand, a big return could
only be the result of a very different opening price from the previous day’s closing. In fact, since
closing price is only a “snapshot” among numerous prices during a day, there is nothing special
about it and return need not be calculated solely based on it. Therefore, traditional return-based
models, using lesser information, are likely to produce inefficient or even incorrect estimates of
the volatility. With the wide availability of high-frequency data, more information can obviously
be utilized. Direct use of the high-frequency data can be computationally expensive and much
affected by the microstructure noises. Instead, summary statistics of the high-frequency data
such as the return interval can be an efficient and effective volatility proxy. It is expected that
the return interval shares some similarities with the traditional point return, thus we propose
to adapt the GARCH mechanism to model the variance dynamics of the return interval RRIPIt .
The resulting model, in this perspective, can be viewed as an extension of the GARCH model
to allow for interval-valued return input, and hence we call it the Int-GARCH model.

Technically, our Int-GARCH model for the return interval is built based on interval statistics
under the random sets framework. Our theoretical results are two-fold. We first establish that
under certain conditions our Int-GARCH model achieves weak stationarity that is characterized
by a time invariant mean and covariance. Then, under the assumption of weak stationarity,
we define and obtain the explicit formula of the autocorrelation function (ACF) of the Int-
GARCH process. We propose to estimate the model parameters by the method of maximum
likelihood and provide the associated asymptotic properties. Simulation shows that the results
are consistent with our theoretical findings. For empirical study, we analyze several stocks
and indices data that are representative of the market. Our Int-GARCH model is compared
to GARCH using the RV as the market proxy. Based on both in-sample and out-of-sample
comparisons, our Int-GARCH model overall outperforms GARCH with higher correlations and
reduced errors to RV.

The rest of the paper is organized as follows. Random sets preliminaries are provided in
Section 2. In Section 3, we formally introduce our Int-GARCH model and its usage for volatility
prediction. Stationarity is derived and presented in Section 4. Section 5 discusses the maximum
likelihood estimator for the model parameters and carefully investigates its performances by
a simulation study. Empirical study with the stocks and indices data, as well as a detailed
discussion, are reported in Section 6. We finish with concluding remarks in Section 7. Proofs
of the theorems are deferred to the Appendix. Proofs of corollaries, along with all the useful
lemmas, are provided in the online Supplementary Appendix A.

2 Preliminaries of random sets

For ease of notation, we will denote rt = RRIPIt . Throughout the paper, rt is viewed as a
random interval and its dynamics is modeled under the framework of random sets. To facilitate
our presentation, we briefly introduce the basic notations and definitions in the random set
theory. For more details we refer the readers to Kendall (1974), Matheron (1975), Artstein and
Vitale (1975), Molchanov (2005), Sun and Ralescu (2015), among others.
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Let (Ω,L, P ) be a probability space. Denote by K
(
Rd
)
or K the collection of all non-empty

compact subsets of Rd. A random compact set is a Borel measurable function A : Ω → K,
K being equipped with the Borel σ-algebra induced by the Hausdorff metric ρH . As a metric
space, (K, ρH) is complete and separable (Debreu, 1967). In the space K, a linear structure is
defined by Minkowski addition and scalar multiplication, i.e.,

A+B = {a+ b : a ∈ A, b ∈ B} , λA = {λa : a ∈ A} , (1)

∀A,B ∈ K and λ ∈ R. However, K is not a linear space, due to the lack of an inverse element
of addition.

If A(ω) is convex almost surely, then A is called a random compact convex set. Especially,
a one-dimensional random compact convex set is called a random interval. Let KC(Rd) denote
the space of non-empty compact convex subsets of Rd. According to the embedding theorems
(Rȧdström, 1952; Hörmander, 1954), KC can be embedded isometrically into the Banach space
C(S) of continuous functions on the unit sphere Sd−1. These functions are realized by the
support function of A ∈ KC defined on Sd−1 as:

sA (u) = sup
a∈A
〈u, a〉 , ∀u ∈ Sd−1.

As a result, a compact convex set can be represented by its support function, and an L2 metric
in KC(Rd) is given via the support function by

ρ2(A,B) = ‖sA − sB‖2 =

[
d

∫
Sd−1

|sA(u)− sB(u)|2µ(du)

] 1
2

, ∀A,B ∈ KC .

It is known that ρH and ρ2 are equivalent metrics, but ρ2 is more preferred for statistical
inferences, due to many of its established properties (Körner, 1995, 1997). When d = 1, the unit
sphere S0 = {1,−1}, and the support function for an interval x ∈ KC(R) is

sx(u) =

xU , u = 1

−xL, u = −1,

where (·)U and (·)L denote the upper and lower bounds, respectively. Then, the ρ2-distance
between two intervals x and y is calculated to be

ρ2 (x, y) =

[
1

2
(sx(−1)− sx(−1))2 +

1

2
(sx(1)− sy(1))2

] 1
2

=

[
1

2

(
xL − yL

)2
+

1

2

(
xU − yU

)2] 1
2

=
[(
xC − yC

)2
+
(
xR − yR

)2] 1
2
, (2)

where (·)C and (·)R denote the corresponding center and radius, respectively.
For a random set X ∈ KC , the well accepted expectation is defined by the Aumann integral
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of set-valued function (Aumann, 1965) as

E(X) = {Eξ : ξ ∈ X a.s.,E ‖ξ‖ <∞} . (3)

Alternatively, Fréchet (Fréchet, 1948) gave a general definition for the expectation of a random
element X in the metric space (KC(Rd), ρ), known as the Fréchet expectation, as the solution of

Eρ2(X,EF (X)) = inf
A∈KC

Eρ2(X,A). (4)

Notice that equation (4) is fulfilled by the random variable w.r.t. Euclidean metric in R. The
spirit of Fréchet expectation lies in that it extends this principle to (KC(Rd), ρ). In addition,
it naturally yields the variance of X as Eρ2(X,EF (X)). If we choose ρ to be ρ2, the Fréchet
expectation EF (X) coincides with the Aumann expectation E(X), and the variance is

Var(X) = Eρ22(X,E(X)).

See Lyashenko (1982), Körner (1995), and Körner (1997). Restricting to d = 1, the Aumann
expectation of a random interval X is simply

E(X) =
[
E(XC)− E(XR),E(XC) + E(XR)

]
, (5)

and the variance of X is consequently calculated as

Var(X) = E
[
(XC − E(XC))2 + (XR − E(XR))2

]
= Var(XC) + Var(XR). (6)

Let F be any σ-filed on Ω. The conditional expectation of a random set given F is defined
by the integral and conditional expectation of multivalued functions (Hiai and Umegaki, 1977).
Specifically for a random interval X,

E(X|F) =
[
E(XC |F)− E(XR|F),E(XC |F) + E(XR|F)

]
. (7)

Based on the conditional expectation, the conditional variance of a random set is defined as
the conditional mean squared distance from its conditional expectation (Näther and Wünsche,
2007). According to the definition, the conditional variance of X with respect to the distance
ρ2 is given by

Var(X|F) = E
[
ρ22 (X,E (X|F)) |F

]
= E

[(
XC − E(X|F)C

)2
+
(
XR − E(X|F)R

)2 |F]
= E

[(
XC − E(XC |F)

)2
+
(
XR − E(XR|F)

)2 |F]
= E

[(
XC − E(XC |F)

)2 |F]+ E
[(
XR − E(XR|F)

)2 |F]
= Var(XC |F) + Var(XR|F). (8)
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3 The Int-GARCH model

3.1 Model specification

We assume observing a return interval process {rt}Tt=1 of the form

rt = [λt − δt, λt + δt], t = 1, 2, · · · , T.

That is, {λt}Tt=1 and {δt}Tt=1 are the associated center and radius processes, both of which are
observable. According to (5) and (6), the mean and variance of rt as a random interval are

E(rt) = [E(λt)− E(δt),E(λt) + E(δt)] , (9)

Var(rt) = Var(λt) + Var(δt). (10)

Let Ft denote the information set up to time t, i.e. Ft = σ {rs : s ≤ t} . We are concerned
with the conditional variance H2

t of rt given Ft−1. According to (8), H2
t with respect to ρ2 is

computed as
H2
t = Var(rt|Ft−1) = Var(λt|Ft−1) + Var(δt|Ft−1).

The GARCH model depicts the conditional variance of a point-valued return process as a linear
function of the past squared returns and variances. This was inspired by the fact that assets
returns usually exhibit volatility clustering: large variations in prices tend to cluster together,
resulting in separate dynamic and tranquil periods of the market. Extending this spirit to the
interval-valued process {rt}, one would expect, conceptually, a model like

H2
t = g

(
H2
s , Ĥ

2
s (rs) : s ≤ t− 1

)
, (11)

where Ĥ2
s (rs) denotes a return range based proxy for H2

s , and g is linear in H2
s and Ĥ2

s (rs).
Assuming E(λt|Ft−1) = 0 and E(δt|Ft−1) = c > 0, a natural form of Ĥ2

s (rs) is

Ĥ2
s (rs) = λ2s + δ2s − c2,

where λ2s and δ2s − c2 are proxies for Var(λs|Fs−1) and Var(δs|Fs−1), respectively. Thus, a
reasonable function g in (11) seems to imply

H2
t = µ+

p∑
i=1

αi
[
λ2t−i + δ2t−i − c2

]
+

q∑
i=1

βiH
2
t−i,

where p > 0, q ≥ 0. The constant c can be absorbed into the parameter µ and the above equation
is simplified to

H2
t = µ+

p∑
i=1

αi
[
λ2t−i + δ2t−i

]
+

q∑
i=1

βiH
2
t−i.

To give more flexibility to our model, we allow for different degrees of dependence of Ht on the
past centers and radii. In addition, adopting the idea of more robust modeling of volatility by
Taylor (1986) and Schwert (1990), we propose to model the conditional standard deviation Ht
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directly, instead of via the conditional variance H2
t (Ding et al. (1993) also considered such a

specification as a special case of their A-PARCH model).
Given the above discussion, our Int-GARCH (p, q, w) model for the return interval process

rt = [λt − δt, λt + δt] is specified as

rt = ht · vt, (12)

vt = [εt − ηt, εt + ηt], (13)

εt
i.i.d.∼ N(0, 1), (14)

ηt
i.i.d.∼ Γ(k, 1), (15)

ht = µ+

p∑
i=1

αi|λt−i|+
q∑
i=1

βiδt−i +
w∑
i=1

γiht−i, (16)

where λt and δt are the center and the radius of rt, respectively, p > 0, q > 0, w ≥ 0, and {αi}pi=1,
{βi}qi=1, {γi}

w
i=1 are all positive constants. In addition, the error terms εt and ηt are assumed

to be independent. In (12), “·” denotes the scalar multiplication. Under this specification, the
conditional variance of rt is seen to be

H2
t = Var(htεt|Ft−1) + Var(htηt|Ft−1) = h2t (1 + k). (17)

Although we impose parametric assumptions on the random errors εt and ηt to simplify our
presentation here, they are not really necessary. In practice, it is best to use the true data
generating distributions, which vary from data to data. So, in replacement of (14)-(15), a
relaxed yet sufficient specification for εt and ηt > 0 is

Var
(
εt|F ε,ηt−1

)
= 1,

Var
(
ηt|F ε,ηt−1

)
= k.

Remark 1. Alternatively, equation (16) can be specified by the variance as

h2t = µ+

p∑
i=1

αiλ
2
t−i +

q∑
i=1

βiδ
2
t−i +

w∑
i=1

γih
2
t−i. (18)

Additional to the robustness concern that we mentioned previously, another important reason
we chose (16) is that it allows for convenient calculation of odd moments. A drawback of the
variance specification (18) is the complication to calculate odd moments due to the need of a
fraction power of h2t . For the GARCH model, this is probably fine, as the odd moments are all
equal to 0 by symmetry. However, odd moments of the Int-GARCH model are intervals centered
at 0, whose length or radius would be difficult to compute with the variance specification.

Remark 2. A more general metric for KC(R) was proposed by Gil et al. (2001), which essentially
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takes the form

ρ2W (x, y) =
(
xC − yC

)2
+
(
xR − yR

)2 ∫
[0,1]

(2λ− 1)2 dW (λ), x, y ∈ KC(R), (19)

where W is any non-degenerate symmetric measure on [0, 1]. Compared to the ρ2 metric in (2),
the flexibility of ρW lies in its choice of a weight between the center and radius. Since we use
different parameters α’s and β’s for the center and radius, respectively, this flexibility is in fact
accounted for in our specification of ht in (16).

3.2 Volatility forecasting

The ht in the model (12)-(16) relates to the conditional standard deviation Ht of the return
range rt according to equation (17). However, Ht is not exactly the daily volatility as in the
literature. To see the relation between ht and the daily volatility σ2t , we notice that rt contains
all possible returns of day t, using different prices during days t and t−1. Consider an arbitrary
return at position ω in rt, denoted by rt(ω), as the volatility proxy, i.e.

rt(ω) = ht (εt + ωηt) , ω ∈ [−1, 1]. (20)

Volatility based on rt(ω) is calculated as

σ2t (ω) = Var (rt(ω)|Ft−1) =
(
1 + ω2k

)
h2t . (21)

Our Int-GARCH volatility σ2t is defined as the average of
{
σ2t (ω) : ω ∈ [−1, 1]

}
. Assuming equal

weight for each point return, σ2t can be calculated as

σ2t =

∫ 1
−1 σ

2
t (ω)d(ω)∫ 1
−1 d(ω)

=
1

2

∫ 1

−1

(
1 + ω2k

)
h2td(ω) =

(
1 +

1

3
k

)
h2t . (22)

Therefore, volatility forecast is essentially made by predicting ht. The 1-step-ahead prediction
of ht is immediately defined by equation (16) as

ĥt (1) = µ+

p∑
i=1

αi|λt+1−i|+
q∑
i=1

βiδt+1−i +

w∑
i=1

γiht+1−i. (23)

To make a 2-step-ahead prediction, notice that

ht+2 = µ+

p∑
i=1

αi|λt+2−i|+
q∑
i=1

βiδt+2−i +

w∑
i=1

γiht+2−i

= µ+ (α1|εt+1|+ β1ηt+1 + γ1)ht+1 +

p∑
i=2

αi|λt+2−i|+
q∑
i=2

βiδt+2−i +

w∑
i=2

γiht+2−i.
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Replacing |εt+1| and ηt+1 with their expectations, and ht+1 with ĥt (1), we get

ĥt (2) = µ+

(
α1

√
2

π
+ β1k + γ1

)
ĥt (1) +

p∑
i=2

αi|λt+2−i|+
q∑
i=2

βiδt+2−i +

w∑
i=2

γiht+2−i. (24)

The general l-step-ahead prediction can be calculated recursively. In particular, the formula for
Int-GARCH(1,1,1) model is given by

ĥt (l) = µ+

(
α1

√
2

π
+ β1k + γ1

)
ĥt (l − 1) , l > 1. (25)

4 Stationarity and autocorrelation

4.1 Stationarity

We provide the necessary and sufficient conditions of mean stationarity for the Int-GARCH
(p, q, w) model in the following theorem.

Theorem 1. Consider the general Int-GARCH model (12)-(16). Define

xi,t = αi|εt|I{1≤i≤p} + βiηtI{1≤i≤q} + γiI{1≤i≤w}, (26)

and
E (xi,t) = µi, (27)

where i = 1, 2, · · · ,m = max {p, q, w}. Assume {rt} starts from its infinite past with a finite
mean. Then, E (ht) <∞ if and only if

∑m
i=1 µi < 1. When this condition is satisfied,

Eht =
µ

1−
∑m

i=1 µi
, (28)

and
Ert = [−kE (ht) , kE (ht)] . (29)

It is derived in Körner (1995) that the covariance between two random intervals with respect
to the ρ2 metric is the sum of the covariances between the two centers and two radii. This
implies

Cov(rt, rs) = Cov(λt, λs) + Cov(δt, δs), s, t ∈ N. (30)

We are ready to extend the notion of weak stationarity to interval-valued time series in the
obvious way.

Definition 1. An interval-valued time series {rt} is said to be weakly stationary, or second-
moment stationary, if its unconditional mean E (rt) and covariance Cov (rt, rt+s) exist and are
independent of time t for all integers s, where E (rt) and Cov (rt, rt+s) are given in (9) and (30),
respectively.

The existences of E (rt) and Var (rt) are equivalent to the finiteness of E (ht) and E
(
h2t
)
,

respectively. That being said, E(h2t ) < ∞ implies the existence of the first two moments of rt,
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which in light of the inequality

|Cov (rt, rt+h) | ≤ |Cov (λt, λt+h) |+ |Cov (δt, δt+h) | ≤ Var (λt) + Var (δt) ,

means weak stationarity essentially. We thus give precise conditions for the weak stationarity of
second-order moments for Int-GARCH(p, q, w) as follows.

Theorem 2. Consider the Int-GARCH(p, q, w) model {rt}. Assume {rt} starts from its infinite
past with a finite variance. Define

At =


x1,t−1 x2,t−2 · · · xm−1,t−m+1 xm,t−m

1 0 · · · 0 0

· · · · · · · · · · · · · · ·
0 0 · · · 1 0

 (31)

with xi,t, i = 1, · · · ,m, defined in (26). Then, E
(
h2t
)
<∞ if and only if the eigenvalues of the

matrix E(At ⊗At) are within a unit circle, where ⊗ stands for the Kronecker product.

Remark 3. As we mentioned previously, alternative equations can be used to specify the condi-
tional heteroskedesticity. If the variance specification (18) is employed and we define

x̃i,t = αiε
2
t I{1≤i≤p} + βiη

2
t I{1≤i≤q} + γiI{1≤i≤w}, (32)

then a similar argument as Theorem 1 yields that E (ht)
2 <∞ if and only if

∑m
i=1 µ̃i < 1, where

µ̃i = E(x̃i,t). In view of Definition 1, this essentially provides an equivalent condition for weak
stationarity, which is a convenience of the variance specification.

Similar to the traditional GARCH model, the Int-GARCH(1,1,1) process is a simple but
effective model for analyzing interval-valued time series with conditional heteroskedasticity. In
this section, we derive several important distributional properties of Int-GARCH(1,1,1). Before
we present our theoretical results, notice that for the Int-GARCH(1,1,1) process,

ht = µ+ α1|λt−1|+ β1δt−1 + γ1ht−1

= µ+ α1|εt−1|ht−1 + β1ηt−1ht−1 + γ1ht−1

= µ+ (α1|εt−1|+ β1ηt−1 + γ1)ht−1.

Defining the i.i.d. random variables xt = α1|εt−1|+ β1ηt−1 + γ1, t ∈ N, ht can be written by the
recursive equation

ht = µ+ xtht−1. (33)

We will use (33) throughout this section. Immediately following Theorem 1, mean stationarity
of the Int-GARCH(1,1,1) can be established as the special case of p = q = w = 1. We state this
result in the following Corollary 1.

Corollary 1. Consider the Int-GARCH model (12)-(16) with p = q = w = 1. Assume {rt}
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starts from its infinite past with a finite mean. Then, E(ht) <∞ if and only if E(xt) < 1, i.e.

α1

√
2

π
+ β1k + γ1 < 1.

When this condition is satisfied,

E(ht) =
µ

1− α1

√
2/π − β1k − γ1

, (34)

and
E(rt) = [−kE (ht) , kE (ht)] . (35)

Second-moment stationarity for Int-GARCH (1, 1, 1) can also be stated more explicitly and
is given in the following.

Corollary 2. Consider the Int-GARCH(1,1,1) model {rt}. Assume {rt} starts from its infinite
past with a finite variance. Then E

(
h2t
)
<∞ if and only if E

(
x2t
)
< 1 (with xt defined in (33)),

i.e.

α2
1 + β21

(
k + k2

)
+ γ21 + 2α1β1

√
2

π
k + 2α1γ1

√
2

π
+ 2β1γ1k < 1.

When this condition is satisfied,

E
(
h2t
)

= µ2
C1 + 1

(C2 − 1) (C1 − 1)
, (36)

and

V ar (rt) =
(
1 + k + k2

)
E
(
h2t
)
− k2 [E (ht)]

2 , (37)

where E (ht) is given in (34), and C1 = E (xt), C2 = E
(
x2t
)
.

Corollary 3. The Int-GARCH(1,1,1) process is weakly stationary, or second-moment station-
ary, if and only if E

(
x2t
)
< 1.

4.2 Autocorrelation

The autocorrelation for a general Int-GARCH model is rather involved. So we focus on the
covariance function for the practically most important Int-GARCH(1,1,1) model here, which,
under weak stationarity, is given in Theorem 3 below. From Theorem 3 the auto-correlation
function (ACF) for the Int-GARCH(1,1,1) is derived in Corollary 4.

Theorem 3. Consider the Int-GARCH(1,1,1) process {rt}. Under the assumptions of Corollary
2, the covariance of any two random intervals rt and rt+s is given by

Cov (rt, rt+s) =


(
1 + k + k2

)
E
(
h2t
)
− k2 [E (ht)]

2 , s = 0;

kE (htht+sηt)− k2 [E (ht)]
2 , |s| > 0,
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where E (ht) and E
(
h2t
)
are given in (34) and (36), respectively, and E (htht+sηt) is calculated

explicitly in Lemma 1 (see Appendix).

The notion of the variance and covariance for compact convex random sets were naturally
extended to the correlation coefficient of two random sets A and B, which is defined as

Corr (A,B) =
Cov (A,B)√

Var (A)Var (B)
. (38)

Based on this definition, the auto-correlation function of the Int-GARCH(1,1,1) process is im-
mediately calculated.

Corollary 4. Under the assumptions of Corollary 2, the auto-correlation function of the Int-
GARCH(1,1,1) process {rt} is

ρ(s) =


1, s = 0

kE (htht+sηt)− k2 [E (ht)]
2

(1 + k + k2)E
(
h2t
)
− k2 [E (ht)]

2 , |s| > 0.

The ACF for a specific Int-GARCH(1,1,1) model (Model I in the simulation) is plotted in
Figure 1. We see that the centers are uncorrelated. This has been verified by (50) in the
proof of Theorem 3. The radii, or the lengths of the intervals, have a relatively persistent
auto-correlation, which coincides with the phenomenon of “volatility clustering”. This long-term
dependence of radii carries over to the intervals as a whole, and results in a slow-dying ACF of
the interval-valued process.

Figure 1 is approximately here.

5 Parameter estimation

In this section, we develop parameter estimation of our Int-GARCH model and the asymp-
totic properties of the estimators. There are two groups of parameters: the error distribution
parameter k > 0 and the variance parameters

θ = [µ, α1, · · · , αp, β1, · · · , βq, γ1, · · · , γw]′ ,

under which we denote ht = ht(θ) for clarity when needed, where ′ stands for the transpose
of a vector or matrix. We provide joint estimations of k and θ by the method of maximum
likelihood, and the asymptotic normality for the joint MLE is established. A simulation study
is presented that shows the empirical performance of the estimators.

12



5.1 The joint MLE of k and θ

Conditioning on F0, the likelihood function of the data {rt, t = 1, · · · , T} is

L (θ; k) |F0 =
T∏
t=1

f (λt, δt|Ft−1) =
T∏
t=1

f (λt|Ft−1) f (δt|Ft−1)

=
T∏
t=1

1

ht
√

2π
e
− λ2t

2h2t
1

Γ(k)hkt
δk−1t e

− δt
ht

=
T∏
t=1

δk−1t√
2πΓ(k)

h
−(k+1)
t e

− λ2t
2h2t
− δt
ht

∝
T∏
t=1

δk−1t Γ−1(k)h
−(k+1)
t e

− λ2t
2h2t
− δt
ht .

Thus, the conditional log-likelihood function up to a constant is

l(θ; k) =
T∑
t=1

{
k log(δt)− log Γ(k)− (k + 1) log(ht)−

λ2t
2h2t
− δt
ht

}
≡

T∑
t=1

lt(θ; k),

where ht = ht(θ) = µ+
∑
αi|λt−i|+

∑
βiδt−i +

∑
γiht−i. Then, the joint maximum likelihood

estimate of θ and k is defined as

[θ̂T , k̂T ] = arg max
θ,k
{l(θ, k)} , (39)

and it can be computed by the scoring algorithm

[θ(m+1), k(m+1)]
′

= [θ(m), k(m)]
′ −
[
∇2l(θ(m), k(m))

]−1
∇l(θ(m), k(m)),

where ∇ is the gradient with respect to θ and k. Under the condition of strict stationarity and
ergodicity, and some moment requirement for {ht}, [θ̂T , k̂T ] is consistent and asymptotically
normal. We state the result in the following theorem. Details of the proof are referred to the
Appendix.

Theorem 4. Assume the process {ht} is strictly stationary and ergodic, and E
(
h2t
)
< ∞.

Assume in addition that the parameter space Θ × K is compact, with the maximum likelihood
estimator defined in (39). Then
(i) θ̂T

P→ θ0, k̂T
P→ k0, as T →∞, where k0 and θ0 are the true parameters in population;

(ii) T
1
2

[
θ̂T − θ0
k̂T − k0

]
D→ N

(
0, I−1(θ0, k0)

)
, where I(θ0, k0) = −E

[
∇2lt(θ0, k0)

]
is the Fisher

information matrix evaluated at (θ0, k0).

As an immediate consequence of the theorem, the asymptotic covariance matrix of [θ̂T , k̂T ]

is 1
T I
−1(θ0, k0). It can be consistently estimated by the inverse Hessian −

[
∇2l

(
θ̂T , k̂T

)]−1
,

which is easily obtained from the scoring algorithm. Especially for Int-GARCH(1,1,1), the
condition for strict stationarity and ergodicity is the same as that for mean stationarity, that is,
E(xt) <∞, and consequently E(ht) <∞ (see Lemma 3 in the Appendix). If we further assume

13



covariance stationarity, i.e., E(x2t ) < ∞ in view of Corollary 3, the joint maximum likelihood
estimator [θ̂T , k̂T ] is consistent and asymptotically normal. We summarize the conclusion in the
following corollary.

Corollary 5. Consider the Int-GARCH(1,1,1) model. If E(x2t ) < ∞, then [θ̂T , k̂T ] satisfies
both consistency and asymptotic normality.

Computation of the maximum likelihood estimate requires initial values of k and θ, as well
as starting values

{
h0, · · · , h−(m−1)

}
and

{
r0, · · · , r−(m−1)

}
. The error distribution parameter

k can be conveniently initiated by the method of moments. Notice that

E (δt) = E (htηt) = E (ht)E (ηt) = kE (ht) , (40)

E |λt| = E |htεt| = E (ht)E |εt| =
√

2/πE (ht) , (41)

and consequently, k =
√

2/π E(δt)
E(|λt|) . Replacing E (δt) and E (|λt|) by their sample estimates, we

obtain the moment estimator of k as

k(0) =
√

2/π
δt

|λt|
. (42)

As for initial value of θ, recall from Theorem 1 that

E (ht) =
µ

1−
∑m

i=1 µi
=

µ

1−
√
π/2

∑p
i=1 αi − k

∑q
i=1 βi −

∑w
i=1 γi

. (43)

So µ can be initialized by replacing E (ht) in (43) by its sample mean ht and a rough guessing
of 1−

√
π/2

∑p
i=1 αi−k

∑q
i=1 βi−

∑w
i=1 γi, for example, 0.4. Additionally, initial values of αi’s,

βi’s, and γi’s can be obtained by setting each of
√
π/2

∑p
i=1 αi, k

∑q
i=1 βi, and

∑w
i=1 γi to be a

small value, e.g., 0.2, and by letting α1 = · · · = αp, β1 = · · · = βq, γ1 = · · · = γw. If convergence
is not achieved, a least squares estimation can be performed to obtain a more precise initial value
for θ. Finally, we assume that the process {rt} starts from its infinite past with a finite mean
and variance, so it is reasonable to let ht = E (ht), t = 0, · · · ,−(m− 1). An alternative is to let
ht = 0, t = 0, · · · ,−(m− 1), assuming {rt} starts from constant intervals

{
r0, · · · , r−(m−1)

}
. In

either case, we let rt = E (rt), t = 0, · · · ,−(m− 1).

Remark 4. In an earlier version of the paper, we proposed a two-stage estimation of the model
parameters, which estimates k by the method of moments and then computes the maximum
likelihood estimate of θ conditioning on k. It is slightly less efficient than the joint MLE, but it
is computationally easier and converges to the limiting normal distribution faster, and therefore
can be a good alternative in the situation of limited computational resources. It also provides
a good initial value for running the full iteration of the joint MLE. Readers are referred to
Supplementary Appendix B (online) for details.

5.2 Simulation and finite sample performances

Our simulation study considers four distinct Int-GARCH models with specific sets of parameter
values. We are particularly interested in the Int-ARCH model, since very often in the real data
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analysis γ1 is estimated to be 0. So, after examining two full Int-GARCH models (Models I and
II), we also consider two Int-ARCH models with γ1 set to 0 (Models III and IV). The parameter
values for the two Int-GARCH models are generated as follows.

Models I and II : k ∼ Unif (1, 2), µ ∼ Unif (0, 0.1),

α1 ∼ Unif (0, 0.2), β1 ∼ Unif (0.1, 0.6), γ1 ∼ Unif (0, 0.2).

For Int-ARCH models, β1 is generally larger due to the removal of γ1, so we generate the
parameters for the two Int-ARCH models with k, µ, α1 being the same as the Int-GARCH
models but β1 slightly larger.

Models III and IV : k ∼ Unif (1, 2), µ ∼ Unif (0, 0.1),

α1 ∼ Unif (0, 0.2), β1 ∼ Unif (0.3, 0.6).

All of the generations are subject to the constraint that each combination will result in a weakly
stationary Int-(G)ARCH process that achieves consistency and asymptotic normality for the
maximum likelihood estimators. The exact parameter values are listed in Table 1. Realizations
of the designed models are simulated using the initial values h0 = 0 and r0 = E (rt). Plots of
two simulated data sets are shown in Figure 2. Denote

Figure 2 is approximately here.

γ(s) = Cov (rt, rt+s) ,

γλ(s) = Cov (λt, λt+s) ,

γδ(s) = Cov (δt, δt+s) .

Recall that the theoretical ACF of {rt} is

ρ(s) =
γ(s)

γ(0)
=
γλ(s) + γδ(s)

γλ(0) + γδ(0)
.

We consequently define the sample ACF of {rt} as

ρ̂(s) =
γ̂λ(s) + γ̂δ(s)

γ̂λ(0) + γ̂δ(0)
,

where γ̂λ(s) and γ̂δ(s) are the sample auto-covariance functions of {λt} and {δt}, respectively.
Figures 3 and 4 show the sample ACF’s for simulated data sets with 1000 observations from an
Int-GARCH(1,1,1) (Model I) and an Int-ARCH(1,1) (Model III), respectively.

Figure 3 is approximately here.
Figure 4 is approximately here.

For each of the four models, we simulate a data set with 2000 observations and estimate
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the parameters using the proposed maximum likelihood estimation. The process of simulation
and estimation is repeated for 200 times independently, and the average results are reported in
Table 1. We see that, with a moderate sample of size 2000, the maximum likelihood estimates
for k and θ are very close to the true values with small mean absolute errors. In addition, the
asymptotic standard errors based on the asymptotic normality are compared to the empirical
standard errors (i.e., the root mean squared errors), and they match very well.

6 Empirical application

In this section, we apply our Int-GARCH model to analyze 10 typical stocks and 4 indices data.
The symbols of these stocks and indices are listed, for example, in Table 2. We obtained from
Thomson Reuters (https://www.thomsonreuters.com/en.html) both the 5-minute intraday data
and the daily-closing data from January 3, 2006 to December 30, 2011. As an example for
demonstration purpose, the sample ACF of the BA (Bank of America) return range is displayed
in Figure 5. It is very similar to the theoretical ACF of model I in Figure 1 from Section 5.2,
which indicates the feasibility of our Int-GARCH model.

Figure 5 is approximately here.

6.1 Data cleaning and ranking metrics

In order to compare the empirical (in-sample and out-of-sample) performances of our Int-
GARCH model and the GARCH model, we use realized variance (RV) as the proxy for the
“true” market variance. The RV using our 5-minute intraday data is computed as:

RVt =
∑
s

[yt(s)− yt(s− 1)]2. (44)

As before, yt(s) denotes the log price of an asset at time s on day t, and yt(s − 1) denotes the
log price of the previous “snapshot” which was taken 5 minutes ago.

Following Shephard and Sheppard (2010), we applied 4 filtration rules to clean the data. 1)
When multiple quotes have the same timestamp, we replace all these with a single entry with
the median bid and median ask price. 2) Delete entries for which the spread is negative. 3)
Delete entries for which the spread is more than 50 times the median spread on that day. 4)
Delete entries for which the mid-quote deviated by more than 10 mean absolute deviations from
a rolling median centred but excluding the observation under consideration of 50 observations
(i.e. 25 observations before and 25 after).

Denote the RV by vt and estimated volatility by σ̂2t . It is shown in Meddahi (2001) that the
ranking of volatility forecasts based on the R2 from the Mincer-Zarnowitz regression

vt = β0 + β1σ̂
2
t + εt,

is robust to noises in vt. It is shown in Patton (2011) that the ranking using the negative
quasi-likelihood (QLIKE) as the loss function is also robust to noises in the volatility proxy.
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Additionally, the heteroskedasticity-adjusted MSE (HMSE), although not robust to noises, is a
popularly used loss function to compare volatility models. The definitions for the QLIKE and
HMSE loss functions are given as:

QLIKE =
1

N

N∑
t=1

[
log
(
σ̂2t
)

+
v2t
σ̂2t

]
,

HMSE =
1

N

N∑
t=1

(
v2t
σ̂2t
− 1

)
,

where N is the length of sampling period.

6.2 In-sample and out-of-sample results

First, we compare the in-sample volatility estimation with that of GARCH(1,1). For this pur-
pose, we fit an Int-GARCH model to the entire data from January 3, 2006 to December 30, 2011.
The parameters are estimated by the maximum likelihood estimation we proposed in Section 5
and results are listed in Table 2. Occasionally, the estimate of the full model contains negative
values. This means that the maximum of the likelihood function subject to the nonnegative
constraints happens on the boundary, i.e., at least one of the estimates is 0. This is equivalent
to removing the corresponding parameter(s) and running the unconstrained estimation for the
sub-model (e.g. Waterman, 1974). For such cases, the removed parameters are displayed as 0

exactly without a standard error. In general, the fitted models show that α1 is much smaller
than β1 both in magnitude and in statistical significance, indicating that, consistent to our ex-
pectation, the return range is of much more importance than a single “snapshot” return, in terms
of their contributions to the volatility. Additionally, γ1 also tends to be small, so most likely
an Int-ARCH model is sufficient. The comparisons of Int-GARCH(1,1,1) and GARCH(1,1) us-
ing all the three criteria (R2, QLIKE and HMSE) are shown in Table 3, which generally favor
Int-GARCH, except for a few exceptions (i.e., R2 of BAC, HMSE of MSFT).

Next, to examine the out-of-sample performance, we use the first 5 years (2006-2010) as
training period and leave the last year (2011) for out-of-sample predictions. We consider 3
forecasting horizons: 1-step, 2-step, and 5-step, corresponding to one day, two day, and one
week ahead predictions, respectively. The model parameters are updated daily and the h-step-
ahead predictions (h=1,2,5) are calculated according to equations (22)-(23). The predicts are
compared to those from GARCH(1,1) model for the entire year of 2011, and the average results
are shown in Tables 4, 5, and 6, for h=1,2,5, respectively. Similar to the in-sample comparison,
the out-of-sample comparisons in Tables 4, 5, and 6 indicate the Int-GARCH(1,1,1) performs
better than GARCH(1,1) for 1-step, 2-step, and 5-step ahead predictions, for most of the stocks
(indices) and ranking metrics.

Finally, we also notice that occasionally the GARCH performs better than the Int-GARCH
model in our experiments. For example, in Table 3, R2 of GARCH is higher for BAC, and
HMSE of GARCH is smaller for MSFT. In Table 6, the Int-GARCH is dominated by GARCH
for QLIKE. Theoretically, the comparison between the GARCH and the Int-GARCH are com-
plicated. Intuitively understanding, the advantage of our Int-GARCH model is that it makes
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full use of all possible values in the return range as volatility proxies and summarizes the infor-
mation by integrating the GARCH mechanism with the random set theory. By comparison, the
traditional GARCH model only considers use of the information of a single (closing-to-closing)
return as the volatility proxy. Generally, the “summary” that accounts for more information
from the data is expected to reflect the volatility more accurately. However, noting that differ-
ent measures of model performance characterize different features of the model fitting the data,
it is therefore possible occasionally that a simpler GARCH model with the point-valued return
may outperform the more involved “summary” of Int-GARCH in terms of one performance mea-
sure. With regard to this, more extensive experiments with much more and larger data sets are
needed to thoroughly investigate and optimize the performance of the Int-GARCH model in the
near future.

7 Conclusion

In this paper, we have developed an interval-valued GARCH model for analyzing the return
interval processes. It can be viewed as an extension of the point-valued GARCH model that
allows for interval-valued returns to produce “information-richer” estimation of the volatility.
Inferences of our Int-GARCH model can be made based on the maximum likelihood method,
which has been shown to have both consistency and asymptotic normality. Our empirical study
of stocks and indices data has demonstrated the advantages of Int-GARCH model over the
GARCH for both in-sample and out-of-sample performances.

The Int-GARCH model forms a pioneer study in the area of conditional heteroscedasticity for
interval-valued time series. Further improvements to the model can be made by incorporating
interactions between the level and the range. Körner and Näther (2001) proposed for a more
general space a generalized L2 metric, which when restricted to KC(R) is

ρ2K(x, y) =
∑

(u,v)∈S0×S0

(sx(u)− sy(u)) (sx(v)− sy(v))K(u, v), x, y ∈ KC(R),

where K is a symmetric positive definite kernel. It can be represented by the center-radius form
as

ρ2K(x, y) = A11(x
C − yC)2 +A22(x

R − yR)2 + 2A12(x
C − yC)(xR − yR), (45)

where A as a function of K is a symmetric positive definite matrix. So ρK is a further general-
ization of ρW in (19) that takes into account the correlation between the center and the radius,
and can be utilized to model the level-range interaction.

Supplementary Appendix A Proofs of corollaries and lemmas.

Supplementary Appendix B The two-stage estimation of k and θ.

Data Availability Statement The data that support the findings of this study are provided
as online supporting information.
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8 Appendix

8.1 Proof of Theorem 1

Proof. By the definition of (26), (16) can be rewritten as

ht = µ+

p∑
i=1

αi|εt−i|ht−i +

q∑
i=1

βiηt−iht−i +

w∑
i=1

γiht−i

= µ+

m∑
i=1

xi,t−iht−i.

Expanding ht recursively, we obtain

ht = µ+

m∑
i=1

xi,t−i

µ+

m∑
j=1

xj,t−i−jht−i−j


= µ

(
1 +

m∑
i=1

xi,t−i

)
+

m∑
i=1

m∑
j=1

xi,t−ixj,t−i−jht−i−j

= · · ·

= µ

1 +

N∑
n=1

m∑
i1=1

· · ·
m∑

in=1

 n∏
j=1

xij ,t−i1−···−ij


+

m∑
i1=1

· · ·
m∑

iN+1=1

N+1∏
j=1

xij ,t−i1−···−ij

ht−i1−···−iN+1 . (46)
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Notice that xi,t and xj,s are independent, ∀i, j ∈ N and t 6= s. Taking expectations on both sizes
of (46), we get

E (ht) = µ

1 +
N∑
n=1

m∑
i1=1

· · ·
m∑

in=1

 n∏
j=1

µij


+

m∑
i1=1

· · ·
m∑

iN+1=1

N+1∏
j=1

µij

E
(
ht−i1−···−iN+1

)
:= I + II.

The first term

I = µ

1 +
N∑
n=1

m∑
i1=1

· · ·
m∑

in=1

 n∏
j=1

µij

 = µ

1 +
N∑
n=1

 m∑
j=1

µj

n , ∀ N ∈ N.

The second term

II =
m∑
i1=1

· · ·
m∑

iN+1=1

N+1∏
j=1

µij

E
(
ht−i1−···−iN+1

)

≤
m∑
i1=1

· · ·
m∑

iN+1=1

N+1∏
j=1

µij

max {E (ht−l) : N + 1 ≤ l ≤ k(N + 1)}

= max {E (ht−l) : N + 1 ≤ l ≤ k(N + 1)}

 m∑
j=1

µj

N+1

, ∀ N ∈ N.

Therefore, E (ht) <∞ if and only if
∑m

i=1 µi < 1. When it is satisfied,

E (ht) = lim
N→∞

µ

1 +

N∑
n=1

 m∑
j=1

µj

n
+ lim
N→∞

max {E (ht−l) : N + 1 ≤ l ≤ k(N + 1)}

 m∑
j=1

µj

N+1

=
µ

1−
∑m

i=1 µi
,

by the finiteness of E (h−∞). The formula for E (rt) follows immediately from the Aumann
expectation.

8.2 Proof of Theorem 2

Proof. Let H̃t = [ht, ht−1, · · · , ht−m+1]
′ with m = max{p, q, w}. It follows from (16) together

with (31) that
H̃t = a +AtH̃t−1, (47)
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where a = [µ, 0, · · · , 0]′ is an m-dimensional vector. Then under the mean stationarity in
Theorem 1, i.e.,

∑m
i=1E(xi,t−i) < 1, or equivalently, the eigenvalues of the matrix E(At) being

within a unit circle, we can express (47) as

H̃t = a +

∞∑
j=1

j∏
k=1

At−k+1a. (48)

Notice that At’s are independent across time t. Thus, with ⊗ standing for Kronecker product,
it is easy to show from (48) that E

(
h2t
)
< ∞ is equivalent to E(H̃t ⊗ H̃t) being finite, which

holds true if and only if

E

∞∑
j=1

j∏
k=1

(At−k+1 ⊗At−k+1) =

∞∑
j=1

[E(At ⊗At)]j

converges, i.e., the eigenvalues of the matrix E(At⊗At) are within a unit circle. This completes
the proof.

8.3 Proof of Theorem 3

Proof. Notice, ∀t, s ∈ N,

Cov (rt, rt+s) = Cov (htεt, ht+sεt+s) + Cov (htηt, ht+sηt+s) . (49)

Since {εt} are i.i.d., the first term is seen to be

Cov (htεt, ht+sεt+s) = E [(htεt − E (htεt)) (ht+sεt+s − E (ht+sεt+s))]

= E (htht+sεt · εt+s)

=

E
(
h2t
)
, s = 0

0, |s| > 0.
(50)

Similarly, the second term becomes

Cov (htηt, ht+sηt+s) = E [(htηt − kE (ht)) (ht+sηt+s − kE (ht+s))]

= E (htht+sηtηt+s)− k2E (ht)E (ht+s)

=


(
k + k2

)
E
(
h2t
)
− k2 [E (ht)]

2 , s = 0

kE (htht+sηt)− k2 [E (ht)]
2 , |s| > 0.

(51)

Plugging (50) and (51) into (49), we obtain

Cov (rt, rt+s) =


(
1 + k + k2

)
E
(
h2t
)
− k2 [E (ht)]

2 , s = 0

kE (htht+sηt)− k2 [E (ht)]
2 , |s| > 0,
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where E (ht) =
µ

1− C1
, E
(
h2t
)

= µ2
C1 + 1

(C2 − 1) (C1 − 1)
, and

E (htht+sηt) =
µ2k

C1 − 1

(
−C

s
1 − 1

C1 − 1
+
Cs1 + Cs−11

C2 − 1
·

[
α1

√
2

π
+ β1 (1 + k) + γ1

])
.

(see Lemma 1, Section 2 of Supplementary Appendix A).

8.4 Proof of Theorem 4

Proof. Let lt(θ, k) = k log(δt)− log Γ(k)− (k+1) log(ht)− λ2t
2h2t
− δt

ht
, that is, l(θ, k) =

T∑
t=1

lt(θ, k).

The elements in ∇l are calculated to be

∂l

∂k
=
∑
t

∂lt
∂k

=
∑
t

[
log(δt)−

Γ′(k)

Γ(k)
− log(ht)

]
=
∑
t

[
log(

δt
ht

)− Γ′(k)

Γ(k)

]
,

∂l

∂µ
=
∑
t

∂lt
∂ht

=
∑
t

(
−k + 1

ht
+
λ2t
h3t

+
δt
h2t

)
,

∂l

∂αi
=
∑
t

∂lt
∂ht
|λt−i|,

∂l

∂βi
=
∑
t

∂lt
∂ht

δt−i,
∂l

∂γi
=
∑
t

∂lt
∂ht

ht−i.

In addition, the elements in ∇2lt are

∂2lt
∂k2

,
∂2lt
∂k∂θi

,
∂2lt

∂θi∂θj
=
∂2lt
∂h2t

∂ht
∂θi

∂ht
∂θj

.

(i) To prove consistency, we follow Weiss (1986) to verify the three conditions in Basawa et al.
(1976) that guarantee the existence of a consistent root of the gradient equation.
(1) 1

T

∑
t∇lt (θ0, k0)

P→ 0 as n→∞;
(2) There exists a nonrandom positive definite matrix M (θ0, k0) such that ∀ε > 0:

P

(
− 1

T

∑
t

∇2lt (θ0, k0) ≥M (θ0, k0)

)
> 1− ε, ∀T > T1(ε);

(3) There exists a constant M <∞ such that

E
∥∥∇3

ijklt (θ, k)
∥∥ < M, ∀θ ∈ Θ, k ∈ K.

For (1), notice that evaluated at θ = θ0 and k = k0,

E

(
∂lt
∂ht

)
= E

[
E

(
∂lt
∂ht
|Ft−1

)]
= E

(
−k + 1

ht
+
h2t
h3t

+
kht
h2t

)
= 0.
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Thus,

E

(
∂lt
∂µ

)
= E

(
∂lt
∂ht

)
= 0,

E

(
∂lt
∂αi

)
= E

(
∂lt
∂ht
|λt−i|

)
= E

[
|λt−i|E

(
∂lt
∂ht
|Ft−1

)]
= 0,

E

(
∂lt
∂βi

)
= E

(
∂lt
∂ht

δt−i

)
= E

[
δt−iE

(
∂lt
∂ht
|Ft−1

)]
= 0,

E

(
∂lt
∂γi

)
= E

(
∂lt
∂ht

ht−i

)
= E

[
ht−iE

(
∂lt
∂ht
|Ft−1

)]
= 0.

In addition, since ηt
i.i.d.∼ Γ (k0, 1),

E

(
∂lt
∂k

(θ0, k0)

)
= E

[
E

(
∂lt
∂k

(θ0, k0)|Ft−1
)]

= E

[
log(ηt)−

Γ′(k0)

Γ(k0)

]
= 0.

Therefore, E [∇lt(θ0, k0)] = 0. By the ergodic theorem, 1
T

∑T
t=1∇lt(θ0, k0)

P→ 0, T →∞.
For (2), in view of the ergodic theorem, it is sufficient to verify E

[
−∇2lt(θ0, k0)

]
<∞. Notice

∂2lt
∂h2t

=
k + 1

h2t
− 3λ2t

h4t
− 2δt
h3t
.

Therefore,

E

[
∂2lt

∂θi∂θj
(θ0, k0)

]
= E

[
E

(
∂2lt

∂θi∂θj
(θ0, k0)

)
|Ft−1

]
= E

[(
k0 + 1

h2t
− 3h2t

h4t
− 2k0ht

h3t

)
∂ht
∂θi

∂ht
∂θj

(θ0)

]
= −(k0 + 2)E

[
h−2t

∂ht
∂θi

∂ht
∂θj

(θ0)

]
.

Since h−1t
∂ht
∂θi

(θ0) is bounded by max
{

1
αi
, 1
βj
, 1
γk
, 1µ

}
, we have E

[
− ∂2lt
∂θi∂θj

(θ0, k0)
]
< ∞. Simi-

larly,

E

[
∂2lt
∂k∂θi

(θ0, k0)

]
= E

[
− ∂

∂θi
log(ht)(θ0)

]
= −E

[
h−1t

∂ht
∂θi

(θ0)

]
<∞.

In addition,

∂2lt
∂k2

(θ0, k0) =
∂

∂k

[
log(δt)−

Γ′(k)

Γ(k)
− log(ht)

]
(k0) = −

[
Γ′(k)

Γ(k)

]′
(k0),

so

E

[
∂2lt
∂k2

(θ0, k0)

]
= −

[
Γ′(k)

Γ(k)

]′
(k0) = −φ(1)(k0) <∞,

where φ(·) is the polygamma function. Thus, E
[
−∇2lt(θ0, k0)

]
< ∞, and hence condition (2)

is satisfied.
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For (3), we note that

∂3lt
∂θi∂θj∂θk

=
∂3lt
∂h3t

∂ht
∂θi

∂ht
∂θj

∂ht
∂θk

= −2
[
(k + 1)− 6h−2t λ2t − 3h−1t δt

]
h−3t

∂ht
∂θi

∂ht
∂θj

∂ht
∂θk

By the compactness of Θ, h−1t
∂ht
∂θi

is uniformly bounded, and so is h−3t
∂ht
∂θi

∂ht
∂θj

∂ht
∂θk

. Similarly,

h−1t , h−2t are also uniformly bounded since ht > µ. So to show ∂3lt
∂θi∂θj∂θk

has a uniformly
bounded expectation, it suffices to have E

(
λ2t
)
< ∞, which is equivalent to E

(
h2t
)
< ∞ and

guaranteed by the condition of weak stationarity. Similarly,

∂3lt
∂k∂θi∂θj

=
1

h2t

∂ht
∂θi

∂ht
∂θj

,
∂3lt
∂k2∂θi

= 0,
∂3lt
∂k3

= −φ(2)(k)

all have uniformly bounded expectations. Hence, condition (3) is satisfied under the assumption
of weak stationarity.
(ii) The requirements in Basawa et al. (1976) for the asymptotic normality of the maximum
likelihood estimator are:
(1) 1√

T

∑
t∇lt(θ0, k0)

D→ N(0, B), T →∞, for a nonrandom positive definite matrix B;

(2) - 1T
∑

t∇2lt(θ0, k0)
P→ I(θ0, k0) = E

[
−∇2lt(θ0, k0)

]
= E

[
∇∇T lt(θ0, k0)

]
, T → ∞, where

I(θ, k0) is the Fisher information matrix at θ = θ0 and k = k0;
(3) Condition (3) for consistency.
For (1), since E (∇lt(θ0, k0)| Ft−1) = 0, by the martingale central limit theorem,

1√
T

∑
t

∇lt(θ0, k0)
D→ N (0, I(θ, k0)) , T →∞,

Condition (2) is already shown by the ergodic theorem in the preceding argument. Hence, the
proof is completed.
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Table 1: Average result of 200 repeated simulations from two Int-GARCH(1,1,1) models (I, II)
and two Int-ARCH (1,1) models (III, IV).

Mean Mean Empirical Asymptotic
Model Parameters Estimate Absolute Error Standard Error Standard Error

I k 1.8147 1.8164 0.0283 0.0344 0.0327
µ 0.0906 0.0908 0.0046 0.0058 0.0062
α1 0.0318 0.0325 0.0115 0.0146 0.0159
β1 0.3740 0.3739 0.0088 0.0113 0.0117
γ1 0.1265 0.1252 0.0181 0.0225 0.0227

II k 1.2134 1.213 0.0182 0.0226 0.0231
µ 0.0710 0.0718 0.0048 0.0061 0.0066
α1 0.1833 0.1843 0.0165 0.0202 0.0216
β1 0.2334 0.2336 0.0117 0.0145 0.0148
γ1 0.1732 0.1693 0.0326 0.0418 0.0421

III k 1.5139 1.5137 0.0213 0.0274 0.0280
µ 0.0740 0.0742 0.0021 0.0026 0.0027
α1 0.0370 0.0352 0.0116 0.0145 0.0152
β1 0.3436 0.3427 0.0092 0.0119 0.0128
γ1 0

IV k 1.3632 1.3622 0.0214 0.0268 0.0255
µ 0.0584 0.0587 0.0019 0.0024 0.0023
α1 0.1927 0.1922 0.0154 0.0196 0.0185
β1 0.3220 0.3211 0.0106 0.0138 0.0137
γ1 0

Table 2: Fitted Int-(G)ARCH models for the period 2006-2011. The number in the parenthesis
to the right of the estimate is the associated standard error based on the asymptotic normality.

Parameter Estimates
k µ α1 β1 γ1

Stocks AAPL 2.1285 (0.0420) 0.0038 (0.0004) 0.0207 (0.0189) 0.4284 (0.0186) 0
AXP 2.4714 (0.0328) 0.0010 (0.0001) 0 0.4552 (0.0092) 0
BA 2.2533 (0.0440) 0.0026 (0.0004) 0.0525 (0.0182) 0.4133 (0.0201) 0
BAC 2.2149 (0.0433) 0.0002 (0.0002) 0.0281 (0.0194) 0.5504 (0.0164) 0
DD 2.4333 (0.0469) 0.0017 (0.0003) 0.0007 (0.0179) 0.4318 (0.0174) 0
JPM 2.3632 (0.0460) 0.0004 (0.0003) 0.0133 (0.0168) 0.2717 (0.0236) 0.4334 (0.0493)
KO 2.5231 (0.0484) 0.0012 (0.0002) 0.0286 (0.0173) 0.3848 (0.0167) 0
MSFT 2.2515 (0.0440) 0.0026 (0.0003) 0.0628 (0.0205) 0.3931 (0.0193) 0
T 2.4932 (0.0479) 0.0019 (0.0002) 0 0.3855 (0.0163) 0
WMT 2.5040 (0.0481) 0.0015 (0.0002) 0 0.3929 (0.0175) 0

Indices DJI 2.4905 (0.0485) 0.0007 (0.0001) 0 0.4331 (0.0162) 0
SPX 2.3695 (0.0465) 0.0007 (0.0001) 0 0.4418 (0.0270) 0.0458 (0.0485)
FTSE 2.5773 (0.0493) 0.0007 (0.0002) 0 0.4246 (0.0157) 0
CAC 2.1655 (0.0422) 0.0012 (0.0002) 0 0.5036 (0.0176) 0
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Table 3: In-sample comparisons of Int-GARCH(1,1,1) and GARCH(1,1). Larger values of R2

and smaller values of QLIKE and HMSE indicate higher ranking of the volatility model.
R2 QLIKE HMSE

GARCH Int-GARCH GARCH Int-GARCH GARCH Int-GARCH
Stocks AAPL 0.4707 0.3824 -7.0084 -7.0968 0.8020 0.5972

AXP 0.5099 0.5692 -7.0235 -7.1098 0.3600 0.4384
BA 0.4949 0.5447 -7.2523 -7.2996 0.5623 0.5110
BAC 0.5179 0.4889 -6.6973 -6.7991 1.1040 0.9211
DD 0.4637 0.5778 -7.2900 -7.3291 0.5374 0.5583
JPM 0.3728 0.4545 -6.8266 -6.9267 0.6181 0.5861
KO 0.4512 0.5287 -8.2397 -8.2465 0.5816 0.5342
MSFT 0.3831 0.4323 -7.4539 -7.4931 0.8664 1.4878
T 0.4099 0.4523 -7.5155 -7.5398 1.5514 1.0655
WMT 0.3644 0.4011 -7.8462 -7.8694 0.7694 1.0324

Indices DJI 0.5006 0.6647 -8.5019 -8.7053 0.5695 0.1845
SPX 0.5209 0.6942 -8.4010 -8.6207 0.4810 0.2074
FTSE 0.4769 0.6911 -8.4324 -8.6492 0.4122 0.2478
CAC 0.4171 0.6916 -8.1337 -8.3162 0.4158 0.2752

Table 4: Comparisons of 1-step-ahead predictions of Int-GARCH(1,1,1) and GARCH(1,1).
1-step-ahead Prediction

R2 QLIKE HMSE
GARCH Int-GARCH GARCH Int-GARCH GARCH Int-GARCH

1-step-ahead

Stocks AAPL 0.0485 0.2929 -7.5694 -7.7011 0.5426 0.4251
AXP 0.2591 0.5459 -7.3522 -7.4381 0.3678 0.3492
BA 0.2909 0.4502 -7.4518 -7.5154 0.3293 0.2981
BAC 0.2461 0.5466 -6.6467 -6.7992 0.4693 0.4156
DD 0.3053 0.5000 -7.3962 -7.4613 0.3275 0.3303
JPM 0.3587 0.3981 -7.0733 -7.1928 0.3920 0.4076
KO 0.2844 0.4307 -8.3893 -8.4080 0.3503 0.5011
MSFT 0.1032 0.1882 -7.6106 -7.6670 0.7244 0.7478
T 0.1530 0.2115 -8.1725 -8.2027 0.4431 0.7809
WMT 0.2538 0.4168 -6.8641 -8.4146 0.7947 0.3420

Indices DJI 0.3204 0.7631 -8.5295 -8.7353 0.3875 0.2274
SPX 0.3413 0.7823 -8.3776 -8.5954 0.3984 0.2411
FTSE 0.3421 0.7778 -8.3617 -8.5712 0.4161 0.2400
CAC 0.3673 0.8003 -7.8501 -8.0407 0.4095 0.2361
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Table 5: Comparisons of 2-step-ahead predictions of Int-GARCH(1,1,1) and GARCH(1,1).
2-step-ahead Prediction

R2 QLIKE HMSE
GARCH Int-GARCH GARCH Int-GARCH GARCH Int-GARCH

2-step-ahead

Stocks AAPL 0.0132 0.1517 -7.5383 -7.4529 0.6343 0.4864
AXP 0.1275 0.2807 -7.3106 -7.3454 0.6350 0.3145
BA 0.2132 0.3081 -7.4326 -7.4348 0.3797 0.3144
BAC 0.1367 0.1805 -6.5818 -6.585 0.8272 0.5413
DD 0.2097 0.3226 -7.3671 -7.3819 0.4624 0.2808
JPM 0.2601 0.2293 -7.0329 -7.0916 0.6407 0.5443
KO 0.1908 0.2436 -8.3579 -8.3292 0.4782 0.4825
MSFT 0.0596 0.1257 -7.5891 -7.5763 0.7986 0.4576
T 0.0888 0.1146 -8.1397 -8.1175 0.6592 0.4360
WMT 0.1925 0.2579 -6.7841 -8.3250 0.8143 0.3084

Indices DJI 0.2046 0.5149 -8.4939 -8.5478 0.5250 0.3641
SPX 0.2061 0.5574 -8.3409 -8.3838 0.5378 0.3834
FTSE 0.2581 0.5591 -8.3375 -8.3548 0.4742 0.3965
CAC 0.2666 0.5376 -7.8209 -7.7907 0.4894 0.4090

Table 6: Comparisons of 5-step-ahead (one week) predictions of Int-GARCH(1,1,1) and
GARCH(1,1).

5-step-ahead Prediction

R2 QLIKE HMSE
GARCH Int-GARCH GARCH Int-GARCH GARCH Int-GARCH

5-step-ahead

Stocks AAPL 0.0020 0.0142 -7.4968 -6.8332 0.6861 0.7015
AXP 0.0278 0.0443 -7.2142 -6.7312 1.6016 0.6143
BA 0.1281 0.1923 -7.3887 -7.1597 0.5966 0.4607
BAC 0.0625 0.0152 -6.4010 -5.6188 3.9111 0.7582
DD 0.1072 0.1110 -7.2938 -6.9044 0.9460 0.5297
JPM 0.1679 0.1059 -6.9515 -6.6792 1.2665 0.5910
KO 0.0875 0.0761 -8.2977 -7.9787 1.2164 0.5812
MSFT 0.0336 0.0443 -7.5510 -7.1817 1.0182 0.5861
T 0.0520 0.0731 -8.0929 -7.6682 0.9500 0.5638
WMT 0.1068 0.1307 -6.5603 -7.8740 0.8564 0.5502

Indices DJI 0.1092 0.1243 -8.4081 -7.9200 1.1346 0.6466
SPX 0.1083 0.1315 -8.2571 -7.6855 1.1027 0.6801
FTSE 0.1334 0.1439 -8.2455 -7.6797 1.1540 0.6796
CAC 0.1696 0.1796 -7.7553 -7.0460 0.7602 0.7076
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Figure 1: Theoretical auto-correlation functions of Model I.

31



0 100 200 300 400 500 600 700 800 900 1000

Time

-10

-5

0

5

10

15

In
te

rv
a
l

Model I Simulated Data

0 100 200 300 400 500 600 700 800 900 1000

Time

-3

-2

-1

0

1

2

3

In
te

rv
a
l

Model III Simulated Data

Figure 2: Plots of simulated data sets each with T = 1000.
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Figure 3: Sample auto-correlation functions of a simulated data set from Model I.
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Figure 4: Sample auto-correlation functions of a simulated data set from Model III.
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Figure 5: Sample auto-correlation function of BA stock.
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