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This paper proposes a theoretical model to describe previous laboratory observations
of the dynamics of debris accumulations around bridge piers of cylindrical shape. The
model is based on the assumption that the observed dynamics is mainly governed by
dynamic changes of the point of application of the drag force exerted on the solid body
formed by debris accumulated around the pier. A phase plane analysis of the resulting
non-linear system of ODEs shows that the model captures the main patterns observed
in previous laboratory experiments, including an oscillatory motion and the removal
of debris from the pier by the flow. The model provides a theoretical basis for the
analysis of the conditions required for debris jams to remain stable over long periods
of exposure to impinging flow. Namely, the model indicates that stability of debris
accumulations primarily depends on geometrical asymmetry and on the length of the
extension downstream of the pier. The former induces the torque required to rotate the
jam about the pier, while the latter produces a stabilising effect after the body rotates.
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1. Introduction

The accumulation of woody debris around bridge piers in rivers has long been the
object of significant concerns among engineers and scientists. Debris jams modify the
flow field around the pier, leading to deeper and larger scour holes (Melville and Dongol
1992; Pagliara and Carnacina 2011), increased hydrodynamic loadings exerted onto
the pier structure, and increased upstream water levels. The first two effects have been
widely held responsible for the collapse of many bridges around the world (Diehl 1997),
while the third is often acknowledged as a key factor influencing the risk of flooding. In
the past decades, intense research has been devoted towards determining the influence
of debris accumulations on the above effects (Melville and Dongol 1992; Pagliara and
Carnacina 2011; Schmocker and Hager 2013; Gschnitzer et al. 2017; Ebrahimi et al.
2018). Numerous field observations have also been made, which have generically described
the typical shape of debris jams as an inverted half-cone (Abbe and Montgomery 1996;
Diehl 1997). However, comparatively less attention has been given to understanding
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the processes governing the actual formation of these debris accumulations, or their
subsequent removal from the pier by the flow. Such an understanding is key to improve
our ability to model the effects of debris on the stability of bridges and flooding. In
particular, predicting the dimensions and shape of woody debris jams that can be
possibly formed at given bridges is an essential step towards this goal.

Debris accumulations are formed by large trees being trapped at bridge piers (Diehl
1997; Lagasse et al. 2010), and previous studies indicated that the entrapment of
individual debris elements depends on the approach flow velocity (Bocchiola et al.
2008). This obstruction initiates a process of self-assembly whereby other floating debris
elements transported by the river build a framework that collects debris of different
sizes, leading to the gradual growth of the accumulation (Manners et al. 2007; Manners
and Doyle 2008). A recent study by Panici and de Almeida (2018) reproduced the
processes of formation and growth of woody debris accumulations at bridge piers in
a laboratory flume under turbulent flow (Re ranging from 5 × 104 to 3 × 105). These
experiments showed that after the successive collection of individual debris pieces, all
debris accumulations reach a critical stage at which point they rotate en masse about
the pier and are dislodged by the flow (a condition hereafter referred to as failure). In
many instances, an oscillatory rotational motion was observed prior to the dislodgement.
These experiments also confirmed previous field observations by Diehl (1997) and
Lagasse et al. (2010) that debris jams formed at piers take the shape of half-conical
porous bodies. Data from Panici and de Almeida (2018) showed that prior to failure, all
debris accumulations display a certain degree of asymmetry relative to the vertical pivot
axis. The maximum jam size, expressed by width W , height H, and length K (as shown
in figure 1), is of primary importance for engineering design. Data from Panici and de
Almeida (2018) showed that these maximum dimensions typically coincide with the
onset of the final oscillatory or rotational stage leading to failure. Despite the extensive
experimental observations, the underlying physical processes responsible for the jam
failure have not been systematically investigated.

In this paper, we test the hypothesis that the main characteristics of the motion of
debris jams observed by Panici and de Almeida (2018) can be captured by a simple
fluid-debris interaction model based on shifts of the point of application of drag. The
derivation of the model describing the fluid-debris interaction is detailed in §2, which
results in a set of ordinary differential equations. The fixed points of this system are
analysed in §3, which provides insights into the main parameters governing the stability
of debris jams. A phase plane analysis of the model is presented in §4. A comparison
against laboratory observations is provided in §5.

2. Model construction

Consider the problem of the rotational motion of a porous half-conical body, assumed
of uniform porosity, about a cylinder immersed in a predominantly unidirectional
free-surface turbulent flow field. Further, we assume that the diameter of the cylinder
is negligible compared to the size of the body, so that the position of the pivot point
is assumed not to change with the motion of the body (i.e. the contact between the
body and the cylinder occurs along a vertical line). The geometry of the body, which
generically reproduces the main characteristics observed by Panici and de Almeida
(2018), is described by the width W in the direction normal to the main flow, a
longitudinal length K, and a depth H below the water surface, as shown in figure 2.
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(a)

(b)

Figure 1: Sketch of a debris jam at a bridge pier, including its geometrical characteristics
(a) and an example of a woody debris jam from experiments by Panici and de Almeida
(2018) - view from upstream of the pier (b).

In addition, the dimension ∆K is introduced to represent the downstream extension
beyond the pivot point (hereafter referred to as tail). For simplicity, the tail length ∆K
is assumed equal on both sides.

To describe the motion of the solid, we adopt two Cartesian frames of reference. In
the first frame, x, y, and z denote the transverse, streamwise, and vertical coordinates,
respectively. The second frame is defined by the coordinates x′, y′, and z′ and is used to
describe a rotation θ of the first frame about the vertical axis (z=z′). The coordinates of
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Figure 2: Conceptualised geometry of a debris jam at a pier. (a) and (b) show respectively
the plan view and the maximum projected area of the jam for a given angle of rotation
θ.

the edge of the debris body are denoted by xe, ye, and ze (or x′e, y
′
e, and z′e for the second

frame of reference). A shape asymmetry is introduced by the condition W ′−<W
′
+ (figure

2). The rotational motion of the debris jam about the vertical axis can be modelled by
the principle of conservation of angular momentum Iθ̈ = Γ , where I is the moment of
inertia of the debris body with respect to the axis of rotation z (which must include the
added mass effect) and Γ is the torque of all external forces applied to the debris body.



Fluid-solid interactions in woody debris jams removal 5

The proposed model assumes that drag FD = 0.5ρCDAv
2, which is also assumed parallel

to the streamwise direction, is the dominant force governing the rotational motion; where
ρ is the water density, A the frontal area of the solid projected onto the x − z plane,
v is a time-averaged characteristic velocity (e.g. free stream mean velocity), and CD is
the corresponding coefficient of drag, which may depend on several geometric, fluid or
flow properties. Since the diameter of the cylinder is assumed negligible, it follows that
the torque of the force due to friction between the body and the cylinder is zero. Other
forces that take part in this process, such as the hydrostatic force difference between
the upstream and downstream sides of the solid or the lift force, are neglected in the
proposed model. Whilst flow in rivers is inherently turbulent, the model does not include
fluctuations of the hydrodynamic force due to turbulence. In addition, it is assumed that
drag is applied at the centroid of the cross-sectional area A. In essence, it is therefore
postulated that the rotational motion is mainly governed by variations of the torque of
drag induced by changes in A and the x position of its centroid xc, which occur as a
function of θ and the geometry of the solid (e.g. W ′+, W ′−, K, ∆K), which yields

Iθ̈ = FDxc =
1

2
ρCDAv

2xc. (2.1)

Eq. (2.1), implies that for θ=0, a perfectly symmetrical solid (W ′−=W ′+) would remain
static (Γ=0). From this stable condition, any asymmetry (i.e. W ′−<W

′
+) or small rotation

θ would lead to xc 6=0 and initiate the flow-solid dynamic interaction.

The geometry of the debris body (figure 2.b) is modelled by a piecewise second order
polynomial describing the position e’=[x′e, y

′
e] of the leading (i.e. upstream) boundary of

the body at the free-surface:

y′e =
K +∆K

W ′2−
x′2e −K for x′e ∈

(
0, ±W ′−

)
y′e =

K +∆K

W ′2+
x′2e −K for x′e ∈

(
0, ±W ′+

)
(2.2)

To account for the effect of asymmetry, we introduce the asymmetry factor defined as

ψ =
W ′+
W ′−

, (2.3)

therefore, horizontal planar asymmetry (i.e. W ′+>W
′
−) implies ψ >1. Considering that

W ′++W ′−=W , W ′−= W
1+ψ and W ′+=Wψ

1+ψ , yields

y′e =
(K +∆K) (1 + ψ)

2

W 2
x′

2
e −K, for x′e ∈

(
0, ±W ′−

)
y′e =

(K +∆K) (1 + ψ)
2

W 2ψ2
x′

2
e −K. for x′e ∈

(
0, ±W ′+

)
(2.4)

Two dimensionless variables α=W/K and β=∆K/K are introduced to describe the shape
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Figure 3: Examples of the curves used to model the shape of the accumulations. The
background image shows debris accumulations obtained during the experiments by Panici
and de Almeida (2018). The pier-jam contact point represents the origin of the x and y
axes (solid black lines) as sketched in figure 2.

of the debris body and the relative size of the tail. Substituting α and β into (2.4) yields

y′e =
(1 + β) (1 + ψ)

2

αW
x′

2
e −

W

α
, for x′e ∈

(
0, ±W ′−

)
y′e =

(1 + β) (1 + ψ)
2

αWψ2
x′

2
e −

W

α
. for x′e ∈

(
0, ±W ′+

)
(2.5)

Figure 3 shows examples of how (2.5) can model the top geometry of debris jams
formed at laboratory scale. Eq. (2.5) is here used to define the expressions for the area
A, centroid xc, and moment of inertia I. Since A and xc depend on the projection of
e’ onto the x− z-plane (see figure 2), they change with the rotation of the debris body.
These expressions are given by (details of the derivations are provided in Appendix A):

A =


WH
2

[
α

4(ψ+1)2(1+β)
cos2 θ
sin θ + sin θ

α + ψ
ψ+1

cos(θ+δ)
cos(δ)

]
for −π

26θ<θ
−
t

WH
2(ψ+1)

[
ψ cos(θ+δ)

cos(δ) + cos(θ−τ)
cos(τ)

]
for θ−t 6θ6θ

+
t

WH
2

[
αψ2

4(ψ+1)2(1+β)
cos2 θ
sin θ + sin θ

α + 1
ψ+1

cos(θ−τ)
cos(τ)

]
for θ+t <θ6

π
2

(2.6)

and

xc =


W
3

[
ψ
ψ+1

cos(θ+δ)
cos(δ) −

α
4(ψ+1)2(1+β)

cos2 θ
sin θ −

sin θ
α

]
for −π

26θ<θ
−
t

W
3(ψ+1)

[
ψ cos(θ+δ)

cos(δ) −
cos(θ−τ)
cos(τ)

]
for θ−t 6θ6θ

+
t

W
3

[
αψ2

4(ψ+1)2(1+β)
cos2 θ
sin θ + sin θ

α −
1

ψ+1
cos(θ−τ)
cos(τ)

]
for θ+t <θ6

π
2

(2.7)

where δ and τ are the angles between the tail edge and the x′-axis, as shown in figure
2 and θ+t and θ−t (defined in Appendix A) are angles defining the sub-domains of the
piecewise functions above. The moment of inertia I also includes the added mass effect, as
outlined in Appendix A. For simplicity, some terms that are assumed time-independent
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(which include the dimensions of the solid and the time-averaged characteristic velocity)
are grouped into a single parameter

χ =
1

12

ρCDW
2Hv2

I
, (2.8)

The dependency of the coefficient of drag on the orientation of the body is neglected here
(although it may be readily included for problems in which the relation is known), so
that CD is assumed time-independent in (2.8). Substituting Eqs. (2.6), (2.7), and (2.8)
into (2.1) and defining ω=θ̇, yields the following system of equations:

θ̇ = ω

ω̇ =


χ

[(
ψ
ψ+1

cos(θ+δ)
cos δ

)2
−
(

α
4(1+β)(1+ψ)2

cos2 θ
sin θ + sin θ

α

)2]
for −π

26θ<θ
−
t

χ
(ψ+1)2

[
ψ2 cos2(θ+δ)

cos2(δ) −
cos2(θ−τ)
cos2(τ)

]
for θ−t 6θ6θ

+
t

χ

[(
αψ2

4(1+β)(1+ψ)2
cos2 θ
sin θ + sin θ

α

)2
−
(

1
1+ψ

cos(θ−τ)
cos τ

)2]
for θ+t <θ6

π
2

(2.9)

Equations (2.9) will be used to model the rotational motion of the solid in the range
of -π/26 θ 6 π/2. The phase plane object of the following analysis has coordinates θ, ω.

3. Analysis of fixed Points

3.1. Non-tailed accumulation

This section analyses the fixed points of equation (2.9) for the particular condition
given by β=0 (that is, a half-cone body with no tails, i.e. ∆K=0). Under this condition,
equation (2.9) simplifies to:

θ̇ = ω

ω̇ =


χ

[(
ψ

1+ψ cos θ
)2
−
(

α
4(1+ψ)2

cos2 θ
sin θ + sin θ

α

)2]
, for −π/26θ<θ−t

χψ−1ψ+1 cos2 θ, for θ−t 6θ6θ
+
t

χ

[(
αψ2

4(1+ψ)2
cos2 θ
sin θ + sin θ

α

)2
−
(

1
1+ψ cos θ

)2]
. for θ+t <θ6

π
2

(3.1)

We first determine the fixed points of the system (3.1). Within the sub-domain
θ−t 6θ6θ

+
t , Eq. (3.1) only admits one fixed point at (π

2 , 0). This is, however, outside

the sub-domain within which the function is defined (i.e. θ+t is always less than π/2).
Therefore no fixed points are found within this region of the phase plane. Regarding
the sub-domain θ+t <θ6π/2, four solutions for (3.1) set equal to zero are found at ω=0

and θ=arctan

(
α
±1±
√

1−ψ2

2(1+ψ)

)
. However, none of these points are real, since ψ >1 by

definition. It follows that no fixed points are found in the interval θ+t < θ 6 π/2.

In the sub-domain −π/26 θ < θ−t , [θ̇, ω̇]=0 (from Eq. (3.1)) admits four solutions given

by ω = 0 and θ=arctan

(
α
±ψ±
√
ψ2−1

2(1+ψ)

)
. Two of these solutions cannot be accepted as

they would result in a positive value of θ; hence, outside of the sub-domain of study,
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being θ−t <0 (i.e., from (A 7)) for any conditions. For the other two solutions, one of
them will always be larger than θ−t and cannot be accepted for the domain of study.
Within the sub-domain −π/26 θ < θ−t , only one fixed point is found at ω = 0 and

θnt = arctan

(
−αψ +

√
ψ2 − 1

2 (1 + ψ)

)
. (3.2)

The nature of this fixed point can be determined by analysing the eigenvalues λnt of the
Jacobian Jnt of (3.1) at the fixed point θnt (where the sub-index nt is used to denote the
specific condition of a non-tailed body):

Jnt =

 0 1

2χ

[
− sin (2θnt)

ψ2

(ψ+1)2
−

2
(
1+
(

α2

4(ψ+1)2
−1
)
cos2 θnt

)2

α2 sin3 θnt

]
0

 (3.3)

λnt = ±
√

2χ

√√√√√− sin (2θnt)
ψ2

(ψ + 1)
2 −

2
(

1 +
(

α2

4(ψ+1)2
− 1
)

cos2 θnt

)2
α2 sin3 θnt

. (3.4)

Since θnt is always negative, the term inside the square root of (3.4) must be positive,
resulting in real and distinct eigenvalues. Thus, the fixed point θnt is a saddle. Saddle
nodes are surrounded by open trajectories except along the stable manifold. Therefore,
considering the original real-world problem of a body immersed in a turbulent flow where
instantaneous fluctuations in the magnitude and point of application of the drag force
occur, the problem of a non-tailed accumulation can be practically assumed as inherently
unstable.

3.2. Tailed accumulations

In this section we show that other fixed points emerge for values of β >0 by analysing
the system (2.9). A fixed point for the sub-domain θ−t 6θ6θ

+
t of (2.9) occurs at ω=0 and

θ1 = arctan

(
ψ − 1

ψ + 1

α

2β

)
. (3.5)

Since θ16θ
+
t and considering Eq. (A 7), it follows that for θ1 to exist a necessary condition

is

ψ 6 1 + β. (3.6)

A second solution of (2.9) equal to 0 at θ2 = π/2 is omitted as it falls outside the
sub-domain considered here. It is now possible to analyse the nature of the fixed point
θ1. The Jacobian of (2.9) for θ−t 6θ6θ

+
t and at the fixed point θ=θ1 is given by

J1 =

[
0 1

− 2χ
(ψ+1)2

[
ψ2 sin(2(θ1+δ))

cos2 δ − sin(2(θ1−τ))
cos2 τ

]
0

]
(3.7)

the eigenvalues of which are:

λ1 = ±

√
− 2χ

(ψ + 1)
2

[
ψ2

sin (2 (θ1 + δ))

cos2 δ
− sin (2 (θ1 − τ))

cos2 (τ)

]
. (3.8)

The sign of the terms inside the square brackets define the nature of the fixed points in
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the phase plane. If positive, λ1 is purely imaginary, hence the fixed point is a neutrally
stable centre; if negative, λ1 has two real and opposite values and the fixed point is a
saddle (i.e. unstable node). For the case of λ1 the term within square brackets is always
positive; hence, the eigenvalue is purely imaginary. As a result, the fixed point θ1 will
always be a neutrally stable centre.

For the interval θ+t <θ6π/2, the same analysis reveals four additional solutions of
equation (2.9) set equal to zero at ω=0 and

θ3 = − arctan

[
α

1−
√

1− ψ2

2 (ψ + 1) (1 + β)

]
,

θ4 = − arctan

[
α

1 +
√

1− ψ2

2 (ψ + 1) (1 + β)

]
,

θ5 = arctan

α1−
√

1− ψ2 1−β
1+β

2 (ψ + 1) (1− β)

 ,
θ6 = arctan

α1 +
√

1− ψ2 1−β
1+β

2 (ψ + 1) (1− β)

 .
(3.9)

Since ψ >1, θ3 and θ4 are not real and cannot be fixed points of Eq. (2.9). On the
other hand, θ5 and θ6 are real only if 1−ψ2 1−β

1+β >0. As a result, the fixed points θ5 and
θ6 can only exist in the phase plane if

β >
ψ2 − 1

ψ2 + 1
, (3.10)

or, alternatively:

1 < ψ2 6
1 + β

1− β
, (3.11)

In other words, θ5 and θ6 can only exist for values of β <1 (i.e. ∆K<K). In addition,
the fixed points θ5 and θ6 must satisfy the condition θ5,6 > θ+t . First, θ+t 6θ6 can be
simplified as:

1

ψ
ψ2 1− β

1 + β
6 1 +

√
1− ψ2

1− β
1 + β

. (3.12)

The second term on the right hand side of (3.12) is real only if ψ2 1−β
1+β 61. Therefore,

the left hand side is always less than 1 (since, by definition, ψ >1), while the right hand
side must be greater than 1; hence, θ6 > θ+t in any case. The condition θ5 > θ+t leads
to ψ >1+β. As θ1 is only defined for ψ 6 β+1, it follows that θ1 and θ5 cannot coexist
in the phase plane, resulting in maximum two fixed points (i.e. θ6 and either θ5 or θ1)
in the positive domain. Figure 4 shows the region of existence of θ5 and θ6 for values of
ψ and β. When conditions in (3.10) or (3.11) are not satisfied, neither θ5 nor θ6 exist in
the phase plane, thus there will only be open trajectories. Practically, this implies that
a small tail or a very large asymmetry factor would lead to a rotation that eventually
causes the failure of the debris body. On the right end of the figure, for values of β >1,
neither θ5 nor θ6 exists, there will only be θ1 which (if neutrally stable) would result in
a highly stable situation for any condition.
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Figure 4: Region of existence for θ5 and θ6: the former is found only in the darker area
(which corresponds to the non-existence of θ1), while the latter is defined for both darker
and lighter shaded areas. Values of ψ and β outside of this region would result in no fixed
points θ5 and θ6.

To understand the nature of θ5 and θ6, we analyse the eigenvalues of the Jacobian
matrix of (2.9) within the sub-domain θ+t <θ6π/2:

J2 =

 0 1

2χ

[
sin(2(θ5,6−τ))
cos2 τ(ψ+1)2

+
2
(
1+
(

α2ψ2

4(1+β)(ψ+1)2
−1
)
cos2 θ5,6

)2

α2 sin3 θ5,6

]
0

 (3.13)

for which case θ can be either θ5 or θ6. The resulting eigenvalues are

λ2 = ±
√

2χ

√√√√√ sin (2 (θ5,6 − τ))

cos2 τ (ψ + 1)
2 +

2
(

1 +
(

α2ψ2

4(1+β)(ψ+1)2
− 1
)

cos2 θ5,6

)2
α2 sin3 θ5,6

. (3.14)

Eq. (3.14) shows that λ2 can be either real or imaginary, depending on the sign of
sin (2 (θ5,6 − τ)). For values of θ5,6 sufficiently large (e.g. θ5,6>τ), λ2 could be real,
resulting in a saddle point, otherwise a neutrally stable centre is observed. This results
in the alternation between a centre and a saddle, as will be observed in the phase plane
analysis presented in §4, whereby θ1 (or θ5 depending on β) provides a centre, while θ6
is a saddle.

Finally, for the interval −π/26 θ < θ−t solutions to Eq. (2.9) set equal to zero occur
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at ω=0 and

θ7 = arctan

αψ (β + 1) +

√
ψ2 (β + 1)

2
+ β2 − 1

2 (ψ + 1) (β2 − 1)

 ,
θ8 = arctan

αψ (β + 1)−
√
ψ2 (β + 1)

2
+ β2 − 1

2 (ψ + 1) (β2 − 1)

 ,
θ9 = arctan

[
α

ψ −
√
ψ2 − 1

2 (ψ + 1) (1 + β)

]
,

θ10 = arctan

[
α

ψ +
√
ψ2 − 1

2 (ψ + 1) (1 + β)

]
.

(3.15)

The two results for θ9 and θ10 will be positive; hence, these will not be part of the sub-
domain. On the other hand, both θ7 and θ8 will be negative for β <1. Comparing θ7 with
θ−t , the former will always be smaller than the latter, thus a fixed point of the system;
conversely, θ8 will always be greater than θ−t , thus not included in the sub-domain. This
is the analogous situation to the non-tailed case analysed in the previous section. In
order to understand the nature of the only fixed point θ7, we analyse the Jacobian of
(2.9) within the sub-domain -π/26 θ < θ+t :

J3 =

 0 1

2χ

[
− sin(2(θ7+δ))

cos2 δ
ψ2

(ψ+1)2
−

2
(
1+
(

α2

4(1+β)(ψ+1)2
−1
)
cos2 θ7

)2

α2 sin3 θ7

]
0

 (3.16)

The resulting eigenvalues are:

λ3 = ±
√

2χ

√√√√√− sin (2 (θ7 + δ))

cos2 δ

ψ2

(ψ + 1)
2 −

2
(

1 +
(

α2

4(1+β)(ψ+1)2
− 1
)

cos2 θ7

)2
α2 sin3 θ7

. (3.17)

In consideration that θ7 is always negative, the term inside the square root in (3.17)
will always be positive, thus the eigenvalues are distinct and real, which will result in a
saddle in the phase plane.

Table 1 provides a summary of the fixed points discussed above for the model of a
tailed accumulation.

4. Phase-plane analysis

In this section, we analyse the phase-plane of the system of differential equations
discussed in the previous section to provide further insights into the behaviour of the
proposed model.

Figure 5 shows different phase portraits plotted for the constant value of the asymmetry
factor ψ=1.2, 16 α 63 and 06 β 61. The blue lines in this figure represent arbitrary
trajectories, whereas the black solid line is the boundary between a stable (i.e. orbits
around the first fixed point) and unstable (i.e. open trajectories) solutions. These phase
portraits were plotted for particular values of other intervening parameters, namely
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Table 1: Summary of fixed points for the model of the tailed accumulation.

Fixed
Point

Formulation Sub-Domain Nature of the Fixed
Point

θ1 arctan
(
ψ−1
ψ+1

α
2β

)
θ−t 6 θ 6 θ+t Neutrally stable centre

(exists for 1 < ψ 6 1+β)

θ5 arctan

[
α

1−
√

1−ψ2 1−β
1+β

2(ψ+1)(1−β)

]
θ+t < θ 6 π/2 Neutrally stable centre

(exists for 1 + β 6 ψ 6√
1+β
1−β )

θ6 arctan

[
α

1+
√

1−ψ2 1−β
1+β

2(ψ+1)(1−β)

]
θ+t < θ 6 π/2 Saddle node (exists for

1 < ψ 6
√

1+β
1−β )

θ7 arctan

[
α
ψ(β+1)+

√
ψ2(β+1)2+β2−1

2(ψ+1)(β2−1)

]
−π/2 6 θ < θ−t Saddle node

W=0.6 m, H=0.15 m, ρj=800 kg/m3, CD=1.5, v=0.4 m/s. These values are within
the range tested in the experiments by Panici and de Almeida (2018), and are adopted
here in order to enable an analysis of the proposed model under conditions for which
evidence is available. The value of ρj adopted here was approximated using the value
of the coefficient of added mass of CM = 1.0. Sub-figures on the top row of figure 5
depict the condition analysed in section 3.1, where β=0 and only open trajectories are
possible, except for the stable manifold of the saddle in the negative domain. For β >0
two fixed points emerge in the positive domain (namely a centre and a saddle), as also
discussed previously. The size of closed orbits about the neutrally stable centre increases
with the value of β, which translates into increased stability to the system. Furthermore,
for increasing β the distance on the θ axis between these two fixed points increases; the
first fixed point (i.e. the neutrally stable centre) is shifted towards the origin, whilst
the second fixed point (i.e. the saddle) moves towards higher values of θ. This increases
the chances of an oscillatory motion being stable even when the values of the angular
displacements are large. At the highest range of β, very large angles and/or angular
velocities would be needed in order to reach open trajectories leading to the failure of
the debris jam. The value of β=1 is used to illustrate the extreme case of a jam with
a very large tail, in which case a strong stability is observed. Indeed, the model implies
that for β = 1, it would be possible to observe a rotation approaching θ=π/2 that would
remain in oscillatory motion about the pier. The figure also shows that when β >0, the
stable area of the phase plane increases with α.

Figure 6 shows the phase portrait of the system (2.9) for a constant value of β=0.40,
and α and ψ varying within the ranges 16 α 63 and 16 ψ 61.60 (values of W , H, ρj , CD,
v in this figure are the same as those used in figure 5). The sub-figures at different rows
are used to highlight the influence of asymmetry on the stability of the system. The top
row shows the phase portrait for a perfectly symmetric body (ψ=1). Under this condition
the stable centre is located at the origin, and it is observed that a large perturbation
would need to be introduced to induce failure. In addition, the required perturbation
from θ=0 increases significantly with α, as has also been previously pointed out in figure
5. As ψ increases, the two fixed points approach each other, reducing the region of the
domain where closed orbits are possible. For ψ=1.6 the system is intrinsically unstable;
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no fixed points are observed and any small perturbation would eventually lead to a non-
periodic motion. This occurs because ψ is larger than the critical condition as observed
in (3.11), which for β=0.4 is ψ=1.53.

The phase planes shown in figures 5 and 6 also reveal a saddle point in the negative
side of the domain. This implies that, in theory, the body could reach an open trajectory
towards negative values of θ, although this would require relatively large initial displace-
ments, compared to those required for open trajectories along the positive side of the
domain.

5. Comparison against experimental observations

In this section we compare the model predictions of stability against previous labora-
tory observations obtained at different stages during the growth of debris accumulations
at vertical cylinder immersed in a turbulent free surface flow.

5.1. Impossibility of stability of non-tailed accumulations

We first test the ability of the proposed model to capture the impossibility of an
accumulation to remain stable under the hypothetical condition of a non-tailed shape.
During the 570 experiments of Panici and de Almeida (2018), such a shape was never
observed, neither during a stable nor a critical (i.e. immediately prior to failure) condition.
The results of the analysis presented in §3.1 confirms that the model agrees with these
laboratory observations. Namely, no fixed points are possible in the positive domain of
the phase plane. The only fixed point occurs for negative values of θ and is a saddle node.
While in theory stability occurs along the stable manifold of the saddle, in the real-world
any small disturbance from this state –e.g. induced by turbulence– would result in open
trajectories. Therefore, in practical terms, such a system is always unstable, and any small
perturbation (i.e. planar asymmetry ψ 6=1) would result in large rotations ultimately
leading to the removal of the jam from the pier. In this case, the force exerted by drag
would neither establish a rotation that is periodical nor tend to a static equilibrium.

5.2. Shape characteristics of stable accumulations

Experimental data-sets by Panici and de Almeida (2018) provide the opportunity to
compare the shape characteristics (i.e. α, β, and ψ) of debris accumulations formed in the
laboratory against the model’s predictions. Figure 7 shows the values of ψ and β observed
during 105 different experiments, along with the curves defining the limits of existence
of fixed points (as previously defined in figure 4). In this figure, the blue circles represent
values of β and ψ at time T immediately before the failure of the accumulation (that
is the elapsed time between the first piece of debris is entrapped and the beginning of
the dislodgement of the whole debris jam), whereas the red squares represent the same
values measured at T/3, when the body can be assumed stable (i.e. when very small
or negligible periodical rotations were observed). The figure shows a clear distinction
between the two groups. Stable jams are observed on the right-side of the graph, where
the model predicts that both θ1 and θ6 exist and θ1 (i.e. the neutrally stable centre) is
closer to the origin of the phase plane, which translates into high stability. On the other
hand, unstable jams are found on the left of the graph, very close to the boundaries that
define the existence of θ1 and θ5 and in many instances above the upper boundary, in
which case no fixed points are found and only open trajectories are possible.
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β=0

α=1 α=2 α=3

β=0.25

β=0.50

β=0.75

β=1

Figure 5: Phase portraits for constant ψ=1.20 and varying α and β. Horizontally, α takes
values of 1.0, 2.0, and 3.0 from left to right. Vertically, β takes values of 0, 0.25, 0.50,
0.75, and 1 from top to bottom.
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ψ=1

α=1 α=2 α=3

ψ=1.15

ψ=1.30

ψ=1.45

ψ=1.60

Figure 6: Phase portraits for constant β=0.40 and varying ψ and α. Horizontally, α takes
values of 1, 2, and 3 from left to right. Vertically, ψ takes values of 1, 1.15, 1.30, 1.45,
and 1.60 from top to bottom.
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Figure 7: Region of existence of fixed points according to figure 4 overlapped to
experimental data by Panici and de Almeida (2018).

5.3. Repeatability of observed dimensions at failure

The experiments by Panici and de Almeida (2018) showed that all debris piles, formed
by the successive accumulation of individual logs, fail upon reaching maximum values
of W , K, and H. In addition, repeated experiments conducted under the same flow
conditions showed that the dimensions at failure display a relatively small variation. At
first, this last observation is somewhat puzzling, since the process of collection of debris
elements is inherently stochastic. We here argue that such a behaviour can be explained
based on the proposed model, as follows.

Section §4 has shown that the model predicts increasing stability with increasing
values of α and β. This is in agreement with the process of accumulation of debris
pieces observed in the laboratory by Panici and de Almeida (2018). Shortly after the
first mesh of debris is formed, only a few debris elements are collected on the upstream
side of the pier. The orientation of these elements is such that the initial values of ∆K
and W are large compared to the longitudinal dimension K, resulting in the maximum
values for α and β. Under these conditions, the model predicts a debris jam that is very
stable, and experimental observations show that indeed no failure is observed during
these initial stages. As other debris elements accumulate upstream, the growth rate of
K is faster than the corresponding growth of W and ∆K, thus both α and β gradually
decrease. Eventually, when the values of α and β are very low the jam is removed from
the pier. The model predicts that low values of α and β result in a significant reduction
of the stable region of the phase plane, thus increasing the probability of failure. This
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indicates that the condition in which failure occurs, while influenced by processes that
are inherently stochastic, also has a strong deterministic component, which agrees with
the repeatability of dimensions observed in various experiments.

5.4. Direction of failure

The phase portraits presented in §4 show that open trajectories leading to a rotation
towards the negative direction can be observed in the phase-plane. For the body to follow
this open trajectory, it must rotate by a certain negative value of θ that depends on α, β,
and ψ (i.e. θ<θ−t ). However, if the body is to reach these trajectories, it must first pass
through a region of the domain filled with open positive trajectories, which would lead
to a positive failure. In other words, failure by a rotation towards the side of the lowest
semi-width is, in practice, virtually impossible. This agrees with the observations by
Panici and de Almeida (2018), which show that all failures observed in 570 experiments
occurred through a rotation towards the positive (i.e. widest side) direction.

6. Conclusions

In this paper we have proposed a modelling framework to analyse the interactions
between flow and an immersed body that is free to rotate about a static vertical solid
cylinder also immersed in the flow. The analysis was motivated by recent experiments per-
formed by the authors to simulate the process of collection of woody debris transported
in rivers around bridge piers. In these experiments it was observed that formed jams
can display an oscillatory rotational motion about the vertical cylinder, and that they
are always ultimately removed from the cylinder by the flow. The proposed model was
developed in order to understand these and other aspects of the observed behaviour. The
development of the model was also aimed at improving our ability to describe the main
parameters governing the formation of debris jams that can remain stable while exposed
to flow over long periods. The model was built upon the assumption that the motion of
the immersed body is primarily driven by dynamic changes of the point where drag force
is applied, which in addition is assumed to depend on the geometry of the body and its
orientation only. The geometry analysed in the paper, which aims to model the observed
geometry of debris jams, was defined as an asymmetric half-cone with extensions that in
the paper are referred to as tails.

The main geometrical variables of the model, namely the jam width W , length K, and
tail extension ∆K, defined two dimensionless shape parameters α=W/K and β=∆K/K,
which along with an asymmetry factor ψ were found to govern much of the observed
behaviour. A non-linear system of ODEs resulted from the application of conservation
of angular momentum of the immersed body subject to the moment of the drag force.
The system was analysed on the phase plane. For a tailed, asymmetric solid, three fixed
points can be observed in the phase plane, which typically show the alternation between a
neutrally stable centre node and saddles. The dimensionless variables previously defined
play key roles in the stability of the system (that is the periodic rotation around the
first fixed point). First, the tail factor β is pivotal in order to provide stability. The
model predicts that a non-tailed body (i.e. β=0) is inherently unstable, leading to open
trajectories (i.e. a failure) even if it is almost perfectly symmetric. On the other hand,
increasing values of β produce more stable conditions by shifting the neutrally stable
node towards the origin and the saddle towards higher values of θ (thus increases the
area of the phase plane corresponding to closed orbits). The asymmetry factor ψ is also
key to the stability of the system. For symmetric bodies (i.e. ψ=1), the neutrally stable
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node lies on the origin and only a very large perturbation could lead to a failure. On the
other hand, if ψ is greater than a threshold value (which also depends on β), the system
is unconditionally unstable.

A comparison between experimental observations and model predictions confirmed
the ability of the proposed model to capture the main characteristics of the motion
of debris jams observed in the laboratory. This includes i) the model’s prediction of
the impossibility of a non-tailed body (which was never observed to form during 570
experiments) to remain stable; ii) its ability to capture key differences in the shape of
stable and unstable jams related to the values of α, β, and ψ; iii) an explanation for
the repeatability of debris jam dimensions at failure; and iv) the model’s prediction
of the direction towards which the rotational motion leading to failure should occur,
which agrees with all experimental data available. Whilst further validation of the
proposed model for rotational oscillations of immersed bodies would require a detailed
set of accurate experiments, the results obtained from our comparison against existing
laboratory experiments are encouraging.
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Appendix A

The area A and the position of its centroid xc are obtained by determining the
maximum values of the projection e=Re’ of e’ onto the x axis (herein referred to as W−
and W+, respectively) within the domain -π/26θ6π/2, where R is the rotation matrix
and e’ is defined by (2.5). Since we are only interested in the first component of e:

xe(x
′
e, θ) =

{
x′e cos θ − (1+β)(1+ψ)2

αW x′
2
e sin θ + W

α sin θ for x′e ∈
(
0, ±W ′−

)
x′e cos θ − (1+β)(1+ψ)2

αWψ2 x′
2
e sin θ + W

α sin θ for x′e ∈
(
0, ±W ′+

) (A 1)

For low absolute values of the angle of rotation (θ−t 6θ6θ
+
t ), the optima of (A 1) given

by [W−,W+] = [xe(W
′
−, θ), xe(W

′
+, θ)], which for W ′− < W ′+, yields

W−(θ) =
W

(1 + ψ) cos (τ)
cos (θ − τ) , for θ−t 6θ6π/2

W+(θ) =
Wψ

(1 + ψ) cos (δ)
cos (θ + δ) . for -π/26θ6θ+t

(A 2)
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where:

τ = arctan

(
β (1 + ψ)

α

)
,

δ = arctan

(
β (1 + ψ)

αψ

)
,

(A 3)

are the angles formed by the two tails of the jam with the x′-axis, as shown in figure 2.
On the other hand, if θ>θ+t or θ<θ−t , the optima of (A 1) may occur within the interval

-W ′−<x
′
e<W

′
+, in which case it can be defined by:

dxe
dx′e

=

{
cos θ − 2(1+β)(1+ψ)2

αW x′e sin θ = 0 for x′e ∈
(
0, ±W ′−

)
cos θ − 2(1+β)(1+ψ)2

αWψ2 x′e sin θ = 0 for x′e ∈
(
0, ±W ′+

) (A 4)

Solving (A 4) for x′e yields

x′e =

{
1

tan θ
αW

2(1+β)(1+ψ)2
for x′e ∈

(
0, ±W ′−

)
1

tan θ
αWψ2

2(1+β)(1+ψ)2
for x′e ∈

(
0, ±W ′+

) (A 5)

substituting (A 5) into (A 1) yields

W−(θ) =
cos2 θ

sin θ

αW

4 (1 + β) (1 + ψ)
2 +

W

α
sin θ,

W+(θ) =
cos2 θ

sin θ

αWψ2

4 (1 + β) (1 + ψ)
2 +

W

α
sin θ.

(A 6)

At θ=θ−t and θ=θ+t , the values of respectively W− and W+, given by (A 6) and (A 2),
must coincide. Combining these equations yields:

θ−t = − arctan

[
α

2 (1 + β) (1 + ψ)

]
,

θ+t = arctan

[
αψ

2 (1 + β) (1 + ψ)

]
.

(A 7)

The geometrical variables xc and A can be now be obtained from (A 6) and (A 2). The
projected area A is a triangle of height H and base W+(θ)+W−(θ), thus, from (A 2) and
(A 6):

A(θ) =


WH
2

[
α

4(ψ+1)2(1+β)
cos2 θ
sin θ + sin θ

α + ψ
ψ+1

cos(θ+δ)
cos(δ)

]
for −π

26θ<θ
−
t

WH
2(ψ+1)

[
ψ cos(θ+δ)

cos(δ) + cos(θ−τ)
cos(τ)

]
for θ−t 6θ6θ

+
t

WH
2

[
αψ2

4(ψ+1)2(1+β)
cos2 θ
sin θ + sin θ

α + 1
ψ+1

cos(θ−τ)
cos(τ)

]
for θ+t <θ6

π
2

(A 8)

Since the projected cross-section is a triangle, the centroid in the x-coordinate is defined
as:

xc =
W+(θ)−W−(θ)

3
. (A 9)

Substituting (A 2) and (A 6) into (A 9), the x-coordinate of the centroid may be written
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as

xc(θ) =


W
3

[
ψ
ψ+1

cos(θ+δ)
cos(δ) −

α
4(ψ+1)2(1+β)

cos2 θ
sin θ −

sin θ
α

]
for −π

26θ<θ
−
t

W
3(ψ+1)

[
ψ cos(θ+δ)

cos(δ) −
cos(θ−τ)
cos(τ)

]
for θ−t 6θ6θ

+
t

W
3

[
αψ2

4(ψ+1)2(1+β)
cos2 θ
sin θ + sin θ

α −
1

ψ+1
cos(θ−τ)
cos(τ)

]
for θ+t <θ6

π
2

(A 10)

The moment of inertia of a body as sketched in figure 2 with respect to the axis of
rotation z, can be found by applying the perpendicular axis theorem to a horizontal
disk of infinitesimal thickness dz, and then integrating along the z-axis. The density of
the debris jam is defined here as ρj=φ (ρw + CMρ) where CM is the coefficient of added
mass, φ is the fraction of jam volume occupied by the solid (in this case wood), ρw is the
density of wood.

From (2.2), the two moments of inertia with respect to the x′ and y′ axes are:

Ix′ = ρjW

∫ W β
α

−Wα
y′2

(√
1 + y′ αW

1 + β

)
dy′ − ρj

∫ W β
α

0

y′2
(
y′
α

β

)
dy′

Iy′ = ρj

∫ 0

− W
1+ψ

x′2

[
−x′2 (1 + β) (1 + ψ)

2

αW
+
W

α
− x′ (1 + ψ)

β

α

]
dx′+

+ ρj

∫ Wψ
1+ψ

0

x′2

[
−x′2 (1 + β)

αW

(1 + ψ)
2

ψ2
+
W

α
+ x′

(1 + ψ)

ψ

β

α

]
dx′

(A 11)

The resulting integrals are:

Ix′ = ρj
W 4

420α3

(
15β3 + 24β2 − 32β + 64

)
Iy′ = ρj

W 4
(
ψ2 − ψ + 1

)
(8 + 3β)

60 (1 + ψ)
2

(A 12)

The moment of inertia of the disk Iz′ = Ix′ + Iy′ can now be integrated along the z-axis,
yielding:

I =

∫ 0

−H
(Ix′ + Iy′)

(
1 +

z

H

)4
dz =

(Ix′ + Iy′)H

5
. (A 13)

Replacing (A 12) into (A 13) yields the moment of inertia about the z-axis:

I =
ρjW

4H

300α

[(
ψ2 − ψ + 1

)
(8 + 3β)

(1 + ψ)
2 +

15β3 + 24β2 − 32β + 64

7α2

]
. (A 14)
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