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Abstract. Spontaneous collapse models (CM) have been proposed as a possible solution of the
quantum measurement problem. In CM the unitary evolution of the wave function is modified
by stochastic corrections which lead to a dynamical reduction at macroscopic level. Unlike
interpretations of quantum mechanics, CM predict departures from standard theory that can
be experimentally tested. Here, we focus on one of these predictions, a universal force noise
acting on any mechanical system. In particular, we discuss recent bounds on collapse models
set by ultracold cantilevers experiments and gravitational wave detectors. First notable results
are a partial exclusion of the CSL parameters proposed by Adler and a full exclusion of an early
model based on quantum gravity ideas.

1. Introduction
Spontaneous wave function collapse (or dynamical reduction) models (CM) [1, 2, 3, 4, 5] have
been proposed to reconcile the linear and deterministic evolution of quantum mechanics with
the nonlinearity and stochasticity of the measurement process. According to CM, random
collapses in space (i.e. localizations) of the wave function of any system occur spontaneously,
independently of measurement processes, leading to a progressive spatial localization. The
collapse rate scales with the size of the system, in such a way as to produce rapid localization
of any macroscopic system, while giving no measurable effect at the microscopic level, where
standard quantum mechanics holds. Importantly, collapse models lead to a natural solution
of the measurement problem, by predicting the emergence of well-defined outcomes in any
measurement process in agreement with the Born rule, provided that the measurement system
is macroscopic.

The standard collapse model described in literature is the Continuous Spontaneous
Localization (CSL) [2, 3]. It can be regarded as a continuous version of the earliest collapse
model introduced in 1986 by Ghirardi, Rimini and Weber (GRW) [1], and solves some technical
issues of the latter. CSL is characterized by two phenomenological constants, a collapse rate
λ and a characteristic length rC , which characterize respectively the intensity and the spatial
resolution of the spontaneous collapse process. λ and rC are free parameters which should be
derived, or bounded, by experiments. Other relevant collapse models are the Diosi-Penrose
gravitational model [6, 7, 8, 9] and quantum gravity inspired models [10, 11].

The direct effect of collapse models such as CSL is to destroy quantum superpositions,
resulting in a loss of coherence in interferometric matter-wave experiments [12, 13, 14]. In



addition, the noise field associated with the collapse leads, unavoidably, to the violation of the
energy conservation. So called non-interferometric tests have been proposed to look for these
effects. Such tests include spontaneous emission of x-rays [15, 16], force noise in mechanical
systems [17, 18, 19, 20, 21, 22, 23, 24] and spontaneous heating of bulk matter [25] or ultracold
atoms [26, 27].

In this paper, I will review recent experimental progress in testing collapse models by means
of non-interferometric mechanical experiments and discuss possible future developments.

2. Models
2.1. The CSL model
The CSL master equation can be written as [4]:
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where Ĥ describes the free evolution of the system and L[ρ̂(t)] is a Lindblad term. In the case of
a rigid body undergoing small displacements in a given direction z, with the motion described
in terms of the center of mass coordinate, the CSL term can be written as [21]:

LCSL[ρ̂CM(t)] = −η [q̂, [q̂, ρ̂CM(t)]], (2)
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with k = (kx, ky, kz), %̃(k) =
∫

d3x eik·r %(r) and %(r) the mass density distribution of the system.
In the latter expressions m0 is the nucleon mass, λ and rC are free parameters. The CSL term
causes a collapse of the wave function in the coordinate space, i.e. a localization of the center
of mass, and therefore a loss of quantum coherence as an effect of the collapse process.

The CSL dynamics is characterized by two phenomenological parameters: the collapse rate
λ, which represents the rate of localization of a single nucleon, and the characteristic length rC ,
which is related to a smearing of the mass-density function. These are free parameters of the
model which should be derived, or bounded, by experiments. The standard conservative values
suggested by GRW are λ ' 10−16 s−1 and rC = 10−7 m [1, 2] and are sufficient to guarantee
almost instantaneous localization of macroscopic objects. A strongly enhanced value for the
collapse rate has been suggested by Adler [28], motivated by the requirement of making the
wave function collapse effective at the level of latent image formation in photographic process.
The values suggested by Adler are ∼ 109±2 times larger than standard values at rC = 10−7 m,
and ∼ 1011±2 times larger at rC = 10−6 m.

Besides causing localization, the CSL term expressed by Eq. (2) describes a diffusion of
the center of mass, and η can be interpreted as diffusion constant [17, 18]. In other words,
the center of mass of a rigid body will undergo a brownian motion due to the action of
the continuous collapse-localization process. This consideration is at heart of so called non-
interferometric methods to look for CSL. More generally, the existence of a fundamental CSL
collapse mechanism necessarily implies the appearance of a universal force noise, acting on any
massive object, with (one-sided) power spectral density Sff = 2~2η. A simple consequence is



that for a mechanical resonator in equilibrium with a thermal bath at temperature T , the mean
energy is given by [21, 22]:

〈E〉 = kBT +
~2ηQ
2mω0

, (5)

i.e. CSL predicts a net excess of energy with respect to the classical equipartition value.
Therefore, one can look for CSL effects by continuously monitoring a mechanical resonator

and measuring its mean energy as a function of temperature. The equipartition term kBT can
be characterized and subtracted, and the hypothetical CSL term can be estimated or bounded.
A more general procedure, valid also for free masses, is to monitor the free dynamics of the
system and infer the power spectral density of the force noise acting on it. This is given, in the
thermal limit kBT � ~ω and in absence of technical noise, by:

Sff =
4kBTmω

Q
+ 2~2η. (6)

Accurate measurements as a function of the temperature T and the damping factor γ = mω/Q
allow to isolate the thermal term and to estimate or bound the collapse-noise term.

In both situations, in order to increase the sensitivity to CSL noise, one has to maximize
the ratio between the CSL-induced noise and the thermal noise. In practice this means lowest
possible temperature T , highest possible time constant τ = Q/ω, and highest possible η/m ratio.
While the first two conditions merely express the requirement of lowest possible rate of energy
exchange with the thermal bath, the third condition leads to consequences which are peculiar
to the model details. For CSL we can distinguish two relevant limits. When the characteristic
size L of the system is small, L� rC , then η ∝ m2 and thus η/m ∝ m. When the characteristic
length of the system (along the direction of motion) L is large, L� rC , then η ∝ ρ2A and thus
η/m ∝ ρ/L, where ρ is the mass density and A is the area transverse to the motion [21, 22]. The
expressions in the two limits imply that, for a well defined characteristic length rC , the optimal
system is a plate or disk with thickness L ∼ rC and the largest possible density ρ.

2.2. The Diosi-Penrose model
Besides CSL, other models have been proposed, attempting to provide a connection of the wave
function collapse to specific mechanisms, in particular to gravity. On the one hand, gravity is the
only known force that we have not been able to merge with quantum theory, despite enormous
theoretical efforts. Indeed, there is no compelling evidence that gravity must be quantized.
On the other hand, collapse models suggest that any breakdown of the quantum superposition
principle has to be related to a mass-proportional localizing mechanism, pointing to gravity as
a natural candidate.

Among the supporters of this point of view, Penrose argues that the quantum superposition
principle is in fundamental contradiction with the general covariance principle of general
relativity [6, 7]. Therefore, he suggests that superpositions of a massive object in different
spatial positions can survive only for a finite time τ ∼ ~/∆E where ∆E is a properly defined
difference between the self-gravitational energies associated to the two states. In other words,
the quantum superposition principle must be broken at fundamental level by gravity.

Another attempt in his direction was done by Diosi [8]. His model is similar to CSL, with
a different kernel for the the localization integral. The intensity of the collapse rate would be
determined by gravity, while a phenomenological length scale rDP , analogous to rC , is necessary
to avoid exceedingly large violations of energy conservation [9]. Experimentally, values of rDP

as low as the nuclear size 10−15 m are allowed, although values rDP ∼ rC = 10−7 m have
been suggested as more reasonable [9]. Notably, the collapse time scale predicted by Diosi
coincides with the one heuristically suggested by Penrose [6, 7]. This is the reason motivating
the denomination of Diosi-Penrose (DP) model in literature.



The DP model leads to localization and diffusion similar to CSL. The diffusion constant ηDP

is given by [22]:
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where a is the lattice constant and G is the gravitational constant.
Experimentally, Eqs. (5) and (6) hold exactly in the DP model as in CSL, by replacing η

with ηDP . The requirements of lowest possible T and longest possible time constant τ = Q/ω
remain unchanged. A notable difference from CSL is that the diffusion constant ηDP does not
show any shape dependence. In particular, for the relevant case of large size L� rDP , the ratio
ηDP /m, which determines the experimental sensitivity, depends only on the density. In other
words there is no optimal size or shape.

Another peculiarity of the DP model is that it is characterized by a single free parameter.
While a null result experiment will exclude a given region of the CSL two-parameter space
λ− rC , in the DP case it will set a lower bound on the rDP parameter.

2.3. The Ellis model
Another model was proposed by Ellis and coworkers [10, 11], based on quantum gravity
considerations. The wave function of a massive object would be effectively localized by the
interaction with a bath of quantum wormholes which characterize the spacetime structure at
the Planck length scale. As such, the Ellis model is not strictly speaking a collapse model, rather
it is a decoherence model, where decoherence is induced by practically unaccessible degrees of
freedom.

As long as the wavelength of wormholes is much longer than the characteristic magnitude of
the motion of the system, decoherence can be effectively described by Eq. (2), with diffusion
constant [29]:

ηE =
(m0c)

4m2

(~mPl)3
, (8)

where mPl is the Planck mass and c is the speed of light. Compared to CSL and DP models,
the Ellis model is parameter-free, which allows for unambiguous experimental falsifiability.

3. Experiments
3.1. Overview
We consider here two classes of experiments which have been shown to be suitable in testing
collapse models: (a) micro- and nano-mechanical systems developed in the context of force
microscopy technologies and (b) macroscopic experiments to detect weak forces, such as
gravitational wave detectors.

Force microscopy technologies are nowadays a standard tool in applied physics and surface
science. The invention of atomic force microscopy (AFM) [30] has been awarded by the Nobel
Prize. AFM is based on very sensitive cantilevers, featuring atomically sharp tip, which can
be used to map the surface of a sample with atomic resolution by detecting the tip-surface
force. One of the most extreme versions of force microscopy is the so called magnetic resonance
force microscopy (MRFM), which combines magnetic resonance imaging with ultrasensitive
microcantilevers to yield three-dimensional maps of a sample with nanometer resolution. This
technique is very demanding, and has led to the development of very sensitive nanocantilevers
with relatively low frequency in the kHz range, high quality factor, and to their operation at
very low temperature down to the millikelvin regime [31]. According to Eqs. (5) and (6) these
systems are natural candidates to detect collapse-induced noise. Furthemore, their size compares
favourably with the theoretically suggested CSL length scale [2, 28].



Macroscopic experiments such as torsion pendulums and gravitational wave detectors [32, 33]
are by design force sensors with exquisitely low force noise. These experiments consist of
macroscopic mechanical systems with high quality factor and typically very low frequency, in
the Hz or sub-Hz range. According to Eqs. (5) and (6) they are obvious candidates to detect
or bound collapse-induced force noise. The main strong feature with respect to other systems
is the operation at low frequency, which requires extreme care in mechanical isolation from
environmental noise. The only limitations come from being macroscopic and thus far from the
theoretically suggested CSL length scale [2, 28], and from the fact that these experiments are
normally operated at room temperature. However, resonant bar gravitational wave detectors [33]
and prototype of future interferometric detectors have been operated at cryogenic temperature
as well.

3.2. Ultracold cantilevers
The first serious attempt to exploit mechanical resonators to bound the parameters of collapse
models, in particular the CSL model, was done by Vinante et al. in 2016 [34]. The system
described in the latter work is a MRFM nanocantilever cooled to temperatures down to 10 mK.
A magnetic microsphere was attached to the cantilever free end to allow low noise magnetic
detection using a SQUID. The original motivation of this solution was to provide a way to
operate a MRFM nanocantilever at millikelvin temperature avoiding the overheating typical
of laser-based detection. This goal was successfully achieved, as the cantilever thermal noise
was found in good agreement with the equipartition theorem down to 25 mK [31]. From this
observation an upper bound on any non-thermal contribution, including hypothetical CSL noise,
was estimated. An exclusion curve on the CSL parameter space was then derived (Fig. 1, orange
line) [34].

The main notable result was the first partial exclusion of the CSL parameters suggested
by Adler, in particular the full exclusion of the parameters suggested at rC = 10−6. However
the experiment was far from being optimized. The spherical geometry is not the one that
maximizes the effect of CSL-induced noise, and the density of the material is three times lower
than the densest known materials, such as osmium or iridium. Moreover, the quality factor in
this experiment, Q ∼ 105 was not really high.

A second similar experiment was reported later [35] with cantilever and magnetic sphere
roughly 10 times larger than the previous one. The cantilever was a standard AFM cantilever,
featuring a very large quality factor, up to 107 at 20 mK. Very accurate measurements of the
force noise were performed and, according to Eq. (6), the thermal contribution was characterized
and subtracted. In contrast with the first experiment, a residual force noise was revealed. The
ultimate origin of this noise is still unexplained. Further measurements have shown that it is
not related to back-action from the SQUID and likely not due to vibrational noise.

For the purpose of testing CSL, the experiment is still able to enlarge the exclusion region.
The exclusion line is shown in red in Fig. 1. If the source of excess noise were explained, the
bound would be improved by one order of magnitude (dashed red line in Fig. 1). Of course, the
excess noise could be in principle explained as CSL noise as well, and it would be compatible
with the CSL effect predicted by Adler. However, given the latest data from LISA Pathfinder
(see next section), this explanation seems unlikely.

3.3. Macroscopic experiments: LISA Pathfinder
The bounds on collapse models that can be inferred by macroscopic experiments have been
recently discussed by Carlesso et al. [29]. Different experiments have been considered: cryogenic
resonant bar detectors of gravitational waves, interferometric detectors of gravitational waves
(LIGO), torsion pendulums. It was finally shown that the strongest bounds on collapse models



Figure 1. Upper limits on the CSL model collapse rate from different non-interferometric
experiments. For each curve the region above the curve is excluded. Solid lines refer to
actual experimental bounds, dashed lines to experimental bounds probing the CSL field at very
high frequency, dotted lines to hypothetical bounds. Specifically, x-ray spontaneous emission
(dashed blue) [16], bulk heating in solid matter (dashed dark green) [25], cold atoms (light
green) [27], cantilever 2016 experiment (orange) [34], cantilever 2017 experiment (red) [35],
LISA Pathfinder early data (gray) [29, 36] and final data (black) [37]. We also plot the potential
improvement from the cantilever 2017 experiment if the excess noise were removed (dotted red
line), and a very preliminary bound (magenta) and projected upper limit (magenta dotted) from
ongoing cantilever experiments with optimized multilayer test mass. The theoretical parameters
suggested by Adler [28] and GRW [1] are also shown.

are set by the recently launched space mission LISA Pathfinder (LPF) [36], the technological
demonstrator of the space-born gravitational wave detector LISA.

In LPF, two identical AuPt cubic test masses are nominally in free-fall in space, protected by
a spacecraft which follows the masses in such way to minimize the residual coupling. The goal of
the mission was to assess the achievable accuracy of free-fall, by optically measuring the residual
relative acceleration noise (or equivalently force noise) between the two test masses. Thanks to
the very quiet space environment, it was possible to achieve an impressive low acceleration noise
of 5.2 fm/(m/s2)/

√
Hz [36], eventually improved by a factor of three following a progressive

reduction of residual gas pressure with time [37].
LPF and the future LISA mission are optimized for extremely low frequencies in the

range from 10−4 Hz to 10−1 Hz. In this frequency range, LPF outperforms ground-based
torsion pendulums by several orders of magnitude in force power spectral density. Ground



based gravitational wave detectors such as Advanced LIGO, despite the impressive mechanical
attenuation, are outperformed too by LPF in terms of force noise, mainly because of the higher
characteristic frequency. In fact the minimum of the force noise in LIGO is around 30 Hz [29].

The bounds on the CSL model that can be set using LPF data are easily calculated using
Eq. (6). As in LPF there is no absolute calibration of the thermal noise, one assumes the worst
case condition and attributes the all measured noise to CSL. The gray and black curves in Fig. 1
refer respectively to the first data released officially [36] and the final data [37].

3.4. Discussion
The bounds on CSL obtained from ultracold cantilevers and LPF are reported in Fig. 1, together
with other relevant bounds from other experimental techniques, such as spontaneous emission
of x-ray [16], spontaneous heating of bulk matter [25] and spontaneous heating of ultracold
atoms [27]. In addition, the CSL parameters suggested by Adler (dark green bars) [28] and
GRW (violet dot) [1] are shown.

We remark that the bound from x-ray relies on the strong assumption that the CSL noise field
extends up to 1018 Hz. The bound may be easily evaded by a CSL noise field with a frequency
cutoff. Similarly, bounds from bulk matter heating require noise extending up to 1011 Hz. In
contrast the bounds from mechanical systems and cold atoms probe the CSL noise field at low
frequencies, and are therefore considered more significant. On the other hand, bounds from
matter-wave interferometry, which represent direct test of the quantum superposition principle,
are so far are at the level of λ ∼ 10−6 s−1 [38], thus far weaker than those inferred from
mechanical resonators.

As shown in Fig. 1, current mechanical bounds are seriously challenging the predictions of
the collapse rate by Adler, based on the assumption that the wave function collapse is effective
already at the mesoscopic scale [28]. In contrast, the more conservative prediction by GRW is
still many orders of magnitude off, and its testing will require impressive improvements on the
experimental side.

It is an interesting fact that, at the end of the day, experiments with so huge difference in
the relevant parameters, such as ultracold cantilevers and LPF, provide a comparable bound
on CSL. We can explain this remarkable coincidence with the help of Eqs. (6). As discussed
in the theory section, in the relevant limit L � rC , the CSL over thermal noise ratio scales
as ρQ/(TωL). Referring to the cantilever experiment, the LPF experiment provides roughly a
101 times larger effective Q and 106 times lower ω, giving 7 orders of magnitude improvement.
However, the temperature T and size L are respectively 104 and 103 times larger, resulting in
a nearly exact compensation by 7 orders of magnitude. This gives also a clear indication of
how the ultimate experiment to test CSL ought to be: very low frequency as in LPF, ultralow
temperature and micrometer size as in the cantilever case. This calls for an experiment to be
performed at ultralow temperature in a space environment.

Let us consider the DP model. In this case, there is no optimal length scale, and consistently
it is found that the strongest bound on the characterstic length rDP is set by LPF, roughly one
order of magnitude better than cantilevers [39]. Specifically, using the final data of LPF [37],
the lower bound rDP > 83 fm is found, implying that rDP must be larger than the size of any
stable nuclei. This result does not appear so significant, for instance it is very far from the
normalization length suggested by Ghirardi et al [9] of 10−7 m. However, it rules out some
earlier speculation that the nuclear size could possibly set the DP model length scale [22].

Finally, let us consider the Ellis model. It is possible to show that current LPF data, but
data from other macroscopic experiments as well, are inconsistent with the Ellis model, as
they would have already been able to point out the associated noise expressed by Eq. (8) [29].
Remarkably, the same conclusion has been recently obtained by analyzing atom interferometry
experiments [40]. This is perhaps the first example of a collapse model which is completely ruled



out by experiments.

4. Recent updates and outlook
We conclude with an update on ongoing measurements and an outlook of possible short and
mid term progress.

Concerning macroscopic experiments, a significant improvement within the next 15 years
seems unlikely. The LISA Pathfinder mission is over, and the LISA mission is scheduled
to be launched in the early 2030s. Moreover, as the LPF mission has already achieved the
free-fall requirement for LISA it is not clear if LISA will be able to improve over LPF force
noise significantly. On the other hand, ground based experiment, such as advanced LIGO
or similar detectors, are quite far from being significant with respect to bounding collapse
models. Specifically, the upper limit on the CSL model is worse then the one from LPF by
almost 4 orders of magnitude with the initial advanced LIGO data and 2 orders of magnitude
with the final projected design sensitivity. However, the third generation of gravitational wave
interferometers is expected to significantly improve the low frequency force noise, by means
of cryogenic suspension and underground operation. This might perhaps allow to approach
performance close to LPF.

In contrast, experiments with ultracold cantilevers or different micromechanical resonators
have a better potential for improvement in the short-mid term, as they are far from being
optimized. Improvements by 2-3 orders of magnitude appear possible in the near future by a
combination of two main strategies. The first is moving to lower frequency, by means of softer
resonators or larger mass. This will require a much better mechanical isolation, but entirely
within reach. The second is an optimization of the test mass. In the first cantilever experiments
the test mass was a magnetic sphere made of NdFeB. Far better results can be obtained by using
disk geometries and high density materials such as Au or Pt as in LPF. Recent calculations show
that the sensitivity to an hypothetical CSL noise field can be enhanced by using a multilayer
test mass composed of alternate materials with high density contrast [41].

We have recently started a preliminary experiment with a multilayer test mass made of 47
layers of W and WO3 of thickness 300 µm, attached on the same cantilever used in Ref. [35].
The first very preliminary measurements show a larger excess noise as in the simple cantilever
experiment. Nevertheless, the bound on CSL at rC = 10−7 m, shown as magenta curve in
Fig. 1, is already better than any other mechanical experiment, including LPF, although the
improvement is marginal. An additional hypothetical curve is shown (magenta dotted curve)
which assumes a further optimized multilayered mass with Au or W as heavy material and
excess noise comparable with the one of Ref. [35]. This experiment would completely rule out
the CSL collapse rate suggested by Adler, and would outperform LPF over the whole relevant
range of rC up to 10−5 m. In addition, it would be able to completely rule out the excess noise
observed in [35] as a possible CSL effect. Needless to say, any further reduction of the force
noise, for instance by removing the excess noise or reducing the effective T/Q factor, would
further improve the bounds.

A more radical approach towards a huge improvement is to replace the cantilever with a
optical, electrical or magnetic trap, i.e. by levitating a nano or micromechanical test mass.
Operation under extreme vacuum and ultralow temperature conditions might in principle allow
effective quality factors exceeding 1012. However, we are far from a demonstration of this figure.
Optomechanical levitation of nanoparticles is a hot topic of the latest years. For operation
at very low temperature, electrical levitation by Paul traps or by magnetic levitation with
superconductors appears more suitable. This approach is being explored by the TEQ Project,
recently funded by EU. In order to exploit the extreme performance that may be achievable
using levitated particles, space environment may be eventually necessary, as in the LPF case.
An ambitious program in this direction is the proposed space mission MAQRO [42].
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