

Faculty of Engineering and Physical Sciences

Aeronautics, Astronautics and Computational Engineering

Structural effects on the high temperature performance of the Super High Temperature Additive Manufactured Resistojet (STAR)

Christopher Ogunlesi, Federico Romei, Matthew Robinson

and

Angelo Grubišić

(1981-2019)

University of Southampton, UK

Dave Gibbon

Surrey Satellite Technology Ltd, UK

36th International Electric Propulsion Conference University of Vienna • Vienna, Austria September 15-20, 2019

Current State of the Project

- Manufactured through Selective Laser Melting (SLM)
 - 316L Stainless Steel
 - Nickel alloys (LEO requirements)
 - Refractory metals (GEO requirements)
- Recirculating flow geometry
- 300µm typical wall thickness
- No post processing due to closed design

STAR Performance vs. Simulation

- Initial attempts to match Multiphysics simulations to experiments show large deviations in temperature
- Believed to be due to poorly understood variations in materials properties and as-manufactured geometries
 - Emissivity
 - Resistivity

Emissivity and Resistivity

Resistivity

 Measure of a materials inherent resistance to the flow of current

Influenced by

- Temperature
- Latticestructure
- Impurities

Emissivity

- Measure of emissive power of a surface at a specific temperature

Emissivity and Resistivity

- Resistivity
 - Measure of a materials inherent resistance to the flow of current

Emissivity

 Measure of emissive power of a surface at a specific temperature

Influenced by

- Surface features
 - Surface treatments
 - Roughness

Selective Laser Melting – Physical Phenomena

- Powder bed læer melting additive manufacturing process
- Layered process results in rough surfaces through several mechanisms
 - Build angle
 - Layer thickness
 - Laser properties
- Increased cooling rate causes finer grain structure

Diagram of heat diffusion and roughness sources in SLM process [2]

[2] G. Strano, L. Hao, R. M. Everson, and K. E. Evans, "Surface roughness analysis, modelling and prediction in selective laser melting," *J. Mater. Process Technol.*, vol. 213, no. 4, pp. 589–597, 2013.

Goals of this research

- Accurately measure resistivity and emissivity of as-built SLM parts
- Validate models against experimental data
- Apply models to resistojet simulations

M ethodology

- ASTM Standard C835-06
- Total hemispherical emissivity
- Test strip resistively heated under vacuum
- Thermocouples measure surface temperature

 Thermocouples tapped to measure voltage

$$\epsilon = \frac{Q}{\sigma A_1 (T_1^4 - T_2^4)} \qquad \rho = \frac{RA}{L}$$

Test Setup

- Test performed in small hatch of vacuum chamber (0.75m x 0.75m)
 - Thermal shroud acts as blackbody surface
 - Test performed at 10⁻⁵ mbar
- Three K-type thermocouples spot-welded to test strip surface 37.5mm apart
 - Diameter ~ 0.9mm
 - Fourth thermocouple attached to shroud wall
- Program controlled through LabVIEW

Materials & Process Parameters

Property	Value	
Machine	Concept Laser M2 Cusing	EOS M270
Material	316L	Inconel 718
Laser Power (W) (Rated)	200	200
Laser Power (W) (Effective)	177	~180
Laser beam diameter (µm)	50	40
Layer thickness (µm)	30	30
Scan speed (ms ⁻¹)	7 >1	
Hatch (mm)	5 -	
Hatch pattern	Square Islands -	
Gas	N_2	-
Sample Width (mm)	13	10
Sample Thickness (mm)	0.25	1
Sample Length (mm)	200	200

Surface Evaluation

- Scanning Electron Microscopy
 - Performed using a JSM 6500F field emission Scanning Electron Microscope
 - Measurements taken at x50 and x330 magnification
- Focal Variation Microscopy
 - Performed using Alicona InfiniteFocus
 - Compares optical path difference between real and reference surface
 - Profile and areal roughness data

CT Scans-Area measurements

- Resistivity calculation requires accurate cross-sectional area
- Coupons CT-scanned using custom 450kVp / 225kVp Hutch system at μ-vis centre at Southampton
 - 2000 images taken over 15mm length in centre
- Radiographs made binary and cross-sectional area measured in ImageJ using particle size analysis

COM SOL Multiphysics Simulation

- Full 3D model of test setup
 - Electric current and Heat transfer packages
- Parametric sweep of stationary solutions to simulate steady-state
- Average cross sectional area of CT scan used as cross sectional area of test coupon

Material	Ra(µm)	Rq(µm)	Sa(µm)	Sq(µm)
Inconel 718	6.9	9.3	7.1	9.6
316L SS	21.4	26.0	-	-

Resistivity Results-Additive vs Traditional

- SLM results for SLM materials higher than cast
- 316L Stainless Steel
 - ~ 20% difference over whole temperature range
- Inconel 718
 - ~ 2% difference at highest temperature

Emissivity Results-Additive vs. Traditional

- Emissivity increases with roughness
- Additive parts show higher emissivity than cast parts
- 316L Stainless Steel
 - Sample oxidised during testing
- Inconel 718
 - Decrease in emissivity at low temperatures due to experimental error

Results-Simulation vs Experimental

- Simulations using literature values deviate significantly from experimental values
- Simulations using experimentally determined material properties more closely match experimental values
 - 316L shows significant deviation power at high temperature

Conclusions

- Emissivity and Resistivity of as-received SLM parts notable higher than literature values for cast materials
- Simulation results for Inconel 718 show good agreement with experimental data
 - Shows better agreement with experimental than COMSOL values
 - Resistivity of 316L shows good agreement, however temperature difference needs investigation

Next Steps

- Apply data to full simulation of the resistojet
- Obtain Emissivity and Resistivity data for more materials
- Improve Simulation results
 - Obtain better cross section areas
 - Improve surface determination in CT scans
 - Refine mesh used in simulations
- Investigate influence of SLM process parameters on surface quality
 - Roughness
 - Microstructure

Faculty of Engineering and Physical Sciences Aeronautics, Astronautics and Computational Engineering

Thank you for listening! Any Questions?

Email:

c.ogunlesi@soton.ac.uk

Additional publications:

- M. Robinson, A. Grubišić, G. Rempelos, F. Romei, C. Ogunlesi, and S. Ahmed, , "Endurance testing of the additively manufactured STAR resistojet," Materials & Design, vol 180, article 107907, 2019
- F. Romei, A. N. Grubisic, and D. Gibbon, 'High performance resistojet thruster: STAR Status Update," in Space Propulsion 2018, 2018.
- F. Romei, A. N. Grubišić, and D. Gibbon, "Manufacturing of a high-temperature resistojet heat exchanger by selective laser melting," Acta Astronaut., vol. 138, pp. 356–368, 2017.