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Abstract 

Cellular Automata (CA) have found extensive applications in the modelling of urban systems. 
Calculations in CA models are based on cell centroids and therefore CA models are sensitive to the 
choices of cell size and shape. While the effect of cell size for urban simulation has been studied, 
discussions on the effect of cell shape on urban CA models have been limited. Applications in other 
fields suggest there are advantages of using hexagonal cells over square cells, yet most urban CA 
models use square cells. Using connectivity indices from Graph Theory, experiments in this study 
compared models based on hexagonal and square cells to examine the potential advantage of 
hexagonal cells in urban CA models. This paper finds that simulation results from the model with 
hexagonal cells are more consistent and concludes that hexagonal cells would increase the robustness 
of model simulation. 
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 Introduction 

There has been an increasing use of Cellular Automata (CA) in modelling the urban form in cities. CA 
are made up of a lattice of cells in an n-dimensional plane with the state of each cell being determined 
by its neighbouring cells. Ever since their inception, CA have found applications in a wide range of 
fields, including the urban system, usually adapted as constrained CA (Couclelis, 1997; Torrens and 
O’Sullivan, 2001). The advantage of CA models lies in their ability to represent the emergence of global 
structure from local interactions (Batty and Xie, 1994), which is a prominent feature in urban evolution 
(Batty, 1997; Batty et al., 1997, Batty, 2007). 

As calculations in constrained CA are based on distances between cell centroids, CA models are 
sensitive to the size and shape of cells. Ménard and Marceau (2005) argued that for every context and 
scale of CA modelling, there is a threshold value of cell size beyond which model performance would 
drop disproportionately to the increase of cell size. Samat (2006) found that for an urban system this 
threshold is around 270m by 270m for a square cell. In terms of cell shapes, two of the most commonly 
used cell shapes are squares and hexagons, with squares by far the most popular in urban CA models 
(Torrens and Benenson, 2005). 

Studies in other fields of CA application, observed that hexagonal cells produce results that are more 
accurate than square cells. These applications include CA models to simulate forest fire (Iovine et al., 
2005; Trunfio, 2004), debris flow (D’ambrosio et al., 2003) and chemical reaction-diffusion system 
(Adamantzky et al., 2006). However, apart from several early urban models (Bura et al., 1996; Sanders 
et al., 1997) the use of hexagonal cells in urban models has been limited, and no studies using urban 
CA models have compared the performance of square and hexagon cells. Indeed, a review of relatively 
recent urban CA model applications (Santé et al., 2010) had only mentioned a non-urban model, Iovine 
and colleagues’ forest fire model (2005), as an example of CA model with hexagonal cells and had not 
discussed how hexagonal cells may affect urban CA model performance.  

This paper, therefore, seeks to investigate whether there is any difference in performance between 
urban CA models based on square and hexagon cells. In the next section, the use of hexagonal cells 
in CA models and its theoretical advantages over square cells are discussed leading to the theory that 
urban CA models with hexagonal cells are more robust than those with square cells. The third section 
discusses the design of experiment to test this theory while the fourth section provides a mathematical 
representation of the urban CA model used in this paper. The penultimate section presents and 
discusses the results of the experiment and the final section provides the conclusion. 

 

 Potential advantage of hexagon cells in urban CA models 

Neighbourhood definition is an important element in CA model. In a two dimensional CA with square 
cells, there are two ways to define the neighbours of a cell (Batty et al., 1997). The Von Neumann 
system regards four orthogonally adjacent cells to be the neighbours of a central cell, whereas the 
Moore Neighbourhood system also regards the four diagonally adjacent cells as its neighbours, 
therefore defining neighbours as all eight cells surrounding a central cell.  

In the von Neumann system, the centroids of all neighbours are located at the same distance from the 
central cell, while in the Moore system the diagonally located neighbours are further from the central 
cell by a factor of √2. This difference raises the question of whether central cell should have the same 
effect on diagonally located neighbours as on the orthogonally located neighbours. Treating them 
differently would imply a relative ease of development-sprawling in the orthogonal directions compared 
to other directions.  In contrast, by treating diagonal and orthogonal cells as the same, there is a danger 
that the effect of distant cells in the diagonal direction could be overestimated. In this regard, there is 
an advantage in using hexagonal cells, as all cells surrounding a central cell are located at the same 
distance from the centre (Figure 1). 
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Figure 1 – Comparison of (a) von Neumann, (b) Moore, and (c) hexagonal CA configurations 

 

Couclelis (1985) found that the conventions of original CA limit their ability to simulate complex 
geographical dynamics in a realistic manner. White and Engelen (1993) seconded this argument by 
stating that to simulate socio-economic systems such as urban and regional development, as opposed 
to wholly physical systems, the definition of neighbours in urban CA should go beyond immediately 
adjacent cells. Within this extended neighbourhood framework, the advantage of uniform distance to 
all adjacent neighbours in hexagonal cells becomes less clear-cut. For this reason, the use of 
hexagonal cells is more often found in models with more direct physical interpretations such as the 
forest fire model (Iovine et al., 2005) than in models with socio-economic interpretations such as urbans 
systems. 

Nevertheless, cell shapes may still have an important effect in urban CA models. This can be illustrated 
by taking as an example an initial urban location and two secondary points located at the same distance 
from the initial urban location but at a different direction in an isotropic homogenous surface. The first 
secondary cell is located parallel to one of the main axis of the cells while the second one is located at 
an angle (Figure 2 – top diagrams).  

At a first time-step, the most likely cells to become urbanised are the ones located adjacent to the initial 
cell and thus urbanisation is likely happen in waves from the initial location to the secondary cells 
through a series of adjacent cells. As these two secondary points are located at the same distance 
from the initial urban location, they should ideally become urbanised at the same time. 

In the example given in Figure 2, the first secondary point would be likely to become urbanised after 
seven waves of urbanisation. With square cells, the second secondary point would likely be urbanised 
after either 5 or 10 waves depending on how diagonal neighbours are treated. If it is assumed that cells 
affect their orthogonally placed neighbours more than their diagonal neighbours (a), it will likely take 10 
waves of urbanisation for the second point to be urbanised while if it were assumed that cells affect 
orthogonal and diagonal neighbours equally (b) it would likely only take 5 waves. With hexagonal cells, 
the second secondary cell would likely be urbanised at the 8th wave. 
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Figure 2 – Illustration on how cell shapes affect the urban concentric rings 

These three examples can also be examined by comparing them with the Burgess urban land use 
model. In the first assumption of square-based CA model (a), the first secondary point is likely to be in 
a more central ring than the second one as the effect of urban centre will be more pronounced in the 
orthogonal than the diagonal directions. Meanwhile, a reverse condition is likely to be found in the 
second assumption (b). Hexagonal cells (c) are more likely to end up with the two secondary points 
being in the same ring as the implied concentric rings resemble more the theoretical rings from Burgess 
model (Figure 2 – bottom diagrams). 

Note however, that the occurrence of these patterns is dependent on model formulation and cell 
resolution. Nevertheless, it is reasonable to expect the model with hexagonal cells to replicate the ideal 
situation more closely. The models with square cells, on the other hand, are more sensitive to rotation 
as two points located at the same distance but at a different angle are likely to be urbanised at different 
times. Therefore, this study proposes a theory that urban CA models with hexagonal cells are more 
robust than urban CA models with square cells. The next two sections will discuss the experimental 
design and the model used to test this theory. 

 



5 
 

 Experimental design 

The central objective of this experiment was to examine whether cell shapes affect the sensitivity of 
urban CA model to rotational placement of features. In order to do this, the model examined scenarios 
of urban evolution on two types of CA grids, one having hexagon cells and the other square cells. In 
each scenario, urban development initiated from two points separated by a distance of d on a flat 
featureless grid. The two initial seeds formed an axis located at angle of θ to the north-south axis.  

Calculations of CA model are based in cell centres. This meant that the model could not always obtain 
the exact distance of d and the exact angle of θ for every scenario, but rather the closest approximate 
of them. This brought forward a question on whether one cell shape has higher ‘positioning accuracy’ 
than the other one. The term positioning accuracy here refers to the ability of CA model to accurately 
position features rather than its ability to predict the location of an activity in the future. The experiment 
in this study therefore had two main parts. The first part of the experiment compared the positioning 
accuracy and the second part examined the simulation consistency of the two cell shapes. 

In this paper, d was set to 4,500m. In order to compare positioning accuracy, the study examined 91 
scenarios based on the value of θ, these were 00 to 900 inclusive with 10 increments. It is reasonable 
to assume that beyond 900 the simulation would repeat the same pattern for square-celled model while 
repetition would begin after 600 for hexagonal-celled model, 900 was chosen as it is the larger between 
the two numbers. For all scenarios, the model positioned the initial seeds for each scenario and 
examined their deviations from the target d and θ values. 

To examine simulation consistency, seven main scenarios out of 91 were chosen. These were 00, 150, 
300, 450, 600, 750, and 900. A hexagon and a square, respectively, would deviate furthest from 00 at 
rotational angles of 300 and 450. After these angles, cells would begin to revert until their initial shapes 
reform in 600 (for hexagon) and 900 rotations (for square). An increment of 150 was chosen as it is the 
highest common factor between 300 and 450. Seven test-points located equidistant from the initial 
seeds were used as references to gauge the consistency of the model (Figure 3). 

 

Figure 3 – Illustration of simulated scenarios and test-points 
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The distance between the first and last of these points was equal to d and the remaining points were 
distributed between these two points so that adjacent test-points were located d/6 apart. The line 
formed of these points was deemed to be most sensitive to the effect of rotation in the given scenario 
as the equidistance to both initial seeds allows it to receive a balanced influence from both sides.  

Robustness of the model was examined from the consistency of urban potentials in the test-points at 
the end of the simulation period across the seven simulated scenarios. Urban growth for these seven 
scenarios was simulated for 200 iterations using a potential-based urban CA model. The formulation 
and parameterisation of this model are discussed in the next section. 

 

 Model formulation and parameterisation 

The model used in this experiment is a CA model based on development potentials. The model 
calculates the potential of each cell to attract urban activities in one period and allocates new urban 
activities to cells based on these potentials. As in the urban CA model developed by Van Vliet and 
colleagues (2012), a given cell contains a set of non-negative integer values of Zv, where Zv represents 
the number of an urban activity type v populating the cell.  

The model considers the effect of accessibility due to transport infrastructure, geographic features, and 
zone planning as well as neighbourhood interaction to calculate the potentials of a cell, in a similar way 
to the Metronamica model (a widely used potential-based urban CA model using square cells) (RIKS, 
2010). Equation 1 generalises this by calculating total potentials of cell j for activity type v in the 
beginning of iteration t ( ௧𝑃௩,௝) as a weighted multiplication of neighbourhood effect ( ௧ିଵ𝑁௩,௝), geographic 

suitability ( ௧ିଵ𝐺௩,௝), artificial (institutional) suitability ( ௧ିଵ𝐼௩,௝), and (transport) accessibility ( ௧𝑇௩,௝) at the 

end of the previous iteration. Parameters w1 through w4 represent the weighting for each factors. The 
model calculates geographic and artificial suitability in the same way as the Metronamica model (RIKS, 
2010), and uses the methods described by Aljoufie and colleagues (2013) to calculate accessibility. 

 ௧𝑃௩,௝ ൌ   ௧ିଵ𝑁௩,௝
௪భ .  ௧ିଵ𝐺௩,௝

௪మ  .  ௧ିଵ𝐼௩,௝
௪య .  ௧ିଵ𝑇௩,௝

௪ర (Equation 1) 

To isolate the impact of cell shapes, which would be most evident on the neighbourhood effect, the 
model runs on a flat featureless plane that is not under the jurisdiction of any planning authority. 
Therefore, the geographic and artificial suitability effects can be excluded from the model. The model 
assumes the same levels of transport infrastructure across all cells in the model and therefore the 
transport accessibility factor can also be excluded. The values for geographic suitability, artificial 
suitability, and accessibility weighting parameters are therefore set to zero, meaning that 
neighbourhood effect becomes the only determinant of cell potentials. Neighbourhood effect represents 
cell’s attractiveness for a type of activity due to its proximity to activities in other cells. The total 
neighbourhood effect for cell j is the lower-bounded compound of attraction and repellent effects of 
activities on all cells i which are located within the neighbourhood of cell j (𝑖ሼ𝑖 ∈ 𝑱ሽሻ as in Equation 2. 

 ௧𝑁௩,௝ ൌ  𝑓 ቆ෍ ෍ ቀ ௧𝑍௨,௜ሼ௜∈𝑱ሽ .  𝐴௨,௩,௜ሼ௜∈𝑱ሽ,௝ െ  λ𝟏൫ ௧𝑍௨,௜ሼ௜∈𝑱ሽ൯
λ𝟐 . 𝑅௨,௩,௜ሼ௜∈𝑱ሽ,௝ ቁ

௜ሼ௜∈𝑱ሽ௨
ቇ (Equation 2) 

In this experiment, neighbourhood is defined as a circular area within a radius of 4,500m from a cell. 
All cells whose centre is contained within this radius are considered neighbours to the central cell. This 
distance was set to coincide with the distance between two initial seeds, d, so that the two initial seeds 
were at the neighbourhood border from each other. This was deemed the appropriate distance as it 
positioned the test-points in an area of medium attractiveness, which was suspected to be most 
sensitive to cell configuration. Cells too close to initial seeds are likely to be densely populated while 
cells that are too far are likely to be empty regardless of cell configuration. 
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The annotation ( ௧𝑍௨,௜ሼ௜∈𝑱ሽ) represents the amount of activity u in cell i at the end of iteration t. The 

annotations 𝐴௨,௩,௜ሼ௜∈𝑱ሽ,௝ and 𝑅௨,௩,௜ሼ௜∈𝑱ሽ,௝ respectively represent the attraction and repulsion effect of urban 

activity u in cell iሼ𝑖 ∈ 𝑱ሽ for a development of urban activity v in cell j. Equation 2 implies a linear effect 
of the amount of activity on attraction and a non-linear one on repulsion. Van Vliet and colleagues 
(2012) suggest a value between zero and one for λ1 and a value higher than one for λ2, as they would 
produce small initial negative externalities that grow exponentially with the amount of activity. In this 
experiment, λ1 and λ2 were equal to 0.3 and 1.3 respectively. The formula f transforms values lower 
than the lower bound to the lower bound value. As cells’ potential reflect their relative probability to 
attract urban activity, a lower bound value of zero was used to ban negative probability values. 

Every permutation pairing between activities u and v, including u = v, has one attraction and one 
repulsion function. These in general follow a logistic decay function with the effects being strong in 
short distances and weak in long distances. The attraction and repulsion effects of activity u on cell i(j) 
to development potentials of activity v on cell j are functions of the distance between iሼ𝑖 ∈ 𝑱ሽ and j, 
Di{i∈J},j, and the compatibility between u and v which is defined by the defining parameters of the logistic 
decay function, α, β, and γ. These functions can be generalised as Equation 3, which is a modification 
of Wilson’s (1967) “entropy-maximizing model” (cited by Horowitz, 2004). 

𝐴௜ሼ௜∈𝑱ሽ,௝ ൌ  ൫𝛼஺ ൅ 𝛽஺ .  𝐸𝑥𝑝 ሺ𝛾஺ . 𝐷௜ሼ௜∈𝑱ሽ,௝ሻ൯
ିଵ

 

(Equation 3) 

𝑅௜ሼ௜∈𝑱ሽ,௝ ൌ  ൫𝛼ோ ൅ 𝛽ோ .  𝐸𝑥𝑝 ሺ𝛾ோ . 𝐷௜ሼ௜∈𝑱ሽ,௝ሻ൯
ିଵ

 

One general type of ‘urban activity’, which is best described as a combination of retail, offices, and 
housing, is used to isolate the model from the effect of compatibility between different land use types. 
The defining parameters for self-compatibility of urban activity are 0.73 and 1.87 for 𝛼஺ and 𝛼ோ, 0.30 
and 2.70 for 𝛽஺ and 𝛽ோ, and 3.20 and 3.40 for 𝛾஺ and 𝛾ோ. These parameters, together with λ1 and λ2, 
imply a land capacity of about 8,000 urban activity per cell, which corresponds to an allocation of 7.8m2 
land space per unit of urban activity. Beyond this level of activity, cell land potentials would be equal to 
zero and new activities would unlikely be assigned to that cell. 

A pre-determined number of activities are added into a pool of unallocated activities at every iteration 
to represent urban growth. Along with these, the model takes out a pre-determined percentage of 
allocated activities from their current cells and put them into the pool to represent urban relocation. The 
model then allocates activities in the pool to cells based on cell potentials. At every iteration, the model 
converts potentials into relative probability of attracting a land use activity by assigning a range defined 
by a lower value and an upper value to each cell as defined in Equation 4. 

 𝑡𝐿𝑉𝑣,𝑗 ൌ 0 𝑓𝑜𝑟 𝑗 ൌ 1 

(Equation 4)  𝑡𝐿𝑉𝑣,𝑗 ൌ  𝑡𝑈𝑉𝑣,𝑗െ1 ൅ 1 𝑓𝑜𝑟 𝑗 ് 1 

 𝑡𝑈𝑉𝑣,𝑗 ൌ  𝑡𝐿𝑉𝑣,𝑗 ൅ ൣ106.  𝑡𝑃𝑣,𝑗൧  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑗 

The annotations  𝑡𝐿𝑉𝑣,𝑗 and  𝑡𝑈𝑉𝑣,𝑗 represent the lower and upper values of cell j corresponding with 

land use v, at iteration t. The rounding and multiplication by 106 in the upper value calculation transform 
potential values from double into integer with six decimal points accuracy. The model then assigns 
each unallocated activity a random integer between zero and the upper value of the last cell. Activities 
are then allocated into a cell whose lower and upper values encompass their random number. 
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To compare square and hexagonal cell shapes, the CA model simulated urban growth of the seven 
scenarios in ten runs. In every run, the model simulated growth on two grids, one made up of regular 
hexagon cells and the other of square cells. Each side of a square cell is 250m long and thus a square 
cell has an area of 62,500m2. This cell size is within the maximum limit of 270m by 270m suggested by 
Samat (2005). Each hexagon cell has the same area as a square cell, in other words, each side of the 
hexagon is approximately 155.1m long. 

 

 Results and discussion 

5.1 Positioning accuracy of hexagon and square cells 

Across the 91 scenarios to evaluate positioning accuracy, the average absolute deviation of distances 
between the two initial seeds from the target value were 60m in the model with hexagon cells and 55m 
in the model with square cells. Meanwhile, the average absolute deviation of angle between the two 
seeds from the target angles were 0.750 and 0.740 respectively for hexagon and square cells. Statistical 
tests have been conducted to examine whether these deviations were significant from the target values.  

The datasets violated normality assumption and therefore non-parametric tests, signed-rank tests, 
were used to evaluate distance and angle deviations. Table 1 presents the results of these tests and 
shows that, at 0.05 significance level, the distances and the angles between the initial seeds were not 
significantly different than the target values of d and θ in both hexagon and square cells. Further, paired 
tests show that there is no significant difference between the absolute deviations obtained from 
hexagonal and square cells. It can be concluded that at the resolution used in this study, there is no 
difference in positioning accuracy between hexagon and square cells. 

Table 1 – Positioning accuracy statistical test results 

Null Hypotheses   p-value 

signed-rank tests 

Hexagon Median distance deviation = 0  0.211 

  Median angle deviation = 0  0.672 

Square Median distance deviation = 0  0.170 

  Median angle deviation = 0  0.555 

Median absolute distance deviation for hexagon is equal to that of square  0.278 

Median absolute angle deviation for hexagon is equal to that of square  0.723 
 

The area of each cell used in this study is around 86% of the suggested maximum cell area size for 
urban CA model (Samat, 2006). Smaller cell sizes would result in higher positioning accuracy, but the 
results in Table 2 show that there are no positioning accuracy issues even at the level of resolution 
close to the maximum suggested cell size. At larger cell sizes, one of the cell shapes may come across 
positioning accuracy issues earlier than the other shape. However, Samat (2006) has suggested that 
for urban CA models, performances decrease significantly at slightly higher size. In other words, there 
is not much value in examining positional accuracy at larger or smaller cell size than the one used in 
this paper. 

 

5.2 Simulation consistency 

Model simulations were tested for consistency across the seven simulated scenarios. Robustness of 
the model was examined by a series of statistical tests to compare potentials on test-points across the 
seven simulated scenarios for each cell shape. As the model simulated urban growth on a flat 
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featureless plane with uniform transport infrastructure across all cells, given the same distance, the 
potentials of the test-points across all scenarios should not be affected by the angle between the initial 
seeds. A cell shape with less significantly different potentials on the test-points across the scenarios is 
less sensitive to rotation and will therefore produce a more robust model. 

The average of potentials for cells containing the test-points at the final five iterations for every run 
populated the dataset for simulation consistency examination. By averaging, the experiment obtained 
a more stable measurement of potentials and thus became less likely to detect model inconsistency. 
Therefore, any inconsistency detected would be more likely to be caused by cell shapes rather than 
random factors. 

Figure 4 presents the average potentials for the test-points over ten runs at every scenario. It appears 
that the potentials in the hexagon cells cluster more than they do in the square cells, supporting the 
theory that hexagon cells are more robust to rotations. Hexagon cells formed two main clusters with 
scenario 300 and 900 forming one cluster and the remaining scenarios forming the other. Meanwhile, 
square cells seemed to have at best three main clusters with scenarios 00 and 900 forming the first 
cluster, scenarios 300, 600, and 750 forming the second, and scenario 450 being the sole member of 
the third cluster. Scenario 150 of square cells seemed to fluctuate between the first two clusters. 

 

 

Figure 4 – Average of test-points’ potentials  

 

As the datasets were not normally distributed, a non-parametric method was employed to support this 
observation. A set of rank-sum tests compared the results of ten runs from pairs of scenarios to 
determine if there is significant difference of the test-points’ potentials. For every test-point and every 
pair of scenarios, the null hypothesis was that there was no difference between the medians of test-
point’s potentials from the two scenarios, or in other words that the model predicted the potentials 
consistently across the two scenario. A significance level of 0.01 was used instead of 0.05 to reduce 
the probability of a type-I error. The resulting p-values of these tests were presented in Table 2. 
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Table 2 – Simulation consistency statistical test results (p-values) 

 
(*) significantly different at the 0.01 level  (**) significantly different at the 0.001 level 

 

The values in Table 2 support the theory that hexagon cells produce a more robust model as there are 
less significance differences in the potentials compared to the model based on square cells. 
Comparisons between 00 rotation and the other 6 scenarios confirm the initial expectation that the 300 
and 900 rotations in the hexagonal-celled model produce the least similar results. However, the results 
from the other four scenarios in most cases were not significantly different from 00. 

Meanwhile, the potentials produced by square cells, were found to be different from the 00 scenario 
even before the rotation reached 450. In the outer-middle and inner-middle test-points, they became 
significantly different even at 150 rotation and did not revert to similarity until the 900 rotation. Moreover, 
the potentials from 150, 300

, 600, and 750 rotations were in turn found to be significantly dissimilar in all 
test-points from 450 suggesting the existence of at least three clusters. These evidences support the 
previous argument that the hexagonal-celled model produced a lower number of clusters compared to 
square-celled model. 

Outermost Hexagon Cells

Rotation 15 30 45 60 75 90 15 30 45 60 75 90

0 0.068 0.000 ** 0.925 0.250 0.181 0.000 ** 0.229 0.000 ** 0.000 ** 0.000 ** 0.001 ** 0.756

15 - 0.000 ** 0.041 0.379 0.797 0.000 ** - 0.003 * 0.000 ** 0.000 ** 0.034 0.120

30 - - 0.000 ** 0.000 ** 0.000 ** 0.968 - - 0.000 ** 0.120 0.394 0.000 **

45 - - - 0.208 0.050 0.000 ** - - - 0.000 ** 0.000 ** 0.000 **

60 - - - - 0.310 0.000 ** - - - - 0.014 0.000 **

75 - - - - - 0.000 ** - - - - - 0.002 *

Outer-middle Hexagon Cells

Rotation 15 30 45 60 75 90 15 30 45 60 75 90

0 0.022 0.000 ** 0.561 0.050 0.017 0.000 ** 0.002 * 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.903

15 - 0.000 ** 0.041 0.273 0.925 0.000 ** - 0.029 0.000 ** 0.003 * 0.008 * 0.002 *

30 - - 0.000 ** 0.000 ** 0.000 ** 0.756 - - 0.000 ** 0.239 0.310 0.000 **

45 - - - 0.181 0.050 0.000 ** - - - 0.000 ** 0.000 ** 0.000 **

60 - - - - 0.351 0.000 ** - - - - 0.925 0.000 **

75 - - - - - 0.000 ** - - - - - 0.000 **

Inner-middle Hexagon Cells

Rotation 15 30 45 60 75 90 15 30 45 60 75 90

0 0.989 0.000 ** 0.005 * 0.019 0.218 0.001 * 0.003 * 0.001 ** 0.000 ** 0.000 ** 0.000 ** 0.457

15 - 0.000 ** 0.001 * 0.017 0.096 0.001 * - 0.181 0.000 ** 0.022 0.002 * 0.002 *

30 - - 0.000 ** 0.000 ** 0.000 ** 0.636 - - 0.000 ** 0.298 0.050 0.000 **

45 - - - 0.000 ** 0.053 0.000 ** - - - 0.000 ** 0.000 ** 0.000 **

60 - - - - 0.000 ** 0.060 - - - - 0.365 0.000 **

75 - - - - - 0.000 ** - - - - - 0.000 **

Innermost Hexagon Cells

Rotation 15 30 45 60 75 90 15 30 45 60 75 90

0 0.970 0.001 * 0.212 0.140 0.571 0.011 0.678 0.031 0.009 * 0.005 * 0.021 0.678

15 - 0.001 ** 0.186 0.054 0.427 0.007 * - 0.007 * 0.006 * 0.002 * 0.014 0.678

30 - - 0.000 ** 0.017 0.001 * 1.000 - - 0.001 ** 0.427 0.850 0.031

45 - - - 0.005 * 0.026 0.001 ** - - - 0.001 ** 0.001 ** 0.038

60 - - - - 0.162 0.140 - - - - 0.473 0.006 *

75 - - - - - 0.014 - - - - - 0.026

Square Cells

Square Cells

Square Cells

Square Cells
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Further, graph theory was used to visualise and parameterise the results of statistical tests. For every 
test-point, the seven scenarios were represented as nodes and unweighted vertices connect scenarios 
which are not significantly different from each other in that test-point. Two graph connectivity 
parameters were used to parameterise the similarity of scenarios, diameter (D) and gamma-index (Γ). 
Diameter (ranging from 1 to infinity) measures the shortest distance between the two most dissimilar 
scenarios in the graph. Meanwhile, gamma index (ranging from zero to one) compares the number of 
existing vertices to the number of potential vertices as a proportion and was used to measure how 
close the results were to perfect consistency. Lower diameter and higher gamma-index values indicate 
better performance. A model perfectly consistent across the seven scenarios would have a diameter 
and a gamma-index of 1 (Figure 5). 

 

 

Figure 5 – Graph of a perfectly robust model across seven scenarios 

 

Further, a weighted graph combines four unweighted graphs from different test-point locations for each 
model to provide combined measurements across the test-points. Weighted vertices connect scenarios 
not significantly different in at least one test-point. A vertex of weight 1 connects two scenarios similar 
across all four test-points. The weight increase by one for every test-point that the scenarios were found 
to be statistically different. Figure 6 provides graphical representations of the statistical tests. Thicker 
lines in the weighted graphs represent lower weight (higher connections) between scenarios. 

From the graphs, it can be observed that diameters of model with hexagonal cells were never higher 
than model with square cells. Further, hexagonal cells performed consistently better in all four test-
points for gamma index. In the outermost and outer-middle test-points, both cells failed to form a 
connected graph and therefore have infinite diameters. In the hexagon-based model, this was due to 
the dissimilarity of scenario 300 and 900 from any other scenarios while in the square-based model 
scenario 450 stood apart the remaining scenarios. Further, looking closely on the clusters formed, the 
hexagon-based model produced clusters which are perfectly connected within themselves, the 
subgraph formed by scenarios 00, 150, 450, 600 and 750 has a gamma index of 1.00 at the subgraph 
level. Meanwhile, the square cell model formed more and smaller clusters in the outer test-points (00, 
150 and 900 as one cluster and 300, 600, and 750 as another) and lacked within-cluster consistency in 
the outer-middle test-point. 

In the inner-middle test-point, the diameter of the square cell model remains infinite while the hexagon 
model’s diameter improves to five. The gamma index of hexagonal-celled model was worst in the inner-
middle but still outperformed the square-celled model. Both models performed best in the innermost 
test-point where for the first time the diameter of square-celled model dropped from infinity and its 
gamma index reached above 50%. In this test-point, the hexagonal-celled model matched the diameter 
at three and its gamma index was 67%.  
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Figure 6 – Graph representations of model consistency 

 

 



13 
 

The gamma index of model with hexagonal cells increased to 71% in the combination graph, 
outperforming the square cell by 4%. The diameter of the combined graph for hexagonal-celled model 
is lower by 3 points compared to that of the square-celled model. Further, if the definition of 
‘connectedness’ is made stricter so that two scenarios were declared similar if they were not 
significantly different in at least two test-points, the new diameter (D(2)) of the combined graph for 
square-celled model increased to infinity while the hexagonal-celled model retains the same diameter 
of 6. In this case, the new gamma indices (Γ(2)) for both models also suffer but more so for the square-
celled model. These results suggests that hexagon cells produce more consistent simulation results 
than square cells. 

Additionally, Figure 7 shows samples of resulting cell-populations from the simulation. A weakening of 
development along the axis between two urban centres can be examined in the rotated scenarios of 
both models but even more so in the model with square cells. This weakening is especially apparent in 
the 450 rotation of the square-celled model where cell population in the middle of the axis fell below 
300. This was due to the cell-shape-effect pulling development orthogonally, thus weakening the 
development along the urban centres axis. 

 

Figure 7 – Samples of simulation results 

Some levels of weakening was also observed in the hexagon-celled model but development levels 
never fell as low even in the 300 rotation scenario which supposedly was the weakest point of the 
hexagon-celled model. Furthermore, development in the axis within the hexagon-celled model 
strengthened again in the 450 rotation. The six-fold rotational axis of hexagons, compared to a four-fold 
one of squares, allows a shorter weakening-strengthening cycle which in turn earns hexagon-celled 
model a higher consistency level. 

 

 Conclusions 

This research represents one of the first studies to examine the use of both hexagonal and square cells 
in CA models with high socio-economic interpretation such as the urban system. The experiment used 
0.01 significance level, which reduced the probability of declaring the results of two scenarios 
significantly different compared to the more widely used 0.05 significance level. Despite this, 
inconsistencies across scenarios were still found, suggesting that CA models are sensitive to rotations 



14 
 

of features. In this regard, more inconsistencies were found in the model made up of square cells. While 
the difference of test-points’ potentials may be small across scenarios, as CA models simulate path-
dependence of urban development (Brown et al., 2005; Batty, 2007) its effect could be magnified. If 
enough activities are simulated as occuring in particular areas due to cell-shape effect rather than 
actual urban-dynamics, those activities could attract further development in the next iterations and the 
emerging pattern could be misleading. While, within the simulation presented in this paper such major 
differences were not observed, in a model formulation with higher emphasis on distance-effects, more 
substantial differences are likely to occur. 

This paper therefore support the theory that an urban CA model based on hexagonal cells is more 
robust than that based on square cells. In terms of simulation consistency, the hexagonal-celled model 
outperformed its square-celled counterpart across all test-points. There was no evidence to suggest 
that either model has higher positioning accuracy than the other does, therefore the higher consistency 
of hexagonal cells can be accounted to their homogenous neighbourhood layout.  

The advantages of hexagonal cells are well known in highly physical CA models such as models to 
predict forest fire (Iovine et al., 2005; Trunfio, 2004), debris flow (D’ambrosio et al., 2003) and chemical 
reaction-diffusion system (Adamantzky et al., 2006). However, except for a few early geographic 
automata system models (for example Bura et al., 1996; Sanders et al., 1997), the use of hexagonal 
cells in urban CA model has always been limited. Since then, hexagonal cells seem to have further 
fallen out of use even though there have been no studies to justify this decline. Of course, there would 
be cases where square-cells would be preferred such as in the simulation of cities designed on a square 
grid, although this would place particular importance on ensuring cells’ orientation matched the 
orientation of the grid. However, the use of square cells in urban CA literature is often the default and 
perhaps enforced by software capabilities rather than based on stronger justifications. This paper has 
presented evidence to suggest that the use of hexagonal cells should become the default choice for 
urban CA models instead, as this would provide a consistency advantage over the use of square cells 
in the majority of urban contexts. Therefore, urban researchers or practitioners employing the use of 
urban CA model need to seriously consider using hexagonal cells in their model, unless there is a clear 
indication that square cells are more appropriate for the urban area being modelled.  
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