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Abstract 

The surface warming response to carbon emission is dependent on feedbacks operating in both the 

physical climate and carbon cycle systems, with physical climate feedbacks quantified via linearly 

combinable climate feedback terms, climate in Wm-2K-1. However, land carbon feedbacks are often 

quantified using a two-parameter description, with separate cumulative carbon uptake responses to 

surface warming, L in PgC K-1, and rising atmospheric CO2 concentration, L in PgC ppm-1. 

Converting the L and L responses to an overall terrestrial carbon feedback parameter, carbon in Wm-

2K-1, has remained problematic, with carbon affected by significant non-linear interactions between 

carbon-climate and carbon-concentration responses and a non-linear relation between atmospheric 

CO2 and subsequent radiative forcing. This study presents new relationships quantifying how the 

overall steady state terrestrial carbon feedback to anthropogenic emission,carbon, is dependent on the 

terrestrial carbon responses to rising CO2 and temperature, L, and L, and the physical climate 

feedback, climate. Non-linear interactions between L and L responses to carbon emission are 

quantified via a three-parameter description of the land carbon sensitivities to rising CO2 and 

temperature. Numerical vegetation model output supports the new relationships, revealing an 

emerging sensitivity of land carbon feedback to climate feedback of ∂carbon/∂climate~0.3. The results 

highlight that terrestrial carbon feedback and physical climate feedback cannot be considered in 
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isolation: additional surface warming from stronger climate feedback is automatically compounded by 

reduced cooling from terrestrial carbon feedback, meanwhile around half the uncertainty in terrestrial 

carbon feedback originates from uncertainty in the physical climate feedback.  

Plain language summary 

The amount of surface warming caused by carbon emission is influenced by feedback processes 

operating in both the physical climate system and in the carbon cycle. Physical climate feedbacks 

include the responses of clouds, snow and ice cover, atmospheric water vapor and atmospheric lapse 

rate properties to surface warming. Each of these physical climate feedbacks affects how much 

warming is generated from a rise in atmospheric carbon dioxide. In contrast carbon cycle feedbacks 

work in a very different way: by affecting how much of the emitted carbon dioxide is taken up by the 

land and ocean systems, carbon cycle feedbacks affect how much atmospheric carbon dioxide rises in 

response to human carbon emission. Since they work in different ways, it has been difficult to directly 

compare the strengths of physical climate feedbacks with carbon cycle feedbacks. This study 

identifies a new way of quantifying steady state land carbon cycle feedbacks so that they are easily 

compared to physical climate feedbacks. A link is also found identifying how land carbon feedbacks 

remove less carbon dioxide from the atmosphere if physical climate feedbacks cause more warming. 

In this way, the land carbon feedback could increase additional warming from strong physical climate 

feedbacks. 

 

1. Introduction 

The surface warming response to anthropogenic carbon emission is dependent on feedbacks operating 

both in the physical climate system (e.g. Knutti et al., 2017) and in the biogeochemical cycling of 

carbon (e.g. Friedlingstein et al., 2006). Feedbacks operating in the physical climate system include 

the Planck, water vapor-lapse rate, cloud, and snow and sea-ice albedo feedbacks (e.g. IPCC, 2013). 

These individual feedbacks are quantified in terms of their climate feedback responses, 𝜆 in Wm-2 K-1, 

which are added together to find the total physical climate feedback, 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 in Wm-2K-1 (IPCC, 

2013; Knutti et al., 2017) 

 

The land carbon system responds to rising global temperatures and CO2 levels via a number of 

feedback mechanisms (e.g. Friedlingstein et al., 2006; IPCC, 2013). The Net Primary Productivity 

(NPP) of land ecosystems, removing CO2 from the atmosphere into the land system, is thought to 

increase with rising atmospheric CO2 levels through CO2 fertilisation (e.g. Alexandrov et al., 2003). 

NPP is also sensitive to global mean temperatures, including via NPP sensitivity to other factors that 

are themselves linked to changes in global temperature such as the hydrological cycle. The rate of 

microbial respiration of soil carbon, returning land carbon to the atmosphere, is thought to increase 

with global mean temperature due to increased metabolic rate (e.g. Friedlingstein et al., 2006). The 

strengths of all these sensitivities are highly uncertain globally (e.g. IPCC, 2013; Friedlingstein et al., 
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2006; Gregory et al., 2009; Arora et al., 2013), in part due to uncertainty in how other factors affect 

the land carbon system such as nutrient availability. Other land carbon feedback processes occur over 

long timescales, such as how permafrost thawing releases locked carbon to the atmosphere (e.g. 

Schuur et al 2015; MacDougall and Knutti, 2016).  

 

Carbon cycle feedbacks, excluding long timescale responses such as permafrost, are often quantified 

in terms of two sensitivity terms representing the land and ocean carbon cycle responses to rising 

atmospheric CO2 and temperature (e.g. Friedlingstein et al., 2006; Gregory et al., 2009; Arora et al., 

2013). For the land carbon cycle, the carbon-climate feedback expresses the sensitivity of cumulative 

land carbon uptake to rising global mean surface temperature, L in PgC K-1, while the carbon-

concentration feedback expresses the sensitivity of cumulative land carbon uptake to rising 

atmospheric CO2, L in PgC ppm-1 (e.g. Friedlingstein et al., 2006; Gregory et al., 2009; Arora et al., 

2013).  

 

There are difficulties in expressing the overall terrestrial carbon feedback to rising CO2 and 

temperature as a 𝜆𝑐𝑎𝑟𝑏𝑜𝑛  term in Wm-2K-1, such that terrestrial carbon feedbacks can be easily 

compared to and combined with physical climate feedbacks (e.g. Arora et al., 2013; Gregory et al., 

2009). Firstly, the carbon-climate and carbon-concentration feedbacks are interdependent, such that 

non-linear interactions altering the effective values of L and L significantly affect the terrestrial 

carbon response to a scenario with both rising CO2 and temperature (Arora et al., 2013; Gregory et al., 

2009). Secondly, L and L are known to be time-evolving and path dependent, such that their values 

at any given time depend on history of the temperature and CO2 (Arora et al., 2013). Thirdly, the land 

carbon-concentration and carbon-climate feedback terms, L and L, calculate the cumulative carbon 

uptake by the land system in PgC, and not the radiative forcing from the change in atmospheric CO2 

due to land carbon uptake in Wm-2. Gregory et al. (2009) convert L and L into a land carbon 

feedback in Wm-2K-1 by: 

(1) assuming that the carbon uptake by the land system causes an equal and opposite carbon loss by 

the atmosphere, and  

(2) assuming this carbon loss by the atmosphere (changing atmospheric CO2 in ppm) relates linearly 

to the carbon feedback impact on radiative forcing in Wm-2.  

 

However, neither of these assumptions holds when isolating the land carbon feedback. Firstly, 

although the carbon taken up by the land system does initially originate from the atmosphere, as 

atmospheric CO2 is being removed by the land system this inevitably leads to outgassing of CO2 from 

the ocean to the atmosphere across the air-sea interface through chemical exchange (e.g. Zeebe and 

Wolf-Gladrow, 2001). Therefore, the net reduction in atmospheric carbon due to land carbon uptake is 
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less than the amount of carbon taken up by the land because, due to the induced air-sea exchange, the 

carbon removed into the land originates from both the atmosphere and ocean (e.g. Goodwin et al., 

2008). Note that this effect does not impact the total land and ocean carbon feedback as analysed by 

Gregory et al. (2009), but only the extraction of the land component. Secondly, radiative forcing in 

Wm-2 is related approximately logarithmically to the change in atmospheric CO2 (Myhre et al., 2013), 

such that the same reduction in atmospheric carbon (in PgC or ppm) has approximately half the 

radiative forcing impact (in Wm-2) if background atmospheric CO2 is doubled. 

 

Goodwin et al. (2019) recently identified how the magnitudes of terrestrial carbon uptake and surface 

warming since the preindustrial can be used to calculate the overall land carbon feedback, 𝜆𝑐𝑎𝑟𝑏𝑜𝑛  in 

Wm-2K-1, finding 𝜆𝑐𝑎𝑟𝑏𝑜𝑛 = 0.31 ± 0.09 Wm-2K-1 for the present day based on observational 

reconstructions. However, it is not known how this single land carbon feedback term, 𝜆𝑐𝑎𝑟𝑏𝑜𝑛 , relates 

to the more established land carbon-climate, 𝛾𝐿 , and land carbon-concentration 𝛽𝐿, parameters that are 

typically evaluated in coupled model simulations (e.g. Friedlingstein et al., 2006; Gregory et al., 2009; 

Arora et al., 2013). 

 

This study identifies how the steady state terrestrial carbon feedback (𝜆𝑐𝑎𝑟𝑏𝑜𝑛  in Wm-2K-1) following 

anthropogenic carbon emission is related to the land carbon-climate, land carbon-concentration, and 

physical climate feedbacks (𝛾𝐿 , 𝛽𝐿 and 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 respectively). The relationships account for both the 

subsequent air-sea exchange of CO2 due to land carbon uptake, and the logarithmic relationship 

between atmospheric CO2 and radiative forcing. The link between 𝜆𝑐𝑎𝑟𝑏𝑜𝑛  and 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 is first 

explored for small perturbations, and then the impact of non-linear interactions between carbon-

climate and carbon-concentration responses are quantified, identifying a relationship for 𝜆𝑐𝑎𝑟𝑏𝑜𝑛  for 

large carbon emission perturbations. Using these new relationships for 𝜆𝑐𝑎𝑟𝑏𝑜𝑛  this study then shows 

how the amplification of anthropogenic warming due to terrestrial carbon feedback is dependent on 

both the Equilibrium Climate Sensitivity (ECS, in K) and carbon emission size, with more likelihood 

of warming amplification by the terrestrial carbon system when ECS and emission size are large. Note 

that this steady state analysis does not consider slow land carbon responses with centennial and 

millennial timescales, such as the permafrost carbon feedback (e.g. Schuur et al 2015; MacDougall 

and Knutti, 2016). 

 

2 Warming response in the absence of terrestrial carbon feedback 

A pulse of CO2 initially emitted into the atmosphere will eventually partition between the atmosphere, 

ocean and land systems. The total carbon emitted, 𝛿𝐼𝑒𝑚(𝑡) in PgC, will at any time t be equal to the 

sum of the increases in carbon inventories within the atmosphere, 𝛿𝐼𝑎𝑡𝑚(𝑡), ocean, 𝛿𝐼𝑜𝑐𝑒𝑎𝑛(𝑡), and 

land, 𝛿𝐼𝑙𝑎𝑛𝑑(𝑡), carbon systems, 
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𝛿𝐼𝑒𝑚(𝑡) = 𝛿𝐼𝑎𝑡𝑚(𝑡) + 𝛿𝐼𝑜𝑐𝑒𝑎𝑛(𝑡) + 𝛿𝐼𝑙𝑎𝑛𝑑 (𝑡) 

           (1) 

The question is, how will the partitioning of the carbon emission between the atmosphere, ocean and 

land systems evolve over time? First, consider an atmosphere-ocean only system at an initial steady 

state, with no carbon exchanges allowed with the land system such that 𝛿𝐼𝑙𝑎𝑛𝑑 = 0 in (1) over all time 

t. The atmosphere-ocean system is then perturbed by an instantaneous pulse of carbon emission at 

time t0, 𝛿𝐼𝑒𝑚. At the initial moment of the emission pulse all of the emitted carbon enters the 

atmosphere, and the increase in atmospheric carbon is therefore equal to the emission pulse size, 

𝛿𝐼𝑒𝑚(𝑡0) = 𝛿𝐼𝑎𝑡𝑚(𝑡0). Subsequently this rise in atmospheric CO2 inevitably leads to a flux of carbon 

into the ocean due to chemical exchange across the air-sea interface and the emitted carbon is now 

partitioned between the atmosphere and ocean, 𝐼𝑒𝑚(𝑡) = 𝛿𝐼𝑎𝑡𝑚(𝑡) + 𝛿𝐼𝑜𝑐𝑒𝑎𝑛(𝑡).  

 

Over many centuries, the system reaches a new steady state with the carbon emission partitioned 

between the atmosphere and ocean (Goodwin et al., 2007). Once CO2 crosses the air-sea interface, it 

combines with water and dissociates forming three chemical species (e.g. Zeebe and Wolf-Gladrow, 

2001) comprising Dissolved Inorganic Carbon (DIC): an uncharged form consisting of aqueous CO2 

and carbonic acid (CO2
*), a single-charged bicarbonate ion form (HCO3

-) and a double-charged 

carbonate ion form (CO3
2-). Air-sea exchange of CO2 is determined by the CO2

* component of DIC 

and, at the preindustrial chemical state, the approximate ratios of CO2
*:HCO3

-:CO3
2- are around 

1:100:10. However, as more CO2 dissolves in the ocean seawater becomes more acidic and the 

relative fraction of DIC composed of CO2
* increases while the relative fraction composed of CO3

2- 

decreases. 

 

Due to this non-linear response ocean carbonate chemistry, the fraction of the emitted carbon that 

remains in the atmosphere depends on the emission size: as more carbon is emitted the ocean becomes 

more acidic and less soluble to further CO2. With no land carbon response, the change in atmospheric 

CO2 over multi-century timescales, t=tcent, once the emitted carbon becomes chemically partitioned 

between the atmosphere and ocean, is related to the cumulative carbon added to the air-sea system 

through carbon emission, 𝛿𝐼𝑒𝑚 in PgC, via (Goodwin et al., 2007; 2008; 2009), 

𝛿ln 𝐼𝑎𝑡𝑚 = 𝛿ln CO2 = 𝛿𝐼𝑒𝑚 𝐼𝐵⁄  

            (2) 

using the notation 𝛿ln 𝑥 = ln(𝑥 + 𝛿𝑥) − ln 𝑥, and where 𝐼𝐵  is the preindustrial atmosphere-ocean 

buffered carbon inventory of around 3451±96 PgC in the Climate Model Intercomparison Project 

phase 5 (CMIP5) models evaluated in Williams et al. (2017). The buffered carbon inventory 𝐼𝐵  

represents the amount of CO2 and DIC that is capable of re-distributing between the atmosphere and 

ocean in the atmospheric CO2, ocean CO2
*  and ocean CO3

2- pools, and excludes the ocean DIC stored 
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in the HCO3
- pool: IB ≈ Iatm + V([CO2

*] + [CO3
2-]), where V is the volume of the ocean (Goodwin et 

al., 2009). Equation (2) holds for carbon emissions up to 𝛿𝐼𝑒𝑚~5000 PgC, because the value of IB 

can be assumed constant since the increases in Iatmos and V[CO2
*] as more carbon is emitted into the 

system are opposed by a decrease in V[CO3
2-] (Goodwin et al., 2007; 2009). The impacts of the 

CaCO3 system on atmospheric CO2 acting over multimillennial timescales (e.g. Archer, 2005; 

Goodwin and Ridgwell, 2010) are ignored in this study, which focusses on a century timescale 

response.  

 

The logarithmic term in equation (2) expresses the impact of non-linear ocean carbonate chemistry on 

the air-sea partitioning of carbon emitted into the air-sea system: the fraction of emitted carbon 

remaining in the atmosphere increases with the cumulative carbon emission size, while the fraction of 

emitted carbon taken up by the ocean decreases with emission size, due to the decreasing solubility of 

CO2 in seawater as the ocean becomes more acidic (see also e.g. Zeebe and Wolf-Gladrow, 2001). 

Thus, the nature of ocean carbonate chemistry implies that a constant sensitivity of ocean carbon 

uptake, Iocean, to atmospheric CO2, via either CO2 or Iatm, cannot be defined: the sensitivity is itself 

dependent on the atmospheric CO2 level. Therefore, this study refrains from attempting to define an 

ocean carbon-concentration feedback strength (e.g. see Friedlingstein et al., 2006), ocean, in units of 

PgC ocean uptake per unit ppm increase in atmospheric CO2. Instead, ocean carbonate chemistry is 

utilised to express the sensitivity of ocean carbon uptake to atmospheric CO2 via (2). Note that the 

non-linear ocean carbonate chemistry does not affect the ability to define a land carbon-concentration 

feedback, L. 

 

The rise in CO2 from carbon emission in (2) induces a radiative forcing (Myhre et al., 2013) which in 

turn induces a surface warming (Williams et al., 2012). The radiative forcing from the increase in CO2 

due to carbon emission, 𝛿𝑅𝐶𝑂2
𝑒𝑚 , is related to the increase in the log of atmospheric CO2, 𝛿𝑅𝐶𝑂2

𝑒𝑚  =

𝑎𝛿ln CO2, where 𝑎=5.35±0.27 Wm-2 is the CO2 radiative forcing coefficient (Myhre et al., 2013), 

making 𝛿𝑅𝐶𝑂2
𝑒𝑚  linearly related to carbon emission (2) (Goodwin et al., 2009).  This radiative forcing 

from carbon emission induces surface warming until the radiative forcing is balanced by an increase 

in outgoing radiation from elevated surface temperatures, 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒𝛿𝑇0 in Wm-2, via, 

 

𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒𝛿𝑇0 = 𝛿𝑅𝐶𝑂2
𝑒𝑚 = 𝑎𝛿ln CO2 =

𝑎

𝐼𝐵
𝛿𝐼𝑒𝑚  

            (3) 

where 𝛿𝑇0 is the steady state temperature change from carbon emission in the absence of terrestrial 

carbon response in K, and 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 is the climate feedback in Wm-2K-1. The climate feedback is 

formally defined as the sensitivity of Earth’s net radiation balance to changes in surface temperature, 

𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 = − 𝛿𝑅𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 𝛿𝑇⁄ , where 𝛿𝑅𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘  is the change in net downward energy flux at the 
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top of the atmosphere due to the change in global mean surface temperature, 𝛿𝑇. Note that the sign 

convention adopted here is such that 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 is positive, because a surface warming (𝛿𝑇 > 0) causes 

a net upward radiation flux (𝑅𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 < 0). The next section considers how this relationship 

between warming and emissions (3) is altered by the presence of a terrestrial carbon system for small 

perturbations. 

 

3. Impact of terrestrial carbon feedback for small perturbation 

Section 3.1 finds a relationship to calculate steady state 𝜆𝑐𝑎𝑟𝑏𝑜𝑛  following a small carbon emission, in 

terms of 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒, 𝛽𝐿 and 𝛾𝐿 . Section 3.2 tests this relationship using numerical model simulations. 

 

3.1 Theory 

Now consider an atmosphere-ocean-land system at an initial steady state then perturbed by a CO2 

emission, with no perturbations to other sources of radiative forcing. Once the system reaches a new 

steady state, the carbon emission will be partitioned between the atmosphere, ocean and land systems. 

The component of emitted carbon that remains in the atmosphere will increase atmospheric CO2 and 

induce a radiative forcing that causes a rise in surface temperatures.  

 

Terrestrial carbon storage, 𝐼𝑡𝑒𝑟  in PgC, is sensitive to changes in both atmospheric CO2 levels and 

climate, with global mean surface temperature commonly used to represent the level of climate 

change (e.g. Friedlingstein et al., 2006). At steady state, a small perturbation in terrestrial carbon 

storage, 𝛿𝐼𝑡𝑒𝑟 in PgC, is related to small perturbations in atmospheric CO2, 𝛿CO2 in ppm, and global 

mean surface temperature change, 𝛿𝑇 in K, via, 

 

𝛿𝐼𝑡𝑒𝑟 =
𝜕𝐼𝑡𝑒𝑟

𝜕CO2
|

𝑇

𝛿CO2 +
𝜕𝐼𝑡𝑒𝑟

𝜕𝑇
|
CO2

𝛿𝑇 = 𝛽𝐿𝛿CO2 + 𝛾𝐿𝛿𝑇 

            (4) 

  

The empirically determined carbon-concentration feedback, 𝛽𝐿 =
𝜕𝐼𝑡𝑒𝑟

𝜕CO2
|

𝑇
 in PgC ppm-1, and carbon-

climate feedback, 𝛾𝐿 =
𝜕𝐼𝑡𝑒𝑟

𝜕𝑇
|
CO2

  in PgC K-1, represent the cumulative terrestrial carbon uptake 

sensitivities to atmospheric CO2 (at constant preindustrial temperature) and global mean surface 

warming (at constant preindustrial CO2) respectively, following the framework set out in 

Friedlingstein et al. (2006). Note that 𝛽𝐿 may change with background temperature and 𝛾𝐿  may 

change with background CO2, leading to significant non-linearities between the carbon-climate and 

carbon-concentration feedbacks (Gregory et al., 2009; Arora et al., 2013). Therefore, (4) is only 

strictly applicable to small perturbations. 
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Relative to the case in the absence of terrestrial carbon feedback (eqns. 2, 3), this change in terrestrial 

carbon storage (4) will alter the steady state rise in atmospheric CO2 (1), and so also alter the radiative 

forcing from atmospheric CO2 and the global mean surface warming (3).  For a hypothetical 

atmosphere-land only system, with no coupled ocean, an increase in land carbon storage would cause 

and equal and opposite decrease in atmospheric carbon storage. However, for a coupled atmosphere-

ocean-land carbon system, an increase in land carbon storage leads to, and is balanced by the sum of, 

decreases in both the atmosphere and ocean carbon storage. Initially, the additional carbon stored in 

the land system comes from the atmosphere, but over time this decrease in atmospheric CO2 then 

causes an inevitable ocean outgassing due to air-sea chemical exchange. By similarity to equation (2), 

we find that the change in atmospheric CO2 over multi-century timescales due to an initial uptake of 

carbon by the terrestrial system, after accounting for subsequent air-sea gas exchange, is given by 

(Goodwin et al., 2008), 

 

𝛿 ln 𝐼𝑎𝑡𝑚𝑜𝑠 = 𝛿 ln CO2 = −𝛿𝐼𝑡𝑒𝑟 𝐼𝐵⁄  

            (5) 

where the carbon added to the air-sea system in (2) due to emission, 𝛿𝐼𝑒𝑚, is replaced here by the 

carbon added to the air-sea system by terrestrial carbon uptake, −𝛿𝐼𝑡𝑒𝑟 , noting the minus sign arises 

because an increase in terrestrial carbon storage removes carbon from the air-sea system.  

 

When terrestrial carbon uptake is considered in the context of a coupled atmosphere-ocean-land 

carbon system peterbed by anthropogenic carbon emission, the atmosphere-ocean relationship for the 

total log CO2 change at steady state, eq. (2), is modified to contain an additional term representing 

how the total carbon added to the air-sea system now has contributions from both carbon emission, 

𝛿𝐼𝑒𝑚 , and terrestrial carbon uptake, −𝛿𝐼𝑡𝑒𝑟 , (Goodwin et al., 2007; 2008; 2009; 2015), giving, 

 

𝛿 ln 𝐼𝑎𝑡𝑚𝑜𝑠 = 𝛿 ln CO2 =
𝛿𝐼𝑒𝑚

𝐼𝐵
−

𝛿𝐼𝑡𝑒𝑟

𝐼𝐵
 

            (6) 

This relationship calculates the long-term atmospheric CO2 change in response to carbon emission 

and terrestrial carbon uptake, accounting for the inevitable air-sea gas exchange over many centuries 

through the IB terms.  

 

Considering (5) and (6), the total radiative forcing from CO2, 𝛿𝑅𝐶𝑂2 = 𝑎𝛿 ln CO2, now has 

components from carbon emission, 𝛿𝑅𝐶𝑂2
𝑒𝑚 = (𝑎 𝐼𝐵⁄ )𝛿𝐼𝑒𝑚 : eq. (3), and from terrestrial carbon 

response to rising CO2 and temperature, 𝛿𝑅𝐶𝑂2
𝑡𝑒𝑟 = −(𝑎 𝐼𝐵⁄ )𝛿𝐼𝑡𝑒𝑟 , via (Goodwin et al., 2008; 2009; 

2015) 
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𝛿𝑅𝐶𝑂2 = 𝛿𝑅𝐶𝑂2
𝑒𝑚 + 𝛿𝑅𝐶𝑂2

𝑡𝑒𝑟 =
𝑎

𝐼𝐵
𝛿𝐼𝑒𝑚 −

𝑎

𝐼𝐵
𝛿𝐼𝑡𝑒𝑟  

            (7) 

where 𝛿𝑅𝐶𝑂2
𝑡𝑒𝑟  represents radiative forcing from the terrestrial carbon feedback accounting for both 

terrestrial carbon uptake and the subsequent air-sea gas exchange.  

 

The rise in surface temperature from carbon emission in the presence of terrestrial carbon uptake, 𝛿𝑇 

in K, is then given by this total radiative forcing accounting for both the emissions and terrestrial 

carbon response, noting the identity 𝛿 ln 𝑥 = 𝛿𝑥/𝑥, 

 

𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒𝛿𝑇 = 𝛿𝑅𝐶𝑂2 = 𝑎𝛿lnCO2 =
𝑎

CO2
𝛿CO2 

            (8) 

 

The climate feedback may be considered in terms of the change in Earth’s radiation balance from 

physical climate system induced changes per unit increase in surface temperature: 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 =

− 𝛿𝑅𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 𝛿𝑇⁄ . By similarity, we may define the terrestrial carbon feedback in terms of the change 

in Earth’s energy balance from terrestrial carbon system induced changes in atmospheric CO2 per unit 

surface warming (Goodwin et al., 2019): 𝜆𝑐𝑎𝑟𝑏𝑜𝑛 = − 𝛿𝑅𝐶𝑂2
𝑡𝑒𝑟 𝛿𝑇⁄  in Wm-2K-1.  

 

Substituting 𝛿CO2 = (𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒CO2 𝑎⁄ )𝛿𝑇 from (8) into (4), reveals  𝛿𝐼𝑡𝑒𝑟 = 𝛽𝐿(𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒CO2 𝑎⁄ )𝛿𝑇 +

𝛾𝐿𝛿𝑇 and then dividing both sides by 𝛿𝑇 gives 𝛿𝐼𝑡𝑒𝑟 𝛿𝑇⁄ = 𝛽𝐿(𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒CO2 𝑎⁄ ) + 𝛾𝐿. Finally, 

multiplying both sides by 𝑎 𝐼𝐵⁄ , to express 𝛿𝐼𝑡𝑒𝑟  in terms of 𝛿𝑅𝐶𝑂2
𝑡𝑒𝑟  using (7), 𝛿𝑅𝐶𝑂2

𝑡𝑒𝑟 = −(𝑎 𝐼𝐵⁄ )𝛿𝐼𝑡𝑒𝑟 , 

reveals how steady state terrestrial carbon feedback, 𝜆𝑐𝑎𝑟𝑏𝑜𝑛 , is related to 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒, 𝛽𝐿 and 𝛾𝐿 , 

 

𝜆𝑐𝑎𝑟𝑏𝑜𝑛 = −
𝛿𝑅𝐶𝑂2

𝑡𝑒𝑟

𝛿𝑇
=

𝑎

𝐼𝐵

𝛿𝐼𝑡𝑒𝑟

𝛿𝑇
=

CO2

𝐼𝐵
𝛽𝐿𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 +

𝑎

𝐼𝐵
𝛾𝐿  

            (9) 

This relationship (9) solves for the terrestrial carbon feedback following carbon emission once 

atmosphere-ocean-land carbon partitioning has reached a steady state, and temperatures have 

stabilized with respect to the elevated atmospheric CO2. Equation (9) predicts that, for given land 

carbon-concentration and carbon-climate responses to an infinitesimal carbon emission, the carbon 

feedback,  𝜆𝐶𝑎𝑟𝑏𝑜𝑛 = − 𝛿𝑅𝐶𝑂2
𝑡𝑒𝑟 𝛿𝑇⁄ , is linearly related to climate feedback, 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒. Using the mean 

and standard deviation values of 𝛽𝐿 (0.92±0.44 PgC ppm-1) and 𝛾𝐿  (-58.4±28.5 PgC K-1), from the 

CMIP5 models evaluated by Arora et al. (2013) following a 4×CO2 experiment, eq. (9) predicts: 

𝜆𝑐𝑎𝑟𝑏𝑜𝑛 = (0.30 ± 0.14)𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 + (−0.09 ± 0.04), assuming normal error propagation and 

adopting 𝐼𝐵 = 3451 ± 96 PgC, 𝑎 = 5.35 ± 0.27 Wm-2, and CO2=1120 ppm.  
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Diagnosing 𝜆𝑐𝑎𝑟𝑏𝑜𝑛  from land carbon uptake, 𝛿𝐼𝑡𝑒𝑟, and surface warming, 𝛿𝑇, using eq. (9) rests on 

two assumptions: the use of the buffered carbon inventory IB to calculate 𝛿lnCO2, and the use of the 

radiative forcing coefficient, 𝑎, to calculate the radiative forcing from 𝛿lnCO2. The discrepancy in 

𝛿ln CO2 as predicted using IB via eqns. (2) or (6) remains under 3% for carbon perturbation up to the 

approximate magnitude of the entire land carbon reservoir,  𝛿𝐼𝑡𝑒𝑟~2000 PgC, when compared to 

multi-century numerical simulations with explicit representations of ocean carbonate chemistry 

(Goodwin et al., 2007). Once partitioned between the atmosphere and ocean, a 𝛿𝐼𝑡𝑒𝑟~2000 PgC 

magnitude perturbation would change atmospheric CO2 by around  𝛿lnCO2~ 2000 𝐼𝐵⁄ ~0.6. The 

discrepancy in 𝛿𝑅𝐶𝑂2 when using 𝛿𝑅𝐶𝑂2 = 𝑎𝛿lnCO2, with 𝑎 = 5.35 Wm-2, is around 5% when 

compared to calculations containing second order terms (𝛿𝑅𝐶𝑂2 = 5.32𝛿lnCO2 +

0.26[𝛿lnCO2]2: Byrne and Goldblatt, 2014). Thus, the two assumptions in equation (9) are valid for 

plausible magnitude land carbon perturbations. 

 

Utilizing (9) and (7) in (8) then relates steady state surface warming to cumulative carbon emission in 

the presence of terrestrial carbon responses to rising CO2 and temperature, 

(𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 + 𝜆𝑐𝑎𝑟𝑏𝑜𝑛)𝛿𝑇 = 𝛿𝑅𝐶𝑂2
𝑒𝑚 =

𝑎

𝐼𝐵
𝛿𝐼𝑒𝑚 

            (10) 

Inspecting equation (10) shows that 𝜆𝑐𝑎𝑟𝑏𝑜𝑛  is directly comparable to, and linearly combinable with, 

physical climate feedbacks evaluated in Wm-2K-1 such as the water vapor-lapse rate and cloud 

feedbacks that make up 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 (Knutti et al., 2017; IPCC, 2013). 

 

3.2 Comparison of theory to numerical model output 

This section tests the prediction from (9) that 𝜆𝑐𝑎𝑟𝑏𝑜𝑛  is linearly related to 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 under a fixed CO2 

perturbation using numerical Dynamic Global Vegetation Model (DGVM) output from Pugh et al. 

(2018) and output from an efficient Earth system model (Goodwin, 2016; 2018). 

 

3.2.1 Descriptions of model output 

Pugh et al. (2018) integrate a single DGVM (the TRIFFID model) to steady state with the same CO2 

perturbation (from preindustrial to ~850 ppm), but with 22 different climatic responses to that CO2 

perturbation (Pugh et al., 2018: the ‘climate’ ensemble therein). The steady state cumulative carbon 

uptake for each of the 22 DGVM simulations, Iter, shows a general increasing trend with the 

effective value of 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 (Fig. 1a, black dots), where 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 is diagnosed here from the model 

temperature response to CO2 using a=5.35 Wm-2: 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 = 𝑎Δ ln CO2/Δ𝑇. 
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Separately, an ensemble of 6270 observation-constrained simulations of the efficient Warming 

Acidification and Sea level Projector (WASP) Earth system model (Appendix A: Goodwin, 2016; 

2018; Goodwin et al., 2019) are integrated to steady state following a 1-year increase in CO2 from 

280ppm to 850 ppm. The ensemble of 6270 simulations are generated from the Monte Carlo 

combined with history matching approach set out in Goodwin et al. (2018), using the WASP model 

configuration of Goodwin (2018). In this configuration the value of 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 is allowed to vary over 

multiple response timescales linked to the different timescales of climate feedback processes 

(Goodwin, 2018). For example, there is an instantaneous contribution to 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 from the Planck 

feedback, while contributions from the fast cloud response and water vapor-lapse rate response occur 

over order 10 days linked to the residence time of water vapor in the atmosphere, and contributions to 

𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 from the way that changes in sea surface warming pattern alter the cloud response occur over 

decades.  

 

The Monte Carlo combined with history matching method generates 6270 observation-consistent 

simulations in the following way. First, an initial ensemble of 10 million simulations is generated with 

varying model parameter values, using the parameter input distributions of Goodwin (2018). The 

model parameters for climate feedback from different processes are varied to span the ranges 

evaluated in CMIP5 models (Goodwin, 2018). Also, the initial ensemble sensitivities of terrestrial Net 

Primary Productivity (NPP) and soil carbon residence time to global temperature and CO2 are varied 

to span the range of sensitivities seen the in the C4MIP models analysed by Freidlingstein et al. (2006 

– see Fig. 3 therein). These 10 million initial simulations are integrated from preindustrial to present 

day and evaluated for observational consistency against observational reconstructions of surface 

warming (IPCC, 2013; Morice et al., 2012; Hansen et al., 2012; Smith et al., 2008; Vose et al., 2012), 

ocean heat content (Levitus et al., 2012; Giese and Ray, 2011; Balmaseda et al., 2013; Good et al., 

2013; Smith et al., 2015; Cheng et al., 2017) and ocean and terrestrial carbon uptake (IPCC, 2013; le 

Quéré et al., 2018) after Goodwin et al (2018). The observation consistency test of Goodwin (2018 – 

see Table 2 therein) is applied, adapted here after Goodwin et al. (2019) with an updated cumulative 

terrestrial carbon uptake constraint based on the Global Carbon Budget analysis (le Quéré et al., 2018) 

(Appendix A).  

 

A total of 6273 simulations pass the updated observation-consistency test. Three of these simulations 

are excluded as non-physical, since their values of 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 become negative on long timescales, 

leaving a final ensemble of 6270 observation-consistent simulations (Goodwin et al., 2019). This final 

ensemble therefore contains ranges of terrestrial carbon sensitivities to temperature and CO2 that 

agree with both the analysed sensitivities of the C4MIP models (Friedlingstein et al., 2006) and 

observational reconstructions of cumulative carbon uptake (le Quéré et al. 2018).  
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Each of the 6270 observation-consistent ensemble members are reinitialised to preindustrial 

conditions, and forced with a 1-year step function increase in CO2 from 280 ppm to 850 ppm. Each 

ensemble member is then integrated for 500 years to reach a new steady state, without any imposed 

noise in the surface temperature. The values of Iter and 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 in the efficient model simulations are 

diagnosed at the end of the 500-year simulations to represent the new steady state reached. The 

observation-consistent ensemble of efficient model simulations shows a similar increasing trend in 

steady state Iter at high 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 (Fig. 1a, blue transparent dots) to the DGVM simulations (Fig. 1a, 

black dots), but with greater variation reflecting the greater extent of parameter space explored.  

 

3.2.2 Results from model output 

Next, for the 22 DGVM and 6270 efficient model simulations, 𝜆𝑐𝑎𝑟𝑏𝑜𝑛  is calculated from Iter and T 

using eq. (9): 𝜆𝑐𝑎𝑟𝑏𝑜𝑛 = − 𝛿𝑅𝐶𝑂2
𝑡𝑒𝑟 𝛿𝑇⁄ = (𝑎𝛿𝐼𝑡𝑒𝑟) (𝐼𝐵𝛿𝑇)⁄  (Appendix A). The emergent linear link 

between steady state carbon feedback and climate feedback predicted from theory (eq. 9) is identified 

on both the DGVM ensemble (Fig. 1b, black) and an efficient model ensemble (Fig. 1, blue). In the 

DGVM simulations, with identical carbon cycle configurations, over 90% of the variance in 𝜆𝑐𝑎𝑟𝑏𝑜𝑛  

is explained by the variation in 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 (Fig. 2b, black: R2=0.96). The efficient model ensemble 

contain variation in the carbon cycle model parameter values (Goodwin, 2018), and so will have 

variation in the effective values of 𝛽𝐿 and 𝛾𝐿  between ensemble members. Despite this variation, 

around half of the variance in 𝜆𝑐𝑎𝑟𝑏𝑜𝑛  is explained by the variation in 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 (Fig. 2b, blue: 

R2=0.49). This demonstrates the robustness of the emergent link identified between terrestrial carbon 

and physical climate feedback, 𝜆𝑐𝑎𝑟𝑏𝑜𝑛  and 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 (eq. 9). The sensitivity of 𝜆𝑐𝑎𝑟𝑏𝑜𝑛  to 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 of 

~0.3 in the DGVM and efficient model ensembles (Fig. 1b) is consistent with the sensitivity predicted 

using eq. (9) for the CMIP5 model values of 𝛽𝐿 and 𝛾𝐿 . Note that the analysis here is for steady state 

𝜆𝑐𝑎𝑟𝑏𝑜𝑛 , but that for transient cases 𝜆𝑐𝑎𝑟𝑏𝑜𝑛  will vary over time as 𝛿𝐼𝑡𝑒𝑟 and 𝛿𝑇 vary (Goodwin et al, 

2019). 

 

4. Impact of terrestrial carbon feedback for large perturbation 

Non-linear terms will affect the terrestrial carbon uptake response for large emission sizes, leading to 

errors when applying 𝛽𝐿 and 𝛾𝐿  using eq. (4) (e.g. Arora et al., 2013; Gregory et al., 2009). The 

question is, how will carbon feedback, 𝜆𝑐𝑎𝑟𝑏𝑜𝑛 , alter for large emission perturbations due to these 

non-linear terms compared with the expected value for small perturbations, eq. (9)? 

 

Here, instead of representing the sensitivity of the terrestrial carbon cycle to rising CO2 and 

temperature via the carbon climate and carbon CO2 feedback parameters, 𝛽𝐿 =
𝜕𝐼𝑡𝑒𝑟

𝜕CO2
|

𝑇
  and 𝛾𝐿 =

𝜕𝐼𝑡𝑒𝑟

𝜕𝑇
|
CO2

  respectively, the terrestrial carbon system is characterized in terms of empirical feedback 



 

 
©2019 American Geophysical Union. All rights reserved. 

parameters for aspects of the carbon system that allow non-linear interactions between carbon cycle 

responses to temperature and CO2 to be considered. 

 

First, consider a simple two box representation of the terrestrial carbon cycle coupled to an 

atmosphere (Fig. 2), where the total terrestrial carbon storage, 𝐼𝑡𝑒𝑟 , is the sum of the soil carbon 

reservoir, 𝐼𝑠𝑜𝑖𝑙  in PgC, and the vegetation carbon reservoir, 𝐼𝑣𝑒𝑔 in PgC: 𝐼𝑡𝑒𝑟 = 𝐼𝑣𝑒𝑔 + 𝐼𝑠𝑜𝑖𝑙. The 

vegetation carbon pool has an incoming carbon flux from the atmosphere due to Net Primary 

Productivity (NPP), 𝐹𝑁𝑃𝑃  in PgC yr-1. There is then a flux from the vegetation carbon pool into the 

soil carbon pool due to leaf litter, Fleaflitter in PgC yr-1, and a flux from the soil carbon pool into the 

atmosphere due to soil carbon respiration, Frespiration in PgC yr-1 (Fig. 2). At steady state the leaf litter 

and soil carbon respiration carbon fluxes must equal NPP, 𝐹𝑁𝑃𝑃 = 𝐹𝐿𝑒𝑎𝑓𝑙𝑖𝑡𝑡𝑒𝑟 = 𝐹𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 , and note 

that a subscript 0 is used to denote the value of a quantity at the initial steady state (Fig. 2). 

 

Next, consider the carbon fluxes in the terrestrial carbon system to be sensitive to atmospheric CO2 

and temperature via the following parameters (Fig. 2): 

(1) A dimensionless CO2 fertilization coefficient (Alexandrov et al., 2003) representing the fractional 

change in NPP flux per unit log change in CO2, 𝛽𝐶𝑂2, such that at constant temperature 𝐹𝑁𝑃𝑃  = 

𝐹𝑁𝑃𝑃,0(1 + 𝛽𝐶𝑂2δ ln CO2); 

(2) A coefficient representing the fractional change in NPP per unit change in global mean surface 

temperature, 𝑐𝑁𝑃𝑃  in K-1, such that at constant CO2 𝐹𝑁𝑃𝑃  = 𝐹𝑁𝑃𝑃,0(1 + 𝑐𝑁𝑃𝑃δ𝑇); and 

(3) A coefficient representing the fractional change in soil carbon residence time, 𝜏𝑠𝑜𝑖𝑙 in yr, per unit 

change in global mean surface temperature, 𝑐𝑠𝑜𝑖𝑙 in K-1, such that 𝜏𝑠𝑜𝑖𝑙 = 𝜏𝑠𝑜𝑖𝑙,0(1 + 𝑐𝑠𝑜𝑖𝑙δ𝑇) where 

𝐹𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 = 𝐼𝑠𝑜𝑖𝑙 𝜏𝑠𝑜𝑖𝑙⁄ . 

 

Adopting this representation for the CO2 and T dependences of carbon fluxes within the land carbon 

system (Fig. 2) allows the steady state terrestrial carbon storage be expressed in terms of the log CO2 

and warming perturbations, δ ln CO2 and δ𝑇, the initial NPP, FNPP,0, and the initial residence 

timescales of carbon in the vegetation and soil carbon pools, 𝜏𝑣𝑒𝑔,0 and 𝜏𝑠𝑜𝑖𝑙,0 respectively, via 

(Appendix B) 

 

𝐼𝑡𝑒𝑟 = 𝐹𝑁𝑃𝑃,0(1 + 𝛽𝐶𝑂2δ ln CO2)(1 + 𝑐𝑁𝑃𝑃δ𝑇)(𝜏𝑣𝑒𝑔,0 + 𝜏𝑠𝑜𝑖𝑙,0[1 + 𝑐𝑠𝑜𝑖𝑙 δ𝑇]) 

            (11) 

Note that this equation (11) solves for the steady state terrestrial carbon storage, 𝐼𝑡𝑒𝑟 , for defined 

values of CO2 and T, and so time-dependencies are not shown. However, if the terrestrial carbon 

reservoir responds more quickly than slowly evolving changes in temperature or CO2, then (11) still 

applies and the terms in  𝐼𝑡𝑒𝑟 , δ ln CO2 and δ𝑇 can be considered time-dependent. 
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Substituting steady state relationships for δ ln CO2 = (𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒CO2 𝑎⁄ )δ𝑇 and 𝜆𝑐𝑎𝑟𝑏𝑜𝑛 =

− 𝛿𝑅𝐶𝑂2
𝑡𝑒𝑟 𝛿𝑇⁄ = (𝑎𝛿𝐼𝑡𝑒𝑟) (𝐼𝐵𝛿𝑇)⁄ , from (8) and (9) respectively, into eq. (11) results in a second-order 

polynomial equation for 𝜆𝑐𝑎𝑟𝑏𝑜𝑛  in 𝛿𝑇 (Appendix B), 

 

𝜆𝑐𝑎𝑟𝑏𝑜𝑛 = (𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒

𝐼𝑡𝑒𝑟,0

𝐼𝐵
𝛽𝐶𝑂2 + 𝑎

𝐼𝑡𝑒𝑟,0

𝐼𝐵
𝑐𝑁𝑃𝑃 + 𝑎

𝐼𝑠𝑜𝑖𝑙,0

𝐼𝐵
𝑐𝑠𝑜𝑖𝑙)

+ (𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒

𝐼𝑡𝑒𝑟,0

𝐼𝐵
𝛽𝐶𝑂2𝑐𝑁𝑃𝑃 + 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒

𝐼𝑠𝑜𝑖𝑙,0

𝐼𝐵
𝛽𝐶𝑂2𝑐𝑠𝑜𝑖𝑙 + 𝑎

𝐼𝑠𝑜𝑖𝑙,0

𝐼𝐵
𝑐𝑁𝑃𝑃𝑐𝑠𝑜𝑖𝑙) δ𝑇

+ (𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒

𝐼𝑠𝑜𝑖𝑙,0

𝐼𝐵
𝛽

𝐶𝑂2
𝑐𝑁𝑃𝑃𝑐𝑠𝑜𝑖𝑙) δ𝑇2 

            (12) 

This relationship for steady state terrestrial carbon feedback, 𝜆𝑐𝑎𝑟𝑏𝑜𝑛 , preserves non-linear 

interactions between carbon-concentration and carbon-temperature responses, eq. (12). It is noted that 

additional non-linearities affecting 𝜆𝑐𝑎𝑟𝑏𝑜𝑛  may exist that are not captured in (12), if the values of the 

coefficients 𝛽𝐶𝑂2, 𝑐𝑁𝑃𝑃  and 𝑐𝑠𝑜𝑖𝑙  change with perturbation size.  

 

By inspecting the leading order terms in (12), and comparing to (9), we can express the carbon-

concentration and carbon-climate feedbacks in terms of the alternative carbon-system parameters, 

𝛽𝐶𝑂2, 𝑐𝑁𝑃𝑃  and 𝑐𝑠𝑜𝑖𝑙: 𝛽𝐿 ≈
𝐼𝑡𝑒𝑟,0

CO2
𝛽𝐶𝑂2 and 𝛾𝐿  ≈ 𝐼𝑡𝑒𝑟,0𝑐𝑁𝑃𝑃 + 𝐼𝑠𝑜𝑖𝑙,0𝑐𝑠𝑜𝑖𝑙. 

 

In eq. (12) the term in δ𝑇 is much larger than the term in δ𝑇2 for reasonable temperature changes and 

parameter values. Therefore, the sensitivity of 𝜆𝑐𝑎𝑟𝑏𝑜𝑛  to surface warming, at constant 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒, from 

the non-linear interactions between terrestrial carbon-climate and carbon-concentration responses 

simplifies to, 

 

𝜕𝜆𝑐𝑎𝑟𝑏𝑜𝑛

𝜕𝑇
|

𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒

≈ 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒

𝐼𝑡𝑒𝑟,0

𝐼𝐵
𝛽𝐶𝑂2𝑐𝑁𝑃𝑃 + 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒

𝐼𝑠𝑜𝑖𝑙,0

𝐼𝐵
𝛽𝐶𝑂2𝑐𝑠𝑜𝑖𝑙 + 𝑎

𝐼𝑠𝑜𝑖𝑙,0

𝐼𝐵
𝑐𝑁𝑃𝑃𝑐𝑠𝑜𝑖𝑙 

            (13) 

Noting that 𝑐𝑠𝑜𝑖𝑙 and 𝑐𝑁𝑃𝑃  are likely negative (see Friedlingstein et al., 2006 - figure 3 therein), eq. 

(13) therefore predicts that there will be a near-linear decrease in 𝜆𝐶𝑎𝑟𝑏𝑜𝑛  as the perturbation in δ𝑇 is 

increased for a given value of 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒. Example carbon sensitivity values suggests a linear reduction 

in 𝜆𝑐𝑎𝑟𝑏𝑜𝑛  with increasing temperature anomaly of order 𝜕𝜆𝑐𝑎𝑟𝑏𝑜𝑛 𝜕𝑇⁄ ~ − 0.015 Wm-2K-2: using 

𝛽𝐶𝑂2~0.45, 𝑐𝑁𝑃𝑃~ − 0.04 K-1 and 𝑐𝑠𝑜𝑖𝑙 ~ − 0.02 K-1 (each within the range of the Earth system 

models analyzed in Friedlingstein et al., 2006 – figure 3 therein), along with 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 = 1.2 Wm-2K-1, 

𝑎 =5.35 Wm-2 (Myhre et al., 2013), 𝐼𝐵=3451 PgC (Williams et al., 2017), 𝐼𝑡𝑒𝑟,0=2000PgC, and 

𝐼𝑠𝑜𝑖𝑙,0=1500PgC. Note that a positive 𝜆𝑐𝑎𝑟𝑏𝑜𝑛  implies that terrestrial carbon feedback is negative, 
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reducing surface warming, and so from (13) terrestrial carbon feedback is expected to become a less 

negative feedback (or even a positive feedback) with increasing temperature anomaly. 

 

4.2 Comparison of theory to numerical model output 

This section tests the prediction from (13), that 𝜆𝑐𝑎𝑟𝑏𝑜𝑛  linearly reduces with perturbation size δ𝑇 for 

a given value of 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒, using published numerical DGVM output (Pugh et al., 2018) and output 

from the observation-consistent ensemble of 6270 efficient Earth system model (Goodwin et al., 

2016; 2018) simulations (Fig. 3).  

 

4.2.1 Descriptions of model output 

Pugh et al. (2018) integrate multiple DVGMs to steady state under CO2 forced climate scenarios with 

warming of T = 1, 2, 3, 4, and 5 K (Pugh et al., 2018 – ‘DGVM ensemble’ therein, using HYLAND, 

SDGVM, ORCHIDEE, TRIFFID, LPJ models), and also integrate a DGVM within a coupled Earth 

system model at multiple CO2 forcing scenarios achieving different levels of warming (the 

HadCM3LC simulations in Pugh et al., 2018). In these DVGM simulations (Pugh et al., 2018), the 

magnitude of steady state cumulative land carbon uptake, Iter, initially increases with T for CO2 

only forcing (Fig. 3a, dots, diamonds and dashed lines). However, the rate of increase in Iter per unit 

additional surface warming reduces for all DVGMs, with some models showing a rate of decrease per 

unit additional warming as total warming nears 5K (Fig. 3a). 

 

The 6270 efficient WASP model simulations are re-initialized to a preindustrial steady state and 

perturbed this time with carbon emissions scenarios that interactively restores atmospheric CO2 to 

produce a range of specified surface warming targets, of T = 1, 2, 3, 4, and 5 K (for description of 

the restoring method used in the WASP model see Nichols et al., 2018). Again, the simulations are 

integrated without imposed noise in the surface temperature (Goodwin, 2018). For each warming 

target, all 6270 simulations are integrated for 500 years until a new steady state is reached. Global 

mean surface temperature anomaly is stabilized to within ±0.02 K of the desired target in at least 99% 

of the 6270 simulations. This efficient model ensemble shows a similar pattern of change in steady 

state Iter with increasing steady state T to the DVGMs (Fig 3a, compare blue solid line and shading 

to black and color dots, grey diamonds and associated dashed lines):  

 

4.2.2 Results from model output 

Terrestrial carbon feedback, 𝜆𝑐𝑎𝑟𝑏𝑜𝑛 , is diagnosed from the model output (Fig. 3a) using 𝜆𝑐𝑎𝑟𝑏𝑜𝑛 =

− 𝛿𝑅𝐶𝑂2
𝑡𝑒𝑟 𝛿𝑇⁄ = (𝑎𝛿𝐼𝑡𝑒𝑟) (𝐼𝐵𝛿𝑇)⁄ , where 𝑎=5.35 Wm-2 (Myhre et al., 2013) and 𝐼𝐵=3451 PgC 

(Williams et al., 2017) is assumed for the DGVMs (Fig. 3b, dots, diamonds and dashed lines) and 𝑎 

and 𝐼𝐵  are individually assessed for each WASP ensemble member (Fig. 3b, blue solid line and 
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shading). This reveals a near-linear decrease in 𝜆𝑐𝑎𝑟𝑏𝑜𝑛  with T for both DGVM simulations and the 

efficient model ensemble (Fig. 3b), in agreement with the prediction made from eq. (13). The 

sensitivity of terrestrial carbon feedback to surface temperature lies in the range 𝜕𝜆𝑐𝑎𝑟𝑏𝑜𝑛 𝜕𝑇⁄ ~-0.01 

to -0.07 Wm-2K-2 for the DGVMs and most of the efficient model ensemble (Fig. 3c), with a small 

number of efficient model simulations showing a small positive sensitivity (Fig. 3c, blue solid line 

and shading).  

 

The reduction in 𝜆𝑐𝑎𝑟𝑏𝑜𝑛  for larger perturbations in 𝛿𝑇 in the DGVM and efficient model simulations 

(Fig. 3) shows that the non-linear interactions between carbon-climate and carbon-concentration 

feedbacks (eq. 9) are significant for large carbon emissions, in agreement with previous studies (e.g. 

Arora et al., 2013; Gregory et al., 2009), implying that the standard 𝛽𝐿 and 𝛾𝐿 representation of the 

terrestrial carbon feedback may lead to significant error.  

 

The agreement between the predicted near-linear decrease in 𝜆𝑐𝑎𝑟𝑏𝑜𝑛  with increasing 𝛿𝑇 from eqns. 

(12, 13) and the behaviour of the ensemble of DGVM simulations (Fig. 3), indicates that non-

linearities between terrestrial carbon-climate and carbon-concentration feedbacks may be captured by 

considering a relatively simple representation of the terrestrial carbon cycle (Fig. 2; Appendix B). 

This simple representation includes three empirically determined sensitivities: a dimensionless CO2 

fertilisation sensitivity of NPP, 𝛽𝐶𝑂2; a temperature sensitivity of NPP, 𝑐𝑁𝑃𝑃  in K-1; and a temperature 

sensitivity of the soil carbon respiration timescale, 𝑐𝑠𝑜𝑖𝑙 in K-1 (Appendix equations B4, B5). Note that 

additional non-linearities may become significant for the real terrestrial carbon cycle that are not 

captured in the DGVM simulations.  

 

5. Implications for gain in surface warming from terrestrial carbon feedback 

A gain factor for land carbon feedback on surface warming, 𝐺𝐿, may be defined as the ratio of 

warming in presence of terrestrial carbon feedback divided by warming in the absence of terrestrial 

carbon feedback (Gregory et al., 2009). 𝐺𝐿 is expressed in terms of either the emission size and 

change in terrestrial carbon reservoir, or the carbon and climate feedbacks, as, 

 

𝐺𝐿 =
δ𝑇

δ𝑇0
=

𝛿𝐼𝑒𝑚

𝛿𝐼𝑒𝑚 − 𝛿𝐼𝑡𝑒𝑟
=

𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒

𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 + 𝜆𝑐𝑎𝑟𝑏𝑜𝑛
 

           

 (14a) 

where eqns. (9) and (12) show how 𝜆𝑐𝑎𝑟𝑏𝑜𝑛  relates to 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 for infinitesimal and finite carbon 

emission perturbations respectively. For infinitesimal emission perturbations, where non-linear 

interactions between CO2 and T responses of terrestrial carbon cycle can be ignored, the gain 𝐺𝐿 

becomes, 
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𝐺𝐿 = (1 +
CO2

𝐼𝐵
𝛽𝐿 +

𝑎

𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒𝐼𝐵
𝛾𝐿)

−1

= (1 +
CO2

𝐼𝐵
𝛽𝐿 +

ECS

𝐼𝐵 ln 2
𝛾𝐿)

−1

 

           

 (14b) 

 

𝛽𝐿 is likely positive, since Net Primary Productivity (NPP) increases with rising CO2 due to CO2 

fertilization. However, 𝛾𝐿  is negative in many models (Arora et al., 2013), since soil carbon storage 

decreases with rising T as soil carbon residence time reduces (Friedlingstein et al., 2006). This means 

that the gain factor for terrestrial carbon feedback, 𝐺𝐿, will increase at higher ECS or lower 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 

(14) (Fig. 1b). 

 

By inspecting how 𝜆𝑐𝑎𝑟𝑏𝑜𝑛  changes for different values of 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 for the DGVM and efficient 

model ensemble output in Figure 1b, and converting 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 into ECS, we can see from eq. (14a) that 

the gain 𝐺𝐿<1 for ECS ≤ 5.8K (Fig. 4, solid black and blue lines), such that terrestrial carbon feedback 

reduces surface warming from anthropogenic carbon emissions. However, the gain switches to 𝐺𝐿>1 

(eq. 14a) for ECS ≥ 5.9 K, such that the terrestrial carbon feedback increases surface warming from 

carbon emissions (Fig. 4). For larger perturbation sizes (Fig 3, eq. 13), the non-linear interactions 

cause the carbon feedback to become less negative (or more positive), and so the ECS value above 

which terrestrial feedbacks switch from damping to amplifying anthropogenic warming would 

decrease. Other model ensembles may yield different results.  The values of 𝛽𝐿 and 𝛾𝐿  from the 

CMIP5 models analysed by Arora et al. (2013), when applied to equation (14b) and considering 

perturbations that stabilize CO2 at approximately present-day levels (CO2=410 ppm), suggest 

considerable uncertainty in the value of ECS above which gain transitions from damping gain, 𝐺𝐿 <

1, to amplifying gain, 𝐺𝐿 > 1 (Fig. 4, solid orange line and colour dashed lines). The CMIP5 multi-

model mean values of 𝛽𝐿 and 𝛾𝐿  (Arora et al., 2013) suggest land carbon feedbacks amplify steady 

state warming for ECS above 4.5 K (𝐺𝐿>1) and dampen steady state warming below ECS of 4.5 K 

(𝐺𝐿<1), for CO2 stabilisation at 410ppm (Fig. 4, solid orange line). However, the ECS values above 

which land carbon feedback amplifies steady state warming range from a low as 2.4 K to above 10 K 

(Fig. 4, dashed colour lines). Note that the values of 𝛽𝐿 and 𝛾𝐿  for the CMIP5 models analysed by 

Arora et al. (2013) may be scenario or time dependent. Therefore, the variation in 𝐺𝐿 with ECS 

calculated in Figure 4 should be considered illustrative, for the CMIP5 values of 𝛽𝐿 and 𝛾𝐿 , and not 

precise predictions of what would occur in the terrestrial components of the CMIP5 models if run to 

steady state with CO2 levels of 410 ppm. 
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6. Discussion 

Two of the most significant sources of uncertainty in the sensitivity of warming to anthropogenic 

carbon emission arise from uncertainties in the strength of feedbacks operating in the physical climate 

system (e.g. IPCC, 2013; Knutti et al., 2017) and the land carbon system (e.g. Friedlingstein et al, 

2006; Arora et al., 2013). This study shows how, when the land carbon system reaches a new steady 

state following carbon emission, the strength of these physical climate and terrestrial carbon 

feedbacks are linked via theoretical relationships (eq. 9, 12) and in numerical model simulations (Figs. 

1, 3).  

 

This identified link between terrestrial carbon and physical climate feedbacks implies that the impact 

on surface warming of the two systems should not be considered in isolation. Firstly, when calculating 

surface warming from carbon emissions for a different climate feedback one must also consider the 

impact on terrestrial carbon feedback. For example, an increase in the expected surface warming due 

to stronger than expected cloud feedback would be compounded by the subsequent reduction in the 

damping of surface warming from terrestrial carbon feedback (eqns. 9, 10, 12, 14; Fig. 1). Secondly, a 

significant component of the uncertainty terrestrial carbon feedback arises from the uncertainty in 

physical climate feedback. In a large observation-constrained ensemble of many thousands of 

simulations containing significant variation in the carbon cycle responses to rising CO2 and 

temperature (Goodwin, 2018; Goodwin et al., 2018), around half the uncertainty in steady state 

terrestrial carbon feedback (in Wm-2K-1) originates from uncertainty in physical climate feedback 

(Fig. 1b, blue: R2=0.49). 

 

In the present transient state, the terrestrial carbon feedback appears to be robustly negative with the 

terrestrial carbon cycle absorbing anthropogenic CO2 from the atmosphere (le Quéré et al. 2018), and 

thus reducing anthropogenic warming from carbon emissions. However, the present transient state is 

also characterized by a lag between rising atmospheric CO2 and rising surface temperatures, because 

the transient climate response is lower than the equilibrium climate sensitivity (Knutti et al., 2017; 

IPCC, 2013). As the terrestrial carbon cycle likely has opposing sensitivities to rising CO2 and rising 

temperature (Friedlingstein et al., 2006; Gregory et al., 2009), the future response of the terrestrial 

carbon uptake depends crucially on the climate sensitivity determining the relative increases in CO2 

and temperature following carbon emission (eqns. 9, 12).  

 

The analysis presented here implies that we may not simply assume that the terrestrial carbon 

feedback will remain robustly negative at steady state, in line with previous studies finding that the 

current land carbon sink may become a carbon source over the 21st century or beyond (e.g. Cox et al., 

2000; Friedlingstein et al., 2006). There is an increased likelihood that terrestrial carbon feedback will 

turn positive, enhancing future anthropogenic warming (eq. 12), either at high climate sensitivity (Fig. 
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1, eqns. 9, 14) or for large warming perturbations caused by increased anthropogenic emissions (Fig. 

3, eqns. 12,13).  

 

Appendix A: Model simulations and analysis of model output 

This Appendix provides details of how the efficient model simulations are performed, and how the 

both DVGM and efficient model output is analyzed. 

 

To generate the WASP simulations, the observational constraints of Goodwin (2018) are applied, 

updated here with a consistency test for land carbon uptake based on the Global Carbon Budget (le 

Quéré et al. 2018). All consistency tests and ranges remain as in Goodwin (2018), and based on 

observational constraints on surface warming, ocean heat content, and carbon fluxes (see Goodwin, 

2018 - table 2 therein for details), except for the test in in cumulative terrestrial carbon uptake from 

1750. The test in cumulative terrestrial carbon uptake since 1750 is applied here in year 2017, and is 

updated such that the observation-consistent range represents the multi-model mean ± 2 standard 

deviations in Iter as calculated for 16 observation-consistent Dynamic Global Vegetation Models 

from the Global Carbon Budget. The best estimate of cumulative carbon uptake Iter over time is 

calculated using the multi-model mean annual carbon sink values provided in le Quéré et al. (2018). 

Iter is then calculated separately for each of the 16 Dynamic Global Vegetation Models used in the 

Global Carbon Budget from le Quéré et al. (2018), using each model’s separate annual land carbon 

sink values (data prior to year 1959 supplied by Stephen Sitch, see Acknowledgements). 

 

The cumulative residual land carbon uptake (excluding carbon emitted from land use change) from 

preindustrial to 2017 is considered observation consistent if the simulation lies between 96 and 331 

PgC, replacing the equivalent terrestrial carbon uptake range in Goodwin (2018 – table 2 therein). All 

other ranges for observational constraints are as in Goodwin (2018). 

 

When converting simulated terrestrial carbon uptake, Iter, into terrestrial carbon feedback, 𝜆𝑐𝑎𝑟𝑏𝑜𝑛 , 

using eq. (9) the values of a and IB must be known (Figs 1, 3). To analyse the DGVM simulations of 

Pugh et al. (2018) values of a=5.35 Wm-2 and IB=3451 PgC are used and 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 is diagnosed using 

𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 = 𝑎Δ ln CO2/Δ𝑇. For the efficient WASP model simulations the values of a and IB are 

considered individually for each ensemble member. The values of 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 evolve over time in the 

efficient model (Goodwin, 2018), so the values at the end of the 500 year simulations are used (Figs. 

1b, 3). 
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Appendix B: Steady state carbon uptake in the idealized terrestrial carbon system 

This Appendix provides the derivation of cumulative terrestrial carbon uptake, Iter, following carbon 

emission including non-linear interaction between the land carbon responses to rising CO2 and surface 

warming, T. 

 

Consider an idealized system consisting of an atmosphere containing CO2 coupled to a vegetation 

carbon reservoir and a soil carbon reservoir (Figure 2). The flux of carbon from the atmosphere to the 

vegetation pool is due to Net Primary Productivity (NPP), FNPP in PgC yr-1.  The flux of carbon from 

the vegetation to the soil carbon pool due to leaf litter, FLeafLitter in PgC yr-1, is equal to the vegetation 

carbon inventory, Iveg in PgC, divided by the vegetation carbon residence timescale, veg in yr, 

 

𝐹𝐿𝑒𝑎𝑓𝐿𝑖𝑡𝑡𝑒𝑟 = 𝐼𝑣𝑒𝑔 𝜏𝑣𝑒𝑔⁄ .       (B1) 

 

The flux of carbon from the soil to the atmosphere due to respiration, FRespiration, in PgC yr-1, is 

similarly equal to the soil carbon inventory, Isoil in PgC, divided by the soil carbon residence 

timescale, soil in yr, 

 

𝐹𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 = 𝐼𝑠𝑜𝑖𝑙 𝜏𝑠𝑜𝑖𝑙⁄ .       (B2) 

 

These three fluxes must be equal both at the initial steady state, FNPP,0 = FLeaflitter,0=Frespiration,0 (where 

subscript 0 is used to denote the initial conditions) and once the system reaches a new steady state 

after perturbation. 

 

At steady state the terrestrial carbon storage, Iter in PgC, is given by the sum of the vegetation and soil 

carbon reservoirs, also written in terms of the residence timescales using (B1) and (B2), 

 

𝐼𝑡𝑒𝑟 = 𝐼𝑣𝑒𝑔 + 𝐼𝑠𝑜𝑖𝑙 = 𝐹𝑁𝑃𝑃(𝜏𝑣𝑒𝑔 + 𝜏𝑠𝑜𝑖𝑙),      (B3) 

 

such that the initial steady state is written 𝐼𝑡𝑒𝑟,0 = 𝐼𝑣𝑒𝑔,0 + 𝐼𝑠𝑜𝑖𝑙,0 = 𝐹𝑁𝑃𝑃,0(𝜏𝑣𝑒𝑔,0 + 𝜏𝑠𝑜𝑖𝑙,0). 

 

Next, we assume that FNPP varies from the initial steady state with both the log change in atmospheric 

CO2, due to CO2 fertilization (e.g. Alexandrov et al., 2003), and the global mean surface temperature 

(e.g. Friedlingstein et al., 2006) via, 

 

𝐹𝑁𝑃𝑃 = 𝐹𝑁𝑃𝑃,0(1 + 𝛽𝐶𝑂2δlnCO2)(1 + 𝑐𝑁𝑃𝑃δ𝑇),      (B4) 
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where CO2 is the empirically determined dimensionless CO2 fertilization coefficient relating the 

sensitivity of NPP to the log change in CO2 (Alexamdrov et al., 2003); and cNPP is the empirically 

determined fractional sensitivity of NPP to global mean surface temperature in K-1. 

 

Soil carbon residence time is also known to be sensitive to global mean surface temperature due to 

temperature effects on microbial respiration (e.g. Friedlingstein et al., 2006). Here, we assume an 

idealized relationship, 

 

𝜏𝑠𝑜𝑖𝑙 = 𝜏𝑠𝑜𝑖𝑙,0(1 + 𝑐𝑠𝑜𝑖𝑙 δ𝑇),        (B5) 

 

where csoil is the empirically determined fractional sensitivity of soil carbon residence time to global 

mean surface temperature in K-1.  

 

Substituting (B4) and (B5) into (B3) reveals the final steady state terrestrial carbon reservoir, 𝐼𝑡𝑒𝑟 =

𝐼𝑡𝑒𝑟,0 + δ𝐼𝑡𝑒𝑟 , following a perturbation to atmospheric CO2 and temperature, 

 

𝐼𝑡𝑒𝑟,0 + Δ𝐼𝑡𝑒𝑟 = 𝐹𝑁𝑃𝑃,0(1 + 𝛽𝐶𝑂2δ ln CO2)(1 + 𝑐𝑁𝑃𝑃δ𝑇)(𝜏𝑣𝑒𝑔,0 + 𝜏𝑠𝑜𝑖𝑙,0[1 + 𝑐𝑠𝑜𝑖𝑙δ𝑇]).  

           

 (B6) 

 

For the idealized CO2-only forcing scenario considered here, the values of T and ln CO2 at steady 

state are related via the CO2 radiative forcing coefficient, a (Myhre et al., 2013), and the physical 

climate feedback climate, eq. (3). Substituting δ𝑇 = 𝑎δ ln CO2 𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒⁄  into (B6) reveals an 

expression for the final steady state terrestrial carbon storage in in terms of the perturbation to δ𝑇 

following carbon emission,   

 

𝐼𝑡𝑒𝑟 = 𝐹𝑁𝑃𝑃,0 (1 +
𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒

𝑎
𝛽𝐶𝑂2δ𝑇) (1 + 𝑐𝑁𝑃𝑃δ𝑇)(𝜏𝑣𝑒𝑔,0 + 𝜏𝑠𝑜𝑖𝑙,0[1 + 𝑐𝑠𝑜𝑖𝑙δ𝑇]).   

           

 (B7) 

 

Subtracting the initial terrestrial carbon storage, Iter,0 = FNPP,0(veg,0 + soil,0), from (B7) solves for the 

change in terrestrial carbon storage since preindustrial, Iter, revealing a third order polynomial in T,  
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δ𝐼𝑡𝑒𝑟 = 𝐹𝑁𝑃𝑃,0 [{𝜏𝑣𝑒𝑔,0 (
𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒

𝑎
𝛽𝐶𝑂2 + 𝑐𝑁𝑃𝑃) + 𝜏𝑠𝑜𝑖𝑙,0 (

𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒

𝑎
𝛽𝐶𝑂2 + 𝑐𝑁𝑃𝑃 + 𝑐𝑠𝑜𝑖𝑙)} δ𝑇

+ {𝜏𝑣𝑒𝑔,0

𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒

𝑎
𝛽𝐶𝑂2𝑐𝑁𝑃𝑃 + 𝜏𝑠𝑜𝑖𝑙,0 (

𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒

𝑎
𝛽𝐶𝑂2[𝑐𝑁𝑃𝑃 + 𝑐𝑠𝑜𝑖𝑙] + 𝑐𝑁𝑃𝑃𝑐𝑠𝑜𝑖𝑙)} δ𝑇2

+ {𝜏𝑠𝑜𝑖𝑙,0

𝜆𝑐𝑙𝑖𝑚𝑎𝑡𝑒

𝑎
𝛽𝐶𝑂2𝑐𝑁𝑃𝑃𝑐𝑠𝑜𝑖𝑙 } δ𝑇3] 

(B8)
 

Equations (B1), (B2) and (B8) are then substituted into eq. (9), 𝜆𝑐𝑎𝑟𝑏𝑜𝑛 = −
𝛿𝑅𝐶𝑂2

𝑡𝑒𝑟

𝛿𝑇
=

𝑎

𝐼𝐵

𝛿𝐼𝑡𝑒𝑟

𝛿𝑇
, to solve 

for 𝜆𝑐𝑎𝑟𝑏𝑜𝑛 , revealing eq. (12). 
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Figure 1: Terrestrial carbon uptake and feedback varies with physical climate feedback at fixed 

CO2 perturbation. (a) Cumulative terrestrial carbon uptake at steady state, Iter, following fixed 

CO2 perturbations at different climate feedback, climate, in a complex DGVM (black) and an efficient 

model ensemble (blue). (b) The terrestrial carbon feedback, carbon, at different physical climate 

feedback,climate, for the model simulations (dots) showing an emergent relationship between 

terrestrial carbon feedback and physical climate feedback in two model ensembles (dashed lines). 
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Figure 2: Schematic of an idealised two-box representation of the terrestrial carbon cycle. 

Vegetaion and soil carbon reservoirs are attached to an atmosphere with atmospheric CO2 and global 

mean surface temperature T. FNPP is the Net Primary Productivity carbon flux in PgC yr-1, Fleaflitter is 

the leaf litter carbon flux in PgC yr-1 and Frespiration is the soil carbon respiration flux in PgC yr-1. Iveg 

and Isoil are the vegetation and soil carbon inventories respectively in PgC, while soil,0 and veg,0 are the 

initial vegetation and soil carbon residence timescales respectively in yrs. Carbon fluxes are sensitive 

to atmospheric CO2, via CO2, and temperature, via cNPP in K-1 and csoil in K-1. 
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Figure 3: Terrestrial carbon uptake and terrestrial carbon feedback varies with surface 

warming at fixed physical climate feedback. (a) Cumulative terrestrial carbon uptake at steady 

state, Iter, following different carbon emission sizes leading to different surface warming, T. (b) The 

steady state terrestrial carbon feedback, carbon in Wm-2K-1, for different carbon emission sized leading 

to different surface warming, T. (c) The sensitivity of carbon to surface warming in a large ensemble 

of efficient model simulations (frequency density plot: blue solid line and shading), and in individual 

models (dashed lines). Sensitivities in (c) represent the gradient of the line of best fit for each model 

in panel (b). 
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Figure 4: Steady state gain in surface warming due to land carbon feedback varies with 

Equilibrium Climate Sensitivity for a given CO2 stabilisation. The gain GL as a function of 

Equilibrium Climate Sensitivity (ECS) is calculated from equation (14) for different relationships 

between climate and carbon, and for different L and L values. For the efficient WASP model ensemble 

(solid blue line) and the DGVM TRIFFID model ensemble of Pugh et al. (2018) (solid black line), GL 

is calculated as a function of ECS using the relationships between climate and carbon identified in fig. 

1b (eq. 14). GL is calculated as a function of ECS using values of L and L identified by Arora et al. 

(2013) for the CMIP5 ensemble mean (solid orange line) and individual CMIP5 models (dashed 

colour lines). Equation (14) is then applied assuming climate is stabilised with approximately present-

day CO2 levels of 410 ppm in (eq. 14).  

 

 


