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Abstract—Understanding and characterizing the connectivity of vehicular networks has become increasingly important because of
their wide applications and fast development. To address the dynamical links in vehicular networks, time-varying graph (TVG) is one of
the most important models. Nowadays, due to the fact that lots of vehicular applications can tolerate a small amount of latency in
communication, opportunistic reachability graph (ORG) characterizes the connectivity better by introducing delay tolerance to the
model. However, people still do not have a high-level summarization, i.e. the topology, of the vehicular network on how nodes are
clustered and isolated.
In this paper, based on ORG model, we analyze the opportunistic topology of taxi networks in urban mobility environment by mainly
focusing on the number, location and evolution of connected components and the size of the largest components to reveal the unique
properties of the taxi networks instead of just links and hops. Our analysis is based on the real taxi traces of big cities and reflects the
real urban mobility environment. We find that the opportunistic topology of the networks with delay tolerance is substantially different
from the instantaneous topology without considering the delay. Moreover, we unveil the fundamental relationships and trade-offs
between the dynamical topology and the key network parameters related to mobility, e.g., delay tolerance, transmission distance, etc.
To the best of our knowledge, our study is the first work to reveal the characteristics of opportunistic topology models in the large-scale
urban mobility environment with real traces.

Index Terms—Vehicular networks, taxi networks, mobility, dynamical connectivity, opportunistic topology, delay tolerance
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1 INTRODUCTION

Nowadays, due to the rapid development in communi-
cation technology and traffic systems, vehicular networks,
which provide a basic model for many vehicular appli-
cations, have received considerable attention. The newly
emerged vehicular communication networks are seen as
a key technology for improving road safety and building
intelligent transportation system (ITS) [1]. Many applica-
tions of vehicular networks are also emerging, including
automatic collision warning, remote vehicle diagnostics,
emergency management and assistance for safe driving,
vehicle tracking, automobile high speed Internet access,
and multimedia content sharing [2]. Since most of these
applications are inherently designed for the information
exchange of vehicle-based data, related to the positions,
speeds, and locations among vehicles in a restricted region,
the dynamical connectivity of the vehicular networks is well
worth of researching.

Time-varying graphs and temporal reachability graphs
[3] are the two basic graph models to analyze the dynam-
ical connectivity of the vehicular networks considering the
multi-hop connections and the delay-tolerance property. To
be more specific, an edge (i, j) in temporal reachability

R. Xu and Y. Li are with Department of Electronic Engineering, Ts-
inghua University, Beijing 100084, China (E-mails: xu943@purdue.edu, liy-
ong07@tsinghua.edu.cn). R. Xu is also affiliated with Purdue University.
S. Chen is with Electronics and Computer Science, University of Southamp-
ton, Southampton SO17 1BJ, UK (E-mail: sqc@ecs.soton.ac.uk), and also with
King Abdulaziz University, Jeddah 21589, Saudi Arabia.
This work was partially supported by the National Natural Science Foundation
of China (NNSFC) under grants No. 61201189 and No. 61132002, the
Creative Research Groups of NNSFC under grant No. 61021001, the National
S&T Major Project of China under grant No. 2011ZX03004-001-01, National
High Tech (863) Projects of China under Grant No. 2011AA010202, and
Research Fund of Tsinghua University under grants No. 2011Z05117 and
No. 20121087985.

graph means that a message can be sent from vehicle node
i at the moment t and delivered to node j by the moment
t + δ via multi-hop connections, where δ is the maximum
delay that can be tolerated.

Beyond the opportunistic connectivity that considers
connected pairs and average density [3], the connected com-
ponent in the graph models is a basic unit to study the
opportunistic topology, which focuses on the graph model
of the vehicular networks and analyzes how nodes are
clustered and isolated dynamically. How the snapshot of
the connected components looks like [3] and how it evolves
[16] are all interesting topics to understand the opportunistic
topology of the vehicular networks.

In vehicular networks, transmission distance and delay
tolerance are two important factors that affect the network
topology. The transmission distance is defined as the max-
imum distance of two vehicles with reliable communica-
tion of certain vehicle-to-vehicle communication technology.
Generally speaking, the longer the transmission distance is
supported, the better the connectivity of the whole network,
which also offers better data transmission between any two
nodes.

On the other hand, delay tolerance is defined as the max-
imum network transmission latency that an application can
tolerate. It also affects the network topology considerably,
since the connection between two nodes no longer depends
solely on the instantaneous topology but the dynamical
topology evolved within a period of time. Some existing
literatures for opportunistic networks or delay tolerant net-
work (DTN) [4], [5], [6] have set the delay tolerance to 10
minutes to 1 hour or even longer. The study [4] quested for
killer applications in DTN and summarized several useful
applications in specific scenarios, e.g., short message service,
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file sharing and bulk data transfer, etc. The work [5] studied
a message ferrying scheme in a DTN, where the message
deliver delay can be 1 hour to several hours. The study [6]
presented a prototype of sharing location-based information
by a peer-to-peer (P2P) synchronization mechanism. Their
results show that it usually takes 10 minutes to 1 hour for
information to spread to 90% of the nodes. Thus, we set the
range of delay tolerance from 6 minutes to 1 hour in our
study, and typically using 10, 20, 40 and 60 minutes in most
of the evaluations. Our targeted applications are not safety-
related or latency-sensitive ones that requires millisecond or
second level latencies.

In this paper, we discuss the dynamical topology of taxi
networks affected by the two key network parameters –
transmission distance and delay tolerance. Our contribu-
tions are briefly summarized as follows.

• We propose to use the number, location and evolu-
tion of connected components to characterize the op-
portunistic topology of the taxi networks. Consider-
ing delay tolerance, the opportunistic topology pro-
vides a high-level summarization on the dynamical
connectivity of the taxi networks. Thus, our model is
beneficial to the future inter-vehicle applications.

• We provide insights into the dynamical topology
affected by the key network parameters, i.e. trans-
mission distance and delay tolerance.

• We perform the in-depth analysis on the real taxi
traces, which reflects the real opportunistic topology
of large-scale urban taxi mobility environment.

• We propose a detailed algorithm to compute ORG
with a large amount of nodes in the graph.

The rest of the paper is structured as follows. Section 2
introduces the concepts of time-varying graphs and oppor-
tunistic reachability graphs with the related key metrics,
while Section 3 presents the method of processing and the
algorithm in details together with the associated defini-
tions. In Section 4, we use the key metrics to analyze the
opportunistic topology and dynamical connectivity of taxi
networks. In Section 5, we introduce the related works to
highlight our differences from these existing works, and our
conclusions are drawn in Section 6.

2 GRAPH MODELS, KEY METRICS AND CHANNEL
LINK MODELS

2.1 Graph Models

Since the graph is a natural model to represent static
networks, the time-varying graph (TVG) offers a natural
approach to represent the highly dynamical vehicular net-
works. In particular, TVGs offer a useful high-level abstrac-
tion for investigating the instantaneous connectivity and
reachability of vehicular networks. While the ORGs reveal
the connectivity and reachability of delay-tolerant vehicular
networks with multi-hop connections. In this work, we
utilize definitions and notations proposed by Casteigts et al.
[7], who present the TVG and ORG formalism with dedi-
cated notations and integrate the existing models, concepts,
and results into a unified framework. We then introduce
our key metrics of taxi networks based on ORG. These

metrics are able to reveal the crucial properties of dynamical
connectivity in the taxi networks.
Definition 1 (Time-varying Graphs, TVGs). Let V be a set

of vertices (vehicle nodes) where |V | = N is the number
of vertices. Let EG ⊆ V × V be the set of edges among
the vertices V . Assume that the dynamical events take
place over a time span T ⊆ R+ in a positive real-valued
temporal domain. A general TVG is defined by a tuple
G = (V,EG, T , G), where

• G : EG × T → {0, 1}, called presence function,
indicating whether a given edge e ∈ EG exists at
a given time t ∈ T , or whether the two vehicle nodes
are connected through direct V2V link at t;

Definition 2 (Discrete Time-varying Graphs, DTVGs). To
describe the TVG with a limited amount of data, we
divide the time into slices and each slice has a length
of η. Within each time slice, the TVG is assumed to be
constant. That is, ∀k ∈ N, t ∈ R+, kη ≤ t < (k + 1)η ⇒
G(t) = G(kη). In this work, we investigate the discrete
TVG, i.e., T = Nη.

Definition 3 (Journey). Given an edge e = (u, v), we define
from(e) = u and to(e) = v. A journey in G is a sequence
of couples J = {(e1, t1), (e2, t2), · · · , (ek, tk)} such that
{e1, e2, · · · , ek} is a walk in G satisfying

from(ei) = to(ei−1), 2 ≤ i ≤ k
ti ∈ Nη, 1 ≤ i ≤ k

∃t, s.t.ti ≤ t < ti+1, G(t)ei = 1
(1)

We denote J(u,v) as the journey from u to v, i.e.
from(e1) = u and to(ek) = v. Obviously, the existence
of a journey is not symmetrical, which means that u
can reach v does not imply v can reach u. Further, let
departure(J ) be t1, arrival(J ) be the time when ek
is present, and J tl = arrival(J ) − departure(J ),
named temporal length, define the end-to-end transmis-
sion latency.

It can be seen that a journey represents a sequence of
hops that data follow through the direct links in DTVGs
from a source node to a destination one. Thus, it can be used
to derive the reachability and topology properties of delay-
tolerant vehicular networks with multi-hop connections.
Also, whether the journey exists depends largely on the
maximum delay tolerance δ of the message transmission.

Taking the DTVGs with five nodes shown in Fig. 1(a) as
an example of vehicular networks, where the edges mean
the direct bi-directional V2V links between nodes and time
slice is set η = 10 s. We observe that the links in the networks
are varying with time – node 1 and node 2 are connected
from 10 s to 40 s, and node 1 and node 5 are connected from
20 s to 30 s, etc. Obviously, a DTVG has different topologies
at different timestamps t ∈ Nη, and an instantaneous graph
only indicates the network topology at a particular discrete
timestamp t.

In Fig. 1(b), we consider the delay tolerance in the
vehicular networks, For example, assume that at time
t = 10 s, node 1 has a message to node 3. If the de-
lay tolerance of this message is δ = 20 s, this mes-
sage cannot be delivered since there exists no journey
J(1,3) = {(e1, t1), (e2, t2), · · · , (ek, tk)} with from(e1) =
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(a)

t = 10 s t = 20 s t = 30 s

δ = 20s

δ = 30s

Fig. 1. An example of graph models with five nodes: (a) instantaneous
time-varying graphs (TVGs), and (b) opportunistic reachability graphs
considering delay tolerance (ORGs).

node 1, to(ek) = node 3, departure(J ) = 10 s and
arrival(J ) ≤ 30 s. However, if the delay tolerance
is δ = 30 s, then there exists a journey J(1,3) with
departure(J ) = 10 s and arrival(J ) = 40 s, which
indicates the message can be delivered via this journey.

It can be seen that the concept of journey is important to
the dynamic network topology. Based on the above discus-
sions for DTVG and journey, we introduce the definition of
ORG.
Definition 4 (Opportunistic Reachability Graphs, ORGs).

Let V be the set of vertices and ERδ ⊆ V × V be the set
of edges between the vertices in V given the maximum
delay tolerance δ. The dynamical events take place in the
temporal domain T = Nη and then we consider discrete
network delay tolerance δ, taking values from the set
{η, 2η, ...}. Given different delay tolerances, the graphs
are different. In particular, ORG is same as TVG if the
delay tolerance is set to δ = η, assuming that the time to
transmit the data is within one time slice η. An ORG is
then defined by a tuple Rδ = (V,ERδ , T , Rδ), where

• Rδ : ERδ × T → {0, 1}, called presence function, in-
dicates whether a given edge e = (u, v) ∈ ERδ or
a journey J(u,v) exists which satisfies J tl ≤ δ, at a
given starting time t ∈ T .

For example, let us denote the presence function of
edge (i, j) at t by Rδ(t)(i,j). In Fig. 1(b), where η = 10 s,
R2η(η)(1,3) = 0 since there exists no journey J(1,3) with
departure(J ) = 10 s and arrival(J ) ≤ 30 s, under the
delay tolerance of δ = 2η. However, if the delay tolerance is
δ = 3η, R3η(η)(1,3) = 1 because there exists a journey J(1,3)
with departure(J ) = 10 s and arrival(J ) = 40 s.

It can be seen that delay tolerance alters the topology,
and a consequence is that the connection between two nodes
may be asymmetric. For example, under the delay tolerance
of δ = 20 s, node 2 can reach node 5 at time t = 10 s but the
reverse connection is disabled, as indicated by the arrow in
a single direction from node 2 to node 5. This implies that
at t = 10 s, node 2 may transmit messages to node 5, but
node 5 cannot transmit messages to node 2. This is very

different from the instantaneous TVG without considering
delay tolerance, where every edge is bi-directional. If the
delay tolerance is loosened, for example, to δ = 30 s, then
node 2 and node 5 become connected by the bi-directional
arrows at time t = 10 s, as shown in Fig. 1(b), implying
that node 2 may transmit messages to node 5 and/or node
5 may transmit messages to node 2. Therefore, in an ORG,
there exist some single-hop/multi-hop paths or connections
which are directed only, while other connections are bi-
directional.

2.2 Key Metrics and notations
Based on ORG, we now introduce the key metric we use
in this paper to characterize the dynamical topology of
vehicular networks.
Definition 5 (Component). Considering the opportunistic

topology graph (ORG) at a discrete time-point t, we
have a graph Rδ(t) consisting of its node-set V and
edge-set ERδ at t. To study the partitioned sets of the
ORG, we define component to be a set of nodes where
each node can link to at least one other node in the
component through a multi-hop journey. Formally, the
i-th component Cδ,i(t) contains a subset of the node-set
V , denoted by Vδ,i(t) = {vj |∃vk ∈ Vδ,i(t), Rδ(t)(j,k) =
1||Rδ(t)(k,j) = 1}, and a subset of the edge-set ERδ , de-
noted by ERδ,i(t) = {ej,k|vj , vk ∈ Vδ,i(t)&&ej,k ∈ ERδ }.
The size of a component is the number of nodes belong-
ing to it, i.e., Sδ,i(t) = |Vδ,i(t)|.
We can represent a vehicular network by a set of compo-
nents {Cδ,i(t)}. A vehicle may reach other vehicles in the
same component via multi-hop communication at time
t.

Definition 6 (Degree). We consider the adjacent node
set of vertex vi in ORG V

′

δ,i(t) = {vj |Rδ(t)(i,j) =
1||Rδ(t)(j,i) = 1}, which represents all the nodes that can
communicate with vertex vi and vice versa via multi-hop
transmissions from t to t + δ. The degree of vertex vi is
simply defined as Dδ,i(t) =

∣∣V ′

δ,i(t)
∣∣.

To study the dynamical topology of vehicular networks,
we mainly consider the number, geographical distribution
and evolution of connected components, the size of the
largest component and node degree. Component number
is used to characterize how heavily the network is parti-
tioned. The higher the number, the heavier the network is
partitioned. This metric is significant in providing a whole
picture of the network topology, while common metrics
used in other works, such as the probability of a link,
may fail to do. Geographical distribution and evolution of
connected components is used to clearly depict where the
components are located in the urban area and how the
components merge and break over time. Largest component
is where the majority of communications take place and its
size shows the maximum number of vehicles in a connected
component. Last but not least, the node degree characterizes
the connectivity from an individual node to show how many
vehicles one node can reach at most. These metrics cover
the network topology and connectivity in different aspects
and are of great importance to the research community and
vehicular industry.
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TABLE 1
Notations of key metrics and network parameters.

Abbreviation Notation Description

Component number C The count of connected components
Component size S The size of a connected component
Largest component size Smax The size of the largest connected component
Degree D Count of connected nodes for a given node
Distance d Within d, nodes are considered connected in TVG
Delay δ The maximum tolerated latency for the networks
Network size N Count of vehicle nodes considered, N = |V |

In the following sections, we simply denote the number
of components by C, the size of each component by Si,
where 1 ≤ i ≤ C, and the size of the largest component
Smax, as well as the degree of each node by Di, where
1 ≤ i ≤ N . It is notable that these key metrics are
still affected by delay tolerance δ, although the notation is
dropped for simplicity. It is also affected by the maximum
transmission distance as introduced in Sec. 2.3 and Sec. 3.3.
In Table 1, we summarize the notations of the key metrics
and network parameters.

2.3 Channel Link Models

Channel link models determine whether two vehicles are
directly connected without rely nodes. We consider all the
vehicle pairs within transmission distance d defined in Sec. 1
as bi-directional connected and not connected otherwise.
This model is simplified from a log-normal path loss model,
which is discussed in Sec. 2.3.1. Although obstacles from
other vehicles (Sec. 2.3.2), buildings (Sec. 2.3.3) and real
packet loss ratio (Sec. 2.3.4) are all the real factors to the
model, we actually consider it in a high level that the two
vehicles are by all means connected with a certain V2V
communication technology that supports a maximum trans-
mission distance d. It is true that the real connectivity may
be better, since the vehicles can still stay connected beyond
the distance d. We admit the limitation on the conservative
analysis where the real connectivity can be better than our
results.

2.3.1 Path loss model
To determine whether an edge in the TVG exists, we first
study the path loss model for the received signal strength
(RSS) at distance d away from the source node. A widely
used log-normal model is given as follows [8],

RSS(d) = RSS(d0) + α log
( d
d0

)
+X (2)

where RSS(d) is the RSS at distance d, RSS(d0) is the
measured RSS at a reference distance d0 and α is the path
loss exponent, and X is a random variable which counts
for small-scale or fast fading effects and it is well-known
to follow a Rice distribution if there exists the line of sight
(LOS) between the communicating vehicles or a Rayleigh
distribution if there exists no LOS. In mobile networks
design, the effects of X is taken into consideration by
assigning a so-called fast-fading margin FM which ensures
that the probability of X exceeding FM is less than a
threshold, e.g. 1%. Measurement studies and investigations
for appropriate values of path loss exponent α and fast-
fading margin FM under various mobile communication

environments can readily be found in the literature. For
example, a measurement study is given in [9] for dedicated
short range communication (DSRC) in vehicular networks.

For the receiver to correctly detect the transmitted signal,
the RSS should be above a minimum threshold, denoted
RSSmin. Thus, the maximum transmission distance d be-
tween the transmitter and receiver can be derived by,

d = d0 · exp

(
RSSmin − RSS(d0)− FM

α

)
(3)

More specifically, when the distance between two vehicles is
smaller than d, a communication link between them can be
established. Obviously, the maximum transmission distance
d depends on the propagation environment (reflected in α
and FM ), e.g., urban or rural, as well as the transmit power
(reflected in RSS(d0)).

In this paper, we simplify the maximum transmission
distance in the real scenario by considering a single max-
imum transmission distance d for all cases, which corre-
sponds to a certain V2V communication technology that by
all means supports the communication within distance d.

From the above discussion on the link model, it is clear
that the edges in our TVG are undirected, since an edge
represents a bi-directional communication between the two
vehicles.

2.3.2 Obstacles of other vehicles
In the studies [10], [11], an obstacle-based channel model
is used to characterize the effects from an obstructing ve-
hicle on the LOS. To be specific, consider that vehicle i is
communicating with vehicle j, where vehicle k obstructs
the LOS between i and j. Let the distance between vehicles
i and j be di,j , and the distance between i and k be dobs.
The heights of vehicles i and j are hi and hj , respectively,
while the height of their antennas is ha. Further denote µ
and σ as the mean and standard deviation of the height of
the obstructing vehicle. The radius for the first Fresnel zone
ellipsoid rf is given by

rf =

√
λdobs(di,j − dobs)

di,j
(4)

where λ is the wavelength of the signal. The effective height
of the LOS line is given by

h = (hj − hi)
dobs
di,j

+ hi − 0.6rf + ha (5)

The probability of the link between node i and j is given by

Pr(LOS|hi, hj) = 1−Q
(
h− µ
σ

)
(6)

where Q(·) is the standard Gaussian error function.

2.3.3 Obstacles of buildings in urban area
The studies [12], [13] use an empirical model for radio
shadowing when considering the obstacles of buildings,
by taking into account the walls of building outlines and
the length of the path through the buildings. Specifically,
the additional attenuation of a transmission due to the
obstructing buildings is given by

Lobs [dB] =βn+ γdm (7)
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where β is given in dB per wall which represents the atten-
uation due to any additional exterior walls of the buildings
standing on the LOS line, and n is the number of walls that
standing on the LOS, while γ is given in dB per meter to
represent the attenuation of the internal structure of the
buildings, and dm is the total length of the transmission
inside the buildings.

Parameters β ≈ 9 dB and γ ≈ 0.4 dB/m in their model
fit well into their experimental results.

2.3.4 Packet loss ratio
Study [13] considers the packet loss ratio in V2V communi-
cations. Specifically, the packet loss probability loss(Pr) (in
dbm) is given by

loss(Pr)=


0, if Pr > Pmax

r

min

{
1,

(
Pmax
r − Pr

Pmax
r − Pmin

r

)θ}
, if Pr ≤ Pmax

r

(8)

with Pmax
r = −78 dbm, Pmin

r = −91 dbm and θ = 3.6.
The probability that a communication link can be estab-

lished is then given by 1− loss(Pr).

2.3.5 Summary of our model in terms of these factors
It is unrealistic to explicitly count for all the last three
factors in our link model for a large-scale urban vehicular
environment for the following reason. The obstacle-based
model needs extremely fine-grained data, including the
height of every vehicle and the details of every building,
to calculate the additional attenuation. This information is
unavailable in any public dataset and would be extremely
costly and hard to acquire in practice. Just image the situ-
ation that a vehicular network protocol adopts this model
to establish link. In a particular location, the vehicle would
need to know the details of the surrounding area, which is
completely impossible. Even assuming one can obtain all
the parameters required, the model is only valid for this
very small specific area of V2V communication, that is, the
model would be different from one small area to another.
Thus, it is impractical to establish such a model for large-
scale vehicular networks.

By contrast, the log-normal model in equation (2) is
sufficiently general and can be applied anywhere in a large-
scale vehicular network. This model is reasonably accurate,
as it represents the ‘typical’ or ‘average’ channel propaga-
tion environment encountered in the large-scale vehicular
network. Note that the average obstacle effect of vehicles
and buildings is implicitly been taken into account by the
fast fading component X , and the fast-fading margin FM is
chosen according to the distribution of X . Furthermore, the
1% FM indicates that 99% of the RSS will be higher than
the required threshold for correctly detecting data, which
corresponds to an equivalent small packet loss probability.
It can be seen that the packet loss ratio is also implicitly
counted for in the log-normal model.

In order to concentrate on studying the dynamical topol-
ogy in a large-scale urban environment, we finally choose
the log-normal model with the maximum transmission dis-
tances d as a threshold to determine whether an edge exists
to balance the accuracy and the practicability.
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Fig. 2. The geographical distribution of GPS-reported taxis superim-
posed on Shanghai map. A colored dot presents the average number of
appearance per taxi per day in the corresponding 300 m×300 m square
area on the map.

3 DATASETS, PREPROCESSING, AND ALGORITHM

We first provide a brief description of the taxi mobility
datasets used in our study and introduce the preprocessing
carried out on them. Then, we discuss how to obtain the
ORG and related metrics from the datasets. Due to the fact
that we have taxi-only traces, we restrict our contribution
and evaluation within taxi networks, although all the graph
models and channel link models apply to general vehicle
datasets.

3.1 Datasets

To provide realistic vehicular mobility and connectivity
in urban scenarios, ideally large-scale vehicular datasets
are needed which involve all types of vehicles, including
taxis, buses and private cars. However, such vehicular trace
records do not exist and are unlikely to be available soon. By
contrast, real-world taxi datasets are available. In this paper,
we employ large-scale taxi mobility trace data to study op-
portunistic topology of taxi networks in urban environment.
Our TVG and ORG models are also useful to characterize
vehicular networks if vehicular datasets including all types
of vehicles are available.

We employ three large-scale taxi mobility-trace datasets
of Shanghai, Beijing and Nanjing. Shanghai trace [14] was
collected by SG project [15], in which the mobility trace
data from over 4,000 taxis were collected during the whole
month of February 2007 in Shanghai. Beijing trace was
collected during the whole month of May 2012, including
more than 28,000 taxis. Nanjing trace on the other hand
was collected over a longer time period from July 2013 to
December 2013, involving more than 7,000 taxis. In all these
three traces, reports were continuously sent back to the data
center by GPRS. Specifically, the frequency of reports was
every 15 seconds in most of the time. The information of
reports included the taxi’s ID, the longitude and latitude
coordinates of the taxi’s location, the instant speed and other
factors like heading angle as well as the status of the taxi.
The original Beijing trace covers a very large area, including
many suburban areas of Beijing. We limit the use of Beijing
trace to the part covering only the downtown region of
Beijing, so that the geographic scale of the Beijing trace used
is not vastly different from those of Shanghai and Nanjing
traces. A distribution map of Shanghai trace is depicted in
Fig. 2, which includes the trajectories of 1,500 taxis during
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(a) (b)

Fig. 3. Illustration of taxi GPS data preprocessing: (a) location adjust-
ment, and (b) time frequency adjustment.

one day and is superimposed on the downtown region of
Shanghai that covers an area of over 2000 square kilometers.

Among thousands of taxis, we randomly sample 1,500
taxis from the trace of each city for further processing.
Obviously, 1,500 taxis only represent a small portion of all
taxis in the city. However, since taxis operate long service
time and have much longer trajectories, they cover the
geographical topology of the city well, as shown in Fig. 2.
We also show in Section 4.3 that a larger sample size does
not necessarily contribute to a more precise model. On the
other hand, as discussed in Section 3.4, the time complexity
of the algorithm is O(N3), where N is the number of taxis.
Thus considering the tradeoff between the precision and the
timing budget, we believe that a subset of 1,500 taxis in
Shanghai is a good choice for us to investigate the network
topology and connectivity. The same number also applies
to Beijing and Nanjing trace, because the geographic scale
of Nanjing and downtown region of Beijing are smaller or
similar.

3.2 Data Preprocessing
We will use Shanghai trace as an example. Data processing
for the other two traces is similar. We need to obtain the
taxis’ locations varying with time from the taxis’ mov-
ing traces. The taxis’ coordinates reported by GPS devices
are longitudes and latitudes with a precision of 0.00001
degrees. For convenience, we convert the coordinates to
meters with a precision of 1 m and set the origin point
(0, 0) at (31.2◦N, 121.5◦E) near the center of Shanghai. We
also choose the center of the city as the origin point in the
other traces. Since the location data are measured by GPS
devices, the noise may exist in the collected data owing
to the inaccuracy of GPS devices. Also since the taxis may
not report their locations at the same time slots with the
same fixed frequency, we need to process the data trace to
obtain the accurate locations of all the taxis in the same time
slots and at the same frequency. Thus we first use the city
map to correct the taxis’ locations so that they are all in the
city’s roads, and this location adjustment is illustrated in
Fig. 3 (a), where the measured locations in sequence by the
GPS devices shown as black dots. Here, the map matching,
or named road matching problem is to find the locations
of which roads that the taxi is on. Due to measurement
noise, it is prone to error if we match each point with the
nearest road. Here, we utilized the widely used Hidden
Markov Model (HMM) [37] to find the most likely road
route that are represented by a time-stamped sequence of

latitude/longitude pairs recorded in our dataset. Note that
there is no ambiguity in mapping a point to the correct road,
because there maybe many reference points of the same taxi
trajectory that are on a road, which is suitable utilized in
the HMM model [37]. As tested by authors in [37], HMM
elegantly accounts for measurement noise and the layout
of the road networks [37]. With the road matching process,
we obtain the points/locations of the taxi in the road, and
in each road, we also obtain a more density points, even
their intervals are still large. We then use the method of
interpolation to insert the location points at the time slots
we need so that all the taxis have location information at
every ten-second interval. Referring to Fig. 3 (b), we now
explain how to carry out this interpolation.

Assume that we have the location information samples
(x1, y1) and (x2, y2) of a taxi at time points t1 and t2,
respectively, where t2 > t1. If t2− t1 ≤ 10 s, we do not need
to carry any interpolation. If t2 − t1 > 10 s, then in order
to get the location of the taxi at any time t ∈ (t1, t2), we
estimate the location (xt, yt) by the following interpolation

lt = l1 +
t− t1
t2 − t1

(l2 − l1), with l = x or y (9)

After obtaining (xt, yt), we do not need to adjust it to be
in a city’s road since all the neighboring points obtain my
the HMM road matching algorithms are straight line in
the road. Since the obtained road matching locations are in
discrete time points at the time interval of 15 s in most of the
time, we choose to calculate the position of the taxis every
10 s using this interpolation.

We now analyze the precision limit of the location es-
timation (9). In Fig. 4, the instantaneous velocity values of
taxis in Shanghai trace are depicted over the 24 hours of a
day. The results of Fig. 4 show that the taxis move slower
than 7 m/s (15 mph) over 75% of the cases during the day.
We may infer an upper bound of maximum error in 75% of
the cases as follows. Assume that during the interval [t1, t],
where t−t1 ≤ 10s, the taxi travels at the maximum constant
velocity of 7 m/s, and hence it will travel the maximum
distance of lt − l1 = 70 m. Therefore, the maximum error
in (9) cannot exceed this value in 75% of the cases. We do
have the limitation that we cannot locate the taxi precisely
between the two timestamps and thus we do not know
precisely the distance between two taxis between the two
timestamps. However, the real maximum error is much
smaller than this upper bound, since although we assume
that taxis travel at a constant velocity of 7 m/s, in reality
they are often slowed down by traffic or stopped at traffic
lights. Moreover, the position error due to the interpolation
(9) will not accumulate, as each interpolated position is
based on two true measurement samples.

After the data preprocessing, we obtain the instanta-
neous two-dimensional distribution maps of the taxis’ posi-
tions for every 10 s over the duration of a month, which then
become our data for the taxi networks in Shanghai trace.
In order to realize the time-consuming algorithm within a
reasonable time, we re-sample the data with a period of 20 s.
To study how a sampling period of 20 s affects V2V links less
than 20 s, we gather the statistics from our Shanghai trace
and depict the results in Fig. 5. It can be found that more
than 75% of the V2V links last more than 20 s given the
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Fig. 5. Duration of direct vehicle-to-
vehicle links over one day.

maximum transmission distance of 200 m, while more than
75% of the V2V links last more than 2s minutes given the
maximum transmission distance of 500 m. Clearly, by using
a sampling period of 20 s, some short (10 seconds) links are
neglected and thus our model cannot exactly characterize
those one-time-unit (10 seconds) links. Future work may
better characterize the network connectivity by considering
trajectories with a higher temporal resolution with those
short-lived link.

3.3 Calculating ORG

We now discuss how we derive ORGs from TVGs. Based
on an urban taxi mobility trace, we have a large number of
instantaneous topologies by sampling the data with a fixed
frequency 1/η. We model each instantaneous topology at
each timestamp t by the TVG, i.e. G(t). We define the edges
EG(t) as weighted edges, where the weights represent the
distances between pairs of nodes. The presence function
G(t) of TVG represents the successfully established com-
munication links in the graph and is given by

∀(i, j) ∈ EG(t) : G(t)(i,j) =

{
1, if EG(t)(i,j) ≤ d
0, if EG(t)(i,j) > d

(10)
where d is the maximum transmission distance introduced
in Sec. 2.3. Next, we can compute the opportunistic topology
of the network at time t, i.e. the ORGRδ(t), step by step. We
also extend the definition of edges ERδ (t) to weighted edges,
where the weights represent the so-called opportunistic
distances between the two vertices.

Definition 7 (Summed-Duration Direct Link Graphs). For
delay tolerance δ ∈ N+η, we define a graph Lδ(t), called
the summed-duration direct link graph at time t, where
the weight of the edge e = (i, j) ∈ Lδ(t) represents the
total duration of direct links between nodes i and j, from
time t to t+ δ.

For δ = η, the presence function Lη(t) is the same as the
presence function of the TVG, i.e.

Lη(t) =G(t) (11)

For δ = nη, we can add the weight of edges of the
summed-duration direct link graph between t + (n − 1)η
and t + nη, i.e., G(t + (n − 1)η), to those of L(n−1)η(t)
to obtain the summed-duration direct link graph Lnη(t),
which is symbolically denoted by

Lnη(t) =L(n−1)η(t) +G(t+ (n− 1)η) (12)

Definition 8 (Summed-Distance Direct Link Graphs). For
delay tolerance δ ∈ N+η, we define a graph Iδ(t), called
the summed-distance direct link graph at time t, where
the weight of the edge e = (i, j) ∈ Iδ(t) represents
the summed distance of the direct links, i.e., one-hop
journeys, between nodes i and j, from time t to t+ δ.

For δ = η, the summed distance of direct link or the
weight of edge e = (i, j) ∈ Iη(t) is equal to that of edge
e = (i, j) ∈ EG(t) with the distance less than d. Therefore,
symbolically we can obtain Iη(t) as

Iη(t) =EG(t)×G(t) (13)

where the operator × is the element-wise multiplication.
For δ = nη, we can obtain Inη(t) by adding the weights

of edges in the TVG between t+ (n− 1)η and t+ nη which
are less than d, i.e., EG(t + (n− 1)η)×G(t + (n− 1)η), to
those of I(n−1)η(t), which symbolically is

Inη(t) =I(n−1)η(t) + EG(t+ (n− 1)η)×G(t+ (n− 1)η)
(14)

Definition 9 (Averaged-Distance Direct Link Graphs). For
delay tolerance δ ∈ N+η, we define a graph Dδ(t),
called the averaged-distance direct link graph at time t,
where the weight of edge e = (i, j) ∈ Dδ(t) represents
the averaged distance of the direct links, i.e., one-hop
journeys, between nodes i and j, from time t to t+ δ.

For each pair of nodes (i, j), within the delay tolerance
δ, the averaged distance of direct link or the weight of edge
e = (i, j) ∈ Dδ(t) is equal to the summed distance of direct
links between the pair divided by the corresponding total
or summed duration of links. Symbolically, we have

Dδ(t) =Iδ(t)÷ Lδ(t) (15)

where the operator ÷ is the element-wise division. It is
notable that if an element (i, j) in Lδ(t) is 0 (Iδ(t)(i,j) should
also be 0), we define Dδ(t)(i,j) =∞.

Definition 10 (Indirect Distance Graphs). For delay toler-
ance δ ∈ N+η, we define a graph Mδ(t), called the
indirect distance graph at time t, where the weight of
the edge e = (i, j) ∈ Mδ(t) represents the minimum
summed-distance of the multi-hop links from nodes i to
j through all possible journeys, from time t to t+ δ.

Definition 11 (Minimum Distance Graphs). For delay tol-
erance δ ∈ N+η, we define a graph Bδ(t), called the
minimum distance graph at time t, where the weight
of the edge e = (i, j) ∈ Bδ(t) represents the minimum
distance to transmit between nodes i and j among all
the possible paths, both direct and multi-hop links, from
time t to t+ δ.

For each pair of nodes, the minimum distance is the
smaller one of the averaged distance of direct link and the
indirect distance, since the nodes always choose the path
with the lowest cost. Therefore, symbolically we have

Bδ(t)(i,j) = min
{
Dδ(t)(i,j),Mδ(t)(i,j)

}
(16)
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Fig. 6. Illustrative example for the relationships among various graphs,
assuming δ = 3η.

Compute Indirect Distance Graphs Mδ(t)

For delay tolerance δ = nη, there are a total of n−1 types of
indirect transmission from node i to node j. Supposing that
data are relayed at time t + kη, where 1 ≤ k ≤ n − 1, data
can be transmitted from node i to an intermediate node w
between time t and t + kη, and then be transmitted from
node w to j between time t+ kη and t+ δ. These two trans-
mission processes can be either through direct links or via
multi-hop links, and we simply define the indirect distance
as the sum of the distances in these two processes. Thus
we need to consider all possible intermediate timestamps
t + η ≤ t + kη ≤ t + (n − 1)η = t + δ − η and also
all possible intermediate nodes 1 ≤ w ≤ N to obtain the
indirect path that is the shortest. Hence, symbolically, the
indirect distance graph can be calculated from Mδ(t)(i,j) =

min
1≤k≤n−1

{
min

1≤w≤N

{
Bkη(t)(i,w) +Bδ−kη(t+ kη)(w,j)

}}
(17)

We use the simple example depicted in Fig. 6 to illustrate
the relationships among the various graphs defined in Defi-
nitions 7 to 11. Consider the edge e = (1, 2) for example, we
have

• The total duration of links or weight of L3η(η)(1,2):
1 + 0 + 1 = 2 (Definition 7).

• The summed distance of direct link or weight of
I3η(η)(1,2): 100m + 200m = 300m (Definition 8).

• The averaged distance of direct link or weight of
D3η(η)(1,2):

weight of I3η(η)(1,2)
weight of L3η(η)(1,2)

= 300m
2 = 150m (Defi-

nition 9).
• There exists one journey from node 1 to node 3 at

t = η and then from node 3 to node 2 at t = 3η.
Thus, the indirect minimum distance or weight of
M3η(η)(1,2): 50m + 30m = 80m (Definition 10).

• The minimum distance for all possible links or
weight of B3η(η)(1,2): min{150m, 80m} = 80m (Def-
inition 11).

Compute ORG
We use the minimum distance graphs, which take both
direct transmission and indirect transmission into account,
to represent the opportunistic reachability graphs (ORGs),
i.e.

ERδ (t) = Bδ(t) (18)

Finally, the presence functionRδ(t) can be acquired from
ERδ (t) according to

∀(i, j) ∈ ERδ (t) : Rδ(t)(i,j) =

{
1, if ERδ (t)(i,j) <∞
0, if ERδ (t)(i,j) =∞

(19)
Note that ERδ (t)(i,j) = ∞ in (19) is symbolically used

to indicate that the weight of ERδ (t)(i,j) is infinitely large,

Algorithm 1 The algorithm to compute ORG.
Require: The weighed edges of instantaneous topology

graph EG(t), number of nodes N , delay tolerance
δ = nη, maximum transmission distance d, and time
span T .

1: L0(t) = I0(t) = 0;
2: compute G(t) according to (10).
3: for (t = η; t < T ; t+ = η) do
4: Lη(t) = G(t);
5: Iη(t) = EG(t)×G(t);
6: ERη (t) = Iη(t)÷ Lη(t);
7: for (δ = 2η; δ ≤ nη; δ+ = η) do
8: Lδ(t) = Lδ−η(t) +G(t+ δ − η);
9: Iδ(t) = Iδ−η(t) + EG(t+ δ − η)×G(t+ δ − η);

10: Dδ(t) = Iδ(t)÷ Lδ(t);
11: for (i = 1; i ≤ N ; i+ +) do
12: for (j = 1; j ≤ N ; j + +) do
13: Mδ(t)(i,j) = min

m≤k≤n−m

{
min

1≤w≤N

{
Bkη(t)(i,w) +

Bδ−kη(t+ kη)(w,j)
}}

;

14: Bδ(t)(i,j) = min
{
Dδ(t)(i,j),Mδ(t)(i,j)

}
;

15: end for
16: end for
17: ERδ (t)(i,j) = Bδ(t)(i,j);
18: end for
19: end for
20: compute Rδ(t) according to (19).
21: return ERδ (t), Rδ(t).

i.e. no journey between i and j exists. Also we do not test
the weight of the edge ERδ (t)(i,j) against d, because d is
the maximum transmission distance for direct link between
two nodes. As long as the weight of ERδ (t)(i,j) is finite, there
must exist a journey from node i to j within the time period
from t to t+δ. Thus, we test by checking whether the weight
of ERδ (t)(i,j) is finite.

3.4 Algorithm
Given the instantaneous topology G(t), i.e., EG(t) and

G(t), and the time span T , the delay tolerance δ = nη,
the maximum transmission distance d and the number of
nodes N , we present the algorithm to calculate the ORG
Rδ(t) in Algorithm 1. In the algorithm, as can be mapped
to Eq. (10) to (19), for each time t and each pair of nodes
i and j, we calculate the minimum distances of direct
transmission and indirect transmission, respectively, and
choose the minimum distance as the smaller of the two. For
indirect transmission, in particular, we need to consider all
the possible intermediate nodes from 1 to N and all the
possible divisions of time from k = 1 to n − 1, in order to
find the smallest case. The complexity of Algorithm 1 is on
the order of O

(
n2TN3

)
. Although the computation cost is

cubic in the number of taxis, the real runtime is not so high
due to the sparse TVG and ORG where each taxi is only able
to connect a few nearby taxis.

4 OPPORTUNISTIC TOPOLOGY MODELING

We mainly use Shanghai trace in our modeling, but Beijing
and Nanjing traces are also employed in evaluation. Hence,
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Fig. 7. Evolution of (a) the component number and (b) the component
sizes of the top 5 largest components, over 2 days.

unless otherwise specifically stated, Shanghai trace is used.
To show our results, we randomly pick 2 days for Shang-
hai(Feb 5 and 6, 2007) and Beijing(May 5 and 6, 2012) trace
and 1 day for Nanjing(Jul 3, 2013) trace. For Nanjing trace,
we only use the data in one single day just to verify quickly
on our models.

4.1 Component Number

The connectivity of a taxi network is mainly characterized
by the two metrics: the number of components, denoted by
C, which reflects the level of network fragmentation, and
the component sizes, denoted simply by the set {S}, which
describes the heterogeneity of the fragmentation.

For simplicity, we limit the size of the messages so that
they could be able to transmitted within one unit period
through V2V direct link. We also assume that the temporal
resolution η is 20s, which equals to the sampling frequency
after data preprocessing as mentioned in Section. 3.2.

We initially consider the case of the network parameters
d = 100 m and δ = 10 min, as 100 m is the distance found
by field tests as a typical distance for reliable V2V DSRC,
which ensures a packet delivery ratio of around 80% in
urban environments, under common power levels of 15-
20 dBm as well as for the BPSK modulation of 3 Mbps and
the QPSK modulation of 6 Mbps [16], [17], [18]. Then, we
extend our study to d = 50 m, which is identified as the
largest distance at which V2V communication allows almost
100% of the packets to be correctly received [16], [17], [18],
d = 200 m, which is the maximum distance with a reception
ratio above 0.5 [16], [18], and d = 500 m, the maximum
distance for vehicular communication, as well as changing
the network delay tolerance from 10 minutes to 1 hour, to
analyze its impact on the network connectivity.

Analysis for d = 100 m and δ = 10 min
The evolutions of the component number C and the com-
ponent sizes {S} of the top five largest components are
depicted in Fig. 7 (a) and (b), respectively, which are aggre-
gated over 2 days and extracted from 1500 active nodes of
road traffic. It can be seen from Fig. 7 (a) that the component
number C takes a value of around 300 during the daytime
and has higher varying values at night. The results of Fig. 7
clearly show the variation of the network connectivity over
the time. In particular, we observe that the number of
components is stable during daytime and very dynamic at
night. Also, the network is highly heterogeneous, and the
largest component makes up the two thirds of the whole
network during the daytime.

0 500 1000 1500

Number of components

0

0.2

0.4

0.6

0.8

1

P
[C

≤
x
]

250 300 350
0

0.3

0.6
300 600 900

0.6

0.8

1

(a)

10
0

10
1

10
2

10
3

Component sizes

10
-6

10
-4

10
-2

10
0

P
[S
≥

x
]

(b)

Fig. 8. Distribution of (a) the number of components and (b) the compo-
nent sizes, aggregating all the samples over two days.
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Fig. 9. Distribution of the number of components when aggregating all
the samples: (a) over daytime, and (b) over nighttime.

The cumulative distribution function (CDF) of C is por-
trayed in Fig. 8 (a), where we observe that the CDF curve
has two growing parts. In two thirds of all the cases, the
taxi networks have 250 to 350 components with a relatively
fast growth. This part of the curve shows the relatively
stable connectivity of the network during the daytime with
relatively fewer components, implying that more nodes
aggregate together to form a component. The slow-growing
part of the CDF curve represents the connectivity of the
network at night, suggesting that the network connectivity
is varying and nodes are more separated than during the
daytime. Fig. 8 (b) shows the complementary cumulative
distribution function (CCDF) of {S}, where we find that the
network largely consists of singletons with a percentage of
over 80%. Moreover, nearly 99% of the components have
only 15 taxis or less, while the larger components only
account for 1% but they make up almost the whole network.

We now focus on the intriguing differences in the taxi
networks, in terms of network fragmentation, between the
daytime and the nighttime. We consider 8:30 to 22:00 as
daytime and the rest as nighttime, and we plot the CDFs
of C during the daytime and the nighttime in Fig. 9 (a)
and (b), respectively. It can be seen that the CDF of the
component number C is almost linear. Furthermore, the
slope of the CDF during the daytime is larger than that
during the nighttime. This again implies that the networks
have a relatively stable connectivity during the daytime,
while the networks are more fragmented at night.

Analysis for different d and different δ

We next study how different transmission distances d and
delay tolerances δ impact on the network connectivity. These
two factors are important since they are the range constraint
and time constraint related to the mobility of taxis. The
main plot in Fig. 10 (a) portrays the CDFs of the number
of components C during the daytime when the transmission
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Fig. 10. Distribution of the number of components C when aggregating
over all the samples of two days: (a) the CDFs for different transmission
distances d with the delay tolerance δ = 10min, and (b) the CDFs for
different delay tolerance δ with the transmission distance d = 100m. The
main plot is for the daytime, while the subplot inside is for the nighttime.

distance d varies from 50 m to 500 m with the delay tolerance
δ = 10 min, while the subplot inside Fig. 10 (a) shows the
CDFs of C during the nighttime with varying d from 50 m
to 500 m and a fixed δ = 10 min. Similarly, the main plot in
Fig. 10 (b) depicts the CDFs of the number of components C
during the daytime when the delay tolerance δ changes from
10 min to 60 min with the transmission distance d = 100 m,
while the the subplot inside Fig. 10 (b) shows the CDFs of C
at during the nighttime under the same network parameters
δ and d. It can be seen from Fig. 10 that the slope of the CDF
for the daytime is large than the slope of the CDF for the
nighttime given d and δ, which again confirms the result of
Fig. 7 (a).

Moreover, from Fig. 10 (a), we observe that the slope of
the CDF increases, while the intercept point of the CDF with
the x-axis becomes smaller, as the transmission distance in-
creases when fixing the δ value, and this is true for both the
daytime and nighttime cases. Since the slope or derivative of
the CDF is related to the probability density function (PDF)
of C while the intercept point of the CDF with the x-axis
is the minimum component number Cmin, we can see that
with the fixed delay tolerance δ, the number of components
decreases with the increase of the transmission distance. Ad-
ditionally, the maximum component number Cmax, which
is the point that the CDF reaches the maximum value of 1,
also decreases with the increase of the transmission distance,
and moreover the range Cmax − Cmin gets smaller with
the increase of d. The implication is that if devices support
communication in longer distance, they are more likely to
merge into a component in which devices can communicate
with each other and, therefore, the number of components
is smaller and more stable. Similarly, from Fig. 10 (b), we
observe that with the fixed transmission distance d, the
number of components decreases with the increase of the
delay tolerance. Again this is true for the both daytime and
nighttime cases.

We also generalize our models to Beijing trace with the
results shown in Fig. 11. It can be seen from Fig. 11 that
the number of components varies, from about 500, given
d = 500 m and δ = 10 min, to about 1,300, given d = 50 m
and δ = 10 min. Additionally, given d = 100 m, the number
of components increases from 700 to about 1,100, when δ
increases from 10 min to 60 min. Therefore, the results based
on both Shanghai and Beijing traces confirm that d and δ are
the two factors that impact on the CDF of C significantly.

The above results agree well with our intuition for
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Fig. 11. Distribution of the number of components C when aggregating
over all the samples of two days in Beijing trace: (a) the CDFs for
different transmission distances d with the delay tolerance δ = 10min,
and (b) the CDFs for different delay tolerance δ with the transmission
distance d = 100m. The main plot is for the daytime, while the subplot
inside is for the nighttime.
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Fig. 12. (a) Probability density function ofC and (b) minimum component
number Cmin, aggregating over all the samples of daytime.

opportunistic topology. In particular, they offer us useful
insights on the relationship between the CDF of C and
the two key network parameters, d and δ. Base on these
measurements and extracted knowledge, we now build a
model to predict the CDF of C for given d and δ. Such a
model is extremely valuable in analyzing the ORG and in
further studying envisaged vehicular-based communication
networks.

Uniform distribution approximation
The above empirical results extracted from both Shanghai
and Beijing trace measurements clearly indicate that the
slope of the CDF of C, i.e., the PDF of C, is an increasing
function of d and δ, while the intercept point of the CDF
with the x-axis, i.e., the minimum component number Cmin,
is a decreasing function of d and δ. For Shanghai trace, we
additionally plot the PDF of C and the minimum compo-
nent number Cmin in the case of daytime in Fig. 12 (a) and
(b), respectively, as the functions of d and δ. Also from both
Figs. 10 and 11, we observe that the CDF of C in the case of
nighttime can be accurately represented by a linear function
between Cmin and Cmax. In the case of daytime, the CDF
is more nonlinear but nevertheless can also be reasonably
approximated by a linear function.

To know the CDF of component number C for any
arbitrary d and δ, we propose the uniform distribution
approximation to avoid computing ORG and the connected
component again. This approximation can further reveal the
relation between the CDF of component number C and the
network parameters like d and δ.

The PDF of C is modeled as follows,

PDF(C; d, δ)=

{
SCDF(d, δ), Cmin(d, δ) ≤ C ≤ Cmax(d, δ)

0, otherwise
(20)
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(a) (b)

Fig. 13. Comparison of the empirical CDF(E) of C with the fitted CDF(F)
based on the uniform distribution model (20) for different δ and d =
100m: (a) the daytime case, and (b) the nighttime case.

(a) (b)

Fig. 14. Comparison of the empirical CDF(E) of C with the fitted CDF(F)
based on the uniform distribution model (20) for different δ and d =
200m: (a) the daytime case, and (b) the nighttime case.
In the uniform distribution (20), there are only two indepen-
dent parameters SCDF(d, δ), which is the derivative or slope
of the CDF, and Cmin(d, δ), since

Cmax(d, δ) =Cmin(d, δ) +
1

SCDF(d, δ)
(21)

Both SCDF(d, δ) and Cmin(d, δ) are clearly the functions of d
and δ. We use the polynomial models to fit SCDF(d, δ) and
Cmin(d, δ) according to

SCDF(d, δ) =a1 + a2d+ a3δ + a4d
2 + a5d δ + a6δ

2

+ a7d
3 + a8d

2δ + a9d δ
2 + a10δ

3 (22)

Cmin(d, δ) =b1 +
b2
d

+
b3
δ

+
b4
d2

+
b5
d δ

+
b6
δ2

+
b7
d3

+
b8
d2δ

+
b9
d δ2

+
b10
δ3

(23)

Specifically, we use the data to fit the polynomial coefficients
ai and bi. From the above empirical distribution results, we
note that when the product d · δ is small, the CDF of C in
the daytime exhibits notable nonlinearity, see for example
Fig. 9 (a). In such a case, the uniform distribution will not be
an accurate approximation to the true empirical distribution.
Therefore, we only use the data with d · δ > 1000 m ·min to
fit the uniform distribution model.

With d = 100 m and various delay tolerance values
δ, Fig. 13 (a) and (b) compare the empirical CDFs(E) of
C from the data with the fitted CDFs(F) based on our
uniform distribution model for the cases of daytime and
nighttime, respectively. Similarly, Fig. 14 (a) and (b) compare
the data based empirical CDFs(E) with our model fitted
CDFs(F) for the daytime and nighttime cases, respectively,
with d = 200 m and various delay tolerance values δ. From
Fig. 13 (b) and Fig. 14 (b), it can be seen that our uniform
distribution model (20) is an accurate model for the data

(a) (b)

Fig. 15. Comparison of the empirical CDF(E) of C with the fitted CDF(F)
based on the uniform distribution model (20) for different δ and d =
200m, in (a) Beijing trace, and (b) Nanjing trace.

based empirical distribution, for the case of nighttime. As
for the daytime situation, with the exception of d = 100 m
and δ = 10 min, our uniform distribution model (20) fits the
empirical distribution reasonably well, particular for large
value of the network parameter product d · δ.

We further apply the uniform distribution approxima-
tion on the Beijing and Nanjing traces during the daytime.
Because of the different environments, we cannot use the
same coefficients, i.e. as and bs, to approximate. Instead, for
each city, we trained the approximation model with some ds
and δs and tested them with more other configurations. In
Fig. 15 (a) and (b), almost every CDF of component number
in the two cities is approximated really well based on our
model, as it is in Shanghai trace.

We also use the correlation-based similarity measure
between the empirical CDF and the fitted CDF of the
uniform distribution model to evaluate the goodness of the
fitted CDF model. For notational convenience, denote the
empirical CDF as P (e)(c) and the fitted CDF as P̂ (c; d, δ).
Given a test data set of {c1, c2, · · · , cKt}, first compute the
means and variances of P (e)(c) and P̂ (c; d, δ), respectively,
over the test data set as

P̄ (e) =
1

Kt

Kt∑
k=1

P (e)(ck) (24)

¯̂
P =

1

Kt

Kt∑
k=1

P̂ (ck; d, δ) (25)

σ2
P (e) =

1

Kt

Kt∑
k=1

(
P (e)(ck)− P̄ (e)

)2
(26)

σ2
P̂

=
1

Kt

Kt∑
k=1

(
P̂ (ck; d, δ)− ¯̂

P
)2

(27)

Then the correlation-based similarity measure between
P (e)(c) and P̂ (c; d, δ) is computed according to

SMcor =
1

Kt

Kt∑
k=1

(
P̂ (ck; d, δ)− ¯̂

P
)(
P (e)(ck)− P̄ (e)

)
σP (e)σP̂

(28)

SMcor = 1 indicates that the two CDFs are completely
similar, while SMcor = 0 indicates that the two CDFs
are completely dissimilar. More specifically, let C(e)

min and
C

(e)
max be the minimum and maximum component numbers

specified by the empirical CDF, respectively, while C(f)
min and

C
(f)
max are the minimum and maximum component num-

bers defined by the fitted CDF, respectively. Further define
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TABLE 2
The correlation-based similarity measure (daytime case

/
nighttime

case) between the empirical CDF and the fitted CDF for various
network parameters d and δ.

δ/d 50 m 100 m 200 m 500 m

10 min / / 0.99/1.00 0.95/1.00
15 min / 0.98/1.00 0.98/1.00 0.98/1.00
20 min / 0.98/1.00 0.99/1.00 0.98/1.00
25 min 0.96/1.00 0.98/1.00 0.99/0.99 0.98/1.00
30 min 0.97/1.00 0.98/1.00 0.99/0.99 0.98/1.00
35 min 0.98/1.00 0.98/1.00 0.98/0.99 0.99/0.99
40 min 0.99/1.00 0.98/1.00 0.98/0.99 0.99/0.99
45 min 0.99/1.00 0.99/1.00 0.99/0.99 0.98/0.99
50 min 0.99/1.00 0.99/0.99 0.99/0.99 0.99/0.99
55 min 0.99/1.00 0.99/0.99 0.99/0.99 0.99/0.99
60 min 0.98/1.00 0.98/0.99 0.98/0.99 0.99/0.99

Cmin = min
{
C

(e)
min, C

(f)
min

}
and Cmax = max

{
C

(e)
max, C

(f)
max

}
.

Then our test data set is given by C ∈ {Cmin, Cmin +
1, · · · , Cmax}. Table 2 lists the correlation-based similarity
measure values between the empirical CDF and the fitted
CDF of the uniform distribution model for different network
parameters d and δ. It can be seen that for the daytime
situation, the correlation-based similarity measure between
the empirical CDF and our fitted CDF is at least 0.96 or
higher, and this indicates the accuracy of our fitted CDF
model. For the nighttime situation, our fitted CDF model
is even more accurate, as we have the correlation-based
similarity measure values of over 0.99 in all the cases.

The Kullback-Leibler divergence (KLD) measures the
dissimilarity of two PDFs, and it can also be used to validate
the goodness of the fitted PDF distribution. More specifi-
cally, the KLD between the empirical PDF p(e)(c) and the
fitted PDF p̂(c; d, δ) can be approximated by

DMKL =
Kt∑
k=2

p(e)(ck) log
p(e)(ck)

p̂(ck;α)
(ck − ck−1) (29)

where we have to obtain the empirical PDF samples p(e)(ck)
by differentiating the empirical CDF samples P (e)(ck). The
smaller the value of DMKL computed in (29), the closer the
two distributions are. Clearly, the KLD measure (29) and the
correlation based similarity measure (28) are equivalent. A
drawback of the KLD measure (29) is that differentiating
the empirical CDF samples amplifies the noise in the data.
In Table 3, we list the KLD measure values between the
empirical PDF and our fitted PDF for different network
parameters d and δ. The results of Table 3 agree with the
results of Table 2.

In summary, the component number C is steady around
300 during daytime but higher and changing a lot at night-
time. We also successfully use the same uniform model
(with different coefficients) to characterize the connectivity
both in daytime and nighttime – the CDF of the component
number can be accurately approximated by the uniform
distribution.

This distribution model provides a very convenient and
powerful tool to simulate the opportunistic topology of
taxi networks and to investigate the impact of the network
parameters, i.e., transmission distance and delay tolerance,
on the network connectivity. Together with our TVG and

TABLE 3
The Kullback-Leibler divergence measure (daytime case

/
nighttime

case) between the empirical PDF and the fitted PDF for various
network parameters d and δ.

δ/d 50 m 100 m 200 m 500 m

10 min / / 0.06/0.07 0.10/0.04
15 min / 0.13/0.08 0.10/0.09 0.09/0.05
20 min / 0.12/0.09 0.09/0.10 0.08/0.07
25 min 0.14/0.09 0.10/0.08 0.08/0.09 0.08/0.08
30 min 0.12/0.08 0.10/0.09 0.08/0.10 0.08/0.09
35 min 0.10/0.08 0.09/0.09 0.08/0.10 0.05/0.09
40 min 0.08/0.09 0.08/0.08 0.07/0.10 0.05/0.10
45 min 0.07/0.09 0.08/0.09 0.07/0.12 0.07/0.12
50 min 0.08/0.10 0.08/0.10 0.07/0.11 0.06/0.13
55 min 0.12/0.11 0.08/0.10 0.07/0.12 0.06/0.14
60 min 0.16/0.12 0.09/0.10 0.09/0.12 0.06/0.13

TABLE 4
Percentage of different sizes of components and the percentage of

component in urban area (in parentheses), which is corresponding to
Fig. 16.

Configurations Mini Medium Large

(a) 100.0%(38.9%) 0.0%(/) 0.0%(/)
(b) 97.3%(35.6%) 2.7%(51.9%) 0.0%(/)
(c) 95.1%(28.7%) 4.6%(40.6%) 0.3%(100.0%)
(d) 96.1%(22.5%) 3.7%(22.2%) 0.2%(100.0%)
(e) 97.0%(41.8%) 2.9%(25.0%) 0.1%(100.0%)
(f) 97.3%(38.8%) 2.7%(51.9%) 0.0%(/)
(g) 96.6%(34.9%) 3.3%(44.8%) 0.1%(100.0%)

ORG, the developers with our introduced characteristics
can have a better design on the delay tolerant network, like
estimating the delay of messages, tunning the critical paths
and relay nodes, etc.

4.2 Geographical Distribution of Components

We now study the geographical distribution of the compo-
nents in taxi networks based on Shanghai trace to further
investigate the impact of the network parameters, trans-
mission distance and delay tolerance, on the number of
components and component sizes. In Fig. 16(a)-(d), we
depict the snapshots of the taxi networks fragmentation
calculated from Shanghai trace at 8:00 AM, a typical heavy-
traffic time, under different d and δ, where each chromatic
circle corresponds to a component whose size is represented
by the size and color of the circle. If delay is not permitted,
almost all the nodes are isolated, as can be seen from
Fig. 16 (a). In Fig. 16 (b) and (c), the delay tolerances are both
6 minutes, but they have different transmission distances.
Longer transmission distance offers more opportunities of
communication, and therefore there are larger components
in the network in Fig. 16 (c) for d = 100 m than in Fig. 16 (b)
with d = 50 m. On the other hand, Fig. 16 (c) and (d) show
the geographical distribution snapshots for two different
δ given the same transmission distance. When the delay
tolerance is increased, big components swallow up small
ones, and in particular, the largest component becomes even
larger.

We also pick up another time in the same day and the
same time in the second day with δ = 6min and d = 50m.
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(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 16. Geographical distribution snapshot of the network components:
(a) instantaneous topology at 8:00 AM, day 1, (b) δ = 6min, d = 50m
at 8:00 AM, day 1, (c) δ = 6min, d = 100m at 8:00 AM, day 1, (d) δ =
10min, d = 100m at 8:00 AM, day 1, (e) δ = 6min, d = 50m at 12:00
PM(noon), day 1, (f) δ = 6min, d = 50m at 0:00 AM(midnight), day 1
and (g) δ = 6min, d = 50m at 8:00 AM, day 2. Each chromatic circle
corresponds to a component whose size is represented by the size and
color of the circle.

The results, as shown in Fig. 16(e)-(g), demonstrates that the
distribution and size of the components varies from time to
time, but the taxi networks are always composed of several
really large components in urban area, some surrounding
medium component and lots of isolated mini component. To
be mentioned, no large components exist in the midnight, as
shown in Fig. 16(f), and there are some smaller components
instead in the urban area.

We classify the components into three classes according
to their sizes. The components with no more than 5 nodes
are deemed mini components, and the large components
have more than 100 nodes, while the rest components with
the sizes between 6 to 99 are called medium components.
Table 4 shows the percentages of the three classes of com-
ponents, under different d and δ. It can be seen that the
mini components predominate the networks, but they may
not form the main part of the taxi networks, particularly
for the taxi networks with the transmission distance and
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Fig. 17. Evolution of the largest component size Smax over 2 days for
different delay tolerances and given the transmission distance: (a) d =
100m, and (b) d = 200m.
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Fig. 18. Evolution of the largest component size Smax over 2 days for
different transmission distances and given the delay tolerance: (a) δ =
10min, and (b) δ = 20min.

delay tolerance constraints in Table 4. The large components
actually take up the majority of the nodes in these situations.

In each class of component size, we show the percentage
of components who are located mainly in urban area in the
parentheses in Table 4. Large components, if exists in the taxi
networks, are by no doubt located in urban area. However,
only 40% to 50% of the medium components and 20% to 40%
of the mini components are located in urban area when δ =
6min. After the delay tolerance increases to 10 minutes. The
percentage of mini and medium components located in the
urban area drops to 22%. This significant drop cross-validate
our previous conclusion that the largest component in urban
area swallows up the mini and medium component.

Thus from the results in Figs. 16 and Table 4, we observe
that when the transmission distance and delay tolerance
increase, first the numbers of medium components and large
components will increase, and then the largest component
begins to swallow up many smaller ones which leads to
the decrease of the total number of components. The rea-
sons behind these observations can be inferred as follows.
Firstly and obviously, when transmission distance and delay
tolerance are small, nodes are largely isolated and com-
ponents are really small. Secondly, when the transmission
distance and delay tolerance are enlarged to d = 100 m and
δ = 6 min, isolated nodes are able to link to the near-by
medium and large components, making them larger. Finally,
after the delay tolerance is further increased to δ = 10 min,
some of the nodes in the medium components are able to
link to the largest component. Thus, they merge together,
greatly increasing the size of the largest component and
reducing the number of components.

4.3 Properties of Largest Component
To study the intriguing structures and properties of the
highly heterogeneous network topology, we cast our eyes
on the largest component, as it takes up the main part of the
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Fig. 19. Evolution of the largest component size Smax over 2 days for
different delay tolerances and given the transmission distance d = 100
m: (a)for Beijing trace, and (b)for Nanjing trace.

whole network, and most multi-hop communications take
place in it.

Component dynamics versus delay tolerance and transmis-
sion distance
Fig. 17 (a) and (b) portray the evolutions of the largest
component size Smax for different delay tolerances and
with the transmission distance d = 100 m and d = 200 m,
respectively, while Fig. 18 (a) and (b) depict the evolutions
of Smax for different transmission distances and with the
delay tolerance δ = 10 min and δ = 20 min, respectively. As
expected, Smax is an increasing function of δ and d. In gen-
eral, given d, the largest component shrinks heavily when
decreasing δ. Similarly, given δ, Smax decreases considerably
when reducing d. Additionally, the largest component size
during the daytime is more stable and much larger than the
largest component size during the nighttime. For example,
with d = 500 m and δ = 10 min, during the daytime the
largest component is really big, taking up above 90% of the
whole network, while during the nighttime, Smax shrinks
heavily to a merely 60% of the whole network, as confirmed
in Fig. 18 (a). With d = 100 m and δ = 20 min, the largest
component takes up 80% of the whole network during the
daytime, and Smax reduces to 40% of the network at night,
as can be seen from Fig. 18 (b).

We also study on the largest component in taxis net-
works in other cities. Fig. 19 (a) and (b) show the evolu-
tions of Smax obtained from Beijing and Nanjing traces,
respectively, using different delay tolerances and with the
transmission distance d = 100 m. In addition to confirm the
general observations based on Shanghai trace, the results
of Fig. 19 also indicate that there are differences among the
results extracted from Shanghai, Beijing and Nanjing traces.
To be specific, given d = 100 m and δ = 20 min, for Beijing
trace, the size of the largest component can only reach to
about 40% of the nodes in the network during the daytime,
which is much less than the figure of 80% for Shanghai trace,
while for Nanjing trace, the largest component takes up over
90% of the network during the daytime. These interesting
facts indicate that the taxis in Shanghai and Nanjing are
much easier to form a huge component due to the unique
geological characteristics of these two cities, different to
those of Beijing.

Since the dynamics of the largest component are very
different during the daytime than during the nighttime, in
Fig. 20 (a) and (b), we plot the ratios of the average largest
component size Smax to the network size N during the
daytime and the nighttime, respectively, based on Shang-
hai trace. Clearly, the largest component expands with the

0
500

0.2

0.4

400 60

S
m

a
x
 /

N 0.6

300 50

Distance(m)

0.8

40

Delay(minutes)

200

1

30100 20
0 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a)

0
500

0.2

0.4

400 60

S
m

a
x
 /

N 0.6

300 50

Distance(m)

0.8

40

Delay(minutes)

200

1

30100 20
0 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)

Fig. 20. The ratio of the average largest component size Smax to the
network size N : (a) during the daytime, and (b) during the nighttime.
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Fig. 21. Estimated network parameters of delay tolerance and transmis-
sion distance to achieve different percentages of Smax

/
N : (a) during

the daytime, and (b) during the nighttime.

increase of delay and transmission distance both during
the daytime and nighttime. For the sake of clarity, we
further plot the curves of the network parameters, d and
δ, to achieve different percentages of Smax

/
N during the

daytime and the nighttime in Fig. 21 (a) and (b), respectively.
From Fig. 21 (a), for example, we can infer that the network
will have a giant component with 80% of the nodes during
the daytime, given d = 100 m and δ = 20 min or d = 50 m
and δ = 40 min. At night and under the similar network
parameters, the largest component only takes 50% of the
nodes.

Component dynamics versus network size N
We also study how the number of network nodes N impacts
on the size of the largest component Smax. As a larger
network surely leads to larger components, we again an-
alyze the ratio of Smax

/
N . Fig. 22 (a), (b) and (c) depict the

evolutions of the ratio of the largest component size to the
network size, Smax

/
N , for different N under the network

conditions of a) δ = 10 min and d = 200 m, b) δ = 20 min
and d = 100 m, and c) δ = 20 min and d = 200 m,
respectively. Intriguingly, we observe that the percentage
of the largest component in the networks increases as the
size of the network N increases. For example, given the
network condition of δ = 10 min and d = 200 m, during
the daytime the largest component only takes around 30%
of the network’s nodes when N = 500, but the largest
component reaches over 80% of the whole network when
N = 1500. Under the network condition of δ = 20 min and
d = 200 m, the ratios Smax

/
N are approximately 55% and

90%, respectively, for N = 500 and N = 1500, during the
daytime. Also the ratio Smax

/
N is much larger and more

stable during the daytime than during the nighttime.
Another important insight we can infer from Fig. 22 is

that there is an intuitive limitation of Smax

/
N . Specifically,

for δ = 10 min and d = 200 m as well as for δ = 20 min
and d = 100 m, Smax

/
N saturates at around 80% as N



2332-7790 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2018.2878577, IEEE
Transactions on Big Data

15

(a) (b)

(c)

Fig. 22. Evolution of the ratio of the largest component size to the
network size, Smax

/
N , over 2 days for different N : (a) δ = 10min and

d = 200m, (b) δ = 20min and d = 100m, and (c) δ = 20min and
d = 200m.
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Fig. 23. CDFs of the vertex degree D aggregating all the samples over
2 days for: (a) different transmission distances d and δ = 40min, and
(b) different delay tolerances δ and d = 200m.

increases to near 1500, while for δ = 20 min and d = 200 m,
Smax

/
N saturates at around 90% as N increases to near

1500, which indicates that N = 1500 taxis are sufficiently
dense in our traces. Further increasing N , while increasing
the computational complexity dramatically owing to the
complexity of the algorithm, will only make slight changes
to our metrics.

In summary, the dynamical properties of the largest
component are inextricably bounded up with the network
parameters, specifically, the transmission distance d and
the delay tolerance δ. In particular, the size of the largest
component Smax is an increasing function of d and δ.
Furthermore, the analysis on the influence of the network
sizeN shows that Smax

/
N has an intuitive saturation value,

indicating that N = 1500 taxis are a good choice to analyze
the network connectivity, considering precision and timing
budget.

4.4 Node-level Analysis

So far we focus on the properties of the whole network
or the largest component. We now turn to the analysis
on individual node level. Specifically, we aim to find the
relationship between the vertex degree D of Definition 6
and the network parameters. In Fig. 23 (a), we plot the CDFs
of D for different transmission distances d with δ = 40 min.
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Fig. 24. Relationship expressed as isogram between node vertex degree
D and the neighbor’s vertex degree aggregating all the samples over
2 days under the network conditions of d = 50m and different delay
tolerances: (a) δ = 10min, (b) δ = 20min, (c) δ = 40min, and (d) δ =
60min.

The results show that the individual vertex degree increases
rapidly with the increase of d. In particular, with d = 100 m,
only 10% of the nodes have vertex degree over 500, and
when the transmission distance is doubled to d = 200 m,
the percentage rises to 40%, while when the transmission
distance is increased to d = 500 m, the percentage increases
to 80%. Similarly, Fig. 23 (b) shows the CDFs of the vertex
degree D for different delay tolerances δ with d = 200 m.
Observe that the individual vertex degree increases rapidly
with the increase of δ. Specifically, there are litter nodes
having vertex degree more than 500 with δ = 20 min, while
over half of the nodes can communicate with over 500
nodes in the network when the delay tolerance increases
to δ = 40 min.

Fig. 24 illustrates the relationship between the node
vertex degree D and its neighbor’s vertex degree under
the network parameters of d = 50 m and different delay
tolerances. In this figure, the numbers of pairs, i.e. (degree,
neighbor’s degree), are expressed as isogram and the de-
tails are portrayed in subplot. The high density area (with
high appearance rate) is in red and typically lying on the
diagonal. The results show the high associativity of the
network nodes. To be more exact, the nodes with high vertex
degree communicate with each other, while the low-degree
ones communicate with other low-degree devices. As the
delay tolerance increases from 10 minutes to 60 minutes,
the isograms extend to high-degree area, which means that
the whole network have more high-degree nodes whose
neighbors are also high-degree nodes as the delay tolerance
increases.

4.5 Summary and Implications
4.5.1 Results Summary
In this paper, we obtain the dynamical properties of taxi
networks by analyzing ORG model, and our main findings
are summarized as follows.

• We analyze the relationship between the component
number C and the network parameters, specifically,
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the transmission distance d and delay tolerance δ.
Empirical results obtained from both Shanghai and
Beijing traces indicate that C is an increasing func-
tion of d and δ, and the dynamical properties of C
are very different during the daytime than at night.
Moreover, it is found that the distribution of C can be
accurately approximated by a uniform distribution,
and we use the polynomial model to fit the two
parameters of this uniform distribution. Our fitted
uniform distribution is found to have high similarity
with the empirical distribution of the real network.

• We analyze the geographical distribution of com-
ponents. By categorizing the components into three
classes of mini, medium and large components ac-
cording to their sizes, we study the impact of the
transmission distance d and delay tolerance δ on
the distribution of components. The results indicate
that when d and/or δ increase, first the numbers
of medium components and large components will
increase, and then the largest component begins to
swallow up many smaller ones to become even big-
ger, which leads to the decrease of the total number
of components.

• We then focus on the largest component, in which
most multi-hop communications take place and ad-
hoc network protocols are mainly designed to oper-
ate. The results obtained from all three traces show
that the dynamical properties of the largest com-
ponent is inextricably bound up with the network
parameters, specifically, the transmission distance d,
the delay tolerance δ and the number of the total
nodes in the network N . In particular, the size of
the largest component Smax is an increasing function
of N , d and δ. Furthermore, we find that the ratio
Smax/N has an intuitive saturation limit, indicating
that N = 1500 taxis are a good choice to analyze
the network connectivity, considering precision and
timing budget.

• Finally, we focus on the individual node level, and
analyze the distribution of vertex degree D to reveal
the relationship betweenD and the network parame-
ters d and δ. Isogram plots of the node vertex degree
D and its neighbor’s vertex degree further reveal the
intriguingly high associativity of network nodes.

4.5.2 Implications
From the above analysis and summary, we observed taxi
networking neighborhoods to be heterogeneous and as-
sortative. Apart modeling the network connectivity and
components for performance evaluations, these results and
findings are highly relevant to the design of protocols for
both vehicular-to-infrastructure and vehicular-to-vehicular
communications. For example, our findings imply that one
taxi is able to move quickly from an isolation component to
being part of dense components with larger scales of con-
nected taxis. Thus, in such highly time-varying dynamic en-
vironment, networking protocols and algorithms of power
control, medium access control, data rate adaptation, etc.
must be designed for rapid adaptability to the surrounding
dynamic communication environment. Furthermore, we can
use the observations with different system parameters of

component number, largest component, node degree to de-
sign algorithms and protocols, and deploy them in different
areas of the city according to the observed patterns of
geographical distribution of components.

Another example is that from our results of low avail-
ability and limited reliability of large components when the
tolerant delay is short, we obtain the evidence that it is
difficult for routing or disseminating content within a purely
ad-hoc taxi network. Then, intra-component connectivity,
carry-and-forward transfers, and multi-hop routing proto-
cols are needed. Our results under different tolerant delay
and transmission time provide insights for the protocol and
algorithm designs in these scenarios.

Overall, all the observations obtained in this paper reveal
the spatio-temporal heterogeneity of vehicular connectivity
revealed by the taxi networks. Therefore, these results stress
that it is important to consider realistic and large-scale
vehicular mobility datasets that comprise varied road traffic
conditions in both the design and evaluation of vehicular
networking protocols. They also suggest the dramatic im-
portance of highly adaptive MAC and networking layer
solutions to achieve effective vehicular-to-infrastructure and
vehicular vehicle-to-vehicle communications by such oppor-
tunistic network connectivity.

5 RELATED WORK

Recently, there have been continuous investigations to study
vehicular mobility characteristics from various perspectives,
and different mobility models have been proposed and
studied. The study [19] considered three categories of mo-
bility: macro-mobility, micro-mobility and bus network fea-
tures. The work [20] also analyzed the mobility framework
with macroscopic and microscopic metrics. The study [21]
combined the stochastic model with traffic stream, car-
following and flows-interaction to set up their simulation.
Also there exist related works studying the mobility in
different road conditions. For example, the work [22] fo-
cused on the mobility in intersections and two-dimensional
road topology. Research [23] concentrated on the highway
model and the work [24] was based on the lattice-shaped
road network. However, our study is more generic since
we consider the real urban cities – Shanghai, Beijing and
Nanjing. The mobility model in our work is based on the
real-world taxi traces, rather than a simulation trace. Most
importantly we consider the networking problem with the
two key network parameters, transmission distance and
delay tolerance.

To study network topology, researchers have proposed
various topology models based on different datasets and
assumptions. For example, the studies [16], [25] investigated
the instantaneous topology of a large-scale urban vehicular
network. More specifically, Naboulsi and Fiore [16] studied
the availability, connectivity and reliability of urban vehicu-
lar networks, based on a simulating vehicular dataset which
may not reflect the true real vehicular behaviors in urban
scenarios. The study [26] shares the same problem of [16] by
only using a simulation trace, and the metric of node degree
used in [26] is too simple to delineate the network topology.
On the other hand, based on a real trace, the study [27]
concentrated on the algorithms to improve the efficiency of
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computing transitive closure of the networks. However, in
their analysis, the authors of [27] only used 536 taxi nodes,
which is far less than the number of nodes in our analysis.
The Bologna dataset used in the study [28] is a good source
of public dataset since the features of this dataset match
well to those inferred from navigation services. However,
there is no evidence that this dataset can be used to charac-
terize the microscopic metrics, like dynamical connectivity
in our study. Luo et al. [25] presented the characteristics
of Shanghai trace, and used this real-world taxi dataset to
discuss the connectivity and network performance, includ-
ing link duration, average hops and connection rates. The
connectivity in the study [25] is based on instantaneous
metrics. The works [16], [22] also used an instantaneous
model to characterize VANETs. Although the studies [20],
[27] analyzed the temporal connectivity, it is actually the
evolution of instantaneous topology. By contrast, our study
aims to reveal the opportunistic topology in taxi networks,
which is fundamentally different from the instantaneous
topology. Moreover, our study employs three real-word
large-scale taxi traces to calculate and to verify the proposed
model and concepts and, therefore, our analysis reflects well
the real taxi network behaviors in urban scenarios.

To compute the transitive closure of the time-varying
graphs, Glacet et al. [13] also propose their way. However,
they ignore the transmission distances in their graph, only
assuming the link exists or not. In our model, we take the
transmission distances into account, and research mainly
on the effect of changing the transmission distance. Our
algorithm can well support the computation of reachability
graphs considering the transmission distance.

There exist many studies investigating the potential
impacting factors on the connectivity, including topology,
traffic signals, and vehicle traffic behaviors [19], [23], [29].
For example, Marfia et al. [29] focused on the stop-and-
go behavior of traffic to study how it can cause network
congestion and affect the connectivity. Artimy et al. [23]
investigated the connectivity in VANETs and examined how
the relative velocity as well as the number of lanes impact
on the connectivity. Glacet et al. [13] research on the effect
of store-carry-and-forward on the connectivity. Osman et al.
[30] introduced the robustness model and analyze the effect
of market penetration and traffic density on the robustness.
Hou at el. [31] investigated the effect of component speed on
the component size. Among various potential factors that
influence the connectivity, the mobility is of greatest impor-
tance. Some studies [19], [32], [33], [34], [35], [36] did aim to
explore the relationship between connectivity and mobility.
However, all these works either study this relationship in
general wireless networks [32], [33], [34], analyze the prob-
lem in a theoretical way [19], [35], [36], or analyzing some
particular aspects of the network connectivity [13], [30], [31].
Thus, our study is the first work to reveal the fundamental
properties and models of the opportunistic topology of taxi
networks and to characterize the opportunistic connectivity
in a large-scale urban mobility environment.

6 CONCLUSIONS AND FUTURE WORK

We have characterized the opportunistic topology of taxi
networks in real urban mobility environment in terms of

connected components based on the ORG model. The op-
portunistic topology is largely different from the instanta-
neous topology without considering delay tolerance. Using
real-world taxi traces in three big cities, i.e. Shanghai, Beijing
and Nanjing, we have the in-depth analysis on how the
opportunistic topology is affected under different network
parameters, i.e. delay tolerance and transmission distance.
The main metrics we use, i.e. the number, location and
evolution of connected components and the size of the
largest component, allow us to summarize the opportunistic
topology in a high level on how nodes are temporally
clustered and isolated.

Our study can be enhanced in several aspects. Firstly
and obviously, we will revise the ORG model to better
characterize the multi-hop process, for example, by intro-
ducing the concept of energy budget, etc. Secondly, from
the dynamical connectivity property, we would like to ob-
tain some other fundamental properties of the network,
including throughput, that are capable of explaining critical
performance of vehicular based communication networks.
Finally, we will further consider the implementation of our
theoretical models and analysis to the design, deployment
and use of VANET’s in real-world urban environments.
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