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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES 

Mechanical Engineering 

Thesis for the degree of Doctor of Philosophy 

STATIC AND DYNAMIC ANALYSIS OF REPETITIVE STRUCTURES 

Abdull Karim Ashari 

In this thesis, a one-dimensional (beam-like) repetitive pin-jointed structure with point 

masses located at nodal cross-sections is analysed with the aim to provide a simple physical 

explanation for the existence of frequency-propagation zones and decay zones. 

Two forms of dynamic transfer matrix are derived for the model structure: the displacement-

force transfer matrix G, and the displacement-displacement transfer matrix H; the focus is 

on the relationships between the two, including their respective (dis)advantages.  Similar ity 

matrices are introduced to relate G and H, together with their respective metrics.  Symplect ic 

orthogonality relationships for the eigenvectors of both G and H are derived, together with 

relationships between their respective sets of eigenvectors.  New expressions for the group 

velocity are derived.  For repetitive structures of finite length, natural frequency equations 

are derived employing both G and H, including phase-closure and the direct application of 

boundary (end) conditions. 

The wave propagation and decay characteristics of the model structure are described in 

depth.  The existence of propagation zones is explained in terms of phase-closure (implying 

a natural frequency) over the cross-section at the cut-on frequency, and phase-closure over 

the smallest axial unit – the repeating cell – at the cut-off frequency; these zones can 

therefore be regarded as extended resonances.  Wave interaction between branches 

displaying normal and anomalous dispersion is explained in terms of the Krein signature, 

and leads to attenuating waves.  At frequencies below cut-on, waves are generally monotonic 

evanescent, while above cut-off they are generally oscillatory evanescent. 

Energetics of different wave types under the new taxonomy is investigated.  Equations for 

energy and power are derived in terms of eigenvectors of G and H.  Numerical results for 



 

 

axial phase velocity and group velocity of the different modes show some familiar and some 

peculiar phenomena.  Condition for maximum group velocity is proposed.  Numerical study 

on anomalous dispersion reveals that pin-jointed structure which allows negative eigenva lue 

to occur under static self-equilibrating load will presage anomalous dispersion under 

dynamic condition.  

The solution of a two point boundary value problem is numerically stable when one employs 

the Riccati transfer matrix method.  An alternative numerically stable transfer matrix 

method, which is more direct and transparent, is developed for a repetitive structure fixed at 

one end, and subject to point-wise distributed loading, with and without an intermed iate 

support.  This is achieved by constructing mixed column vectors of participat ion 

coefficients, so that spatial evolution involves multiplication by powers of the eigenva lues 

which are less than or equal to unity. 
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Chapter 1: Introduction 

1.1 Repetitive structures 

Repetitive, or periodic, structures are one with spatially repeating substructure connected 

together end-to-end and/or side-by-side in a regular pattern to form the entire structure which 

could be one-, two- or three-dimensional.  Other terms have also been used such as modular, 

cellular, chain-like, lattice-like and reticulated [1]; ‘cellular’ is typically used to describe 

honeycomb-like structures but has also been used for other porous structures with irregular 

cell patterns such as foam.  The substructure could be translationally or rotationa lly 

symmetric in at least one axial direction and may consist of beams, bars, flat plates, shells 

or point masses with various support conditions.  The points or nodes where the structural 

members are connected are called couplings, joints or junctions—basically, they define the 

degrees of freedom that the substructure has.  The locations of the coupling along the axial 

direction are called stations, or sections, and they are usually enumerated for analysis.  

Physical parameters, such as displacement and force, are usually defined at the couplings.  

In the case of a finite structure, the end conditions will also be specified. 

In structural engineering, many structures have been, and can be, treated as repetitive.  This 

includes railway track, oil pipeline, multi-storey building, elevated highways, bladed disk 

(blisk), aircraft fuselage, spacecraft boom, layered composite and stiffened plates in 

aerospace and ship structures.  All these structures can be regarded as being constructed from 

a repeating substructure.  For example, the railway track can be discretised into regular 

sections of steel rails supported by a sleeper that is resting on the ballast.  Oil pipeline can 

be constructed from repeating units of hollow cylinders.  Multi-storey building may be 

regarded as stacks of regular floor pattern while elevated highways may consist of many 

spans of railroad with supports from the ground.  Unlike previous examples, a blisk is 

rotationally repetitive—consisting of a blade attached to a sector of the central disk.  An 

aircraft fuselage can be built up of repeating rings that are constructed from the fuselage 

skin, longerons and stringers.  A spacecraft boom usually takes a beam-like truss form with 

a regular pattern of bar members.  A composite is formed from different layers and generally 

anisotropic, however its properties can be regarded as repetitive, at least in one direction.  

Large transport such as aircraft and ship employed stiffened plates construction which can 

be modelled as a repeating pattern of plate attached to stringers and a set of fasteners. 
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In the design of these structures, the static and dynamic loads that they may experience need 

to be considered.  For example, railway track and elevated highways are exposed to the 

moving weight of the vehicles, pipe lines and buildings may be subjected to tremor and 

earthquakes, bladed disks are impacted by high pressure and turbulent air flow, and aircraft 

structures are impinged by the vibration and noise from the jet engines.  Spacecraft boom 

tend to be long and light which means it is susceptible to long sustained vibrating motion, 

particularly in space environment. 

The use of repetitive structures in engineering design offer many advantages.  Analysis of 

such structure can be reduced to a single repeating substructure by taking its spatial 

periodicity into account.  As its construction is also repetitive, it offers a cost effective design 

solution.  Maintenance and repair of the structures could be reduced to a minimum number 

of concerned sections.  In the case of pin-jointed structures, removal of members from such 

a structure can turn it to a mechanism, allowing it to collapse and take a compact form for 

ease of transportation; these attributes are favourable in aerospace application.  Repetitive 

structures are also known to have frequency filtering property which can be exploited to 

control the vibrations that go through them.  Furthermore, the structures portray aesthetica lly 

pleasing appearance. 

In this chapter, a review of previous work on repetitive structures is presented in Section 1.2.  

Different methods which have been developed to analyse the structures are described briefly, 

particular emphasis is given on transfer matrix method which is employed in this thesis.  

Other aspects considered in this review are energetics and natural frequencies of the 

structures.  In Section 1.3, motivation, aim, objectives, scopes and organisation of this thesis 

are presented. 

1.2 Literature Review 

1.2.1 Modelling and analysis of repetitive structures 

The simplest model of repetitive structure is an infinite mass-spring chain as shown in Figure 

1.1(a).  The chain consists of point masses and massless springs (between the point masses).  

The substructure can take two symmetric1 constructions—a cellular or a cross-sectional 

forms.  The former consists of one-half of a point mass m  each on its left- and right-hand 

                                                                 

1 A substructure which consists of a spring and a point mass m is asymmetric and leads to asymmetric 

stiffness matrix. For further details, see Brillouin [83], page 82. 
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sides and a spring connecting the two one-half masses in between, as shown in Figure 1.1(b).  

The latter consists of a point mass and two springs pin-jointed on either side of the mass, as 

shown in Figure 1.1(c). 

 

 

(a) 

 

(b) 

 

(c) 

Figure 1.1 (a) A segment of infinite mass-spring chain.  (b) nth cell.  (c) nth cross-

section. 

 

Consider a dynamic problem whereby the chain is excited harmonically.  The displacement 

of a point mass is given by  exp id t  where d  is the peak displacement amplitude, 

i 1  ,   is the angular frequency and t  is time; hence its velocity and acceleration are 

 i exp id t   and  2 exp id t  , respectively.  First, consider the formulation for the 

cellular substructure.  Assume the n th displacement is numerically larger than  1n  th and 

positive forces are defined according to the normal conventions.  Upon applying Newton’s 

Second Law to the left- and right-hand sides of the cell, the resulting equations of motion 

are 

      ......

 (n   1)  (n)  (n + 1)

x

 

 (n   1)  (n)

m/2 m/2

 d (n   1)

 f (n   1)  f (n)

 d (n)
  

 (n)

k [d (n + 1)   d (n)]
m

k [d (n)   d (n   1)]
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2

1 1 1
2

m
k d n d n f n d n


           (1.1) 

        
2

1
2

m
f n k d n d n d n


         (1.2) 

where f  is the traction force peak amplitude, k  is the spring constant and m  is the mass; 

the terms  exp i t  have been cancelled out from the equations.  Note that the indicial cross-

section numbers are enclosed within the parentheses.  The equations can be re-arranged in 

dynamic stiffness matrix form as 

 
 

 

 

 

2

2

1 12

2

m
k k

f n d n

f n d nm
k k





 
       

    
       

  (1.3) 

or, in displacement-force transfer matrix form as 

 
 

 

 

 

2

2

2
2 2

2 2

1
1

2 1

1
1 1 1

2 2

n

n n

kd n d n

f n f n
k





 

 

 
 

    
                    

  (1.4) 

where 2 /n k m  . 

Now, consider the formulation for a cross-sectional substructure.  Following the same 

procedures and applying Newton’s Second Law to the cross-section leads to the following 

equation of motion, 

          21 1kd n kd n kd n kd n m d n               (1.5) 

which can be simplified to 

      
2

2
1 2 1 1 0

2 n

d n d n d n




 
      

 
  (1.6) 

or, in the displacement-displacement transfer matrix (also known as recurrence matrix) form 

as 

 
 

 

 

 
2

2

0 1
1

1 1 2 1
2 n

d n d n

d n d n




 
    

               

.  (1.7) 
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Again, note that the terms  exp i t  have been cancelled out from the equations.  The 

vectors    
T

1 1d n f n     and    
T

1d n d n    are called state vectors.  Evidently, 

the two different sub-structural constructions lead to different forms of transfer matrix.  

While both forms of transfer matrix have been employed in previous work on repetitive 

structures, the displacement- force transfer is found to be more prevalent.   

As equations (1.4) and (1.7) describe identical systems, they must be intimately related.  In 

fact, equation (1.5) can be derived from equations (1.1) and (1.2) as follows: write 

      
2

1
2

m
f n kd n k d n

 
     

 
,  

      
2

1
2

m
f n k d n kd n

 
     

 
,  

and then add the two equations.  In the static problem of a finite structure, the boundary 

conditions are specified, that means either displacement or force at the ends is known.  

Therefore, it is desirable to employ displacement-force transfer matrix in the static case.  

However, in the dynamic problem, the harmonic response can be evaluated from the 

displacements, therefore the displacement-displacement transfer matrix is more appropriate.  

Dimensionality of repetitive structures is defined according to the number of axial directions 

in which waves are allowed to propagate through the structures.  For example, the mass-

spring chain is considered to be mono-coupled one-dimensional structure because the wave 

can propagate in one axial direction only.  For structures with multi-couplings at the cross-

sections, multiple modes may propagate simultaneously.  Figure 1.2 (a) shows a beam-like 

framework and can be regarded as a more complex version of the mass-spring chain; the 

springs are now represented by straight lines.  The framework has two layers of point masses 

and two degrees of freedom at each joint, the diagonal springs are not connected where they 

intersect.  Even though the framework has multiple couplings, it is considered to be one-

dimensional because the normal wave modes can propagate only in the x-axial direction.  

The mass-spring system can also be extended in two dimensions to form a mass-spring net 

as shown in Figure 1.2 (b), and in three dimensions as a mass-spring lattice as shown in 

Figure 1.2 (c).  (The three-dimensional lattice appears similar to the atomic structure of pure 

crystals.)  Waves can travel in both x- and y-directions through the mass-spring net, and in 

all three axial directions through the mass-spring lattice. 
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All repetitive structures exhibit frequency filtering property, i.e. a particular wave mode is 

allowed to propagate through the structure over certain frequency band(s) only.  Outside the 

propagation band, the wave decays2 exponentially.  This phenomenon has been attributed to 

complex interference pattern of transmitted and reflected waves at the boundaries of each 

cell [2].  However, one may argue that if a portion of the wave energy is reflected back to its 

source, then the wave should get attenuated.  This implies that wave propagation is not 

possible, particularly through infinite repetitive structure wherein a portion of the wave 

energy is more likely to get reflected.  Two-dimensional repetitive structures also have 

spatial filtering property, i.e. a particular wave is allowed to propagate over certain angular 

band at a given frequency.  This property is called the beaming effect [3]. 

 

x

y z

 

   (a)     (b)     (c) 

Figure 1.2 (a) A segment of beam-like framework. (b) A segment of mass-spring 

net. (c) A mass-spring lattice.  The internal connections of spring are not 

shown. 

 

There are many methods which have been developed to analyse repetitive structures.  

Reviews of the methods are provided by Noor and Mikulas [4], Mester and Benaroya [5] 

and Mead [6].  In Noor and Mikulas’ review, the methods are grouped in four classes, 

namely: 

(a) Direct method in which the structure is separated into discrete elements and solved using 

methods applicable to framework problem. 

                                                                 

2There are three different types of decay—attenuating, monotonic evanescent and oscillatory evanescent.  In 

Chapter 3, the three types of decaying wave are distinguished and described in detail. 
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(b) Discrete field method in which the displacements on either side of the repeating cell are 

related by finite difference equations, as described by Stephen and Ghosh [7] and Stephen 

and Zhang [8] but they inadvertently called the method as ‘direct’ field. 

(c) Periodic structure approach which typically employs a transfer matrix relating a state 

vector consisting of nodal displacement and force components on either side of the repeating 

cell. 

(d) Substitute continuum, or homogenization, approach in which original structure is 

replaced by a continuum model whose properties are in some sense equivalent to the origina l 

structure. 

Method (a) is computationally inefficient for large structure as it does not exploit its 

periodicity.  Method (b) does exploit periodicity of the structure; however, Noor and Mikulas 

[4] commented that the method will become involved for structures with complex geometry.  

Method (b) was employed by Karpov et al. [9] for pin-jointed beam lattice;  according to 

them, the method was commonly used as an alternative to finite element method where 

saving in computational effort is possible, but recent advances in computer performance and 

the rise of other alternative methods have made this method less interesting.  Approach (c) 

also exploits periodicity of the structure, for example, mass-spring chain and truss structure 

was studied by Engels and Meirovitch [10] using approach (c).  When commenting on the 

approach, Noor and Mikulas [4] gave a restrictive remark by stating that the method is 

“efficient only for rotationally periodic structures and lattices with simple geometries”.  A 

more recent development has shown that the approach can be employed even for complex 

structures, especially when combined with other methods, such as finite element method.  

Approach (d) also exploits periodicity of the structure.  According to Stephen and Zhang [8], 

this approach is suitable in the study of global, rather than local, behaviour of the structure 

and in areas where it is common for engineers to think in terms of continuum properties.  

Continuum modelling has been employed by Noor and Mikulas [4], and Tollenaere and 

Caillerie [11] on lattice structures.  Approaches (c) and (d) can be combined to solve static 

and dynamic problems.  For static problems, eigenanalysis and continuum modelling of pin-

jointed straight, curved, asymmetric and pre-twisted beam-like repetitive structures have 

been considered by Stephen and his co-workers [7,12–14].  For dynamic problem, the 

approaches are employed by Stephen and Zhang [8] on structures that exhibit tension-tors ion 

coupling. 
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Mester and Benaroya [5] also named four methods that are used in dynamic analysis of one-

dimensional repetitive structure, they are finite element method (FEM), transfer matrix 

analysis, wave propagation analysis and continuum modelling.  FEM involves modelling of 

the structure using commercial FE packages and element libraries; mass and stiffness 

matrices of the structure are found and post-processed by applying harmonic excitation 

through the structure [15].  This leads to eigenproblem whose solution yields the dispersion 

relations for free wave modes.  Finite element analysis of periodic structures has been 

presented by Duhamel et al. [16].  For large structure, direct implementation of FEM may 

not be computationally efficient.  Therefore, FEM can be used together with transfer matrix 

analysis; the repeated cell is analysed by FEM to obtain its properties and then transfer 

matrix method is used to evaluate the behaviour of overall structure.  An example of 

combined finite element and transfer matrix method is presented by Bhutani and Loewy [17].  

The wave propagation analysis is conceptually similar to the wave receptance analysis 

introduced by Mead in [18].  The method is based on receptance matrix which is the inverse 

of dynamic stiffness matrix.  Translational symmetry allows one to write R Ld d  and 

R Lf f ; applying the periodicity relations to the transfer matrix equation leads to quadratic 

eigenvalue problem for   (for a given frequency  ).  Continuum modelling is the same as 

substitute continuum approach described earlier.  Note that the FEM is a numerical method 

while the other three methods are analytical.   

An exposition of the methods developed at the University of Southampton since 1964 until 

1995 to analyse repetitive structures are presented by Mead [6].  One of the many methods 

described in the exposition is the transfer matrix method.  In this thesis, transfer matrix is 

the primary method used for both static and dynamic analysis; detailed review of the method 

is presented in Section 1.2.2.  In the paper [6], Mead also reviewed some theorems relating 

to wave motion in periodic structures developed by Southampton researchers; one of the 

theorems is phase closure principle which states that natural frequency occurs when the total 

phase change of a wave circumnavigating a finite structure is an integer number of 2π .  

Detailed description of the principle is available in a separate paper by Mead [19].  At the 

end of the review, it is interesting to find out that Mead concluded the paper with the 

following statements: “Despite the numerous studies of wave motion in continuous periodic 

systems over the past 40 years, a simple physical explanation has yet to be presented for the 

very existence of frequency-propagation zones and attenuation zones.  However, even if 

there is no simple answer to the question “Why does wave motion of one frequency 
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propagate freely while motion of another frequency is attenuated?”, reliable prediction 

methods do exist for the properties of free motion and the magnitudes of forced motion.” 

In recent years, the research on repetitive structures has been reinvigorated by the discovery 

of unusual physical phenomena associated with phononic crystals and (acoustic or elastic) 

metamaterials [20].  A phononic3 crystal is a composite with spatially regular construction 

that resemble a crystalline material.  On the other hand, an acoustic or elastic metamater ia l 

is a (phononic) material that exhibit properties beyond what is found in natural material such 

as negative refraction; its key feature is the presence of local resonance [21].  Unique 

properties of the phononic crystals and metamaterials can be exploited for numerous 

applications.  For example, the phononic crystals have been developed for vibration filter ing, 

noise control and defect detection while metamaterials have been employed in sound and 

vibration isolation, subwavelength focusing and cloaking—an effect observed when the 

acoustic or elastic wave is steered around an object within the metamater ials (see [20,22] 

and references therein).  The similarity in analysis of wave motion through all forms of 

repetitive structures lies in the concept of a band diagram which is a plot relating frequency 

(or energy) to the wavenumber. 

Wave modes in the repetitive structures can be modelled using Floquet-Bloch theorem [23].  

According to the theorem, a solution is represented by a wave vector multiplied by a transfer 

function. Spatial periodicity of the structure implies similar periodicity for the wave vector, 

i.e. a pattern described by the wave vector components is unique to within a scalar multiplier.  

This leads to an eigenvalue problem whose solution relates the frequency to the 

wavenumber.  In the asymptotic approach, the physical field components in the wave vector  

such as displacements are usually approximated by Fourier expansions [24].   

The dynamic behaviour of repetitive structures can also be described by an asymptotic 

homogenisation approach, which is useful where finite element method is too 

computationally intensive, and has been demonstrated on numerous dynamic problems; for 

example, Boutin and Hans [25] employed the method to study vibrations of periodic mult i-

frame model that resembles an idealised building structure.  Typically, asymptotic 

homogenisation is applied to cases where the wavelength of the propagating mode is 

considerably large in comparison to the size of a unit cell, therefore the classical approach 

of the asymptotic homogenisation theory is usually limited to low frequency.  To overcome 

                                                                 

3 In analogy to the quantised light particle called photon, the discrete quantity of vibrational energy and 

sound that propagate through the crystal is known as phonon.  
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this limitation, Craster et al. [26,27] developed a high frequency asymptotic procedure by 

perturbing about the high cut-off frequency of the propagation mode.  This approach is 

similar to the classical asymptotic homogenization; the difference is it involves perturbation 

away from the cell resonances rather than perturbing away from the static limit. 

In the two-scale asymptotic homogenisation approach, the analysis performed provides the 

macroscopic equations that govern the structure behaviour at both low and high frequency.  

Spatial variables are scaled by a small parameter which characterises the size of the smallest 

unit cell [22].  Scaled and unscaled variables are then treated independently from each other.  

Asymptotic expansions of the unknown physical fields are introduced in ascending powers 

of the small parameter, this represents perturbations away from the leading approximation.  

Integration over the unit cell domain provides homogenised equations that describe the 

behaviour of the structure on a larger scale.  In other words, the resulting equation is 

characterised by the integrated parameter that is valid over the short scale of the cell but does 

not affect the large scale substructure in the problem. 

The high frequency homogenisation method is a powerful tool for the analysis of the 

dynamic response of repetitive structures, including phononic crystals and metamater ia l.  

The method was demonstrated on a two-dimensional and a piecewise homogeneous string 

on a Winkler foundation by Craster et al. [26].  The method was also applied to a model of 

diatomic chain whereby each type of mass vary gradually with position, and to a square 

lattice with alternating masses [27].  Nolde et al. [28] illustrated the versatility of the method 

on nets created from elastic strings with point forcing.  The results are compared with exact 

solutions; it is noted that the asymptotic techniques are able to capture the relationship 

between frequency and wavenumber where they become close or cross, including within the 

decay band.  Craster et al. [29] also considered the asymptotic techniques on Bloch wave for 

a class of three-phase checkerboard media which are known to have unusual negative 

refraction property at high frequency.  Interesting effects are revealed from the study such 

as lensing and cloaking. 

More recently, Fossat et al. [30] derived asymptotic homogenised models for a ribbed plate 

with local resonances.  The high frequency homogenisation method was extended to a mass-

spring chain and framed reticulated beams by Rallu et al. [31] and further developed in [32].  

In reference [33], the accuracy of the homogenisation method is compared with the 

condensed wave finite element on a model framed structure; it is noted that computationa l 

efficiency of the latter method can be improved by reducing the internal nodes of a unit cell.  
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Several state-of-the-art methods have also been developed to study cyclically repetitive 

structures.  The nature of such structures imposes a cyclic structure on their mass and 

stiffness matrices whose properties are described by the theory of circulants; a detailed 

application of the theory to vibration analysis is presented by Olson et al. [34].  The special 

properties of cyclic symmetry are expressed quite naturally by the group representation 

theory.  Therefore, one of the promising approaches combines the group representation 

theory with FEM [35].  A key step in the approach is selecting a local coordinate system that 

is symmetric with respect to each node.  In [35], the approach is used to evaluate the dynamic 

characteristics of a defective planetary reduction gear.  Another important approach is the 

transfer matrix method which is usually used in the evaluation of natural frequencies and 

normal modes [35]; the results can be verified against numerical and experimental findings.  

Mencik [36], proposed a wave finite element approach for computing wave modes and 

forced response of a single and an assembly of blades set with a ring connection, and the 

inner circumferential boundary is subjected to a distributed excitation.  In this approach, a 

finite element model of a substructure is constructed and dynamic flexibility matrices are 

derived from it before further analyses are made.  Numerical results show that the approach 

requires less computation time, is numerically more stable and more accurate than the FEM 

and the existing theory of cyclic symmetry, particularly at high frequency and as the number 

of periodic structures considered increases.  

1.2.2 Transfer matrix method 

Consider a beam-like framework as shown in Figure 1.3; the basic construction of the 

framework is similar to the mass-spring system shown in Figure 1.2(a) except for the missing 

point-masses and additional network of springs which add extra thickness to the structure.  

The framework has been employed extensively as a model structure by Stephen and his co-

workers [1,12,37–39] for static analysis of repetitive structures and is used in this section to 

illustrate the implementation of the transfer matrix method. 
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Figure 1.3 (a) N cells of repetitive framework.  The force directions are shown 

according to the normal conventions, that is positive for tension and 

negative for compression. (b) Nodal displacements on the left- and right-

hand side of nth cell.  (c) Nodal forces on the left-hand side of nth and 

 1n  th cells. 

The force and displacement vectors, F  and D , for the nth cell are related by stiffness 

equation F = KD, or in partitioned form 

 
 

 

 

 
1, 1 1,

,  1 ,

1 1n n n n

n n n n

n n

n n

  



      
    
    

K KF D

K KF D
.  (1.8) 

By convention, the force at section  1n   is positive when the components are parallel to 

the coordinate directions.  Since all cells within the structure have identical stiffness matrix 

K , the subscripts  1n   and  n  within K  are replaced by subscripts L and R for left- and 

right-hand side, respectively; however, the subcripts  1n   and  n  are retained as indices 

for the state vector.  One then has 

 
 

 

 

 
LL LR

RL RR

1 1n n

n n

      
    
    

F DK K

F DK K
.  (1.9) 
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In the transfer matrix method, the nodal displacements and forces at the left-hand side of the 

nth cell are combined into a single state vector of displacement and force, 

     
T

T T

L 1 1 1n n n     s D F .  The state vector at the left-hand side of the next cell 

is      
T

T T

L n n n   s D F .  The two state vectors are related by the transfer matrix G  

through the equation    L L 1n n s Gs , the subscript L can be omitted.  The transfer matrix 

G  for the nth cell is constructed by partitioning and re-arranging stiffness matrix K , that is 

by expanding equation (1.9) and re-arranging in accordance with    1n n s Gs  to get  

 

1 1
DD DF LR LL LR

1 1
FD FF RL RR LR LL RR LR

 

 

   
    

    

G G K K K
G

G G K K K K K K
.  (1.10) 

The two blocks on the leading diagonal of G , that is 
DDG  and 

FFG  are found to be 

independent of the  Young’s modulus E , while the blocks 
DFG  and 

FDG  are proportional 

to 1E  and E , respectively [39].  E  is typically large, e.g. 200E   GPa for steel; as a result, 

the blocks could have largely disparate values and this could lead to ill-conditioning.  Further 

details on ill-conditioning and numerical instability are presented in Section 1.2.6. 

In the static case, setting    1n n s s  where   is the (piecewise exponential) decay (or 

transmission) factor, leads to the eigenvalue problem    n G I s 0  in which I  is the 

identity matrix.  The eigenvalues and eigenvectors can be found numerica lly using 

MATLAB’s eig command.  Alternatively, a quadratic eigenvalue formulation involving the 

partitioned stiffness matrix can be found as follows: expand equation (1.9) as  

      LL LR1 1n n n    F K D K D   (1.11) 

      RL RR1n n n  F K D K D .  (1.12) 

Multiply equation (1.11) by  , substitute    1n n D D  in equations (1.11) and (1.12) 

and add, to give 

    2

LR LL RR RL 1 0n       K K K K D ,  (1.13) 

which can be tackled as a “lambda” matrix4 problem.  Equation (1.13) can be re-cast back in 

matrix form as follows: note that the forces on the right-hand side of n th cell and left-hand 

                                                                 

4 A matrix whose elements are polynomials in the variable 𝜆. 
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side of  1n  th cell should be in static equilibrium, therefore    1n n  F F 0  or in the 

matrix form, 

  
 

 

1n

n


  
 

 

F
I I 0

F
.  (1.14) 

Substitute the force vector with equation (1.9) and write  

 
 

 
 

1
1

n
n

n 

   
    
  

D I
D

D I
,  (1.15) 

gives 

    LL LR

RL RR

1n


   
    

  

K K I
I I D 0

K K I
,  (1.16) 

which upon expansion leads to equation (1.13).  According to Stephen and Wang [38], this 

approach can reduce the problem size by half but has lost its standard eigenvalue form.  

Therefore, it is preferable to restore equation (1.16) back in the standard form; to do that, 

expand equation (1.16) and re-arrange the terms as  

        2 1 1

LR RL LR LL RR1 1 1n n n        D K K D K K K D .  (1.17) 

The equation can now take the following matrix form, 

  
 

 

1

1

n

n




 
  

 

D
H I 0

D
  (1.18) 

where  

 
 1 1

LR RL LR LL RR

 

 
  

   

0 I
H

K K K K K
.  (1.19) 

Note that the top row of equation (1.19) is simply    1 1n n   D D  while the second 

row gives equation (1.17). 

Another possible matrix form is presented by Zhong and Williams [40] whereby the 

equations of motion are first expressed as 

 
 

 

 

 LL LR

1 1

1

n n

n n

     
    

      

D DI 0

F DK K
  (1.20) 

and  

 
 

 

 

 RL RR

1n n

n n

    
    
    

D D0 I

F DK K
.  (1.21) 
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Immediately one can write 

 
 

 

 

 

1

RL RR LL LR

1

1

n n

n n


      

      
       

D D0 I I 0

F FK K K K
.  (1.22) 

It can be verified that 

 

T

LR

LL LR LL LR RL

      
               

I 0 I 0 0 K0 I

K K K K K 0I 0
,  (1.23) 

 

T

LR

RL RR RL RR RL

      
      

      

0 I 0 I 0 K0 I

K K K K K 0I 0
. (1.24) 

By Bloch’s theorem, the translational symmetry allows one to write  

 
 

 

 

 

1

1

n n

n n


   
   

   

D D

F F
,  (1.25) 

where   is a scalar multiplier.  Substituting equations (1.20) and (1.21) into equation 

(1.25) gives 

 
 

 

 

 RL RR LL LR

1 1n n

n n


       
      

       

D D0 I I 0

D DK K K K
.  (1.26) 

Pre-multiply equation (1.26) by 

T

LL LR

   
       

I 0 0 I

K K I 0
 and 

T

RL RR

   
   

  

0 I 0 I

K K I 0
 in 

turn gives  

 

 

 

 

 

T

LL LR RL RR

T

LL LR LL LR

1

1
,

n

n

n

n


     
              


      
                 

DI 0 0 I0 I

DK K K KI 0

DI 0 I 00 I

DK K K KI 0

  (1.27) 
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RL RR LL LR

T

1

RL RR RL RR

1

1
.

n

n

n

n


     
              


      
       

       

D0 I I 00 I

DK K K KI 0

D0 I 0 I0 I

DK K K KI 0

  (1.28) 

The product of the three matrices on the left-hand side of equations (1.27) and (1.28) are 

 
 

T

LL RL RR

LL LR RL RR RL

RL LL RR

RL

0

,

        
                     


  

   
  

I 0 0 I I K0 I K K

K K K K 0 KI 0 I

K K K

0 K

  (1.29) 
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T

LR LL LR

RL RR LL LR RR

LR

LL RR LR

,

         
                    


  

       

0 I I 0 0 K0 I K K

K K K K I KI 0 I 0

K 0

K K K

  (1.30) 

respectively.  Add the two and note the equality of equations (1.23) and (1.24) yields 
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LL RR RL LR
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RL
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1

n

n

n

n
 

    
  

     


   
     

    

K K K K D

K K K K D

D0 K

DK 0

  (1.31) 

where both matrices are skew-symmetric.  Re-write equation (1.31) in the standard 

eigenvalue problem gives  

 
 

 

 

1

RL LR LL RRLR

LL RR RL LRRL

1n

n


        
               

K K K K D0 K
I 0

K K K K DK 0
,  (1.32) 

where 1     which occurs twice. The original eigenvalues,   and 1  , can then be 

determined by solving the quadratic equation 1    .  In the case of complex unity 

eigenvalues, ie   , the quadratic equation can be expressed as a trigonometric function, 

i.e.  i ie e 2cos     .  Let    
T

T T

1
1n n  D D  and    

T
T T

2
1n n  D D  be the 

eigenvectors associated with the repeated eigenvalues 1  and 2  where 1 2  .  The 

original eigenvector    
1

T
T T1n n


  D D  associated with eigenvalue 1  can be expressed 

as  
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where 1  and 2  are scalars.  Substitute equation (1.33) into equation (1.27) gives 
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A 0   (1.34) 

where 
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Take singular value decomposition of A , i.e. *
A = USV  where U  is an (n n ) matrix, S  

is ( 2n ) matrix of two singular values on its leading diagonal, one of these is almost zero, 

and 
11 12

12 11

v v

v v

 
  

 
V .  Note that V  satisfies * 1 V V V .  One can then write 

 

1

11 12 2

12 11

0

0 0

0 0

S

v v S

v v

 
 

       
 
 

A U .  (1.36) 

Consider the second column of equation (1.36), one can write 

 
   

 

 

 
12RL LL RR 1 LR

111 RL RL 1 2

1 1n n v

n n v





         
       

         

D DK K K K
0

D DK K
  (1.37) 

which is (approximately) in the same form as equation (1.34).  By comparison, one can 

deduce that  

 2 11

1 12

.
v

v




    (1.38) 

Zhong and Williams [40] re-cast    n nGs s , where G  is given by equation (1.10) and  

     
T

T Tn n n   s D F , into equation (1.26), which is a transfer representation in terms 

of displacement vector alone, to avoid ill-conditioning.  In this approach, the transfer matrix 

is decomposed into two matrices, each is found to have properties of a symplectic matrix.  

Further review on numerical stability and properties of symplectic matrix will be presented 

in Section 1.26 and Chapter 2, respectively. 

To sum up, transfer matrix typically relates a state vector of displacement and force 

components on either side of the repeated cell; this matrix form is called displacement- force 

transfer matrix.  A different form of transfer matrix relates a state vector of displacements at 

two consecutive cross-sections,  1n  th and n th, with n th and  1n  th cross-sections; 

this form is called displacement-displacement transfer matrix.  An eigenvector of the transfer 

matrix describes a pattern of the state vector components which is unique to within a scalar 

multiplier  .  Application of the Bloch’s theorem, which is a formalism of harmonic motion 

through translationally symmetric structure, demands that this (eigenvector) pattern is 

preserved as one moves from the left- to the right-hand sides of the cell or from  1n  th to 

n th cross-sections.  This leads to an eigenvalue problem for propagation constants  .  The 
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eigenvalues and eigenvectors can be evaluated numerically by employing MATLAB’s eig 

function. 

Analysis and treatment of Bloch’s theorem for geometrically complex repetitive structures 

are presented in more recent publications.  In [41], Farzbod and Leamy addressed the issues 

associated with elimination of internal forces when degrees of freedom in a unit cell are 

reduced.  They showed that for two- and three-dimensional lattices, the internal forces are 

eliminated.  Further analysis on the theorem shows that linearity of the system is also 

required for invoking the existence of a propagation constant; imposing the latter in a 

nonlinear system could lead to violation of energy conservation [42].  Application of Bloch 

wave expansion (BWE) method to complex geometry such as phononic crystals are 

presented by Kulpe et al. [43–46].  In [43],  FEM is first used to formulate the dispersion 

relation of a two-dimensional phononic crystal before the BWE is implemented to study the 

wave transmission and reflection in the crystal.  The method requires a selection of suitable 

Bloch waves (based on group velocity criterion) for the pressure (and velocity) field 

expansion at a prescribed frequency and incident angle.  In [44], BWE are employed along 

with the Helmholtz-Kirchhoff integral theorem to determine external acoustic scattering 

from a two-dimensional finite phononic crystal.  The Helmholtz-Kirchhoff integral theorem 

is applied to account for any loss in the field.  The results obtained from the studies [43,44] 

are verified against FEM simulations.  It is noted that the BWE method consumed less 

computation time than the FEM.  The method developed in [44] is then extended to three 

dimensions: first on a cubic [45], and later on a spherical and a bean-shaped phononic 

crystals [46].  The results obtained in [45,46] are compared with an existing self-consis tent 

scattering technique. 

In the case of mass-spring chain described earlier in Section 1.2.1, application of Bloch’s 

theorem gives 
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Substract equations (1.39) and (1.40) from equations (1.4) and (1.7), respectively, leads to 

the standard eigenvalue problems  
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It can be verified numerically using MATLAB’s eig command that the two forms of transfer 

matrix share the same eigenvalues which implies that there is a possibility that the 

displacement-force and displacement-displacement transfer matrices are similar.  The 

similarity relations between the two matrices are studied and presented in Chapter 2. 

1.2.3 Participation coefficients 

Displacement- force transfer matrix G  relates the state-vectors at two-succeeding sections, 

n  and  1n  , as    1n n s Gs .  For the static problem, the state vectors  ns  and 

 1n s  can be expressed as a linear combinations   nn s TC  and   11 nn  s TC  where 

T  is the transformation matrix of eigen- and principal vectors, nC  is the column vector of 

participation coefficients at section n  [12,39].  The matrix T  transforms G  to its Jordan 

canonical form J  according to 1 T GT J , or 1G TJT ; powers of G  are then 

1n n G TJ T .  Substituting into    1n n s Gs  gives   1

1n n



 TC TJT TC  which 

simplifies to 1n n TC TJC , and pre-multiplying by 1
T  gives 1n n C JC .  This represents 

the simplest possible description of spatial evolution as one move from one section to the 

other section.   

Similarly, for the dynamic problem, the state vectors  ns  and  1n s  can be expressed as 

a linear combinations   nn s Vw  and   11 nn  s Vw  where V  is the eigenvector matrix 

of transfer matrix G , nw  is better known as wave (amplitudes) vector at section n  [47,48].  

The matrix V  diagonalise matrix G  according to 
1 V GV Λ , or 

1G VΛV ; powers of 

G  are then 
1n n G VΛ V .  Substituting into    1n n s Gs  gives 

  1

1n n



 Vw VΛV Vw  which simplifies to 1n n Vw VΛw , and pre-multiplying by 
1

V   

gives 1n n w Λw .  This also represents the simplest possible description of spatial evolut io n 
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as one move from one section to the other section.  Equivalent expressions derived from 

displacement-displacement transfer matrix have not been found. 

Clearly, the two formulations are closely related; the participation coefficient under static 

case is simply the wave amplitude under dynamic case.  However, the two formulations are 

found to be employed differently: in the static case the formulation is used to solve two point 

boundary value problem (TPBVP), while in the dynamic case the formulation is used in the 

implementation of the phase closure principle to find the natural frequencies.  Hence, it 

would be interesting to find out whether the phase closure principle is actually employab le 

to solve the TPBVP. 

1.2.4 Transfer matrix method and Saint-Venant’s principle 

The transfer matrix method is well developed for the dynamic problems but less so for static 

problems.  And, within the scope of the dynamic problems, there are generally more reports 

on the propagating waves compared with the decaying waves.  Therefore, this thesis intends 

to contribute in the research of static problem and decaying waves. 

Stephen and his co-workers have contributed extensively on the static analysis of repetitive 

structures; these include transfer matrix analysis of one-dimensional pin-jointed frameworks 

[1,12], eigenanalysis and continuum modelling of beam-like structures [7,13,14,37] and 

Riccati transfer matrix method5 for solving beam-like structures subjected to different static 

loads [49].  For one-dimensional static problems, they have shown that non-unity 

eigenvalues of the transfer matrix describe the decay of self-equilibrated end loading, as 

anticipated by Saint-Venant’s principle (SVP).  Multiple unity eigenvalues pertain to 

transmitting loads such as tension, bending moment and shear, together with rigid body 

displacements and rotations.  

Extension of the SVP to the dynamic problems of repetitive structure has not been 

considered.  This is not a surprise considering validity of the dynamic SVP is still debated 

[50].  The proponents of the idea have proposed different approaches to characterise dynamic 

SVP quantitatively.  Berdichevsky and Foster [51] proposed a “probabilistic approach” 

whereby the unknown self-equilibrating load is assigned with probabilistic load model and 

probabilistic characteristic of the penetrating stress state is then determined.  On the other 

                                                                 

5 Riccati transformation takes the form 𝐅(𝑛) = 𝐑(𝑛)𝐝(𝑛) + 𝐠(𝑛) where 𝐑 is the Riccati matrix and 𝐠 is a 

column vector of force components. Further details are given in Chapter 5.  
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hand, Karp [52] presented an analytical approach and consider SVP under symmetr ic 

dynamic fields for an elastic strip.  Karp replaced the requirement of spatial decay due to 

application of self-equilibrated loads with the application of dynamic loads having zero 

average power.  In this thesis, dynamic SVP is seen to manifest in the form of decaying 

waves.  Therefore, the characteristic of decaying (and propagating) waves in one-

dimensional repetitive structure are studied in detail. 

Kaplunov and his co-workers [53,54] have proposed a rational approach in developing 

dynamic analogues of the SVP; they considered the plane problem for an elastic semi-infinite 

strip subjected to harmonic end stresses in the low and high frequency domains.  The 

consideration is motivated by the derivation of refined boundary conditions in the dynamica l 

problems of plates and shells [55].  In the low frequency domain, decay conditions for the 

end stresses are derived [53].  The conditions represent a perturbation in frequency of the 

well-known decay conditions of the classical SVP.  The Laplace transform and residue 

theorem are employed in the formulation; the residues associated with small roots of the 

symmetric and antisymmetric Rayleigh-Lamb equations [56] are investigated and resulted 

in the asymptotic decay conditions which involve quadratic terms in frequency.  In the high 

frequency domain, so-called radiation conditions on the end data are established [54].  The 

proposed conditions allow long wave modes near thickness resonance frequencies and are 

used to construct boundary conditions of high frequency long wave vibrations that represent 

an analogue to the classical low frequency plate theories. 

1.2.5 Properties of the transfer matrix and the dispersion diagram 

In dynamic analysis, the displacement-force transfer matrix is symplectic [57]; therefore, it 

has the properties of a symplectic matrix, one of which is its eigenvalues occur as reciprocal 

pairs.  In turn, its determinant is equal to 1 .  The eigenvector associated with the reciprocal 

eigenvalue is called its adjoint eigenvector.  Application of symplectic mathematics in the 

study of wave problems for repetitive structures is largely due to Zhong and Williams 

[40,57,58].  In [57], they stated that an eigenvector associated with an eigenvalue is 

symplectic orthogonal to all other eigenvectors including itself but not its adjoint.  They 

further showed that symplectic orthogonality relation between eigenvectors of symplect ic 

transfer matrix corresponds to a Betti reciprocal theorem [58].  Since an eigenvector and its 

adjoint is not symplectic orthogonal, they normalised the adjoint symplectic relation; this 

step could result in a loss of information in form of Krein signature.  Stephen [1] extended 

the symplectic mathematics to static analysis of one-dimensional repetitive structures.  In 



Chapter 1 

22 

[1] and [12], Stephen also derived a bi-orthogonality relation between right eigenvectors of 

the displacement-force transfer matrix and its transpose.  It is noted that properties of 

displacement-displacement transfer matrix is not yet presented.  Apart from that, the case of 

repeating eigenvalues in the symplectic analysis has not been considered. 

The computed eigenvalues   can be real and complex.  Typically,   is expressed as 

 exp   where i     is known as propagation constant, while   and   is known as 

decay and phase (change) constants, respectively [18,59].  Decay constant, or decay rate, is 

a factor by which the amplitude is reduced (or amplified) as one move from one section to 

the next; positive and negative decay rate corresponds to leftward and rightward decay, 

respectively.  Meanwhile, the phase constant is a factor by which the phase of the amplitude 

changes as one move from one section to the next.  The phase constant is intimately related 

to the wavenumber whereby the latter is equal to the phase constant divided with the length 

of a unit cell, i.e.   

 
2π phase constant

wavenumber
wavelength length of a unit cell

  .  (1.43) 

If the length of a unit cell is one unit, then the phase constant is effectively equal in 

magnitude to the wavenumber. 

Alternatively, complex wavenumber notation can be adopted [60], that is to express   as 

 exp i  where i    .  In this notation, the real and imaginary parts of   represent 

the phase constant   and the decay rate  , respectively.  The directions of wave motion 

associated with the signs of   and   are also reversed: now, the positive and negative values 

of the parameters correspond to rightward and leftward motion, respectively.  

For simple structures such as the mass-spring chain, the eigenvalues of the transfer matrix 

can be found analytically.  For the chain, the eigenvalues are found by solving the 

determinantal equation 
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,  (1.44) 

which upon expansion and re-arrangement leads to 
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2
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2 1 1 0

2 n


 



 
    

 
,  (1.45) 
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whose solutions are 

 

2
2 2

2 2
1 1 1

2 2n n

 


 

   
       
   

.  (1.46) 

For 0 2n   ,   is purely imaginary, i.e. ie   .  For 2n   ,   is real (and 

negative).  Alternatively, the dispersion relation can be found from equation (1.5), i.e. 

      22 1 1 0k m d n kd n kd n        .  (1.47) 

Divide all terms by k  and noting that 
2

n k m  , equation (1.47) becomes 

      2 22 1 1 0n d n d n d n         .  (1.48) 

But we can write    1d n d n   and    11d n d n   , which upon substitution into 

equation (1.48) gives  

    2 2 12 0n d n         .  

Write e   (where i    ) and note that 2cosh e e    , we get 

    2 22 2cosh 0n d n     .  (1.49) 

For a non-trivial solution,  

 
2 22 2cosh 0n     ,  (1.50) 

which gives 

 
2

1

2
cosh 1

2 n






  
  

 
.  (1.51) 

It is possible to relate back equation (1.51) with equation (1.46) using the inverse hyperbolic 

function formula  1 2cosh ln 1x x x     for 1x  . 

The plot of frequency against decay and phase constants is known as dispersion diagram, or 

frequency spectra.  Despite the fact that three variables are involved in the plot, the diagram 

is typically drawn in two dimensions with two y-axes, each for the decay and phase 

constants, against frequency on the x-axis [59,61,62].  For example, the dispersion diagram 

for the mass-spring chain is shown in Figure 1.4(a) where all the   and   values are plotted 

against the normalised frequency within the frequency range 0 4n   .  Wave 

propagation occurs from 0n    up to the cut-off frequency 2n   , after which the 

wave decays rapidly.  Note that for 2 4n   , the eigenvalues take the form i π   
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and i π  , hence the imaginary part appears as straight vertical lines.  Alternatively, the 

dispersion diagram can be represented compactly as in Figure 1.4(b) whereby the x- and y-

axes are exchanged and only the positive half of Figure 1.4(a) is shown in order to exploit 

its symmetry; we find that the layout in Figure 1.4(b) is more commonly adopted.  The phase 

constant is usually normalised with respect to π ; the vertical straight line ( π  ) shown 

bold in Figure 1.4(a) now becomes the bold horizontal line π 1   in Figure 1.4(b) and 

would be plotted on the border of the diagram and would not be apparent.  Evidently, the 

two-dimensional plotting layouts are unable to represent the dispersion diagram accurately 

and succinctly.  It is foreseeable that more inaccuracies will occur when this layout is used 

to represent the dispersion curves of more complex structures.  Therefore, in this thesis, we 

seek to find a better representation for the dispersion diagram. 

In the analysis of two-dimensional (plate-like) repetitive structures, the phase constants in 

two axial directions are plotted against the frequency; therefore, the plots form dispersion 

surfaces (rather than curves) [59] and the dispersion diagram is presented in three-

dimensions.  It is noted that in the field of dynamic system stability, both two- and three-

dimensional plot of dispersion relation is widely used [63] (chapter 1, page 4).  We believe 

that the three-dimensional layout could also be used to represent dispersion curves of one-

dimensional system. 

We expect that one-dimensional repetitive structures with multiple couplings will give 

multiple eigencurves on the dispersion diagram; each is identifiable to a particular wave 

mode.  The next issue is on how to label them properly.  In [64], Miklowitz presented the 

dispersion diagram of axially symmetric waves in an infinite circular rod in three 

dimensions; each curve is labelled sequentially based on which mode propagates through 

the structure first, as the frequency is increased.  When two dispersion curves merge, the 

combined segment of the curves is labelled using two figures, each correspond to the origina l 

curves.  Individual and merged curves are plotted with continuous and dashed line, 

respectively.  The notation used in the diagram is adopted in this thesis, and modified 

accordingly to clearly represent the dispersion diagram of our model structure. 
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(a) 

 

(b) 

Figure 1.4 Dispersion diagram of an infinite mass-spring chain. (a) Normalised 

frequency is plotted against phase and decay constants,   and  , 

respectively.  (b) Normalised phase and decay constants against 

normalised frequency. Only the positive half of the dispersion relation is 

shown. 

 

The frequencies at which a mode starts and stops propagating through the structure are 

usually called cut-off frequencies; some authors refer to them as low and high cut-off 

frequencies, respectively, in order to distinguish the two based on their relative magnitudes  

[65].  However, we found that two propagating modes could interact and stop propagating 

over a certain frequency range before begin to propagate again; the frequencies at which 
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these happen are again called cut-off frequencies.  It appears that there is a need to provide 

clear definition for the term cut-off and cut-on frequencies so that the different phenomena 

can be properly described. 

1.2.6 Numerical issues 

Implementation of transfer matrix method is susceptible to numerical instabilities.  One of 

the early numerical issues encountered is in computing the chain product of the transfer 

matrix.  According to Mester and Benaroya [5], multiplication of many matrices can lead to 

significant roundoff errors.  

Also, the eigenvector of the transfer matrix is usually ill-conditioned because the 

eigenvectors are expressed in terms of displacement and force components, whose values 

can largely differ in magnitude [66].  Zhong and Williams [40] regarded the ill-conditioning 

problem is embedded in the construction of the transfer matrix itself through the inversion 

of 
LRK  partition of the stiffness matrix of a single cell, see equation (1.10).  Detail inspection 

of the transfer matrix reveals that the ill-conditioning problem arises because a typical 

element of the stiffness matrix (of a pin-jointed structure) is proportional to EA L  where E  

is the Young’s modulus, A  is the cross-sectional area and L  is the length.  The Young’s 

modulus is typically large, e.g. 3200 10E    N/mm2; in turn, inversion of a partition of the 

matrix leads to ill-conditioning with the transfer matrix reportedly having a large condition 

number [39]. 

In order to avoid such numerical ill-conditioning, Zhong and Williams [40] decomposed the 

transfer matrix so that the matrix is expressed in terms of displacement components only.  

The decompositions employ equations (1.20) and (1.21) as follows: the displacement and 

force on the left- and right-hand side of a cell are 

 
L L L

L LL LR R R

       
        

        

D I 0 D D
L

F K K D D
,  (1.52) 

 
R L L

R RL RR R R

 
       

        
       

D 0 I D D
N

F K K D D
.  (1.53) 

Clearly, one can write 

 
R L1

R L

   
   

   

D D
NL

F F
,  (1.54) 

and employing Bloch’s theorem, gives 
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R L

R L


   

   
   

D D

F F
.  (1.55) 

Using such decomposition, one can also write equation (1.26) as 

 
L L

R R


   

   
   

D D
N L

D D
.  (1.56) 

Similar decomposition scheme is employed by Mencik [66]. 

On the other hand, Stephen [39] easily resolved the ill-conditioning problem by reducing the 

order of Young’s modulus E  in the computation; for example, instead of setting 

3200 10E    N/mm2, E  is set to 2 N/mm2.  This effectively reduces the transfer matrix 

condition number.  Consequently, the displacement components of the normalised 

eigenvector as computed by MATLAB need to be scaled accordingly. 

Another form of numerical difficulties is exponentiation of the transfer matrix or eigenva lues 

greater than unity which will magnify any error and render the method wholly inaccurate.  

For example, when a tip-loaded cantilever is to be analysed, one has a two-point boundary 

value problem [49].  The force at the tip and the displacement at the fixed root will be known, 

while the displacement at the tip and the reaction force at the root are unknowns.  Such 

problems are typically ill-conditioned [67].  In [39], the analysis of cantilevered ten-cell 

repetitive pin-jointed structure subjected to tip-loading, and to distributed loading with an 

intermediate support, was described.  The need to construct powers of the transfer matrix is 

observed to be the source of the ill-conditioning.  This becomes abundantly clear when the 

state-vector of displacement and force components is expressed in terms of the participat ion 

coefficients of the eigen- and principal vectors, and spatial evolution is expressed in terms 

of powers of the Jordan canonical form, as described in Section 1.2.3.  It is reported in [39] 

that a participation coefficient can increase by a factor of the order 1012 for the largest 

eigenvalue over ten cells of the framework.   If the number of cells is increased to 50, the 

factor is increased to the order 1061.  Metaphorically, while SVP is physically applicable, it 

is not numerically stable in such formulation. 

One possible approach to the problem is to employ equivalent continuum properties derived 

from the eigen- and principal vectors of a single cell [37].  Alternatively, one can employ 

Riccati transformation to produce a numerically reliable formulation [49].  Xue [68–70] has 

combined the finite element-transfer matrix method and Riccati transform to analyse 

transient dynamic response and to determine the natural frequencies of trusses.  The Riccati 

transfer matrix method is numerically reliable because the eigenvalues of particular terms in 



Chapter 1 

28 

the recursive relationships are equal to or less than unity [49].  Again, metaphorically, SVP 

is now both physically and numerically applicable.  Despite its evident numerical stability, 

its use is by no means widespread.  A disadvantage of this method is it requires recursive 

computation of unknown vectors which can be a programming issue for very long structures. 

The wave vector approach [48] is another formulation that can overcome numerica l 

difficulties arising from exponentiation of the transfer matrix.  The approach describes right -

going and left-going spatial evolution of state vector in terms of wave amplitudes and 

eigenvalues equal to or less than unity.  The approach has two advantages: first, it is 

inherently stable because eigenvalues greater than unity are avoided in its formulat ion; 

second, the size of the problem is reduced to half of the transfer matrix.  In [47], Signorell i 

and von Flotow employed the approach and applied phase closure principle to find the 

natural frequencies of a cantilever truss.  However, they reported numerical difficulty when 

solving the resulting characteristic determinantal equation.  The absolute value of the 

complex determinant is plotted against frequency and the natural frequencies of the truss are 

identified whenever the absolute value vanishes.  The numerical difficulties lie on the failure 

of the approach to identify closely spaced natural frequencies, even with smaller frequency 

step.  They attributed the failure to error introduced during eigenvalue/eigenvec tor 

calculation.  In addition, another plot of power flow against frequency shows ‘noisy’ power 

within the stop bands, with complex6 modes appearing to transmit power many orders of 

magnitude greater than the pure stop7 bands.  They suspected that the erroneous apparent 

power flow in the stop bands is an artifact of finite-precision arithmetic, indicating possible 

numerical round-off errors in the eigenvector computation.  

Luongo and Romeo [71] identified that the numerical difficulties in the wave vector 

approach are due to the ill-posed formulation of the problem—natural frequencies are found 

as real solutions to complex characteristic equations.  They proposed a modified version of 

the traditional wave vector computational scheme; the modified version retains the 

advantages of wave transfer matrix and deals with real quantities only.  Unlike the traditiona l 

scheme which requires transformation of frequency-dependent real transfer matrix for state 

vectors to complex transfer matrix for wave vectors, their modified version provides for 

transformation to real matrices. In a private communication, Romeo pointed out that the 

scheme has not been implemented on repetitive structures with multiple couplings. 

                                                                 

6 Wave modes associated with complex non-unity eigenvalues. 
7 Wave modes associated with real non-unity eigenvalues. 
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Numerical issues concerning the wave and finite element (WFE) method for vibrations of 

waveguides are presented by Waki et al. [15].  The WFE method starts from FE model of 

the repeating substructure, typically by using existing element libraries and commercial FE 

packages.  Once the dynamic stiffness matrix is obtained, the matrix is partitioned and re-

arranged into the transfer matrix form; then, the Bloch’s theorem is applied to get the 

eigenvalue problem whose solution gives the dispersion relation (i.e. eigenvalues against 

frequency) and wave mode shapes (i.e. eigenvectors).  In [15], three major issues concerning 

the method are presented, namely, 

(a) Discretisation errors which occur if the modelled substructure (or cell) is too large 

compared to the wavelength.  

(b) Round-off errors which occur if the modelled cell is too small.  When 2K m  is 

calculated numerically, particular element in K , say ijK , becomes very large compared to 

2

ij m , so some digits associated with the inertia term in 
2

ij ijK m  are truncated after the 

substraction leading to round-off errors. 

(c) Ill-conditioning which arise because the eigenproblem may have both very large and very 

small eigenvalues.  As explained earlier, LRK  can be poorly conditioned, so determining its 

inverse is prone to ill-conditioning. 

Issue (a) can be overcomed by re-meshing the structure using a shorter cell; the rule-of-

thumb is there should be at least six cells per wavelength.  Issue (b) can be reduced by re-

meshing the structure with a longer cell, or by concatenating a number of original cells to 

form a super-cell, the internal DOFs are then condensed.  Since the resolution to issues (a) 

and (b) are conflicting, a compromised must be reached, i.e. the cell length should be 

carefully determined when the structure is modelled.  Solutions to issue (c) have been 

addressed earlier. 

1.2.7 Transfer matrix analysis of wave energetics in undamped one-dimensional 

repetitive structures 

Analysis of the work done by static load on one-dimensional undamped repetitive structure 

is presented by Stephen [1] who showed that eigenvectors associated with 1    do no 

work by considering the total work done W  on the left- and right-hand boundaries of a unit 

cell, i.e. 
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  T T T 2

L L R R L L

1 1 1
1

2 2 2
W     D F D F D F ,  (1.57) 

where 
LD  and 

LF  are displacement and force vectors, respectively, on the left-hand side of 

the cell.  This agrees with the fact that eigenvectors associated with 1   are rigid body 

translations and rotation.  Stephen [1] also showed that the principal vector 
P

LF   (e.g. tension) 

does work, which is stored in the structure as strain energy.  The work done by the principa l 

vector is simply T P

L L

1

2
W  D F . 

The energetics of the different wave types under dynamic case are discussed by Mead [18]  

using the energy and power equations which are derived in terms of (partitions of) the 

receptance matrix.  It is shown that the energy is propagated through the structure by the 

propagating waves.  As the nodal force and displacement are always perpendicular, there is 

no work done.  The time-averaged kinetic and strain energies are known to be equal.  On the 

other hand, Langley [72] expressed the time-averaged kinetic energy as  

 
* *

K L L

1

8
E 



 
    

G
V G J V   (1.58) 

where G  is the transfer matrix,  G  is the rate of change of the transfer matrix with 

respect to frequency, LV  is the eigenvector of G  pertaining to the left-hand side of the cell 

and 
*

LV  is the transposed conjugate of LV .  The expression shows that the mean kinetic 

energy stored at the frequency   depends on the transfer matrix and on the rate of change 

of the transfer matrix with respect to frequency.  Langley [72] also showed that the time-

averaged kinetic energy of a conservative system can be expressed as  
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K m
D D   (1.59) 

where 
T

T T

L R
   D D D  and  2   K m  is the rate of change of the dynamic stiffness 

matrix with frequency.  Meanwhile, the time-averaged strain energy for a cell is given by 

Zhong and Williams [57] as 

 T

S

1

2
E  X KX   (1.60) 

where    
T

T T1n n   X D D  and 
LL LR

RL RR

 
  
 

K K
K

K K
.  It appears that equation (1.60) is 

more succint compared with equations (1.58) and (1.59). 



Chapter 1 

31 

Unlike propagating waves, solitary evanescent and attenuating waves do not propagate 

energy through the structure, as shown by Mead [18].  Instead, in each cycle, the energy is 

used to do work on the boundaries of each cell.  Nonetheless, two attenuating waves whic h 

spatially decay in amplitude interact to transport energy [73].  Langley [72] argued that this 

effect can only occur over a finite length given that the amplitude of individual wave decays 

as the wave travels away from the point of excitation.   

The power flow associated with the energy that is transported by the propagating wave 

through the structure can be expressed as the product of velocity and force.  Langley [72] 

showed that the time-averaged power flow associated with a propagating wave into the left-

hand side of a cell is given by 

  * * * *

L L L L L L L L L

1 1 1
Re i i i

2 4 4
P           D F D F F D V JV ,  (1.61) 

where i 1  ,   is the angular frequency of the wave motion, 
*

LD  is the transposed 

conjugate of the displacement vector 
LD , 

LF  is the force vector, 
T

T T

L L L
   V D F , 

 
  

 

0 I
J

I 0
 and superscript ∗ denotes transpose conjugation8. 

Substitute L LL L LR R  F K D K D   into equation (1.61) gives [57] 

  * *

L R RL L L LR R

1
i

4
P   D K D D K D .  (1.62) 

The time-averaged power that flows out of the right hand side of the cell is  

  * *

R R R R R

1 1
Re i i

2 4
P     D F V JV ,  (1.63) 

where 
T

T T

R R R
   V D F .  For a conservative (i.e. undamped) system, it can be easily verified 

that L RP P , which means that the rate at which energy enters and exits each cell is equal as 

the wave propagates through the structure [57,72].  The imaginary part of the product 

between instantaneous velocity and force is the reactive power which is temporally cyclic 

and remains across the boundaries, i.e. not transmitted through the system. As such, over 

one time cycle, the reactive power is zero. 

Let V  be a matrix whose columns are composed of eigenvectors of transfer matrix G , i.e. 

                                                                 

8 The minus sign is mistakenly omitted from the equation in [72]. 
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R, D L, D

R, F L, F

 
  
 

V V
V

V V
,  (1.64) 

where the subscripts R and L denote right-going and left-going waves, respectively, and D 

and F denote displacement and force components of the eigenvectors, respectively.  Matrix 

V  is symplectic as it satisfies T V JV J  ([57], equation (18)).  We found numerically that 

* V JV J . 

Zhong and Williams [57] also analysed the power orthogonality relations between rightward 

and leftward waves and concluded that: 

a) for real eigenvalues, only adjoint evanescent waves can interact to produce power; 

b) for complex unity eigenvalues, the propagating waves cannot interact to produce 

power; 

c) for complex non-unity eigenvalues, only the complex conjugate of the symplect ic 

adjoint eigenvectors can interact to produce power and can only exist for finite 

length. 

Conclusion (a) is particularly odd considering that equation (1.61) [now takes the form 

T

1 2i 4P   V JV ] gives imaginary power for eigenvectors, 1V  and 2V , that are associated 

with real adjoint eigenvalues, 1  and 2 11  , respectively; while conclusion (c) appears 

to be in agreement with the result obtained by Bobrovnitskii [73] and Langley [72]. 

The velocity at which a phase of a wave travels is called phase velocity and can be found by 

dividing the angular frequency   with the wavenumber  , i.e.   .  Meanwhile, the 

velocity at which the energy is transported by the wave is called group velocity and is given 

by the derivative of the angular frequency with respect to the wavenumber, i.e.    .  On 

the dispersion diagram, the derivative represents the gradient of dispersion curves (that are 

associated with propagating waves) with respect to the wavenumber axis.  Lighthill [74] 

remarked that this result “appears distinctly odd” considering that “in a perfectly periodic 

motion of fixed wavenumber, energy is propagated at a velocity which can be expressed as 

a ratio of changes of frequency and wavenumber in going to a neighbouring wave solution”.  

The two velocities for a particular wave could be different in magnitude and direction; when 

their directions of travel are the same, the wave dispersion is regarded as normal, otherwise 

when their directions of travel are opposite, the dispersion is regarded as anomalous. 
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Langley [72] showed that the equation for group velocity satisfies the following equation, 
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  (1.65) 

where 
KE , 

SE  and P  are given by equations (1.59), (1.60) and (1.61), respectively.  This 

means that the group velocity is equal to the time-averaged power flux divided with the total 

time-averaged energy density through an arbitrary cross-section.  On the other hand, 

Finnveden [75] showed that the group velocity can be evaluated through numerica l 

differentiation.  This is done by first differentiating the eigenvalue problem with respect to 

the wavenumber.  In [75], the eigenvalue problem is given as  

 2   K M D 0   (1.66) 

where K  is the ‘stiffness’ matrix,   is the angular frequency, M  is the mass matrix and D  

is the displacement eigenvector; upon differentiation, the equation becomes  

 2d d d
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M D K M 0 .  (1.67) 

Then, pre-multiply equation (1.67) with the left eigenvector T
D  and note that 

T 2   D K M 0 .  Finally, the remaining terms are re-arranged to get the equation for the 

group velocity as  
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Waki et al. [76] proposed a slight modification to the approach and that is to express the 

group velocity as 
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  ,  (1.69) 

and the term 2d d   is obtained by differentiating the associated eigenvalue problem with 

respect to 
2 ; the subsequent steps are the same as outlined by Finnveden [75].  In Chapter 

2, new expressions for the group velocity are determined from the transfer matrices; the 

expression derived from the displacement-displacement transfer matrix is found to be 

simpler than the expressions given in [72,75,76]. 

The direction of energy travel can be determined from the direction of progression of the 

dispersion curve in the canonical plane which is given by the Krein signature [77].  As 

frequency is increased, if the eigenvalue ‘moves’ from 0  to π  (or 0  to π ), then the 
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signature is positive; otherwise, if the eigenvalue ‘moves’ from π  to 0  (or π  to 0 ), then 

the signature is negative.  Positive and negative signatures are associated with normal and 

anomalous dispersions, respectively.  Two dispersion curves that have the same signature 

may cross one another - the point of intersection is known as Krein crossing.  Two 

dispersions curves that have different signatures may collide – the point of collision is known 

as Krein collision.  When this happen, the eigenvalues come out of and eventually return to 

the plane (at a different point) forming a closed loop.  This graphical feature basically 

represents the collision between normal and anomalous dispersion curves which leads to the 

formation of attenuating waves (which is represented by the loop).  Existence of anomalous 

dispersion has been attributed to symmetry breaking [78] but this idea is not explored in this 

thesis. 

1.2.8 Natural frequency 

The natural frequencies of finite repetitive structures have been studied for many decades.  

One of the earliest reports was by Williams [79].  Wittrick and Williams [80] also presented 

an algorithm for computing the natural frequencies of such structures but the method adopted 

was not transfer matrix.  In a review paper [6], Mead stated that Mercer and Seavey [81] at 

Southampton had used transfer matrices to compute natural frequencies of stiffened plates 

but they did not take the advantage of structural periodicity.   

Mead has contributed significantly in the study of natural frequencies through a number of 

publications.  In [61], Mead proved that the relationship between the bounding frequenc ies 

of propagation zones and the natural frequencies of a single repeating cell.  According to 

Mead, if the mono-coupled periodic element are symmetric about their spanwise centres, the 

bounding frequencies are the same as the natural frequencies of an isolated element with its 

end either fixed or free.  If the periodic element is asymmetric, its natural frequency must 

occur outside the propagation zones of the periodic system.  In general, most of the natural 

frequencies will still fall in the propagation zones.  Mead [62] also showed that the phase 

closure principle can be applied to a multi-coupled repetitive structures and leads to an 

equation for the phase constants at which the natural frequencies occur.  Consideration must 

be given to the reflection matrices at the extreme ends of the structure which account for the 

changes of phase of the characteristic waves as they get reflected.  An evanescent wave 

which is generated from the reflection process can make its own complete circuit of the finite 

system.  Detailed description of the phase closure principle was presented by Mead in a later 

publication [19].   
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Signorelli and von Flotow [47] applied the phase closure principle using the transfer matrix 

to determine the natural frequencies of truss structures.  The method involves transformation 

of the state vector into wave amplitude vector, and spatial evolution of the amplitude from 

one cell to the next is achieved by multiplying the wave vector with the diagonal eigenva lue 

matrix whose elements have magnitude less than or equal to unity [48].  The complete 

formulation includes the reflection matrices at the extreme ends of the structure, i.e. whether 

they are free-fixed, fixed-free, free-free or fixed-fixed.  The natural frequencies are then 

determined from the characteristic determinantal equation, that is whenever both the real and 

imaginary parts of the complex determinant tend to vanish. 

Luongo and Romeo [71] found that the wave vector approach presented by Signorelli and 

von Flotow [47] can be modified such that the determinantal equation yields real values only.  

The modification requires that the elements in the transformation matrix and the eigenva lue 

matrix to be re-arranged and the real and imaginary parts of complex numbers are placed in 

separate columns.  The proposed computational scheme is implemented on mono- and bi-

coupled periodic structures and showed to be more stable than the complex wave vector 

approach.  In a private communication, Romeo stated that the method has not been extended 

on multi-coupled periodic structure but foreseeably possible. 

1.2.9 Static analysis 

When a complete structure is to be analysed, one usually have a two-point boundary value 

problem.  For example, in a case of tip-loaded cantilever, the load vector at the tip and the 

zero displacement at the fixed root will be known; the displacement vector at the tip and the 

reaction vector at the root are unknowns.  According to Mufti et al. [67], such problems are 

usually ill-conditioned.  In [39], Stephen analysed a cantilevered ten-cell repetitive pin-

jointed structure subjected to tip-loading, and to distributed loading with an intermed iate 

support and pointed out that the source of ill-conditioning was the exponentiation of the 

transfer matrix, not the inversion of one partition of the stiffness matrix as claimed by Zhong 

and Williams [40].  The claim was based on the fact that a typical element of the stiffness 

matrix of a pin-jointed structure is proportional to EA L ; inversion of the large Young’s 

modulus value, e.g. 
3200 10  N/mm2, can lead to ill-conditioning.  However, Stephen [39] 

offered a simple solution to the problem; that is to set a lower value for the Young’s modulus, 

e.g. 2E   N/mm2 with displacement predictions scaled accordingly.  In the present problem, 

when the spatial evolution is expressed in terms of powers of Jordan canonical form; any 
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elements of the matrix whose magnitude is much greater than unity will become dominant 

and magnify any errors.   

In a later publication, Stephen [49] employed Riccati transformation to produce a 

numerically stable formulation.  The transformation is numerically reliable because the 

eigenvalues of particular terms in the recursive relationship have magnitudes less than or 

equal to unity—powers of those terms will be diminishing.  In this sense, the Riccati 

transformation is similar to the phase closure principle and wave vector approach in the way 

that only eigenvalues whose magnitude less than or equal to unity are employed. 

Despite its numerical stability, the Riccati transfer matrix formulation is not transparent, i.e. 

it is not obvious that the recursive relationship would yield a reliable result as one moves 

backward and forward along the structure.  Also, the formulation requires recursive 

computation as one move from one end of the structure to the other end; such computation 

is unappealing to very long structural problem.  It is to no surprise that the method is not 

widespread. 

1.3 Motivation, Aim, Objectives, Scopes and Organisation of the 

Thesis 

Matrix eigenanalysis allows computation of the equivalent properties and the Saint-Venant 

decay characteristics from the knowledge of the stiffness matrix of a single repeating cell. 

This technique has been applied extensively to one-dimensional beam-like structures under 

static load.   This thesis wishes to extend the techniques to the dynamic case. 

The aim of this thesis is to answer a question posed by Mead 23 years ago [6], and that is to 

present a simple physical explanation for the existence of frequency-propagation zones and 

attenuation zones.  In doing so, we hope to achieve the following objectives: 

(i) to analyse different forms of transfer matrix and their relationships;  

(ii) to present the dispersion diagram in the best possible form so that the propagation and 

decay zones are well-defined; 

(iii) to analyse the energetics of different wave types; 

(iv) to formulate a numerically stable technique to solve two-point boundary value problem 

(TPBVP); and 
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(v) to analyse dynamic Saint-Venant’s principle through elementary observations of the 

phenomena in the propagation and decay zones. 

The fourth objectives evolved naturally as an attempt to apply phase closure principle to the 

static case failed because the force vectors associated with rigid body translations and 

rotation reduced to become columns of zero vector, hence the reflection matrix cannot be 

computed.  Also, the diagonal matrix of eigenvalues under dynamic case becomes Jordan 

block matrix under static case; the latter cannot be simply partitioned into blocks of 

‘eigenvalues’ that represent rightward and leftward decay of self-equilibrating loads or 

transmission of the coupled principal vectors.  Even though the phase closure principle is 

failed to be implemented in the static case, a new simple method to solve TPBVP (for a 

multi-coupled repetitive structure) has been developed; the approach is to switch the 

unknown participation factors with the known participation factors such that the known and 

unknown factors are grouped on the same side of the equation, this requires the 

transformation matrix and the Jordan canonical form to be partitioned and re-arranged 

accordingly. 

Throughout this thesis, a pin-jointed framework is used as the example structure.  This choice 

is made because the finite element analyses (FEA) of such structures involve a rod in tension 

or compression only, whose finite element is exact; therefore, the computational process 

alone limits the accuracy of the FEA.  This means that the results obtained from the transfer 

matrix approach can be verified by comparison with the finite element method which may 

be regarded as exact. 

In the study of repetitive structure, the use of framework as the model is not new [47,48,82]; 

however, the bar members are usually considered to have inertia.  As a result, the dispersion 

curves diagram appears to have many more branches than the model employed in this thesis, 

in which the bar members are considered to be massless and inertia are lumped at point 

masses. We believe that it is in our interest to have a reasonably simple model and dispersion 

curve diagram to allow for detailed analyses, and hopefully, this would lead to better 

understanding of the underlying physical phenomena. 

The scope of this thesis is primarily on the steady-state harmonic vibration of undamped 

multi-coupled one-dimensional repetitive structures; where applicable, the study is extended 

to the static case, i.e. when 0  .  The main methodology employed to solve the problems 

is transfer matrix method; and together with Bloch’s theorem [83], they lead to the 

eigenanalysis technique aforementioned (see Section 1.2.2). 
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This thesis presents six chapters.  The first chapter is the Introduction which includes a 

section of the literature review on one-dimensional repetitive structures.  The next four 

chapters present each of the objectives aforementioned.  Chapter 2 presents the two most 

commonly employed forms of transfer matrices, their properties and relations. Chapter 3 

presents the dispersion curves of the model structure and describes their characteristic waves 

under propagation and decay frequency-bands in detail.  Chapter 4 presents the energetics 

of the different wave types.  In Chapter 5, a simple and stable numerical formulation to solve 

TPBVP is presented; we believe that the formulation is an alternative to Riccati 

transformation which are adopted by many to solve such problem.  The final chapter is the 

concluding remarks where a summary for this thesis is presented as well as some suggest ions 

on future work. 
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Chapter 2: Wave Propagation in Repetitive Structures: 

Two Forms of Transfer Matrix 

 

2.1 Introduction 

Repetitive or periodic structures consist of a cell which spatially repeats in one-, two- or 

three-dimensions.  Each cell is connected to another in a regular pattern to form the complete 

structure.  Such construction are widely employed in engineering, and include rail track, 

turbine blade assemblies (bladed discs), building frameworks, cranes, aircraft fuselages, 

trusses and honeycomb panels.  Since the manufacture and construction of such structures 

can also be a repetitive process, they represent a cost effective design solution for many 

engineering applications.  Early contributions are described in references [6,61,62,79,84–

86].  The joints between the structural members can be designed so that they allow additiona l 

degrees of freedom, providing the possibility of a change in structural shape [87], or to 

become a deployable mechanism/structure [88].  Furthermore, repetitive structures portray 

symmetrical features and often have an aesthetically pleasing appearance. 

The present chapter is concerned with one-dimensional (beam-like) repetitive structures.  

When periodicity is taken into account, the static and dynamic analysis of an entire structure 

can be reduced to the analysis of a single repeating cell, together with boundary (end) 

conditions if the structure is not of infinite extent; equivalent continuum properties can be 

determined for segmented structures such as trusses [12].  The primary approach is through 

the use of a transfer matrix T , which relates state vector components on the right-hand side 

to those on the left-hand side of the cell, i.e. R Ls Ts . (Alternative analytical approaches, 

including the receptance method, are described in Mead’s 1996 review paper [6].) An 

eigenvector of the transfer matrix describes a pattern of state vector components which is 

unique to within a scalar multiplier,  .  Translational symmetry demands that this pattern is 

preserved as one moves from the left-hand to the right-hand side of the cell, allowing one to 

write R Ls s ; this immediately leads to the standard eigenvalue problem L LTs s , or 

  L T s 0 .  There are two forms of the transfer matrix T  in frequent use: the first and 

more common [1,12,16,22,24–26,30,44,56,60–62] relates a state vector s  of displacement 

and force components on either side of the cell, here presented as transfer matrix G ; the 
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second and less common form [9,15,40,87,92] relates state vectors s  of displacements at 

three consecutive nodal cross-sections of the complete structure, here presented as H .   

Both G  and H  can be determined from the (dynamic) stiffness matrix K ; the latter is 

symmetric for linear elastic displacements and, in turn, both transfer matrices are symplect ic, 

that is they satisfy a relationship of the form T T ΩT Ω  where T
T  denotes the transpose of 

T , and Ω  is a skew-symmetric matrix, known as the metric.  For transfer matrix G , the 

metric takes its simplest, canonical, form, and is written as 
 

  
 

0 I
J

I 0
.  The significance 

of the metric is rooted in Hamiltonian mechanics.  The metric in a Euclidean vector space is 

the length of a vector, calculated as the square root of the dot product of the vector with 

itself, an inner product.  However, in a symplectic vector space, where the state vector 

consists of both displacement and force components, such an inner product has no physical 

meaning. Instead, a symplectic inner product, employing J  as the metric, multip lies 

displacement with force which is work or energy; rather than length, it is an area, which is 

preserved during (here spatial) evolution. Ultimately, it implies conservation of energy. 

For the static problem, the force-displacement transfer matrix G  is perhaps the more 

appropriate, as one can readily identify force resultants; thus the decay modes associated 

with self-equilibrated loading (as anticipated by Saint-Venant’s principle), the rigid body 

modes associated with zero force components, and the transmission modes associated with 

the force resultants of tension, bending moment and shearing force can be easily recognised.  

This static problem is characterised by multiple unity eigenvalues for the rigid body and 

transmission modes.  In turn the transfer matrix cannot be diagonalised, but can only be 

reduced to a Jordan canonical block form; e.g. the principal vector describing tension is 

coupled with the eigenvector for a rigid-body displacement in the axial x-direction within a 

( 2 2 ) block [12].  

For wave propagation, the displacement-displacement transfer matrix H  is perhaps the more 

appropriate, as waves are naturally described in terms of their displacement characterist ics, 

e.g. extensional, flexural, thickness-shear, rather than force resultants. 

For the dynamic problem considered here, irrespective of whether one employs G  or H , 

repeating eigenvalues are unusual for a given frequency; it generally implies a crossing of 

branches on a dispersion diagram, when the eigenvectors are distinct.  The exception is a so-

called Krein collision [63], which occurs when one has equal eigenvalues at the same 
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frequency, and one of the propagation modes displays anomalous dispersion, the other 

normal; this is considered in detail in Chapter 4. 

Each formulation has advantages and disadvantages: for example, symplectic orthogonality 

of the eigenvectors of G  is seen to be a special case of the reciprocal theorem of Betti-

Maxwell [58], whereas the weighted symplectic orthogonality of the eigenvectors of H  is 

not so obviously related.  On the other hand, a new expression for the group velocity 

[47,72,75,93] is much more succinct when one employs H .  For a repetitive structure having 

finite length, boundary conditions are generally expressed in terms of zero force or zero 

displacement so transfer matrix G  is the more appropriate.  If the number of repeating cells 

N is small, then the natural frequencies can be determined from a zero value determinant of 

a partition of N
G ; if one employs transfer matrix H , then since the force vector does not 

naturally feature it has to be introduced at a free end, which leads to a frequency equation 

which involves 1N
H .  However, both of these methods become inaccurate when the number 

of cells is large, and natural frequencies are then most accurately found using phase closure 

for G . 

This chapter presents relationships between the two forms of transfer matrix, G  and H , 

between their respective eigenvectors and also orthogonality relationships.  Some of the 

results are not new but re-derived in a concise formulation and provided here as a convenient 

resource for comparison with new results.  The results are formulated for the dynamic 

problem, but apply equally for the static case, 0  . 

The example structure consists of an (in)finite planar framework of pin-jointed members 

with a point mass m located at each pin-joint, as shown in Figure 2.1(a).  The indices  1n  , 

n  and  1n   denote three consecutive nodal cross-sections of the framework, and numbers 

1, 2 and 3 denote tiers of the masses.  Horizontal and vertical rods, assumed massless, have 

stiffness k EA L  where E  is the Young’s modulus, A  is the cross-sectional area and L  

is the rod’s length.  The cross-sectional area of the diagonal members, also assumed 

massless, is taken to be one-half of the horizontal and vertical members, so their stiffness is 

 2 2k .  The diagonal members are not pinned where they cross.  The structure is, in fact, 

identical to that which has been subject to extensive elastostatic eigenanalysis by Stephen 

and co-workers [1,12,39,49], but with the addition of point masses at the nodal cross-

sections. 
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The complete structure can be regarded as a repetition of two possible entities, as shown in 

Figure 2.1(b) and 2.1(c).  In Figure 2.1(b), the vertical members and the cross-sectional 

masses are regarded as being shared between adjacent cells, therefore their stiffness and 

mass must be halved; for a pin-jointed rod, this is accomplished by taking the cross-sectional 

area as 2A .  Similarly, the masses are drawn as semi-circles, to denote the fact that each 

has mass 2m .  This repeating cell is the more appropriate for the construction of transfer 

matrix G .  On the other hand, the structure can be regarded as a repetition of nodal cross-

sections, Figure 2.1(c), and this is the more appropriate for the construction of transfer matrix 

H ; the vertical members are no longer shared, so the full stiffness (cross-sectional area) is 

now employed. 

 

 

Figure 2.1 Segment of the example framework, (a), and two possible repeating 

entities; (b) shows the complete nth repeating cell, whereas (c) shows a 

repeating nodal cross-section with attached pin-jointed rods.  For (b), the 

sections  1n   and n  can also be represented by left (L) and right (R), 

respectively. 

 

2.2 Formulation of the dynamic transfer matrices 

2.2.1 Displacement-force transfer matrix, G   

First consider the repeating cell shown in Figure 2.1(b); the governing equations of motion 

for the half-masses on sections  1n   and  n  are 

        LL LR1 1 1
2

n n n n      
m

f d K d K d ,  (2.1) 

        RL RR1
2

n n n n   
m

f d K d K d ,  (2.2) 

n n + 1th sectionn – 1 

1

2

3

n nn – 1 

x

y

(a) (b) (c)
(L) (R)
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respectively, where f  is the nodal force vector, m  is the mass matrix, d  is the displacement 

vector, and dot denotes differentiation with respect to time.  The matrices 
LLK , 

LRK , 
RLK  

and 
RRK  are presented explicitly in Appendix A.1.  The mass matrix m  is equal to m times 

a ( 6 6 ) identity matrix.  Following transfer matrix sign convention, the negative sign before 

 1n f  is introduced to indicate that it acts in the opposite direction to  nf , that is, it acts 

in the negative x-direction.  A factor of one-half for the mass matrix takes into account the 

halved point masses on both sides of the cell.  For harmonic motion, one can write 

     exp in n tf F  and      exp in n td D  where F  and D  are force and 

displacement amplitudes, respectively, i 1  ,   is frequency and t  is time.  The 

acceleration vector can then be expressed as      2 exp in n t  d D  which upon 

substitution into equations (2.1) and (2.2) yields the dynamic stiffness matrix in partitioned 

form 
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  (2.3) 

Equation (2.3) can be rearranged into transfer matrix form as 
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where  
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or more compactly    1n n V GV , with      
T

T Tn n n   V D F  and 

     
T

T T1 1 1n n n     V D F . 

The matrix G  is symplectic, that is it satisfies the relationship  

 
T G JG J   (2.5) 
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where 
 

  
 

0 I
J

I 0
 is the metric for G  and has the properties T 1  J J J .  The 

determinant of G  is 1  for all values of  .  The inverse of G  is given by 

1 1 T T   G J G J JG J .   Writing    1n n V V , leads to the frequency-dependent 

eigenvalue problem  
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m
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D
0

Fm m m
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, (2.6) 

or more compactly,    1n  G I V 0 . 

2.2.2 Displacement-displacement transfer matrix, H    

Now consider the repeating nodal cross-section at an arbitrary station n , as shown in Figure 

2.1(c).  The governing equation of motion now takes the form  

          RL LL RR LR1 1n n n n      md K d K K d K d 0 .  (2.7) 

(Referring to Appendix A.1, one sees that the term 2k , pertaining to the one-half stiffness 

of the vertical members for Figure 2.1(b), only appears in the partitions LLK  and RRK ; since 

these partitions are added in equation (2.7), this leads to the full stiffness of the vertical 

members in Figure 2.1(c).) 

Writing      exp in n td D  leads to  

      2

RL LL RR LR1 1n n n        K D K K m D K D 0 .  (2.8) 

Pre-multiplying by 1

LR


K  gives 

      1 1 2

LR RL LR LL RR1 1n n n          D K K D K K K m D .  (2.9) 

Introducing state vectors  

      
T

T T1 1n n n    X D D  and      
T

T T 1n n n   X D D   (2.10a,b) 

allows one to reconstruct equation (2.9) in the difference equation form  
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1

n n
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0 ID D

D K K K K K m D
,  (2.11) 
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or more compactly    1n n X H X .  Finally, writing    1n n X X  leads to the 

frequency-dependent eigenvalue problem  

  1 1 2

LR RL LR LL RR

1n


  

 
  

        

I I
X 0

K K K K K m I
,  (2.12) 

or more compactly,    1n  H I X 0 .  Note that matrix H  is still symplectic, but does 

not satisfy equation (2.5), that is T H JH J ; however, the equivalent relationship, together 

with a new metric, is developed in the following section. 

2.3 Relationships between transfer matrices G  and H  

The relationships between the dynamic transfer matrices G  and H  can be established as 

follows: let L  and N  be the matrices  

 2

LL LR
2



 
 

         

I 0

L m
K K

 and 2

RL RR
2



 
 

       

0 I

N m
K K

  (2.13a,b) 

then it is straightforward to show that  

 1G NL  and 1H L N . (2.14a,b) 

The inverse of matrix L  is found using the block-wise matrix inversion formula, Appendix 

A.2, as 

1

1 2 1

LR LL LR
2




 

 
       
   

I 0

L m
K K K

.  

Matrices L  and N  were first introduced by Zhong and Williams [40] as a means to avoid 

numerical ill-conditioning.  Now, from equations (2.14a,b) 
T T TG L N  and 

T T TH N L , 

so equation (2.5) becomes  

    T T 1  L N J NL J ;  (2.15) 

now pre-multiply by 
T

N  and post-multiply by N  to give    T T T 1 T  N L N JN L N N JN  or 

 T T TH N JN H N JN .  Write 
TJ N JN , then we have 

T H JH J  as the expression 

equivalent to equation (2.5) for matrix H.  The metric is 
LR

RL

 
  
 

0 K
J

K 0
, and has the 

skew-symmetric property 
T  J J  since 

T

RL LRK K ; this allows one to write 
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1 1 T H J H J .  The metric can also be expressed in terms of L : pre-multiply equation 

(2.15) by T
L  and post-multiply by L  gives T T N JN L JL J .  The formula to find the 

inverse of H  as given by Gry and Gontier [92] is wrong because the result showed that 

1 H H I  and 1 HH I . 

Matrices G  and H  are related as follows: from equation (2.14a), pre-multiply by 1
L  to 

give  1 1 1 1    L G L N L HL  and hence 1G LHL , or equally 1H L GL .  Pre-multip ly 

equation (2.14b) by N  to give  1 NH NL N GN  and hence 1H N GN , or equally 

1G NHN .  Thus both L  and N  serve as similarity matrices for G  and .H   Since G  and 

H  are similar, they must have the same eigenvalues, as one would expect, although the 

eigenvectors are quite different as will be noted below; however the eigenvectors are related, 

again through matrices L  and N.  In the above, the inverse of N may be found by means of 

the Schur complement, Appendix A.2, as 

1 2 1

RL RR RL1
2
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I 0

.   

Similarly, 
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K 0
 

2.4 Eigenvalues and eigenvectors of transfer matrices G  and H  

The frequency-dependent eigenproblems, equations (2.6) and (2.12), can be solved 

computationally using the eig function of MATLAB.  For a specified  , or 
2 , MATLAB 

returns the eigenvalues   in a diagonal matrix and the corresponding normalised right 

eigenvectors V  arranged accordingly in the eigenvector matrix, that is the eigenvector 

associated with the first eigenvalue will be in the first column of the eigenvector matrix, and 

so on. 

For a cell with 2N degrees of freedom, there are N reciprocal pairs of eigenvalues: if the 

eigenvalue i  is associated with a propagating or decaying wave from sections  1n   to n , 

that is from left-to-right, then its reciprocal pair j  where 1j i   represents the same 

wave propagating or decaying from n  to  1n  , that is from right-to-left.  Usually,   is 

expressed in exponential form, i.e.  exp i     where   and   represent decay rate 
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and phase change of amplitudes from one section to the next, respectively. The eigenva lues 

take five possible forms [1]: 

(i) The positive real unity eigenvalue  1 exp 0    must occur an even number of 

times since its inverse will also be 1. 

(ii) The negative real unity eigenvalue  1 exp iπ     must also occur an even 

number of times since its inverse will be 1.  

(iii) The real non-unity eigenvalues occur as a pair   and 1  .  If 0  , then 

 exp  , but if 0  , then  exp iπ   . 

(iv) The complex unity eigenvalues 1   occur as a unitary pair, that is ia b     

and ia b   .  If  exp i  , then  1 exp i    ; the inverse is also the 

complex conjugate. 

(v) The complex non-unity eigenvalues occur as a quartet of reciprocals and complex 

conjugates, that is ia b   , ia b   ,  
1

ia b


  ,  
1

ia b


  ; in 

exponential form,  exp i      where 0   and 0  .  For example, if 

1i  , then  exp ii     , the complex conjugate is  exp ii     , the 

inverses are  1 exp ii       and  1 exp ii      .  The minimum size of 

transfer matrix for complex non-unity eigenvalues to occur is (8 8 ), because the 

quartet of eigenvalues can multiply both a minimum four degrees of cross-

sectional displacement freedom, and four force components in the case of G  or 

an additional four displacements in the case of H ; in turn the state vector of both 

G  or H  will be (8 1 ). 

For the model framework, the first six rows and the last six rows of the right eigenvector V  

of matrix G  represent displacement and force components, respectively, at an arbitrary 

station ( 1n  ) , i.e. 

 

 
T

T 1 1 1 1 1 1 1 1 1 1 1 1

1 1 2 2 3 3 1 1 2 2 3 31 .n n n n n n n n n n n n

x y x y x y x y x y x yn D D D D D D F F F F F F               V  

The first six rows and the last six rows of the right eigenvector X  of matrix H  represent 

displacement components at adjacent arbitrary stations  1n   and n , respectively, i.e.  

  
T

T 1 1 1 1 1 1

1 1 2 2 3 3 1 1 2 2 3 31 n n n n n n n n n n n n

x y x y x y x y x y x yn D D D D D D D D D D D D         X . 
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These components of the eigenvectors associated with both transfer matrices are shown in 

Figure 2.2. 

Despite the obvious difference between eigenvectors V and X, they are related as follows: 

V is an eigenvector of G, that is it satisfies GV V ; X is an eigenvector of H, that is it 

satisfies HX X .  But 1G LHL , or equally 1H L GL ; employing the former, one has 

 1  LHL V V  and pre-multiplying by 1
L  gives    1 1 H L V L V  and hence 

1X L V , or V LX . 

 

  

Figure 2.2 (a) Nodal displacements and forces pertaining to eigenvector V of 

transfer matrix G; (b) nodal displacements pertaining to eigenvector X of 

transfer matrix H. 

 

But we also have 
1H N GN , or equally 

1G NHN ; employing the former, one has 

 1  N GN X X  and pre-multiplying by N  gives    G NX NX  and hence V NX . 

Employing the latter provides the equivalent 
1X N V , or V = NX  . 

From the above, it has been found that V NX  and V LX , that is both L and N serve 

equally to relate X to V.  However there is a subtlety that only becomes apparent when one 

expands these expressions: write      
T

T T1 1n n n    X D D , then the former becomes  

(a) (b)

1

1

n

xD 

1

1

n

yD 

1

2

n

xD 

1

2

n

yD 

1

3

n

xD 

1

3

n

yD 

1

1

n

xF 

1

1

n

yF 

1

2

n

xF 

1

2

n

yF 

1

3

n

xF 

1

3

n

yF 

1

1

n

xD 

1

2

n

xD 

1

3

n

xD 

1

n

xD

2

n

xD

3

n

xD

1

1

n

yD 

1

2

n

yD 

1

3

n

yD 

1

n

yD

2

n

yD

3

n

yD

 1n   1n  n  n



Chapter 2 

49 

  

 

   

 

 
 2

RL RR

1
1

2

n
n

n n
nn n



 
  

              
  

D
D

V NX Vm
FK D K D

  (2.16) 

where the second row of equation (2.3) has been employed.  Thus strictly, we have 

   1n n V NX .  For the latter, 
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LL LR

1
1

1 1
11

2

n
n

n n
nn n



  
  

                 
  

D
D

V LX Vm
FK D K D

      (2.17) 

where the first row of equation (2.3) has been employed.  Thus strictly, we have 

   1 1n n  V LX . 

Finally, we derive expressions for the left eigenvectors of G and H, as these are required in 

subsequent analysis to obtain the group velocity.  The left eigenvector of matrix G can be 

evaluated as follows: let V  be the eigenvector associated with the eigenvalue 1  , i.e. 

1GV V  or 1  G V V ; but 1 1 T G J G J , so we have 1 T  J G JV V  or 

   T G JV JV  which upon transposition gives    
T T

JV G JV  or simply 

T TW G W  where  
T

T W JV  is the left eigenvector of G . 

The left eigenvector of matrix H  can be obtained by following a similar procedure: let X  

be the eigenvector associated with the eigenvalue 
1 
, i.e. 1HX X  or 1  H X X ; but 

we know that 
1 1 T H J H J , hence 1 T  J H JX X  or    T H JX JX  which upon 

transposition, gives    
T T

JX H JX  or 
T TY H Y  where  

T
T Y JX  is the left 

eigenvector of H . 

2.5 Symplectic orthogonality for transfer matrices G  and H  

Let iV  and jV  be eigenvectors of G  associated with eigenvalues i  and j , respective ly. 

Then one has i i iGV V  and j j jGV V .  Transpose the former to give 
T T T

i i iV G V  and 

then post-multiply by jJGV  to give  T T T

i j i i jV G JG V V JGV  which reduces to 

T T

i j i j i j V JV V JV .  Finally, rearrange as   T1 0i j i j V JV  which implies that 

T 0i j V JV  for 1i j  .  This result shows that an eigenvector associated with an 
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eigenvalue of the transfer matrix G is symplectic orthogonal to all other eigenvec tors 

including itself with the exception of the eigenvector(s) associated with its reciprocal 

eigenvalue; the possible plurality of eigenvectors noted above can occur when one has a 

crossing of branches on a dispersion diagram, with a repeated eigenvalue and distinct 

eigenvectors.  The symplectic orthogonality is a special case of the Betti-Maxwell reciprocal 

theorem as shown by Zhong and Williams [57,58] and later by Stephen [1].  For 

completeness, an implementation of the reciprocal theorem to obtain this expression is given 

in Appendix A.3.  Zhong and Williams [57] have also shown that if 
iV  and jV  correspond 

to a reciprocal eigenpair, that is 1i j  ,  then one can scale the eigenvector lengths such 

that 
T 1i j V JV  and 

T 1j i  V JV ; however, as will be seen in Chapter 3 (Section 3.10), this 

procedure loses information in the form of the Krein signature [63]. 

A similar procedure can be followed for matrix H .  Let 
iX  and jX  be the eigenvectors of 

H  associated with eigenvalues 
i  and j , respectively. Then one has 

i i iHX X  and 

j j jHX X .  Transpose the former to give T T T

i i iX H X  and then post-multiply by jJHX   

to give  T T T

i j i i jX H JH X X JHX  which reduces to 
T T

i j i j i j X JX X JX .  Finally, 

rearrange as   T1 0i j i j X JX  which implies that 
T 0i j X JX  for 1i j  ; again, for 

iX   and jX  which corresponds to a reciprocal eigenpair, the eigenvector lengths can be 

scaled such that 
T 1i j X JX  and 

T 1j i  X JX .  In terms of the metric J , this can be expressed 

as     
T

1 0i j i j  NX J NX  or equivalently     
T

1 0i j i j  LX J LX .  This is 

referred to as weighted symplectic orthogonality. 

2.6 Group velocity 

The velocity at which energy flows through a dispersive structure or medium is known as 

the group velocity [47,72,75,93] and is defined as the derivative of frequency with respect 

to wavenumber, i.e. g

d

d
c




 .  Using the chain rule g

d d d

d d d
c

  

  
  , and since 

 exp i  , then  
d

iexp i i
d


 


  ; and one finds 

g

d
i

d
c





 .  We now write matrix 

H  in the form  
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2

1 1 1

LR RL LR LL RR LR

  

   
         

0 I 0 0
H

K K K K K 0 K m
  (2.18) 

or more compactly, 2

0 2 H H H .  The eigenvalue problem    1n  H I X 0 , where 

     
T

T T1 1n n n    X D D , can then be written as  2

0 2 1n      H H I X 0 .   

Differentiating with respect to   gives 

 2

2 0 2

d d
2

d d


  

 

 
       

 

X
H I X H H I 0   (2.19) 

where the index  1n   has been omitted.  Let T
Y  be the left eigenvector of matrix H ,  

pertaining to the same eigenvalue  , then Y  satisfies 
T

2

0 2     H H I Y 0  or by 

transposing T 2

0 2     Y H H I 0 .  So if we pre-multiply equation (2.19) by T
Y , the 

second term will disappear to give T

2

d
2 0

d






 
  

 
Y H I X  or 

T

T

2

d

d 2



 


Y X

Y H X
.  The 

group velocity is then 

 
T

g T

2

i
2

c 



Y X

Y H X
.  (2.20) 

A similar approach can be adopted for the matrix G , which may be decomposed as 
2 4

0 2 4   G G G G  where  

1 1

LR LL LR

0 1 1

RL RR LR LL RR LR

 

 

  
  

  

K K K
G

K K K K K K
, 

1

LR

2

1 1 1

LR LL RR LR LR

2

2 2



  

 
 

  
     

m
K 0

G
m m

K K K K K

 and 

2
4 1

LR
4



 
 
 
  

0 0

G m
K 0

; proceeding as above for the eigenvalue problem   G I V 0  one 

finds 
T

T 3 T

2 4

d

d 2 4



  




W V

W G V W G V
 and hence group velocity  

 
T

g T 3 T

2 4

i
2 4

c 
 




W V

W G V W G V
,  (2.21) 

where 
T

W  is the left eigenvector of matrix G .  For both equations (2.20) and (2.21), we 

note that gc  is real because the product of   and d d   is purely imaginary. 

Clearly, the expression for group velocity involving transfer matrix H is the more succinct, 

and since the  12 12  matrix 2H  contains three  6 6  zero partitions, the structure of 
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expression (2.20) can be revealed, as follows: since      
T

T T1 1n n n    X D D , the 

product in the denominator  
T

1 T

2 LRm n   H X 0 K D  is a column vector, while from 

Section 2.4 one has  
T

T Y JX , or written in full 

       T T T T T T T

LR RL RL LR1 1n n n n           Y D K D K D K D K  since T

RL LRK K .  

In turn, the denominator reduces to the scalar    T T

2 1m n n Y H X D D .  The numerator 

is the scalar        T T T

LR RL1 1n n n n   Y X D K D D K D .  If we now express all of the 

displacement vectors in term of cross-section index  1n  , that is    1n n D D  and 

   1 1n n  D D , the expression for the group velocity becomes 

 
 T 1

LR RL

g T

i

2
c

m

 






D K K D

D D
,  (2.22) 

where the  1n   index has been omitted.  While not as succinct as equation (2.20), this form 

is suggestive of possible opposing contributions which could lead to both positive and 

negative group velocity, this signifying normal and anomalous dispersion, respectively.  For 

the example structure, such anomalous dispersion does indeed occur as will be seen in 

Chapter 3 where it is explored in detail. 

2.7 Natural frequencies of finite length structures 

Finite length repetitive structures inevitably have boundary conditions, typically of zero 

displacement (fixed) or zero force (free), and for this reason the formulation employing 

transfer matrix G seems the more appropriate.  For example, for a structure having N cells, 

at a fixed left-hand end one immediately has        
T T

T T T0 0 0 0       V D F 0 F , 

whilst for a free right-hand end one has        
T T

T T TN N N N       V D F D 0 .  It is 

also possible to have mixed end conditions, for example some but not all of the nodal masses 

at either end could be fixed, the remaining free; for such cases, one can always re-cast the 

state vector column so that the first six elements are zero and the following six are unknown, 

and re-order the rows of the transfer matrix G accordingly.  We now present three approaches 

to derive the frequency equation. 
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2.7.1 Phase closure 

Phase closure [19,94] is based upon the idea that for a standing wave, the total phase change 

for a complete circumnavigation of the structure is an integer multiple of 2π .  The state 

vector    
T

T Tn n  D F  at any given cross-section n can only consist of the eigenvectors; 

how much of each is defined by participation coefficients, also known as the wave 

amplitudes  nw , and since some waves are propagating while others are decaying, the 

amount of each will be different at each cross-section.  Thus we may write 

     
T

T Tn n n   D F Vw   where V  is now an ordered (12 12 ) matrix containing the 

twelve eigenvectors of G ; in partitioned form  

 
 

 
 

 

 

 

 
R,D L,DR R

R L

R,F L,FL L

n n n

n n n

      
       

      

V VD w w
V V

V VF w w
  (2.23) 

where the subscripts R and L refer to right- and left-going waves, respectively, while 

subscripts D and F refer to the displacement and force vectors, respectively.  The order of 

columns of RV  and LV  must correspond to their eigenvalue pairs. 

Now introduce reflection matrices R  which describe the effect of the end-condition on each 

of the impinging wave amplitudes.  Consider a finite length structure of N cells.  For a free 

left-hand end, the force vector is  0 F 0 ; from the second row of equation (2.23) one has 

   R,F R L,F L0 0 V w V w 0 , which may be arranged in the form      R L0 0 0w R w , 

where   1

R,F L,F0  R V V  is the reflection matrix at the free left-hand end.  Similarly, for a 

free right-hand end, the force vector is  N F 0 .  Following the same procedure gives 

     L RN N Nw R w , where   1

L,F R,FN  R V V  is the reflection matrix at the free right-

hand end.  Note that    1 0N R R , which can be attributed to symmetry. 

To apply the phase closure principle, consider right-going waves impinging upon the right-

hand end, station N,  R Nw  which can be written in terms of  R 0w  as 

   R R R 0NN w Λ w  where RΛ  is a diagonal eigenvalue matrix associated with right-go ing 

waves.  By repeated substitution,  
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R R R

R L

R R L

R R R

0

0 0

0

0 ,

N

N

N N

N N

N

N

N N









w Λ w

Λ R w

Λ R Λ w

Λ R Λ R w

  (2.24) 

or      R R R0N N N N   Λ R Λ R I w 0 .  For a standing wave to occur, one must have 

    R Rdet 0 0N N N   Λ R Λ R I .  (2.25) 

Note that the determinant is complex, and the natural frequencies are found when the real 

and imaginary parts vanish simultaneously.   

The formulation, equation (2.25), is unchanged for structures with different end conditions; 

what do change are the reflection matrices.  These are summarised as follows: 

Free left-hand end      R L0 0 0w R w  where   1

R,F L,F0  R V V  

Fixed left-hand end      R L0 0 0w R w  where   1

R,D L,D0  R V V  

Free right-hand end      L RN N Nw R w  where   1

L,F R,FN  R V V  

Fixed right-hand end      L RN N Nw R w  where   1

L,D R,DN  R V V  

Two comments should be made: first, the  R Nw  on the left-hand side of equation (2.24) 

is the same as that on the right-hand side only by virtue of a spatial phase change of an 

integer multiple of 2π .  For the fundamental natural frequency, this phase change will be 

2π , for the second 4π , and so on.  Second, for a free vibration, right-going waves can only 

propagate, 1  , or decay, 1  , as one moves from left to right along the structure; thus 

each of the eigenvalues within matrix RΛ  has modulus equal to or less than unity, and 

powers of RΛ  will in turn only lead to terms whose modulus is equal to or less than unity.  

Similarly, left-going waves after reflection from the right-hand end can only propagate or 

decay as one moves from right to left along the structure, so one must still employ those 

eigenvalues whose modulus is equal to or less than unity, that is RΛ , which is why one has 

employed    L R L0 N N w w  in the development of equation (2.24).  The reciprocal 

eigenvalue matrix, LΛ , which contains eigenvalues with modulus equal to or greater than 

unity, does not therefore feature in the formulation, and this exclusion ensures numerica l 
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stability however large the value of N.  The Riccati transfer matrix method, previously 

employed for the static analysis of the present structure [49], also excludes eigenva lues 

greater than unity, again ensuring numerical stability. 

2.7.2 Direct application of boundary conditions for matrix G  

Again for a finite length structure of N cells, the state vector at station N is related to that at 

station 0 by 

 
 

 

 

 

0

0

N
N

N

   
   

   

D D
G

F F
;  (2.26) 

powers of G are computed most efficiently by noting that 1G VΛV , so that 

1N N G VΛ V .  However, since the diagonal Λ  contains both 
LΛ  and 

RΛ , powers of the 

former will become large for large N, leading to numerical instability.  Introduce the notation 

DD DF

FD FF

ˆ ˆ
ˆ

ˆ ˆ

N
 

   
  

G G
G G

G G
. 

For free-free ends,    0 N F F 0 , and from the second row of equation (2.26) one has 

 FD
ˆ 0 G D 0  and hence the frequency equation  FD

ˆdet 0G .  For fixed-fixed ends, 

   0 N D D 0  and from the first row of equation (2.26), one has  DF
ˆ 0 G F 0  and hence 

the frequency equation  DF
ˆdet 0G .  Finally, for fixed-free and free-fixed ends, the 

frequency equations are  FF
ˆdet 0G  and  DD

ˆdet 0G , respectively.  Unlike phase 

closure, these determinantal frequency equations employing transfer matrix G  are real. 

2.7.3 Direct application of boundary conditions for matrix H  

Consider, again, a free-free structure of N cells.  Since the force vector does not naturally 

feature within this formulation, it has to be introduced at either end.  For a free vibration, the 

equations of motion at the left- and right-hand ends are, respectively 

     
2

LL LR0 0 1
2

 
    

 

m
F K D K D , and      

2

RL RR1
2

N N N
 

    
 

m
F K D K D . 

From the boundary condition  0 F 0  one has    
2

1

LR LL1 0
2

  
   

 

m
D K K D , and 

hence for the first cell,  
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 2

1

LR LL

0
0 0

1
2



 
   

             

I
D

X Dm
D K K

.  (2.27) 

From the boundary condition  N F 0  one has for the Nth cell 

  
2

RL RR 1
2

N
  

    
  

m
K K X 0 ,  (2.28) 

where      
T

T T1 1N N N    X D D .  Since  

    11 0NN  X H X ,  (2.29) 

one immediately has 

  
2

1 2
RL RR 1

LR LL

0
2

2

N






 
    

               

I
m

K K H D 0m
K K

,  (2.30) 

and for a natural frequency  

 
2

1 2
RL RR 1

LR LL

det 0
2

2

N






  
    

                

I
m

K K H m
K K

,  (2.31) 

where 1N   must be satisfied. 

For fixed-fixed ends, the left- and right-hand boundary conditions are    0 N D D 0 , 

or in state vector form  

  
 

 
 

0
0 1

1

   
    

  

D 0
X D

D I
 and (2.32) 

    1N  0 I X 0 ,  (2.33) 

where      
T

T T1 1N N N    X D D , respectively.  Substitute equation (2.32) into 

equation (2.29) and the resulting expression into equation (2.33) gives 

     
T1 1N 0 I H 0 I D 0 , where 1N   must be satisfied (if 1N  , then all the point 

masses are fixed, and vibration is impossible as the bars themselves are considered 

massless).  For a natural frequency, one must have     T1det 0N 0 I H 0 I .  If we 

mimic the notation employed in the previous section, that is write 
11 121

21 22

ˆ ˆ
ˆ

ˆ ˆ

N
 

   
  

H H
H H

H H
, 



Chapter 2 

57 

then the determinantal frequency equation above reduces to the more succinct form 

 22
ˆdet 0H .   

For fixed-free ends, the fixed left-hand end satisfies equation (2.32), while the free right-

hand end satisfies equation (2.28); following the same procedures leads to  

  
2

1

RL RR 1
2

N 
    

     
   

0m
K K H D 0

I
,  (2.34) 

and for a natural frequency one has 

 
2

1

RL RRdet 0
2

N 
     

           

0m
K K H

I
.  (2.35) 

For free-fixed ends, the free left-hand end satisfies equation (2.27) while the fixed right-

hand end satisfies equation (2.33).  Again, following the same procedures gives 

    1 2
1

LR LL

0

2

N






 
 

       

I

0 I H D 0m
K K

,  (2.36) 

and for a natural frequency one has 

   1 2
1

LR LL

det 0

2

N






  
  

          

I

0 I H m
K K

.  (2.37) 

Again, these determinantal equations employing transfer matrix H are real. 

As with G, powers of H are computed most efficiently by noting that 1H XΛX , so that 

1 1 1N N  H XΛ X , but again one can expect numerical instability as N becomes large.  

2.7.4 Numerical example 

Natural frequencies of finite length (repetitive) structures can be found by using phase 

closure principle or by direct application of boundary conditions on state space relations 

involving transfer matrices G  or H .  In this section, both methods are implemented on a 

five cells free-free framework and the results are compared with those obtained from the 

finite element method where exact solutions can be achieved for the model framework .  

Figure 2.3 is a plot of complex determinant against frequency squared obtained using the 

phase closure method, computed with frequency (squared) step change of 0.01 rad2/s2.  The 
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natural frequencies are identified when both the real and imaginary parts vanish.   

Alternatively, one can plot the absolute values of the determinant against the frequency. 

We found numerically that the force eigenvectors associated with the right-going wave R,FV  

and/or left-going wave L,FV  degenerate when two columns of the matrix appear identical, as 

happens when the dispersion branches cross each other, or one of its columns becomes zero 

as happens when 2 4  .  As a result, the natural frequency determinantal equation becomes 

singular and gives a large determinant; these appear as spikes on Figure 2.3.  The gaps on 

Figure 2.3 appear because extreme determinants are removed from the plot since the values 

affect the y-axis scaling.  Clearly, phase closure method is affected by matrix degeneracy at 

certain frequencies.  Nonetheless, all of the natural frequencies (except at 2 4  ) can be 

identified because a sufficiently small frequency step is taken in the computation.  Accuracy 

of the method can be improved (over certain frequency interval) by taking a smaller 

frequency step. 

 

Figure 2.3 Real and imaginary parts of determinant against frequency squared, 
2 , 

(rad2 s−2) for a free-free five cells framework evaluated using phase 

closure method. 

 

Figure 2.4 shows a plot of determinant against frequency squared evaluated using direct 

application of boundary conditions on state space relation involving transfer matrix H .  The 

determinant becomes very large at high frequencies; since the natural frequencies are 
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identified when the determinants vanish, the determinants above 1 and below  −1 are 

ignored.  Since the vertical axis is bounded to values close to zero, the curve appears as 

vertical straight lines as it crosses the horizontal axis. 

Natural frequencies of the finite model framework can also be computed using the finite 

element method where exact results (accurate to the accuracy of the computer) is achieved.  

The results obtained using the two methods described above are in good agreement with the 

results obtained using the finite element method; the biggest percentage difference is 

0.0064 %. 

The disadvantage of the direct method is that the determinant grows quickly with frequency, 

and with number of cells because eigenvalues greater than unity are raised to the power of 

 1N   for matrix H .  For very long structure, the determinants can get extremely large, 

that is larger than the order of computational error, leading to false results.  For the example 

framework, number of cells greater than eight is found to give incorrect results.  However, 

for the phase closure method, eigenvalues greater than unity do not appear in the 

determinantal equation, hence the determinants are numerically stable. 

 

 

Figure 2.4 Determinant against frequency squared, 
2 , (rad2 s−2) for a free-free five 

cells framework evaluated using direct application of boundary 

conditions on transfer matrix H . 
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2.8 Conclusions 

Two forms of dynamic transfer matrix have been derived for a one-dimensional (beam-like) 

repetitive pin-jointed structure with point masses located at nodal cross-sections, the 

displacement-force transfer matrix G, and the displacement-displacement transfer matrix, 

H.  Wave propagation through the structure is described by the eigenvalues of either transfer 

matrix, expressed as  exp i    , where the real part   is the decay constant, and   

is the phase constant as one moves from one cross-section to the next.  The emphasis of the 

present chapter has been the relationship between G and H, and their respective properties, 

and also between their respective eigenvectors.  Orthogonality relationships are derived for 

both sets of eigenvectors, allowing an arbitrary disturbance to be resolved into propagating 

and decaying waves.  Both G and H can be employed to determine new expressions for the 

group velocity, but that which employs H is the more succinct.   

For structures of finite length, the determination of natural frequencies of standing waves 

requires the application of boundary conditions, normally in terms of zero force (free-end), 

and/or zero displacement (fixed-end); accordingly, the displacement- force transfer matrix G 

is the more natural choice.  Direct application of boundary conditions leads to very succinct 

frequency determinants based on partitions of N
G .  This approach is suitable for short beam-

like structures, where the number of cells N  is small; however, since some of the 

eigenvalues are greater than unity, it becomes numerically unstable when N is large.  The 

displacement-displacement transfer matrix H approach does not feature a force vector, so 

this needs to be introduced into the formulation, leading to less succinct frequency 

determinants; the exception is for the fixed-fixed beam.  Again, this approach is numerica l ly 

unstable when N is large.  Instead, phase closure – the idea that for a standing wave, the total 

phase change for a complete circumnavigation of the structure is an integer multiple of 2π  

– has been developed in terms of reflection matrices, and features only those eigenva lues 

less than, or equal to unity; this ensures numerical stability whatever the magnitude of N.  

Both these approaches require the search for zero-values of a determinant; this can be done 

by evaluating and plotting the determinant over a frequency range, and noting where the 

value changes sign.  For the direct method, the determinant is real, whereas for phase closure, 

the determinant is complex, so both real and imaginary parts must be zero simultaneously. 

Dispersion diagrams and numerical results on the group velocity for the example structure 

are considered in Chapters 3 and 4, respectively. 
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Chapter 3: Wave Propagation in Repetitive Structures: 

Dispersion Diagram 

 

3.1 Introduction 

The present chapter describes in detail the wave propagation and decay characteristics: while 

such studies are not new, indeed there is a wealth of literature in this area 

[2,6,18,40,47,59,91,95,96], the sample structure reveals a variety of behaviour, not all of 

which is familiar within the mechanical vibration literature.  Besides, the emphasis is on 

developing an understanding of why the structure behaves dynamically as it does. 

A general theory on wave propagation in one-dimensional repetitive structures was 

presented by Mead [18].  It is known that under harmonic steady state excitation, free waves 

can propagate through such structures over certain frequency bands only, known as 

propagation bands, and are attenuated outside the propagation bands.  Mead [6] later wrote 

“Despite the numerous studies of wave motion in continuous periodic systems over the past 

40 years, a simple physical explanation has yet to be presented for the very existence of 

frequency-propagation zones and attenuation zones.  However, even if there is no simple 

answer to the question “Why does wave motion of one frequency propagate freely while 

motion of another frequency is attenuated?”, reliable prediction methods do exist for the 

properties of free motion and the magnitudes of forced motion.”  We note that the decay of 

self-equilibrated static loading, as anticipated by Saint-Venant’s principle (SVP), is 

represented by those points of the dispersion diagram where branches pierce the plane 

0;   accordingly, the formulation of a possible dynamic SVP [50,52] appears to be 

intimately related to Mead’s question.  It is found that the criterion for propagation, or 

attenuation, is not determined by the frequency per se, rather by the associated wavelength, 

so the present work goes some way towards answering Mead’s question and the formula t ion 

of a dynamic SVP.  A propagation zone can be seen as an “extended resonance”: cut-on 

generally occurs when one has phase closure (implying a natural frequency) over the cross-

sectional depth of the structure; cut-off generally occurs when one has phase closure (again 

implying a natural frequency) over the shortest axial unit – the repeating cell. 
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Unlike an isotropic continuum structure, the present discrete structure has both cut-on and 

cut-off frequencies, as the frequency is increased.  In contrast, a continuum structure 

typically only has cut-on frequencies – although the term cut-off is often (incorrect ly) 

employed.  The present work makes clear the need to distinguish between the two (some 

authors have referred to them as low- and high-frequency cut-offs).  Those frequencies at 

which waves start and stop propagating are associated with real unity eigenvalues, i.e. either 

1    or 1   .  According to Zhong [97], “The boundaries between the pass- and stop-

bands are of great concern and are given by solving to find   for 1   and 1   .”  Zhong 

implies that 1    coincides with a cut-off frequency, and this is generally true for the 

present example, with the exception of one branch which displays anomalous dispersion, for 

which 1    coincides with cut-on.  These cut-off frequencies can be found using a 

Rayleigh quotient. 

For the example structure, one can distinguish three decay forms for non-propagating waves; 

these are monotonic evanescent, oscillatory evanescent and attenuating.  The first two of 

these are typically associated with decay below cut-on and above cut-off frequenc ies, 

respectively; the last is associated with the interference of (otherwise) propagating waves 

over particular frequency ranges, and the interference of oscillatory evanescent waves which 

changes their decay characteristics, and give rise to loops in the dispersion diagram.  For 

propagating waves, the loop originates when two branches having different Krein signatures 

meet on the unit circle [77,98], and is known as a Krein collision.  The Krein signature is 

also related to whether dispersion is normal or anomalous. Since a loop also originates when 

two oscillatory evanescent waves collide, we propose a new expression for the signature 

applicable to such evanescent waves. 

Dispersion diagrams associated with one-dimensional structures are usually plotted in a two-

dimensional plane with plots of decay rate and phase change against frequency shown 

separately; this is seen as rather disjointed.  Three-dimensional dispersion diagrams are 

usually given for two-dimensional structures with a plot of frequency against phase constants 

giving phase constant surfaces because there are two directions of propagation [59].  Here, 

a novel form of dispersion diagram is presented where frequency (squared) is plotted against 

decay rate and phase change in a three-dimensional form; this provides a better qualitat ive 

understanding of the dynamic behavior of the structure, in particular how the various modes 

evolve and interact as frequency is increased.  Discussion of the dispersion diagram, and 

study of the displacement vectors at various critical points, and in terms of cross-sectional 
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and axial wavelengths at cut-on and cut-off frequencies, forms the major part of this chapter. 

Finally, some preliminary comments on the cause of anomalous dispersion are made. 

3.2 The example framework 

A segment of an infinite planar framework of pin-jointed members with a point mass at each 

joint, is shown in Figure 3.1(a);  1n  , n  and  1n   are consecutive cross-sections of the 

framework while top, middle and bottom layer of masses are indicated by numbers 1, 2 and 

3, respectively.  Horizontal and vertical rods have length L and stiffness k EA L  where E 

is the Young’s modulus and A is the cross-sectional area.  The diagonal members are not 

connected where they cross and have length 2L ; their cross-sectional area is taken to be 

one-half that of the horizontal and vertical members, so the diagonal members have stiffness 

 2 2k .  The geometric and material properties are identical to those employed by Stephen 

and Wang [12] but with a point mass added at each pin-joint of the framework: 9200 10E    

N m−2, 1L  m and 1A  cm2, hence 20k   MN m−1.  For numerical stability, we set 1k   

N/m and 1m   kg; for any other values, frequency (squared) can be multiplied by k m .  

This helps avoid numerical instability, but also reveals the influence of the diagonal 

members: the frequency (squared) at cut-on and cut-off, and other critical points, often 

feature the quantity  0.3536 1 2 2 .  Finally, bars are assumed massless. 

The framework can be constructed by two possible repeating entities: a cell and a cross-

section, as shown in Figure 3.1(b) and Figure 3.1(c), respectively, connected end-to-end.  In 

Figure 3.1(b), the vertical members and point masses are regarded as being shared between 

adjacent cells, therefore their stiffness and mass must be halved; for a pin-jointed structure, 

this requires that the cross-sectional area be 2A .  Newton’s Second Law applied to each 

point mass of the cell gives the equations of motion which can be re-arranged to give the 

displacement-force transfer matrix G .  On the other hand, Newton’s Second Law applied to 

the nth cross-section shown in Figure 3.1(c) leads to the displacement-displacement transfer 

matrix H  (see Chapter 2).  This model framework is employed for three reasons; first, it has 

been analysed previously by Stephen and Wang [12] for the static case, which is the zero-

frequency limit of the present dynamic case; second, it can be modelled in finite element 

software which would give exact results (should massless rods actually exist, correct to the 

accuracy of the computer); and third, the structure has three layer of masses with double 

thickness and features multi-coupled connections between adjacent cells, this represents a 
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more general case of a one-dimensional beam-like structure and provides a greater degree 

of complexity of behaviour than the single thickness truss models which have been more 

commonly considered previously, for example see reference [47]. 

Assume that the framework is harmonically excited at some arbitrary section n then, in 

steady state, waves travel along the framework from that section to the right and to the left.  

The excitation can be applied directly to any of the three masses at the input section, but in 

order to drive a particular mode, the forces applied or the displacements imposed must be in 

accordance with the eigenvector associated with the particular mode at that frequency.  For 

example, if the second thickness shear mode is to be driven, then all three masses need to be 

driven harmonically in the x-direction in a particular pattern, with the middle mass 
2m  in 

opposition to the upper 
1m  and lower 

3m .  If only 
1m  and 

3m  are being driven, then 
2m  will 

be displaced (harmonically) by the action of deforming members attached to it, and its 

displacement is determined by the resultant of the elastic forces acting upon it; however, 

other modes of propagation would also be excited. 

 

Figure 3.1 (a) A segment of the model framework. (b) The nth cell.  L for left-hand 

side, R for right-hand side. (c) The nth cross-section. 

3.3 Properties of the eigenvalues 

For both transfer matrices G  and H , Bloch’s theorem leads to a frequency-dependent 

eigenvalue problem which can be solved numerically by employing the MATLAB eig 

function.  The eigenequations are derived in Chapter 2.  Typically, one specifies the 

frequency and then determine the eigenvalues and eigenvectors at that frequency.  The 

number of eigensolutions is equal to the dimension of the (square) transfer matrix, and that 

must be twice the number of degrees of freedom at a cross-section, Figure 3.1(c), which is 

six; in turn there are twelve eigenvalues which exist as reciprocal pairs.  Each eigenva lue 

n n + 1th sectionn – 1 

1

2
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n nn – 1 
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pair corresponds to identical free waves which travel in opposite directions.  For the static 

problem ( 0  ), the eigenvalues are six unities and 0.2829 , 0.0596  and 0.0702  together 

with their respective inverses 3.5346 , 16.7798  and 14.2435 .   

For dynamic problems ( 0  ), the eigenvalues falls into five possible classes as given in 

Chapter 2.  The wave type and direction of travel associated with each class are shown in 

Table 3.1, based upon Hinke et al. [95], and is most clearly seen when one writes 

 exp i    , where   and   are known as the decay rate and phase constant or 

wavenumber, respectively.  The direction of travel of a propagating wave is defined in 

accordance with the direction of the phase velocity: a right-going wave is one that travels in 

the positive x-direction, while a left-going wave is one that travels in the negative x-direction.  

Propagating waves are associated with complex eigenvalues with a magnitude of unity, 

1  ; the direction of travel depends upon the sign of the phase constant  , with right-

going waves having 0  , and left-going waves having 0  ; the decay rate parameter   

is obviously zero.   

Decaying waves can take three general forms, according to the real and imaginary part of 

the eigenvalue  , or equivalently according to the sign of the phase angle, and the sign of 

the decay rate.  The simplest is described as monotonic evanescent, for which the phase angle 

  is zero; the sign of the decay rate   then determines whether it is leftward ( 0  ) or 

rightward ( 0  ) decay.  The next simplest, oscillatory evanescent, has a phase angle   

equal to π ; the wavelength of the decaying wave is then equal to twice the length of the 

repeating cell.  Again, the sign of the decay rate   determines whether it is leftward ( 0  ) 

or rightward ( 0  ) decay.  Finally, one has attenuating decay, for which   and   are non-

zero and   lies between zero and π .  The sign of   reflects the direction of decay, that is 

0   for a right decaying wave and 0   for a left decaying wave. The sign of   reflects 

the direction of wave travel, that is π 0    for a rightward wave and 0 π   for a 

leftward wave.  The magnitude of   determines the wavelength.  These properties for the 

three cases are summarised in Table 3.1, and depicted in Figure 3.2 where, for simplic ity, 

each nodal cross-section is shown as a single point mass, and it is assumed that displacements 

are in the transverse y-direction only. 
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    type of wave direction of 

travel/decay 

positive real non-unity 1  0  0  monotonic evanescent  rightward 

positive real non-unity 1  0  0  monotonic evanescent  leftward 

negative real non-unity 1  0  π  oscillatory evanescent  rightward 

negative real non-unity 1  0  π  oscillatory evanescent  leftward 

complex unity 1 0  0  propagating right-going 

complex unity 1 0  0  propagating left-going 

complex non-unity 1  0  π 0    attenuating rightward/ 

rightward 

complex non-unity 1  0  π 0    attenuating rightward/ 

leftward 

complex non-unity 1  0  0 π   attenuating leftward/ 

rightward 

complex non-unity 1  0  0 π   attenuating leftward/ 

leftward 

 

Table 3.1 Properties of eigenvalues and associated wave type and direction. 
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(a) (b) 

  

(c) (d) 

 

Figure 3.2 Representation of wave types for right-going travel and/or rightward 

decay.  (a) Propagating ( 0  , 0   ).  (b) Oscillatory evanescent 

( 0  , π  ).  (c) Attenuating ( 0  , π 0   ).  (d) Monotonic 

evanescent ( 0  , 0  ). 

 

Next we consider relationships between different forms of eigenvalues with partitions of the 

dynamic stiffness matrix and displacement vectors.  The work is prompted by Mead [18], 

who considered time-averaged energy flow in terms of the partitions of the receptance matrix 

and force vectors.  Different eigenvalue forms and energy flow can be determined from the 

relative magnitude of two expressions constructed from partitions of the dynamic stiffness 

matrix and the displacement vectors. 

For three consecutive repeating cross-sections, centred at an arbitrary section n , Figure 

3.1(c), the equation of motion is  

      2

RL LL RR LR1 1n n n        K D K K m D K D 0   (3.1) 
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where   is frequency, m  is the mass matrix and D  is the displacement vector, and the 

partitions of the stiffness matrix 
LLK , 

LRK , 
RLK  and 

RRK  are shown explicitly in Appendix 

A.1.  Write    1n n D D  and    21 1n n  D D , where   is an eigenvalue, and 

substitute into equation (3.1); then pre-multiply each term with the transposed conjugate of 

 1n D  to give  

 * * 2 2 *

RL LL RR LR 0        D K D D K K m D D K D   (3.2) 

where the arbitrary section  1n   is implied, and the coefficients of   are scalar.   

Express   as the quadratic roots of equation (3.2) as  
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D K K m D

D K D

D K K m D D K D D K D

D K D

  (3.3) 

Now, for real and complex non-unity eigenvalues, the plus-minus sign corresponds to the 

reciprocal eigenvalue pair.  However, for complex unity eigenvalues, we find numerica l ly 

that both the plus and the minus signs give the correct eigenvalues, but they are not 

reciprocal; no explanation has been found for this.  Matrices LLK , RRK  and m  are real and 

symmetric, hence the scalar product * 2

LL RR    D K K m D  is real, as shown by Mead 

[18].  Matrix LRK  is real and non-symmetric, therefore the scalar product *

LRD K D  is real 

if D is real and complex if D is complex.  Since T

LR RLK K , then * *

RL LRD K D D K D .  

Post-multiply the numerator and the denominator of equation (3.3) by *

LRD K D  and using 

the result 
2

* * *

LR LR LR
      

D K D D K D D K D  leads to the form 

  2 1A A B    ,  (3.4) 

where 

* 2

LL RR

*

LR2
A

    
D K K m D

D K D
 and 

*

LR

*

LR

B 
D K D

D K D
; an overbar denotes the 

conjugate, while an asterisk denotes the conjugate transpose. 

The parameters A and B are introduced as alternative propagation parameters; since A is 

always real, one can define the conditions for complex unity, complex non-unity, real non-

unity, and real unity eigenvalues in terms of the different values of A and B. 
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i. Condition for complex unity eigenvalues,  exp i    (propagating). 

If 1 1A   , then 2 1A   is negative, and we may write  2 1A A   as  2i 1A A   

which is clearly a complex unity.  It is found numerically that B is also a complex unity.  Let 

   2

11 exp iA A      and  2exp iB   , therefore one can write 
1 2    ; the 

plus and minus signs in the above must correspond.  Numerically it is found that 

* *

RR LLD K D D K D , so the inequality can be simplified to  

 

* 2 *

LL

*

LR

1

21 1



  

D K D D mD

D K D
  

as the condition for a complex unity travelling waves. 

ii.  Condition for complex non-unity eigenvalues,  exp i     (attenuating loop). 

If 1A   or 1A , then  2 1A A   are purely real and can be expressed as  exp i π   

or  exp  , respectively.  It is found numerically that B is a complex unity, and provides the 

phase constant  , which can be positive or negative according to the chosen displacement 

vector D. 

iii.  Condition for real non-unity eigenvalues (evanescent decay). 

Again, if 1A   or 1A , then  2 1A A   can take the form  exp i π   or  exp  , 

respectively; numerically it is found that B takes the values +1, or −1; 1B   is associated 

with branch 6 which displays anomalous dispersion when propagating. 

iv.  Conditions for real unity eigenvalues, 1    (cut-on and cut-off). 

There are two conditions pertaining to real unity eigenvalues.  First, if 1A  , then 

 2 1 1A A     and 1B   .  Second, if 0A , then  2 1 iA A     and iB  .  The 

latter condition is found numerically to be satisfied by the real unity eigenvalues when 

2 1.3536  , which is the cut-off frequency for extensional waves ( 1   ) and the cut-on 

for the first breathing mode ( 1  ).  The former condition is satisfied for all remaining 

branches at cut-on and cut-off. 
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These observations on the values of parameter B are developed in Section 3.11 to 

complement the Krein signature. 

3.4 Dispersion diagram 

The dispersion diagram is a three dimensional plot of   and   as a function of 2 , as shown 

in Figure 3.3.  Only the positive quadrant of the entire plot need be shown, as the dispersion 

diagram is symmetric about the planes 0   and 0  .  Note that the quadrant shown 

corresponds to left-going waves, and leftward decay, as the notion of positive and negative 

slopes is more intuitive within this sector; the  -axis is scaled by a factor of π .  The curved 

segments are referred to as branches and each of them is numbered from 1 to 6, according 

to their order of appearance on the (propagating) plane 0   as frequency is increased.  The 

frequency (squared) range considered, 20 6   rad2 s−2, encompasses the propagation of 

all six branches including cut-on for four of the branches, and cut-off for all.  Two out-of-

plane half loops emerge where two branches meet and interact (the other halves are within 

the omitted quadrants); these loops are designated by two numbers associated with the 

meeting branches, a notation adapted from that employed by Miklowitz [64].  A third loop 

starts at the origin and evolves into branch 3, and is designated loop 3. 

The group velocity, g d dc   , was determined in Chapter 2 as 
T

g T

2

i
2

c 



Y X

Y H X
.  For 

the present dispersion diagram, one should employ partial differentiation, that is 

gc     , and note that  2 2         ; accordingly, a zero gradient with 

respect to the  -axis implies zero group velocity, except at the origin.  However, branches 

can also vary with   and, following the result in Chapter 2, we find that 

T
g

T

22 i

c


 


 



Y X

Y H X
, and also  2 2         .  Thus we may determine that 

the evanescent branches have zero gradient with respect to both the   and  -axes at cut-on 

and cut-off. 

There are five features to first note about Figure 3.3: 

i.  The plane 
2 0   (strictly, the  -  plane) corresponds to the static behaviour of the 

structure, and the origin ( 0  , 
2 0  ) pertains to the six-fold unity eigenvalue 1   for 

the static case.  Associated with these six unity eigenvalues are two eigenvectors describing 
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rigid body displacements in the x- and y-directions, and four principal vectors describing 

tension, rigid body displacement, bending moment and shearing force; the three branches 

which emerge from the plane correspond to the decay of self-equilibrated load, as anticipated 

by Saint-Venant’s principle [12].  As frequency increases from zero, extensional and 

bending waves immediately start propagating both left-going and right-going, and this 

accounts for four of the six (previously) unity eigenvalues; Figure 3.3 shows only the two 

left-going waves.  Of the remaining two, loop 3 shows a monotonic evanescent decaying 

leftward wave, while the rightward wave would appear in a separate quadrant.  The six static 

decay modes (the leftward three are shown in Figure 3.3) emerge from the plane 2 0   

with     ; that is they would emerge perpendicular to this plane if the ordinate was 

  rather than 2 , but  2      at these locations. 

ii.  Branches 3 and 4 cross each other twice, at 2 1.3536   and 2 1.6702  .  Branch 3 

crosses branch 5 when 2 3.7151  .  It is noted that these crossings do not lead to formation 

of loops because there is no interaction of one mode with the other.  This can be attributed 

to the fact that branch 3 is asymmetric about the x-axis, while branches 4 and 5 are 

symmetric; this is explored more fully in Section 3.10, in terms of the Krein signature. 

iii.  The gradient (with respect to the  -axis) at points where the branches intersect the 

vertical axes of the graph, i.e, where 0   and π  , are zero.  Zero-gradient corresponds 

to a start (cut-on) or the finish (cut-off) of branches on the plane 0  .  No correlation is 

found to exist between the inflection points of any particular branch with any of the zero-

gradient points of the other branches. 

iv.  The half loops which pertain to the complex non-unity eigenvalues are the result of an 

interaction of two modes.  Loop 1,6 starts at 
2 1.3536   and ends at 

2 3.0217   while 

loop 3,6 starts at 
2 3.1707   and ends at 

2 3.6951  .  The points at which loop 3,6 

emerges from the plane 0   and returns, have zero gradient with respect to the  -axis. 

The points at which loop 1,6 emerges from the plane π   and returns, have zero gradient 

with respect to both the  - and  -axes.  Loop 3 emerges from the origin into the plane 

0   and returns to the plane 0   at 
2 0.3536   with zero gradient with respect to the 

 -axis; a close up view is shown in Figure 3.4. 

v.  All branches on the plane 0   have positive gradient with respect to the  -axis, except 

branch 6.  Positive gradient is associated with normal dispersion which means that the 



Chapter 3 

72 

wave’s energy is flowing in the direction of wave travel; negative gradient is associated with 

anomalous dispersion which implies that the wave’s energy is flowing in the opposite 

direction to the wave travel. 

 

 

Figure 3.3 Dispersion diagram for the example framework.  
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Figure 3.4 Close up view of Loop 3. 

3.5 Displacement vectors 

The displacement vector  nD  at an arbitrary section n  can be taken from the eigenvec tor 

of either transfer matrix G  or H  (see Chapter 1); displacement at adjacent sections are found 

by multiplying  nD  with the corresponding eigenvalue  , i.e.    1n n D D .  To 

visualize the waveform, only the real part of the complex displacement vector is considered .  

Figure 3.5 shows ten cells of the un-deformed infinite framework.  A mode of vibration for 

which the dominant characteristic displacement is symmetric about the framework’s 

longitudinal axis of symmetry is regarded as a symmetric wave, otherwise the wave is 

regarded as asymmetric.  For the model framework, 2 0yD   for all symmetric modes and 

2 0xD   for all asymmetric modes. 

 

Figure 3.5 A ten-cell segment of the infinite framework and its longitudinal axis of 

symmetry. 
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At any cross-section of the framework, there are six degrees of freedom.  Excitation at the 

nth cross-section, Figure 3.6, can lead to six different modes of free wave motion that travel 

rightward, and a further six of the same modes that can travel leftward, giving a total of 

twelve modes of vibration.  A bending or flexural wave is a vibration as a result of harmonic 

excitation in the y-direction; it is characterised by equal displacements 1yD  and 3yD , both 

generally in-phase with displacement 2 yD  (at higher frequencies, 2 yD  becomes out-of-phase 

with 1yD  and 3yD ).  An extensional or compressional wave is a vibration in the x-direction; 

displacements 
1xD  and 

3xD  are equal, and generally in-phase with 
2xD .  The first thickness 

shear wave is a shearing wave across the overall framework depth; it is characterised by 

displacements 
1xD  and 

3xD  which are equal in magnitude but opposite in direction.  The 

second thickness shear wave is a symmetric shearing wave across half the depth of the 

framework; it is characterised by equal displacements of 
1xD  and 

3xD , but 
2xD  is opposite 

in direction.  The first breathing wave is a symmetric expansion and contraction across the 

framework depth; it is a wave pattern one would expect to arise from harmonic ‘pinching’ 

excitation and hence characterised by opposing displacements of 1yD  and 3yD , with 2 yD  

equal to zero.  The second breathing wave is also a transverse expansion/contraction but 

across half of the depth of the framework; when the top half is under contraction, the bottom 

half would be under expansion, and vice versa; therefore the displacements are characterised 

by in-phase displacements of 1yD  and 3yD , both out-of-phase with 2 yD .  Of course, the 

displacements mentioned above are those which are dominant at low frequencies; for 

example, an extensional mode has primary cross-sectional displacements in the x-direction, 

but there are secondary displacements of the upper and lower masses consistent with a 

Poisson’s ratio-like contraction, and reminiscent of the first breathing mode.  Indeed, one 

may regard the cut-off of the extensional mode and the cut-on of the first breathing mode, 

which occurs at the same frequency 
2 1.3536  , as the point at which a secondary 

displacement becomes primary. 
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Figure 3.6 Possible free waves. Arrows show the principal displacement of masses 

at the driven input section. 

3.6 Cut-on and cut-off frequencies 

The eigenvalues 1   and 1    are of particular significance as they are repeating 

eigenvalues, and indicate that a mode is starting to propagate (cut-on) or is ceasing (cut-off) 

in relation to increasing frequency.  The cut-on and cut-off frequencies for the example 

framework are shown in Tables 3.2 and 3.3 together with their associated modes and 

corresponding displacement vectors. 

The cut-on frequencies are typically characterised by displacements which do not vary in the 

axial x-direction, that is 1  , which implies that      1 1n n n   D D D , and equation 

(3.1) becomes  2

LL RR LR RL n      K K K K m D 0 .  Pre-multiply by 1
m  gives 

   1 2

LL RR LR RL n      m K K K K I D 0 , so the non-zero eigenvalues of the matrix 

 1

LL RR LR RL

   m K K K K  are the squares of the supposed cut-on frequencies; zero 

frequencies pertain to rigid body displacements.  Since each of the displacement vectors 

could have been anticipated, the frequencies could have been found using a Rayleigh 

quotient as  

 
 T 1

LL RR LR RL2

T


   


D m K K K K D

D D
.  (3.5) 

In each case, the averaged nodal displacements in the x- and y-directions are zero, with the 

exception of the rigid body modes.  Note that the eigenvalue 1   is actually a cut-off rather 

n n + 1n – 1 n n + 1n – 1 n n + 1n – 1 

n n + 1n – 1 n n + 1n – 1 n n + 1n – 1 

Bending Extensional First thickness shear

Second thickness shear First breathing Second breathing
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than a cut-on frequency for the second breathing mode, as this branch exhibits anomalous 

dispersion.  Also note the presence of the term  1 2 2  in each of the frequencies (squared), 

indicating that the diagonal bars always deform when 1  ; however, the horizontal and 

vertical members can remain at the same length (note the absence of the integer terms for 

the two thickness shear modes). 

 

2  Description Displacement vector  nD   

0  Rigid body displacement in the x-

direction 

 
T

1 0 1 0 1 0
 

0  Rigid body displacement in the y-

direction 

 
T

0 1 0 1 0 1
 

 1 2 2 0.3536
 

First thickness shear (cut-on)  
T

1 0 0 0 1 0
 

 3 2 2 1.0607
 

Second thickness shear (cut-on)  
T

1 0 2 0 1 0
 

 1 1 2 2 1.3536 
 

First breathing (cut-on)  
T

0 1 0 0 0 1
 

 3 3 2 2 4.0607 
 

Second breathing (cut-off)  
T

0 1 0 2 0 1
 

 

Table 3.2 Squares of cut-on and cut-off frequencies 1  . 

 

Next consider 1   , presumed to pertain to a cut-off frequency; this implies that 

     1 1n n n     D D D , and equation (3.1) becomes 

 2

LL RR LR RL n      K K K K m D 0 .  Pre-multiplication by 1
m  now gives 

   1 2

LL RR LR RL n      m K K K K I D 0 , so the eigenvalues of the matrix 

 1

LL RR LR RL

   m K K K K  are the squares of the supposed cut-off frequencies.  The 
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eigenvalues may be found numerically using the MATLAB command 

   1

LL RR LR RLv,d eig      m K K K K  where v  and d  represent eigenvectors and 

eigenvalues, respectively.  Alternatively, one may use MATLAB to perform symbolic 

computation as follows: the elements of matrix  1

LL RR LR RL

   m K K K K  are 

expressed in terms of symbolic variable a  which represents  1 2 2 0.3536 .  The 

characteristic determinant factorises as 

             4 2 2 2 2 2
3 1 8 1 4 4 4 3 0a a a a a                .  (3.6) 

 

2   Description Displacement vector  nD   

0.8929*  Bending (cut-off)  
T

0 1 0 0.7126 0 1   

 1 1 2 2 1.3536    Extensional (cut-off)  
T

0 1 0 0 0 1   

3.1678*   Second breathing (cut-on)  
T

0 1 0 2.8065 0 1   

4.0000   Second thickness shear (cut-off)  
T

1 0 1 0 1 0   

 4 1 2 2 4.3536    First thickness shear (cut-off)  
T

1 0 0 0 1 0   

 4 3 2 2 5.0607    First breathing (cut-off)  
T

1 0 2 0 1 0   

 

Table 3.3 Squares of cut-on and cut-off frequencies for 1   . 

 

Referring to Tables 3.2 and 3.3, first note that the displacement vector 

 
T

0 1 0 0 0 1  pertains to the cut-on of the first breathing mode, and to the cut-off 

of the extensional mode, both at the same frequency 
2 1.3536  , which is the second factor 

in equation (3.6).  One might regard the first breathing mode as a reincarnation of the 

extensional mode; the secondary displacement of the latter become the primary displacement 

of the former. 
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Second, note that the first thickness shear mode has the same displacement vector, 

 
T

1 0 0 0 1 0 , at both the cut-on frequency 2 0.3536   and at the cut-off, 

2 4.3536   which is the fourth factor of equation (3.6). 

Again, note the term  1 2 2  features explicitly in three of the frequencies (squared), 

indicating diagonal bars deformation.  The two frequencies marked with an asterisk are the 

roots of the quadratic equation  4 23 1 8 0a a     , which is the factor of equation 

(3.6), or   * 2 2

1,2 3 1 9 14 9 2a a a     , so again diagonal bar deformation is 

implicit.  The corresponding displacement vectors also involve the same discriminant, that 

is    22.8065 1 9 14 9 2 2a a a a       , and 

   20.7126 1 9 14 9 2 2a a a a      .  These two displacements components can be 

regarded as a ratio of 2 yD  to 1yD  such that the magnitude of the restoring force per unit 

displacement per unit mass (represented by 2 ) subjected to each point mass, are equal.  

This can be shown as follows: for bending and second breathing modes, the displacement 

of the top and bottom masses at an arbitrary station n  will be the same at all frequencies, 

i.e. 3 1y yD D ; thus  
T

1 2 10 0 0y y yn D D D   D  and 

     1 1n n n     D D D .  Substitute this displacement vector  nD  into equation 

(3.1) and upon expansion and re-arrangement, it can be expressed as 

 

   

   

   

2

1 2 1 2 1

2

1 2 1 2 2

2

1 2 1 2 1

0

0

2 2

0

y y y y y

y y y y y

y y y y y

ak D D k D D mD

ak D D k D D mD

ak D D k D D mD







 
 

    
 
 


    
 
 
 

     

0 ,  (3.7) 

where again  1 2 2a  .  Express the second and fourth rows for 
2  in terms of 1yD  and 

2 yD , then equate them and re-arrange as a quadratic equation in terms of  2 1y yD D  to 

give 

           2

2 1 2 11 1 2 1 0y y y yk m a D D a D D a      ,  (3.8) 
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with roots 2.8065  and 0.7126 ; these numbers appear in the displacement vector column 

of Table 3.3.  

Last, note that the cut-off frequency (squared) for the second thickness shear mode is the 

exception, in that it does not feature the term  1 2 2  either explicitly or implicitly; this is 

because the diagonal bars do not undergo a change in length. 

Again, these cut-off frequencies can be found using a Rayleigh quotient as 

 
 T 1

LL RR LR RL2

T


   


D m K K K K D

D D
,  (3.9) 

although the displacement vectors could not have been anticipated.  Comparing Table 3.3 

with Table 3.2 only in two cases,  the extensional and first thickness shear cut-off, are the 

averaged nodal displacements equal to zero; these displacement vectors are common with 

two of the cut-on frequencies, and give the same frequency in one case. 

Figure 3.7 shows the characteristic displacements of the six different modes at their cut-on 

and cut-off frequencies; bending and extensional waves do not exhibit cut-on.  We note that 

either the x-component displacements are all zero (cases a, b, g, i and j), or the y-component 

displacements are all zero (cases c, d, e, f and h). 

The cut-on and cut-off frequencies can also be defined based on periodicity and anti-

periodicity of the wave modes.  When the neighbouring point masses in the axial direction 

move in phase, the mode is considered to be periodic in that direction; otherwise, if they 

move perfectly out of phase, the mode is called anti-periodic. At the cut-on frequencies, the 

normally dispersive first thickness shear, second thickness shear and first breathing modes 

are periodic but the anomalously dispersive second breathing mode is anti-periodic.  At the 

cut-off frequencies, the normally dispersive bending, extensional, first thickness shear, 

second thickness shear and first breathing modes are anti-periodic but the anomalous ly 

dispersive second breathing mode is periodic.  In Figure 3.7, the arrows may also represent 

the anti-periodicity conditions.  Colquitt et al. [22] and Andrianov et al. [24] noted that the 

anti-periodicity modes appear as standing waves and can be considered as ‘hidden’ or 

‘trapped’ modes in the sense that no energy is transmitted through the framework but each 

unit cell exhibits oscillatory motion.  

Long-wave behavior near the cut-on/off frequency in waveguides is described by Craster 

[99] using the asymptotic method.  Application of long-wavelength asymptotic theories to 

repetitive structure are presented by Craster et al. [100].  One of the key features in the theory 
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is the introduction of separate scales for the short unit cell and the long wavelength.  The 

method is then developed to establish so-called composite wave models for elastic plates 

[100] and periodically heterogeneous media [22,24] where the periodicity condition is 

considered in detail.  It is noted in [22] that if the wavelength is larger than the length of a 

unit cell, the obtained homogenised model is able to describe asymptotically the propagation 

of both periodic and anti-periodic modes.  For two-dimensional cases, it is shown in [24] 

that combined periodicity and anti-periodicity conditions in different directions of the 

translational symmetry reveals different types of modes that do not arise in the one-

dimensional periodic case.  

Application of the homogenisation method to repetitive reticulated beams made of 

symmetric unbraced framed cells is presented by Boutin and Hans [25].  The framed 

structure is akin to the framework considered in Figure 3.7 but its stiffness and mass are 

continuously distributed in the beam elements, thus opening the possibility of enriched local 

kinematics.  The dynamics of the structure may represent an idealised building under seismic 

loading and the structural response can be used for vulnerability studies.  Through the 

homogenisation method and systematic use of spatial scaling, the transverse modes of the 

structure are studied in detail by Hans and Boutin [101] while the existence of atypical 

gyration modes is established theoretically by Chesnais et al. [102].  The accuracy of the 

analytical homogenisation method is compared to the numerical condensed wave finite 

element method by Changwei et al. [33]; the latter method allows reduction of the model 

order for efficient computation of the problem particularly when a unit cell contains large 

number of internal nodes.  The homogenisation method is found to provide better prediction 

of the dispersion relation and the natural frequencies calculated by the method correlate well 

with the results reported in [101].  However, the valid frequency range of the homogenisa t ion 

method is more restricted presumably because the natural modes are determined by both 

propagating and evanescent waves, but the latter wave is predicted poorly when approaching 

higher frequencies.  Recently, the homogenisation method is adapted to high frequency 

range associated with modulation phenomena [31,32].  The high-frequency modulat ion 

provide dispersion relations in limited frequency ranges but the approach can describe large 

scale evolutions of rapidly oscillating motions, i.e. their envelope, explicitly. 
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(a) Bending at cut-off (b) Extensional at cut-off 

  

  

(c) First thickness shear at cut-on (d) First thickness shear at cut-off 

  

 
 

(e) Second thickness shear at cut-on (f) Second thickness shear at cut-off 

  

  

(g) First breathing at cut-on (h) First breathing at cut-off 

  

 
 

(i) Second breathing at cut-on (j) Second breathing at cut-off 

 

Figure 3.7 Modes at cut-on and cut-off frequencies. The arrows indicate the 

occupation of one half-wavelength within the structure. 

 



Chapter 3 

82 

3.7 Propagating waves 

We now describe in detail the behaviour of each of the branches, including at frequenc ies 

below cut-on, and above cut-off.  Referring to Figure 3.3, as frequency is increased from 

zero, branches 1 and 2, and loop 3 emanate from the origin.  Branch 1 is the asymmetr ic 

bending mode which propagates immediately when the framework is excited harmonica l ly 

in the y-direction at an arbitrary station n  and at a frequency above zero; waves propagate 

immediately because one half-wavelength can be accommodated within the infinite span of 

the framework.  As frequency increases, the wavenumber increases, or equivalently the 

wavelength decreases.  The propagation ceases (cuts-off, 1   ) at 2 0.8929   where one 

wavelength occupies exactly two cells (one half-wavelength over one cell length).  Above 

the cut-off frequency, the wave becomes oscillatory evanescent, decaying more rapidly (in 

a spatial sense) as frequency continues to increase.  However, at 2 1.3536  , this oscillatory 

evanescent bending wave interacts with the oscillatory evanescent second breathing wave, 

branch 6, resulting in the formation of two attenuating waves travelling in both directions 

(one of the leftward attenuating waves is represented by loop 1,6).  The two attenuating 

waves revert to their previous character at 2 3.021   where oscillatory evanescent bending 

and second breathing waves reappear; the former continues to decay at an increasing rate 

while the latter decays at a decreasing rate until it reaches its cut-on frequency ( 1   ) at 

2 3.1678  . 

Branch 2 exhibits symmetric extensional displacements with symmetric Poisson’s ratio- like 

contraction in the transverse direction.  Again, propagation starts immediately when the 

frequency is above zero because one half-wavelength can be accommodated within the 

infinite span of the framework.  As frequency increases, the wavelength decreases until one 

half-wavelength occupies one cell length where the mode reaches its cut-off frequency 

 1    at 
2 1.3536  ; above that frequency the wave becomes oscillatory evanescent, 

and decays at an increasing rate as the frequency is increased. 

Loop 3, shown in detail in Figure 3.4, commences at the origin and initially remains in the 

plane 0   ( 1  ) as frequency increases from zero.  At zero frequency, the eigenvec tor 

is a rigid body displacement in the y-direction, coupled with cross-sectional rotation as a 

principal vector, as noted in Section 3.4; as frequency is increased from zero, loop 3 initia l ly 

has relatively large displacements in the y-direction with some cross-sectional rotation, and 

waves show monotonic evanescent decay.  Waves decay at an increasing rate up to a turning 
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point at 2 0.0808   with increasing cross-sectional rotation.  Decay rate then decreases as 

frequency approaches cut-on at 2 0.3536  ; displacements in the y-direction approach zero 

and the mode exhibits first thickness shear, pure cross-sectional rotation, still with 1  .  

Displacement vectors for the loop below, at and above the turning point are shown in Table 

3.4.  At the cut-on frequency, where loop 3 becomes branch 3, the top and bottom masses 

oscillate in opposition with equal amplitude, which suggests that one half-wavelength 

occupies the framework depth.  As frequency increases, wavenumber increases and 

wavelength decreases.  At 2 3.1707  , branch 3 meets branch 6, forming loop 3,6 which 

represents one of the two leftward attenuating waves.  At 2 3.695  , loop 3,6 rejoins the 

plane 0   and reverts back to the two propagating branches 3 and 6.  Branch 3 continues 

as first thickness shear until it reaches its cut-off frequency at 2 4.3536  , when the 

wavelength occupies two cells, i.e. one half-wavelength over one cell length.  Above that 

frequency, the wave shows oscillatory evanescent decay, with more rapid decay as the 

frequency increases. 

Branch 4 exhibits symmetric second thickness shear.  The initial frequency stop band is from 

2 0   to 2 1.0607  , where the wave shows monotonic evanescent decay.  The branch 

commences at 2 0   and 1.2626  , which is equivalent to the static leftward decay of a 

self-equilibrating load with eigenvalue 3.5346   ( ln3.5346 1.2626 ).  As frequency 

increases, the rate of decay reduces; eventually the wave starts to propagate when it reaches 

its cut-on frequency at 2 1.0607  , with 1  , where the top and bottom masses oscillate 

in-phase with equal amplitude, but out-of-phase with the middle mass which has double the 

amplitude; this suggests that there is one half-wavelength between the top and middle masses 

and a second half-wavelength between the bottom and middle masses.  As frequency 

increases, wavelength decreases; the cut-off frequency ( 1   ) is reached when 
2 4   

and one half-wavelength occupies exactly one cell length.  Even though branches 3 and 4 

cross each other twice, no interaction is observed between the two branches and this is 

attributed to the fact that the latter is symmetric while the former is not; again this is 

considered in more depth in Section 3.10.  The components of the displacement vector show 

only subtle changes where the branches cross, and generally maintain their character.  For 

the first crossing, the displacement vectors are shown in Table 3.5, where one sees that the 

(imaginary) y-direction component of the middle mass goes through zero for mode 3 while 

the other components are nearly unchanged, to the accuracy shown.  However at the point 

of crossing (
2 1.3536  ) the y-direction component of the top mass and both components 
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of the bottom masses (shown in bold) show a significant change compared to those just 

below and just above; this is regarded as a numerical instability of the QR algorithm 

employed by MATLAB.  Similar subtle changes occur for mode 4, where now it is the (real) 

x-direction component of the middle mass that goes through zero, and the imaginary 

components show very small changes; again there appears to be a numerical instability.  Note 

that the imaginary part of the displacement components are shown with   and  conjugates : 

the lower sign pertains to left-going waves, as in Figure 3.3, while the upper sign pertains to 

right-going. 

 

2   0.0100   0.0600   0.0608   0.0700   0.0808   

   0.7350   0.6735  0.6734   0.6718   0.6712   

   0.3079   0.3952   0.3954   0.3978   0.3987   

D  0.4373

1

0

0.9804

0.4373

1

 
 
 
 
 
 
 
 
 

  

0.9921

1

0

0.9363

0.9921

1

 
 
 
 
 
 
 
 
 

  

1

1

0

0.9357

1

1

 
 
 
 
 
 
 
 
 

  

1

0.9186

0

0.8532

1

0.9186

 
 
 
 
 
 
 
 
 

  

1

0.8380

0

0.7717

1

0.8380

 
 
 
 
 
 
 
 
 

  

 

2   0.0900   0.1000   0.3000   0.3500    

   0.6716   0.6727   0.8118   0.9469    

   0.3981   0.3964   0.2085   0.0546    

D  1

0.7790

0

0.7123

1

0.7790

 
 
 
 
 
 
 
 
 

  

1

0.7227

0

0.6557

1

0.7227

 
 
 
 
 
 
 
 
 

  

1

0.1728

0

0.1337

1

0.1728

 
 
 
 
 
 
 
 
 

  

1

0.0402

0

0.0298

1

0.0402

 
 
 
 
 
 
 
 
 

  

 

 

Table 3.4 Displacement vectors associated with Loop 3 of the dispersion diagram, 

close to its turning point 
2 0.0808  . 
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2   Mode 3 First thickness shear 

1.35    
T

1 0.2602i 0 0.0008i 1 0.2602i       

1.352    
T

1 0.2602i 0 0.0003i 1 0.2602i      

1.3536   
T

1 0 0    

1.354    
T

1 0.2602i 0 0.0001i 1 0.2602i     

1.36    
T

1 0.2602i 0 0.0014i 1 0.2602i     

 

2   Mode 4 Second thickness shear 

1.35    
T

1 0.5849i 0.0068 0 1 0.5849i    

1.352    
T

1 0.5807i 0.0029 0 1 0.5807i    

1.3536   
T

1 0 0    

1.354    
T

1 0.5764i 0.0008 0 1 0.5764i   

1.36    
T

1 0.5640i 0.0118 0 1 0.5640i   

Table 3.5 Displacement vectors below, at, and above the crossing frequency 

2 1.3536   for modes 3 and 4. 

 

Similar subtle changes occur at the second crossing of branches 3 and 4 (
2 1.6702  ), and 

also for the crossings of branches 3 and 5 (
2 3.7151  ) , and again there is numerica l 

instability at the point of crossing.  These displacement vectors are shown in Appendix B. 

Branch 5, which is the symmetric first breathing wave, exhibits monotonic evanescent decay 

from 
2 0   to 

2 1.3536  .  The branch commences at 
2 0   and 2.8202  , which is 

equivalent to the static leftward decay of a self-equilibrating load with eigenva lue 

16.7798   ( ln16.7798 2.8202 ).  As frequency increases, the decay rate decreases 

gradually and the mode propagates when the cut-on frequency 
2 1.3536   is reached, 



Chapter 3 

86 

where the masses at the top and bottom of the framework oscillate in the y-direction with 

equal amplitude, but 180 degrees out-of-phase with each other.  This suggests that one half-

wavelength occupies the depth, despite the wavelength in the axial x-direction being infinite.  

As frequency increases, so wavelength decreases.  The mode ceases to propagate when it 

reaches its cut-off frequency ( 1   ) at 2 5.0607  , where one half-wavelength occupies 

one cell length, in the x-direction.  Above the cut-off frequency, the decay is oscillatory 

evanescent. 

Branch 6 is the asymmetric second breathing wave, and unlike other branches, it starts in the 

π   plane because the eigenvalue 14.2435    ( 2.6563  ) is negative when 2 0  .  

From 2 0   to 2 1.3536  , the wave is oscillatory evanescent and decays rapidly but at 

a decreasing decay rate as frequency is increased.  At 2 1.3536   the branch collides with 

the oscillatory evanescent bending mode; the two waves interact to form two attenuating 

waves, with the leftward decay represented by the loop 1,6.  The oscillatory evanescent 

second breathing wave reappears at 2 3.021   and continues to decay at a decreasing rate 

until it reaches its cut-on frequency ( 1   ) at 2 3.1678   where one half-wavelength 

can be accommodated across one cell length; also note from Figure 3.7(i) that one full 

wavelength occupies the depth of the framework.  As frequency increases, wavenumber 

(phase) decreases and wavelength increases.  The gradient of branch 6 is negative, implying 

that energy is propagated in a direction opposite to the direction of wave propagation; this 

phenomenon is known as anomalous dispersion.  This anomalous second breathing mode 

(branch 6) meets the normal first thickness shear mode (branch 3) at 
2 3.1707  , where 

the two modes interact to form attenuating waves.  One of the two leftward attenuating waves 

is represented by loop 3,6 in Figure 3.3, and represents leftward decay because   is positive 

in the quadrant shown; not shown is the image where   is negative, which would represent 

rightward decay.  The group velocity of the two modes are in opposite directions: the loop 

arises as a result of their energy interaction when one has zero-energy resultant which does 

not travel along the structure.  The branch start to propagate again at 
2 3.695   where the 

interaction ceases, and reaches its cut-off frequency ( 1  ) at 
2 4.0607  .  Above the cut-

off frequency, the branch is monotonic evanescent which decays increasingly rapidly. 
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We now make some general observations regarding Figure 3: 

i.  The framework is dispersive for all propagating branches – waves of different 

wavenumber travel at different phase velocity pc   .  All waves decay above 

2 5.0607  . 

ii.  Attenuating waves (loops) occur when a wave associated with a normal dispersion branch 

interacts with a wave associated with an anomalous dispersion branch.  For the example 

framework, it is seen that such interactions only occur when the normal and anomalous 

waves are both asymmetric, but they can be initially propagating (loop 3,6) or oscillatory 

evanescent (loop 1,6).   

iii.  There is no branch crossing of symmetric waves, but symmetric and asymmetr ic 

branches can cross without interaction and the consequent formation of attenuating waves. 

iv.  For normal dispersion branches, the axial wavelength at the cut-on frequency is infinite.  

Tension and bending moment transmit along the structure in the static case, and such waves 

propagate immediately: the branches emanate from the origin.  Branches 3, 4 and 5 start to 

propagate at a cut-on frequency, when one-half wavelength occupies the depth of the 

structure (branches 3 and 5), or one-half of the depth (branch 4).  This can be likened to 

phase closure over the cross-section.  In Chapter 2, phase closure is used to determine the 

natural frequencies of a finite length structure, and is based on the idea that the phase change 

for a complete circumnavigation of the structure in the axial direction, is an integer mult ip le 

of 2π .  At a cut-on frequency we have phase closure over the cross-sectional depth.  For 

branches 3 and 5, the phase changes is 2π , while for branch 4, it is 4π ; these branches also 

have phase closure over the cross-section at their cut-off frequencies. 

v.  Again, for all normal dispersion branches, cut-off occurs when one-half wavelength 

occupies the length of the repeating cell; that is one has phase closure over a single cell in 

the axial direction. 

vi.  The anomalous branch 6 also displays phase closure at cut-on and cut-off, but now phase 

closure over a single cell in the axial direction coincides with cut-on, and over the cross-

section with cut-off. 
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3.8 Evanescent waves, and a dynamic Saint-Venant’s principle 

The term evanescent is generally used to describe wave amplitude decaying over distance 

with or without phase change.  In the present work, we describe a wave that decays without 

phase change (from section to section) as monotonic evanescent, and one with a phase 

change of π  radians over each cell as oscillatory evanescent.  

Monotonic evanescent waves occur when a normally dispersive wave is driven at a 

frequency below its cut-on frequency and when the anomalously dispersive wave is driven 

at a frequency above its cut-off frequency.  Oscillatory evanescent waves occur when a 

normally dispersive wave is driven at a frequency above its cut-off frequency and when the 

anomalously dispersive wave is driven at a frequency below its cut-on frequency.  Examples 

of both are shown in Figures 3.8 and 3.9. 

When the framework is driven at a given frequency   at a particular cross-section then, in 

steady-state, each mass at that section will vibrate at that driving frequency.  If the cross-

section was isolated, either as part of a single cell or a single cross-section, that is not part of 

an infinite repetitive structure, then the amplitude of vibration vector D would depend on the 

magnitude of the force and the dynamic stiffness: in the absence of damping, one could write 

a matrix equation of the form  
1

2


 D K m F .  For a driving frequency below the first 

natural frequency, the net work done per cycle would be zero, and the amplitude is 

proportional to the magnitude of the force, and constant at a given frequency.  (If damping 

was present, the work done per cycle would be equal to the energy dissipated per cycle, and 

the amplitude would remain constant.)  If the forcing frequency coincided with a natural 

frequency one would have resonance, work would be done, and the amplitude would build 

up linearly with time.  In the absence of damping and non-linearity, the mathematical model 

would predict infinite amplitude, although it would take infinite time to achieve that infinite 

amplitude.  However, the driven cross-section is not isolated but is attached to adjacent cross-

sections on either side by means of the elastic pin-jointed bars.  The net force applied to the 

driven section is equal to the exciting force, less the force transmitted to adjacent cross-

sections by virtue of elastic deformation of the bars, at the same frequency.  Also, the 

restoring force at the driven section is provided in part by the exciting force, in part by virtue 

of deformation of the bars.  However, adjacent cross-sections are driven by virtue of elastic 

deformation alone; in turn their amplitudes must be smaller.  Cross-sections further from the 

driven section will in turn be excited by the lesser amplitudes of the adjacent cross-sections, 

leading to the decay.   
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For normal dispersion, at driving frequencies below cut-on, the exciting force still does no 

work, and no energy is propagated along the structure.  Cut-on is the equivalent of resonance: 

the exciting frequency is equal to the cross-sectional natural frequency as determined by 

phase closure over the cross-section.  The exciting force now does work; however, unlike 

the isolated cross-section considered above, the amplitude does not increase with time, rather 

that energy is transmitted along the structure, and the amplitude remains constant – infinite 

structure replaces infinite time.  The mode at cut-on corresponds to a configuration in which 

adjacent masses on the same tier oscillate at the same amplitude and in the same direction 

( 1  ).  The anomalous branch 6 also displays phase closure over the cross-section at cut-

on; the difference is that one also has phase closure over the length of a single cell. 

Again for normal dispersion, cut-off ( 1   ) occurs when one has a resonance over a single 

cell length: one has phase closure over that single cell in the axial direction.  If the driving 

frequency is greater than the cut-off, then the wave becomes oscillatory evanescent.  Again, 

the net (including restoring) force at the driven section is equal to the exciting force, less the 

force transmitted to adjacent cross-sections by virtue of elastic deformation of the bars; 

adjacent sections are excited by the latter alone.  Now, masses at adjacent sections have a 

phase difference of π  radians; this can be attributed to the fact that the masses at any section 

have insufficient time to accelerate in one direction before the force at the preceding section 

changes direction. 

 

   

   (a)        (b) 

Figure 3.8 (a) Monotonic evanescent first breathing wave at 
2 1.3   with 

eigenvalue 0.7449  .  (b) Monotonic evanescent second breathing 

wave at 
2 4.1   with eigenvalue 0.6384  . 
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   (a)        (b) 

Figure 3.9 (a) Oscillatory evanescent first breathing wave at 2 5.3   with 

eigenvalue 0.6414   .  (b) Oscillatory evanescent second breathing 

wave at 2 3.1   with eigenvalue 0.3852   . 

3.9 Attenuating waves 

The amplitude of an attenuating wave decreases by a decay rate constant and its phase 

changes by a constant value   (not equal to π  radians) from one section to the next in the 

direction of wave travel.  In Figure 3.3, such waves are represented by loops 1,6 and 3,6.  

Loop 1,6 occurs from 2 1.3536   to 2 3.0216864  , which corresponds to eigenva lues 

 exp 1.7 i π     and  exp 1.4832 i π    , respectively, see Table 3.6.  Loop 3,6 starts 

at 2 3.1707   and stops at 2 3.6951   which corresponds to  exp i 0.8705π    and 

 exp i 0.5861π   , respectively, see Table 3.7.  The loops are not perfect semi-circ les.  

The end points of the loops are behind their respective starting points, as frequency increases 

– that is, loop 3,6 finishes at a smaller value of 0.5861π   than the value where it starts, 

0.8705π  .  Likewise, loop 1,6 finishes at a smaller value of 1.4832   than the value 

where it starts, 1.7000  , see Table 3.6.   

It is noted that extreme values of the decay rate and the wavenumber (phase) occur at 

different frequencies: for loop 1,6, the decay rate maximum occurs at 
2 2.022  , while the 

wavenumber minimum occurs at 
2 2.3  , see Table 3.6.  For loop 3,6, the decay rate 

maximum occurs at 
2 3.35  ; however, there is no extreme value for the wavenumber as 

it continues a decreasing trend as frequency increases, see Table 3.7. 

Loop 1,6 occurs as a result of interaction between the oscillatory evanescent bending wave 

and oscillatory evanescent second breathing wave; the former has increasing decay rate 

while the latter has decreasing decay rate as a function of increasing 
2 .  The bending wave 

is characterised by in-phase displacements of  1yD n ,  2 yD n  and  3 yD n .  However, as 

frequency increases above the bending mode cut-off frequency,  2 yD n  diminishes and then 
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starts to become out-of-phase with  1yD n  and  3 yD n ; hence this bending wave 

displacement vector starts to resemble the second breathing wave displacement vector.  The 

collision occurs at 2 1.3536   where 2 0yD   and the two oscillatory evanescent waves 

have the same displacement vector; the evolution of the displacement vectors at frequenc ies 

close to this frequency is shown in Table 3.8. 

Loop 3,6 occurs as a result of interaction between the propagating first thickness shear wave 

and propagating second breathing wave; the wavenumber of the former increases with 

respect to frequency while the latter decreases.  The displacement vectors associated with 

loop 3,6 at different frequencies are shown in Table 3.9.  Close to the collision frequency, 

the first thickness shear wave eigenvector already resembles that of the second breathing 

wave.  At the collision point, 2 3.1707  , the displacement vector of each branch become 

equal and remain so along the loop, albeit as complex conjugates, resembling the second 

breathing mode shape.  It is only towards the end of branch 3 at 2 3.8004   that the 

character of the first thickness shear mode once again becomes apparent.  

We further noted that attenuating waves always occur as a result of interaction between 

normal and anomalous dispersions.  The details on this observation are as follows. 

i.  Attenuating waves arise in two ways: for propagating waves, as a result of the interaction 

between two asymmetric waves of the same wavelength each having power flow in opposite 

directions, loop 3,6; for oscillatory evanescent waves, through the interaction of two 

asymmetric waves having opposite decay rate gradients, that is one with increasing rate, the 

other decreasing (with increasing frequency), loop 1,6.  The common features are the 

asymmetry, and the involvement of the anomalous branch 6. 

ii.  Loop 1,6 represents the interaction between the bending and second breathing modes, 

initially both leftward oscillatory evanescent.  Their collision results in leftward and 

rightward attenuating waves that decay in leftward direction; the leftward decay is shown in 

Figure 3.3 as the sign of   is positive.  However, the eigenvalue plotted is but one of a 

quartet: the rightward decay would be in the positive   but negative   quadrant.  The 

reciprocal complex conjugate branch segments of loop 1,6, with negative  , lie within 

omitted quadrants.  For loop 3,6, the interaction between left-going first thickness and left-

going second breathing waves results in two leftward attenuating waves that decay in both 

directions; again, the leftward decay is shown in Figure 3.3 as the sign of   is positive, and 
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the rightward decay has negative  .  Again, the reciprocal conjugate branch segments of 

loop 3,6 lie within omitted quadrants. 

iii.  Loops l,6 and 3,6 present the notion of an attenuating wave that travels in a direction 

opposite to its direction of decay.  It is suspected that this arises from the relative difference, 

or opposing contributions, in ‘decay rate’ or ‘energy flow speed’ between the two interacting 

modes. 

iv.  The gradient at the collision and bifurcation points of the interacting branches is zero; 

with reference to Figure 3.3, the slope of the propagating branches is taken with respect to 

the  -axis while the slope of the oscillatory evanescent branches is taken with respect to 

-axis.  At these points, zero gradient implies that the group velocity is zero. 

 

2      i    

1.3536  0.1827   1.7000 πi   

1.36   0.1817 0.0140i    1.7026 3.0647i   

      

1.9   0.1398 0.0851i    1.8099 2.5951i   

2.0   0.1375 0.0878i    1.8131 2.5735i   

2.1  0.1364 0.0899i    1.8119 2.5589i   

2.2   0.1364 0.0915i    1.8062 2.5505i   

2.3  0.1376 0.0928i    1.7959 2.5484i   

2.4   0.1402 0.0936i    1.7806 2.5529i   

     

3.0   0.2180 0.0399i    1.5069 2.9604i   

3.022   0.2269   1.4832 πi   

 

Table 3.6 The evolution of eigenvalues, decay rates and wavenumbers at different 

frequencies for loop 1,6. 
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2      i    

3.1707   0.9184 0.3956i    2.7349i = 0.8705πi    

3.18   0.6632 0.3756i    0.2716 2.6263i    

      

3.34   0.3492 0.4798i    0.5219 2.2000i    

3.35   0.3424 0.4844i    0.5222 2.1860i    

3.36   0.3359 0.4891i    0.5220 2.1725i    

      

3.69   0.2484 0.8810i    0.0885 1.8456i    

3.6951  0.2671 0.9637i    1.8412i = 0.5861πi    

 

Table 3.7 Evolution of eigenvalues, decay rates and wavenumbers at different 

frequencies for loop 3,6.  The maximum decay rate occurs at 2 3.35  . 
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2   Bending Second breathing 

1.2    
T

0.0488 1 0 0.4342 0.0488 1    
T

0.0598 1 0 0.4015 0.0598 1    

1.3    
T

0.0333 1 0 0.2596 0.0333 1    
T

0.0363 1 0 0.2475 0.0363 1    

1.3536   
T

0 1 0 0 0 1  

1.4    
T

0.0010 0.0348i 1 0 0.0056 0.2430i 0.0010 0.0348i 1    

1.5    
T

0.0024 0.0659i 1 0 0.0188 0.4447i 0.0024 0.0659i 1    

   

3.0    
T

1.0788 0.8497i 1 0 5.8284 4.5071i 1.0788 0.8497i 1    

3.0217    
T

1.7192 1 0 9.2266 1.7192 1   

3.03    
T

3.2567 1 0 17.37 3.2567 1     
T

1.1564 1 0 6.2507 1.1564 1    

 

Table 3.8 Evolution of the displacement vectors of the bending and second 

breathing waves during transition from distinct oscillatory evanescent to 

conjugate attenuating waves, loop 1,6. 
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2   First thickness shear Second breathing 

3.17    
T

0.46i 1 0 2.641 0.46i 1     
T

0.26i 1 0 2.7439 0.26i 1    

3.1707    
T

0.3691i 1 0 2.6909 0.3691i 1   

3.18    
T

0.3130 0.4224i 1 0 2.6690 0.1877i 0.3130 0.4224i 1    

   

3.6951   
T

1.0912i 1 0 2.5857 1.0912i 1   

3.7    
T

1.36i 1 0 2.6737 1.36i 1     
T

0.88i 1 0 2.5038 0.88i 1    

3.8    
T

3.07i 1 0 3.076 3.07i 1     
T

0.39i 1 0 2.2411 0.39i 1    

3.9    
T

1 0.208i 0 0.7i 1 0.208i    
T

0.23i 1 0 2.124 0.23i 1    

 

Table 3.9 Evolution of the displacement vectors of the first thickness shear and 

second breathing waves during transition from distinct propagating to 

conjugate attenuating waves, and vice versa, loop 3,6. 
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3.10 Krein signature 

In the two-dimensional complex plane, propagating complex unity eigenvalues lie on the 

unit circle; the Krein signature is associated with the direction of rotation of the eigenva lue 

loci on that circle [77,98].  As the frequency is increased, eigenvalues with positive signature 

move anti-clockwise while those with negative signature move clockwise [98].  In the three-

dimensional Cartesian plane, as in Figure 3.3, the complex unity eigenvalues lie on distinct 

curves, or branches, on the plane 0  ; branches with positive signature move in the 

direction of increasing   (that is, eigenvalues rotate anti-clockwise on the unit circle) while 

eigenvalues with negative signature move in the direction of decreasing  , as frequency is 

increased.  Along the positive  -axis, branches and eigenvalues with positive and negative 

signatures are associated with normal and anomalous dispersions, respectively.  Conversely, 

along the negative  -axis, branches and eigenvalues with positive and negative signatures 

are associated with anomalous and normal dispersions, respectively.  When branches with 

the same signature intersect, or cross, they remain on the plane and with the same signature; 

likewise, their eigenvalues remain on the unit circle.  However, when branches with opposite 

signs collide, they move out of the plane 0   (and their eigenvalues move off the unit 

circle) forming a closed loop before returning to the plane and splitting into separate 

branches again with opposite signs.  The signature is not defined on the loop. 

The Krein signature   associated with a complex unity eigenvalue i  can be expressed as 

 *sgn i i i   V JV  where iV  is the corresponding eigenvector of transfer matrix G, *

iV  is 

its transposed conjugate, 
 

  
 

0 I
J

I 0
 and I is the (6 6 ) identity matrix, [98].  A similar 

expression can be obtained in terms of the eigenvectors of transfer matrix H  as 

 *sgn i i i   X JX  where iX  is the eigenvector corresponding to eigenvalue i , *

iX  is the 

transposed conjugate of iX  and 
LR

RL

 
  
 

0 K
J

K 0
.  In either form, the signature is not 

affected by any scaling of the eigenvector length.  For example, suppose iV  is scaled by 

ia b   ; then       
* * *sgn i sgn ii i i i       V J V V JV ; but 

   * 2 2i ia b a b a b       , which must be positive, so the sign is unchanged. 
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The expressions for   are intimately related to the power flow, which can be expressed as 

*i 4i iP   V JV  or *i 4i iP   X JX .  If the power P and wavenumber   have the same 

sign, the dispersion is normal, otherwise it is anomalous.  Accordingly, in such a form, the 

signature can only be defined for propagating branches since there is no power flow for 

evanescent and attenuating branches.  This can be shown as follows: the ith eigenvector of 

transfer matrix G  satisfies 
i i iGV V ; taking the transposed conjugate, one has 

* T *

i i iV G V  where * TG G  since G is real.  Now post-multiply the latter by 
iJGV  to give 

 * T * *

i i i i iV G JG V V JGV  which reduces to * * *

i i i i i i V JV V JV  since T G JG J , and 

finally rearrange as  * *1 0i i i i  V JV ; this implies that * 0i i V JV  unless * 1i i   , which 

is the case for a complex unity eigenvalue.   

In the case of repeated complex unity eigenvalues but with distinct eigenvectors, that is a 

branch crossing, *

i iV JV  are also distinct, nonzero and purely imaginary; in turn, the Krein 

signature is positive if the associated wavenumber is positive, and vice versa.  Evidently, the 

eigenvalues cross each other at a point and, as aforementioned, their signatures remain 

unchanged after the crossing.  With reference to Figure 3.3, eigenvalue crossing occurs twice 

between branches 3 and 4, and once between branches 3 and 5.  In the case of repeated 

complex unity eigenvalues associated with normal and anomalous eigenvectors, that is at a 

collision, * 0i i V JV , so 0  .  This case is associated with the beginning and the end of 

loop 3,6 in Figure 3.3.  Following similar procedures for an eigenvector iX  of transfer matrix 

H  leads to  * *1 0i i i  X JX  and similar results.   

The expression of Krein signature associated with complex unity eigenvalue is readily 

extendable to the case of real unity eigenvalues ( 1   ).  The signature takes the form 

 Tsgn i i  V JV  where 
T

iV  is the transpose of iV , or  Tsgn i i  X JX  where 
T

iX  is the 

transpose of iX ; the factor i is now omitted because the vectors are real.  Similar to the case 

of repeated complex unity eigenvalues with repeated eigenvector, the real unity eigenva lues 

signature is zero in the plane 0  . 

In order to extend the signature to the evanescent branches which lie on the planes 0    

and π  , and for the latter extend the concept of a Krein collision to loop 1,6, we employ 

the power flow equation.  Since there is no power flow transported by an evanescent wave 
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and the eigenvector X  is real for real non-unity eigenvalues, the equation becomes 

Ti 0i i X JX ; expanding this gives  

 T T T T

L LR R R RL L L LR L L RL Li i 0            D K D D K D D K D D K D ,  

which reduces to T T

L LR L L RL LD K D D K D .  Either term represents part of the strain energy 

that is stored across a cell as a result of the work done on the left-hand side of the cell.  We 

find numerically (prompted by the work of Mead [18], see Section 3.3) that the sign of 

T

L LR LD K D  is an invariant, unique to normal and anomalous evanescent branches.  In order 

to keep the sign consistent with the convention for propagating waves, we introduce a minus 

sign and define a new signature for evanescent waves as  T

L LR Lsgn  D K D , so the 

eigenvalue loci of normal and anomalous evanescent branches are associated with positive 

and negative signs, respectively, irrespective of the direction of eigenvalue loci in planes 

0   and π  . 

This signature arises as a property of the 
LRK  matrix as can be shown as follows.  First, 

express LRK  as a sum of symmetric and skew-symmetric matrices, i.e. 

LR LR, sym LR, skew K K K  where T

LR, sym LR LR

1

2
   K K K  and T

LR, skew LR LR

1

2
   K K K .  

We find numerically that 
T

L LR, skew L 0D K D , which is generally true for any skew-symmetr ic 

matrix.  Therefore,  T

L LR Lsgn  D K D  reduces to  T

L LR, sym Lsgn  D K D .  Expanding 

the term within parentheses, one has  

 

T

1 1

1 1

2 2

2 2

3 3

3 3

1 0 2 0 0 0

0 0 0 2 0 0

2 0 1 0 2 0

0 2 0 0 0 2

0 0 2 0 1 0

0 0 0 2 0 0

x x

y y

x x

y y

x x

y y

D Da

D Da

D Da a
k

D Da a

D Da

D Da

     
    

    
      

     
     

     
    

       

,  

where again  1 2 2a  .  Since k is positive, it may be omitted to give 

    2 2 2

1 2 3 2 1 3 2 1 3

1 1
sgn

2 2 2 2
x x x x x x y y yD D D D D D D D D

 
        

 
. 

We know that in each mode, either 2xD  or 2 yD  is zero.  For the former, one has 

  2 2

1 3 2 1 3

1
sgn

2 2
x x y y yD D D D D

 
     

 
. 
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For the latter, one has 

  2 2 2

1 2 3 2 1 3

1
sgn

2 2
x x x x x xD D D D D D

 
      

 
. 

In the case where 
2 0xD  , we find numerically that 

3 1x xD D   and 3 1y yD D ; the 

signature can then be further simplified to  

 2

1 1 2

1
sgn 2

2
x y yD D D

 
   

 
. 

Based on this expression, we can say that: 

i.  if 1yD  and 2 yD  have the same sign, i.e. displaced in the same direction, then   is 

positive.  This is found numerically to be the case for bending. 

ii.  if 1yD  and 2 yD  have different signs and 2

1 1 2

1
2

2
x y yD D D , then   is positive.  This 

is found numerically to be the case for the first thickness shear mode because 
1 1x yD D   

and 
1 2x yD D . 

iii.  if 1yD  and 2 yD  have different signs and 2

1 1 2

1
2

2
x y yD D D , then   is negative.  

This is found numerically to be the case for the second breathing mode because 

1 1x yD D  and 
1 2x yD D . 

In the case where 2 0yD  , we find numerically that 3 1x xD D  and 3 1y yD D  ; the 

signature can then be further simplified to  

 
2 2

1 2 1 2

1
sgn 2

2
x x x xD D D D

 
    

 
. 

Complete the squares of the term in parentheses to get 

 

2

2

1 2 2

1 15
sgn 2

164 2
x x xD D D

  
        

. 

Clearly, the sign of all the evanescent modes which have 2 0yD   must be positive; this 

includes extensional, second thickness shear and first breathing evanescent waves.  

The expression  T

L LR, sym Lsgn  D K D  is also applicable to the real unity eigenvalues  
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( 1   );   is positive at the cut-on and cut-off of all normal modes and is negative at the 

cut-on and cut-off of the anomalous mode, except at the cut-on of the first breathing mode 

and cut-off of the extensional mode which occur at 2 1.3536   where   is zero.    is 

also found to be zero at the beginning of loop 1,6 and approximately zero at the end of the 

loop. 

The term 
T

L LR, sym LD K D  within this new signature is complex for the attenuating loops 3,6 

and 1,6, so the signum function is not defined.  This is perhaps inevitable, as these loops 

only exist by virtue of the interaction of branches having different Krein signature: the 

attenuating loops should not share a characteristic with either. 

3.11 Discussion 

The dispersion curves diagram are usually two-dimensional and shown in two separate plots, 

each represents variation of phase constant and decay rate against (normalised) frequency.  

As such, an attenuating wave which has both phase constant and decay rate will be 

represented by a curve in both plots.  Figure 3.10 shows how the three-dimensiona l 

dispersion curves for the example framework (Figure 3.3) would appear in the two-

dimensional form.   

The advantage of two-dimensional plot is it is relatively easier to plot, visually simpler and 

allows one to accurately read data from the graph in the sense that abscissa and ordinate are 

clearly shown with respect to each curve.  However, there are two main disadvantages. First, 

some branches appear disjointed at the cut-on and cut-off frequencies, particularly those 

branches which are associated with attenuating waves.  This is evident from the description 

given by Signorelli and von Flotow [47], “After the first appearance of the complex modes, 

the dispersion curves cross over each other and become intertwined.  At this point it becomes 

difficult, if not impossible, to identify which mode is which”.  Second, one cannot 

distinguish the branches that are associated with monotonic and oscillatory evanescent wave.  

The latter are represented by i π  , but the straight lines representing π   would be 

overlapping and lie on the graph’s borderline ( π 1  ) if they are to be plotted. 
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Figure 3.10 Two-dimensional plot of the dispersion curves for the example 

framework.  The branches associated with complex non-unity 

eigenvalues are shown in bold.    

  1 Bending,     2 Extensional,   

– – – – –  3 First thickness shear,   4 Second thickness shear,

— — —  5 First breathing,  ————  6 Second breathing. 
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Availability of graphing software such as Sigmaplot has enabled three-dimensional graph to 

be plotted relatively easily, and allows one to combine all features of the dispersion diagram 

into a single plot.  The loops which appear as two separate curves in two-dimensional plot 

now can appear as a single curve.  A disadvantage of the three-dimensional plot is it can be 

difficult to read off data accurately for a point on the loop because its position relative to the 

axes is not so clear in comparison to the two-dimensional plot. 

There are four specific features that deserve further discussion with regard to the dispersion 

diagram (Figure 3.3):  

i.  2 1.3536   appears as a special frequency at which the middle masses remain stationary, 

see Table 3.10 which shows the displacement vectors for all branches; it is evident that the 

middle masses are not displaced under longitudinal, transverse or shear deformation.  This 

is consistent with the ‘effective’ axial, transverse and shear stiffness of a single square 

fragment of a cell which is  1 1 2 2 1.3536  , and hence the same frequency (squared) 

when 1k m  . 

 

Branch Displacement vector Remarks 

Loop 1,6  
T

0 1 0 0 0 1   Krein collision on the plane π  , 

1.7  , 5.4735   . 

2  
T

0 1 0 0 0 1   Extensional cut-off, 1   . 

3  
T

1 0.2602i 0 0 1 0.2602i     First crossing of branches 3 and 4 on 

the plane 0  , at π 3  , 

 1 2 3 2 i   . 
4  

T
1 0.5773i 0 0 1 0.5773i   

5  
T

0 1 0 0 0 1   First breathing mode cut-on, 1  . 

 

Table 3.10 Displacement vectors for all branches at 
2 1.3536  . 
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ii.  Loop 3 is notable as an example of monotonic evanescent decay at low frequency wherein 

the decay rate initially increases before decreasing at higher frequencies.  This contrasts with 

branches 4 and 5 which always decay with decreasing rate below cut-on. 

iii.  Branches associated with symmetric waves never cross each other while branches 

associated with asymmetric waves collide (leading to the formation of loops); branches 

associated with asymmetric and symmetric waves do cross each other, but without the 

formation of loops.  Waki et al. [91] claim that symmetric wave branches do not cross each 

other due to curve veering – a condition of converging/diverging eigenvalue loci – which 

occurs “when two wave modes are not orthogonal in the wave domain”; however the 

dispersion diagram, Figure 3.3, shows no obvious evidence of eigenvalue veering – rather 

crossings and collisions.  However, a rotationally symmetric tyre model is used in [91], while 

the present structure is translationally symmetric, which may explain this difference. 

iv.  The very existence of a static decay mode having a negative eigenvalue would appear to 

presage a propagation branch which exhibits anomalous dispersion.  Branch 6 origina tes 

with an eigenvalue of 14.2435   , or equivalently 2.6563   and π  , when 2 0  .  

As frequency increases, this branch does not leave the plane π   except where it interacts 

with branch 1 to form loop 1,6.  As soon as it cuts-on at 2 3.1678  , with 1    ( 0   

and π  ), a negative slope with increasing frequency is inevitable: the branch can only 

move towards the plane 0   as frequency increases, as there is nowhere else for it to go 

within the quadrant shown in Figure 3.3.  Accordingly, any attempt to explain the 

fundamental mechanics underpinning anomalous dispersion should probably start with an 

explanation for the negative decay eigenvalue for the static decay: the self-equilibra t ing 

force vector at the n th cross-section is    
T

0 1 0 2 0 1n  F , so the upper 

vertical member (between masses 1 and 2) is in tension.  In turn, both diagonals are in 

tension, which puts the equivalent vertical in the adjacent  1 thn   cross-section into 

compression, so it shortens.  Likewise, the lower vertical member (between masses 2 and 3) 

is in compression, which puts both diagonals into compression and the equivalent lower 

vertical in the adjacent section into tension, so it lengthens; hence the negative eigenva lue.  

The skew-symmetry of this mode together with the concerted effect of the diagonal members 

may be of importance for this particular structure, but the existence of two or more layers is 

probably more germane – particularly as anomalous dispersion is present over the entirety 

of the branch, unlike continuum waveguides such as the circular cylinder or plane strain 

strip, for which anomalous dispersion occurs only over particular frequency ranges for any 
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given mode [103].  The implications of a negative group velocity remain unclear; at first 

sight it would suggest that energy is flowing towards, rather than away from, the source of 

excitation, which rather defies logic.  Mace et al. [91] have described anomalous dispersion 

as resembling “a Michael Jackson “Moonwalk”; it goes forward but moves backward”.  In 

the physics literature, particularly optics, it is variously associated with negative refractive 

index, superluminal velocity and, indeed, time reversal.  We consider this conundrum in 

more detail in Chapter 4. 

It is instructive to compare the present discrete beam-like framework with a one-dimensiona l 

beam-like continuum waveguide.  In the continuum, cut-on occurs when one half-

wavelength can be accommodated within some characteristic transverse dimension of the  

waveguide in the case of normal dispersion; this is also found to be the case for the discrete 

framework.  The (axial) wavenumber is zero and the wavelength is infinite, but so is the 

waveguide or framework, so this axial one half-wavelength can also be accommodated in 

the longitudinal direction; this occurs when 1   for normal dispersion.  In the continuum 

model, as the wavenumber becomes larger the wavelength becomes shorter, and there is no 

limit to the number of (half) wavelengths that can fit into a unit length L of the waveguide, 

and in turn there is no cut-off frequency.  Typically, waves approach the Rayleigh surface 

wave velocity, with displacement concentrated at the surface.  However in the discrete 

model, the maximum number of wavelengths that can be accommodated over a unit length 

L (one cell) is one half, which coincides with 1   .  Thus, one concludes that the existence 

of a cut-off frequency is a consequence of the discrete nature of the model in the axial 

direction, and that any discrete model can and will exhibit such behavior, including finite 

element models of continuum structures.   

For our model structure, we noted that 2 yD  of symmetric waves and 2xD  of asymmetr ic 

waves are always zero.  Also, the forces in the y-direction are always self-equilibrating for 

symmetric modes, and the forces in the x-direction are always self-equilibrating for 

asymmetric modes.  At the cut-on frequencies, at least three of the following vector 

component sums, , , ,x y x yD D F F    , are observed to be zero: for the first thickness 

shear, xD , yD  and xF  are zero; for the second thickness shear, all the sums are 

zero; for the first breathing, xD , yD  and yF  are zero; for the second breathing, 

xD , xF  and yF  are zero.  At the cut-off frequencies, xF  and yF  are zero for 

all modes, and either one or both of xD  and yD  are zero: in the case of bending, 



Chapter 3 

105 

xD  is zero; for second thickness shear and first breathing, yD  is zero; for extensiona l, 

first thickness shear and second breathing, both are zero. 

3.12 Conclusions 

The present chapter describes an in-depth study of the dispersion diagram, in novel form, for 

a model repetitive structure featuring pin-jointed members with point masses located at 

nodal cross-sections, concentrating on wave propagation and decay characteristics.  The 

need to be specific in the description of cut-on and cut-off frequencies, marking the start and 

finish of propagation zones with increasing frequency, is emphasised.  Explanations for the 

existence of these zones are provided in terms of cross-section and axial natural frequenc ies, 

as defined by phase closure; this goes some way towards the establishment of a dynamic 

Saint-Venant’s principle.  Three distinct types of decaying waves have been identified : 

monotonic evanescent and oscillatory evanescent generally occur at frequencies below cut-

on and above cut-off, respectively; the exception is for the single anomalous branch, for 

which the situation is reversed.  Attenuating decay occurs as a result of interaction between 

branches which display normal and anomalous dispersions, and results in the formation of 

loops on the dispersion diagram.  The latter can be explained in terms of a Krein collis ion.  

Finally, some preliminary comments on the cause of anomalous dispersion are made. 
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Chapter 4: Wave Propagation in Repetitive Structures: 

Energetics 

 

4.1 Introduction 

Energy flow of free waves in undamped repetitive structures has been studied by Mead [18] 

and Langley [72]; both of them employed transfer matrix approach in their analyses.  Among 

the many results, they have shown that (i) only free waves with complex unity eigenva lue 

can transmit energy, (ii) the energy is transmitted at a rate given by the group velocity, (iii) 

when energy is transmitted, no work is done at the cell boundaries and the time-averaged 

kinetic and potential energies are equal at every section along the structure, and (iv) energy 

in a propagating wave can be expressed in the form of Rayleigh quotient.  We notice that 

equations (2.4), (2.5), (2.11) and (2.12) of reference [72] by Langley are missing a factor of 

1 .  

The velocity at which the energy flows through the structure is known as the group velocity 

and is defined as the derivative of frequency with respect to the wavenumber, i.e. 

gc     .  Commenting on the definition, Lighthill [74] stated, “… the fact that, in a 

perfectly periodic motion of fixed wavenumber, energy is propagated at a velocity which 

can be expressed as a ratio of changes of frequency and wavenumber in going to a 

neighbouring wave solution, appears distinctly odd.”  Indeed, it is difficult to conceive an 

idea that a harmonic traveling wave of a single frequency could carry energy or information, 

apart from the fact that it is exists.  Possible ways for the wave to transmit information are 

to change its amplitude, frequency or phase so that the change can be interpreted by the 

receiver as information. 

Some expressions for the group velocity have previously been reported.  Langley [72] 

expressed the velocity in terms of the transfer matrix and its frequency derivative.  Finnveden 

[75] evaluated the group velocity by numerically differentiating the eigenequation with 

respect to wavenumber.  In Chapter 2, expressions for the group velocity in terms of the 

eigenvectors of G  and H , are presented; the latter appears more succinct.  In Section 4.4, 

the group velocity of each mode for the example structure is presented and explored in more 

detail. 
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If the group velocity travels in the same direction as the phase velocity, the dispersion is 

regarded as normal; otherwise, if the two velocities are in opposite directions, the dispersion 

is called anomalous.  Mace et al. [91] described the anomalous dispersion metaphorically as 

“… a wave carrying energy in the negative x-direction, but with a positive wavenumber.  

The motion thus somewhat resembles a Michael Jackson “Moonwalk:” it goes forward but 

moves backwards.”  It is an interest of the present work to explore this special case and 

understand the mechanism by which such phenomenon could occur because the description 

given thus far is not satisfying. 

As stated earlier, Mead [18] has shown that a single spatially decaying wave, i.e. evanescent 

or attenuating, does not transfer energy.  However, two interacting attenuating waves can 

transfer energy, as raised by Bobrovnitskii [73] who stated that, “When the displacements in 

the two opposite evanescent waves are not in phase, and are not in counter-phase, the work 

done by the stresses in one wave through the displacements in the other wave is not zero, 

and that leads to a uniform flow of energy along the structure.”  Langley [72] argued that the 

energy flow is “not a physical quantity” and not fully analogous to the real power flow based 

on the fact that individually the waves decay which implies that they exist only over a finite 

number of cells; this suggest that energy does not propagate to infinite extent and evaluat ion 

of group velocity for the case is irrelevant.  We could further argue that the decay is 

exponential, metaphorically, which implies that it would take infinitely long structure for the 

wave amplitude to completely vanish, therefore it is possible for the two waves to interact 

and transfer (decreasing amount of) energy over an infinite extent.   

It is worth pointing out that in the present work, the concerned decaying waves are called 

attenuating instead of evanescent (the term used by Bobrovnitskii, Langley and many 

authors) to distinguish one from the other.  In Chapter 3, we define evanescent wave as one 

with rapidly decreasing amplitude, and if the phase change 0   the wave is called 

monotonic evanescent, and if the phase change π   the wave is called oscillatory 

evanescent.  On the other hand, attenuating wave has rapidly decreasing amplitude with non-

zero phase constant but π  .  This terminology follows the work of Hinke et al. [95] but 

with the word monotonic and oscillatory added to evanescent in order to distinguish between 

the two. 

The present chapter investigates the energetics of the different wave types under the new 

taxonomy.  In the next section, equations for energy and power are derived in terms of 

eigenvectors associated with transfer matrices G  and H .  Axial phase velocity and group 
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velocity associated with each mode are discussed in Sections 4.3 and 4.4, respectively.  In 

Section 4.5, energy flow associated with two interacting attenuating waves is considered.  

Finally, in Section 4.6, some further observations are presented on the numerical study of 

the anomalous dispersion. 

4.2 Energy and power 

Consider the example framework as shown in Figure 4.1; the geometrical and material 

properties of the framework are identical to those employed in Chapters 2 and 3.  The 

framework is harmonically excited at an angular frequency   and free modes of vibration 

are set up.  The three forms of energy that exist in the system, namely, work done, kinetic 

energy and strain energy, are conserved in the absence of damping. 

 

 

Figure 4.1 An infinite framework. L and R indicate left- and right-hand side of the 

nth cell, respectively.  The top, middle and bottom tiers of masses are 

denoted by numbers 1, 2 and 3, respectively.  n refers to the cross-

sectional numbering along the framework. 

 

Now, consider the single cell of the framework as shown in Figure 4.1.  The governing 

equations of motion for the half-masses on the left- and right-hand sides of the cell are given 

by 
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respectively, where D is the displacement vector, F  is the force vector, m  is the mass 

matrix,   is the angular frequency and the matrices 
LL LR RL, ,K K K  and 

RRK  are presented 

explicitly in Appendix A.1.  The time-averaged work done by the nodal forces on the left-

hand side of the cell through the corresponding displacements on the same side is given by 

  *

L L L

1
Re

2
W   D F ,  (4.3) 

where *

LD  is the transposed conjugate of the displacement vector; the negative sign appears 

in the equation due to the fact that the force on the left-hand side acts in opposite direction 

to the force on the right hand side. 

The time-averaged strain energy stored in the cell due to the displacement field caused by 

the force on the left-hand side is given by 

  *

S, L L LL L LR R

1
Re

2
E    D K D K D .  (4.4) 

Equation (4.4) is actually equal to equation (4.3) but without the kinetic energy term; this 

is evident in equation (4.1). 

The time-averaged kinetic energy of the left-hand side is given by 

  2 * 2 *

K, L L L L L

1 1
Re Re

2 2 4
E  

 
  

 

m
D D D mD .  (4.5) 

Complete derivation for equations (4.3), (4.4) and (4.5) is presented in Appendix C.1.  The 

time-averaged energy equations for the right-hand side are as follow: 

  *

R R R

1
Re

2
W  D F ,  (4.6) 

  *

S, R R RL L RR R

1
Re

2
E    D K D K D ,  (4.7) 

  2 *

K, R R R

1
Re

4
E  D mD ,  (4.8) 

where RW , S, RE  and K, RE  are work done, strain energy and kinetic energy, respective ly; 

note that there is no negative sign in equation (4.6).  The three forms of energy are related 

by the energy balance equation which is given by 

 L S, L K, LW E E  .  (4.9) 

Based on equation (4.9), we now consider the energetics of the different wave types.  For 

the rightward monotonic and rightward oscillatory evanescent waves before cut-off (note 

that the former and the latter are associated with normal and anomalous branches, 
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respectively), the displacement and force vectors are real and the time-averaged work done 

LW  is found to be positive because the time-averaged strain energy S, LE  is larger than the 

time-averaged kinetic energy K, LE .  As frequency increases towards the cut-on frequency, 

the magnitude of 
LW  reduces.  On the other hand, after cut-off, 

LW  is found to be negative 

because S, LE  is now smaller than K, LE .  As the frequency is further increased, 
LW  becomes 

more negative because S, LE  continue to decrease while K, LE  increases.  It is noted that, for 

the example framework, no time-averaged work is done by the oscillatory evanescent 

bending and second breathing waves at the particular frequency 2 1.3536  , 

 exp 1.7 i π     because the corresponding displacement and force vectors satisfy the 

following: 

    T

L

1
Re 0 1 0 0 0 1 0.1768 0 0 0.9354 0.1768 0 0

2
W      .  

For both the rightward monotonic and rightward oscillatory evanescent waves below the cut-

off frequency, the time-averaged work done by the forces on the right-hand side of a cell 

through the corresponding displacements on the right RW  is negative.  The negative value 

implies that the work done is in opposite direction to the work done on the left-hand side.  

This is evident from the fact that the work done on the right-hand side of a cell and the work 

done on the left-hand side of the succeeding cell are equal in magnitude but opposite in sign, 

that is  RW n  of the n th cell is equal to  LW n  of the ( 1n )th cell. 

In a steady state, total time-averaged work done by an evanescent wave, monotonic or 

oscillatory, decaying simultaneously in both right and left directions over the infinite 

framework can be evaluated as  

          L L R

0 1 1

2 2 0
n n n n

n n n n

W n W n W W n W n
   

   

 
    

 
    .  (4.10) 

Considering the magnitude of each term and noting that  RW n  is equal in magnitude to 

 LW n , then equation (4.10) can be further simplified as 
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where      T

L L L0 0 0W  D F  and 
2

2

2
1 1

n

n













  for 1  .  The displacement vector is 

transposed (not conjugate transposed) to account for the fact that the vector is real.  For the 

case where 1   ,    T

L L
0 0 0D F  but  

n

n

W n




  is undefined because  2 21   is 

indeterminate; employing L’Hôpital’s rule leads to a determinate form and   0
n

n

W n




 .  

For the propagating waves, the displacement and force vectors are complex and 

perpendicular to each other, therefore there is no time-averaged work done.  The equations 

for S, LE  and K, LE  can be written succinctly in terms of the eigenvector of transfer matrix 

H , that is X , as follows: combine the expressions for S, LE  with S, RE , and K, LE  with K, RE  

noting that S, R S, LE E  and K, R K, LE E  leads to 

 *

S, L

1

4
E  X KX   (4.12) 

and  

 2 *

K, L

1

8
E  X mX ,  (4.13) 

where 
LL LR

RL RR

 
  
 

K K
K

K K
. 

The time-averaged strain energy stored in a cell and the time-averaged kinetic energy at the 

boundary of each cell are equal, and the time-averaged total energy in a cell is simply the 

sum of the two. 

For the attenuating waves, the displacement and force vectors are complex but not 

perpendicular to each other, therefore, the time-averaged work done at the boundary of a cell 

is not zero.  Expanding the expression for the time-averaged work done on the left boundary 

of a cell by a rightward attenuating wave in terms of the nodal components of displacement 

and force reveals that the work is purely real; this is shown as follows, 

    

   

*

L L L

* * * * * *

1 1 2 2 3 3 1 1 2 2 3 3

1
Re

2

1
Re

2

1
Re i i ,

2

x x x x x x y y y y y y

W

D F D F D F D F D F D F

a b a b

    

       
 

      

D F

  (4.14) 
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where a  and b  are real values.  In reference to the dispersion diagram, Figure 3.3 in Chapter 

3, it is noted that the sign of 
LW  for the attenuating wave associated with the eigenva lues 

along loop 1,6 does not changes as frequency increases, but along loop 3,6, the sign changes 

from negative to positive at 2 3.22637  .  The sign change cannot be associated with the 

turning of the decay rate   because that happens when 2 3.35  .  It is worth pointing out 

that loop 1,6 occurs when oscillatory evanescent bending branch collides with oscillatory 

evanescent second breathing branch; the former is associated with negative work while the 

latter is associated with positive work. 

The power associated with a propagating wave is defined as the rate at which the energy of 

the wave flows across a boundary of a cell.  Mathematically, that is given by the product of 

the force acting on the masses at the boundary and velocity at which the masses are moving.  

The velocity can be obtained by simply taking the time-derivative of the corresponding 

displacement.  Power flow is associated with propagating waves only and there is no power 

flow associated with the solitary monotonic evanescent, oscillatory evanescent, attenuating 

waves and the modes at the cut-on and cut-off frequencies.  The time-averaged power flow 

into the left-hand side of a cell is given by 

  *

L L L

1
Re i

2
P   D F .  (4.15) 

Equation (4.15) can be expressed in terms of the eigenvector of transfer matrix G , that is 

V , as follows: 
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  (4.16) 

where 
 

  
 

0 I
J

I 0
 and the overbar implies complex conjugate.  Similar equation can be 

written in terms of the eigenvector of transfer matrix H , that is X , as 

 *

L

1
i

4
P   X JX   (4.17) 
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where 
LR

RL

 
  
 

0 K
J

K 0
.  The metric J  was introduced in Chapter 2 to determine the 

symplectic relationship for transfer matrix H .  Detailed derivations of equations (4.15) and 

(4.17) are given in Appendix C.2.  Even though the mass matrix does not explicitly appear 

in equation (4.17), it is implied through the dependence of eigenvector X  on transfer matrix 

H  which includes the mass matrix.  This suggests that, in a course of one period, the strain 

energy is propagated through the system by the elastic members and the masses act as 

intermediary storage. 

Time-averaged power that flows out of the right boundary of a cell (and into the left 

boundary of the succeeding cell) is equal to the time-averaged power that flows into the left 

boundary of the cell; this can be shown as follows: 
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D F

  (4.18) 

since * 1   .  This equation however does not show the amount of energy that is stored in 

the cell. 

If the power flows in the same direction as the wave, that is the signs of power and 

wavenumber are the same, then the dispersion is termed normal, otherwise the dispersion is 

termed anomalous.  The phenomena of anomalous dispersion is discussed in further detail 

in Section 4.6. 

4.3 Axial phase velocity 

The axial phase velocity associated with a propagating wave is defined as the velocity in the 

x-axis at which a particular phase of a wave cycle travels and that is given by pc    

where   is angular frequency and   is phase constant (or wavenumber).  Uniqueness is 

imposed on   by taking π π   .  The term ‘axial’ is used to distinguish the phase 

velocity in the axial direction from the phase velocity in the transverse direction.  Figure 4.2 

shows the variation of the axial phase velocity against wavenumber for the six propagating 

modes of the example structure shown in Figure 4.1.  Note that there are two segments for 

each of the first thickness shear (mode 3) and the second breathing (mode 6); the two 
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segments meet at 0.5861π   and 0.8705π  —these points are indicated by the solid 

circles.  The segments arise due to the formation of Krein bubble which extends between the 

two solid circles, shown as loop 3,6 on Figure 3.3.  Also, mode 3 crosses mode 4 twice at 

points π 1 3  , p 1.1110c   and π 0.3932  , p 1.0461c  ; and mode 3 intersects mode 

5 at point π 0.6375  , p 0.9624c  . 

The phase velocity of the bending wave (mode 1) increases steadily from zero up to a 

maximum, p 0.4174c  , for wavenumber 0.4379π   which occurs when 2 0.3295   

before decreases gradually up to the cut-off frequency.  Compared with the other wave 

modes, the bending wave always has the lowest phase velocity for any wavenumber.  

The extensional wave (mode 2) has a finite and maximum velocity of 1.0836 cells per second 

close to 0  .  This is interesting as one would expect that the phase velocity is zero for the 

static case.  Based on the earlier work by Stephen and Zhang [37], for a unit axial 

displacement, the strain energy per unit cell of the framework under tension is found to be 

1.7612 J.  If the energy is transformed into kinetic energy, one can write 
2

p 2 1.7612mc   

where total mass per unit cell is 3m   kg (for six one-half masses); therefore the phase 

velocity is p 1.0836c   cells per second and this agrees with the observation.  As the 

wavenumber increases, its phase velocity decreases slowly at the beginning, before 

decreases at a faster rate and then approaching the bending wave phase velocity towards the 

cut-off.  It is expected that the phase velocity of the bending and extensional modes would 

coincide were it not for the cut-off; indeed for a continuum structure, this would be the 

Rayleigh surface wave velocity [104]. 

At the cut-on frequencies of the normal dispersions, that is when 0   ( 1  ), the phase 

velocity of the first thickness shear (mode 3), the second thickness shear (mode 4) and the 

first breathing (mode 5) waves are infinite.  However, the phase velocity decreases 

exponentially, metaphorically, with increasing wavenumber.  As stated earlier, the phase 

velocity of mode 3 stops at the point π 0.8705  , p 0.6511c   (indicated by a solid circle) 

and appears again at the point π 0.5861  , p 1.0440c   (indicated by the other circle) and 

continue to decrease with increasing wavenumber.  On the contrary, at the cut-on frequency 

of the anomalous dispersion, that is when π   ( 1   ), the phase velocity of the second 

breathing wave increases from a finite value to infinity as the wavenumber decreases from 

π  to zero.  The phase velocity of mode 6 stops and re-appears at the same points as mode 3.  
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The phase velocities for each mode at π   can be calculated by taking the corresponding 

frequency and divide with π ; for modes 1, 2, 6, 4, 3 and 5, the phase velocities are 0.3008, 

0.3703, 0.5665, 0.6366, 0.6642 and 0.7161, respectively. 

 

 

Figure 4.2 Axial phase velocity pc , in cells per second, against normalised 

wavenumber π . 

   1 Bending,       2 Extensional,  

– – – – –  3 First thickness shear,    4 Second thickness shear, 

— — —  5 First breathing,  ———— 6 Second breathing. 
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4.4 Axial group velocity 

The group velocity associated with a propagating wave is the velocity at which the energy 

of the wave flows and is different from the phase velocity.  The group velocity can be 

expressed as 

 
g

S K

P
c

E E



,  (4.19) 

where P  is the time-averaged power that flows across a boundary of a cell, 
SE  and 

KE  are 

time-averaged strain and kinetic energies, respectively, at the boundary.  In Chapter 2, the 

equation for the group velocity is derived based on the derivative of frequency with respect 

to wavenumber, and is expressed succinctly in terms of the left and right eigenvectors of the 

transfer matrix H .   

In this section, the group velocity equation is implemented for all propagating modes of the 

example framework.  Equation (4.19) is used to check that the results are correct.  Figure 4.3 

shows the group velocity as a function of the wavenumber.  Note that there are two separate 

curve segments for each of modes 3 and 6; the segments meet where the group velocity is 

zero which are the start ( π 0.8705  ) and the end ( π 0.5861  ) of a Krein bubble, as 

increasing frequency.   

From Figure 4.3, five observations can be made.  First, the group velocity at the cut-on and 

cut-off frequencies is zero for all modes except for the cut-on of mode 2 where the group 

velocity is found to be finite.  In comparison to Figure 4.2, it is found that 

g p
0 0

lim lim 1.0836c c
    

  .  In Section 4.3, a description is given for why phase velocity of 

the extensional wave is finite for 0  .  We believe that the same description holds for the 

case of extensional wave group velocity.  Figure 4.4 shows a plot of frequency against 

wavenumber for branches 1 and 2 close to the origin of the dispersion diagram.  The plot 

confirms that the gradient of branch 2 is indeed finite for 0  . 
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Figure 4.3 Group velocity, in cells per second, as a function of normalised 

wavenumber associated with the propagating branches of the dispersion 

curve for the example framework.       

   1 Bending,       2 Extensional,   

– – – – –  3 First thickness shear,    4 Second thickness shear, 

— — —  5 First breathing,  ————  6 Second breathing. 

 

Figure 4.4 Frequency against normalised wavenumber for propagating branches 1 

and 2 of the dispersion curves close to zero frequency.    

  1 Bending,       2 Extensional. 
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Second, in comparison with the dispersion curve diagram, Figure 3.3 in Chapter 3, no 

correlation has been found between the inflection points of the dispersion branches with any 

of the maximum and minimum points on the group velocity diagram.  The maximum group 

velocity for each mode appears at different wavenumbers.  The extensional mode (mode 2) 

at cut-on has the highest group velocity, followed by second thickness shear (mode 4), first 

thickness shear (mode 3), first breathing (mode 5), bending (mode 1) and second breathing 

(mode 6). 

Third, at the points where branches 3 and 6 meet which are the start and the end of a Krein 

bubble, the combined modes continue to propagate but do not transport energy; this appears 

like a standing wave.  Fourth, all branches are associated with normal dispersion except 

branch 6 which is associated with anomalous dispersion.  Fifth, the group velocity cannot be 

determined exactly at those locations where the displacement vectors cannot be determined 

exactly; this occurs due to numerical instability at the beginning and end of loop 3,6 (the 

Krein bubble). 

The condition for the maximum group velocity can be found as follows: from Chapter 2, the 

eigenvalue problem in terms of transfer matrix H  is 2

0 2     H H I X 0  where the 

matrices 0H  and 2H  are expressed explicitly in equation (2.18).  Differentiate the 

eigenequation with respect to   gives 

 2

2 0 2

d d
2

d d


  

 

 
       

 

X
H I X H H I 0 ,  (4.20) 

which can be re-arranged for d dX  as 

 2

0 2 2

d d
2

d d


  

 

  
        

 

X
H H I H I X ,  (4.21) 

where 2

0 2 


   H H I  is the Moore-Penrose pseudo-inverse of 2

0 2    H H I .  

Differentiate equation (4.20) with respect to   again gives 

 

2 2 2

2

2 2 0 22 2

d d d d d
2 2 2

d d d d d

  
   

    
      

    
          

X X
H X H I H H I 0 .  (4.22) 

Pre-multiply equation (4.22) with the left eigenvector of H , that is T
Y .  Note that 

T 2

0 2     Y H H I 0 .  Substitute equation (4.21) into (4.22) and re-arrange to get 

 

T 2
22 2 0 2 2

2 T

2

d d
2 2

d 1 dd d

d d

 
   

  

   



   

 

   
          

 
 

Y H I H H I H I X

Y H X
.  (4.23) 
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The maximum group velocity of a propagating wave with wavenumber   must occur 

when gd d 0c   .  Write 

 
g gd d d

d d d

c c 

  
 ,  (4.24) 

but  exp i   and  d d i exp i i     , therefore equation (4.24) can be written as 

 
g gd d

i
d d

c c


 
 .  (4.25) 

From Chapter 2, we know that  g i d dc    , therefore  

 
2

g

2

d d d
i

d d d

c  


  

 
  

 
.  (4.26) 

Substitute equation (4.26) into (4.25) to give 

 
2

g

2

d d d

d d d

c  
 

  

 
   

 
,  (4.27) 

which implies that gd d 0c    when 0   (this condition is never met) or 

 
2

2

d d
0

d d

 


 
  .  (4.28) 

Substitute equation (4.23) into (4.28) and multiply with T
Y X ; from Chapter 2, we know that 

we can substitute the term    T T

2Y X Y H X  with  2 d d  , upon simplification, the 

resulting equation can be rearranged to get 

T 2

2 0 2 2

d d d
1 2 2 2 0

d d d

   
    

   

      
              

      
Y I H I H H I H I X .  (4.29) 

Equation (4.29) must be satisfied at the maximum group velocity.  To identify the 

wavenumber at which the maximum group velocity occurs, one can plot gd dc   against   

and find the point where the curve intersects the line gd d 0c   .  Figure 4.5 shows the plot 

of gd dc   against   for the six modes associated with the model structure.  It is noted that 

the wavenumbers associated with the maximum group velocities found in Figure 4.3 match 

with the wavenumbers where the curves in Figure 4.5 intersect with the line gd d 0c   . 
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Figure 4.5 First derivative of the group velocity with respect to the wavenumber as a 

function of normalised wavenumber.       

   1 Bending,       2 Extensional,   

– – – – –  3 First thickness shear,    4 Second thickness shear, 

— — —  5 First breathing,  ————  6 Second breathing. 

 

When two dispersion branches intersect, one can refer to the associated eigenvectors to 

determine which branch each of the identical eigenvalues is associated with.  One can also 

find the gradients of the points associated with the eigenvalues to ascertain the branches.  

For example, when 
2 1.3536  , the gradients of branches 3 and 4 are 0.6423  and 0.6183 , 

respectively; when 
2 1.6702  , the gradients of branches 3 and 4 are 0.7119  and 0.7501 , 

respectively.  The gradients are then compared with the gradients obtained at the frequenc ies 

before (or after) the intersection, and one would expect that the values change smoothly. 

Now, from equation (4.19), substitute P  with equation (4.15) and expand the force term, 

then substitute SE  and KE  with equations (4.4) and (4.5), respectively; the resulting equation 

is 

 / 
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dc
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 / d
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2 2

* *

L LL L LR R L L LL L LR R L g

1 1
Re i Re

2 2 2 2
c

 
    

      
      

      
D K D K D mD D K D K D mD .  (4.30) 

The terms on left-hand side of equation (4.30) are associated with imaginary, or reactive, 

energy while the terms on the right-hand side are associated with real, or active, energy; the 

terms of equation (4.30) can then be re-written as  

        reactive energy reactive energy velocity active energy active energy velocity   .  

Equation (4.30) reveals the existence of reactive energy and its role in mediating the energy 

exchange across the cell boundary.  Nonetheless, reactive energy is usually considered 

insignificant because it cycles within the boundary. 

4.5 Energy flow in two attenuating waves 

The attenuating waves are represented by loops 1,6 and 3,6 on the dispersion diagram (Figure 

3.3 in Chapter 3).  The waves are associated with complex non-unity eigenvalues which 

occur as a quartet of reciprocals and complex conjugates: 
1 2 3, ,    and 

4  where *

1 21 ,   

*

3 41  , *

1 3   and *

2 4  .  Consider the following two pairs of eigenvalues from the 

quartet: the first pair is      1 2 1 1 2 2, exp i ,exp i             where *

1 21   and the 

second pair is      3 4 3 3 4 4, exp i ,exp i             where *

3 41  .  Note that, each 

pair consists of two waves that travel in the same direction, but decay in opposite directions; 

for attenuating waves, the direction of travel and decay are determined by the signs of   

and  , respectively.   

Employing equation (4.15) and by the principle of superposition, the time-averaged energy 

flow into the left boundary of a cell in two attenuating waves associated with the first 

eigenvalues pair is given by 

 * * * * * *

12 1 2 1 2 1 1 2 2 1 2 2 1

1 1
Re i Re i

2 2
P  

   
                  

   
D D F F D F D F D F D F ,  (4.31) 

where the subscripts 1 and 2 represent each of the two waves; strictly, all terms should have 

an additional subscript L for left-hand side, but this is omitted for brevity.  From Section 4.2, 

we know that the first two terms are zero and the last two terms can be simplified numerica l ly 

as, 

    * *

12 1 2 2 1

1 1
Re i Re i i i

2 2
P a b a b b  

   
                

   
D F D F   (4.32) 
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where a  and b  are real numbers.  Equation (4.32) can be expressed in terms of eigenvec tor 

V  as  12 1 2 2 1i 4P   V JV V JV ; the derivation is given in Appendix C.2. 

Following the same procedures for the second wave pair gives  

    * *

34 3 4 4 3

1 1
Re i Re i i i

2 2
P a b a b b  

   
                 

   
D F D F   (4.33) 

where the subscripts 3 and 4 represent each of the two waves; the negative sign implies that  

the power associated with the second wave pair flows in opposite direction to the first wave 

pair. 

For an arbitrary cell, time-averaged power that flows into the left- and out of the right-hand 

sides of a cell are found to be the same and this can be shown as 

       
* * * *

R 1 1 2 2 2 2 1 1 1 2 2 1 L

1 1
Re i Re i

2 2
P P     

                    
D F D F D F D F   (4.34) 

since * *

1 2 2 1 1     .  Equations (4.32)-(4.34) imply that there is a uniform cross-flow of 

energy between two mutually interacting attenuating waves that decay in the opposite 

directions.  The nodal displacement and nodal force are not in quadrature, so there is a 

component of work done by the force from wave 1 through the displacement of wave 2.  

However, the work is counteracted by the force of wave 2 through the displacement of wave 

1 resulting in zero work done across the boundary.  Energy flow across the boundary is due 

to the components of displacement and force that are in quadrature. 

As the energy flow is uniform along the infinite structure, one should be able to evaluate the 

group velocity.  Consider the left-hand side of a cell, the equations of motion associated with 

the first attenuating wave pair are 

 
2

1 LL 1 1 LR 1
2




 
    

 

m
F K D K D ,  (4.35) 

 

2

2 LL 2 2 LR 2
2




 
    

 

m
F K D K D ,  (4.36) 

where the subscripts 1 and 2 represent each of the two attenuating waves decaying in 

opposite directions; again, the displacement and force terms have additional subscript L for 

left-hand side but omitted for brevity.  Pre-multiply equation (4.35) by 
*

2 2D  and equation 

(4.36) by 
*

1 2D , take the real part of each term and the sum to give the time-averaged energy 

balance as 
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21 12 S,21 S,12 K,21 K,12W W E E E E       (4.37) 

where 

  *

21 2 1

1
Re

2
W   D F ,  *

12 1 2

1
Re

2
W   D F , 

   *

S,21 2 LL 1 1 LR 1

1
Re

2
E  D K D K D ,   *

S,12 1 LL 2 2 LR 2

1
Re

2
E  D K D K D , 

  2 *

K,21 2 1

1
Re

4
E  D mD ,  2 *

K,12 1 2

1
Re

4
E  D mD . 

It is noted that 
21 12 0W W   and S,21 S,12 K,21 K,12E E E E   , so the time-averaged total 

energy is simply the sum of all the four energy terms.  The group velocity associated with 

the two attenuating waves is then given by  

 12
g,12

S,21 S,12 K,21 K,12

P
c

E E E E


  
.  (4.38) 

Figures 4.6 and 4.7 show the group velocity of energy flow pertaining to two oppositely 

decaying attenuating waves corresponding to loops 1,6 and 3,6, respectively.  From Figure 

4.6, the bottom segment of the loop 1,6 ( 21.3536 2.195  ) is found to be anomalous, but 

the top segment ( 22.195 3.022  ) is normal.  The change from anomalous to normal 

occurs at 2 2.195   where 1.8066    and 0.8119π  ; this point does not coincide 

with the maximum decay rate point ( 1.8131   at 2 2.022  ) nor the minimum 

wavenumber point ( 0.8112π   at 
2 2.3  ) of the loop.  Also, at 

2 2.195  , the group 

velocity is apparently infinite;  this could mean that the peak of the energy wave packet at 

the left- and right-hand boundaries of a cell occurs simultaneously [105].   

In Figure 4.7, loop 3,6 is found to be anomalous as a function of frequency.  The maximum 

group velocity occurs at 
2 3.415   where 0.5113    and 0.6701π  ; this point does 

not coincide with the maximum decay rate point of the loop which occurs at 
2 3.35  , 

0.5222   , 0.6958π  .  
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Figure 4.6 Group velocity of energy flow associated with two oppositely decaying 

attenuating waves pertaining to loop 1,6.  The asymptotic line is at 

π 0.8119  . 

 

Figure 4.7 Group velocity of energy flow associated with two oppositely decaying 

attenuating waves pertaining to loop 3,6. 
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4.6 Anomalous dispersion 

Dispersion refers to the phenomena where a wave propagates at different phase velocity at 

different wavenumber.  If the phase velocity and the group velocity of the wave are in the 

same direction, the dispersion is termed normal and the wave’s energy is regarded as flowing 

in the forward direction; otherwise, if the two velocities are in opposite directions, the 

dispersion is termed anomalous and the wave’s energy is regarded as flowing in the 

backward direction.  In terms of frequency derivative with respect to the wavenumber, a 

normal dispersion satisfies either one of the following conditions: d d 0    for 0   or 

d d 0    for 0  ; while anomalous dispersion satisfies either one of the following 

conditions: d d 0    for 0   or d d 0    for 0  .  Note that, positive wavenumber 

and positive group velocity implies that the phase velocity and energy transfer, respectively, 

are left-going. 

For a one-dimensional beam-like system, anomalous dispersion occurs in multi-coup led 

structures with at least two degrees of freedom at the cross-section, so the minimum size of 

the transfer matrix is ( 4 4 ).  However, as pointed out in Section 2.4, attenuating waves 

occurs in multi-coupled structures with at least four degrees of freedom at the coupling, so 

the minimum size of the transfer matrix is ( 8 8 ).  One might expect that the minimum size 

is ( 4 4 ) because the complex non-unity eigenvalues occur as a quartet but this is not the 

case.  Figure 4.8 shows the unit cells of four infinite frameworks with different number of 

cross-sectional degrees of freedom.  The systems shown in Figures 4.8(a) and 4.8(b) which 

can be represented by a ( 4 4 ) and a (6 6 ) transfer matrices, respectively, do not exhibit 

anomalous dispersion.  However, the systems in Figures 4.8(c) and 4.8(d) which can be 

represented by a ( 4 4 ) and an (8 8 ) transfer matrices, respectively, do exhibit an 

anomalous dispersion in form of a breathing mode; and only the latter allows attenuating 

waves to occur.   

Seemingly, anomalous dispersion occurs as a result of opposing nodal displacements in the 

y-direction at the cross-section that inevitably leads to opposing displacements in the x-

direction along the same tier of mass, as described in Section 3.11.  To illustrate this once 

again, consider the system in Figure 4.8(d).  The displacements associated with the four 

degrees of freedom on the left-hand side of the cell are L,1xD , L,1yD , L,2xD  and L,2 yD ; and 

the displacements on the right-hand side are R,1xD , R,1yD , R,2xD  and R,2 yD .  Under static 

pinching load, L,1yD  and L,2 yD  are displaced downwards and upwards respectively, the 
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vertical member on the left shortens while both diagonal members lengthen.  Therefore, it is 

inevitable that R,1yD  and R,2 yD  will be displaced upwards and downwards, respectively, and 

that means L,1yD  and R,1yD  are displaced in opposing directions.  The decay eigenvalue must 

be negative.  Under dynamic condition, this mode will appear as symmetric breathing wave, 

and one can expect that the wave would interact with symmetric extensional wave to form 

attenuating waves. 

For the example framework, there are three tiers (or layers) of point masses and anomalous 

dispersion manifests as second breathing mode which is characterized by predominantly 

opposing y-displacement in the transverse (or y-) direction.  The wavenumber of an 

anomalous dispersion reduces from π  to zero as frequency increases from the cut-on to the 

cut-off.  Detailed account on the displacement vector of the second breathing mode is given 

in Section 3.6. 

 

Figure 4.8 Unit cells of infinite frameworks with different numbers of cross-

sectional degrees of freedom.  Numbers 1 and 2 indicate tiers of the 

masses. 

 

In order to understand the energy flow mechanism, recall that the time-averaged power 

equation is defined as the product of velocity and force.  If velocity and force act in the same 

direction, then the power flow is in the forward direction, otherwise the power flow is in the 

backward direction.  At each cross-section, it is possible for a particular mode to have both 

forward and backward components of the power flow, therefore, the resultant of all 

components will determine the actual direction of the power flow.  For the example 

framework, it is found numerically that there is no backward power flow component for the 

bending and extensional modes.  However, for the other modes, there are forward and 

backward power components. 
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4.7 Conclusions 

Time-averaged work done, energy and power associated with evanescent, attenuating and 

propagating waves are studied numerically by considering the sectional nodal components 

contribution.  Work is done by evanescent and attenuating waves at each cross-section over 

one period and no transfer of energy occurs across the cell boundaries.  Work done, kinetic 

energy and potential energy are bounded within each cross-section.  However, on time-

average, no work is done by propagating wave at each cross-section and energy is transferred 

from one cell to the next at a speed given by the group velocity.  At the cut-on and cut-off 

frequencies, there is no work done and no energy transfer occurs across the cell boundaries. 

The normal and anomalous dispersions are studied by considering the cross-sectional nodal 

contribution.  In a structure which has diagonal connections, backward power flow can occur 

as a result of opposing y-displacement at the nodal cross-section that leads to negative decay 

eigenvalue under static case.  For both dispersions, it is possible that both forward and 

backward power components to appear at the cross-section and at the same time; in such 

situation, the forward power components are dominant in the case of normal dispersion while 

backward power components are dominant in the case of anomalous dispersion.     

Two interacting attenuating waves that decay in opposite directions is found to transfer 

energy.  The energy flow in two interacting attenuating waves that are formed by oscillatory 

evanescent waves can change from being backward to forward. 
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Chapter 5: An Alternative to the Riccati Transfer 

Matrix Method for Repetitive Structures 

 

5.1 Introduction 

In 2010, Stephen [49] provided an exposition of the Riccati transfer matrix method applied 

to the static analysis of a repetitive structure subjected to point, and distributed loading; this 

approach resolves the numerical instability issues identified by the author in [39].  As noted 

in [49], when a complete structure is to be analysed, one typically has a two-point boundary 

value problem (TPBVP); thus for a tip-loaded cantilever beam of N repeating cells, the load 

vector at the tip,  NF , and the displacement vector at the fixed root,  0d , will be known; 

the displacement vector at the tip,  Nd , and the reaction force vector at the root,  0F , are 

unknowns.  The need to construct powers of the transfer matrix, up to N
G , is the source of 

the ill-conditioning; this becomes more clear when the cross-sectional state-vector of 

displacement and force components is expressed in terms of the participation coefficients of 

the eigen- and principal vectors, and spatial evolution is expressed in terms of powers of the 

Jordan canonical form.  In particular, the eigenvalues of G are unity with a multiplicity of 

six, 0.059596 , 0.070207  and 0.28292 , together with their reciprocals 16.780 , 14.244  

and 3.5346 , respectively; for a 10 cell structure, the calculation of 10
G  leads to the term 

10 1216.780 1.8 10   which magnifies any errors. 

In contrast, the Riccati transfer matrix method [49,67,106] is based on a recursive Riccati 

matrix R, which relates the force and displacement vectors, F and d respectively, at the n th 

cross-section; that is      n n nF R d .  The method is numerically stable because 

recursive factors which feature in both the “backward in space” and the “forward in space” 

solution process have eigenvalues which converge onto 0.059596 , 0.070207  and 

0.28292 , together with unity with a multiplicity of three.  While the approach can be applied 

to a wide range of transfer matrix analyses, see for example [107], it is not at all intuit ive, 

and rather lacks elegance. 

In this chapter, the issue of numerical stability is addressed in a much more direct and 

transparent manner.  The approach is more aligned with that presented in [39], and avoids 
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multiplication by powers of eigenvalues greater than unity – the source of the instability – 

by constructing mixed column vectors of participation coefficients.   

Some repetition of the content of [39,49] is necessary for completeness, but this has been 

kept to a minimum.  A full description of the framework are already given in Chapter 2 

(without the point masses) and with the following properties: Young’s modulus 200E   

GPa, horizontal and vertical rods of length 1l   m and cross-sectional area 1 cm2, diagonal 

rods of length 2  m and cross-sectional area 1 2  cm2.  The eigen- and principal vectors are 

given in reference [12] and reproduced in Appendix D.1. 

The transfer matrix method calculations were performed using MATLAB, including a 

symbolic computation toolkit, to double precision using format long command.  The vpa 

command is used to convert large fractions into floating-points.  FEA results reported in [39] 

which is obtained from ANSYS is taken as benchmark. 

5.2 Theory 

The stiffness matrix K of a single cell of a repetitive structure relates the force and 

displacement vectors on both sides as F Kd , or in partitioned form  

L LL LR L

R RL RR R

     
     

     

F K K d

F K K d
,          (5.1) 

where the subscripts L and R denote left and right, respectively.  The transfer matrix G is 

determined from the stiffness matrix K according to  

1 1
dd dFR L LLR LL LR

1 1
Fd FFR L LRL RR LR LL RR LR

 

 

         
         

         

G Gd d dK K K

G GF F FK K K K K K
,   (5.2) 

or more compactly R Ls Gs ; the force sign convention of finite element analysis (FEA) is 

employed, hence the negative force vector on the right-hand side of equation (5.2).  The 

transfer matrix thus describes how a state-vector evolves as one moves from the left-hand 

side of the cell to the right-hand side.  For an extended structure, it is more convenient to 

write this as    1n n s G s , which relates the state-vector on the right-hand side of the 

 1n  th cell to the state-vector on the right-hand side of the n th cell. 
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An eigenvector of the transfer matrix G  represents a pattern of nodal displacement and force 

components, which is unique to within a scalar multiplier, say  .  Translational symmetry 

demands that this pattern is preserved as one moves from cell-to-cell, implying that 

   1n n s s ; this leads directly to the standard eigenproblem 

   n G I s 0 .           (5.3) 

Non-unity eigenvalues of G  are the rates of decay of self-equilibrated loading, as anticipated 

by Saint-Venant’s principle.  Multiple unity eigenvalues pertain to the transmission of load, 

e.g. tension, or bending moment, as well as the rigid body displacements and rotations. 

5.3 Tip loading 

The expansion of state-vectors into their constituent eigen- and principal vectors is first 

developed in the context of the 10-cell structure shown in Figure 5.1, but with the 

intermediate support removed and with load applied at the free-end only, for which one has 

   1010 0s G s .            (5.4) 

 

Figure 5.1 Ten-cell repetitive structure subject to distributed surface loading, with 

an intermediate support at the 7th  nodal cross-section.  Each downward 

arrow represents a force of 1 kN . 
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The state-vectors  0s  and  10s  can be expressed as the linear combinations 

  1,0 1 2,0 2 12,0 12 00 C C C    s X X X TC        (5.5) 

  1,10 1 2,10 2 12,10 12 1010 C C C    s X X X TC        (5.6) 

where T  is the transformation matrix of eigen- and principal vectors 
1 2 12, ,X X X  and C  

is the column vector of participation coefficients C ; the first subscript of C pertains to the 

vector, the second to the nodal cross-section.  The matrix T  transforms G  to its Jordan 

canonical form J  according to 1 T GT J , or 1G TJT ; powers of G  are then 

1n n G TJ T .  Substituting into equation (5.4) gives 10 1

10 0

TC TJ T TC , and pre-

multiplying by 1
T  gives  

10

10 0C J C ;            (5.7) 

compared with equation (5.4), this represents the simplest possible description of spatial 

evolution as one moves from one end of the structure to the other.  The matrix J  is given 

explicitly in Appendix D.1. 

The expression   00 s TC  may be written in partitioned form as  

 

 
1 2

0

3 4

0

0

   
   
  

d T T
C

F T T
,           (5.8) 

and   1010 s TC  as 

 

 
1 2

10

3 4

10

10

   
   
  

d T T
C

F T T
.          (5.9) 

In [39], matrices 1 2 3 4, , andT T T T  were all (6 6 ) partitions of T; however, this is no longer 

the case.  Rather, 1T  and 2T  are respectively the (6 3 ) top-left and (6 9 ) top-right 

partitions of T, while 3T  and 4T  are the (63) bottom-left and (6 9 ) bottom-right 

partitions. 

The Jordan canonical form J  has eigenvalues greater than unity (in particular 1 16.780  , 

2 3.5346   and 3 14.244   ).  To eliminate these from the formulation, the 



Chapter 5 

133 

corresponding coefficients in 
10C  and 

0C  are exchanged, and their reciprocal eigenva lues 

employed instead.   

Equation (5.7) now becomes 

 

 

1,0 1,10 1,10

2,0 2,10 2,10
1010 11

13,0 3,10 3,101

10
4,10 4,0 4,04

4

12,10 12,0 12,0

C C C

C C C



     
     
     

       
        
         

     
     
          

J 0J 0

0 J 0 J

C C C

C C C

C C C
,            (5.10) 

where the exchanged coefficients are shown in bold.   

Now, consider the boundary conditions.  The root of the cantilever is assumed fully fixed, 

so one has  0 d 0 .  From equation (5.8),  0d  can be written in partitioned form as 

   1 2 00 d T T C .  However, in order to apply equation (5.10), 1,0C , 2,0C  and 3,0C  in 
0C  

must be expressed in terms of 1,10C , 2,10C  and 3,10C , respectively.  Therefore, write  

 
1,0 4,0

1 2,0 2

3,0 12,0

0

C C

C

C C

   
   

    
   
   

d T T .          (5.11) 

Recall that  
1,0 1,10

10
1

2,0 1 2,10

3,0 3,10

C C

C C

C C



   
   

   
   
   

J .  Upon substitution into equation (5.11), one obtains 

   

 

1,10 4,0
10

1

1 1 2,10 2

3,10 12,0

10 T1

1 1 2 1,10 2,10 3,10 4,0 12,0

0

,

C C

C

C C

C C C C C





   
   

    
   
   

       

d T J T

T J T

                       (5.12) 

where  
10

1

1 1


T J  is a (6 3 ) matrix of vanishingly small numbers; the first, second and third 

columns of  
10

1

1 1


T J  are of order  12O  ,  5O   and  11O  , respectively.  This 

effectively eliminates the coefficients 1,10 2,10,C C  and 3,10C  from the displacement vector 

 0d .  Physically, this implies that any displacement components associated with self-
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equilibrated loads at the free end will have decayed to insignificant levels at the fixed end, 

as would be anticipated by Saint-Venant’s principle; further, as the number of cells, say n ,   

increases, so the components within  1

1 1

n


T J  would become even smaller. 

At the free end, we know that    
T

10 0 1000 0 0 0 0 F .  From equation (5.9), one 

has    3 4 1010 F T T C .  Again, in order to apply equation (5.10), we want to express 4,10C , 

5,10C , 12,10C  in terms of 4,0C , 5,0C , 12,0C , respectively.  Therefore, write 

 
1,10 4,10

3 2,10 4

3,10 12,10

10

C C

C

C C

   
   

    
   
   

F T T .         (5.13)  

Recall that 

 
4,10 4,0

10

4

12,10 12,0

C C

C C

   
   

   
   
   

J  where 4J  is the (9 9 ) bottom-right partition of J .  Upon 

substitution into equation (5.13), one gets  

   

 

1,10 4,0

3 2,10 4

3,10 12,0

10

4

T10

3 4 4 1,10 2,10 3,10 4,0 12,0

10

.

C C

C

C C

C C C C C

 



   
   
   
      

     

F T T J

T T J

    (5.14) 

Note that some columns of  4

10

4T J  appear as zero columns because the first three diagonal 

elements of  
10

4J  are vanishingly small.  Again, any force components associated with self-

equilibrated loading at the fixed end – in particular, that required to negate the Poisson’s 

ratio effect present within the shearing force and bending moment principal vectors – will 

have decayed to insignificant levels at the free end. 

From equations (5.12) and (5.14), one may now construct 

 

 

 

 

10
1

T1 1 2

1,10 2,10 3,10 4,0 12,0
10

3 4 4

0

10
C C C C C

  
          

T J Td

F T T J

,  (5.15) 

and hence the unknown column vector of mixed participation coefficients is given by 
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1
10

1
T 1 1 2

1,10 2,10 3,10 4,0 12,0
10

3 4 4

0

10
C C C C C


   

           

T J T d

FT T J

.   (5.16) 

Substituting into equation (5.10) allows one to determine the remaining unknowns.  The 

participation coefficients at the fixed end is 

 
T

0 0 0 0 0 0 353 0 0 347 3803 4500 500  C   

which agrees perfectly with the result obtained in [39]. 

The displacements at the free-end,  10d , and the reactions at the fixed-end,  0F  are then 

calculated from the first row of equation (5.9) and the second row of equation (5.8), 

respectively.  Agreement with the FEA predictions reported in [39] is perfect, as seen in the 

first and second columns of Table 5.1. 

5.4 Distributed loading 

The above formalism is now extended to include the distributed loading shown in Figure 

5.1, but without the intermediate support; extending equation (5.4) one may write 

     10 2 9

ext

10 0
 

      
 

0
s G s G G G

F
        (5.17) 

where  
T

ext 0 1000 0 0 0 0 F .  The derivation of equation (5.17) is given in [39] 

and reproduced in Appendix D.2.  An external load state-vector can be written as 

T
T

ext ext0 0 0 0 0 0   s F , and expressed in terms of the eigen- and principa l 

vectors as ext exts TC , and hence 1

ext ext

C T s .  Following the development in Section 5.3, 

equation (5.17) can now be written as  

 10 2 9

10 0 ext    C J C J J J C .        (5.18) 

Pre-multiply equation (5.18) with 
10

J  and re-arrange to give 

 10 9 8 1

0 10 ext

       C J C J J J C .        (5.19) 

Again, in order to eliminate the eigenvalues greater than unity, mixed column vectors of 

participation coefficients are constructed by taking the (9 9 ) bottom-right partition of 
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(powers of) J  in equation (5.18) and the (3 3 ) top-left partition of (powers of) 1
J  in 

equation (5.19), giving  

 

 

 

 

1,0 1,10

2,0 2,10
9

1
10

13,0 3,10 1
1 1

4,10 4,0 ext910

4
5,10 5,0 4

1

12,10 12,0

n

n

n

n

C C

C C

C C

C C

C C

C C








   
   
   

 
      
             
       
     
   
   
   





J 0
J 0

C

0 J 0 J

.   (5.20) 

Then, consider the boundary conditions.  The displacement vector at the fixed-end is 

 0 d 0  and can be expressed as  

   
T T

1 2 0 1 1,0 2,0 3,0 2 4,0 12,00 C C C C C        d T T C T T .   (5.21) 

But, from equation (5.20), 

   
1,0 1,10 1,ext9

10
1 1

2,0 1 2,10 1 2,ext

1

3,0 3,10 3,ext

n

n

C C C

C C C

C C C

 



     
     

      
     
     

J J ; 

upon substitution into equation (5.21) and re-arranging, one gets 

     
1,ext 1,10 4,09

10
1 1

1 1 2,ext 1 1 2,10 2

1

3,ext 3,10 12,0

0
n

n

C C C

C C

C C C

 



     
     

       
     
     

d T J T J T .     (5.22) 

At the free-end, the force vector can be expressed as 

   
T T

3 4 10 3 1,10 2,10 3,10 4 4,10 12,1010 C C C C C        F T T C T T .  (5.23) 

But, from equation (5.20), 

   
4,10 4,0 4,ext9

10

4 4

1

12,10 12,0 12,ext

n

n

C C C

C C C


     
     

      
     
     

J J ; 

upon substitution into equation (5.23) and re-arranging, one gets  
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4,ext 1,10 4,09

10

4 4 3 2,10 4 4

1

12,ext 3,10 12,0

10
n

n

C C C

C

C C C


     
     

       
     
     

F T J T T J .     (5.24) 

From equations (5.22) and (5.24), one may now construct 

   

   

 

 

1,ext 1,109
1

1 1 2,ext 2,10
101 1

3,ext 1 1 2 3,10

10
4,04,ext9 3 4 4

4 4

1
12,012,ext

0

10

n

n

n

n

C C

C C

C C

CC

CC



 



    
        

            
              

       





d T J

T J T

T T J

F T J

,     (5.25) 

and hence the unknown column vector of mixed participation coefficients is given by 

 

 

   

   

1,ext1,10 9
1

1 1 2,ext2,10 1
10 11

3,ext1 1 23,10

10
4,0 4,ext93 4 4

4 4

1
12,0 12,ext

0

10

n

n

n

n

CC

CC

CC

C C

C C








   
       

           
               

       





d T J

T J T

T T J

F T J

.    (5.26) 

Substituting into equation (5.20) allows one to determine the remaining unknowns.  The 

participation coefficients at the fixed-end are found to be 





0

T

8.41 37.08 8.70 8.40 37.06 1932

0.0067 0 1906 26988 22500 5000 .

   

 

C
  

The participation coefficients 7,0C  and 8,0C  are found to be close to zero and zero, 

respectively, indicating that there is no contribution from the x-direction rigid-body 

displacement and tensile force vectors.  In comparison to the result obtained in [39], this also 

shows that the present method is less susceptible to accumulated errors from the sum of 

powers of the Jordan canonical form.  The displacement at the free-end,  10d , and the 

reactions at the fixed end,  0F  are given by  1 2 10T T C  and  3 4 0T T C , respectively.  

Again, agreement with FEA is near perfect. 
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5.5 Additional simple-support 

Last, consider the addition of a simple-support at the 7th nodal cross-section, as shown in 

Figure 5.1.  First define    
T

ext 7 0 1000 0 0 0 F F , where F is the unknown 

support reaction.  For the complete structure one may write 

     
 

10 2 4 9 3

extext

10 0
7

  
         

   

00
s G s G G G G G

FF
,    (5.27) 

(note the absence of the 3
G  term in the summation) or in terms of the participation 

coefficients  

 10 2 4 9 3

10 0 ext ext 7      C J C J J J J C J C ,      (5.28) 

where 
 

1

ext 7

ext 7

  
  

 

0
C T

F
.  Pre-multiply equation (5.28) with 10

J  and re-arrange to give  

 10 9 8 6 1 7

0 10 ext ext 7

           C J C J J J J C J C .     (5.29) 

Construct a mixed column vector of participation coefficients by taking the (9 9 ) bottom-

right partition of (powers of) J  in equation (5.28) and the (3 3 ) top-left partition of (powers 

of) 1
J  in equation (5.29), to give 

 

 

   

 

 

 

1,0 1,10

6 9
2,0 2,10 1 1

10
1 1 1

1 1 83,0 3,10

ext910
4,10 4,0

4
4

1,2,4,

12,10 12,0

7
1

1

ext 7
3

4

n n

n n

n

n

C C

C C

C C

C C

C C

 



 





   
   

                     
            
    

      

 
 
  

 



J J 0
J 0

C

0 J 0 J

J 0
C

0 J

  

              (5.30) 

Now consider the boundary conditions: the displacement vector at the fixed-end is 

 0 d 0  and can be expressed as  

   
T T

1 2 0 1 1,0 2,0 3,0 2 4,0 12,00 C C C C C        d T T C T T .   (5.31) 
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But, from equation (5.30), 

       
1,0 1,10 1,ext 1,ext 76 9

10 7
1 1 1 1

2,0 1 2,10 1 1 2,ext 1 2,ext 7

1 8

3,0 3,10 3,ext 3,ext 7

n n

n n

C C C C

C C C C

C C C C

   

 

       
        

           
        

       

 J J J J ; 

substitute into equation (5.31) and re-arrange to obtain 

         
1,ext 1,ext 7 1,10 4,06 9

7 10
1 1 1 1

1 1 1 2,ext 1 1 2,ext 7 1 1 2,10 2

1 8

3,ext 3,ext 7 3,10 12,0

0
n n

n n

C C C C

C C C

C C C C

   

 

       
         

             
         

       

 d T J J T J T J T . 

(5.32) 

At the free-end, the force vector can be expressed as  

   
T T

3 4 10 3 1,10 2,10 3,10 4 4,10 12,1010 C C C C C        F T T C T T .  (5.33) 

But, from equation (5.30), 

     
4,10 4,0 4,ext 4,ext 79

10 3

4 4 4

1,2,4,

12,10 12,0 12,ext 12,ext 7

n

n

C C C C

C C C C


       
       

         
       
       

J J J ; 

substitute into equation (5.33) and re-arrange to get 

       
4,ext 4,ext 7 1,10 4,09

3 10

4 4 4 4 3 2,10 4 4

1,2,4,

12,ext 12,ext 7 3,10 12,0

10
n

n

C C C C

C

C C C C


       
       

          
       
       

F T J T J T T J . (5.34) 

From equations (5.32) and (5.34), one may now construct  

       

     

1,ext 1,ext 76 9
7

1 1 1

1 1 1 2,ext 1 1 2,ext 7

1 8

3,ext 3,ext 7

4,ext 4,ext 79
3

4 4 4 4

1,2,4,

12,ext 12,ext 7

0

10

n n

n n

n

n

C C

C C

C C

C C

C C

  

 



    
      

        
     

    
    
    

     
    

    

 



d T J J T J

F T J T J

 

 

1,10

2,10
10

1

1 1 2 3,10

10
4,0

3 4 4

12,0

C

C

C

C

C



 
 
 

   
   
    

 
 
  

T J T

T T J

              (5.35) 
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and hence the unknown column vector of mixed participation coefficients (in terms of F) is 

given by 

 

 

       

   

1,ext 1,ext 71,10 6 9
7

1 1 1

1 1 1 2,ext 1 1 2,ext 72,10 1
10 1 81

3,ext 3,ext 71 1 23,10

10
4,0 4,e93 4 4

4 4

1,2,4,
12,0

0

10

n n

n n

n

n

C CC

C CC

C CC

C C

C

  


 



    
                             

    
  
 
  

 



d T J J T J

T J T

T T J

F T J  
xt 4,ext 7

3

4 4

12,ext 12,ext 7

.
C

C C

 
 
 
 
 
    
    

    
    

    

T J

              (5.36) 

Substituting into equation (5.30) allows one to determine the remaining boundary 

participation coefficients, that is 1,0 2,0 3,0 4,10 5,10 12,10, , , , , ,C C C C C C .   

At the support, the participation coefficients can be expressed in terms of 
0C  or 

10C  as  

 7 2 6

7 0 ext    C J C J J J C ,         (5.37) 

 3 1 2

7 10 ext ext 7

     C J C J J C C ,        (5.38) 

respectively.  From equations (5.37) and (5.38), one obtains 

 
4,7 4,0 4,ext

7 2 6

4 4 4 4

12,7 12,0 12,ext

C C C

C C C

     
     

         
     
     

J J J J ,      (5.39) 

 
1,7 1,10 1,ext

3 1 2

2,7 1 2,10 1 1 2,ext

3,7 3,10 3,ext

C C C

C C C

C C C

  

     
     

       
     
     

J J J .        (5.40) 

(Note that equation (5.40) is just the first three rows of equation (5.38), from which the 
ext 7C  

contribution is zero.)  The displacement vector at the support is then  

   
T T

1 2 7 1 1,7 2,7 3,7 2 4,7 12,77 C C C C C        d T T C T T ;   (5.41) 

upon substitution of equations (5.39) and (5.40) into (5.41), the y-component of the 

displacement at the support is calculated as 31.8 232527F  , and for this to be equal to zero 

requires 7312.1NF  .  With F now known, the displacement at the free-end  10d , and 
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the reactions at the fixed-end  0F , are calculated from    1 2 1010 d T T C  and 

   3 4 00 F T T C , respectively.  Once again agreement with FEA is near perfect. 

 

 

 End loading only Distributed loading Distributed loading 

with intermediate 

support 

 TMM FEA TMM FEA TMM FEA 

 10d   1.1808

8.5423

0.0039971

8.4786

1.1648

8.4609











  

1.1808

8.5423

0.0039971

8.4786

1.1648

8.4609











  

4.5602

37.136

37.075

4.4838

37.05749









0.035064
  

4.5602

37.136

37.075

4.4838

37.0578









0.035066
  

0.3861

1.4536

0.065226

1.39454

0.25340

1.3787









  

0.3862

1.4536

0.065229

1.3946

0.25340

1.3787









  

 0F   5000.002

0.0036568

174.90

4999.998

587.45







587.45

  

5000.002

0.0036568

174.90

4999.998

587.45







587.45

  

27557

4269.7

114.68

1460.8

27,443

4269.6











  

27557

4269.7

114.67

1460.8

27,443

4269.6











  

1965.1

747.89

115.05

1192.0

1850.0

748.02











  

1965.1

747.89

115.03

1192.0

1850.0

748.02











  

Table 5.1 Free-end nodal displacement  10d , and fixed-end nodal force  0F  

predictions under various loading conditions reproduced from reference 

[39].  TMM denotes transfer matrix, FEA denotes finite element analysis.  

Plus and minus sign errors in [39] are corrected and shown bold. 
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5.6 Conclusions 

The Riccati transfer matrix method has previously been shown to provide a numerica l ly 

stable solution to the two point boundary problem of a repetitive structure, fully fixed at one  

end and loaded at the other, and with distributed loading and intermediate support.  An 

alternative numerically stable approach has been developed, which is more direct and 

transparent, and is applied to the same examples.  Agreement with FEA predictions is near 

perfect. 
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Chapter 6: Summary, Conclusions and Future Work 

In this thesis, wave propagation in a one-dimensional (beam-like) repetitive pin-jointed 

structure with point masses located at nodal cross-sections is analysed with the aim of 

providing a simple physical explanation for the existence of frequency-propagation zones 

and decay zones.  The thesis began by reviewing the literature on repetitive structures with 

the focus to identify different analytical techniques employed to analyse such structures.  

Transfer matrix method is found to be the best technique to be employed in this thesis due 

to its simple implementation and versatility in solving various static and dynamic problems.  

Detailed review of the transfer matrix method shows that different forms of transfer matrix 

have been introduced but relations between them have not been previously established.  The 

transfer matrix method is also known for its numerical instability; solutions to most of the  

ill-conditioning problems have been proposed but a few issues remain to be addressed. 

Transfer matrix eigenanalysis has been employed to quantify the effect of self-equilibra t ing 

load in the static case, as anticipated by the Saint-Venant’s principle, however the method 

has not been extended to the dynamic case.  We believe that extension of the method to the 

dynamic case could provide an answer to our research problem, and subsequently open a 

path towards quantifying the effect of dynamic Saint-Venant’s principle.  In general, the 

transfer matrix eigenanalysis involves two important steps: first, formulation of the transfer 

matrix, and second, employment of the Bloch’s theorem which leads to frequency-dependent 

eigenvalue problem whose solution is a dispersion relation, i.e. frequency against decay rate 

and phase constant.  Conventionally, the relation is plotted on a two-dimensional diagram, 

however we found that such plotting is disjointed as the decay rate and phase constant are 

plotted against frequency on separate axes.  Instead, a three-dimensional plot offers a better 

graphical representation as it allows all branches to appear in a single graph, hence facilitate 

the analysis, particularly in identifying detailed evolution of the dispersion curve branches 

as frequency increases. 

An important principle found to be useful is phase closure which states that for a standing 

wave, the total phase change for a complete circumnavigation of the structure is an integer 

multiple of 2π .  The phase closure principle is first employed in the formulation of the 

determinantal equation to find the natural frequencies of finite structures.  At first sight, the 

principle is seemingly relatable to the method of direct application of boundary conditions 

on the transfer matrix, the latter leads to two-point boundary value problems (TPBVP).  
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However, attempts to apply phase closure onto TPBVP have not been successful.  Later in 

this work, phase closure appears again in the study of cut-on/off frequencies of wave modes, 

this time it seems to occur across and along the characteristic dimension of a unit cell.  

Transfer matrix analysis of the energy and power flow associated with propagating and 

decaying waves have been presented by many but a few aspects remain to be explored such 

as the peculiar phenomena of anomalous dispersion, condition for maximum group velocity 

and the power flow associated with two interacting attenuating waves.  An exposition of the 

basic energy equations are reviewed in order to understand the mathematical techniques 

involved and to find simpler techniques that could be use.   

Finally, TPBVP under static case is reviewed with the objective to find a simpler numerica l ly 

stable solution to the problem.  This idea is pursued after an attempt to apply phase closure 

to the TPBVP failed because the force vectors associated with rigid body translations and 

rotation reduced to become columns of zero vector, hence the reflection matrix cannot be 

computed correctly through inversion of singular partitions of transmission matrix.  Also, 

the diagonal matrix of eigenvalues under dynamic case becomes Jordan canonical block 

matrix under static case; the latter cannot be simply partitioned into blocks of ‘eigenvalues’ 

that represent rightward and leftward decay of self-equilibrating loads or transmission of the 

coupled principle vectors. 

In Chapter 2, two forms of dynamic transfer matrix are derived for the model structure: the 

displacement-force transfer matrix G, and the displacement-displacement transfer matrix, 

H.  Wave propagation through the structure is described by the eigenvalues of either transfer 

matrix, expressed as  exp i    , where the real part   is the decay constant, and   is 

the phase constant as one moves from one cross-section to the next.  The emphasis of this 

chapter has been the relationship between G and H, and their respective properties, and also 

between their respective eigenvectors.  Similarity matrices are introduced to relate G and H, 

together with their respective metrics.  Symplectic orthogonality relationships for the 

eigenvectors of both G and H are derived, together with relationships between their 

respective sets of eigenvectors; this allows an arbitrary disturbance to be resolved into 

propagating and decaying waves.  Both G and H can be employed to determine new 

expressions for the group velocity, but that which employs H is the more succinct. 

For structures of finite length, the determination of natural frequencies of standing waves 

requires the application of boundary conditions, normally in terms of zero force (free-end), 

and/or zero displacement (fixed-end); accordingly, the displacement- force transfer matrix G 
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is the more natural choice.  Direct application of boundary conditions leads to very succinct 

frequency determinants based on partitions of N
G .  This approach is suitable for short beam-

like structures, where the number of cells N is small; however, since some of the eigenva lues 

are greater than unity, it becomes numerically unstable when N is large.  The displacement-

displacement transfer matrix H approach does not feature a force vector, so this needs to be 

introduced into the formulation, leading to less succinct frequency determinants; the 

exception is for the fixed-fixed beam.  Again, this approach is numerically unstable when N 

is large.  Instead, phase closure has been developed in terms of reflection matrices, and 

features only those eigenvalues less than, or equal to unity; this ensures numerical stability 

whatever the magnitude of N.  Both these approaches require the search for zero-values of a 

determinant; this can be done by evaluating and plotting the determinant over a frequency 

range, and noting where the value changes sign.  For the direct method, the determinant is 

real, whereas for phase closure, the determinant is complex, so both real and imaginary parts 

must be zero simultaneously. 

The phase closure approach is not entirely free from numerical instability. Numerical studies 

on the model framework shows that partitions of the eigenvector matrix R,FV  and L,FV  can 

become singular when two branches cross and when a column is reduced to zero (at certain 

frequencies).  As a result, the natural frequency determinantal equation yields large values.  

A real wave vector approach has been proposed by Luongo and Romeo [71] to overcome 

this ill-conditioning problem; the approach requires the eigenvectors and the eigenva lues 

matrices to be re-arranged, and the real and imaginary parts to be placed in separate columns, 

the resulting determinantal equation would give real values only.  So far, the approach has 

not been demonstrated on multi-coupled structures.  Attempts to implement this approach 

on the model framework have failed; the problem arises as one separate the complex number 

into its real and imaginary parts, the number of columns increases but the number of rows 

remain the same (the matrices are no longer square), so partitioning and inversion of 

rectangular matrices become an issue. 

Chapter 3 describes an in-depth study of the dispersion diagram, in novel form, for the model 

repetitive structure, concentrating on wave propagation and decay characterist ics.  

Propagation and decay characteristics of different modes are described in relation to the 

corresponding eigenvalues   and their properties.  The eigenvalues, expressed as 

 exp i   where   is decay rate and   is phase constant, are plotted as a function of 

frequency (squared) in a three-dimensional dispersion diagram.  The three axes are  ,    



Chapter 6 

146 

and 2 .  Such a representation has the advantage of clearly depicting the evolution of the 

dispersion branches, in particular where both the decay rate and phase constant change with 

frequency.  The eigenvalues 1   and 1    are of particular significance and considered 

in detail as they are associated with the cut-on and cut-off frequencies.  The need to be 

specific in the description of cut-on and cut-off frequencies, marking the start and finish of 

propagation zones with increasing frequency, is emphasised.  The evolution of the different 

waves along each branch is described in detail.  The existence of propagation zones is 

explained in terms of phase closure (implying a natural frequency) over the cross-section at 

the cut-on frequency, and phase closure over the smallest axial unit – the repeating cell – at 

the cut-off frequency; these zones can therefore be regarded as extended resonances.  For 

example, a normal dispersion has a cut-on when one half-wavelength can be accommodated 

within some characteristic transverse dimension of the waveguide (that is a phase closure 

over the cross-section), while a cut-off occurs when one-half wavelength occupies the length 

of the repeating cell (that is a phase closure over a single cell in the axial direction).   In the 

discrete model, the maximum number of wavelengths that can be accommodated over a unit 

cell is one half, which coincides with 1   ; thus, the existence of a cut-off frequency is a 

consequence of the discrete nature of the model in the axial direction.  On the other hand, an 

anomalous dispersion branch at cut-on displays phase closure over the cross-section and over 

the length of a single cell.  The criterion for propagation, or attenuation, is not determined 

by the frequency per se, rather by the associated wavelength, so the present work goes some 

way towards answering Mead’s question and the establishment of a dynamic SVP.     

The propagating branches have an invariant property known as the Krein signature.  

Propagating normal and anomalous branches have opposite signatures; on a unit circle the 

two will collide and this is known as Krein collision.  Wave interaction between branches 

displaying normal and anomalous dispersion is explained in terms of the Krein signature, 

and leads to attenuating waves.  The Krein signature for propagating branches is found to be 

intimately related to the equation for the power flow.  For evanescent branch, there is no 

power flow, therefore a new expression for the Krein signature is introduced.  Three distinct 

types of decaying waves have been identified, namely, monotonic evanescent, oscillatory 

evanescent and attenuating.  Monotonic evanescent and oscillatory evanescent generally 

occur at frequencies below cut-on and above cut-off, respectively; the exception is for the 

single anomalous branch, for which the situation is reversed.  For the model structure, 

attenuating decay occurs as a result of interaction between asymmetric branches which 

display normal and anomalous dispersions, and results in the formation of loops on the 
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dispersion diagram.  The latter can be explained in terms of a Krein collision.  Some 

preliminary comments on the cause of anomalous dispersion are made.  The very existence 

of a static decay mode having a negative eigenvalue appears to presage a propagation branch 

which exhibits anomalous dispersion. 

In Chapter 4, energetics of the different wave types under the new wave type taxonomy is 

investigated.  Equations for energy and power are derived in terms of eigenvectors of G and 

H.  Numerical results for axial phase velocity and group velocity of the different modes show 

some familiar and some peculiar phenomena.  Condition for maximum group velocity is 

shown, but physical interpretation is yet to be established.  Numerical study on anomalous 

dispersion reveals that pin-jointed structure which allows negative eigenvalue to occur under 

static self-equilibrating load will presage anomalous dispersion under dynamic condition; 

the minimum size of the transfer matrix is (4 4 ).  Nonetheless, for attenuating waves to 

occur the minimum size of the transfer matrix is (8 8 ). 

Time-averaged work done, energy and power associated with evanescent, attenuating and 

propagating waves are studied numerically by considering the sectional nodal components 

contribution.  Work is done by evanescent and attenuating waves at each cross-section over 

one period and no transfer of energy occurs across the cell boundaries.  Work done, kinetic 

energy and potential energy are bounded within each cross-section.  However, on time-

average, no work is done by propagating wave at each cross-section and energy is transferred 

from one cell to the next at a speed given by the group velocity.  At the cut-on and cut-off 

frequencies, there is no work done and no energy transfer occurs across the cell boundaries.  

The normal and anomalous dispersions are studied by considering the cross-sectional nodal 

contribution.  In a structure which has diagonal connections, backward power flow can occur 

as a result of opposing y-displacement at the nodal cross-section that leads to negative decay 

eigenvalue under static case.  For both dispersions, it is possible that both forward and 

backward power components to appear at the cross-section and at the same time; in such 

situation, the forward power components are dominant in the case of normal dispersion while 

backward power components are dominant in the case of anomalous dispersion. 

Two interacting attenuating waves that decay in opposite directions is found to transfer 

energy.  The energy flow in two interacting attenuating waves that are formed by oscillatory 

evanescent waves can change from being backward to forward.  This is different from a 

propagating wave as it could only remain to be normal, or anomalous, between its cut-on 

and cut-off frequencies. 
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Chapter 5 is concerned with elastostatic transfer matrix analysis of the model structure where 

a two point boundary value problem has been considered.  It is known that the solution of 

the problem is numerically stable when one employs the Riccati transfer matrix method.  

However, an alternative numerically stable transfer matrix method, which is more direct and 

transparent, is developed for the model structure fixed at one end, and subject to point-wise 

distributed loading, with and without an intermediate support.  This is achieved by 

constructing mixed column vectors of participation coefficients, so that spatial evolution 

involves multiplication by powers of the eigenvalues which are less than or equal to unity. 

Agreement with FEA predictions is near perfect. 

This work has identified a number of areas that require further study.  In Section 2.4, it is 

found numerically that the minimum size of the transfer matrix for complex non-unity 

eigenvalues to occur is (8 8 ).  Theoretical proof to that finding is yet to be given.  In Section 

2.7, the phase closure (or complex wave vector) approach to determine natural frequenc ies 

is found to suffer from ill-conditioning at certain frequencies.  Luongo and Romeo [71] have 

proposed real wave vector approach to solve this problem but early attempts to implement 

the approach on the model structure have failed because partitions of the resulting real 

rectangular eigenvector matrix cannot be inverted correctly as required by the proposed 

method.  It is likely that additional steps to the proposed real wave vector approach are 

required for multi-coupled structure. 

In Section 3.3, equation (3.3) is given; the equation relates the eigenvalue to the displacement 

vectors and partitions of the stiffness matrix.  It is stated that for real and complex non-unity 

eigenvalues, the plus-minus sign corresponds to the reciprocal eigenvalue pair.  However, 

for complex unity eigenvalues, the plus and the minus sign give the correct eigenvalues, but 

they are not reciprocal.  An explanation for why this happen should be given. 

In Section 3.7, we suspect that the QR algorithm employed by MATLAB is not able to 

compute the eigenvectors accurately at the point where the branches cross.  In theoretical 

physics, such problem could be resolved through renormalisation, but such an approach has 

not been pursued.  So, further study is required to find out how one can compute the 

eigenvectors accurately in the case of repeated eigenvalues. 

In Section 3.9, detailed account of loops 1,6 and 3,6 is given but simple physical reasons that 

explain why the loops (and attenuating wave) appear as such has not been found. 

In Section 3.11, it is found that branches associated with symmetric waves never cross each 

other while branches associated with asymmetric waves collide (leading to formation of 
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loops); also, branches associated with symmetric and asymmetric waves can cross each 

other, but without formation of loops.  These observations are not true for all structures.  

Detailed study of the dispersion curves for the structure shown in Figure 4.8(d) reveals that 

the symmetric normal extensional mode collides with symmetric anomalous breathing mode 

(leading to formation of loops), and symmetric normal extensional mode never cross 

asymmetric normal shear mode.  Therefore, symmetricity of mode is not the determining 

factor for mode crossing nor collision, rather its signature.  Theoretical proof of this, as well 

as relation between mode symmetricity and signature, has not been established. 

In Section 4.4, an equation that must be satisfied at maximum group velocity is given. 

However, physical (or graphical) interpretation to the equation that clearly explain the 

condition for maximum group velocity has not been given. 

In Section 4.5, it is found that two attenuating waves emanating from the same cross-section 

can interact to transfer energy.  A case where two decaying waves emanating from a distance 

apart has not been considered. 

So far, the analysis is based on the model framework which has 6 cross-sectional degrees of 

freedom.  More peculiar phenomena and wave types could be revealed if a framework with 

more degrees of freedom is analysed.  For example, it would be interesting to find out 

whether a propagating branch can change from being normal to being anomalous, or vice 

versa, and whether two loops can occur simultaneously and interact to form more loops.  The 

model framework can also be modified to have a tapering end of power-law profile.  It is 

known that a wave that travel towards such an end could become trapped and never get 

reflected back—a phenomenon dubbed as acoustical ‘black hole’ in analogy to astrophysica l 

black hole [108]. 
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Appendix A  

A.1 Matrices 
LLK , 

LRK , 
RLK  and 

RRK  

In Section 2.2, the equations of motion for a unit cell of the example framework are given 

in the matrix form.  The explicit expressions for the matrices 
LLK , 

RRK  and 
LRK  in the 

equations are as follows:     

   

   

 

 

   

   

LL

1 1 4 2 1 4 2 0 0 0 0

1 4 2 1 2 1 4 2 0 1 2 0 0

0 0 1 1 2 2 0 0 0

0 1 2 0 1 1 2 2 0 1 2

0 0 0 0 1 1 4 2 1 4 2

0 0 0 1 2 1 4 2 1 2 1 4 2

k

  
 
 
  

 
 

 
  

   
 
 
 
    

K   

   

   

 

 

   

   

RR

1 1 4 2 1 4 2 0 0 0 0

1 4 2 1 2 1 4 2 0 1 2 0 0

0 0 1 1 2 2 0 0 0

0 1 2 0 1 1 2 2 0 1 2

0 0 0 0 1 1 4 2 1 4 2

0 0 0 1 2 1 4 2 1 2 1 4 2

k

 
 
 

 
 
 

 
  

   
 
  
 
     

K   

   

   

       

       

   

   

LR

1 0 1 4 2 1 4 2 0 0

0 0 1 4 2 1 4 2 0 0

1 4 2 1 4 2 1 0 1 4 2 1 4 2

1 4 2 1 4 2 0 0 1 4 2 1 4 2

0 0 1 4 2 1 4 2 1 0

0 0 1 4 2 1 4 2 0 0

k

  
 
 


 
 
    

  
   
 
   
 
    

K   

where k EA L  and 
T

RL LRK K . Note that LLK  and RRK  are symmetric, but LRK  is not.  
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A.2 Formula for block matrix inversion 

If A , B , C  and D are an ( n n ), an ( n m ), an ( m n ) and an (m m ) matrix, 

respectively, then 

 
   

   

1 1
1 1 11

1 1
1 1 1

 
  

 
  

               

A BD C A B D CA BA B

C D D C A BD C D CA B

  

provided 0A  and 1 0 D CA B  [109].  When 0A , as with similarity matrix N, 

one may use the Schur complement to give 

 
   

   

1 1
1 1 11

1 1
1 1 1 1 1 1

 
  

 
     

                

A BD C A BD C BDA B

C D D C A BD C D D C A BD C BD

. 

 

A.3 Physical interpretation of symplectic orthogonality relation 

Consider a cell as shown in Figure 2.2(a).  The cell is subjected to two different load systems 

denoted by subscripts 1 and 2.  The Betti-Maxwell reciprocal theorem requires that the work 

done by forces 1F  acting through displacements 2D  is equal to the work done by forces 2F  

acting through displacements 1D ; however, we specialise load system 1 as the eigenvec tor 

iV  associated with eigenvalue i , and load system 2 as the eigenvector jV  associated with 

eigenvalue j , and the reciprocal theorem becomes  

                T T T T1 1 1 1i j i j j i j in n n n n n n n      D F D F D F D F   

where  1n   and  n  are the LHS and RHS of the cell, respectively.  Express the RHS 

vectors in terms of LHS vectors as follows 

            1 ,  1 ,  1i i i j j j i i in n n n n n        D D D D F F  and    1j j jn n  F F  

and the above simplifies to  

            T T1 1 1 1 1 1i j i j i j j in n n n       D F D F  

or  

          T T1 1 1 1 1 0i j i j j in n n n         D F D F . 
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But the term  

        T T T1 1 1 1i j j i i jn n n n       D F D F V JV , 

which indicates that the symplectic orthogonality relation   T1 0i j i j V J V  is a special 

case of the reciprocal theorem.  Note that there is no equivalent direct link between the 

reciprocal theorem and the weighted symplectic orthogonality of the eigenvectors X of 

transfer matrix H. 
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2   Mode 3 First thickness shear 

1.66    
T

1 0.2640i 0 0.0724i 1 0.2640i     

1.67    
T

1 0.2642i 0 0.0749i 1 0.2642i     

1.6702    
T

1 0.0001 0.0157i 0.1088 0.0370i 0.0125 0.0004i 0.2452i     

1.68    
T

1 0.2644i 0 0.0775i 1 0.2644i     

1.69    
T

1 0.2647i 0 0.08i 1 0.2647i     

 

2   Mode 4 Second thickness shear 

1.66    
T

1 0.2328i 0.2141 0 1 0.2328i   

1.67    
T

1 0.2268i 0.2150 0 1 0.2268i   

1.6702   


T

0.7938 0.1242i 0.0023 0.2306i 0.1928 0.0134i

0.0047 0.0077i 1 0.0305 0.1761i  
  

1.68    
T

1 0.2210i 0.2157 0 1 0.2210i   

1.69    
T

1 0.2153i 0.2162 0 1 0.2153i   

 

Table B.1 Displacement vectors below, at and above crossing frequency  

2 1.6702   for modes 3 and 4.  The imaginary part of the displacement 

components are shown with   and  conjugates: the lower sign pertains 

to left-going waves while the upper sign pertains to right-going. 
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2   Mode 3 First thickness shear 

3.70    
T

1 0.7375i 0 1.9718i 1 0.7375i    

3.71   
T

1 0.6264i 0 1.7189i 1 0.6264i    

3.7151  


T

1 0.0077 0.5862i 0.1012 0.2539i 0.1170 1.5865i

0.9429 0.1433i 0.0767 0.5586i

 


  

3.72    
T

1 0.5594i 0 1.5639i 1 0.5594i    

3.73    
T

1 0.5100i 0 1.4480i 1 0.5100i    

 

2   Mode 5 First breathing 

3.70    
T

2.0266i 1 7.2826i 0 2.0266i 1      

3.71   
T

2.0590i 1 7.3303i 0 2.0590i 1      

3.7151  


T

0.0189 1.7646i 1 0.3676 1.3118i

2.2774 0.1385i 0.1886 1.0243i 0.6433 0.1000i

 

 
  

3.72    
T

2.0916i 1 7.3784i 0 2.0916i 1      

3.73    
T

2.1244i 1 7.4269i 0 2.1244i 1      

 

Table B.2 Displacement vectors below, at and above the crossing frequency  

2 3.7151   for modes 3 and 5.  The imaginary part of the displacement 

components are shown with   and  conjugates: the lower sign pertains 

to left-going waves while the upper sign pertains to right-going. 

 



Appendix C 

157 

Appendix C  

C.1 The derivations of time-averaged work done, strain energy and 

kinetic energy 

For a given harmonic displacement  L exp i tD  and harmonic force  L exp i tF , the 

instantaneous work done by the force is given by  

    T

L, ins L LRe exp i Re exp iW t t        D F , (C.1) 

where the minus sign takes into account the fact that forces on the left side of the cell act in 

opposite direction to the forces on the right side.  Re-writing equation (C.1) to include the 

complex conjugate terms, gives  

 

       

   

   

 

T T

L, ins L L L L

T T T T

L L L L L L L L

T T T T

L L L L L L L L

T T

L L L L

1 1
exp i exp i exp i exp i

2 2

1
exp 2i exp 2 i

4

1
exp 2i exp 2 i

4

1 1
Re exp 2i Re

2 2

W t t t t

t t

t t

t

   

 

 



       
   

     
 

     
 

        

D D F F

D F D F D F D F

D F D F D F D F

D F D F

  

where the overbar indicates complex conjugate.  Integrating insW  over one period T  gives 

 
T *

L, ins L L L L

0

1 1
d Re Re

2 2

T

W t           D F D F   (C.2) 

since 

    T T

L L L L

0 0

1 1
Re exp 2i d cos 2i d 0

2 2

T T

t t t t         D F D F . 

The instantaneous strain energy on the left-hand side of a cell is given by  

        T

S,L, ins L LL L LR RRe exp i Re exp i exp iE t t t    D K D K D . (C.3)  

Following the same procedure, expand and rearrange the terms to get 

       T T

S,L, ins L LL L LR R L LL L LR R

1 1
Re exp 2i Re

2 2
E t   D K D K D D K D K D . (C.4) 

Therefore, the time-averaged strain energy over one time cycle is 

      T *

S,L L LL L LR R L LL L LR R

1 1
Re Re

2 2
E    D K D K D D K D K D . (C.5)  
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The expression for harmonic velocity can be obtained by differentiating the harmonic 

displacement expression with respect to time, that is    Ld d exp it t  D , which gives 

 Li exp i t D .  The instantaneous kinetic energy of the (one half) point masses on the left-

hand side of a cell can then be written as 

    T

K,L, ins L L

1
Re i exp i Re i exp i

2 2
E t t        

m
D D   (C.6) 

where m  is the mass matrix.  Again, following the same procedure, expand and rearrange 

the terms to get  

  2 T 2 T

K,L, ins L L L L

1 1
Re exp 2i Re

4 4
E t          D mD D mD . (C.7)  

Integrating equation (C.7) over one time-cycle gives  

 2 T 2 *

K,L L L L L

1 1
Re Re

4 4
E         D mD D mD . (C.8) 

C.2 The derivations of time-averaged power 

Instantaneous power flow into the left-hand side of a cell is given by the product of velocity 

of the masses and the (traction) forces acting on them [83] (page 73), that is  

    T

L, ins L LRe i exp i Re exp iP t t        D F . (C.9) 

There is no negative sign before the force term because the directions of forces on both sides 

of the cell are taken to be consistent with the frame of reference.  Rewrite equation (C.9) to 

include the complex conjugate terms and expand as follows. 

 

       

   

 

T T

L, ins L L L L

T T T T

L L L L L L L L

T T

L L L L

1 1
Re i exp i i exp i Re exp i exp i

2 2

1
i exp 2i i exp 2 i i i

4

1 1
Re i exp 2i Re i

2 2

P t t t t

t t

t

     

     

  

      
   

    
 

      

D D F F

D F D F D F D F

D F D F

  

where the overbar denotes complex conjugate.  The average power over one period is 

    T *

L L L L L

1 1
Re i Re i

2 2
P    D F D F . (C.10)  

Note that the minus sign appears because i i  .   
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To obtain equation (4.17), proceed as follows.  Substitute equation (4.1) into equation (C.10) 

to give 

 
2

*

L L LL L LR R L

1
Re i

2 2
P




  
    

  

m
D K D K D D . (C.11) 

The power that flows out of the right-hand side of a cell is  

  *

R R R

1
Re i

2
P   D F . (C.12)  

Substitute equation (4.2) into equation (C.12) to give  

 
2

*

R R RL L RR R R

1
Re i

2 2
P




  
     

  

m
D K D K D D . (C.13)  

From equation (4.18), we know that 
L RP P .  Therefore, we can write  

    L L L L R

1 1

2 2
P P P P P    . (C.14)  

Substitute equations (C.11) and (C.13) into equation (C.14); noting that 

3 * 3 *

L L R R

1 1
Re i Re i

4 2 4 2
 

   
   

   

m m
D D D D  and 

   * *

L LL L R RR R

1 1
Re i Re i

4 4
 D K D D K D , leads to 

 

   

   

 

* *

L L LR R R RL L

* * * *

L LR R L LR R R RL L R RL L

* * * *

L LR R R RL L R RL L L LR R

* *

L LR R R RL L

LR* *

L R

RL

1 1
Re i Re i

4 4

i i i i1 1

4 2 4 2

1 1
i i i i

8 8

1
i i

4

1
i

4

P  

   

   

 



 

    
    

   
   

   

 

 
    

 

D K D D K D

D K D D K D D K D D K D

D K D D K D D K D D K D

D K D D K D

0 K
D D

K 0

L

R

*1
i .

4


 
  
 

 

D

D

X JX
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Using similar procedures as shown above allows one to write equation (4.32) in terms of 

eigenvector V , so 

 

 

 

* *

12 1 2 2 1

* * * *

1 2 1 2 2 1 2 1

* * * *

1 2 2 1 2 1 1 2

1
Re i i

2

i i i i1

2 2 2

1
i i i i

4

P 





  

  
   

 
 

    

D F D F

D F D F D F D F

D F F D D F F D

  

where D and F  are displacement and force vectors, respectively, and the subscripts 1 and 2 

associate the vectors to the complex non-unity eigenvalues 
1 i      and 

2 i     , 

respectively.  Note that 

 
2* * * *

1 2 1 2 1 1 1 2

2

  
          

D0 I
D F F D D F V JV

FI 0
, 

 
1* * * *

2 1 2 1 2 2 2 1

1

  
          

D0 I
D F F D D F V JV

FI 0
. 

Therefore,  12 1 2 2 1i 4P   V JV V JV  where V  is the eigenvector of matrix G  and 

subscripts 1 and 2 associate the eigenvectors to eigenvalues 1  and 2 , respectively.  
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D.1 Transmission matrix and Jordan canonical form  

The transmission matrix is 

8 8 9 8 8 9

7 8 8 7 8 8

8 8 8 8

1.6410 10 4.2911 10 6.1298 10 1.6410 10 4.2911 10 6.1298 10

1.7438 10 3.9532 10 4.6103 10 1.7438 10 3.9532 10 4.6103 10

7.9855 10 9.3087 10 0 7.9855 10 9.3087 10 0

0 0 4.0777 10

     

     

   



         

      

     

 

T

8 8

8 8 9 8 8 9

7 8 8 7 8 8

1 1

0 0 4.0777 10

1.6410 10 4.2911 10 6.1298 10 1.6410 10 4.2911 10 6.1298 10

1.7438 10 3.9532 10 4.6103 10 1.7438 10 3.9532 10 4.6103 10

1 1 0 1 1 0

2.4351 7.7990 10 1 2.4351 7.7990 10 1

2 2



     

     

 



       

         

   

 

1 1

8 8 8 7

8 8

8

8 9

0 2 2 0

0 0 2 0 0 2

1 1 0 1 1 0

2.4351 7.7990 10 1 2.4351 7.7990 10 1

3.9645 10 0 0 4.6935 10 2.3468 10 1.5009 10

0 1.0355 10 4.6935 10 0 0 0

3.9645 10 0 0 0 0 0

0 0 4.6935 10 0 6.1298 10 6.129

 

   

 



 

 

 

   

    

   



   




















9

8 8 8 7

8 8

1

1

1

1

8 10

3.9645 10 0 0 4.6935 10 2.3468 10 1.5009 10

0 1.0355 10 4.6935 10 0 0 0

0 8.9645 10 0 0 1 1

0 0 0 0 0 4.6935 10

0 1 0 0 0 0

0 0 0 0 0 1.0613

0 8.9645 10 0 0 1 1

0 0 0 0 0 4.6935 10
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The Jordan canonical form is  

16.78 0 0 0 0 0 0 0 0 0 0 0

0 3.5346 0 0 0 0 0 0 0 0 0 0

0 0 14.24 0 0 0 0 0 0 0 0 0

0 0 0 0.0596 0 0 0 0 0 0 0 0

0 0 0 0 0.2829 0 0 0 0 0 0 0

0 0 0 0 0 0.0702 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 1

 
 
 
 















 

J
1

4

;






 
  
 









J 0

0 J

note that these partition sizes differ from those of T. 

 

D.2 Derivation of end state vector for repetitive structure under 

distributed loading 

Consider the n th and  1n  th cells, as shown in Figure D.2.1.  For the n th cell one has 

 

 

 

 
dd dF

Fd FF

1

1

d G G d

F G G F

n n

n n

n n

    
    

     
,        (D.2.1) 

while for the  1n  th, one has 

 

 

 

 

1 1

dd dF

Fd FF

1

1

d G G d

F G G F

n n

n n

n n

 

    
    

     
;        (D.2.2) 

in the above the superscripts pertains to the cell, the argument denotes the nodal cross-

section, and the transfer matrix G  is written in partitioned form. 

Suppose that an external force vector  ext nF  is applied at the n th nodal cross-section; 

displacement compatibility requires 

   
1n n

n n


d d              (D.2.3) 
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while force equilibrium requires 

     
1

ext

n n
n n n


 F F F .          (D.2.4) 

Substitution of equations (D.2.3) and (D.2.4) into equation (D.2.2) gives 

 

 

 

   

1

dd dF

Fd FF ext

1

1

n n

n n

n n n



    
    

     

d G G d

F G G F F
,       (D.2.5) 

or more compactly 

   
 ext

1n n
n

 
    

 

0
s Gs G

F
.         (D.2.6) 

n th cell

F
n (n − 1) F

n (n)

(n+1) th cell

F
n+1 (n) F

n+1 (n+1)Fext (n)

F
n (n) F

n+1 (n)

n th section  

Figure D.2.1 The nth and (n + 1)th cells, together with force vectors applied to 

the nth cross-section; for clarity these are shown on the uppermost 

nodes only.  The superscript and argument pertain to the cell and 

cross-section, respectively. 

 

Suppose the external forces are applied at the 1st, 2nd, 3rd etc. until n th nodal cross-

sections; the general expression is given by 

   
 

1

1 ext

0
n

n n r

r

n
r






 
   

 


0
s G s G

F
; 

note that the superscript now denotes powers of the transfer matrix. 
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