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ABSTRACT
We consider the standard optimistic bilevel optimization problem,
in particular upper- and lower-level constraints can be coupled. By
means of the lower-level value function, the problem is transformed
into a single-level optimization problem with a penalization of the
value function constraint. For treating the latter problem,wedevelop
a framework that does not rely on the direct computation of the
lower-level value function or its derivatives. For each penalty param-
eter, the framework leads to a semismooth system of equations. This
allows us to extend the semismooth Newtonmethod to bilevel opti-
mization. Besides global convergence properties of the method, we
focus on achieving local superlinear convergence to a solution of the
semismooth system. To this end, we formulate an appropriate CD-
regularity assumption andderive sufficient conditions so that it is ful-
filled. Moreover, we develop conditions to guarantee that a solution
of the semismooth system is a local solution of the bilevel optimiza-
tion problem. Extensive numerical experiments on 124 examples of
nonlinear bilevel optimization problems from the literature show
that this approach exhibits a remarkable performance, where only a
few penalty parameters need to be considered.
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1. Introduction

We consider the standard optimistic bilevel optimization problem

min
x,y

F(x, y) s.t. G(x, y) ≤ 0, y ∈ S(x), (1)

also known as the upper-level problem, where the set-valued mapping S : Rn ⇒ Rm

describes the optimal solution set of the lower-level problem

min
z

f (x, z) s.t. g(x, z) ≤ 0, (2)

i.e.

S(x) := argmin
z

{
f (x, z) | g(x, z) ≤ 0

}
. (3)
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2 A. FISCHER ET AL.

Throughout the paper, the functions F, f : Rn × Rm → R, G : Rn × Rm → Rp, and g :
Rn × Rm → Rq are assumed to be twice continuously differentiable. As usual, we call F
(resp. f ) the upper-level (resp. lower-level) objective function, whereas G and g are called
upper-level and lower-level constraint functions, respectively. Finally, x and y represent
upper-level and lower-level variables.

In order to derive optimality conditions for the bilevel optimization problem or to treat
it numerically, two main approaches for reformulating (1) as a single-level problem exist.
One approach is to replace the lower-level problemby its Karush-Kuhn-Tucker (KKT) con-
ditions. This leads to a mathematical programwith complementarity constraints (MPCC).
However, quite strong assumptions are needed to show that a local (or global) optimal
solution of the MPCC yields a local (or global) optimal solution of the corresponding
bilevel optimization problem; for details, the reader is referred to [7]. Therefore, we do
not pursue this approach here. Nevertheless, we would like to underline that solving an
MPCC is challenging, and only a few Newton-type methods with global or local fast con-
vergence exist [28,34]. Even if we disregard the discrepancies between (local or global)
solutions of the bilevel problem and the MPCC for a moment, it is an open question
which conditions in the context of bilevel problems are implied by assumptions needed
for the local convergence analysis of a Newton-type method for the corresponding KKT
reformulation.

The second main approach to transform a bilevel program into a single-level opti-
mization problem is the lower-level value function (LLVF) reformulation [40,55], which
provides the basis for the developments in this paper.More in detail, the LLVFϕ : Rn → R

is given by

ϕ(x) := min
z

{
f (x, z) | g(x, z) ≤ 0

}
, (4)

where, for the sake of simplicity, we assume throughout the paper that S(x) �= ∅ for all
x ∈ Rn so that ϕ is indeed finite-valued on Rn. Then, w.r.t. local and global minimizers,
the bilevel program (1) is equivalent to the optimization problem

min
x,y

F(x, y) s.t. G(x, y) ≤ 0, g(x, y) ≤ 0, f (x, y) ≤ ϕ(x). (5)

In general, this is a nonconvex constrained optimization problem containing the typically
nondifferentiable LLVF ϕ. Even if all the functions involved in (1) are fully convex (i.e.
convex w.r.t. (x, y)), the feasible set of problem (5) is generally nonconvex.

Several algorithms for computing a stationary point of the LLVF reformulation were
already designed and analyzed. For the case where the feasible set of the lower-level prob-
lemdoes not depend on the upper-level variable x suchmethods can be found in [35,53,54].
The algorithms in [8,9] were suggested to solve special cases of problem (5), where relax-
ation schemes are used to deal with the value function (4). Finally, the authors of [32]
proposed numerical methods to solve special bilevel programs by exploiting a connec-
tion between problem (5) and a generalized Nash equilibrium problem. In addition, we
note that the LLVF reformulation has been used recently for methods for certain classes of
mixed integer bilevel programming problems, see, e.g. [22,36,51].

In this paper, we develop a framework for solving problem (5), which does not rely on
the direct computation of the LLVF (4) or its derivatives, as it is the case in [35,53,54].
Thanks to this framework, we are able to extend the semismooth Newton method to
bilevel optimization, for the first time in the literature. The ingredients used to construct
the framework and to establish global convergence of the method are well-known in the
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literature. At first, we use partial calmness [55] to move the value function constraint, i.e.
f (x, y) ≤ ϕ(x), to the upper-level objective function, by means of partial exact penaliza-
tion. For the resulting problem, necessary KKT-type optimality conditions are derived and
reformulated as a square nonsmooth semismooth system of equations which depends on
the penalty parameter.

For the aforementioned system of equations, global convergence of a semismooth New-
ton algorithm is established based on [4], see also [41,42,44] for related results. Obtaining
local superlinear convergence of a semismooth Newton algorithm usually relies on the
nonsingularity of some generalized Jacobian of the system of equations, see [17] and more
general results in [14,31,43]. For our setting, wewill derive conditions that ensure an appro-
priate nonsingularity property. To this end, upper- and lower-level linear independence
conditions as well as a certain SSOSC (strong second order sufficient condition)-type con-
dition will come into play. In standard nonlinear optimization, a similar setup guaranties
that the reference point, where these conditions are satisfied, also corresponds to a locally
optimal solution [45]; this is known as Robinson condition. We will derive a Robinson-
type condition which guaranties that the reference point corresponds to a locally optimal
solution for the penalized bilevel program. For this, the LLVF (4) is required to be second
order directionally differentiable in the sense of [1,49].

For the algorithm studied in this paper, we have conducted detailed numerical exper-
iments using the BOLIB (Bilevel Optimization LIBrary) [58] made of 124 examples of
nonlinear bilevel optimization problems from the literature. The true optimal solutions
are known for 70% of these problems. We were able to recover these solutions using a
selection of just 9 values of the involved penalization parameter. However, it is important
to emphasize that the primary goal of the method is to compute stationary points based on
problem (5). For each of the 9 values of the penalization parameter, the method converges
for at least 87% of the problems. The algorithm also exhibits a good experimental order of
convergence (at least greater or equal to 1.5 for at least about 70% of the problems) for dif-
ferent values of the parameters. To the best of our knowledge, this is the first time where an
algorithm is proposed for nonlinear bilevel optimization, with computational experiments
at such a scale and such a level of success.

The paper is organized as follows. In the next section, we recall some basic notions
and properties, centred around the generalized first and second order differentiation of
the LLVF (4). Section 3 discusses the stationarity concept that will be the basis for the
semismooth system suggested later on. There, we recall some basic tools and the general
framework for deriving optimality conditions for the LLVF reformulation (5). In Section 4,
based on the reformulation in [17], we suggest a semismooth systemof equations to rewrite
the stationarity conditions and establish a semismoothNewtonmethod for computing sta-
tionary points. In Section 5, we derive sufficient conditions for the CD-regularity of this
semismooth system at a solution in order to guarantee superlinear or quadratic conver-
gence, and in Section 6, the Robinson-type condition. Finally, Section 7 presents results of
a numerical study of the semismooth Newton method on the test problems in the BOLIB
library [58].

2. Preliminaries

We first introduce some basic notation that will be used throughout. Depending on the
situation, both y and z will be used as lower-level variables. According to this, for some
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(x̄, ȳ) and (x̄, z̄), the index sets

I1 := IG(x̄, ȳ) := {i | Gi(x̄, ȳ) = 0
}

(6)

of the active upper-level constraints and

I2 := Ig(x̄, ȳ) := {j | gj(x̄, ȳ) = 0
}

and I3 := Ig(x̄, z̄) (7)

for the active lower-level constraints are defined. Moreover, given a multiplier ū ∈ Rp for
the upper-level constraint function G and multipliers v̄, w̄ ∈ Rq, each for the lower-level
constraint function g, then the index sets

η1 := ηG(x̄, ȳ, ū) := {i | ūi = 0,Gi(x̄, ȳ) < 0},
θ1 := θG(x̄, ȳ, ū) := {i | ūi = 0,Gi(x̄, ȳ) = 0},
ν1 := νG(x̄, ȳ, ū) := {i | ūi > 0,Gi(x̄, ȳ) = 0}

(8)

are defined as subsets of the upper-level indices {1, . . . , p} and, similarly,

η2 := ηg(x̄, ȳ, v̄), θ2 := θ g(x̄, ȳ, v̄), and ν2 := νg(x̄, ȳ, v̄),

η3 := ηg(x̄, z̄, w̄), θ3 := θ g(x̄, z̄, w̄), and ν3 := νg(x̄, z̄, w̄)
(9)

are defined as subsets of the lower-level indices {1, . . . , q}. The lower-level Lagrangian
function � defined from Rn × Rm × Rq to R is given by

�(x, z,w) := f (x, z)+ w�g(x, z). (10)

For a function depending on upper-level and (or) lower-level variables, we will often use
the notations∇1 and∇2 to denote the gradients of this function w.r.t. the upper-level (resp.
lower-level) variable, to avoid any potential confusion. Similarly,∇2

2 ,∇2
1 , and∇2

12 could be
used when referring to second order derivatives.

Since the optimal value function ϕ (4) is nondifferentiable in general, we need general-
ized concepts of differentiability. Let us first recall the usual notion of the directional deriva-
tive. For a function ψ : Rn → Rm, its directional derivative at x̄ ∈ Rn in the direction
d ∈ Rn is the limit

ψ ′(x̄; d) := lim
t↓0

1
t
[ψ(x̄ + td)− ψ(x)] , (11)

provided it exists. Differentiable and componentwise convex (not necessarily differen-
tiable) functions are examples of directionally differentiable functions [46]. The optimal
value function ϕ (4) can be directionally differentiable without being differentiable or
convex. To underline this, we are going to recall a result from [23], that will play an impor-
tant role in this paper. To proceed, we will say that the lower-level linear independence
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constraint qualification (LLICQ) holds at a point (x̄, z̄) if the family of vectors{∇2gi(x̄, z̄) | gi(x̄, z̄) = 0
}

(12)

is linearly independent. For any (x, z), the set of lower-level Lagrange multipliers is
given by

�(x, z) := {w ∈ R
q | ∇2�(x, z,w) = 0, w ≥ 0, g(x, z) ≤ 0, w�g(x, z) = 0

}
. (13)

Also, let us define the set-valued map K : Rn ⇒ Rm by

K(x) := {z ∈ R
m | g(x, z) ≤ 0

}
, (14)

which provides all lower-level feasible points for a given value of x.

Theorem 2.1 ([23, Corollary 4.4]): Let K (14) be uniformly compact near x̄ (i.e. there is a
neighbourhood U of x̄ such that the closure of the set

⋃
x∈U K(x) is compact) and K(x̄) �= ∅.

Suppose that LLICQ (12) holds at (x̄, z) for all z ∈ S(x̄). Then, ϕ is directionally differentiable
at x̄ in any direction d ∈ Rn with

ϕ′(x̄; d) = min
z∈S(x̄)

∇1�(x̄, z,wz)
�d, (15)

where, for any z ∈ S(x̄), wz is the unique element in�(x̄, z).

Note that the set of lower-level Lagrangemultipliers�(x̄, z) is a singleton for all z ∈ S(x̄)
because LLICQ is assumed for all these z. If the lower-level problem is convex (i.e. f and
gi, i = 1, . . . , p are convex functions), a version of formula (15) is given in [25] without
requiring uniqueness of lower-level Lagrange multipliers. In the absence of convexity, cor-
responding formulas of ϕ′(x̄; d) not requiring single-valuedness of � are given in [47].
However, in the latter case, some second order assumptions are imposed on problem (2).
Also, the uniform compactness of K can be replaced by other types of assumptions, i.e.
the inner semicontinuity or compactness of the lower-level solution map S (3); see [38] for
details.

As it is shown in [1], one can define a second order directional derivative forψ : Rn →
R at x̄ in directions d and e by

ψ ′′(x̄; d, e) := lim
t↓0

1
t2

[
ψ

(
x̄ + td + 1

2
t2e
)

− ψ(x̄)− tψ ′(x̄; d)
]
, (16)

provided the limit exists. Next, we recall a formula for the second order directional deriva-
tive of the LLVF ϕ (4) developed in [49]. For this purpose, a few more assumptions are
needed. A point (x̄, z̄, w̄) is said to satisfy the lower-level strict complementarity condition
(LSCC) if

θ3 = {j | w̄j = gj(x̄, z̄) = 0} = ∅. (17)

The lower-level submanifold property (LSMP) is said to hold at (x̄, d) if for all z̄ such that

z̄ ∈ S1(x̄; d) := argmin
z∈S(x̄)

∇1�(x̄, z,wz)
�d, (18)

the restriction of S(x̄) on a neighbourhood of z̄ is a smooth submanifold of {z | gj(x̄, z) =
0 for all j ∈ I3}. Finally, the lower-level second order sufficient condition (LSOSC) is said
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to hold at (x̄, d) if

e�∇2
2�(x̄, z,wz)e > 0

for all z ∈ S1(x̄; d) and all e ∈ [T◦(z)]⊥ \ {0} such that∇2gj(x̄, z)�e = 0 for all j ∈ I3. Here
T◦(z) denotes the tangent space [33] of S(x̄) at z. For further details and discussions on
these assumptions and related results, including the following one, see [2,49].

Theorem 2.2: Let the assumptions of Theorem 2.1 be satisfied and suppose that LSCC holds
at (x̄, z,w) for all z ∈ S1(x̄; d). If, additionally, the LSMP and LSOSC hold at (x̄, d), then ϕ (4)
is second order directionally differentiable at x̄ in directions d and e with

ϕ′′(x̄; d, e) = min
z∈S1(x̄;d)

{
∇1�(x̄, z,wz)

�e + ξd(x̄, z)
}
, (19)

with S1(x̄; d) given in (18) while ξd(x̄, z) is defined by⎧⎪⎨
⎪⎩
ξd(x̄, z) := min

e∈Zd(x̄,z)
(d�, e�)∇2�(x̄, z,wz)(d�, e�)�,

Zd(x̄, z) :=
{
e ∈ R

m | ∇1gi(x̄, z)�d + ∇2gi(x̄, z)�e = 0, i ∈ I3
}
.

(20)

Note that ∇2� stands for the Hessian w.r.t. the vector made of the first and second vari-
ables of the function � (10). We can simplify the assumptions needed in this theorem if we
impose that the lower-level problem (3) has a unique optimal solution for x := x̄; cf. the
following theorem from [48].

Theorem 2.3: Let the assumptions of Theorem 2.1 be satisfied with S(x̄) = {ȳ} and suppose
that

e�∇2
2�(x̄, ȳ, w̄)e > 0, ∀ e �= 0 s.t.

{ ∇2gi(x̄, ȳ)�e = 0 for i ∈ ν3,
∇2gi(x̄, ȳ)�e ≤ 0 for i ∈ θ3.

Then, we have the expression

ϕ′′(x̄; d, e) = ∇x�(x̄, ȳ, w̄)�e + ξd(x̄, ȳ), (21)

where ξd(x̄, ȳ) is defined as in (20), with z = ȳ, and Zd(x̄, ȳ) given by

Zd(x̄, ȳ) :=
{
e | ∇1gi(x̄, ȳ)�d + ∇2gi(x̄, ȳ)�e = 0 for i ∈ ν3,

∇1gi(x̄, ȳ)�d + ∇2gi(x̄, ȳ)�e ≤ 0 for i ∈ θ3
}
.

Next, recall that a function ψ : Rn → Rm, which is Lipschitz continuous around x̄, is
differentiable almost everywhere around this point. LetDψ denote the set of points, where
ψ is differentiable. Then, the generalized Jacobian in the sense of Clarke [3] is defined by

∂ψ(x̄) := co∂Bψ(x̄) with ∂Bψ(x̄) :=
{
lim
n→∞ ∇ψ(xn) | xn → x̄, xn ∈ Dψ

}
, (22)

where ‘co’ stands for the convex hull and ∂Bψ(x̄) is called B-subdifferential of ψ at x̄. If ψ
is a real-valued function, then ∂ψ(x̄) reduces to the Clarke subdifferential.
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To complete this section, we briefly review the concept of semismoothness, which is
used for the convergence result of the Newton method to be discussed in this paper. Let a
function ψ : Rn → Rm be Lipschitz continuous around x̄. Then, ψ is called semismooth
at x̄ if the limit

lim
{
Vd′ | V ∈ ∂ψ(x̄ + td′), d′ → d, t ↓ 0

}
(23)

exists for all d ∈ Rn. Moreover, ifψ is semismooth at x̄, the limit is equal to the directional
derivative ψ ′(x̄; d) as defined in (11); see, e.g. [43]. If, in addition to semismoothness of ψ
at x̄,

Vd − ψ ′(x̄; d) = O(‖d‖2)
holds for all V ∈ ∂ψ(x̄ + d) with d → 0, then ψ is said to be strongly semismooth at x̄.
The concept of a semismooth real-valued function stems from [37]. The extensions above
were given in [43]. Finally, ψ is called SC1 function, if it is continuously differentiable and
∇ψ is semismooth.

3. Necessary conditions for optimality

The standard approach to derive necessary optimality conditions for the LLVF reformula-
tion (5) of the bilevel optimization problem (1) is to consider the partial penalization

min
x,y

F(x, y)+ λ(f (x, y)− ϕ(x)) s.t. G(x, y) ≤ 0, g(x, y) ≤ 0, (24)

where λ ∈ (0,∞) denotes the penalization parameter. To deal with the fact that no stan-
dard constraint qualification holds for problem (5) [55], the authors of the latter paper
introduced the partial calmness concept and showed its benefit for obtaining KKT condi-
tions for (5). More in detail, problem (5) is said to be partially calm at one of its feasible
points (x̄, ȳ) if there exist λ ∈ (0,∞) and a neighbourhood U of (x̄, ȳ, 0) ∈ Rn × Rm × R

such that

F(x, y)− F(x̄, ȳ)+ λ|ς | ≥ 0

for all (x, y, ς) ∈ U with G(x, y) ≤ 0, g(x, y) ≤ 0, f (x, y)− ϕ(x)+ ς = 0. (25)

Based on this, the following result can be easily derived; cf. [55, Proposition 3.3].

Theorem 3.1: Let (x̄, ȳ) be locally optimal for problem (5). Then, the latter problem is par-
tially calm at (x̄, ȳ) if and only if there exists λ ∈ (0,∞) such that (x̄, ȳ) is locally optimal for
problem (24).

Let (x̄, ȳ) be a locally optimal solution of problem (5) at which the latter problem is
partially calm. Then, the previous theorem not only ensures that (24) is locally optimal at
(x̄, ȳ) for some λ0 > 0. Rather, one can easily check that this holds for any λ ≥ λ0.

Using Theorem 3.1, we are now going to establish the necessary optimality conditions
that will be the basis of the Newton method in this paper. To proceed, we first need two
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constraint qualifications. The upper-level Mangasarian-Fromovitz constraint qualification
(UMFCQ) will be said to hold at (x̄, ȳ) if there exists d ∈ Rn+m such that

∇Gi(x̄, ȳ)�d < 0 for all i ∈ I1 and ∇gj(x̄, ȳ)�d < 0 for all j ∈ I2. (26)

The lower-level Mangasarian-Fromovitz constraint qualification (LMFCQ) is satisfied at x̄
if, for any z ∈ S(x̄), there exists d ∈ Rm such that

∇2gj(x̄, z)�d < 0 for all j with gj(x̄, z) = 0. (27)

Further note that a real-valued function (x, y) �→ ψ(x, y)will be said to be fully convex if it
is convex w.r.t. to all variables. The lower-level problem is usually said to be convex if f and
gj (j = 1, . . . , q) are convex just w.r.t. the lower-level variable. One can easily check that if
a function (x, y) �→ ψ(x, y) is fully convex, then it is convex w.r.t. x and it is convex w.r.t. y.

Theorem 3.2: Let (x̄, ȳ) be a local optimal solution of problem (5), assumed to be partially
calm at (x̄, ȳ). The functions f and g1, . . . , gq are assumed to be fully convex. Further-
more, suppose that LMFCQ holds at x̄, and that UMFCQ holds at (x̄, ȳ). Then, there exist
λ ∈ (0,∞), u ∈ Rp, (v,w) ∈ Rq × Rq, and z ∈ Rm such that the following system holds for
(x, y) = (x̄, ȳ):

∇1F(x, y)+ ∇1G(x, y)u + ∇1g(x, y)v + λ∇1f (x, y)− λ∇1�(x, z,w) = 0, (28)

∇2F(x, y)+ ∇2G(x, y)u + ∇2g(x, y)v + λ∇2f (x, y) = 0, (29)

∇2f (x, z)+ ∇2g(x, z)w = 0, (30)

u ≥ 0, G(x, y) ≤ 0, u�G(x, y) = 0, (31)

v ≥ 0, g(x, y) ≤ 0, v�g(x, y) = 0, (32)

w ≥ 0, g(x, z) ≤ 0, w�g(x, z) = 0. (33)

Proof: Note that similar proof techniques for related results can be found in [11,13,55].
Since the functions f, g1, . . . , gq involved in the lower-level problem are fully convex and
sufficiently smooth, the optimal value function ϕ (4) is convex [52, Lemma 2.1] and, hence,
locally Lipschitz continuous around x̄ (|ϕ(x)| < ∞ for any x was assumed throughout).
Therefore, for any λ > 0, problem (24) is a Lipschitz continuous optimization problem.
Moreover, under the partial calmness condition, Theorem 3.1 guarantees that λ > 0 exists
such that (x̄, ȳ) is a local optimal solution of problem (24). Now, applying the necessary
optimality conditions for locally Lipschitz optimization problems to (24) and taking into
account that UMFCQ (26) holds at (x̄, ȳ), we obtain the existence of u ∈ Rp and v ∈ Rq

such that (31), (32), and

0 ∈ ∇F(x̄, ȳ)+ ∇G(x̄, ȳ)u + ∇g(x̄, ȳ)v + λ∇f (x̄, ȳ)+ λ

(
∂(−ϕ)(x̄)

{0}
)

(34)

hold for (x, y) = (x̄, ȳ). It is clear that (29) for (x, y) = (x̄, ȳ) follows from the last m
components of this inclusion. Moreover, considering the first n components of (34), we
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get

∇1F(x̄, ȳ)+ ∇1G(x̄, ȳ)u + ∇1g(x̄, ȳ)v + λ∇1f (x̄, ȳ) ∈ λ∂ϕ(x̄)
because of ∂(−ϕ)(x̄) = −∂ϕ(x̄). Now, since the lower-level functions are fully convex
and LMFCQ holds at x̄, it follows from [52, Theorem 2.1] that we can find some z ∈
S(x̄) and w ∈ �(x̄, z) such that (28) holds for (x, y) = (x̄, ȳ). Furthermore, observe that
the conditions (30) and (33) for (x, y) = (x̄, ȳ) result from the definition of w ∈ �(x̄, z);
cf. (13). �

Remark 3.1: In the literature, for example, see [11,13] and references therein, an upper-
level regularity condition is often used in combination with LMFCQ to derive (31), (32),
and (34). Here, we employ UMFCQ instead as problem (1) involves coupled upper-level
constraints (i.e. depending on both the upper and lower-level variables), which is not the
case in the aforementioned papers. Moreover, due to the convexity of the lower-level prob-
lem, the explicit use of inclusion z ∈ S(x̄) is avoided, given that its fulfilment follows from
the conditions (30) and (33).

Remark 3.2: If y = z in the optimality conditions in Theorem 3.2, then we arrive at
another well-known type of conditions consisting of (29)–(33) and

∇1F(x, y)+ ∇1G(x, y)u + ∇1g(x, y) (v − λw)+ λ∇1f (x, y) = 0 (35)

with z replaced by y in (30) and (33). Instead of the full convexity assumption, the inner-
semicontinuity concept can also allow one to derive these conditions. To see this, note that
if the LMFCQ and inner semicontinuity both hold at (x̄, z), then the Clarke subdifferential
of ϕ can be estimated as

∂ϕ(x̄) ⊆ {∇1�(x̄, z,w) | w ∈ �(x̄, z)} ;
see [11,13] for related details and references. Note that various other stationarity concepts
for the bilevel programs based on the LLVF reformulation are possible; see the latter ref-
erences for related details. However, it is important to note for any of these conditions,
the convexity assumption will still be required for the lower-level problem for inclusion
y ∈ S(x) to be ignored in these conditions.

For conditions ensuring that the assumptions in Theorem 3.2, in particular partial
calmness, we refer to [11–13,55,56] and references therein. Keeping the penalty param-
eter λ > 0 fixed, the optimality conditions in Theorem 3.2 can be regarded as a mixed
complementarity system. The latter will be reformulated as a square system of nonsmooth
equations, so that a semismooth Newton method can be applied [4,17,31,41–43]. Dealing
with other optimality conditions, like in [11,13,55], in a similar way, one is led to more dif-
ficult nonsmooth systems for which more sophisticated Newton-type methods [15,19,20]
might be helpful.

4. The algorithm

To apply the semismoothNewtonmethod from [4] to system (28)–(33), for some fixed λ >
0, the latter system is reformulated bymeans of the complementarity function φ : R2 → R
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[17] given by

φ(a, b) :=
√
a2 + b2 − a − b.

It can be easily checked that φ(a, b) = 0 if and only if a ≥ 0, b ≥ 0, ab = 0 is valid.
Therefore, to rewrite the complementarity system (31)–(33), we first define functions
φG : Rn × Rm × Rp → Rp and φg : Rn × Rm × Rq → Rq by

φG(x, y, u) :=

⎛
⎜⎝
φ(−G1(x, y), u1)

...
φ(−Gp(x, y), up)

⎞
⎟⎠ and φg(x, y, v) :=

⎛
⎜⎝
φ(−g1(x, y), v1)

...
φ(−gq(x, y), vq)

⎞
⎟⎠ ,

respectively. Furthermore, we introduce the Lagrange-type functions Lλ : Rn × Rm ×
Rp × Rq → R and Lλ : Rn × Rm × Rm × Rp × Rq × Rq → R be respectively defined
by

Lλ(x, y, u, v) := F(x, y)+ u�G(x, y)+ v�g(x, y)+ λf (x, y), (36)

Lλ(x, y, z, u, v,w) := Lλ(x, y, u, v)− λ�(x, z,w), (37)

where λ > 0 is the fixed penalty parameter. Based on these definitions, we now introduce
the mapping�λ : RN → RN with N: = n+ 2m+ p+ 2q by

�λ(ζ ) :=

⎡
⎢⎢⎣

∇Lλ(ζ )
φG(x, y, u)
φg(x, y, v)
φg(x, z,w)

⎤
⎥⎥⎦ with ζ := (x, y, z, u, v,w), (38)

where∇Lλ denotes the gradient of Lλ w.r.t. (x, y, z). Now, keeping (37) and (38) in mind, it
can be easily seen that the optimality conditions (28)–(33) in Theorem 3.2 can equivalently
be written as

�λ(ζ ) = 0. (39)

Obviously, this is a square system of N equations and N variables. Moreover, the map-
ping �λ is strongly semismooth at any solution of (39). In particular, we can apply
the semismooth Newton method in [4] with its favorable combination of global and
local convergence properties. The latter means superlinear or quadratic convergence
based on (strong) semismoothness of �λ and a regularity property of the generalized
Jacobians ∂B�λ or ∂�λ at a solution ζ ∗ of (39). Sufficient conditions for ∂�λ(ζ ∗) con-
taining only nonsingular matrices will be developed in Section 5. For global conver-
gence, the complementarity function φ has the property that φ2 is differentiable with
Lipschitz continuous derivative [24]. Due to this, the merit function �λ : RN → R

with

�λ(ζ ) := 1
2
‖�λ(ζ )‖2 (40)

is continuously differentiable. In particular, this enables to overcome situations where
the Newton direction for (39) does not exist or its descent is insufficient. For other
complementarity and merit functions as well as their properties we refer to [18,50], for
example.
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We now present the semismooth Newton algorithm from [4] applied to equation (39)
or, in other words, to the optimality conditions from Theorem 3.2.

Algorithm 1 Semismooth Newton algorithm
Step 0: Choose λ > 0, β > 0, ε ≥ 0, t > 2, ρ ∈ (0, 1), σ ∈ (0, 12), ζ o :=
(xo, yo, zo, uo, vo,wo).

Set k := 0.
Step 1: If ‖�λ(ζ k)‖ ≤ ε, then stop.
Step 2: ChooseWk ∈ ∂B�λ(ζ k) and compute a solution dk of the system

Wkd = −�λ(ζ k).
If this equation has no solution or if the condition

∇�λ(ζ k)�dk ≤ −β‖dk‖t

is violated, then set

dk := −∇�λ(ζ k).

Step 3: Find the smallest integer sk ∈ {0, 1, 2, 3, . . .} such that

�λ(ζ k + ρskdk) ≤ �λ(ζ k)+ σρsk∇�λ(ζ k)�dk.

Step 4: Set αk := ρsk , ζ k+1 := ζ k + αkdk, k := k + 1, and go to Step 1.

Some remarks on Algorithm 1 are in order. Essentially, it is the linesearch semismooth
Newton method from [4]. Compared to the latter, we are now dealing with a particu-
lar mixed complementarity problem (MCP), see [39] for an extension of [4] to MCPs.
The penalization parameter λ > 0 has to be chosen in Step 0 and is fixed throughout
the algorithm. For the definition of the generalized Jacobian ∂B�λ(ζ ), see Section 2. If all
matrices in ∂B�λ(ζ ) are nonsingular, the function�λ is called BD-regular at ζ . Following
[4], global and local convergence properties of Algorithm 1 can be derived as follows.

Theorem 4.1: Assume that ζ̄ is an accumulation point of a sequence {ζ k} generated by
Algorithm 1 for some λ > 0. Then, ζ̄ is a stationary point of�λ, i.e.∇�λ(ζ̄ ) = 0. If ζ̄ solves
�λ(ζ ) = 0 and �λ is BD-regular at ζ̄ , then {ζ k} converges to ζ̄ superlinearly and, if the
functions F, G, f, and g defining problem (1) have locally Lipschitz continuous second order
derivatives, the convergence is Q-quadratic.

The proof of [4, Theorem 11] can be easily extended to the complementarity system
�λ(ζ ) = 0. Moreover, it is known that the continuity of the second-order derivatives of
the problem functions F,G, f, and g (as assumed in Section 1) suffices instead of the semis-
moothness of these derivatives (as used in [4] for showing that eventually the unit stepsize
αk = 1 is accepted).

The assumption that�λ is BD-regular at ζ̄ used in Theorem 4.1 can be replaced by the
stronger CD-regularity of �λ at ζ̄ . The latter requires the non-singularity of all matrices
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in ∂�λ(ζ̄ ). In the next section, we focus on the derivation of sufficient conditions for
CD-regularity. The latter also allows a nice connection to the Robinson condition that
we are going to discuss in Section 6. Let us finally note that conditions ensuring that a sta-
tionary point of a merit function is a solution of the underlying equation were extensively
studied for complementarity problems. We do not want to dive into this subject but note
that if just one element of ∂�λ(ζ̄ ) is nonsingular then∇�λ(ζ̄ ) = 0 implies�λ(ζ̄ ) = 0, for
example see [14, Section 4].

5. CD-regularity

To derive sufficient conditions guaranteeing that CD-regularity holds for�λ (38), we first
provide an upper estimate of the generalized Jacobian of �λ in the sense of Clarke (22).
Recall that the index sets ηi, νi and θ i with i = 1, 2, 3 are defined in (8) and (9).

Theorem 5.1: Let the functions F, G, f, and g be twice continuously differentiable at ζ :=
(x, y, z, u, v,w). If λ > 0, then �λ is semismooth at ζ and any matrix Wλ ∈ ∂�λ(ζ ) must
take the form

Wλ =

⎡
⎢⎢⎢⎢⎢⎢⎣

Aλ11
(
Aλ21
)� −λA�

31 B�
11 B�

21 −λB�
31

Aλ21 Aλ22 O B�
12 B�

22 O
−λA31 O −λA33 O O −λB�

33
�1B11 �1B12 O �1 O O
�2B21 �2B22 O O �2 O
�3B31 O �3B33 O O �3

⎤
⎥⎥⎥⎥⎥⎥⎦

(41)

where the matrices Aij and Bij are respectively defined by

Aλ11 := ∇2
1Lλ(ζ )− λ∇2

1�(ζ ), Aλ21 := ∇2
12Lλ(ζ ), Aλ22 := ∇2

2Lλ(ζ ),
A31 := ∇2

12�(ζ ), A33 := ∇2
2�(ζ ),

B11 := ∇1G(x, y), B21 := ∇1g(x, y), B31 := ∇1g(x, z),

B12 := ∇2G(x, y), B22 := ∇2g(x, y), B33 := ∇2g(x, z),

(42)

while�i := diag(ai) and �i := diag(bi), i = 1, 2, 3, are such that

(aij, b
i
j)

⎧⎨
⎩

= (0,−1) if j ∈ ηi,
= (1, 0) if j ∈ νi,
∈ {(α,β) : (α − 1)2 + (β + 1)2 ≤ 1} if j ∈ θ i.

(43)

In the next result, we provide conditions ensuring that the function �λ is CD-regular.
To proceed, first note that, similarly to the UMFCQ (26) and analogously to the LLICQ
(12), the upper-level linear independence constraint qualification (ULICQ) will be said to
hold at (x̄, ȳ) if the following family of vectors is linear independent:{∇Gi(x̄, ȳ) : i ∈ I1

} ∪ {∇gj(x̄, ȳ) : j ∈ I2
}
. (44)

Furthermore, let us introduce the cone of feasible directions for problem (24)

Q(x̄, ȳ, z̄) :=
{
d | ∇Gi(x̄, ȳ)�d1,2 = 0, i ∈ ν1,

∇gj(x̄, ȳ)�d1,2 = 0, j ∈ ν2, ∇gj(x̄, z̄)�d1,3 = 0, j ∈ ν3
}
, (45)
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where d := (d11, . . . , d
1
n, d21, . . . , d

2
m, d

3
1, . . . , d

3
m)

�, d1,2 := (d11, . . . , d
1
n, d21, . . . , d

2
m)

�, and
d1,3 defined similarly. Recall that for i = 1, 2, 3, νi is defined as in (8)–(9). By ∇2Lλ(ζ̄ )
and ∇2�(ζ̄ ), we will denote the Hessian of the Lagrangian functions Lλ and � w.r.t. (x, y)
and (x, z), respectively.

Theorem5.2: Let ζ̄ := (x̄, ȳ, z̄, ū, v̄, w̄) satisfy the conditions (28)–(33) for some λ > 0. Sup-
pose that ULICQ (44) and LLICQ (12) hold at (x̄, ȳ) and (x̄, z̄), respectively. If additionally,

(d1,2)�∇2Lλ(ζ̄ )d1,2 > λ(d1,3)�∇2�(ζ̄ )d1,3 (46)

for all d ∈ Q(x̄, ȳ, z̄) \ {0} and LSCC (17) is also satisfied at (x̄, z̄, w̄), then�λ is CD-regular
at ζ̄ .

Proof: Let Wλ be any element from ∂�λ(ζ̄ ). Then, it can take the form described in
Theorem 5.1, cf. (41)–(43). Hence, it follows that for any d := (d1, d2, d3, d4, d5, d6) with
d1 ∈ Rn, d2 ∈ Rm, d3 ∈ Rm, d4 ∈ Rp, d5 ∈ Rq and d6 ∈ Rq such thatWλd = 0, we have

∇2
1Lλ(ζ̄ )d1 − λ∇2

1�(ζ̄ )d
1 + ∇2

21Lλ(ζ̄ )d2 − λ∇2
21�(ζ̄ )d

3

+∇1G(x̄, ȳ)�d4 + ∇1g(x̄, ȳ)�d5 − λ∇1g(x̄, z̄)�d6 = 0, (47)

∇2
12Lλ(ζ̄ )d1 + ∇2

2Lλ(ζ̄ )d2 + ∇2G(x̄, ȳ)�d4 + ∇2g(x̄, ȳ)�d5 = 0, (48)

−λ∇2
12�(ζ̄ )d

1 − λ∇2
2�(ζ̄ )d

3 − λ∇2g(x̄, z̄)�d6 = 0, (49)

∀ j = 1, . . . , p, a1j ∇Gj(x̄, ȳ)�d1,2 + b1j d
4
j = 0, (50)

∀ j = 1, . . . , q, a2j ∇gj(x̄, ȳ)�d1,2 + b2j d
5
j = 0, (51)

∀ j = 1, . . . , q, a3j ∇gj(x̄, z̄)�d1,3 + b3j d
6
j = 0. (52)

Recall that p and q represent the number of components of upper- (resp. lower-) constraint
functions (1)–(3). For i = 1, 2, 3, let p1 := p, p2 := q (when g applied to (x̄, ȳ)), and p3 := q
(when g applied to (x̄, z̄)). Then define Pi1 as the set of indices j = 1 . . . , pi such that aij > 0
and bij < 0; Pi2 as the set of indices j = 1 . . . , pi such that aij = 0 and bij = −1; and Pi3 as
the set of indices j = 1 . . . , pi such that aij = 1 and bij = 0. It follows from (50)–(52) that
for j ∈ P12, j ∈ P22, and j ∈ P32,

d4j = 0, d5j = 0, and d6j = 0, (53)

respectively. As for j ∈ P13, j ∈ P23, and j ∈ P33, we respectively get

∇Gj(x̄, ȳ)�d1,2 = 0, ∇gj(x̄, ȳ)�d1,2 = 0, and ∇gj(x̄, z̄)�d1,3 = 0. (54)

Now observe that under the LSCC (17), θ3 = ∅. Hence, from the corresponding counter-
part of (43), it follows that P31 := ∅. We can further check that for j ∈ P11 and j ∈ P21 we
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respectively have

∇Gj(x̄, ȳ)�d1,2 = c1j d
4
j and ∇gj(x̄, ȳ)�d1,2 = c2j d

5
j , (55)

where c1j := − b1j
a1j

and c2j := − b2j
a2j
, respectively. By respectively multiplying (47), (48),

and (49) from the left by (d1)�, (d2)�, and (d3)�, and adding the resulting sums together,

(d1,2)�∇2Lλ(ζ̄ )d1,2 − λ(d1,3)�∇2�(ζ̄ )d1,3

+ (d4)�∇G(x̄, ȳ)d1,2 + (d5)�∇g(x̄, ȳ)d1,2 − λ(d6)�∇g(x̄, z̄)d1,3 = 0. (56)

Considering the strict complementarity slackness at (x̄, z̄, w̄) again, it follows that

(d6)�∇g(x̄, z̄)d1,3 =
∑
j∈P32

d6j ∇gj(x̄, z̄)�d1,3 +
∑
j∈P33

d6j ∇gj(x̄, z̄)�d1,3 = 0 (57)

given that d6j = 0 for j ∈ P32 and∇gj(x̄, z̄)�d1,3 = 0 for j ∈ P33. Inserting (57) into (56)while
taking into account (53)–(55), we get

(d1,2)�∇2Lλ(ζ̄ )d1,2 − λ(d1,3)�∇2�(ζ̄ )d1,3 +
∑
j∈P11

c1j (d
4
j )

2 +
∑
j∈P21

c2j (d
5
j )

2 = 0.

Since by definition, c1j > 0 for j ∈ P11 and c2j > 0 for j ∈ P21, it follows from condition (46)
that d1 = 0, d2 = 0, d3 = 0, d4j = 0 for j ∈ P11 and d5j = 0 for j ∈ P21, while taking into
account (54) and the fact that νi ⊆ Pi3 for i = 1, 2, 3. Inserting these values in (47)–(49)
and considering (53),

∑
j∈P13

d4j ∇1Gj(x̄, ȳ)+
∑
j∈P23

d5j ∇1gj(x̄, ȳ)+
∑
j∈P33

(−λd6j )∇1gj(x̄, z̄) = 0, (58)

∑
j∈P13

d4j ∇2Gj(x̄, ȳ)+
∑
j∈P23

d5j ∇2gj(x̄, ȳ) = 0, (59)

∑
j∈P33

d6j ∇2gj(x̄, z̄) = 0. (60)

Since the LLICQ (12) is satisfied at (x̄, z̄) and P33 ⊆ I3 holds, it follows from (60) that d6j = 0
for j ∈ P33. Inserting these values in (58) and combining the resulting equation with (59),

∑
j∈P13

d4j ∇Gj(x̄, ȳ)+
∑
j∈P23

d5j ∇gj(x̄, ȳ) = 0. (61)

Considering the fulfilment of theULICQ (44) at (x̄, ȳ), and taking into account that Pi3 ⊆ Ii
for i = 1, 2, we can deduce from (61) that d4j = 0 for j ∈ P13 and d5j = 0 for j ∈ P23. This
concludes the proof as we have shown that all the components of d are zero. �

Note that the strict complementarity condition imposed here is restricted to the lower-
level problem and does not necessarily imply the local differentiability of the lower-level
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optimal solution map as known in earlier results on the Newton method, see, e.g. [29,30]
or in the literature on nonlinear parametric optimization, see, e.g. [16]. As we also have
the LLICQ, the differentiability of lower-level optimal solution is usually guarantied when
a strong second order sufficient condition (SOSSC)-type condition restricted to the lower-
level problem is satisfied as well. The LSCC here only allows us to deal with the minus sign
appearing on the lower-value function in problem (5) and is responsible for many of the
stationarity concepts for the problem; cf. [11,13,55]. Next we discuss two possible scenarios
to avoid imposing the LSCC. In the first case, we assume that the lower-level feasible set is
unperturbed.

Theorem 5.3: Let g in problem (1) be independent of the upper-level variable x and suppose
that the point ζ̄ := (x̄, ȳ, z̄, ū, v̄, w̄) satisfies conditions (28)–(33) for some λ > 0. Further-
more, assume that the family {∇xGj(x̄, ȳ) : j ∈ I1} is linearly independent and the LLICQ
holds at ȳ and z̄. If additionally,

(d1,2)�∇2Lλ(ζ̄ )d1,2 > λ(d1,3)�∇2�∗(ζ̄ )d1,3 (62)

for all d ∈ Q(ζ̄ ) \ {0}, where

∇2�∗(ζ̄ ) :=
[ ∇2

1�(ζ̄ ) ∇2
21�(ζ̄ )

−∇2
12�(ζ̄ ) −∇2

2�(ζ̄ )

]
, (63)

then the function�λ is CD-regular at the point ζ̄ := (x̄, ȳ, z̄, ū, v̄, w̄).

Proof: Considering the counterpart of (47)–(52) when g is independent of x and proceed-
ing as in the proof of the previous theorem, we have (53), (54) and

∇Gj(x̄, ȳ)d1,2 = c1j d
4
j , ∇gj(ȳ)d2 = c2j d

5
j , and ∇gj(z̄)d3 = c3j d

6
j (64)

for j ∈ P11, j ∈ P21, and j ∈ P31, respectively. Here, c
1
j for j ∈ P11 and c2j for j ∈ P21 are defined

as in (54) while c3j := − b3j
a3j

for j ∈ P31, cf. (43). Next, replacing the counterpart of (49) with

∇2
12�(ζ̄ )d

1 + ∇2
2�(ζ̄ )d

3 + ∇g(z̄)�d6 = 0

and multiplying this equality, (48), and (47) from the left by (d3)�, (d2)�, and (d1)�,
respectively, and adding the resulting sums together, we obtain

(d1,2)�∇2Lλ(ζ̄ )d1,2 − λ(d1,3)�∇2�∗(ζ̄ )d1,3

+
∑
j∈P11

c1j (d
4
j )

2 +
∑
j∈P21

c2j (d
5
j )

2 +
∑
j∈P31

c3j (d
6
j )

2 = 0,

while taking into account (64) and the counterparts of (53) and (54). Hence, it follows
from assumption (62) that d1 = 0, d2 = 0, d3 = 0, d4j = 0 for j ∈ P11, d

5
j = 0 for j ∈ P21,

and d6j = 0 for j ∈ P31. The rest of the proof then follows as that of Theorem 5.2. �

For the next result, the LSCC is also not needed, and g does not necessarily have to be
independent of the upper-level variable.
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Theorem 5.4: Let ζ̄ := (x̄, ȳ, z̄, ū, v̄, w̄) satisfy the optimality conditions (28)–(33) for some
λ > 0. Suppose that the ULICQ and LLICQ hold at (x̄, ȳ) and (x̄, z̄), respectively. Then �λ
is CD-regular at ζ̄ := (x̄, ȳ, z̄, ū, v̄, w̄) provided we also have

(d1,2)�∇2Lλ(ζ̄ )d1,2 > λ

⎧⎪⎨
⎪⎩(d

1,3)�∇2�(ζ̄ )d1,3 +
∑
j∈P31

c3j (ej)
2

⎫⎪⎬
⎪⎭ (65)

for all (d, e) ∈ [Q(ζ )× R|P31|] \ {0}, with c3j := − b3j
a3j

for j ∈ P31; cf. (43).

Proof: Also proceeding as in the proof of Theorem 5.2 while replacing (55) with

∇Gj(x̄, ȳ)d1,2 = c1j d
4
j , ∇gj(x̄, ȳ)d1,2 = c2j d

5
j , and ∇gj(x̄, z̄)d1,2 = c3j d

6
j (66)

for j ∈ P11, j ∈ P21, and j ∈ P31, respectively, we get equality

(d1,2)�∇2Lλ(ζ )d1,2 − λ

⎧⎪⎨
⎪⎩(d

1,3)�∇2�(ζ )d1,3 +
∑
j∈P31

c3j (d
6
j )

2

⎫⎪⎬
⎪⎭

+
∑
j∈P11

c1j (d
4
j )

2 +
∑
j∈P21

c2j (d
5
j )

2 = 0

by inserting (53)–(54) and (66) in the counterpart of (56), as θ3 is not necessarily empty.
Hence, under assumption (65), we get d1 = 0, d2 = 0, d3 = 0, d4j = 0 for j ∈ P11, d

5
j = 0 for

j ∈ P21 and d
6
j = 0 for j ∈ P31. Similarly, the rest of the proof then follows as for Theorem 5.2.

�

Considering the structure of the generalized second order subdifferential of ϕ (4) (see
[57]), condition (65) can be seen as the most natural extension to our problem (24) of
the strong second order sufficient condition used for example in [17,42]. To see this, note
that condition (65) can be replaced by the following condition, for all (d1,2,3, e) in [Q(ζ )×
Rq] \ {0}:

(d1,2)�∇2Lλ(ζ̄ )d1,2 > λ
{
(d1,3)�∇2�(ζ̄ )d1,3 + e�∇g(x̄, z̄)d1,3

}
.

Example 5.5: Consider the bilevel optimization problem

min
x,y

x2 + y21 + y22

s.t. y ∈ S(x) := argmin
y

{
‖y − (x,−1)�‖2 : y1 − y2 ≤ 0, −y1 − y2 ≤ 0

}
,

(67)

where the lower-level problem is taken from [16, Chapter 1]. The LLVF (4) can be
obtained as

ϕ(x) =
⎧⎨
⎩

1
2 (1 − x)2 if x < −1,
1 + x2 if − 1 ≤ x ≤ 1,
1
2 (1 + x)2 if x > 1.
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The optimal solution of problem (67) is (x̄, ȳ) with x̄ = 0 and ȳ = (0, 0). Considering the
expression of ϕ above, one can easily check that (0, 0, 0, 0) satisfies the conditions

y1 − y2 ≤ 0, −y1 − y2 ≤ 0, ‖y − (x,−1)�‖2 − ϕ(x)+ ς = 0.

Thus, for problem (67), condition (25) holds with (x̄, ȳ) = (0, 0, 0) andU = R4. Next, note
that the LMFCQ (27) holds at any lower-level feasible point. The lower-level optimal solu-
tion mapping S is single valued and continuous in this case; hence inner-semicontinuous
[13]. Therefore, (x̄, ȳ) satisfies (28)–(33) and subsequently, the corresponding calculations
show that the point ζ̄ := (x̄, ȳ, z̄, v̄, w̄), where x̄ = 0, ȳ = (0, 0), z̄ := (0, 0), v̄ := (λ, λ), and
w̄ = (1, 1) with λ > 0, solves (38). Furthermore, Q(x̄, ȳ, z̄) = R × {(0, 0, 0, 0)} and for all
d1,2,3 ∈ Q(x̄, ȳ, z̄) \ {0},

(d1,2)�∇2Lλ(ζ̄ )d1,2 − λ(d1,3)�∇2�(ζ̄ )d1,3 = 2(d1)2 > 0.

Hence, for problem (67),�λ (38) is CD-regular at ζ̄ := (x̄, ȳ, z̄, v̄, w̄), for any value ofλ > 0.

6. Robinson-type condition

For a standard nonlinear optimization problem with twice continuously differentiable
functions, the Robinson condition [45] is said to hold at one of its KKTpoints if LICQ and a
strong second order sufficient condition (SSOSC) are satisfied. It was shown in [42] that if a
standard nonlinear optimization problem is SC1 and satisfies the Robinson condition, then
the CD-regularity condition holds for the corresponding counterpart of function�λ (38).
Considering the structure of the results from the previous section, it can be argued that
the combination of assumptions in Theorems 5.2, 5.3 or 5.4 corresponds to an extension
of Robinson’s condition to the context of bilevel optimization. However, another impli-
cation of Robinson’s condition, i.e. precisely of the SSOSC, is that it ensures that a given
point is a strict local optimal solution for the corresponding nonlinear programming prob-
lem. Further analysis on sufficient conditions for strong regularity in the context of mixed
complementarity problems can be found in [27].

The aim of this section is to enhance the second order assumption in the previous
section so that it can guaranty that points computed by our algorithm are strict local
optimal points. To proceed, we introduce the following cone of feasible directions

Cλ(x̄, ȳ) := {d | ∇Gi(x̄, ȳ)�d = 0 for i ∈ ν1, ∇Gi(x̄, ȳ)�d ≤ 0 for i ∈ θ1,
∇gj(x̄, ȳ)�d = 0 for j ∈ ν2, ∇gj(x̄, ȳ)�d ≤ 0 for j ∈ θ2,
∇F(x̄, ȳ)�d + λf (x̄, ȳ)�d − λ∇1�(x̄, z,w)�d1 ≤ 0 for z ∈ S(x̄)

}
, (68)

where {w} := {w(z)} = �(x̄, z) for a fixed z ∈ S(x̄), as the LLICQ (12) will be assumed
to hold at (x̄, z) for all z ∈ S(x̄). Also note that as in (45), d can be written as d :=
((d1)�, (d2)�)�. Furthermore, we will use the following modified version of the upper-
level Lagrangian function (36)

L̄λκ(x, y, u, v) := κ
(
F(x, y)+ λf (x, y)

)+
∑

i∈I1(d)
uiGi(x, y)+

∑
j∈I2(d)

vjgj(x, y),
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where the set I1(d) (resp. I2(d)) represents the set of indices i ∈ I1 (resp. j ∈ I2) such thatwe
have∇Gi(x̄, ȳ)�d = 0 (resp.∇gj(x̄, ȳ)�d = 0). Recall that I1 and I2 are given in (6) and (7).
In the next result, we first provide slightly general SSOSC-type condition for problem (24).

Theorem 6.1: Let the point ζ̄ := (x̄, ȳ, z̄, ū, v̄, w̄) satisfy the conditions (28)–(33) for some
λ > 0. Suppose that the lower-level problem is convex at x̄ (i.e. f (x̄, .) and gi(x̄, .), i = 1, . . . , q,
are convex) and the assumptions in Theorem 2.2 hold for all d ∈ Cλ(x̄, ȳ). Then, (x̄, ȳ) is
a strict local optimal solution of problem (24) provided that, for all d ∈ Cλ(x̄, ȳ) \ {0}, the
condition

d�∇2L̄λκ◦(x̄, ȳ, u, v)d > λ

k∑
t=1

κtξd1(x̄, z
t) (69)

is satisfied for some vectors u, v, zt, and κt , with zt ∈ S1(x̄; d1) and�(x̄, zt) = {wt}, for t =
1, . . . , k, where k is some natural number and κ◦ :=∑k

i=1 κt , such that we have

∇1L̄λκ◦(x̄, ȳ, u, v)− λ

k∑
t=1

κt∇1�(x̄, zt ,wt) = 0, ∇2L̄λκ◦(x̄, ȳ, u, v) = 0 (70)

and

κ◦ +
∑

i∈I1(d)
ui +

∑
j∈I2(d)

vj = 1, κ◦ ≥ 0, ui ≥ 0 for i ∈ I1(d), vj ≥ 0 for j ∈ I2(d).

(71)

Proof: First, consider the optimization problem in (24) for the parameter λ > for which
ζ̄ satisfies the conditions (28)–(33). This problem can obviously be rewritten as

min F(x, y)+ λ
(
f (x, y)− ϕ(x)

)
s.t. ψ(x, y) ≤ 0,

where the function ψ is defined by ψ(x, y) := max{G1(x, y), . . . ,Gp(x, y), g1(x, y), . . . ,
gq(x, y)}. Next, consider the unconstrained optimization problem

minφλ(x, y) := max
{
ψλ(x, y), ψ(x, y)

}
(72)

with ψλ(x, y) := F(x, y)− F(x̄, ȳ)+ λ(f (x, y)− f (x̄, ȳ))− λ(ϕ(x)− ϕ(x̄)). Based on [2,
Chapter 3], it suffices to show that the function φλ satisfies the following three conditions:

[a] φλ is directionally differentiable and we have

φ′
λ(x̄, ȳ; d) ≥ 0 for all d ∈ R

n+m; (73)

[b] φλ is twice directionally differentiable (16) and fulfils the condition

inf
e∈Rn+m

φ′′
λ(x̄, ȳ; d, e) > 0 for all d �= 0 s.t. φ′

λ(x̄, ȳ; d) = 0; (74)



OPTIMIZATION METHODS & SOFTWARE 19

[c] φλ satisfies the second order epiregularity condition, i.e. for any d ∈ Rn+m, t ≥ 0, and
any function (path) e from R+ to Rn × Rm such that te(t) → 0 as t ↓ 0,

φλ

(
(x̄, ȳ)+ td + 1

2
t2e(t)

)
≥ φλ(x̄, ȳ)+ tφ′

λ(x̄, ȳ; d)

+ 1
2
t2φ′′

λ

(
x̄, ȳ; d, e(t)

)+ ◦(t2). (75)

To prove condition [a], first note that ψ is directionally differentiable, as the upper- and
lower-level constraint functions are continuously differentiable. In fact,

ψ ′(x̄, ȳ; d) = max
{
∇Gi(x̄, ȳ)�d for i ∈ I1, ∇gj(x̄, ȳ)�d for j ∈ I2

}
(76)

for any d ∈ Rn+m. As for ψλ, recalling that {w} := {w(z)} = �(x̄, z) for z ∈ S(x̄), thanks
to the fulfilment of the LLICQ (12) at (x̄, z) for all z ∈ S(x̄), it follows from Theorem 2.1
that

ψ ′
λ(x̄, ȳ; d) = max

{
∇(F + λf )(x̄, ȳ)�d − λ∇x�(x̄, z,w)�d1, z ∈ S(x̄)

}
(77)

for any d ∈ Rn+m. Now, considering the function φλ (72), it holds that for any d ∈ Rn+m,

φ′
λ(x̄, ȳ; d) = max

{
ψ ′
λ(x̄, ȳ; d), ψ

′(x̄, ȳ; d)
}
, (78)

as φλ(x̄, ȳ) = ψλ(x̄, ȳ) = 0 and ψ(x̄, ȳ) = 0 if I1 ∪ I2 �= ∅; ψ ′
λ(x̄, ȳ; d) and ψ

′(x̄, ȳ; d) are
given in (76) and (77), respectively. Next, observe that as φ′

λ(x̄, ȳ; 0) = 0, condition (73) is
equivalent to

0 ∈ ∂dφ′
λ(x̄, ȳ; 0), (79)

provided that φ′
λ(x̄, ȳ; .) is a convex function. This is indeed the case, as ψ ′(x̄, ȳ; .) and

ψ ′
λ(x̄, ȳ; .) are both convex functions. Recall that in (79), ∂d represents the subdifferential

(in the sense of convex analysis) w.r.t. d. It therefore remains to show that we can find an
element from ∂dφ

′
λ(x̄, ȳ; 0) which is zero. To proceed, first recall that ζ̄ := (x̄, ȳ, z̄, ū, v̄, w̄)

fulfils (28)–(33) and let

� := 1 +
∑
i∈I1

ūi +
∑
j∈I2

v̄j.

We have � > 0 and subsequently, it holds that κ◦ +∑i∈I1 ū′
i +
∑

j∈I2 v̄′
j = 1 and

� := κ◦
(

∇F(x, y)+ λ∇f (x̄, ȳ)− λ

[ ∇x�(x̄, z̄, w̄)
0

])

+
∑
i∈I1

ū′
i∇Gi(x̄, ȳ)+

∑
j∈I2

v̄′
j∇gj(x̄, ȳ)

= 0,

with κ◦ := 1
�
, ū′

i := 1
�
ūi for i ∈ I1, v̄′

j := 1
�
v̄′
j for j ∈ I2, and w̄ ∈ �(x̄, z̄). By the convexity of

the lower-level problem at x̄ and the fulfilment of the LLICQ at (x̄, z̄), it follows that inclu-
sion w̄ ∈ �(x̄, z̄) is equivalent to z̄ ∈ S(x̄). Furthermore, that we can easily show that (78)
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can be rewritten as

φ′
λ(x̄, ȳ; d) = max

{
∇Gi(x̄, ȳ)�d for i ∈ I1,

∇gi(x̄, ȳ)�d for i ∈ I2,

∇(F + λf )(x̄, ȳ)�d − λ∇x�(x̄, z,w)�d1, z ∈ S(x̄)
}
. (80)

Hence, as φ′
λ(x̄, ȳ; 0) = 0 and all the items in the max-operator, regarded as functions of d,

are convex and zero for d = 0, it holds that

∂dφ
′
λ(x̄, ȳ; 0) = conv

{
∇Gi(x̄, ȳ) for i ∈ I1,∇gj(x̄, ȳ) for j ∈ I2,

∇(F + λf )(x̄, ȳ)− λ

[ ∇1�(x̄, z,w)
0

]
, z ∈ S(x̄)

}
,

given that S(x̄) is a compact set under the uniform compactness assumption made
on the mapping K (14) in Theorem 2.1. It clearly follows that � ∈ ∂dφ′

λ(x̄, ȳ; 0) and
� = 0.

To prove condition [b], note that ψ is second order directionally differentiable and

ψ ′′(x̄, ȳ; d, e) = max
{
G′′
i (x̄, ȳ; d, e) for i ∈ I1(d), g′′

j (x̄, ȳ; d, e) for j ∈ I2(d)
}

(81)

for all d, e ∈ Rn+m. Furthermore, for all d, e ∈ Rn+m, it holds that

ψ ′′
λ (x̄, ȳ; d, e)

(1)= lim
t↓0

2
t2

{[
(F + λf )

(
(x̄, ȳ)+ td + 1

2
t2e
)

−(F + λf )(x̄, ȳ)− t(F + λf )′(x̄, ȳ; d)
]

− λ

[
ϕ

(
x̄ + td1 + 1

2
t2e1
)

− ϕ(x̄)− tϕ′(x̄; d1)
]}

(2)= (F + λf )′′(x̄, ȳ; d, e)− λϕ′′(x̄; d1)
(3)= F′′(x̄, ȳ; d, e)+ λf ′′(x̄, ȳ; d, e)

− λ inf
z∈S1(x̄;d1)

{∇1�(x̄, z,w)e1 + ξd1(x̄, z)
}

(4)= sup
z∈S1(x̄;d1)

{
F′′(x̄, ȳ; d, e)+ λf ′′(x̄, ȳ; d, e)

−λ∇1�(x̄, z,w)e1 − λξd1(x̄, z)
}

(5)= max
z∈S1(x̄;d1)

{
F′′(x̄, ȳ; d, e)+ λf ′′(x̄, ȳ; d, e)

−λ∇1�(x̄, z,w)e1 − λξd1(x̄, z)
}

(82)

with d := d1,2, e := e1,2 and ξd1(x̄, z) is defined as in (19). Equality (1) follows from the
definition in (16) and the fact that F and f are continuously differentiable and ϕ is direc-
tional differentiable at x̄; cf. Theorem 2.1. Equality (2) is based on the fact that F and f
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are twice continuously differentiable and ϕ is second order directionally differentiable; cf.
Theorem 2.2. Equality (3) is based on (19) and (4) is obtained thanks to the indepen-
dence of F′′(x̄, ȳ; d, e) and f ′′(x̄, ȳ; d, e) from the variable z. As for the final equality, (5),
it results from the compactness of the set S1(x̄; d), which is satisfied under the framework
of Theorem 2.2, see corresponding reference.

As for the second order directional derivative of φ′′
λ , let d ∈ Cλ(x̄, ȳ). Then φ′

λ(x̄, ȳ; d) =
0, considering the fact that (73) holds. Furthermore, as the point ζ̄ := (x̄, ȳ, z̄, ū, v̄, w̄)
satisfies the optimality conditions (28)–(33), it follows that

p∑
i=1

ūi∇Gi(x̄, ȳ)�d =
∑
i∈η1

ūi∇Gi(x̄, ȳ)�d +
∑
i∈θ1

ūi∇Gi(x̄, ȳ)�d +
∑
i∈ν1

ūi∇Gi(x̄, ȳ)�d = 0,

considering the fact that ūi = 0 for i ∈ η1 ∪ θ1 and ∇Gi(x̄, ȳ)�d = 0 for i ∈ ν1 based on
the fulfilment of (31), cf. partition in (8), and the definition of Cλ(x̄, ȳ), see (68). Similarly,
we have

∑q
j=1 v̄j∇gj(x̄, ȳ)�d = 0. Hence, from (28)–(29), we have

∇F(x̄, ȳ)�d + λ∇f (x̄, ȳ)�d − λ∇x�(x̄, z̄, w̄)�d1 = 0. (83)

Coming back to the definition of Cλ(x̄, ȳ), the last line in particular, it follows from (77)
that

ψ ′
λ(x̄, ȳ; d) = max

{
∇F(x̄, ȳ)�d + λ∇f (x̄, ȳ)�d − λ∇x�(x̄, z,w)�d1, z ∈ S(x̄)

}
= 0.

Hence, from the expressions in (81) and (82), it holds that for all d ∈ Cλ(x̄, ȳ) and e ∈
Rn+m,

φ′′
λ(x̄, ȳ; d, e) = max

{
∇Gi(x̄, ȳ)�e + d�∇2Gi(x̄, ȳ)d, i ∈ I1(d),

∇gj(x̄, ȳ)�e + d�∇2gj(x̄, ȳ)d, j ∈ I2(d),

(F + λf )′′(x̄, ȳ; d, e)− λ∇1�(x̄, z,w)�e1 − λξd1(x̄, z), z ∈ S1(x̄; d1)
}
(84)

with (F + λf )′′(x̄, ȳ; d, e) = ∇(F + λf )(x̄, ȳ)�e + d�∇2(F + λf )(x̄, ȳ)d, as F + λf is twice
continuously differentiable. The same can be said for any component of G or g.

It follows from (84) that for d ∈ Cλ(x̄, ȳ) \ {0}, the optimization problem in (74), i.e. to
minimize the function φ′′

λ(x̄, ȳ; d, e) with respect to e ∈ Rn+m, can be rewritten as

inf
ς

{
ς1 | Aς ≥ b, a(z)ς ≥ b(z), z ∈ B

}
, (85)

where A, b, a(z), b(z), and B are respectively defined by

A :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −∇G1(x̄, ȳ)�
...

...
1 −∇Gι1(x̄, ȳ)�

1 −∇g1(x̄, ȳ)�
...

...
1 −∇gι2(x̄, ȳ)�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, b :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d�∇2G1(x̄, ȳ)d
...

d�∇2Gι1(x̄, ȳ)d

d�∇2g1(x̄, ȳ)d
...

d�∇2gι2(x̄, ȳ)d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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a(z) :=
[
1,−∇F(x̄, ȳ)� − λ∇f (x̄, ȳ)� + λ

[∇1�(x̄, z,w)�, 0
]]
,

b(z) := d�∇2F(x̄, ȳ)d + λd�∇2f (x̄, ȳ)d − λξd1(x̄, z), and B := S1(x̄; d1). Note that ι1
(resp. ι2) stands for the cardinality of I1(d) (resp. I2(d)). Clearly, problem (85) is a
semi-infinite optimization problem and for any vector c ∈ R × Rn × Rm such that c1 > 0
and ci := 0 for i = 2, . . . , n + m + 1,

A�
i c > 0, i = 1, . . . , n + m and a(z)�c > 0 for all z ∈ B,

where Ai represents row i for A. Hence, the extended Mangasarian-Fromovitz constraint
qualification (see, e.g. [26] for the definition) holds at any feasible point of problem (85).
Combining this with the compactness of S1(x̄; d1), it follows from the duality theory of
linear semi-infinite optimization (cf. latter reference) that the dual of problem (85) can be
obtained as

max
κ ,u,v

d�∇2L̄λκ◦(x̄, ȳ, u, v)d − λ

k∑
t=1

κtξd1(x̄, z
t)

s.t. (κ , u, v) satisfying (70)–(71)

(86)

for some zt ∈ S1(x̄; dx), t = 1, . . . , k, with k ∈ N and κ◦ :=∑ι1
i=1 κt . Hence, condition (74)

holds if the one in (69) is satisfied for some u, v, κt , zt ∈ S1(x̄; d1) with�(x̄, zt) = {wt}, for
t = 1, . . . , k, where k ∈ N and κ◦ :=∑k

i=1 κt , such that (70)–(71).
Finally, it remains to show that [c] holds; i.e. condition (75) is satisfied. To proceed, first

recall that under the assumptions of Theorem 2.2 that the negative of the optimal value
function ϕ (4) is second order epiregular (see [2, Theorem 4.142]) at x̄, i.e.

− ϕ

(
x̄ + td1 + 1

2
t2e1(t)

)
≥ −ϕ(x̄)− tϕ′(x̄; d1)− 1

2
t2ϕ′′ (x̄; d1, e1(t))− ◦(t2) (87)

for any d, t ≥ 0 and any function (path) e fromR+ toRn × Rm (with e(t) := (e1(t), e2(t)),
where e1(t) ∈ Rn) such that te(t) → 0 as t ↓ 0. Furthermore, as the function (F + λf ) is
twice continuously differentiable, it holds that

(F + λf )
(
(x̄, ȳ)+ td + 1

2
t2e(t)

)
≥ (F + λf )(x̄, ȳ)+ t(F + λf )′(x̄, ȳ; d)

+ 1
2
t2(F + λf )′′

(
x̄, ȳ; d, e(t)

)+ ◦(t2). (88)

Multiplying (87) by λ, which is positive, and adding the resulting inequality to (88),

(
F + λ(f − ϕ)

) (
(x̄, ȳ)+ td + 1

2
t2e(t)

)
≥ (F + λ(f − ϕ)

)
(x̄, ȳ)

+ t
(
F + λ(f − ϕ)

)′
(x̄, ȳ; d)+ 1

2
t2
(
F + λ(f − ϕ)

)′′ (x̄, ȳ; d, e(t))+ ◦(t2). (89)

Similarly to (88), the upper- and lower-level constraint functions satisfy the second order
epiregularity conditions. Subsequently, condition (75) holds. �
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Assuming that the lower-level optimal solution mapping S (1) is single-valued at x̄ can
lead to a much simpler result, closely aligned to Theorem 5.2, and subsequently to the
derivation of a Robinson-type condition for problem (24). To proceed, we defineC(x̄, ȳ) :=
Q(x̄, ȳ, ȳ); cf. (45).

Theorem 6.2: Let ζ̄ := (x̄, ȳ, z̄, ū, v̄, w̄) satisfy (28)–(33) for some λ > 0, with S(x̄) = {ȳ} =
{z̄}, and USCC (resp. LSCC) hold at (x̄, ȳ, ū) (resp. (x̄, ȳ, v̄)), i.e. θ1 = ∅ (resp. θ2 = ∅). Sup-
pose that the lower-level problem is convex at x̄ and the assumptions in Theorem 2.3 are
satisfied for all d ∈ C(x̄, ȳ). Then, (x̄, ȳ) is a strict local optimal solution of problem (24)
provided that the ULICQ (44) holds at (x̄, ȳ) and, for all d ∈ C(x̄, ȳ) \ {0}, we have

d�∇2Lλ(x̄, ȳ, ū, v̄)d > λ
(
d1,3
)� ∇2�(x̄, ȳ, w̄)d1,3. (90)

Proof: Proceeding as in the proof of the previous theorem, we have the correspond-
ing expressions of (80) for d ∈ Rn+m, and (81) for d ∈ C(x̄, ȳ) and e ∈ Rn+m, given that
S1(x̄; d1) ⊆ S(x̄) = {ȳ}; cf. (18). Further proceeding as in the previous theorem, the point
(x̄, ȳ) is a strict local optimal solution of problem (24) if for all d ∈ C(x̄, ȳ), it holds that

d�∇2L̄λκ◦(x̄, ȳ, u, v)d > λκ◦ξd1(x̄, ȳ) (91)

for some (κ◦, u, v) verifying (71) together with the following conditions, while also taking
into account the fact that S1(x̄; d1) ⊆ S(x̄) = {ȳ} and {w̄} = �(x̄, ȳ) (cf. Theorem 2.3):

∇1L̄λκ◦(x̄, ȳ, u, v)− λκ◦∇1�(x̄, ȳ, w̄) = 0, ∇2L̄λκ◦(x̄, ȳ, u, v) = 0. (92)

One can easily show that the existence of (κ◦, u, v) verifying (30) and (33) (cf. {w̄} =
�(x̄, ȳ)), together with (71) and (92), such that (91) holds, is equivalent to the existence
of some (κ ′◦, u′, v′) �= 0 satisfying (30), (33), (92), and

κ◦ ≥ 0, ui ≥ 0 for i ∈ I1(d), vj ≥ 0 for j ∈ I2(d)

such that (91) holds, with (κ◦, u, v) replaced by (κ ′◦, u′, v′). Subsequently, taking into
account the fact that I1(d) ⊆ I1 and I2(d) ⊆ I2, it is not difficult to show that with the
ULICQ satisfied at (x̄, ȳ), this point is a strict local optimal solution of problem (24)
provided for all d ∈ C(x̄, ȳ),

d�∇2L̄λ1(x̄, ȳ, u, v)d > λ ξd1(x̄, ȳ) (93)

holds for some (u, v) such that (x̄, ȳ, z̄, u, v, w̄) satisfies (28)–(33), with z̄ = ȳ. It therefore
remains to show that we have ū = u and v̄ = v.

To proceed, let us first show that I1(d) = I1 and I2(d) = I2 for any d ∈ C(x̄, ȳ). Obvi-
ously, I1(d) ⊆ I1 and I2(d) ⊆ I2, by definition. For the converse, let i ∈ I1. Then i ∈ ν1,
given that θ1 = ∅. Furthermore, considering the definition of C(x̄, ȳ), it follows that
∇Gi(x̄, ȳ)�d = 0. Hence, i ∈ I1(d). Subsequently, as (x̄, ȳ, ū, v̄, w̄) and (x̄, ȳ, u, v, w̄) both
satisfy (28)–(33) with z̄ = ȳ,∑

i∈I1
(ūi − ui)∇Gi(x̄, ȳ)+

∑
j∈I2
(v̄j − vj)∇gj(x̄, ȳ) = 0.

Based on the ULICQ at (x̄, ȳ), it follows that ū = u and v̄ = v, given that the compo-
nents of these vectors are all zero when i /∈ I1 and j /∈ I2, respectively. To conclude the



24 A. FISCHER ET AL.

proof, observe that condition (90) is sufficient for (93) to hold, considering the definition
of ξd1(x̄, ȳ) in (20). �

It is clear that under the framework of this theorem, the conclusion of Theorem 5.2 is
valid, while also guarantying that the resulting point (x̄, ȳ) is a strict local optimal solution
of problem (24).Hence, Theorem6.2 can be seen as an extension of the Robinson condition
to bilevel optimization, in the sense discussed at the beginning of this section.

A common point between Theorems 6.1 and 6.2 is that the SSOSC-type condition,
i.e. (69) and (90), respectively, are the main assumptions, as the remaining ones (except
from the USCC and LSCC in Theorem 6.2) are mostly technical, helping to ensure that the
LLVF ϕ (4) is second order directionally differentiable. Observe that the USCC and LSCC
in Theorem 6.2 help to ensure that points satisfying (70)–(71) coincide with stationarity
points in the sense (28)–(33).

Next, we provide a small example illustrating Theorem 6.2, with the corresponding
Robinson-type framework.

Example 6.3: Considering the simple bilevel optimization problem

min
x,y

xy s.t. x + y ≤ 2, y ∈ S(x) := argmin
y

{
y | x − y ≤ 0

}
,

we obviously have S(x) = {x} for all x ∈ R and one can easily check that the vector
(x̄, ȳ, z̄, ū, v̄, w̄)with x̄ = ȳ = z̄ = 0, ū = 0, v̄ = λ, and w̄ = 1, satisfies the optimality condi-
tions (28)–(33) for any λ > 0. For this vector, θ1 = ν1 = ∅, θ2 = θ3 = ∅ and ν2 = η3 =
{1}. Hence, the critical cone C(x̄, ȳ, z̄) = {d ∈ R3 | d1 = d2 = d3}, and subsequently, for
any d ∈ C(x̄, ȳ, z̄) \ {0},

(
d1
d2

)�
∇2Lλ(ζ̄ )

(
d1
d2

)
−
(

d1
e2

)�
∇2�(ζ̄ )

(
d1
e2

)
= 2d21 > 0.

All the other assumptions of Theorem 6.2 are also satisfied. (0, 0) is indeed the unique
optimal solution of the problem above and the corresponding penalized version (24) for
any λ > 0.

Note that all the assumptions in Theorem 6.2 also hold for the problem in Exam-
ple 5.5, given that at (x̄, ȳ, v̄) := (0, 0, 0, λ, λ) and (x̄, z̄, w̄) := (0, 0, 0, 1, 1), η2 = ∅, θ2 = ∅,
ν2 = {1, 2} and η3 = ∅, θ3 = ∅, ν3 = {1, 2}, respectively. Hence, having ∇2gi(x̄, z̄, w̄)�
(e2, e3)� = 0 for i ∈ ν3, is equivalent to e2 = e3 = 0. Hence, combining this with the cal-
culations in Example 5.5, it is clear that all the assumptions in Theorem 6.2 hold for
problem (67).

For examples, where the assumptions in Theorem 6.1 (ensuring the second order direc-
tional differentiability of ϕ (4)) hold without the uniqueness of the lower-level optimal
solution, see, e.g. [2,49].

To close this section, we provide an example confirming that the SSOSC-type condition
(90) is essential in guaranteeing that a point is locally optimal for problem (24).

Example 6.4: Consider the following example from [6, Chapter 5]:

min
x,y

(x − 3.5)2 + (y + 4
)2 s.t. y ∈ S(x) := argmin

y

{
(y − 3)2 | −x + y2 ≤ 0

}
. (94)
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The lower-level solution set-valued mapping is single-valued; i.e. precisely,

S(x) =
⎧⎨
⎩

∅ if x < 0,
{√x} if 0 ≤ x ≤ 9,
{3} if x > 9.

The point (1, 1) is not optimal for (94) but we can easily check that (1, 1, 1, 2λ− 5, 2) satis-
fies the optimality conditions (28)–(33), for λ > 5

2 . Obviously, at (1, 1, 2λ− 5) and (1, 1, 2),
we have

η2 = ∅, θ2 = ∅, ν2 = {1} and η3 = ∅, θ3 = ∅, ν3 = {1},
respectively. Moreover, C(1, 1, 1) = {(d1, d2, e2) | d2 = e2 = 1

2d1} and for all (d1, d2, e2) ∈
C(1, 1, 1),
(

d1
d2

)�
∇2Lλ (1, 1, 1, 2λ− 5, 2)

(
d1
d2

)
−
(

d1
e2

)�
∇2� (1, 1, 2)

(
d1
e2

)
= 0.

We can however check that all the other assumptions of Theorem 6.2 are satisfied for
(1, 1, 1, 2λ− 5, 2).

Further analysis on the necessity of condition (90) and the corresponding condition in
Theorem 6.1, will be studied more closely in a future work. Different types of sufficient
optimality conditions for bilevel optimization problems can be found in the papers [5,10].

7. Numerical experiments

Based on our implementation of Algorithm 1 inMATLAB (R2018a), we report and discuss
test results obtained for the 124 nonlinear bilevel programs from the current version of the
BOLIB library [58].

Recall that the necessary optimality conditions (28)–(33) and their reformulation (39)
as nonsmooth system of equations contain the penalization parameter λ > 0. Based on
the construction process of the system (see, e.g. [13,55]), there is no specific rule on how to
choose the best value of this parameter. Rather, one may try all λ from a certain finite dis-
crete set in (0,∞), solve the corresponding optimality conditions, and then choose the best
solution in terms of the upper-level objective function value. For our approach, it turned
out that a small set of λ-values is sufficient to reach very good results. To be precise, for all
our experiments, we just used the nine values of λ in� := λ ∈ {2−1, 20, · · · , 26, 27}.

7.1. Implementation details

Besides the selection of penalization parameters described before, the other parameters
needed in Algorithm 1 are set to

β := 10−8, ε := 10−8, t := 2.1, ρ := 0.5, σ := 10−4.

For each test example, we only used one starting point. The choices for starting points
xo and yo are as follows. If an example in literature comes with a starting point, then we
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use this point for our experiments. Otherwise, we choose xo = 1n, yo = 1m except for
three examples No 20, 119, and 120 because their global optimal solutions are (1n, 1m),
where 1n := (1, · · · , 1)� ∈ Rn. So, for these three examples we used xo = −1n, yo = −1m.
Detailed information on starting points can be found in [21]. Moreover, to fully define
ζ o = (xo, yo, zo, uo, vo,wo), we set

zo := yo, uo := (|G1(xo, yo)|, · · · , |Gp(xo, yo)|
)� ,

vo := (|g1(xo, yo)|, · · · , |gq(xo, yo)|)�
andwo := vo. In addition to the stopping criterion ‖�λ(ζ k)‖ ≤ ε used in Algorithm 1, the
algorithm is terminated if the iteration index k reaches 2000.

Finally, to pick an element from the generalized B-subdifferential ∂B�λ(ζ k) in Step 2 of
Algorithm 1, we adopt the technique in [4].

7.2. Test results

Table 1 lists, for any of the 124 test examples of the BOLIB library [58], values of the leader’s
objective function F. The column Fknown shows the best known F-values from the litera-
ture. Such a value was not available for 6 of the test problems. This is marked by ‘unknown’
in the column Status. For 83 examples, the best known F-value is even optimal (with status
labelled as ‘optimal’). For the remaining 35 test problems, the known F-value might not be
optimal and its status is just set to ‘known’. The columns below Fnew show the F-values
obtained by Algorithm 1 for the nine penalization parameters λ.

Note that three examples contain a parameter that should be provided by the user. They
are examples No 14, 39, and 40. The first one is associated with ρ ≥ 1, which separates
the problem into 4 cases: (i) ρ = 1, (ii) 1 < ρ < 2, (iii) ρ = 2, and (iv) ρ > 2. The results
presented in Table 1 correspond to case (i). For the other three cases, our method still
produced the true global optimal solutions. Example No 39 has a unique global optimal
solution. The result presented in Table 1 is for c = 0. We also tested our method when
c = ±1, and obtained the unique optimal solutions as well. Example No 40 contains the
parameterM>1, and the results presented in Table 1 correspond toM = 1.5.

Let us first note that evaluating the performance of an algorithm for the bilevel optimiza-
tion problem (1) is a difficult task since the decision whether a computed point is (close
to) a global solution of (1) basically requires computing the LLVF ϕ. Therefore, instead of
doing this, we suggest the following way of comparing our results for Algorithm 1 with
the results from literature known for the test problems. For an approximate solution (x, y)
obtained from Algorithm 1, we first compute

δF := F(x, y)− Fknown
max{1, |Fknown|}

, δf := f (x, y)− fknown
max{1, |fknown|}

,

where Fknown as above is the best known F-value from literature and fknown the lower-level
function value which corresponds to Fknown. Moreover, we set

δ∗ :=
{

max{|δF|, |δf |}, if Status is optimal,
max{δF , δf }, otherwise.
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Table 1. Upper-level objective function values at the solution for different selections of λ ∈ �.
Fnew

No Examples Status Fknown λ = 2−1 λ = 20 λ = 21 λ = 22 λ = 23 λ = 24 λ = 25 λ = 26 λ = 27 δ∗
1 AiyoshiShimizu1984Ex2 optimal 5.00 8.25 1.00 10.31 15.16 14.61 14.80 39.75 14.95 4.97 0.01
2 AllendeStill2013 optimal 1.00 1.44 1.25 1.11 0.82 0.90 0.94 0.97 0.98 0.99 0.01
3 AnEtal2009 optimal 2251.6 2251.6 2251.6 2251.6 2251.6 2251.6 2826.5 2269.5 2251.6 4425.5 0.00
4 Bard1988Ex1 optimal 17.00 49.31 23.13 50.00 53.78 58.55 62.59 65.33 25.00 17.00 0.00
5 Bard1988Ex2 optimal −6600.0 −6600.0 −6600.0 0.0 0.0 −6600.0 −5641.6 −5641.6 −6600.0 0.0 0.00
6 Bard1988Ex3 optimal −12.68 −12.68 −14.51 −13.89 −13.40 −13.07 −12.89 −12.78 −12.73 −12.71 0.00
7 Bard1991Ex1 optimal 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 0.00
8 BardBook1998 optimal 0.00 0.00 0.00 0.00 0.00 100.00 11.11 11.11 11.11 11.11 0.00
9 CalamaiVicente1994a optimal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 CalamaiVicente1994b optimal 0.31 0.38 0.34 1.06 1.22 1.18 1.46 0.54 1.54 0.31 0.00
11 CalamaiVicente1994c optimal 0.31 0.37 0.56 1.00 1.22 0.48 0.52 1.30 0.31 1.30 0.00
12 CalveteGale1999P1 optimal −29.20 −20.00 −20.00 −29.20 −29.20 −13.00 −13.00 −29.20 −23.00 −16.00 0.00
13 ClarkWesterberg1990a optimal 5.00 9.00 9.00 5.00 9.00 13.00 7.97 9.77 9.86 9.93 0.00
14 Colson2002BIPA1 optimal 250.00 250.00 250.00 250.00 250.00 250.00 250.00 250.00 250.00 250.00 0.00
15 Colson2002BIPA2 known 17.00 49.31 23.13 50.00 53.78 58.55 62.59 65.33 66.95 17.00 0.00
16 Colson2002BIPA3 known 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 0.00
17 Colson2002BIPA4 known 88.79 89.98 88.93 88.79 88.79 88.79 88.79 87.31 88.02 88.39 0.00
18 Colson2002BIPA5 known 2.75 3.42 2.00 2.75 30.64 2.99 3.12 3.19 3.22 3.23 −0.27
19 Dempe1992a unknown −2.00 0.00 0.00 −0.25 −0.13 −0.06 −0.03 −0.02 −0.01
20 Dempe1992b optimal 31.25 33.98 33.49 32.41 31.25 31.25 31.25 31.25 31.25 31.25 0.00
21 DempeDutta2012Ex24 optimal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 276.17 0.00 0.00
22 DempeDutta2012Ex31 optimal −1.00 −1.07 −0.66 −0.38 −0.21 −0.11 0.00 −0.03 −0.02 −0.01 0.07
23 DempeFranke2011Ex41 optimal −1.00 −1.00 −1.00 −1.00 0.00 −1.00 −1.00 0.00 0.00 0.00 0.00
24 DempeFranke2011Ex42 optimal 5.00 −0.88 0.20 1.20 1.80 4.20 5.37 4.83 4.99 10.37 0.00
25 DempeFranke2014Ex38 optimal 2.13 −0.88 −0.50 1.00 2.13 2.15 2.13 2.12 4.00 2.12 0.00
26 DempeEtal2012 optimal −1.00 −3.00 −1.00 −1.00 −1.00 0.00 −1.00 −1.00 −1.00 −1.00 0.00
27 DempeLohse2011Ex31a optimal −6.00 0.13 −5.50 −5.50 −5.50 −0.16 −0.04 0.18 0.33 0.41 0.00
28 DempeLohse2011Ex31b optimal −12.00 −12.00 −12.00 −12.00 −12.00 −12.00 −5.38 −5.47 0.35 0.42 0.00
29 DeSilva1978 optimal −1.00 −0.56 −0.75 −0.89 −1.18 −1.10 −1.06 −1.03 −1.02 −1.01 0.01
30 FalkLiu1995 optimal −2.20 −1.56 −2.00 −2.16 −2.22 −2.51 −2.38 −2.32 −2.28 −2.27 0.01
31 FloudasEtal2013 optimal 0.00 8.25 0.00 5.81 15.16 39.75 29.75 29.88 14.95 14.98 0.00
32 FloudasZlobec1998 optimal 1.00 100.00 1.00 100.00 100.00 0.92 0.97 100.00 0.99 1.00 0.00
33 GumusFloudas2001Ex1 optimal 2250.0 2250.9 2250.0 2250.0 2500.0 2250.0 2311.2 2308.7 2306.9 2500.0 0.00

(continued).
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Table 1. Continued

Fnew

No Examples Status Fknown λ = 2−1 λ = 20 λ = 21 λ = 22 λ = 23 λ = 24 λ = 25 λ = 26 λ = 27 δ∗
34 GumusFloudas2001Ex3 optimal −29.20 −20.00 −20.00 −29.20 −20.00 −13.00 −20.00 −13.00 −48.95 −13.00 0.00
35 GumusFloudas2001Ex4 optimal 9.00 9.00 9.00 9.00 9.00 9.00 7.97 8.46 8.73 8.86 0.00
36 GumusFloudas2001Ex5 optimal 0.19 0.19 0.19 0.19 2.18 0.19 −0.39 0.19 0.19 0.19 0.00
37 HatzEtal2013 optimal 0.00 1.00 0.50 0.25 −0.13 1079.59 648.93 376.50 406.77 217.98 0.13
38 HendersonQuandt1958 known −3266.7 −3243.6 −3200.0 −3239.7 −3260.5 −3265.2 −3266.3 −3266.6 −3266.6 −3275.2 0.00
39 HenrionSurowiec2011 optimal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
40 IshizukaAiyoshi1992a optimal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
41 KleniatiAdjiman2014Ex3 optimal −1.00 −1.33 −1.33 −0.59 −0.53 −0.90 −0.75 −0.97 0.99 −0.99 0.01
42 KleniatiAdjiman2014Ex4 known −10.00 −4.00 −4.48 −5.00 −3.19 −1.16 −2.00 −2.00 −3.31 −6.68 0.52
43 LamparSagrat2017Ex23 optimal −1.00 −1.00 −1.00 −1.00 −1.00 −1.00 −1.00 −1.00 −1.00 −1.00 0.00
44 LamparSagrat2017Ex31 optimal 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
45 LamparSagrat2017Ex32 optimal 0.50 0.63 0.56 0.32 0.40 0.44 0.47 0.48 0.49 0.50 0.00
46 LamparSagrat2017Ex33 optimal 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.00
47 LamparSagrat2017Ex35 optimal 0.80 1.25 0.80 1.00 1.25 1.00 0.80 1.00 0.80 1.25 0.00
48 LucchettiEtal1987 optimal 0.00 0.50 0.75 0.00 0.82 0.90 0.94 0.97 0.98 0.99 0.00
49 LuDebSinha2016a known 1.14 1.14 1.14 1.52 1.14 1.14 2.24 1.17 2.24 2.24 0.00
50 LuDebSinha2016b known 0.00 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04
51 LuDebSinha2016c known 1.12 1.58 1.64 1.60 1.62 1.12 1.64 1.64 1.64 1.12 0.00
52 LuDebSinha2016d unknown 0.00 −0.29 20.00 −192.00 19.80 −18.83 −192.00 −34.84 −200.75
53 LuDebSinha2016e unknown 11.79 7.27 2.09 5.44 2.78 28.65 15.95 13.18 7.24
54 LuDebSinha2016f unknown 0.00 0.00 0.00 −18.63 20.00 −165.12 0.00 0.00 0.00
55 MacalHurter1997 optimal 81.33 81.85 81.46 81.26 81.30 81.31 81.32 81.32 81.33 81.33 0.00
56 Mirrlees1999 optimal 1.00 0.00 0.00 0.00 0.14 4.01 0.01 0.01 0.87 0.01 0.13
57 MitsosBarton2006Ex38 optimal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
58 MitsosBarton2006Ex39 optimal −1.00 −1.00 −1.00 −1.00 −1.00 −1.00 0.08 0.01 0.00 0.00 0.00
59 MitsosBarton2006Ex310 optimal 0.50 −0.82 −0.71 −0.63 0.42 −0.54 −0.09 −0.07 0.50 0.50 0.00
60 MitsosBarton2006Ex311 optimal −0.80 −0.80 −0.80 0.51 1.00 −0.09 −0.80 −0.50 0.50 0.18 0.30
61 MitsosBarton2006Ex312 optimal 0.00 10.00 10.00 5.01 −0.26 −0.13 2.58 −0.03 −0.02 7.30 0.02
62 MitsosBarton2006Ex313 optimal −1.00 −1.58 −1.00 −2.00 −2.00 0.03 0.87 0.19 0.00 0.23 0.00
63 MitsosBarton2006Ex314 optimal 0.25 0.01 0.02 0.04 0.05 0.06 0.06 0.06 0.06 0.06 0.19
64 MitsosBarton2006Ex315 optimal 0.00 −2.00 −2.00 −0.63 0.65 1.59 1.80 1.90 1.95 1.98 0.65
65 MitsosBarton2006Ex316 optimal −2.00 −3.00 −3.00 −3.00 1.01 0.00 −2.06 0.28 −0.50 −3.00 0.03
66 MitsosBarton2006Ex317 optimal 0.19 0.00 0.00 0.03 0.06 0.13 0.00 0.00 0.00 0.24 0.05
67 MitsosBarton2006Ex318 optimal −0.25 0.00 −1.00 0.75 0.56 0.36 0.21 0.11 −1.00 0.00 0.25

(continued).
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Table 1. Continued

Fnew

No Examples Status Fknown λ = 2−1 λ = 20 λ = 21 λ = 22 λ = 23 λ = 24 λ = 25 λ = 26 λ = 27 δ∗
68 MitsosBarton2006Ex319 optimal −0.26 0.00 0.00 0.00 −0.31 0.47 0.57 0.00 −0.26 −0.02 0.00
69 MitsosBarton2006Ex320 optimal 0.31 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.03 0.28
70 MitsosBarton2006Ex321 optimal 0.21 0.21 0.21 0.04 0.11 0.36 0.18 0.20 0.20 0.21 0.00
71 MitsosBarton2006Ex322 optimal 0.21 0.21 0.21 0.04 0.11 0.16 0.18 0.20 0.20 0.21 0.00
72 MitsosBarton2006Ex323 optimal 0.18 0.18 0.18 0.18 0.18 0.18 0.15 0.28 0.00 0.25 0.00
73 MitsosBarton2006Ex324 optimal −1.76 −1.99 −1.75 −0.74 −1.71 −0.94 −0.29 −0.29 −1.76 −0.29 0.00
74 MitsosBarton2006Ex325 known −1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
75 MitsosBarton2006Ex326 optimal −2.35 −2.00 −2.00 1.36 0.32 −1.00 −2.00 0.95 1.00 0.32 0.15
76 MitsosBarton2006Ex327 known 2.00 0.04 2.06 0.01 2.06 1.16 0.64 1.00 1.00 1.00 0.05
77 MitsosBarton2006Ex328 known −10.00 −5.04 −3.70 −3.89 −2.86 −3.00 −1.01 −3.95 −5.00 −2.94 0.97
78 MorganPatrone2006a optimal −1.00 −1.00 −1.00 −1.00 0.50 −1.00 0.50 0.94 0.97 0.98 0.00
79 MorganPatrone2006b optimal −1.25 0.50 −1.25 −0.50 0.50 0.50 0.63 0.69 −0.50 −0.75 0.00
80 MorganPatrone2006c optimal −1.00 −1.00 1.00 1.00 1.00 1.00 1.00 0.75 0.75 1.00 0.00
81 MuuQuy2003Ex1 known −2.08 −3.26 −2.88 −2.56 −2.34 −2.22 −2.15 −2.11 −2.10 −2.09 −0.55
82 MuuQuy2003Ex2 known 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.01
83 NieWangYe2017Ex34 optimal 2.00 2.00 2.00 2.00 2.00 2.00 3.89 3.80 2.00 4.33 0.00
84 NieWangYe2017Ex52 optimal −1.71 0.06 −1.39 0.00 0.39 0.00 −0.24 0.00 −0.10 0.00 0.19
85 NieWangYe2017Ex54 optimal −0.44 0.00 0.00 0.00 0.00 0.00 0.00 −0.15 −0.01 0.00 0.98
86 NieWangYe2017Ex57 known −2.00 −2.05 −2.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
87 NieWangYe2017Ex58 known −3.49 −3.53 0.00 0.00 −0.08 0.00 0.00 0.00 0.77 −0.91 0.02
88 NieWangYe2017Ex61 known −1.02 0.19 −1.11 −1.03 0.39 −1.02 −0.18 0.00 0.00 0.00 0.00
89 Outrata1990Ex1a known −8.92 −10.67 −10.02 −9.54 −9.25 −9.09 −9.01 −8.96 0.00 −8.93 0.00
90 Outrata1990Ex1b known −7.56 −10.43 −9.46 −8.69 −8.19 −7.90 −7.74 −7.66 −7.62 0.00 0.01
91 Outrata1990Ex1c known −12.00 −12.00 −12.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
92 Outrata1990Ex1d known −3.60 −4.64 −3.33 −3.67 −3.64 −0.56 −0.47 −3.60 −3.60 −0.37 0.01
93 Outrata1990Ex1e known −3.15 −3.93 −3.93 −3.92 −3.92 −0.67 −3.92 −0.39 −0.34 −3.79 −0.10
94 Outrata1990Ex2a known 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.00
95 Outrata1990Ex2b known 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.00
96 Outrata1990Ex2c known 1.86 1.03 1.34 1.57 1.70 2.35 5.82 1.84 1.85 5.49 0.00
97 Outrata1990Ex2d known 0.92 0.85 0.85 0.85 0.85 0.85 0.85 0.85 9.76 0.85 −0.07
98 Outrata1990Ex2e known 0.90 0.47 0.63 0.74 0.82 0.86 0.88 0.89 0.89 5.56 0.00
99 Outrata1993Ex31 known 1.56 2.57 2.05 1.45 1.50 1.53 1.55 8.95 1.56 1.56 0.00
100 Outrata1993Ex32 known 3.21 4.02 3.59 3.11 3.16 3.18 3.19 3.20 3.20 3.21 0.00

(continued).
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Table 1. Continued

Fnew

No Examples Status Fknown λ = 2−1 λ = 20 λ = 21 λ = 22 λ = 23 λ = 24 λ = 25 λ = 26 λ = 27 δ∗
101 Outrata1994Ex31 known 3.21 4.02 3.59 3.11 3.16 3.18 3.19 3.20 3.20 8.01 0.00
102 OutrataCervinka2009 optimal 0.00 0.00 0.00 0.00 −0.13 −0.06 −0.03 −0.02 −0.01 0.00 0.00
103 PaulaviciusEtal2017a optimal 0.25 0.00 0.78 0.31 0.11 0.00 1.59 1.00 1.00 1.94 0.09
104 PaulaviciusEtal2017b optimal −2.00 −2.00 −2.00 −2.00 −2.00 −2.00 −2.00 0.94 −0.22 0.96 0.00
105 SahinCiric1998Ex2 optimal 5.00 9.00 9.00 5.00 9.00 13.00 7.97 9.77 9.86 9.93 0.00
106 ShimizuAiyoshi1981Ex1 optimal 100.00 73.96 83.47 90.50 94.88 97.33 98.64 99.31 99.65 99.83 0.00
107 ShimizuAiyoshi1981Ex2 optimal 225.00 237.00 225.00 225.00 175.00 200.00 212.50 218.75 221.88 1155.9 0.00
108 ShimizuEtal1997a unknown 25.00 23.13 16.89 25.00 58.55 16.89 16.89 66.95 65.34
109 ShimizuEtal1997b optimal 2250.0 2369.0 2269.1 2250.0 2321.7 2250.0 2311.2 2308.6 2426.5 2305.8 0.00
110 SinhaMaloDeb2014TP3 known −18.68 −9.63 −10.36 −10.36 −5.27 −8.63 −5.27 −9.63 −18.73 −18.71 0.00
111 SinhaMaloDeb2014TP6 known −1.21 −1.21 −1.21 −1.21 −1.21 2.32 −1.21 1.52 −1.21 −1.21 0.00
112 SinhaMaloDeb2014TP7 known −1.96 −1.98 −1.96 −1.98 −1.00 −1.98 0.00 0.00 0.00 0.00 0.00
113 SinhaMaloDeb2014TP8 optimal 0.00 50.36 48.58 45.65 0.00 0.00 1225.00 29.31 0.00 388.32 0.00
114 SinhaMaloDeb2014TP9 known 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.32 10.21 0.00
115 SinhaMaloDeb2014TP10 known 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
116 TuyEtal2007 optimal 22.50 24.73 24.48 24.01 25.00 25.00 25.00 25.00 22.50 22.50 0.00
117 Vogel2012 optimal 1.00 0.44 1.78 2.78 4.00 3.67 3.84 3.92 3.96 3.98 0.78
118 WanWangLv2011 optimal 10.62 12.59 13.78 11.25 11.25 10.94 36.25 7.50 17.00 10.63 0.00
119 YeZhu2010Ex42 optimal 1.00 1.09 1.05 8.78 6.11 5.53 5.39 5.19 5.09 6.11 0.05
120 YeZhu2010Ex43 optimal 1.25 22.99 25.25 12.03 10.50 1.00 9.38 9.19 9.09 9.05 0.20
121 Yezza1996Ex31 optimal 1.50 1.50 1.50 1.50 1.50 1.50 1.50 3.51 3.96 3.49 0.00
122 Yezza1996Ex41 optimal 0.50 0.72 0.62 4.00 4.00 4.00 4.00 4.00 4.00 4.00 0.20
123 Zlobec2001a optimal −1.00 0.00 0.50 −0.04 0.00 0.00 −1.00 0.00 0.00 −1.00 0.00
124 Zlobec2001b unknown 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 2. Performance of Algorithm 1 for λ ∈ �.
λ 2−1 20 21 22 23 24 25 26 27

Number of failures 6 3 2 1 5 9 12 14 16
αK = 1 109 111 113 115 112 108 108 109 103
yK ≈ zK 85 83 75 70 65 64 68 82 96
vK ≈ wK 32 45 39 37 37 41 41 38 42
Average iterations 152.3 84.3 129.1 154.3 194.6 288.9 357.4 375.9 451.3
Average time 0.18 0.08 0.13 0.17 0.21 0.27 0.32 0.34 0.40

In the latter case, δ can become negative. This means that both F(x, y) and f (x, y) are
smaller than the values for the point with best F-value known from literature. In the last
column of Table 1, marked by δ∗ we provide the smallest δ-value among those obtained for
all λ ∈ � for the corresponding test problem.

We then report the performance of Algorithm 1 for λ ∈ �. Let K denote the iteration
number, where Algorithm 1 is terminated. The first row in Table 2 shows the number of
examples for which Algorithm 1 failed, i.e. it did not reach ‖�λ(ζK)‖ ≤ ε. Failures were
observed only for a very small portion of the 124 examples. The second row in Table 2
reports for how many examples the last step was a full Newton step, i.e. αK = 1. This
behaviour could be observed for more than 100 examples regardless of λ ∈ �.

We also want to consider whether yK ≈ zK occurs. As mentioned in Remark 3.2, y = z
generates another well-known type of stationary conditions, i.e. (29)–(33) and (35). More-
over, w is a multiplier associated to the lower-level constraint function g in connection to
the lower-level problem, v is associated to the same function g, but in connection to the
upper-level problem. The analogy in the complementarity systems (32) and (33) raises the
questionwhether v andw coincide in some examples. In Table 2, the fifth and sixth rows list
how many examples, for each λ, were solved with yK ≈ zK or vK ≈ wK . The symbol ‘≈ ’
used here means that ‖yK − zK‖/max(1, ‖zK‖) ≤ 0.01 and ‖wK − vK‖/max(1, ‖vK‖) ≤
0.01, respectively. More information about the test runs and time of Algorithm 1 is pro-
vided by the last two rows of Table 2. The average iterations and CPU time (in seconds) are
less than 500 and 0.5 seconds, respectively, over all runs without failure.

Finally, in order to estimate the local behaviour of Algorithm 1 on our test runs, Figure 1
reports on the experimental order of convergence (EOC) defined by

EOC := max
{
log ‖�λ(ζK−1)‖
log ‖�λ(ζK−2)‖ ,

log ‖�λ(ζK)‖
log ‖�λ(ζK−1)‖

}
.

For example, if λ = 2−1, Algorithm 1 solved 10 examples with EOC < 1.1, further 9
examples with 1 ≤ EOC < 1.5, and 105 examples with EOC ≥ 1.5. Similar results were
observed for other λ ∈ �.

More details on the numerical results discussed here can be found in the supplementary
material [21].

Let us close this section with a final observation. It is clearly difficult to check whether
a (test) problem fulfils the assumptions needed in Theorem 3.2 for stating necessary opti-
mality conditions (or the assumptions used in Section 5 to guarantee the CD-regularity of
�λ at some point). Moreover, a great deal of the test problems may not satisfy one or more
of those assumptions. Taking into account the remarkable performance of our approach on
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Figure 1. Experimental order of convergence (EOC) of Algorithm 1 for λ ∈ �.

the large test library, we believe that there is enough space for future research, particularly
for a relaxation of those assumptions.
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