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When deploying a digital media service on the FLAME platform, you are placing it in a responsive 
environment that reacts (using behaviours you have defined) in real-time to metrics of interest to you. 
Considering this behaviour as a continuous cycle of optimization in which your target user experience 
(UX) is negotiated with the most efficient use of available platform resources. This report describes the 
design tools, processes and DevOps infrastructure for experimentation of services on a high 
distribution 5G infrastructure including mobile edge computing. A snapshot of the FLAME 
documentation available to experimenters is presented. In combination with the first version of this 
deliverable which focussed more on the theoretical methods, this document provides the practical 
steps and associated documentation necessary to execute experiments and trials in the FLAME 
environment. 
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1  INTRODUCTION 

What follows is a snapshot of the documentation available to FLAME experimenters, taken in 
December 2018. The documentation is held in the project’s GitLab repository in hypertext form and is 
frequently updated in line with the software itself. Many of the technical aspects are also 
demonstrated in the sandpit interactive tutorial. 

For those who have access, the sources for the documentation below may be found at: 

1. Media Service Developers Guide: https://gitlab.it-
innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-experimenter-
docs/tree/master 

2. Sandpit: https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-
experimenter-docs/blob/master/replicas/Sandpit.md 

3. Barcelona: https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-
experimenter-docs/blob/master/replicas/Barcelona.md  

4. Bristol: https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-
experimenter-docs/blob/master/replicas/Bristol.md  

5. HOWTO Log in to the Sandpit: https://gitlab.it-
innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-int-
infra/blob/integration/docs/howtos/login-to-infra.md  

6. FLAME Packaging and WhoAmI: https://gitlab.it-
innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-
packaging/blob/master/README.md 

7. TOSCA Templating in FLAME: https://gitlab.it-
innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-tosca/tree/master  

8. Getting Started with TOSCA in FLAME: https://gitlab.it-
innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-
tosca/blob/master/documentation/README.md  

9. TOSCA Resource Specification: https://gitlab.it-
innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-
tosca/blob/master/documentation/resource.md  

10. TOSCA Alerts Specification:  https://gitlab.it-
innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-
tosca/blob/master/documentation/alerts.md  

11. TOSCA Best Practices: https://gitlab.it-
innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-
tosca/blob/master/documentation/bestpractices.md  
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12. FLAME CLMC Service API: https://gitlab.it-
innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-clmc/blob/master/docs/clmc-
service.md  

Please note, that due to the semi-automatic conversion process from the online documentation to 
this Word document, not all hyperlinks will work. 

https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-clmc/blob/master/docs/clmc-service.md
https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-clmc/blob/master/docs/clmc-service.md
https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-clmc/blob/master/docs/clmc-service.md
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2 MEDIA SERVICE DEVELOPERS GUIDE 

2.1 AUTHORS  

Author Organisation 
Stephen C Phillips IT Innovation 
Simon Crowle 
Michael Boniface 
Sebastian Robitzsch 

IT Innovation 
IT Innovation 
InterDigital Europe 

© University of Southampton IT Innovation Centre and other members of the FLAME consortium. 

2.2 INTRODUCTION 

When deploying a digital media service on the FLAME platform, you are placing it in a responsive 
environment that reacts (using behaviours you have defined) in real-time to metrics of interest to you. 
Consider this behaviour as a continuous cycle of optimization in which your target user experience 
(UX) is negotiated with the most efficient use of available platform resources. 

 

Experimentation Cycle 

In the figure above we illustrate how user driven engagement with a media service influences the 
demand for service functions (SF) used to deliver it. This in turn will drive changes in the response 
characteristics of the SF (for example, resource usage and response time). The FLAME platform 
continuously monitors and evaluates metrics that reflect this demand, response and resource usage. 
When pre-defined conditions are met (such as a drop below a response time threshold), the FLAME 
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platform will intelligently execute control actions to maintain your requested quality of service, and 
thus sustain high quality user experiences for your clients. This process and the relationship between 
quality of service (QoS) and quality of experience (QoE) is explored in further detail in D3.2 
"Experimental Methodology for Urban-Scale Media Trials", section 2.5.5 in particular. 

Trials of media services from validation partners and from open call 3rd-parties are to validate the 
acceptance and viability of new interactive media services on an innovative Platform making use of 
new networking and management technologies and edge computing. The trials generate knowledge 
for the media service developer, the FLAME Platform operators and developers and the infrastructure 
operators. 

2.3 MEDIA SERVICE NOMENCLATURE 

A "media service" is an interactive service used directly by the end users to consume, create and 
otherwise interact with electronic media. Media services must be integrated with the FLAME Platform 
to make use of the Platform's capabilities (see Develop Service Functions below). To do this, some 
understanding of the way media services are composed and the nomenclature used is necessary. 

 

Entity Relationship Diagram 

Interpreting the figure above in English: a deployed "media service" maps to a "service function chain 
instance" in FLAME. Taking a step back, a "service function chain instance" is a particular deployment 
of a "service function chain" which is described in a TOSCA resource specification document (see Write 
TOSCA resource specification below). A "service function chain" is a composition of one or more 
"service functions" (for example, a web application or a database) and a "service function" logically 
represents a "service function package" which is commonly a virtual machine image. 

When a "service function chain" is deployed by the FLAME orchestrator, a "service function chain 
instance" is created which is composed of "service function endpoints". They map 1-1 onto actual 
virtual instances (VMs or containers). Each virtual instances is hosted on a "cluster" (found in the edge 
nodes of the network and centrally) and each cluster has its own "service router" and is in a "location". 
A deployment of the FLAME Platform commonly contains multiple clusters and will support multiple 
"service function chain instances". 

2.4 EXPERIMENT AND TRIAL PIPELINE 

FLAME provides a pipeline of increasing complexity and realism to support experiments and trials. 

https://ict-flame.eu/wp-content/uploads/sites/3/2018/01/D3.2-Experimental-Methodology-for-Urban-Scale-Media-Trials-v1.1.pdf
https://ict-flame.eu/wp-content/uploads/sites/3/2018/01/D3.2-Experimental-Methodology-for-Urban-Scale-Media-Trials-v1.1.pdf
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Pipeline 

An “experiment” is an evaluation of one or more FLAME platform components, deployed in a city and 
executed under repeatable, controlled conditions during which time any human behaviour related to 
platform usage is ideally emulated using repeatable, machine based methods. 

A “trial” is an evaluation of the use of FLAME media applications and services that use the FLAME 
platform under real-world conditions. Such an evaluation will be conducted with real users in a 
selected city environment using the FLAME platform operating using a repeatable configuration and 
deployment pattern. Significant engagement activities are necessary to get these users. 

Experiments and trials are both sorts of tests. The word “test” is also applied to various software 
engineering techniques (e.g. unit test, integration test, etc.) applied in the development of media 
services. These software tests will be conducted using FLAME-in-a-box and the sandpit deployment in 
a city. 

Engaging your media service with the FLAME platform and methodology will result in the progressive 
generation of knowledge and value for you and others in your eco-system. As described in deliverable 
D3.2, section 2.4.3, this process is comprised of essentially three ‘tiers’ of design, development and 
evaluation: (1) integration, (2) experimentation and (3) user trials. Within each tier your media service 
is exposed to increasingly demanding tests that evaluate both its and the platform’s capabilities to 
deliver the user experience you expect for your end-users. FLAME knowledge generation begins almost 
as soon as you deploy your service for the first time. This first step is marked by an initial packaging of 
your service and its local deployment in the FLAME-in-a-box environment (see FLAME-in-a-box). Here 
you will verify that your packaged SFC, bundled as a collection of virtual machines and a TOSCA 
specification, deploys, initializes and serves correctly using FLAME's advanced platform services and 
SDN based network. 

Next you will start building knowledge through experimental testing – the outcomes of which are to 
determine some initial key performance indicators (KPIs) for your service functions as they operate 
under well-defined workloads. High levels of control can be achieved using a deployment running on 
the FLAME experimentation platform and using simulation techniques to approximate demand. For 
example, you may wish to find out how your service theoretically stands up against a sudden surge of 
thousands of requests. Other more focussed questions that relate to the specifics of your service can 

https://ict-flame.eu/wp-content/uploads/sites/3/2018/01/D3.2-Experimental-Methodology-for-Urban-Scale-Media-Trials-v1.1.pdf
https://ict-flame.eu/wp-content/uploads/sites/3/2018/01/D3.2-Experimental-Methodology-for-Urban-Scale-Media-Trials-v1.1.pdf
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also be synthetically evaluated, such as: what the minimal compute resource requirements are to 
sustain 'X' number of parallel media transcodes at 'Y' frames per second? The FLAME sandpit has been 
designed to host larger scale media service deployments and allow you to analyse the many of the 
behavioural aspects of your service against the simulated behaviour of users (see Sandpit). When you 
execute your experiments, you get a near real-time view of how they are performing through use of 
the CLMC experimentation service (see Integrate with Telegraf and Explore Monitoring Data). 

At the end of your experimentation it is likely you'll have collected quite a lot of data - sufficient to 
analyse - and will be starting to draw tentative hypotheses on the factors that impact QoS under 
specific deployment configurations and (simulated) levels of demand. As a result you may tweak your 
service function configuration with a view to meeting a particular demand or cost baseline. You can 
also specify some initial rules that define thresholds to trigger the addition or removal of SF resources 
in response to user behaviours: this is discussed further in Define Triggers. 

Small scale trials form the beginning of the next tier of knowledge generation. Typically, this 
engagement with real users begins with a small trial group perhaps initially only testing limited aspects 
of your media experience. The metric collection you used previously through experimentation can also 
be re-applied here. In addition to this, since you're working with small numbers of participants, you 
have the opportunity to collect detailed, qualitative data on individual's perceived QoE. This is an 
excellent time to test your hypothetical model of QoS to QoE. Did real-life demand and service 
performance align with corresponding levels in your experimentation? How far can you push resources 
down before UX becomes unacceptable? Are the subjective reports of UX in-line with your 
expectations? At what point does increasing resources available to your service function(s) no longer 
result in a cost-effective improvement of UX? 

Your small scale trials have led to a deeper understanding of how well your digital media service meets 
real-world demand. Moreover, through the analysis of your qualitative data and the corresponding 
changes in QoS metrics, you have generated some knowledge that has empowered you to propose 
and trial intelligent (FLAME) platform behaviours that can, in theory, sustain a high quality UX at urban 
scale. Using FLAME, when you evaluate at urban scale you'll see the platform dynamically respond to 
demand for your service through facilitating behaviours such as net-level indirection, HTTP multi-cast 
response delivery and efficient routing to dynamic content caches. The knowledge you have created 
to optimize user experience will be played out and validated at scale and in a real-world, city context. 

2.4.1 FLAME-in-a-box 

Full documentation 

Once a service function has been developed and packaged some aspects can be tested using FLAME-
in-a-box. 

FLAME-in-a-Box is a VirtualBox-based mini-FLAME platform which allows the testing of: 

1. SFC orchestration templates 

2. SF provisioning 

3. Basic communication tests of deployed SFEs 

All instances that come with the virtual machine image (OVA) are configured to run on a Windows 10 
machine with 4 cores and 8GB of RAM. 

https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-in-a-box/tree/master
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See Validate TOSCA Resource Specification and Packaging below for more information on obtaining 
this component. 

2.4.2 Sandpit 

IT Innovation provide a server (givry.it-innovation.soton.ac.uk) which has the FLAME platform 
deployed in virtual machines to emulate a replica with multiple small data centres such as Bristol. 
Media services should be tested in the sandpit before going to a physical replica. Monitoring data 
collected by the CLMC may be explored and alerts adjusted. The adaptation of the media service to 
those alerts may be experimented with. 

2.4.3 Small trial 

A “small trial” may be around 10 people on site over some short time and might not include all aspects 
of the experiment (could be a focus on part of the experience). 

Your small scale FLAME trials serve to provide a number of important outcomes: 

• Validation of the technical deployment and operation of your media service 

• Generate observations of real use that will drive usability improvements 

• Capture of a selection of QoE data that can be analysed alongside QoS metrics 

If well-planned, small scale trials will generate critical data (and later, knowledge) that will significantly 
improve the quality of your FLAME based media service as well as removing or mitigating risks when 
you come to trial at urban scale. Journalising your trial will capture important, real-world 
considerations that will help you ‘iron-out’ the experimentation process (as well as providing 
important FLAME-based ‘know-how’ to others). Also note some of the limitations of the small-scale 
trial: limited participant numbers are unlikely to push the performance limits of your service; your 
findings are most likely indicative and not generalizable; capturing and analysing ‘close’, qualitative 
observations often demands significant time resources from the experimenter. 

The close observations are tractable in small-scale trials and offer you the opportunity to get a richer 
picture of real user experience of your media service. Observational methods are varied, but well 
documented – the reader is directed to well-known literature on this subject. It is likely that your users 
will uncover assumptions that they (and you) have made about the intended experience and make 
suggestions for improvements. They may also express a wide range of informal, qualitative responses 
during and after the trial: including descriptions of emotional responses and attitudes related to 
current and future use. Careful analysis of this data alongside the quantitative QoS metrics captured 
during your trial can provide guidance to drive improvements – and more focussed, experimental 
questions. 

Small scale user trials are typified by: 

• A small participant cohort (5-10 users) 

• ‘Horizontal’ or ‘vertical’ evaluation scope 

• Naturalistic scenarios 

• Observation and reflection process 

https://www.interaction-design.org/literature/article/how-to-conduct-user-observations
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You should take care to prepare your participants ahead of the trial so that they understand the activity 
in which they are about to take part. Many users will need a naturalistic story or scenario to 
contextualise the activity and anticipated interactions with your media service. The most effective 
method of preparation is a group-based, face-to-face meeting ahead of the trial where the scenario 
can be presented and discussed. Since your time with these participants will be limited, you should 
prioritise those aspects of your evaluation most important to you. For example, if you want to 
understand the overall flow of your users’ UX then you may choose to adopt a ‘horizontal’ evaluation 
in which each user is superficially exposed to all aspects of the interactive experience. Alternatively, 
you may wish to consider ‘key’ aspects of interaction in more depth, in which case a ‘vertical’ 
exploration of just one or two aspects of the whole may be the focus of your scenarios. 

Part of your small scale trial should make time for reflection on the experience by your participants. 
This moment might be sited at the end of the trial, or at regular intervals if this is appropriate. At its 
most basic, you should invite your participants to respond to a simple questionnaire. However, greater 
insights can be garnered by actively reviewing experiences with your participants – for example, by 
discussing particular observations you have made and asking further questions to clarify behaviours. 

2.4.4 Large trial 

A “large trial” would be around 50 people on site, free to use the service as they like. 

Primary outcomes for a FLAME urban scale trial are: 

• Verified, stable deployment and provision of your media service at scale 

• Demonstrable, dynamic management of your media service using FLAME platform behaviours 

• Empirically supported knowledge supporting the benefits of the FLAME platform 

Successive experimentation and small-scale trials have brought you to a position where the 
performance of your media service is at least partially understood and the potential impact on UX 
when running under particular conditions has been hypothesized. Based on this hypothesis, you will 
have specified FLAME platform behaviours that will respond to changes in KPIs (generated by your 
service) that seek to optimize UX and platform resources. The data you collect from an urban scale trial 
will provide evidence (for or against) the efficacy of the integration of your media service and the 
FLAME platform with respect to creating impact for future media internet technology. 

Urban scale trials have a wider reach, in many senses, when compared with the small scale approach 
described above. This much broader scope implies: 

• Qualitative enquiry and analysis methods at scale are not possible 

• User participation is open-ended 

• The evaluation time-frame is significantly longer 

• Data processing and analysis is more challenging 

Widening access to your media service to large groups of the public or an organisation has advantages 
and drawbacks. Certainly, involving large numbers of participants increases the ecological validity of 
any knowledge you may capture and can also provide evidence that help support a case for later 
commercial exploitation. Perhaps one of the greatest challenges you will face as an experimenter when 
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conducting this work is understanding a complex data set that may be generated during unpredictable 
periods. Why? Unlike small-scale evaluations, you will not have control over when (or indeed which) 
participants will take part in the trial or have fine-grained control over their experience of it. This is not 
to say you will have no control: it would be easily possible to adopt A/B type methods for the purposes 
of comparison, if your service is appropriately designed. 

2.5 PRACTICAL STEPS 

We can divide the required work up into practical stages, the tasks required to prepare for: 

• Sandpit 

• Experiments 

• Small trial 

• Large trial 

Many of the tasks are shared between stages so each one is described below just once but with 
reference to the stages as necessary. 

Sandpit Experiments Small trial Large trial 

Do interactive 
tutorial 

Adjust TOSCA spec Obtain ethical approval 
(local / EIB) 

Publicity 

Design for the 
replicator 

Define triggers Register with DPA Engage more participants 

Develop SF Define objectives Sign data sharing 
agreement 

Obtain consent 

(Unit) test SF Define test scenario Prepare participant info 
sheet 

Anticipate issues with 
longer schedule 

Integrate with 
Telegraf 

Define metrics of 
interest 

Prepare consent form Prepare for BYOD 

Integrate with 
WHOAMI 

Agree schedule Engage participants Define triggers 

Integrate with FMS Agree support Obtain consent Define objectives 

Test integration Run experiments Write data management 
plan 

Define test scenario 

Package SF Validate service Prepare mobile devices Define metrics of interest 

Write TOSCA spec Validate usability Adjust TOSCA spec Agree schedule 

Validate TOSCA 
spec 

Collect data for 
reuse 

Define triggers Agree support 

Define triggers Explore data Define objectives Run large trial 

Define objectives Disseminate Define test scenario Observe and record 

Define test 
scenario 

 Define metrics of interest Debrief online 

Define metrics of 
interest 

 Agree schedule Explore data 

Agree schedule  Agree support Disseminate 

https://www.nngroup.com/articles/putting-ab-testing-in-its-place/
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Agree support  Run small trial  

Use sandpit  Observe and record  

Test integration  Debrief in person  

Explore data  Explore data  

  Disseminate  

The tasks are not in a strict time order, but those above the bold line (e.g. "Use sandpit") must be done 
before the emboldened action and those below are done afterwards. 

As many tasks are repeated across stages, the rest of the document groups these tasks into: 

• Media Service Design and Integration 

• Using FLAME Platform Services 

• Trial Preparation 

2.6 MEDIA SERVICE DESIGN AND INTEGRATION 

A media service must be designed (or adapted) for the FLAME platform and integrated with various 
platform services. 

The adaptation and the integration both depend on what the objectives are for an experiment. You 
must consider these questions: 

• What knowledge you hope to gain through the experiment? 

• What knowledge will the FLAME consortium (platform and infrastructure providers) gain 
through the experiment? 

• What are the KPIs for your experiment? What does “success” mean? 

• Is it improving the quality of experience (QoE) of the users? Is it reduction in cost? If so, how is 
that measured? 

• What factors contribute to the KPIs? For instance, QoE may be improved by reducing latency. 
What quality of service (QoS) metrics are important? 

• How is the experiment different to deploying the media service in the cloud (such as Amazon)? 

The answers to these questions will influence the architecture of the media service (where should 
different services and data be placed?), the data to be collected through the CLMC and through other 
routes and the control processes to be implemented. Clearly defining and justifying what is being 
measured and controlled is core to the contribution of knowledge in the FLAME project. It is 
insufficient to simply claim “it works”. 

2.6.1 Do the Interactive Tutorial 

The interactive online tutorial lets you do the following steps for real in the sandpit: 
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• create a TOSCA resource specification; 

• submit the TOSCA resource specification to the orchestrator in the sandpit to deploy a pre-built 
service function package; 

• monitor the status of the orchestrator deployment; 

• access and explore the Chronograf monitoring data; 

• create a TOSCA alerts configuration; 

• submit the alerts configuration to the CLMC; 

• simulate load on the deployed service and see additional instances deployed. 

Before running the tutorial, you must configure your computer to be able to access the tutorial and 
the FLAME platform services, both of which are hosted on the sandpit server at IT Innovation but are 
not directly exposed to the Internet. This means setting up two SSH tunnels. Full instructions can be 
found in the FLAME sandpit access document. 

Once the SSH tunnels are in place, the tutorial is accessed via a web browser on: 

• http://localhost:9000/tutorial.html 

These links are also used:  

• http://localhost:9001/orchestrator/sforch to access the Orchestrator API 

• http://localhost:9001/orchestrator/sfemc to access the SFEMC API 

• http://localhost:9001/clmc/chronograf to access the Chronograf web page 

Full, step-by-step instructions can be found in the tutorial itself. 

2.6.2 Design for the Replicator Environment 

FLAME trials exploring the acceptance and viability of new interactive media services on an innovative 
Platform making use of new networking and management technologies and edge computing. We 
encourage developers to "think big" and imagine a world where such platforms are widespread but 
realistically the FLAME testbeds (sandpit and replicas in cities etc) are limited. Therefore, any trial must 
be designed to fit into and make best use of the environment in which it is to run. This means taking 
account of what edge computing hardware is available and the physical space itself. 

More information about each replica can be found in separate documents: 

• Bristol 

• Barcelona 

2.6.3 Develop Service Functions 

When developing or adapting service functions for FLAME you need to consider: 

• service functions for serving data and service functions for processing data; 

https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-int-infra/blob/integration/docs/howtos/login-to-infra.md
http://localhost:9000/tutorial.html
http://localhost:9001/orchestrator/sforch
http://localhost:9001/orchestrator/sfemc
http://localhost:9001/clmc/chronograf
file:///C:/files/work/repos/OwnCloud/Shared/FLAME/WP6%20-%20Community%20Engagement%20Impact/Brand%20identity%20toolkit/Deliverables/replicas/Bristol.md
file:///C:/files/work/repos/OwnCloud/Shared/FLAME/WP6%20-%20Community%20Engagement%20Impact/Brand%20identity%20toolkit/Deliverables/replicas/Barcelona.md
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• the resource requirements (CPU, disc, memory) and placement of each service function, 
bearing in mind the replicator environment; 

• the communication between service functions; 

• integration of service functions with FLAME platform services (see integration with Telegraf and 
integration with WhoAmI). 

The architecture of your adapted media service should depend on your KPIs. For instance: 

• if the latency of user access to data is important then the architecture should place replicas of 
the relevant data at the edge of the network; 

• if the scenario involves many users uploading video content and the KPI is to reduce network 
traffic then processing elements at the edge of the network could be used to discard low quality 
or otherwise unwanted video; 

• if the scenario is to stream video to many users and the KPI is the cost of the network traffic 
then HTTP (e.g. MPEG-DASH) should be used for the streaming to take advantage of the 
platform's coincidental multicast capability. 

Information on how the platform technical capabilities relate to scenarios can be found in D3.1 “FMI 
Vision, Use cases and Scenarios v1” section 7. 

2.6.4 Integrate with Telegraf 

To make use of the FLAME platform monitoring and alert functions, each service function must report 
monitoring data to the CLMC. This reporting is done through a Telegraf agent, part of "TickStack". 

Integration with Telegraf can be done entirely independently from the CLMC, see Getting started with 
Telegraf. The Telegraf agent can send monitoring data to a variety of destinations. In the CLMC (and 
TickStack) the data is sent to an InfluxDB but alternatives such as Kafka can be used in development if 
useful (see telegraf output plugins). 

There are many plugins for Telegraf to gather data: these are called "input plugins". Experimenters 
should consider gathering data at all levels: 

• from the (virtual) host, such as disc, memory, network and CPU usage; 

• from standard plugins for e.g. application containers, databases, etc; 

• from their specific software to gather unique metrics important to their application. 

Several plugins are automatically configured in a Service Function package. The standard configuration 
to gather metrics about the (virtual) host is: 

[[inputs.cpu]] 
  percpu = true 
  totalcpu = true 
  collect_cpu_time = false 
  report_active = false 
[[inputs.disk]] 
  ignore_fs = ["tmpfs", "devtmpfs", "devfs"] 
[[inputs.diskio]] 

https://ict-flame.eu/wp-content/uploads/sites/3/2017/10/D3.1-FMI-Vision-Use-Cases-and-Scenarios-v1.1.pdf
https://ict-flame.eu/wp-content/uploads/sites/3/2017/10/D3.1-FMI-Vision-Use-Cases-and-Scenarios-v1.1.pdf
https://www.influxdata.com/time-series-platform/telegraf/
https://www.influxdata.com/time-series-platform/
https://docs.influxdata.com/telegraf/v1.8/introduction/getting-started/
https://docs.influxdata.com/telegraf/v1.8/introduction/getting-started/
https://www.influxdata.com/time-series-platform/influxdb/
https://docs.influxdata.com/telegraf/v1.8/plugins/outputs/
https://docs.influxdata.com/telegraf/v1.8/plugins/inputs/
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  devices = ["sda1"] 
[[inputs.kernel]] 
[[inputs.mem]] 
[[inputs.processes]] 
[[inputs.swap]] 
[[inputs.system]] 
[[inputs.net]] 
[[inputs.netstat]] 

To get custom data specific to an experiment into Telegraf, you can develop a Telegraf plugin yourself 
(using Go). Two alternatives are to use the HTTP listener plugin or the Logparser plugin. 

The HTTP Listener plugin opens a TCP port on the machine and listens for HTTP messages with the data 
in: thus it is easy to integrate with shell scripts (using curl) or with custom software using standard 
HTTP APIs. 

The Logparser plugin is configured to read a log file (streamed) and ssearch for patterns in the log 
messages. In this way it extracts pieces of data which are then reformatted to be sent on to Telegraf. 
This was of integration only loosely couples the experiment software to the monitoring system as all 
that is necessary is to output additional log messages. 

Configuration files for Telegraf plugins should be placed in your service function package in 
/etc/telegraf.d/. 

2.6.5 Integrate with WhoAmI 

The WhoAmI API provides the information required for the endpoint to understand which service 
function chain it is a part of and other meta data. The API is automatically called when a deployed 
service function endpoint boots. Much of this data is automatically used by the Telegraf agent to 
contextualise the monitoring data. 

For the media service developer, the WhoAmI API is of importance if there are multiple service 
functions in the service function chain as the information must be used so that one SF can know the 
FQDN of another SF. The packaging process adds in an automated call to the API so a media service 
developer does not need to be concerned with that. 

The results of the automated API call are placed into environment variables which are included in every 
user's profile: 

• WHOAMI_SFC: a string holding the name of the service function chain, e.g. itinnov-chain 

• WHOAMI_SFCI: a string holding the name of the service function chain instance, e.g. itinnov-
chain_1 

• WHOAMI_SF: a string holding the name of the packaged service function, e.g. frontend 

• WHOAMI_CLUSTER: a string holding a platform-wide unique identifier for the cluster/location 
name, e.g. 20-sr-cluster1-cluster 

• WHOAMI_SFIDS: a comma-separated list of strings holding the FQDNs which the endpoint serves, 
e.g. frontend.itinnov-chain.ict-flame.eu,webservice.itinnov-chain.ict-flame.eu 

https://github.com/influxdata/telegraf/blob/release-1.8/plugins/inputs/http_listener/README.md
https://github.com/influxdata/telegraf/blob/release-1.8/plugins/inputs/logparser/README.md
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• WHOAMI_SFE: a unique identifier for the endpoint, e.g. frontend.itinnov-chain.ict-
flame.eu,webservice.itinnov-chain.ict-flame.eu-172.90.4.64 

For example, in the case of a Service Function Chain comprising a "frontend" (e.g. a web application) 
and a "backend" (e.g. a database), the frontend would need to know the FQDN of the backend in order 
to connect to the database. It is the TOSCA resource specification which defines the FQDNs used by 
the instances of the packaged service functions. If the TOSCA resource specification author decided 
that the SFs were to be called webapp.myservice.ict-flame.eu and database.myservice.ict-
flame.eu then the web application needs to look at the WHOAMI_SFIDS environment variable to get 
its own FQDN which in this case is just webapp.myservice.ict-flame.eu. The web application then 
needs to extract the domain from its FQDN (myservice.ict-flame.eu) and prepend database to 
construct the FQDN of the backend. If the frontend had multiple FQDNs then the appropriate one 
would need to be selected somehow before performing this procedure. 

2.6.6 Integrate with FMS 

The FLAME project provide some Foundation Media Services (FMS) which provide functions potentially 
of use to many experiments. It is not mandatory to use the FMS but they may be useful: 

• storage: The storage service allows users to put and retrieve media content through the HTTP 
protocol. 

• quality: The media quality service provides data about media content previously stored in the 
storage service. 

• metabase: The metabase service provides a centralized database of media content and their 
characteristics (meta-data). 

• streaming: The streaming service streams adaptive content to be delivered to the user. 

• transcoding: The transcoding service transcodes and transrates video. 

2.6.7 Package Service Function 

Full documentation 

Before deploying into the FLAME platform, a service function must be made into a package. FLAME 
uses KVM and LXD as the hypervisors on each cluster so a package can be of either sort. The packaging 
tool supports both. Unless there is a particular need for strong isolation, LXD is recommended. 

The packaging of a FLAME service must be conducted outside the FLAME platform. As the resulting 
images are given to the FLAME orchestrator the underlying host environment must be identical to the 
one used for the clusters of the FLAME platform. 

The packaging process comprises 3 steps, all supported by the tool: 

• Create a base image for the service function (which includes various supporting functions and 
services). 

• Add your service function code and any special configuration such as Telegraf plugins. 

• Export the image. 

https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-fms-storage
https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-fms-quality
https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-fms-metabase
https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-fms-streaming
https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-fms-transcoding
https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-packaging/tree/master
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2.6.8 Write TOSCA resource specification 

Full FLAME TOSCA documentation 

Full FLAME TOSCA resource specification documentation 

TOSCA resource specification examples 

FLAME uses two TOSCA files: 

1. The resource specification (this section) which defines the resources required by the 
experiment's service function chain (used by the orchestrator and the CLMC). 

2. The alerts specification (below) which defines alerts (which can cause actions) based on values 
of received monitoring data (used by the CLMC). 

The two files must be consistent with each other (the CLMC checks for this). 

The resource specification defines what service function should be deployed where and in what initial 
state (e.g. placed, booted, connected). The state changes to make (boot, shutdown, etc) in response 
to the alerts are also specified. 

2.6.9 Validate TOSCA Resource Specification and Packaging 

Full documentation 

Once a service function has been developed and packaged some aspects can be tested using FLAME-
in-a-box which also provides experience of the FLAME orchestrator and Service Function Endpoint 
Management and Control (SFEMC). 

FLAME-in-a-Box is a VirtualBox-based mini-FLAME platform which allows the testing of: 

1. SFC orchestration templates 

2. SF provisioning 

3. Basic communication tests of deployed SFEs 

All instances that come with the virtual machine image (OVA) are configured to run on a Windows 10 
machine with 4 cores and 8GB of RAM. 

To obtain FLAME-in-a-box you must: 

1. Sign a licence agreement with InterDigital (IDE) by raising an issue. 

2. Obtain an account on the sandpit from IT Innovation (see Use the Sandpit) by raising an issue. 

3. Download the OVA file using scp givry.it-
innovation.soton.ac.uk:/var/flame/sandbucket/latest flame-in-a-box.tar.gz 
(18GB file) 

The downloaded file needs to be unarchived using e.g. tar xvfz and inside you will find the OVA file 
and documentation. The documentation describes how to spin up the necessary virtual machines using 

https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-tosca/tree/master/documentation
https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-tosca/blob/master/documentation/resource.md
https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-tosca/tree/master/examples
https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-in-a-box/tree/master
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Oracle VirtualBox and how to use the web interfaces of the orchestrator and SFEMC to deploy a simple 
service function chain. 

2.6.10 Define Triggers 

Full FLAME TOSCA documentation 

Full FLAME TOSCA alerts specification documentation 

TOSCA alerts specification example 

As the CLMC makes use of TickStack it includes the Kapacitor component which is a real-time streaming 
data processing engine. It can be configured to process stream and batch data from the InfluxDB 
database (where the monitoring data is stored) and create alerts based on pre-configured thresholds 
or events in the data. Kapacitor integrates with many other systems and in FLAME we provide a simple 
way to configure Kapacitor so that it integrates with FLAME's SFEMC so that, based on the monitoring 
data, service function endpoints may be started and stopped. The alerts specification also makes it 
easy to send HTTP messages to the experiment's service functions to enable custom actions specific to 
an experiment. This alerts specification wraps some of the Kapacitor functionality for the common 
FLAME use cases but the CLMC also provides full access to the underlying Kapacitor API in case it is 
needed. 

Alerts are configured through a YAML-based TOSCA-compliant document according to the TOSCA 
simple profile. This document is passed to the CLMC service (along with the TOSCA resource 
specification), which parses and validates the document and checks its consistency with the resource 
specification. Subsequently, the CLMC service creates and activates the alerts within Kapacitor, then 
registers the HTTP alert handlers specified in the document. 

Three types of alerts are available: 

• threshold - A threshold event type is an alert in which Kapacitor queries InfluxDB on specific 
metric in a given period of time by using a query function such as mean, median, mode, etc. The 
value is then compared against a given threshold. If the result of the comparison operation is 
true, an alert is triggered. 

• relative - A relative event type is an alert in which Kapacitor computes the difference between 
the current aggregated value of a metric and the aggregated value reported a given period of 
time ago. The difference between the current and the past value is then compared against a 
given threshold. If the result of the comparison operation is true, an alert is triggered. 

• deadman - A deadman event type is an alert in which Kapacitor computes the number of 
reported points in a measurement for a given period of time. This number is then compared to 
a given threshold value. If less or equal number of points have been reported (in comparison 
with the threshold value), an alert is triggered. 

2.7 USING FLAME PLATFORM SERVICES 

FLAME Platform Services are available in FLAME-in-a-box (limited), the Sandpit and at the physical 
replicas. The APIs are the same in each case, but there is some variety in access methods and endpoint 
locations: 

https://www.virtualbox.org/wiki/Downloads
https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-tosca/tree/master/documentation
https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-tosca/blob/master/documentation/alerts.md
https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-tosca/tree/master/examples/clmc
https://www.influxdata.com/time-series-platform/kapacitor/
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• Sandpit 

• Bristol 

• Barcelona 

2.7.1 Cross Layer Management and Control 

Full documentation 

CLMC Service API 

The CLMC is built on top of TickStack which comprises the InfluxDB time-series database, the 
Chronograf time-series web dashboard, Kapacitor for processing data in InfluxDB and sending alerts 
based on the data, and Neo4J to providing graphs (i.e. nodes and edges) of the system topology. 
Telegraf is used for sending data to InfluxDB. 

The Neo4J, InfluxDB, Chronograf and Kapacitor APIs are all available to be used and the CLMC wraps 
some features to make them easier to use and provides some additional functionality. 

2.7.2 Orchestrator 

The FLAME platform orchestrator has two endpoints: 

• /orchestrator/sforch to access the Orchestrator web page and API 

• /orchestrator/sfemc to access the Service Function Endpoint Management and Control 
(SFEMC) web page and API 

The orchestrator endpoint provides a facility to upload a TOSCA resource specification for validation 
and deployment and provides a view on what service function chains are deployed. The SFEMC 
endpoint shows the status of the platform's clusters, the service function endpoints and their state 
(along with the ability to change their state) and the service function endpoint identifiers (FQDNs). 

2.8 TRIAL PREPARATION 

2.8.1 Obtain Ethical Approval 

The University of Southampton, as project coordinator, have applied for and received ethical approval 
for all the work to be undertaken in the FLAME project (both by core partners and open call 3rd-
parties). The application for this "blanket" consent may be found in OwnCloud (under "ethics"). Any 
deviation from the activities described in the application must be checked with the project's Ethics 
Board and potentially a further ethics approval application would have to be made. 

Note, as the ethics approval application was made to approve all the activities in one go the application 
document has a few "blanks" in it. Appendix (ii) does not exist: each trial would use a different 
questionnaire or other data capture method such as a focus group (where you would instead 
document some seed questions). Appendix (v) is for the case where someone else owns the 
relationship with the participants. In this case then the trial leader needs to get a simple email from 
the person providing access to the participants to say that they are happy for them to be used in the 
study. 

file:///C:/files/work/repos/OwnCloud/Shared/FLAME/WP6%20-%20Community%20Engagement%20Impact/Brand%20identity%20toolkit/Deliverables/replicas/Sandpit.md
file:///C:/files/work/repos/OwnCloud/Shared/FLAME/WP6%20-%20Community%20Engagement%20Impact/Brand%20identity%20toolkit/Deliverables/replicas/Bristol.md
file:///C:/files/work/repos/OwnCloud/Shared/FLAME/WP6%20-%20Community%20Engagement%20Impact/Brand%20identity%20toolkit/Deliverables/replicas/Barcelona.md
https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-clmc/tree/master
https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-clmc/blob/master/docs/clmc-service.md
https://www.influxdata.com/time-series-platform/influxdb/
https://www.influxdata.com/time-series-platform/chronograf/
https://www.influxdata.com/time-series-platform/kapacitor/
https://neo4j.com/
https://www.influxdata.com/time-series-platform/telegraf/
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Some organisations require researchers to obtain local ethics approval. If this is the case, then the local 
ethics board may be content to see the application made to the University of Southampton board and 
to know that it was approved. 

2.8.2 Prepare Participant Information Sheet 

Part of the ethics approval is the requirement that a specific form of participant information sheet is 
provided to participants. The information sheet needs to be adapted to a trial by adding in the contact 
name(s) of the researchers. 

The information sheet must be given to participants in a language they are fluent in (to ensure they 
comprehend the information). Replication sites will provide translations of the document to one of 
their official languages. 

2.8.3 Prepare Participant Consent Form 

As for the Participant Information Sheet, the approved Consent Form needs minor adaptation to the 
trial. Again, a Spanish translation will be provided. 

2.8.4 Register with Data Protection Authority 

Any company holding personal data must register with their local Data Protection Authority (DPA). You 
need to check that you are registered appropriately. It is important to note that the purpose for which 
you hold data is declared in the registration. Your company may well be registered with the DPA (e.g. 
for managing employee data) but not for research purposes. 

Organisations outside of the EC must also register with a DPA within the EC. e.g. Swiss companies may 
register with the UK or Spanish DPA. 

2.8.5 Sign Data Sharing Agreement 

The General Data Protection Regulation (GDPR) mandates that a bilateral contract must be in place 
between any two parties sharing personal data where one is a data controller and one is a data 
processor. 

In a trial, the data controller is the trial leader and, if any personal data is sent to the media services or 
platform, then the platform host (e.g. University of Bristol or i2CAT) are the data processor. 
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Data sharing 

A standard data sharing contract is being developed and will be provided when ready. 

More detail may be found in D7.1 Data Management Action Plan v1 

2.8.6 Engage Participants 

Engaging participants is hard and needs to be planned well in advance. Local partners may be able to 
help with attracting participants to your trials. 

• Bristol: Aloizio Pereira da Silva aloizio.eisenmann.dasilva@bristol.ac.uk 

• Barcelona: Raul, August, etc barcelona@ict-flame.eu 

According to the ethical constraints, only small financial inducements (e.g. shopping vouchers) may be 
used. 

Combining trials from several parties together may be an effective way of increasing the participant 
engagement and pooling the publicity efforts. 

2.8.7 Write Data Management Plan 

The data management plan for a trial describes the data which will be captured and specifies how it 
will be managed and how open it will be made. D7.1 Data Management Action Plan v1, section 11 
describes the data management plan which trials must complete. A copy of the plan is part of the 
Project Plan template and will be reviewed by the 3rd Party Project Manager. Three classes of data 
management plan are provided: Gold, Silver and Bronze. The distinction being that for Gold all data is 
open, for Silver some data is open and for Bronze no data is open. 

https://ict-flame.eu/wp-content/uploads/sites/3/2018/02/D7.1-Data-Management-Action-Plan.pdf
file:///C:/files/work/repos/OwnCloud/Shared/FLAME/WP6%20-%20Community%20Engagement%20Impact/Brand%20identity%20toolkit/Deliverables/aloizio.eisenmann.dasilva@bristol.ac.uk
file:///C:/files/work/repos/OwnCloud/Shared/FLAME/WP6%20-%20Community%20Engagement%20Impact/Brand%20identity%20toolkit/Deliverables/barcelona@ict-flame.eu
https://ict-flame.eu/wp-content/uploads/sites/3/2018/02/D7.1-Data-Management-Action-Plan.pdf
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The initial data management plan is a bare-bones version, capturing the essential information. A 
complete data management plan must be provided at the end of a trial project. Ideally, datasets should 
be deposited in Zenodo, especially those which are used in publications. 

2.8.8 Agree Schedule 

Trials at the replicator must be agreed according to local rules. The FLAME experiment calendar should 
then be updated to record the activity. 

2.8.8.1 Bristol 

Contact: Aloizio Pereira da Silva aloizio.eisenmann.dasilva@bristol.ac.uk 

Millenium Square in Bristol is privately owned and managed by We The Curious (WTC). It is generally 
completely open to the public but it is not a public space and so additional considerations apply. 

There are two categories of tests we regularly encounter: 

1. Very small test max 1-3 people: For example, testing connectivity in Millennium Square for no 
more than a few hours. In this case it is not necessary to pre-arrange with WTC: just arrive at 
Millenium Square and perform the tests. If there are obstacles in the way due to some other 
(non-UoB) event, then work around them. 

2. More than 3 people or longer term, and a need to e.g. erect a tent: this needs to be agreed with 
WTC for use of the space. This is the formal method of organising use of the space and should 
definitely be done for larger groups of people or events that last more than a few hours. 

2.8.8.2 Barcelona 

Contact: barcelona@ict-flame.eu 

Permission for carrying out experiments on street needs to be requested with at least 3 weeks of 
anticipation. 

 

 

Additional requirements need to be notified (e.g. table, power plugs, etc.) and availability will be 
checked by infrastructure providers. More complex setups may require additional planning and thus 
earlier notification. 

• Testbed supports a single experiment at a time 

• Operation times of the testbed are 9h – 15h 

• During (local) holidays the testbed is not accessible 

• Cabinet and lamp posts are “out of reach” to experimenters 

• Hardware cannot be modified/upgraded 

https://owncloud.it-innovation.soton.ac.uk/index.php/apps/calendar/p/TFJ1E8W8G3KVWIV7/Experiments
file:///C:/files/work/repos/OwnCloud/Shared/FLAME/WP6%20-%20Community%20Engagement%20Impact/Brand%20identity%20toolkit/Deliverables/aloizio.eisenmann.dasilva@bristol.ac.uk
file:///C:/files/work/repos/OwnCloud/Shared/FLAME/WP6%20-%20Community%20Engagement%20Impact/Brand%20identity%20toolkit/Deliverables/barcelona@ict-flame.eu


D3.8: Experimental Methodology for Urban-Scale Media Trials v2 | Public 

Page 26 of 77 

 

© Copyright University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2018/19 

2.8.9 Disseminate 

Experiments and trials offer value to: 

• FLAME experimenters 

• The FLAME project 

• The scientific & technical community 

• City (replica) stakeholders 

Dissemination should be planned well in advance. Think ahead to what these audiences will be 
interested to learn, what should be presented, and how. Capture as much as you can (notes; pictures; 
A/V; interviews): the data captured can also serve to help you understand the trial itself. It is worth 
considering using professional equipment for any audio or video. You must also make sure that the 
consent form presented to trial participants includes information on what will be captured for 
dissemination purposes and the ability for them to opt-out of this aspect should they wish. 
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3 SANDPIT 

The FLAME sandpit is an infrastructure hosted at IT Innovation in Southampton. There is no physical 
access. 

3.1 AUTHORS  

Author Organisation 
Stephen C Phillips IT Innovation 

© University of Southampton IT Innovation Centre and other members of the FLAME consortium. 

3.2 RESOURCES 

The sandpit machine, "givry", has the following specification: 

• PowerEdge R440 Server 

• 2x Intel Xeon Gold 6150 2.7G, 18C/36T, 10.4GT/s 2UPI, 25M Cache, Turbo, HT (165W) 

• 256GB RAM (DDR4-2666) 

• 2x 4TB NLSAS disks (all disks now have 12Gbps bus) 

• 1x 480GB SSD 

• Ubuntu 18.04 (Bionic) 

Of course, not all of this is available to the experimenter. Approximately 20 cores spread over 4 clusters 
is available for service function endpoints. 

3.3 ACCESS 

Full documentation 

To use the sandpit you must first request an account by raising an issue. An account for your 
organisation will be set up and named e.g. "atos". For each person who will use the account in your 
organisation you need to provide the public part of their SSH key. 

You then need to access the sandpit using SSH. It is possible to directly SSH to the sandpit machine and 
execute commands there or set up an SSH tunnel to the machine so that commands can be executed 
locally. By using an SSH tunnel, clients such as web browsers may be connected to the platform 
services, to emulated user equipment and to service function endpoints (deployed media services) 
themselves. 

3.3.1 Scheduling 

On the whole, one experimenter at a time will be scheduled to use the testbed. Reservations may be 
seen in the shared experiment calendar. 

https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-int-infra/blob/integration/docs/howtos/login-to-infra.md
https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-int-infra/issues/97
https://owncloud.it-innovation.soton.ac.uk/index.php/apps/calendar/p/TFJ1E8W8G3KVWIV7/Experiments
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3.4 ENDPOINTS 

Depending on your chosen access method, the endpoints would begin with different domain names 
and ports (see sandpit access). 

Available endpoints (via command line) are then: 

• /clmc/clmc-service to access the CLMC API 

• /clmc/chronograf/v1 to access the Chronograf API 

• /clmc/kapacitor to access the Kapacitor API 

• /clmc/influxdb to access the InfluxDB API 

• /clmc/neo4j to access the Neo4J API 

• /repository to access the image repository 

The following endpoints are also available for use through a web browser: 

• /clmc/chronograf to access the Chronograf web page 

• /clmc/neo4j/browser to access the Neo4J browser web page 

• /orchestrator/sforch to access the Orchestrator API 

• /orchestrator/sfemc to access the SFEMC API 

3.4.1 Image Repository 

The image repository in the sandpit is implemented using WebDAV. 

https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-int-infra/blob/integration/docs/howtos/login-to-infra.md
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4 BARCELONA INFRASTRUCTURE 

4.1 AUTHORS 

Name Affiliation 
August Betzler i2CAT 

© Copyright i2CAT and other members of the FLAME consortium. 

4.2 RESOURCES 

The Barcelona infrastructure offers both compute and radio access network (RAN) to the 
experimenters. The compute nodes available to the experimenters can be split in to two locations: 

• The Main Data Center (DC) at the i2CAT premises located in "Zona Universitaria" Main DC 
(Google Maps) 

• The cabinet server at the edge, deployed in the street cabinet on Pere IV street where 
experiments will take place Street Deployment (Google Maps ) 

The on-street deployment consists of a street cabinet that hosts a compute node and networking 
equipment. The networking equipment is used to connect with the main DC and also with the 4 lamp 
posts that are hosting the RAN elements. For the RAN, a Wi-Fi transceiver implementing the IEEE 
802.11ac standard is installed in each of the Wi-Fi nodes hanging on the lamp posts. The transceivers 
support 2x2 MIMO and allow the experimenters to choose 5 GHz, non-DFS channels for the 
experiments with different channel bandwidths (20/40/80 MHz). 

The RAN performance depends on where the STAs are located and how the APs are configured. For 
single STA connections we observe throughputs of up to 200-250 Mbit/s. This performance can 
degrade with the number of users and ambient conditions, such as weather conditions (e.g. rain) or 
obstacles on the street (e.g. trucks). 

The performance of the wireless backhaul fluctuates between 180 Mbit/s and 220 Mbit/s, depending 
on the link and direction of transmission between two lamp posts. 

Further, as a particular feature of the Barcelona infrastructure, experimenters will be using wireless 
backhauling if they choose to include several lamp posts in their experiments. The wireless mesh 
backhaul is established over directive antennas between pairs of lamp posts, using IEEE 802.11ac 
transceivers as for the RAN. 

The following table indicates the amount of vCPUS, RAM and disk storage (SSD) will be available for 
the experimenters to be used for their experiments: 

Location vCPUs RAM Storage 
Main DC 10 32 GB 200 GB 
Edge 14 32 GB 200 GB 

https://goo.gl/maps/UfHhQWoWtF92
https://goo.gl/maps/UfHhQWoWtF92
https://goo.gl/maps/8yC5oPgFrPM2
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5 UNIVERSITY OF BRISTOL INFRASTRUCTURE 

5.1 AUTHORS 

Name Affiliation 
Aloizio P. Silva University of Bristol 

© Smart Internet Lab, University of Bristol and other members of the FLAME consortium. 

5.2 RESOURCES 

5.2.1 Millennium Square Infrastructure 

FLAME infrastructure in Bristol is part of the 5GUK Test Network that is deployed at Bristol City Centre. 
In particular, at Millennium Square (MS) and We The Curious (WTC) Museum. 

Millennium Square may be explored in Google Street View 

In order to explore and validate the deployment of 5G in an architecture that combines existing 
technologies and innovations, University of Bristol have deployed a rich testbed comprised of several 
networking and computing technologies, interconnecting a significant area in the Bristol city centre. 
This testbed aims to provide a managed platform for the development and testing of new solutions 
delivering reliable and high-capacity services to several applications and vertical sectors here referred 
to as FLAME. 

The University of Bristol’s 5G testbed is a multi-site network connected through a 10km fibre with 
several active switching nodes, that are depicted in Figure 1. 

Figure 1 - Bristol High Level Architecture View:  

https://www.google.com/maps/@51.4495526,-2.6006718,3a,75y,59.19h,80.95t/data=!3m6!1e1!3m4!1sg1FX9LtVABM3gifgyGCZJg!2e0!7i13312!8i6656
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The core network is located at the Smart Internet Lab at the University of Bristol and an extra edge 
computing node is available in another central location, known as Watershed. As shown in Figure 2., 
the access technologies are located in the city centre: Millennium Square for outdoor coverage. 

Figure 2 - Distribution of the testbed access technologies:  

 

A summary of the testbed constituent equipment and capabilities is: 

1. Multi-vendor software-defined networking (SDN) enabled packet switched network 

• Corsa switch (Corsa DP2100) 
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• Edgecore switch (Edgecore AS4610 series & AS5712-54X) 

2. SDN enabled optical (Fibre) switched network 

• Polatis Series 6000 Optical Circuit Switch. 

3. Multi-vendor Wi-Fi 

• SDN enabled Ruckus Wi-Fi (T710 and R720) 

• Nokia Wi-Fi (AC400) (Not Available for FLAME) 

4. Mobile Edge Computing node 

• Dell Power Edge R430 Server 

• Each MEC has available to the experimenter: cores = 15, RAM = 29GB, disk = 900GB 

5.2.2 FLAME Infrastructure 

Figure 3 shows the logical FLAME platform architecture deployed at Millennium Square in Bristol. A set 
of four towers has been allocated to host FLAME Mobile Edge Computing nodes. Each tower has a 
compute node based on OpenStack Ocata NOVA. Each compute node is connected to an EdgeCore 
SDN switch that is connected to a single SDN switch located at WTC. The four compute nodes and the 
edge core SDN switches are connected to the SDN controller based on FloodLight also located at the 
WTC. 

Figure 3 - Bristol FLAME Infrastructure Topology:  

 

Figure 4 - FLAME MEC node specification:  
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5.3 ACCESS TO BRISTOL FLAME PLATFORM 

Below are the instructions about how to access the Bristol FLAME Platform: 

1. Send a request via GitLab asking for Bristol testbed access and assignee should be Aloizio 

2. An answer will be returned that the request is in progress 

3. The VPN credential to access SIA network will be provided by email 

4. The issue in GitLab will be closed after the first access via VPN 
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6 HOWTO LOG IN TO THE SANDPIT 

This document is specific to the FLAME testbed ("sandpit") on IT Innovation's server. 

6.1 AUTHORS  

Author Organisation 
Stephen C Phillips IT Innovation 

© University of Southampton IT Innovation Centre and other members of the FLAME consortium. 

6.2 ACCOUNT ON THE SERVER 

Each organisation that requires access to the test infrastructure will have an account created on the 
server ("givry") using their organisation's short-name, e.g. "atos" (shown as <your-account-name> 
below). You will be asked for the public SSH keys of individuals at your organisation who need to be 
able to login to the account. These keys will be added to the account's ~/.ssh/authorized_keys file 
and they should be relatively new keys of at least 1024 bytes. An individual's key is referred to as 
<your-private-key-file> below. 

GitLab provide useful instructions on generating key-pairs on different platforms. The more complex 
instructions below generally assume you have a linux system as your local machine or that you have 
adapted your Windows machine to behave similarly. Adapting a Windows machine may be done using 
e.g. the full version of the cmder shell (recommended), mingw, cygwin or, for Windows 10 users, the 
Windows Subsystem for Linux. Simple access may be done through an SSH client such as PuTTY. 

To log in to givry, from a machine holding your private key: 

ssh <your-account-name>@givry.it-innovation.soton.ac.uk 

If your private key is somewhere non-standard you can use: 

ssh <your-account-name>@givry.it-innovation.soton.ac.uk -i <your-private-key-file> 

6.3 RECOMMENDED SSH CONFIGURATION 

In summary, put the following into your ~/.ssh/config file: 

Host sandpit 
    HostName givry.it-innovation.soton.ac.uk 
    User <your-account-name> 
    IdentityFile <your-private-key-file> 
    ForwardAgent yes 
 
Host sandpit-tunnels 
    HostName givry.it-innovation.soton.ac.uk 
    User <your-account-name> 
    IdentityFile <your-private-key-file> 
    LocalForward 9000 tutorial:80 

https://docs.gitlab.com/ee/ssh/
http://cmder.net/
http://www.mingw.org/
https://www.cygwin.com/
https://docs.microsoft.com/en-us/windows/wsl/install-win10


D3.8: Experimental Methodology for Urban-Scale Media Trials v2 | Public 

Page 35 of 77 

 

© Copyright University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2018/19 

    LocalForward 9001 platform:80 
 
Host ue20 ue22 ue23 ue24 
    ProxyCommand ssh sandpit -W %h:%p 
    User ubuntu 
    IdentityFile ~/.ssh/flame-ue 
    StrictHostKeyChecking no 
    UserKnownHostsFile=/dev/null 
    ForwardAgent yes 

You will also then need to copy the flame-ue key to your local computer using scp 

sandpit:~/.ssh/flame-ue ~/.ssh. 

With that in place, you can just type: 

• ssh sandpit to log in to givry.it-innovation.soton.ac.uk and the account, hostname and keyfile 
are automatically used. 

• ssh ue20 (or the other ue machines) to access them directly from your local machine. 

• ssh sandpit-tunnels -nNT & to create a background job which instantiates two SSH tunnels: 

• localhost:9000 to access the interactive tutorial 

• localhost:9001 to access the platform services 

All the detail you need on this and more can be found below. 

6.3.1 SSH agent 

We recommend using an ssh-agent to avoid the need for entering your private key password. 

On linux machines: 

eval `ssh-agent` 
ssh-add 

On Windows machine you might use PuTTY and Pagent: 

• Run Pagent and load in your private key. 

• In PuTTY create an ssh connection to <account>@givry.it-innovation.soton.ac.uk. 

• Make sure "Attempt authentication using Pageant" is ticked in the Connection / SSH / Auth 
panel. 

6.3.2 SSH agent forwarding 

You may find it useful to forward your private identity onto givry (and then into the VMs), meaning 
that you are then able to e.g. checkout git repositories using your private personal identity. To do this, 
you must be using an ssh-agent. 

On linux machines: 

ssh -A <your-account-name>@givry.it-innovation.soton.ac.uk 
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On Windows, using PuTTY: 

• Tick "Allow agent forwarding" in the Connection / SSH / Auth panel. 

You can test whether the agent forwarding has worked by typing echo $SSH_AUTH_SOCK once logged 
in. If a socket is shown then you have a link (a socket) back to the ssh-agent on your home machine. 

Using SSH agent forwarding is a security risk in that anyone with root access on the destination 
machine can access the socket and authenticate using your private key. 

6.3.3 Identity on givry 

An SSH identity will have been created for you on givry: a keypair in ~/.ssh/id_rsa. The keypair has 
no password: do not use it for anything outside of givry. 

6.4 ACCESSING THE INTERACTIVE TUTORIAL 

The interactive tutorial is hosted in a virtual machine on givry. To access the tutorial in a web browser 
on your local machine you must make an SSH tunnel through givry to the tutorial machine. 

ssh -nNT -L 9000:tutorial:80 <your-account-name>@givry.it-innovation.soton.ac.uk & 

Or, if you have configured SSH as suggested above, you can do: 

ssh -nNT -L 9000:tutorial:80 sandpit & 

The -nNT options along with the final & allow the ssh connection to be put into the background (use 
e.g. kill %1 to kill it). The -L option sets up the tunnel so that data sent to the local port 9000 (which 
you can change if you wish) is forwarded to port 80 on the tutorial machine (port 80 is the standard 
port for web pages). The tutorial:80 part is in the context of the ssh connection to givry. 

To make this easy, add the following to your SSH config (in ~/.ssh/config): 

Host sandpit 
    HostName givry.it-innovation.soton.ac.uk 
    User <your-account-name> 
    IdentityFile <your-private-key-file> 
    ForwardAgent yes 
 
Host sandpit-tunnels 
    HostName givry.it-innovation.soton.ac.uk 
    User <your-account-name> 
    IdentityFile <your-private-key-file> 
    LocalForward 9000 tutorial:80 
    LocalForward 9001 platform:80 

You will then be able to just type ssh sandpit-tunnels to log in to givry and create the tunnel 
described above to the tutorial machine and a second tunnel to the platform services (see below). If 
you want to just create the tunnels and background the process, then use ssh -nNT sandpit-tunnels 
&. 
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With the recommended tunnel in place, the tutorial is accessible on 
http://localhost:9000/tutorial.html. 

6.5 ACCESSING THE PLATFORM SERVICES 

Access to platform services is via a proxy on givry in a VM named platform. It provides access to 
platform services such as the CLMC, orchestrator and image repository. 

If you are logged into givry (ssh sandpit), the platform services may be accessed through endpoints 
such as: 

• http://platform/clmc/clmc-service to access the CLMC API 

• http://platform/clmc/chronograf/v1 to access the Chronograf API 

• http://platform/clmc/kapacitor to access the Kapacitor API 

• http://platform/clmc/influxdb to access the InfluxDB API 

• http://platform/clmc/neo4j to access the Neo4J API 

• http://platform/repository to access the image repository 

Clients such as curl or wget may be used with APIs under these endpoints, such as: 

wget http://platform/clmc/kapacitor/v1/tasks 
curl http://platform/clmc/influxdb/query?db=mydb --data-urlencode 'q=SELECT * FROM 
"mymeasurement"' 

The following endpoints are also available but as they are (primarily) web interfaces it is better to 
access them via an SSH tunnel (see below): 

• http://platform/clmc/chronograf to access the Chronograf web page 

• http://platform/clmc/neo4j/browser to access the Neo4J browser web page 

• http://platform/orchestrator/sforch to access the Orchestrator API 

• http://platform/orchestrator/sfemc to access the SFEMC API 

To access endpoints via a web browser, first of all an SSH tunnel must be created. To create an SSH 
tunnel to the platform machine through givry, execute the following command on your local machine: 

ssh -nNT -L 9001:platform:80 <your-account-name>@givry.it-innovation.soton.ac.uk & 

Or, if you have configured SSH as suggested above, you can do: 

ssh -nNT -L 9001:platform:80 sandpit & 

By far the easiest option however is to use the SSH configuration described above and then just typing 
ssh sandpit-tunnels. 
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Once the tunnel is in place, you may use a local client such as a web browser to access the endpoints. 
Replacing platform in the addresses above with localhost:9001. For instance, on your local machine 
you can type e.g. http://localhost:9001/clmc/chronograf into the address bar of a web browser to 
access the Chronograf web interface (the 9001 here must match the port number chosen in the SSH 
tunnel command). 

The tunnel also lets you interact with API endpoints from the command line on your local machine. For 
instance get the list of Kapacitor alerts execute: 

wget http://localhost:9001/clmc/kapacitor/v1/tasks 

With the recommended tunnel in place, the API endpoints are: 

• http://localhost:9001/clmc/clmc-service to access the CLMC API 

• http://localhost:9001/clmc/chronograf/v1 to access the Chronograf API 

• http://localhost:9001/clmc/kapacitor to access the Kapacitor API 

• http://localhost:9001/clmc/influxdb to access the InfluxDB API 

• http://localhost:9001/clmc/neo4j to access the Neo4J API 

• http://localhost:9001/repository to access the image repository 

The web page endpoints are: 

• http://localhost:9001/clmc/chronograf to access the Chronograf web page 

• http://localhost:9001/clmc/neo4j/browser to access the Neo4J browser web page 

• http://localhost:9001/orchestrator/sforch to access the Orchestrator API 

• http://localhost:9001/orchestrator/sfemc to access the SFEMC API 

6.6 ACCESSING THE USER EQUIPMENT (EMULATED CLIENTS) 

Experimenters are also able to access "emulated UEs" (emulated user equipment) which take the role 
of users' mobile phones. They are virtual machines which the experimenter can log into and install 
client software or load emulation scripts in order to execute tests on their deployed service function 
chain. The UE machines are named ue20, ue22, ue23 and ue24 (with their numbers matching the 
clusters they directly connect to). 

In a similar way to accessing the platform services, the emulated clients can be accessed via through 
commands typed into a remote SSH shell or by opening an SSH tunnel and then using a local command 
line or local clients such as web browsers. The difference is that two SSH hops are required rather than 
one. 

All the UE machines have an "ubuntu" account which has a "flame-ue" key as an authorized_key. The 
flame-ue private and public keys may be found in your ~/.ssh folder on givry. 

The simple way to log in e.g. ue20 is as follows: 
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ssh <your-account-name>@givry.it-innovation.soton.ac.uk -i <your-private-key-file> 
ssh ue20 -i ~/.ssh/flame-ue 

The ubuntu user on the UEs can become root with sudo su and your client software may then be 
installed. 

To make access easier you first need to copy the flame-ue key to your local machine. At this point we 
assume you have added the Host sandpit entry to your local ~/.ssh/config file. If not then you 
must specify username, hostname and keyfile as apprpriate. From your local machine do: 

scp sandpit:~/.ssh/flame-ue ~/.ssh 

Add the following snippet to your ~/.ssh/config file on your local machine: 

Host ue20 ue22 ue23 ue24 
    ProxyCommand ssh sandpit -W %h:%p 
    User ubuntu 
    IdentityFile ~/.ssh/flame-ue 
    StrictHostKeyChecking no 
    UserKnownHostsFile=/dev/null 
    ForwardAgent yes 

This entry (in combination with the one for Host sandpit) lets you do e.g. ssh ue20 and you will log 
in to ue20 with no further steps. The way it works is that when you execute ssh ue20 the 
ProxyCommand runs first and makes an SSH connection to sandpit and tunnels through there to 
execute the SSH to ue20. Your local SSH client directly authenticates with ue20 (hence the need for the 
local copy of the flame-ue key). 

With this configuration in place it is then possible to tunnel through the this 2-hop SSH connection to 
directly access a port on the UE. For instance, to access a service listening on port 8080 deployed on 
ue20, the following tunnel may be used: 

ssh -nNT -L 9002:localhost:8080 ue20 & 

In a web browser on your local machine you can then go to http://localhost:9002 and the traffic will 
reach port 8080 on ue20. 

6.7 MORE ON SSH TUNNELLING 

For more information on SSH tunnelling, we suggest these references: 

• https://blog.trackets.com/2014/05/17/ssh-tunnel-local-and-remote-port-forwarding-explained-
with-examples.html 

• https://superuser.com/questions/96489/an-ssh-tunnel-via-multiple-hops/565167 
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7 FLAME PACKAGING AND WHOAMI 

7.1 AUTHORS AND REVIEWERS 

Name Email 
Sebastian Robitzsch sebastian.robitzsch@interdigital.com 
Tomas Aliaga tomas.aliaga@martel-innovate.com 

© InterDigital and other members of the FLAME consortium. 

7.2 PREREQUISITES 

The packaging of a FLAME service must be conducted outside the FLAME platform. As the resulting 
images are given to the FLAME orchestrator the underlying host environment must be identical to the 
one used for the clusters of the FLAME platform. 

Download and install a Ubuntu 16.04 64bit environment either on a bare-metal machine or as a virtual 
instance using a hypervisor of your choice. It is recommended to ensure the CPU support for 
virtualisation is passed up to the virtual packaging instance. The installation script is notifying you when 
this setting is not available. In case virtualisation cannot be enabled for whatever reason the 
installation of the base image will take significantly longer. 

7.3 INSTALLATION OF HYPERVISORS 

FLAME uses LXD or KVM as their hypervisors on each cluster, though focus is shifted towards LXD for 
now. To mirror this environment into your local packaging instance the install-hypervisors.sh 
script is taking care of that. Simply become root (sudo su) and execute the script: 

~flame-packaging/$ ./install-hypervisors.sh 

If virtualisation is not available on your system, the script will warn you about that. However, you can 
safely ignore this warning and it does not prevent you from packaging your service functions. Note, in 
case of no virtualisation support, it is highly recommended to only package LXD-based containers. 

7.4 CREATE VIRTUAL INSTANCES 

Within the packaging folder the supported hypervisors are given as sub folders within the necessary 
scripts can be found to create, export and delete an image. 

7.4.1 KVM 

The script to create a new KVM-based virtual instance is kvm/create.sh. To create a KVM-based image 
the operating system must be installed first. The script checks whether or not a base image has been 
already created for the selected Linux flavour. If not, the script creates a new instance of name base-
<LINUX_FLAVOUR> which is then cloned every time a new service function is packaged using this 
particular Linux flavour. During installation please ensure you are setting the hostname to base with 

http://releases.ubuntu.com/xenial/
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username flame (password of your choice). Once the base image has been created the script clones 
the VM using the name given as the second parameter to kvm/create.sh. 

7.4.2 LXD 

Within lxd/ the script create.sh resides which allows to create a new container based on an existing 
mint version from the LXD images repository. The script takes two parameters as input, i.e., the Linux 
flavour and the name of the container. The container name - similar to the VM name - represents the 
service function. 

The list of available container images can be retrieved by executing 

lxc image alias list images: 

To pre-filter the images based on the flavour append the flavour name, e.g.: 

lxc image alias list images:debian 

Simply choose your preferred Linux verison and provide the entire flavour/version/architecture name 
as the first argument to the create.sh script, e.g.: 

~flame-packaging/lxd/$ ./create.sh debian/9/amd64 <SF_NAME> 

7.5 EXPORTING 

The exporting of a packaged service function shuts down the image and creates a TAR ball from the 
qcow2 image. The TAR ball must be either placed on a publicly reachable web server or it must be given 
to the FLAME platform provider so that it can be placed on the FLAME service function image server. 

7.5.1 KVM 

To export a KVM image invoke 

~flame-packaging/kvm/$ ./export-vm.sh <VM_NAME> 

where <VM_NAME> is the name of the virtual instance given when creating the VM with kvm/create.sh. 
If you cannot remember the exact name call export.sh without any parameters; the script lists all 
available images. 

7.5.2 LXD 

To export an LXD image invoke: 

~flame-packaging/lxd/$ ./export <C_NAME> 

where <C_NAME> is the name of the container when it was created with lxd/create.sh. The resulting 
TAR ball which is given to the FLAME orchestrator is placed in /var/local/lxd/. 

https://uk.images.linuxcontainers.org/
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7.6 DELETING 

To delete an image entirely from the hypervisors and from the disk a dedicated script for each 
hypervisor is located in the respective folders. 

7.6.1 KVM 

To clean up a packaged instance from KVM kvm/delete.sh is available and takes care of all that. 

7.6.2 LXD 

To clean up the packaged LXD container lxd/delete.sh is available and takes care of all that. 

7.7 HOW TO PACKAGE 

The packaging of a newly created virtual instance can be done in various ways but always follows the 
same principles. Either use ssh/scp or the CLI of the hypervisor (virsh console, lxc exec, or lxc 
file). 

The packaging toolchain pre-configures the virtual instance with various systemd services which are 
required to query the platform about "who am I", disables some network interface card related 
mechanisms to prevent corrupted packets, and configures telegraf responsible for monitoring. The 
three services are called flame-whoami, flame-ethtool and flame-monitoring. 

flame-ethtool is started straight after networking becomes available. Once flame-ethtool has 
completed its tasks successfully flame-whoami is started which tries to obtain all the relevant whoami 
values from SFEMC for 600s. If it cannot complete this task in the given time window it will be stopped 
by systemd. Once it has completed its tasks all configured media-component services will be started. 

Any media component which is packaged in an instance must be started as a systemd service after the 
flame-whoami service has finished. An example service file is given in 
fs/lib/systemd/system/media-component.service and looks as follows: 

[Unit] 
Description=flame-myservice 
After=flame-monitoring.service 
Requires=flame-monitoring.service 
 
[Service] 
EnvironmentFile=/etc/profile.d/flame_env.sh 
ExecStart=/usr/bin/env bash -c 'echo "invoke your service here, Testing WHOAMI_SFC
: $WHOAMI_SFC"' 
 
[Install] 
WantedBy=multi-user.target 

Simply replace ExecStart with your binary/script which should be started and call the file according 
to your service function, e.g. frontend.service. Copy the systemd service file to /lib/systemd/system 
inside the instance (using scp or lxc) 

lxc file push my-app.service $LXD_NAME/lib/systemd/system/ 
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Then run the following two commands to activate your service at system start-up: 

~$ lxc exec $LXD_NAME -- systemctl daemon-reload 
~$ lxc exec $LXD_NAME -- systemctl enable <SERVICE_FUNCTION>.service 

where <SERVICE_FUNCTION> stands for the name of the systemd service file. 

7.8 TEST SYSTEMD SERVICE INTEGRATION 

In order to test the correct start of your packaged service functions the SFEMC whoami unit test can 
be re-used. To use this unit test please follow the instructions in the unit-test folder. Simply ensure 
your service function has been packaged as an LXD container and is given as the 
LXD_SERVICE_FUNCTION argument to the bash scripts. The order of execution would be: 

~$ ./prepare.sh <LXD_SERVICE_FUNCTION> 
~$ ./run.sh <LXD_SERVICE_FUNCTION> 

After the run.sh script has finished (and reported the unit test has "PASSED") check the status of your 
systemd service by invoking 

~$ lxc exec <LXD_SERVICE_FUNCTION> -- systemctl status <SERVICE_FUNCTION> 

Once all checks are done run 

~$ ./cleanup.sh <LXD_SERVICE_FUNCTION> 

which reverts some settings in the SF container (and cleans up the system from other things - more 
info see the README.md inside the unit-tests folder). 

7.9 TEST SYSTEMD SERVICE FUNCTION SERVICE INTEGRATION 

In order to test the correct start of your packaged service functions the SFEMC whoami unit test can 
be re-used. How to use this unit test please follow the instructions in the unit-test folder unit-
tests/README.md. 

file:///C:/files/work/repos/OwnCloud/Shared/FLAME/WP3%20-%20Platform%20Engineering/Deliverables/D3.8%20Experimental%20Methodology%20V2/packaging/unit-tests/README.md
file:///C:/files/work/repos/OwnCloud/Shared/FLAME/WP3%20-%20Platform%20Engineering/Deliverables/D3.8%20Experimental%20Methodology%20V2/unit-tests/README.md
file:///C:/files/work/repos/OwnCloud/Shared/FLAME/WP3%20-%20Platform%20Engineering/Deliverables/D3.8%20Experimental%20Methodology%20V2/unit-tests/README.md
file:///C:/files/work/repos/OwnCloud/Shared/FLAME/WP3%20-%20Platform%20Engineering/Deliverables/D3.8%20Experimental%20Methodology%20V2/unit-tests/README.md
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8 TOSCA TEMPLATING IN FLAME 

8.1 AUTHORS 

Authors Organisation 
Kay Haensge InterDigital 
Sebastian Robitzsch InterDigital 
Nikolay Stanchev University of Southampton, IT Innovation Centre 
Michael Boniface University of Southampton, IT Innovation Centre 

8.2 GENERAL 

The repository contains documentation, example scripts and a validator for TOSCA templates, 
deployable in the FLAME environment. 

8.3 VERSIONS 

Within this repository we use the versioning system to keep track of changes and reaching certain 
milestones. An always stable version is on the master branch. However, the latest version of 
documents, examples etc. is located at the dev branch. 

Furthermore, we provide fixed versions in product context. For this please refer to a tagged version. 

8.4 GETTING STARTED WITH TOSCA 

A Getting Started Guide and TOSCA snippets for best practices are available inside the Documentation 
folder. 

8.5 VALIDATION 

To validate written TOSCA templates against the FLAME definition file, we offer a Validator (which is 
basically the OpenStack TOSCA-Parser). 

8.6 CONTRIBUTING 

The content is all open source and we are very happy to accept contributions. Please refer to 
CONTRIBUTING.md for details. 

mailto:kay.hansge@interdigital.com
http://www.interdigital.com/
mailto:sebastian.robitzsch@interdigital.com
http://www.interdigital.com/
mailto:ns17@it-innovation.soton.ac.uk
http://www.it-innovation.soton.ac.uk/
mailto:mjb@it-innovation.soton.ac.uk
http://www.it-innovation.soton.ac.uk/
https://gitlab.it-innovation.soton.ac.uk/FLAME/flame-tosca/tree/master
https://gitlab.it-innovation.soton.ac.uk/FLAME/flame-tosca/tree/dev
https://gitlab.it-innovation.soton.ac.uk/FLAME/flame-tosca/tags
file:///C:/documentation/README.md
file:///C:/documentation/bestpractices.md
file:///C:/documentation/README.md
file:///C:/validator
file:///C:/files/work/repos/OwnCloud/Shared/FLAME/WP3%20-%20Platform%20Engineering/Deliverables/D3.8%20Experimental%20Methodology%20V2/CONTRIBUTING.md
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9 GETTING STARTED WITH TOSCA IN FLAME 

The document will help to understand the way of how services can be deployed in a virtualised 
environment using template files and policies such as TOSCA (or HOT). Several Use Cases exist and will 
be described further in detail within this project. 

9.1 THE THEORY OF TOSCA 

The file descriptors used to specify the deployment of media services are based on TOSCA YAML and 
TOSCA NFV descriptors. The idea is to take advantage of these standard specifications and definitions 
provided by them. TOSCA offers the possibility to define virtual instance templates and their nodes to 
be deployed using an Orchestrator. Characteristics of these machines can be defined in the TOSCA 
template (e.g., nodes, properties, hardware and software requirements, policies, machine status, etc.). 

9.1.1 Introduction to Standard specifications 

TOSCA YAML describes a topology template with a graph of node templates, modelling these nodes 
and establishing relationships among them. It provides a type system of node types describing the 
blocks for constructing service templates. TOSCA NFV (Network Functions Virtualization) template 
provides a data model using TOSCA specification. The idea is to define all the topics related with the 
network virtualization in terms of equipment, protocols, servers and others, available to be located in 
a data centre or network. Both kind of documents, TOSCA YAML and NFV, need to deploy their 
functionalities using an Orchestrator. The Orchestrator is in charge of to collect the requirements of 
the templates, interpret these requirements and to leave ready these requirements. In order to clarify 
the concepts of deploy specifications, it can be the installation of a database in a virtual machine, start 
the database and provide the network requirements to be accessed remotely. 

9.1.2 Methodology for the definition of the specification language 

To capture the requirements of services within a TOSCA-compliant specification, we have created two 
files. One includes the FLAME-specific definitions of the field-names and its values for the actual TOSCA 
template. The second file is the template itself which captures the deployment services in possibly 
different locations. Within the template, a placement policy is applied with triggers to check the status 
of the overall system against single nodes or a group of nodes. If the triggers can be fired, a specific 
action towards the SFEMC will be sent to perform according to the template. 

Per release, the definitions might be expanded, however the orchestrator and the SFEMC need to 
understand the meaning of the template definitions. 

9.2 FLAME-BASED TOSCA DEFINITIONS 

9.2.1 Resource Specification 

TOSCA is being used to define required resources on the FLAME platform (such as nodes and their 
state in certain conditions) as well as to define the alerts ruleset on the CLMC side. The use of such a 
resource template is further described in the Resource Description document. 

http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/
http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/tosca-nfv-v1.0.html
file:///C:/documentation/resource.md
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9.2.2 Alerts Specification 

The TOSCA alert specification is used to configure alerts within CLMC. Alerts are configured through a 
YAML-based TOSCA-compliant document according to the TOSCA simple profile. This document is 
passed to the CLMC service, which parses and validates the document. Subsequently, the CLMC service 
creates and activates the alerts within Kapacitor, then registers the HTTP alert handlers specified in 
the document. The specification is compliant with the TOSCA policy template as implemented by the 
Openstack tosca parser. 

The use of such a resource template is further described in the Alerts Description document. 

9.2.3 FAQ and Best Practices 

To get a fast insight, we encourage you to have a look into the FAQ or Best Practices document. 

9.3 REFERENCES 

1. TOSCA Simple Profile YAML 

2. TOSCA NFV 

3. RFC5545 

file:///C:/documentation/alerts.md
file:///C:/documentation/faq.md
file:///C:/documentation/bestpractices.md
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/
http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/tosca-nfv-v1.0.html
https://tools.ietf.org/html/rfc5545#page-35
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10 TOSCA RESOURCE SPECIFICATION 

10.1 GENERAL INFORMATION 

In the following, the resource specification fields are described within their specific context. 

The resource definition file includes these types and its definitions which are the base for defining a 
TOSCA resource specification. 

10.1.1 Metadata 

Within metadata we specify further information for that particular template. A name of the template, 
the author(s) as well as the template version have to be specified. 

A Media Service is constructed using a Service Function Chain. The service function chain defines the 
relationships between service functions. The service function chain has a unique, but arbitrary string 
which is chosen by the media service provider and represents the entire chain. 

Via servicefunctionchain we specify this identification of the deployed service chain. 

10.1.2 Nodes 

Within TOSCA you can specify your own type of node_type. These types have to derive from 
tosca.nodes. 

We have defined an own type of SF Endpoint type and applies for every node which can be 
managed/orchestrated by FLAME's orchestrator or the SFEMC: eu.ict-

flame.nodes.ServiceFunction. 

The node name can be arbitrary. Generally, the node is containing the required capabilities (e.g., 
required number of CPUS, memory size, etc.) as well properties (type of hypervisor and where to get 
the image file from). These properties are also enhanced with the FQDN information element. It allows 
to register the intended Fully Qualified Domain Names for that service and its components. This field 
contains a list of strings, hence multiple FQDNs may be registered. 

Note: The FQDNs are associated to that particular FLAME platform. Please make sure, only FQDNs with 
the managed domain suffix can be registered. 

10.1.3 Policies 

TOSCA Policies are a type of requirement that govern use or access to resources which can be 
expressed independently from specific applications (or their resources) and whose fulfillment is not 
discretely expressed in the application’s topology (i.e., via TOSCA Capabilities) [[1][tosca_yaml]]. 

Such policies consist of a specified type, some properties and trigger(s). However, it is recommended 
to have only one trigger per policy. 

10.1.3.1 Policy types 

We have defined several types of policies: 

file:///C:/files/work/repos/OwnCloud/Shared/FLAME/WP3%20-%20Platform%20Engineering/Deliverables/definitions/flame_definitions.yaml
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• Initial Policy: A special policy type and is defined as eu.ict-flame.policies.InitialPolicy 
and these labeled policies shall be processed only at the beginning of the run-time of the 
deployement. It determines the first targeted state for the deployed nodes. 

• State Change Policy: The second policy is defined as eu.ict-flame.policies.StateChange 
and represents the FLAME-specific lifecycle management. Within this type of policies, we allow 
the change of the lifecycle of a node on a given cluster/location. The policy is active when the 
condition results in true value from the event source. 

• Internet Access Policy: This policy is defined as eu.ict-
flame.policies.InternetAccessPolicy and specifies whether certain FQDNs are permitted 
(whitelisted), or prohibited (blacklisted). 

For the condition within the StateChange policy, we specify the following syntax: 

  constraint: <event source>::<event identifier> 

The <event source> is the remote processor for event notification, such as the clmc. The <event 
identifier> is the event ID which is specified in the remote processor's script/database processing 
unit. In case of wrong or unknown <event source> or <event identifier>, the SFEMC ignores such 
information elements. 

In the case when using the CLMC as data processing unit, the reference has to point to a valid trigger 
entry on the alerts specification. 

10.1.3.2 Triggers 

A trigger definition defines the event, condition, and action that is used to "trigger" a policy it is 
associated with. 

These action elements point to the deployed clusters and the targeted SF Endpoint state, using the 
FQDN as identifier. As example, the trigger is fired and the described application, located in a London 
cluster, is set to the lifecycle state connected. 

  ... 
  <node_name>: 
    <cluster>: <target state value> 
        ... 
    ... 
  ... 

10.1.3.3 State Types 

States are self-defined life-cycle keywords for the work with the State Machine inside the SFEMC. 

 

SFEMC State Machine 
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In particular, inside the TOSCA template only the following target states are allowed to be set as 
action inside the triggers: 

• eu.ict-flame.sfe.state.lifecycle.connected: Push the Endpoint to CONNECTED state 

• eu.ict-flame.sfe.state.lifecycle.booted: Push the Endpoint to BOOTED state 

• eu.ict-flame.sfe.state.lifecycle.placed: Push the Endpoint to PLACED state 

• eu.ict-flame.sfe.state.lifecycle.non_placed: Push the Endpoint to NON_PLACED state 
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11 TOSCA ALERTS SPECIFICATION 

11.1 DESCRIPTION 

This document outlines the TOSCA alert specification used to configure alerts within CLMC. Alerts are 
configured through a YAML-based TOSCA-compliant document according to the TOSCA simple profile. 
This document is passed to the CLMC service, which parses and validates the document. Subsequently, 
the CLMC service creates and activates the alerts within Kapacitor, then registers the HTTP alert 
handlers specified in the document. The specification is compliant with the TOSCA policy template as 
implemented by the Openstack tosca parser. See an example below on github.com/openstack/tosca-
parser. 

11.1.1 TOSCA Alerts Specification Document 

The TOSCA Alerts Specification Document consists of two main sections - metadata and policies. Each 
policy contains a number of triggers. A trigger is a fully qualified specification for an alert. Full 
definitions and clarification of the structure of the document is given in the following sections. An 
example of a valid alert specification document will look like: 

tosca_definitions_version: tosca_simple_profile_for_nfv_1_0_0 
 
description: TOSCA Alerts Configuration document 
 
imports: 
- flame_clmc_alerts_definitions.yaml 
 
metadata: 
  servicefunctionchain: companyA-VR 
 
topology_template: 
 
  policies: 
    - high_latency_policy: 
        type: eu.ict-flame.policies.Alert 
        triggers: 
          high_latency: 
            description: This event triggers when the mean network latency in a gi
ven location exceeds a given threshold (in ms). 
            event_type: threshold 
            metric: network.latency 
            condition: 
              threshold: 45 
              granularity: 120 
              aggregation_method: mean 
              resource_type: 
                flame_location: watershed 
              comparison_operator: gt 
            action: 
              implementation: 
                - flame_sfemc 
                - http://companyA.alert-handler.flame.eu/high-latency 
 
    - low_requests_policy: 

https://github.com/openstack/tosca-parser/blob/master/toscaparser/tests/data/policies/tosca_policy_template.yaml
https://github.com/openstack/tosca-parser/blob/master/toscaparser/tests/data/policies/tosca_policy_template.yaml
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        type: eu.ict-flame.policies.Alert 
        triggers: 
          low_requests: 
            description: | 
              This event triggers when the last reported number of requests for a 
given service function 
              falls behind a given threshold. 
            event_type: threshold 
            metric: storage.requests 
            condition: 
              threshold: 5 
              granularity: 60 
              aggregation_method: last 
              resource_type: 
                flame_sfp: storage 
                flame_sf: storage-users 
                location: watershed 
              comparison_operator: lt 
            action: 
              implementation: 
                - flame_sfemc 
                - http://companyA.alert-handler.flame.eu/low-requests 
 
    - requests_diff_policy: 
        type: eu.ict-flame.policies.Alert 
        triggers: 
          increase_in_requests: 
            description: | 
              This event triggers when the number of requests has increased relati
ve to the number of requests received 
              120 seconds ago. 
            event_type: relative 
            metric: storage.requests 
            condition: 
              threshold: 100  # requests have increased by at least 100 
              granularity: 120 
              aggregation_method: mean 
              resource_type: 
                flame_sfp: storage 
                flame_sf: storage-users 
                flame_server: watershed 
                flame_location: watershed 
              comparison_operator: gte 
            action: 
              implementation: 
                - flame_sfemc 
          decrease_in_requests: 
            description: | 
              This event triggers when the number of requests has decreased relati
ve to the number of requests received 
              120 seconds ago. 
            event_type: relative 
            metric: storage.requests 
            condition: 
              threshold: -100  # requests have decreased by at least 100 
              granularity: 120 
              aggregation_method: mean 
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              resource_type: 
                flame_sfp: storage 
                flame_sf: storage-users 
                flame_location: watershed 
              comparison_operator: lte 
            action: 
              implementation: 
                - flame_sfemc 
 
    - missing_measurement_policy: 
        type: eu.ict-flame.policies.Alert 
        triggers: 
          missing_storage_measurements: 
            description: This event triggers when the number of storage measuremen
ts reported falls below the threshold value. 
            event_type: deadman 
            # deadman trigger instances monitor the whole measurement (storage in 
this case), so simply put a star for field value 
            # to be compliant with the <measurement>.<field> format 
            metric: storage.* 
            condition: 
              threshold: 0  # if requests are less than or equal to 0 (in other wo
rds, no measurements are reported) 
              granularity: 60  # check for for missing data for the last 60 second
s 
              resource_type: 
                flame_sfp: storage 
            action: 
              implementation: 
                - http://companyA.alert-handler.flame.eu/missing-measurements 

11.2 METADATA 

The metadata section specifies the service function chain ID, for which this alerts specification relates 
to. The format is the following: 

metadata: 
    servicefunctionchain: <sfc_id> 

11.3 POLICIES 

The policies section defines a list of policy nodes, each representing a fully qualified configuration for 
an alert within CLMC. Each policy must be of type eu.ict-flame.policies.Alert. The format is the 
following: 

topology_template: 
 
    policies: 
        - <policy_identifier>: 
            type: eu.ict-flame.policies.Alert 
            triggers: 
                <event identifier>: 
                  description: <optional description for the given event trigger> 
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                  event_type: <threshold | relative | deadman> 
                  metric: <measurement>.<field> 
                  condition: 
                    threshold: <critical value - semantics depend on the event typ
e> 
                    granularity: <period in seconds - semantic depends on the even
t type> 
                    aggregation_method: <aggregation function supported by InfluxD
B - e.g. 'mean'> 
                    resource_type: 
                      <CLMC Information Model Tag Name>: <CLMC Information Model T
ag Value> 
                      <CLMC Information Model Tag Name>: <CLMC Information Model T
ag Value> 
                      ... 
                    comparison_operator: <logical operator to use for comparison, 
e.g. 'gt', 'lt', 'gte', etc. 
                  action: 
                    implementation: 
                      - <flame_sfemc or HTTP Alert Handler URL - receives POST mes
sages from Kapacitor when alerts trigger> 
                      - <flame_sfemc or HTTP Alert Handler URL - receives POST mes
sages from Kapacitor when alerts trigger> 
                      ... 
        ... 

11.3.1 Policy definitions 

• policy_identifier - policy label which MUST match with a StateChange policy in the TOSCA 
resource specification document submitted to the FLAME Orchestrator. 

• event_identifier - the name of the event that MUST match with the constraint event name 
referenced in the TOSCA resource specification document submitted to the FLAME 
Orchestrator. 

• event_type - the type of TICK Script template to use to create the alert - more information will 
be provided about the different options here, but we assume the most common one will be 
threshold. Currently, the other supported types are relative and deadman. 

• metric - the metric to query in InfluxDB, must include measurement name and field name in 
format <measurement>.<field>. The only exception is when a deadman event type is used - 
then the <field>is not used, but the format is still the same for consistency. Therefore, using 
<measurement>.* will be sufficient. 

• threshold 

– for threshold event type, this is the critical value the queried metric is compared to. 

– for relative event type, this is the critical value the difference (between the current 
aggregated metric value and the past aggregated metric value) is compared to. 

– for deadman event type, this is the critical value the number of measurement points 
(received in InfluxDB) is compared to. 

• granularity - period in seconds 
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– for threshold event type, this value specifies how often should Kapacitor query InfluxDB 
to check whether the alert condition is true. 

– for relative event type, this value specifies how long back in time to compare the 
current metric value with. 

– for deadman event type, this value specifies how long the span in time (in which the 
number of measurement points are checked) is. 

• aggregation_method - the function to use when querying InfluxDB, e.g. median, mean, etc. This 
value is only used when the event_type is set to threshold or relative. 

• resource_type - provides context for the given event - key-value pairs for the global tags of the 
CLMC Information Model. This includes any of the following: "flame_sfp", "flame_sf", 
"flame_server", "flame_location". Keep in mind that flame_sfc and flame_sfci are also 
part of the CLMC Information Model. However, filtering on these tags is automatically 
generated and added to all InfluxDB queries by using the metadata values from the alerts 
specification. Therefore, including flame_sfc and flame_sfci in the resource_type is considered 
INVALID. For more information on the global tags, please check the monitoring documentation. 

• comparison_operator - the logical operator to use for comparison - lt (less than), gt (greater 
than), lte (less than or equal to), etc. 

• implementation - a list of the URL entries for alert handlers to which alert data is sent when the 
event condition is true. If the alert is supposed to be sent to SFEMC, then instead of typing a 
URL, use flame_sfemc - the configurator will generate the correct SFEMC URL. 

11.3.2 Event types 

• threshold - A threshold event type is an alert in which Kapacitor queries InfluxDB on specific 
metric in a given period of time by using a query function such as mean, median, mode, etc. If 
the granularity is less than or equal to 60 seconds, then every measurement point is monitored 
(improving performance), thus, ignoring the aggregation function. This value is then compared 
against a given threshold. If the result of the comparison operation is true, an alert is triggered. 
For example: 

  high_latency: 
    description: This event triggers when the mean network latency in a given 
location exceeds a given threshold (in ms). 
    event_type: threshold 
    metric: network.latency 
    condition: 
      threshold: 45 
      granularity: 120 
      aggregation_method: mean 
      resource_type: 
        flame_location: watershed 
      comparison_operator: gt 
    action: 
      implementation: 
        - flame_sfemc 
        - http://companyA.alert-handler.flame.eu/high-latency 

https://gitlab.it-innovation.soton.ac.uk/FLAME/flame-clmc/blob/integration/docs/monitoring.md
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This trigger specification will create an alert task in Kapacitor, which queries the latency field in the 
network measurement on location watershed every 120 seconds and compares the mean value for 
the last 120 seconds with the threshold value 45. If the mean latency exceeds 45 (gt operator is used, 
which stands for greater than), an alert is triggered. This alert will be sent through an HTTP POST 
message to the URLs listed in the implementation section. 

The currently included InfluxQL functions are: 

    `"count", "mean", "median", "mode", "sum", "first", "last", "max", "min"` 

The comparison operator mappings are as follows: 

    "lt" : "less than", 
    "gt" : "greater than", 
    "lte" : "less than or equal to", 
    "gte" : "greater than or equal to", 
    "eq" : "equal", 
    "neq" : "not equal" 

• relative - A relative event type is an alert in which Kapacitor computes the difference between 
the current aggregated value of a metric and the aggregated value reported a given period of 
time ago. The difference between the current and the past value is then compared against a 
given threshold. If the result of the comparison operation is true, an alert is triggered. For 
example: 

decrease_in_requests: 
  description: | 
    This event triggers when the number of requests has decreased relative to the 
number of requests received 
    120 seconds ago. 
  event_type: relative 
  metric: storage.requests 
  condition: 
    threshold: -100 
    granularity: 120 
    aggregation_method: mean 
    resource_type: 
      flame_sfp: storage 
      flame_sf: storage-users 
      flame_location: watershed 
    comparison_operator: lte 
  action: 
    implementation: 
      - flame_sfemc 

This trigger specification will create an alert task in Kapacitor, which compares the mean requests 
value reported in measurement storage with the mean value received 120 seconds ago. If the 
difference between the current and the past value is less than or equal to (comparison operator is lte) 
-100, an alert is triggered. Simply explained, an alert is triggered if the requests current value has 
decreased by at least 100 relative to the value reported 120 seconds ago. The queried value is 
contextualised for service function storage-users (using service function package storage) at location 
watershed. Triggered alerts will be sent through an HTTP POST message to the URLs listed in the 
implementation section. 
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Note: if X is the current timestamp, the current aggregated value refers to the period {X-granularity; X} 
while the past aggregated value refers to the period {X - 2*granularity; X - granularity} 

• deadman - A deadman event type is an alert in which Kapacitor computes the number of 
reported points in a measurement for a given period of time. This number is then compared to 
a given threshold value. If less or equal number of points have been reported (in comparison 
with the threshold value), an alert is triggered. 

For example: 

```yaml 
missing_storage_measurements: 
    description: This event triggers when the number of storage measurements repor
ted falls below the threshold value. 
    event_type: deadman 
    metric: storage.* 
    condition: 
      threshold: 0 
      granularity: 60 
      resource_type: 
        flame_sfp: storage 
    action: 
      implementation: 
        - flame_sfemc 
``` 

This trigger specification will create an alert task in Kapacitor, which monitors the number of points 
reported in measurement storage and having tag sfp set as storage. This value is computed every 60 
seconds. If the number of reported points is less than or equal to 0 (no points have been reported for 
the last 60 seconds), an alert will be triggered. Triggered alerts will be sent through an HTTP POST 
message to the URLs listed in the implementation section. 

Notes: 

• metric only requires the measurement name in this event type and doesn't require a field 
name. 

• the trigger specification still needs to be consistent with the parsing rule for metric: 
<measurement>.<field>. 

• simply putting a * for field is sufficient, e.g. storage.*. 

• even if you put something else for field value, it will be ignored - only the measurement name is 
used 

• aggregation_method is not required in this event type, any values provided will be ignored. 

• comparison operator is not required in this event type, any values provided will be ignored. 

11.3.2.1 Alert messages 

Every alert handler registered in a trigger action --> implementation section receives an alert message 
when the trigger event condition is true. This alert message is sent using an HTTP POST request to the 
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URL of the alert handler. The alert message is generated by Kapacitor and, currently, clmc-service has 
limited control over it. An alert message follows this format: 

{ 
    "message": "TRUE", 
    "id": "<trigger_id>", 
    "level": "CRITICAL", 
    "duration": "<integer for the duration of alert - nanoseconds>", 
    "previousLevel": "<the previous level of the alert>", 
    "details": "<a context string with info on what triggered the alert>", 
    "time": "<timestamp of the alert occurrence>", 
    "data": { 
        "series": [ 
            { 
                "name": "<measurement name of the alert metric>", 
                "tags": { 
                    "<tag name>": "<tag value>" 
                }, 
                "columns": [ 
                    "<column name>" 
                ], 
                "values": [ 
                    [ 
                        "<values of each column name>" 
                    ] 
                ] 
            } 
        ] 
    } 
} 

• message - currently, this is always set to "TRUE" 

• id - trigger ID as defined in the alert specification document 

• level - the level of the alert; currently all alerts that trigger have their level set as CRITICAL 

• previousLevel - the previous level of the alert 

• details - a string in the format "db=,sfc=,sfci=,policy=" providing context of the alert 

• duration - integer, duration of the alert in nanoseconds 

• time - timestamp of the point that triggered the alert 

• data - describes the point(s) that triggered the alert 

• data.series.name - the name of the measurement 

• data.series.tags - (OPTIONAL) key-value pairs for all measurement tags 

• data.series.columns - list of column names 

• data.series.values - list of list of values, each nested list represents a measurement point 
and the values for each column 
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12 TOSCA BEST PRACTICES 

12.1 GENERAL RESOURCE SPECIFICATION 

All elements in <...>-brackets have to be set by the TOSCA author. Please keep in mind, the ... only 
indicate that there may be more elements within the same level. 

12.1.1 Header files 

12.1.1.1 Definition and Description 

At the top of every TOSCA template, we define the tosca_definitions_version. After that a 
description of the deployed service function chain can be inserted. Via imports the TOSCA template 
becomes a FLAME valid template. This as to be specified, otherwise the Orchestrator cannot parse the 
given instances or policies. 

12.1.1.2 Metadata 

Within metadata we specify further information for that particular template. A name of the template, 
the author(s) as well as the template version have to be specified. 

A Media Service is constructed using a Service Function Chain. The service function chain defines the 
relationships between service functions. The service function chain has a unique, but arbitrary string 
which is chosen by the media service provider and represents the entire chain. 

Via servicefunctionchain (Service Function Chain) we specify the identification of the deployed 
service chain. 

tosca_definitions_version: tosca_simple_profile_for_nfv_1_0_0 
description: | 
  <Please insert a template description> 
 
metadata: 
  template_name: <Name the given Deployment scenario> 
  template_author: <Add the authors> 
  template_version: <Versioning> 
  servicefunctionchain: <Specify the servicefunctionchain name> 
 
# Import own definitions of nodes, capabilities and policy syntax. 
imports: 
  - flame_definitions-<version>.yml 
 
# Starting the template 
 
topology_template: 
  node_templates: 
    ... 
  policies: 
    ... 
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12.1.2 Node Template 

Nodes require a unique name (the Fully Qualified Domain Name or “FQDN”) to be identified in groups 
or in policies. Please make sure, only FQDNs with the managed domain suffix can be registered. 

Note: The name of the SF package must not be altered after exporting (see packaging procedures). 

topology_template: 
  node_templates: 
    ... 
    <node name>: 
      type: eu.ict-flame.nodes.ServiceFunction 
      capabilities: 
        host: 
          properties: 
            num_cpus: <num_cpus> 
            mem_size: <mem_size> MB 
            disk_size: <disk_size> GB 
      properties: 
        hypervisor: <kvm,lxc> 
        image_url: <image_url> 
        fqdn: 
          - <FQDN_x> 
          - <FQDN_y> 
    ... 

12.1.3 Policies 

Policies are inside of topology_template and are written as a list. 

12.1.3.1 Initial Policy 

The initial policy is of type eu.ict-flame.policies.InitialPolicy and is executed only once, when 
the template is deployed. 

topology_template: 
  ... 
  ## Policies 
  policies: 
    - <init policy name>: 
        type: eu.ict-flame.policies.InitialPolicy 
        description: <Describe the initial policy> 
        triggers: 
          <trigger_name>: 
            condition: 
              constraint: initialise 
            action: 
              <node_name_a>: 
                 <cluster_location_1>: eu.ict-flame.sfe.state.lifecycle.connected 
                 <cluster_location_2>: eu.ict-flame.sfe.state.lifecycle.booted 
              <node_name_b>: 
                <cluster_location_2>: eu.ict-flame.sfe.state.lifecycle.connected 
                ... 
              ... 
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12.1.3.2 StateMachine Policy 

The state machine policy allows placement and state change of particular nodes, based on triggers 
from external sources. The type is eu.ict-flame.policies.StateChange. 

Note: It is recommended to use only one trigger per policy. 

topology_template: 
  ... 
  policies: 
    - <policy_name>: 
        type: eu.ict-flame.policies.StateChange 
        description: <Describe the policy> 
        triggers: 
          check_trigger: 
            description: <Describe the trigger> 
            condition: 
              constraint: clmc::<the remote method to be called, returns only true
/false> 
              period: <integer value, unit: seconds> 
            action: 
              <node_name_a>: 
                 <cluster_location_1>: eu.ict-flame.sfe.state.lifecycle.connected 
                 <cluster_location_2>: eu.ict-flame.sfe.state.lifecycle.booted 
              <node_name_b>: 
                <cluster_location_2>: eu.ict-flame.sfe.state.lifecycle.connected 
             ... 

12.1.3.3 Internet Access Policy 

This policy is of type eu.ict-flame.policies.InternetAccessPolicy. The method determines 
whitelisting or blacklisting of given FQDNs. 

topology_template: 
  ... 
  policies: 
    - allowed_fqdns: 
        type: eu.ict-flame.policies.InternetAccessPolicy 
        description: <Describe the policy> 
        properties: 
          method: <permit|prohibit> 
          fqdn: 
            - <external_FQDN_a> 
            - <external_FQDN_b> 
            - <external_FQDN_c> 

12.2 ALERTS SPECIFICATION 

12.2.1 Header files 

12.2.1.1 Definition and Description 

Similar to the resource specification document, the alert configuration document starts with a 
definition of the TOSCA version, an optional description and an import statement. Do keep in mind 
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that the FLAME CLMC validator will currently accept the document only if the TOSCA version used is 
tosca_simple_profile_for_nfv_1_0_0. An import is also required (flame_clmc_alerts_definitions.yaml) 
in order to make the TOSCA document a valid alert configuration document. The description is 
optional. 

tosca_definitions_version: tosca_simple_profile_for_nfv_1_0_0 
 
description: Alerts configuration for a simple media service. 
 
imports: 
  - flame_clmc_alerts_definitions.yaml 

12.2.1.2 Metadata 

Again, similar to the resource specification document, the alert configuration has a metadata section, 
where the author of the document specifies the service function chain the document is written for. 
The author MUST ensure that the servicefunctionchain metadata matches the values in the metadata 
of the resource specification document. 

metadata: 
  servicefunctionchain: <service function chain identifier> 

12.2.2 Policies 

The alert triggers and actions are defined withing a list of TOSCA policies. Each policy must be of type 
eu.ict-flame.policies.Alert for the document to be accepted by the CLMC validator. 

topology_template: 
 
  policies: 
    - <policy identifier>: 
        type: eu.ict-flame.policies.Alert 
        ... 
    - <policy identifier>: 
        type: eu.ict-flame.policies.Alert 
        ... 
    - <policy identifier>: 
        type: eu.ict-flame.policies.Alert 
        ... 
    ... 

12.2.2.1 Alert Policy 

Alert policy - eu.ict-flame.policies.Alert - is the only type of policy that is allowed in the alerts 
configuration document. Each state change policy in the resource specification document MUST match 
with an alert policy from the alerts configuration. In addition, the trigger identifier (alert configuration) 
for such policy must also match with the constraint label (resource specification). The trigger must also 
have flame_sfemc as its entry in the action section so that an alert is properly sent to SFEMC when 
needed. 

12.2.2.2 Threshold trigger 

The threshold type defines the simplest type of trigger which compares a given metric with a given 
value. However, it has two implementations that depend on the granularity period of the trigger, which 
is how often a check is made. If the granularity period is less than or equal to 60 seconds, then every 
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measurement that's reported to CLMC is monitored, therefore, the original frequency of checking will 
depend on how often the measurements are being reported. For periods greater than 60 seconds, an 
aggregation method must be supplied (default is mean), then every X seconds the reported points are 
aggregated and the result is compared against the threshold. 

topology_template: 
 
  policies: 
    - <policy identifier>: 
        type: eu.ict-flame.policies.Alert 
        triggers: 
          <trigger identifier>: 
            description: An example threshold trigger; description is optional. 
            event_type: threshold 
            metric: <measurement>.<field> 
            condition: 
              threshold: <threshold value> 
              granularity: <check period in seconds> 
              aggregation_method: <aggregation method - ignored if granularity per
iod is <= 60 seconds> 
              resource_type: 
                <CLMC Information Model Tag Name>: <CLMC Information Model Tag Val
ue> 
                ... 
              comparison_operator: <comparison operator - gt, gte, lt, lte, eq, ne
q> 
            action: 
              implementation: 
                - flame_sfemc 
                - <custom HTTP endpoint to POST alert messages to> 
                ... 

12.2.2.3 Relative trigger 

The relative type defines a trigger, which compares the current aggregated value of a metric against 
the value this metric had X seconds ago. The difference between the current value and the past value 
is then compared against a given threshold. Aggregation method must be supplied for this type of 
trigger, the default being mean again. Keep in mind that this event type is query intensive, therefore, 
choosing a higher granularity period is sensible, e.g. 60 seconds. 

topology_template: 
 
  policies: 
    - <policy identifier>: 
        type: eu.ict-flame.policies.Alert 
        triggers: 
          <trigger identifier>: 
            description: An example relative trigger; description is optional. 
            event_type: relative 
            metric: <measurement>.<field> 
            condition: 
              # the difference between the current aggregated value and the previo
us aggregated value is compared against this threshold 
              threshold: <threshold value>  
              granularity: <check period in seconds, also represents how long back 
in time the current value is compared to> 
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              aggregation_method: <aggregation method - required, default is 'mean
'> 
              resource_type: 
                <CLMC Information Model Tag Name>: <CLMC Information Model Tag Val
ue> 
                ... 
              comparison_operator: <comparison operator - gt, gte, lt, lte, eq, ne
q> 
            action: 
              implementation: 
                - flame_sfemc 
                - <custom HTTP endpoint to POST alert messages to> 
                ... 

12.2.2.4 Deadman trigger 

The deadman type defines a trigger, which checks the number of measurement points reported to 
CLMC and compares the result against a given threshold. An alert will be sent if the number of reported 
points is less than or equal to the threshold value. A good use case is to check if any points are reported 
at all per given period of time. This trigger type does not require aggregation method or comparison 
operator. Since the alert will monitor a measurement instead of a specific field, the metric property 
can be specified in the format <measurement>.* in order to preserve the <measurement>.<field> 
format. 

topology_template: 
 
  policies: 
    - <policy identifier>: 
        type: eu.ict-flame.policies.Alert 
        triggers: 
          <trigger identifier>: 
            description: An example relative trigger; description is optional. 
            event_type: deadman 
            metric: <measurement>.* 
            condition: 
              threshold: <threshold value>  
              granularity: <check period in seconds, also represents how long the 
span in time (in which the number of measurement points are checked) is > 
              resource_type: 
                <CLMC Information Model Tag Name>: <CLMC Information Model Tag Val
ue> 
                ... 
            action: 
              implementation: 
                - flame_sfemc 
                - <custom HTTP endpoint to POST alert messages to> 
                ... 

12.2.2.5 Resource type 

The resource type section can be used to contextualise the alert for a given service function using the 
CLMC information model tags. For example, by including flame_sfp, only measurements for the given 
service function package will be taken into account. 

resource_type: 
  flame_sfp: storage  # only take into account measurements for the 'storage' serv
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ice function package 
  ... 

12.2.2.6 Trigger action 

The trigger action section defined the HTTP endpoints where and alert message will be POSTed to. If 
an alert is supposed to be sent to FLAME SFEMC, then use flame_sfemc as entry in the implementation. 
CLMC will automatically generate the required URL for you. Alternatively, an alert could be configured 
to send the alert messages to custom HTTP endpoints only, instead of sending to SFEMC, too - simply 
exclude flame_sfemc from the list of entries. 

action: 
  implementation: 
    - flame_sfemc 
    - <custom HTTP endpoint to POST alert messages to - e.g. http://sfc-A.ict-flam
e.eu/alerts> 
    ... 
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13 FLAME CLMC SERVICE DOCUMENTATION 

13.1 AUTHORS 

Authors Organisation 
Nikolay Stanchev University of Southampton, IT Innovation Centre 

13.2 DESCRIPTION 

This document describes the CLMC service and its API endpoints. The CLMC service is implemented 
using the Python web framework called Pyramid. It offers different API endpoints such as GraphAPI 
for calculating round trip time, CRUD API for service function endpoints configuration data and Alerts 
API for creating and subscribing to alerts in Kapacitor. All source code, tests and configuration files of 
the service can be found in the src/service folder. 

13.3 NOTES 

• Interacting with Chronograf - use http://<clmc-host>/chronograf. You will be asked to 
enter connection details. The only input that you need to edit is the Connection String - set it to 
http://<clmc-host>:8086 and click the Add Source button. 

• Interacting with Kapacitor - the Kapacitor HTTP API documentation can be found here: 
https://docs.influxdata.com/kapacitor/v1.4/working/api/ Notice that all of the URL paths 
provided by Kapacitor are already namespaced using base path /kapacitor/v1. Therefore, no 
other prefix is required when interacting with the Kapacitor application running on the clmc 
container, e.g. 
http://<clmc-host>/kapacitor/v1/tasks as described in the Kapacitor API reference. 

• Interacting with InfluxDB - the InfluxDB HTTP API documentation can be found here: 
https://docs.influxdata.com/influxdb/v1.5/tools/api/ In order to interact with the InfluxDB 
application running on the clmc container, prefix all URL paths in the documentation with 
/influxdb, e.g. 
http://<clmc-host>/influxdb/query 

• Interacting with neo4j - use http://<clmc-host>/neo4j/browser/. This will open the neo4j 
browser, which lets you interact with the graph using Cypher queries (if necessary). 

• Interacting with clmc-serivce - the API endpoints listed in the following sections relate to direct 
interactions with the clmc-service application server (listening on port 9080). If interacting with 
the clmc container, all of the listed below URIs must be prefixed with /clmc-service so that the 
nginx reverse proxy server (listening on port 80) can forward to requests to the correct 
application, e.g. 
http://<clmc-host>/clmc-service/alerts?sfc={service function chain 
id}&sfci={service function chain instance id}&policy={policy 

id}&trigger={trigger id}. 

mailto:ns17@it-innovation.soton.ac.uk
http://www.it-innovation.soton.ac.uk/
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13.4 ALERTS API ENDPOINTS 

• GET /alerts?sfc={service function chain id}&sfci={service function chain instance 
id}&policy={policy id}&trigger={trigger id} 

  This API method can be used to retrieve the generated alert task and alert topic identifiers 
during the processing of an alerts specification document. These identifiers can then be used to 
interact with the Kapacitor HTTP API for further configuration or modification of alerts - 
https://docs.influxdata.com/kapacitor/v1.4/working/api/. 

– Request: 

  Expects a URL query string with the request parameters - sfc, sfci, policy and trigger. 
The given parameters must match the values used in the alerts specification document. 
Otherwise, a wrong ID will be returned. 

– Request URL Examples: 

  /alerts?sfc=MSDemo&sfci=MSDemo-
premium&policy=requests_diff&trigger=low_requests 

  /alerts?sfc=SimpleMediaService&sfci=SimpleMediaService-
1&policy=rtt_deviation&trigger=increase_in_rtt 

– Response 

  The response of this request is a JSON-formatted content, which contains the task and 
topic identifiers, along with the Kapacitor API endpoints to use for configuring the given 
task, topic and the respective handlers. 

  Returns a 400 Bad Request if the URL query string parameters are invalid or otherwise 
incorrect. 

– Response Body Example: 

  { 
    "task_identifier": "094f23d6e948c78e9fa215528973fb3aeefa5525898626c
9ea049dc8e87a7388", 
    "topic_identifier": "094f23d6e948c78e9fa215528973fb3aeefa5525898626
c9ea049dc8e87a7388", 
    "task_api_endpoint": "/kapacitor/v1/tasks/094f23d6e948c78e9fa215528
973fb3aeefa5525898626c9ea049dc8e87a7388", 
    "topic_api_endpoint": "/kapacitor/v1/alerts/topics/094f23d6e948c78e
9fa215528973fb3aeefa5525898626c9ea049dc8e87a7388", 
    "topic_handlers_api_endpoint": "/kapacitor/v1/alerts/topics/094f23d
6e948c78e9fa215528973fb3aeefa5525898626c9ea049dc8e87a7388/handlers" 
} 

• POST /alerts 

  This API method can be used to send an alert specification document, which is then used by the 
CLMC service to create alert tasks and subscribe alert handlers to those tasks in Kapacitor. For 
further information on the alert specification document, please check the CLMC Alert 
Specification Documentation. 

file:///C:/files/work/repos/OwnCloud/Shared/FLAME/WP3%20-%20Platform%20Engineering/Deliverables/D3.8%20Experimental%20Methodology%20V2/AlertsSpecification.md
file:///C:/files/work/repos/OwnCloud/Shared/FLAME/WP3%20-%20Platform%20Engineering/Deliverables/D3.8%20Experimental%20Methodology%20V2/AlertsSpecification.md
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– Request: 

  Expects two YAML-formatted files in the request - one referenced with ID alert-spec 
representing the TOSCA alert specification document and one referenced with ID 
resource-spec representing the TOSCA resource specification document. The alert 
specification document is then parsed with the openstack TOSCA parser 
(https://github.com/openstack/tosca-parser/tree/master/toscaparser) and validated 
against the CLMC alerts specification schema (again check documentation for more info 
on this). The TOSCA resource specification document is used only for consistency 
verification between the two documents - ensuring that they refer to the same service 
function chain, as well as making sure that there is at least one trigger alert in the alerts 
specification that relates to a state change policy in the resources specification. 

– Example for sending a request with curl: 

  curl -F "alert-spec=@alert-specification.yaml" -F "resource-
spec=@resource-specification.yaml" http://localhost:9080/alerts 

  where alert-specification.yaml is the path to the alerts specification file and resource-
specification.yaml is the path to the resource specification file. 

– Response: 

  The response of this request is a JSON-formatted content, which contains the SFC and 
SFC instance identifiers from the alert specification along with any errors encountered 
when interacting with Kapacitor. 

  Returns a 400 Bad Request if the request does not contain a yaml file referenced with 
ID resource-spec. 

  Returns a 400 Bad Request if the resource specification file is not a TOSCA-compliant 
valid YAML file. 

  Returns a 400 Bad Request if the request does not contain a yaml file referenced with 
ID alert-spec. 

  Returns a 400 Bad Request if the alert specification file is not a valid YAML file. 

  Returns a 400 Bad Request if the alert specification file cannot be parsed with the 
TOSCA parser. 

  Returns a 400 Bad Request if the alert specification file fails validation against the CLMC 
alerts specification schema. 

  Returns a 400 Bad Request if there are inconsistencies between the alert specification 
and resource specification files - e.g. referring to different service function chain and 
service function chain instance identifier or if there is no alert in the alerts specification 
related to a given state change policy in the resources specification. 

– Response Body Example: 

  { 
  "msg": "Alerts specification has been successfully validated and forw
arded to Kapacitor",  

file:///C:/files/work/repos/OwnCloud/Shared/FLAME/WP3%20-%20Platform%20Engineering/Deliverables/D3.8%20Experimental%20Methodology%20V2/AlertsSpecification.md
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  "service_function_chain_id": "<sfc_id>", 
  "service_function_chain_instance_id": "<sfc_instance_id>" 
} 

  If the CLMC service encounters any errors when creating alerts and handlers in 
Kapacitor, they will be reported in the response as two lists of error objects. The 
triggers_specification_errors list contains any errors encountered while trying to create 
the alert tasks; the triggers_action_errors list contains any errors encountered while 
trying to subscribe the HTTP handlers to the created tasks. 

  { 
  "msg": "Alerts specification has been successfully validated and forw
arded to Kapacitor",  
  "service_function_chain_id": "<sfc_id>", 
  "service_function_chain_instance_id": "<sfc_instance_id>", 
  "triggers_action_errors": [ 
          { 
              "trigger": "<trigger ID the error is related to>", 
              "handler": "<handler URL the error is related to>", 
              "policy": "<policy ID the error is related to>", 
              "error": "<error message returned from Kapacitor>" 
          } 
  ], 
  "triggers_specification_errors": [ 
        { 
              "trigger": "<trigger ID the error is related to>", 
              "policy": "<policy ID the error is related to>", 
              "error": "<error message returned from Kapacitor>" 
        } 
  ] 
} 

13.5 GRAPH API ENDPOINTS 

• Assumptions 

– For each service function, there is a field/fields from which the service function 
response time (service delay) can be derived. 

– For each service function, there is a field/fields from which an average estimation of the 
size of a request to this service function can be derived. 

– For each service function, there is a field/fields from which an average estimation of the 
size of a response from this service function can be derived. 

– All the aforementioned fields reside in a single measurement. 

• POST /graph/temporal?from={timestamp-seconds}&to={timestamp-seconds} 

  This API method sends a request to the CLMC service to build a graph related to the time range 
between the from and to timestamps (URL query parameters). 

• Request: 
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  Expects a JSON-formatted request body which declares the service function chai
n and service function chain instance for which the graph is built. 
The request should also include the service functions that must be included in 
the graph along with the measurement name, response time field, request size f
ield and 
response size field for each service function. The declared fields could be in
flux functions across multiple fields. 

• Request Body Example: 

  ```json 
{ 
  "service_function_chain": "MSDemo", 
  "service_function_chain_instance": "MSDemo_1", 
  "service_functions": { 
    "nginx": { 
      "response_time_field": "mean(response_time)", 
      "request_size_field": "mean(request_size)", 
      "response_size_field": "mean(response_size)", 
      "measurement_name": "nginx" 
    }, 
    "minio": { 
      "response_time_field": "mean(sum)/mean(count)", 
      "request_size_field": "mean(request_size)/mean(count)", 
      "response_size_field": "mean(response_size)/mean(count)", 
      "measurement_name": "minio_http_requests_duration_seconds" 
    } 
  } 
} 
``` 
 
These parameters are then filled in the following influx query template: 
 
``` 
SELECT {0} AS mean_response_time, {1} AS mean_request_size, {2} AS mean_respon
se_size FROM "{3}"."{4}".{5} WHERE "flame_sfc"=\'{6}\' and "flame_sfci"=\'{7}\
' and time>={8} and time<{9} GROUP BY "flame_sfe", "flame_location", "flame_sf
" 
``` 
 
E.g. for the minio service function, the following query will be used to retri
eve the data from influx (request url is */graph/build?from=1528385420&to=1528
385860*): 
 
``` 
SELECT mean(sum)/mean(count) AS mean_response_time, mean(request_size)/mean(co
unt) AS mean_request_size, mean(response_size)/mean(count) AS mean_response_si
ze FROM "MSDemo"."autogen".minio_http_requests_duration_seconds WHERE "flame_s
fc"='MSDemo' and "flame_sfci"='MSDemo_1' and time>=1528385420000000000 and tim
e<1528385860000000000 GROUP BY "flame_sfe", "flame_location", "flame_sf" 
``` 
 
N.B. database name is assumed to be the SFC identifier 
N.B. timestamps are converted to nano seconds. 

• Response: 
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  The response of this request is a JSON content, which contains all request par
ameters used to build the graph, along with a request UUID.  
This request ID can then be used to manage the temporal subgraph that was crea
ted in response to this request. 
 
Returns a 400 Bad Request error if the request body is invalid. 
 
Returns a 400 Bad Request error if the request URL parameters are invalid or m
issing. 

• Response Body Example: 

  ```json 
{ 
  "database": "MSDemo", 
  "retention_policy": "autogen", 
  "service_function_chain": "MSDemo", 
  "service_function_chain_instance": "MSDemo_1", 
  "service_functions": { 
    "nginx": { 
      "response_time_field": "mean(response_time)", 
      "request_size_field": "mean(request_size)", 
      "response_size_field": "mean(response_size)", 
      "measurement_name": "nginx" 
    }, 
    "minio": { 
      "response_time_field": "mean(sum)/mean(count)", 
      "request_size_field": "mean(request_size)/mean(count)", 
      "response_size_field": "mean(response_size)/mean(count)", 
      "measurement_name": "minio_http_requests_duration_seconds" 
    } 
  }, 
  "graph": { 
     "uuid": "75df6f8d-3829-4fd8-a3e6-b3e917010141", 
     "time_range": { 
       "from": 1528385420, 
       "to": 1528385860 
     } 
  } 
} 
``` 

• DELETE /graph/temporal/{graph_id} 

  This API method sends a request to delete the temporal graph associated with a given request 
UUID (retrieved from the response of a build-graph request). The request UUID must be given 
in the request URL, e.g. request sent to /graph/temporal/75df6f8d-3829-4fd8-a3e6-
b3e917010141 

– Response: 

  The response of this request is a JSON content, which contains the request UUID and 
the number of deleted nodes. 

  Returns a 404 Not Found error if the request UUID is not associated with any nodes in 
the graph. 
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• Response Body Example: 

  ```json 
{ 
   "uuid": "75df6f8d-3829-4fd8-a3e6-b3e917010141", 
   "deleted": 5 
} 
``` 

• GET /graph/temporal/{graph_id}/round-trip-
time?compute_node={compute_node_id}&endpoint={endpoint_id} 

  This API method sends a request to run the Cypher Round-Trip-Time query over a temporal 
graph associated with a request UUID (retrieved from the response of a build-graph request). 
The request UUID must be given in the request URL, e.g. request sent to 
/graph/temporal/75df6f8d-3829-4fd8-a3e6-b3e917010141/round-trip-
time?compute_node=DC2&endpoint=minio_1_ep1 

– Response: 

  The response of this request is a JSON content, which contains the result from the 
Cypher query including forward latencies, reverse latencies and service function 
response time along with the calculated round trip time and global tag values for the 
given service function endpoint. 

  Returns a 400 Bad Request error if the URL parameters are invalid 

  Returns a 404 Not Found error if the request UUID and the endpoint ID are not 
associated with an endpoint node in the graph. 

  Returns a 404 Not Found error if the compute node ID is not associated with a compute 
node in the graph. 

• Response Body Example: 

  ```json 
{ 
    "request_size": 2048, 
    "response_size": 104857, 
    "bandwidth": 104857600, 
    "forward_latencies": [ 
       22, 11 
    ], 
    "total_forward_latency": 33, 
    "reverse_latencies": [ 
       15, 18 
    ], 
    "total_reverse_latency": 33, 
    "response_time": 15.75, 
    "round_trip_time": 81.75, 
    "global_tags": { 
        "flame_sfe": "minio_1_ep1", 
        "flame_sfc": "MSDemo", 
        "flame_sfci": "MSDemo_1", 
        "flame_sfp": "minio", 
        "flame_sf": "minio_1", 
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        "flame_location": "DC1", 
        "flame_server": "DC1" 
    } 
} 
``` 
 
Here, the *forward_latencies* and *reverse_latencies* lists represent the late
ncy experienced at each hop between compute nodes. For example, if the path wa
s DC2-DC3-DC4 and the SF endpoint was hosted 
on DC4, the response data shows that latency(DC2-DC3) = 22, latency(DC3-DC4) = 
11, latency(DC4-DC3) = 15, latency(DC3-DC2) = 18, response_time(minio_1_ep1) = 
15.75 
 
N.B. if the endpoint is hosted on the compute node identified in the URL param
eter, then there will be no network hops between compute nodes, so the latency 
lists would be empty, example: 
 
```json 
{ 
    "request_size": 2048, 
    "response_size": 104857, 
    "bandwidth": 104857600, 
    "forward_latencies": [], 
    "total_forward_latency": 0, 
    "reverse_latencies": [], 
    "total_reverse_latency": 0, 
    "response_time": 3, 
    "round_trip_time": 3, 
    "global_tags": { 
        "flame_sfe": "minio_1_ep1", 
        "flame_sfc": "MSDemo", 
        "flame_sfci": "MSDemo_1", 
        "flame_sfp": "minio", 
        "flame_sf": "minio_1", 
        "flame_location": "DC1", 
        "flame_server": "DC1" 
    } 
} 
``` 

• Generating network measurements 

  To generate network measurements, which are then used to create the network topology in the 
Neo4j graph, refer to the src/service/clmcservice/generate_network_measurements.py script. 
An example configuration file is src/service/resources/GraphAPI/network_config.json 

13.6 CRUD API FOR SERVICE FUNCTION ENDPOINT CONFIGURATIONS 

Note: this API is experimental and is not intended to be used at this stage 

• GET /whoami/endpoints 

  This API method retrieves all service function endpoint configurations in a JSON format. 

– Response: 
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  Returns a JSON-formatted response - a list of JSON objects, each object representing a 
service function endpoint configuration. 

– Response Body Example: 

• No service function endpoint configurations found. 

  [] 

• Multiple service function endpoint configurations found. 

  [ 
  { 
   "location": "location_1", 
   "server": "location_1", 
   "sfc": "sfc_1", 
   "sfc_instance": "sfc_i_1", 
   "sf_package": "sf_1", 
   "sf": "sf_i_1", 
   "sf_endpoint": "sf_endpoint_1" 
   }, 
  { 
   "location": "location_2", 
   "server": "location_2", 
   "sfc": "sfc_2", 
   "sfc_instance": "sfc_i_2", 
   "sf_package": "sf_2", 
   "sf": "sf_i_2", 
   "sf_endpoint": "sf_endpoint_2" 
   } 
] 

• GET /whoami/endpoints/instance?sf_endpoint={sf_endpoint_id} 

  This API method retrieves the uniquely defined service function endpoint configuration 
associated with the given URL parameter - sf_endpoint. 

– Response: 

  Returns a JSON-formatted response - a JSON object representing the service function 
endpoint configuration if it exists. 

  Returns a 404 Not Found error if there is no service function endpoint configuration 
associated with the given URL parameter. 

  Returns a 400 Bad Request error if the url parameter is invalid or missing. 

– Response Body Example: 

• Request made to /whoami/endpoints/instance?sf_endpoint=sf_endpoint_1 

    { 
   "location": "location_1", 
   "server": "location_1", 
   "sfc": "sfc_1", 
   "sfc_instance": "sfc_i_1", 
   "sf_package": "sf_1", 
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   "sf": "sf_i_1", 
   "sf_endpoint": "sf_endpoint_1" 
  } 

• POST /whoami/endpoints 

  This API method creates a new service function endpoint configuration. 

– Request: 

  Expects a JSON-formatted request body with the new service function endpoint 
configuration. 

– Request Body Example: 

    { 
   "location": "location_1", 
   "server": "location_1", 
   "sfc": "sfc_1", 
   "sfc_instance": "sfc_i_1", 
   "sf_package": "sf_1", 
   "sf": "sf_i_1", 
   "sf_endpoint": "sf_endpoint_1" 
  } 

– Response 

  Returns a JSON-formatted response - a JSON object representing the service function 
endpoint configuration that was created. 

  Returns a 400 Bad Request error if the request body is invalid. 

  Returns a 409 Conflict error if there exists another service function endpoint 
configuration with the same 'sf_endpoint' ID. 

– Response Body Example: 

    { 
   "location": "location_1", 
   "server": "location_1", 
   "sfc": "sfc_1", 
   "sfc_instance": "sfc_i_1", 
   "sf_package": "sf_1", 
   "sf": "sf_i_1", 
   "sf_endpoint": "sf_endpoint_1" 
  } 

• PUT /whoami/endpoints/instance?sf_endpoint={sf_endpoint_id} 

  This API method replaces the uniquely defined service function endpoint configuration 
associated with the given URL parameter - sf_endpoint, with a new service function endpoint 
configuration given in the request body (JSON format). It can also be used for updating. 

– Request: 
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  Expects a JSON-formatted request body with the new service function endpoint 
configuration. 

– Request Body Example: 

    { 
   "location": "location_2", 
   "server": "location_2", 
   "sfc": "sfc_1", 
   "sfc_instance": "sfc_i_1", 
   "sf_package": "sf_1", 
   "sf": "sf_i_1", 
   "sf_endpoint": "sf_endpoint_1" 
  } 

– Response 

  Returns a JSON-formatted response - a JSON object representing the new service 
function endpoint configuration that was created (updated). 

  Returns a 400 Bad Request error if the request body is invalid. 

  Returns a 400 Bad Request error if the url parameter is invalid. 

  Returns an 404 Not Found error if there is no service function endpoint configuration 
associated with the given URL parameter. 

  Returns a 409 Conflict error if there exists another service function endpoint 
configuration with the same 'sf_endpoint' ID as the ones in the request body. 

– Response Body Example: 

• Request made to /whoami/endpoints/instance?sf_endpoint=sf_endpoint_1 

    { 
   "location": "location_2", 
   "server": "location_2", 
   "sfc": "sfc_1", 
   "sfc_instance": "sfc_i_1", 
   "sf_package": "sf_1", 
   "sf": "sf_i_1", 
   "sf_endpoint": "sf_endpoint_1" 
  } 

• DELETE /whoami/endpoints/instance?sf_endpoint={sf_endpoint_id} 

  This API method deletes the uniquely defined service function endpoint configuration 
associated with the given URL parameter - sf_endpoint. 

– Response: 

  Returns the JSON representation of the deleted object. 

  Returns an 404 Not Found error if there is no service function endpoint configuration 
associated with the given URL parameter. 
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  Returns a 400 Bad Request error if the url parameter is invalid. 

– Response Body Example: 

• Request made to /whoami/endpoints/instance?sf_endpoint=sf_endpoint_1 

    { 
   "location": "location_1", 
   "server": "location_1", 
   "sfc": "sfc_1", 
   "sfc_instance": "sfc_i_1", 
   "sf_package": "sf_1", 
   "sf": "sf_i_1", 
   "sf_endpoint": "sf_endpoint_1" 
  } 
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14 CONCLUSIONS 

We have presented a snapshot of the extensive documentation available to FLAME’s experimenters. 
The documentation is kept online alongside the source code of the sub-components in FLAME GitLab 
source control system and as such is frequently updated with improvements and clarifications (from 
any partner) along with changes to keep the documentation in synch with the developing software. 


