

Thermal stratification effects on turbulence and dispersion in internal and external boundary layers

Vincenzo Sessa^a, Zheng-Tong Xie^{a,*}, Steven Herring^b

^aUniversity of Southampton, Southampton, SO17 1BJ, UK

^bDstl, Porton Down, Salisbury, SP4 0JQ, UK

Abstract

A synthetic turbulence and temperature fluctuation generation method embedded in large-eddy simulations (LES) was developed to investigate the effects of weakly stable stratification (i.e. with the Richardson number $R_i \leq 1$) on turbulence and dispersion following a rural-to-urban transition region. The work was based on firstly validating predictions of mean velocity, turbulent stresses and point-source dispersion against wind tunnel experiments of a stable boundary layer approaching a regular array of uniform cuboid elements at $R_i = 0.21$. The depth of the internal boundary layer (IBL) formed at the leading edge of the uniform array was determined using the method which we have previously proposed. Vertical profiles of wall-normal turbulent stress showed that the height and the growth rate of the IBL were sensitive to the thermal stability prescribed at the inlet. We found that the IBL height was reduced when the inflow turbulent kinetic energy (TKE) was reduced while maintaining the same stratification condition. Lastly, scalar fluxes and mean concentrations within and above the canopy from a ground-level line source were simulated and analysed. It was found that increasing the stable stratification level reduced the vertical transport of pollutant which increased the volume-averaged concentration within the canopy. For a given level of stable stratification, the effect on the total scalar fluxes within and above the canopy, and on the volume-averaged mean

*Corresponding author
Email address: Z.Xie@soton.ac.uk (Zheng-Tong Xie)

concentration within the lateral streets is more pronounced when the TKE is reduced.

Keywords: IBL, inflow turbulence, stable stratification, dispersion

¹ **1. Introduction**

² Nearly two decays ago Britter & Hanna (2003) suggested that urban flows
³ may be considered as neutral or nearly neutral in urban dispersion models.
⁴ However, the topic of thermal stratification in urban area has recently renewed
⁵ attention (e.g. Kanda & Yamao, 2016; Boppana et al., 2013), from which it
⁶ has been concluded that non-neutral atmospheric stratification conditions fre-
⁷ quently occur in urban areas and neutral conditions may be the exception rather
⁸ than the rule (Wood et al., 2010). It has been documented that unstable ther-
⁹ mal conditions occur three times more frequently than stable and six times more
¹⁰ than neutral conditions over the city of London during the daytime. Further-
¹¹ more, at night the number of unstable cases was almost equal to the number of
¹² stable cases and four times greater than the number of neutral ones, because of
¹³ radiative cooling of the surface.

¹⁴ In stable conditions pollutant concentration may increase and air quality
¹⁵ may decrease within urban canopy because of the reduced dispersion in verti-
¹⁶ cal direction. Despite the increasing concerns regarding air quality, only a few
¹⁷ experimental studies have examined the effects of stable stratification on turbu-
¹⁸ lent structures over smooth, rough (e.g. Ohya, 2001; Williams et al., 2017), and
¹⁹ very rough to urban (e.g. Marucci & Carpentieri, 2018a; Marucci et al., 2018b)
²⁰ surfaces, and the impact on passive scalar dispersion (e.g. Yassin et al., 2005;
²¹ Kanda & Yamao, 2016). Not surprisingly, only a very few numerical studies
²² (e.g. Cheng & Liu, 2011; Xie et al., 2013; Boppana et al., 2013; Tomas et al.,
²³ 2016) have examined turbulence and dispersion in stably stratified flows over
²⁴ very rough – urban surfaces. Two key problems remain to be addressed.

²⁵ The first problem is to identify the critical level of stratification which can
²⁶ be interpreted as signalling the start of ‘strongly’ stratified region. Williams

27 et al. (2017) reported that the critical bulk Richardson number, based on the
28 boundary layer thickness, the free stream velocity and the temperature difference
29 across the boundary layer thickness, was 0.10 for a smooth surface, while
30 the critical bulk Richardson number was 0.15 for a rough surface with roughness
31 length in wall units z_0^+ less than 4. This confirms that a rough surface reduces
32 stratification effect compared to smooth wall, and also suggests that for a very
33 rough urban surface, which would have a much greater roughness length, the
34 critical Richardson number is likely to be greater than 0.15.

35 The second problem is that the urban surface is always heterogeneous. The
36 change in surface roughness associated with a flow crossing from a rural area into
37 an urban area, or low-rise buildings area into a central business district (CBD)
38 with high-rise buildings, leads to a region of transitional flow as the turbulent
39 boundary adapts to the new wall condition (e.g. Hanson & Ganapathisubramani,
40 2016; Cheng & Castro, 2002; Tomas et al., 2016; Marucci et al., 2018b; Sessa
41 et al., 2018). This transitional flow results from the development of an internal
42 boundary layer (IBL) above the roughness elements. To understand how air
43 quality may be impacted, it is necessary to determine to what extent that the
44 step change of roughness and the thermal stratification together affect flow and
45 dispersion.

46 Tomas et al. (2016) investigated the effect of stable stratification on flow
47 and line source dispersion by simulating a smooth-wall boundary layer entering
48 a generic urban area using large-eddy simulation (LES). Although they only
49 considered a weakly stable condition with a bulk Richardson number of 0.147,
50 they found that the IBL was 14% shallower than that in neutral conditions and
51 the turbulent kinetic energy (TKE) was reduced by 21%. It should be noted
52 that the approaching flow was developed over a smooth-wall surface so that the
53 inflow turbulence intensity and integral length scales were not representative of
54 a typical rural boundary layer. This means that the subsequent turbulence and
55 dispersion predictions downstream of the step change in surface roughness are
56 not representative of a true rural-urban surface.

57 The effects of stable stratification on turbulence and dispersion are not neg-

58 ligible even under weakly stable conditions (e.g. Xie et al., 2013; Boppana et al.,
59 2014). The consumption of buoyancy energy in such conditions damps turbulence
60 which affects ventilation and the concentration of pollutants at pedestrian
61 level. When Cheng & Liu (2011) investigated stability effects at bulk Richardson
62 numbers of 0.18 and 0.35 on the dispersion in 2D street canyons using LES, they
63 found that for a Richardson number greater than 0.25, turbulence was strongly
64 suppressed at ground level. This meant that the pollutant tended to reside
65 longer at pedestrian level than in the upper street canyon. Tomas et al. (2016)
66 showed that for a bulk Richardson number of 0.147 the area-averaged street
67 concentration of a line source was 17% higher than in neutral conditions due to
68 decreased streamwise advection and trapping of pollutant by the IBL. Similar
69 conclusions were reached in the LES study conducted by Xie et al. (2013), who
70 found that the stability effects induced at a bulk Richardson number of 0.21
71 increased mean concentrations by up to an order of magnitude when compared
72 to neutral conditions. Moreover, Xie et al. (2013) also found that turbulent fluctu-
73 ations and mean velocities were not substantially affected either by a change
74 of mean temperature profile below the canopy or inlet temperature fluctuations
75 for a given Richardson number.

76 As far as we are aware, very few studies have examined the effects of stable
77 stratification on dispersion within an IBL, and those that have have only con-
78 sidered weakly stable conditions. In this paper we consider the effects of various
79 stratification conditions up to a bulk Richardson number 1.0 on turbulence and
80 dispersion following a rural-to-urban transition. The objective was to use LES
81 to answer the following three questions:

- 82 1. To what extent are stratification effects on flow and dispersion following
83 a step change in roughness length dependent on the inflow turbulence intensity?
- 84 2. To what extent extent does increasing stratification affect the IBL thick-
85 ness for bulk R_i numbers below 1?
- 86 3. To what extent does increasing stratification affect the ventilation of
87 pollutant within and above the canopy for bulk R_i numbers below 1?

88 The governing equations are briefly described in Sect. 2. Details of numeri-

89 cal settings including geometry, mesh and inflow conditions are given in Sect. 3.
 90 LES validation, sensitivity tests on the ground temperature and turbulent ki-
 91 netic energy at inlet are reported in Sect. 4.1. Stratification effects on the
 92 internal boundary layer are discussed in Sect. 5. The analysis of scalar fluxes
 93 and mean concentration results are reported in Sect. 6. Finally, the conclusions
 94 are summarised in Sect. 7.

95 **2. Governing equations**

96 In LES the filtered continuity and momentum equations for a buoyancy–
 97 driven flow are written as follows:

$$\frac{\partial u_i}{\partial x_i} = 0 \quad (1)$$

$$\frac{\partial u_i}{\partial t} + \frac{\partial u_i u_j}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + f \delta_{i2} + \frac{\partial}{\partial x_j} \left(\frac{\tau_{ij}}{\rho} + \nu \frac{\partial u_i}{\partial x_j} \right) \quad (2)$$

98 where the filtered velocity and pressure fields are u_i and p respectively, ν is
 99 the kinematic molecular viscosity and ρ is the density. τ_{ij} is the subgrid-scale
 100 (SGS) Reynolds stress which was determined by using the mixed time-scale
 101 subgrid eddy viscosity model (Inagaki et al., 2005). $f \delta_{i2}$ is the body force due
 102 to thermal buoyancy and is calculated by using the Boussinesq approximation.
 103

104 The filtered transport equation for a passive scalar is:

$$\frac{\partial C}{\partial t} + \frac{\partial u_j C}{\partial x_j} = \frac{\partial}{\partial x_j} \left[(K + K_r) \frac{\partial C}{\partial x_j} \right] + S \quad (3)$$

105 where C is the filtered scalar concentration and S is a source term. The second
 106 term on the left-hand side is the advection term and the first term on the right–
 107 hand side is the diffusion term. K is the molecular diffusivity and K_r is the
 108 subgrid-scale (SGS) turbulent diffusivity computed as:

$$K_r = \frac{\nu_r}{Sc_r} \quad (4)$$

109 where ν_r is the SGS viscosity and Sc_r is the subgrid Schmidt number. A con-
 110 stant Schmidt number of $Sc_r = 0.7$ was assumed.

111 The filtered transport equation of temperature is:

$$\frac{\partial T}{\partial t} + \frac{\partial u_j T}{\partial x_j} = \frac{\partial}{\partial x_j} \left[(D + D_r) \frac{\partial T}{\partial x_j} \right] \quad (5)$$

112 where T is the resolved-scale temperature. D is the molecular diffusivity of
113 temperature, D_r is the subgrid turbulent diffusivity and is given by ν_r/Pr_r ,
114 where Pr_r is the subgrid Prandtl number was set to 0.9.

115 **3. Numerical settings**

116 The LES model was implemented within the open-source CFD package
117 OpenFOAM version 2.1.1. A second-order backward implicit scheme in time
118 and second-order central difference scheme in space were applied for the dis-
119 cretisation of the terms in Eqs. 2, 3 and 5. The domain was set as a half
120 channel. An efficient inflow turbulence generation method (Xie & Castro, 2008)
121 was used at the inlet, with periodic conditions at the lateral boundaries and
122 a stress-free condition at the top of the domain ($y = 12h$, where $h = 70\text{mm}$
123 was the uniform height of the array element). The Reynolds number based on
124 h and the free stream velocity $u_{ref} = 1.35\text{m/s}$ at $y = 12h$ was approximately
125 8,000. The average CFL number was 0.2, based on a time step resolution of
126 0.0007s. Flow and second-order statistics were initialized for 20 flow-passes and
127 then averaged over 150 flow-passes.

128 For purpos of validating the baseline study, numerical settings, e.g. the ge-
129 ometry of the array, the point source, the approaching boundary layer and the
130 thermal stratification conditions, were made as consistent as possible with ex-
131 periments conducted by, i.e. Castro et al. (2017), Hertwig et al. (2018), Marucci
132 et al. (2018b) and Marucci & Carpentieri (2018a). The wind tunnel experiments
133 were conducted using the meterological wind tunnel at the University of Sur-
134rey, UK, which has a test section 20m (length) x 3.5m (width) x1.5m (height).
135 The wind tunnel is able to generate a ‘simulated’ atmospheric boundary layer
136 representative of stable and unstable conditions by using Irwin’s spires, two-
137 dimensional roughness elements and adjusting the inlet and floor temperature.

138 Propane was used as a passive tracer and its concentration was measured by
 139 using a fast flame ionisation detector system (FFID). Velocities were measured
 140 by using a two-component laser-Doppler anemometry (LDA). Mean tempera-
 141 ture and its fluctuations were measured using a fast-response cold-wire probe
 142 (CW). More generic details can be found in the above references. The numeri-
 143 cal settings applied to simulate the flow and point source dispersion in neutral
 144 conditions were consistent with those in Castro et al. (2017) and Hertwig et al.
 145 (2018), respectively. For the studies in stable conditions, the numerical settings
 146 applied to the flow and point source dispersion were consistent with those in
 147 Marucci et al. (2018b) and Marucci & Carpentieri (2018a), respectively. More
 148 specific details are given in the following sections.

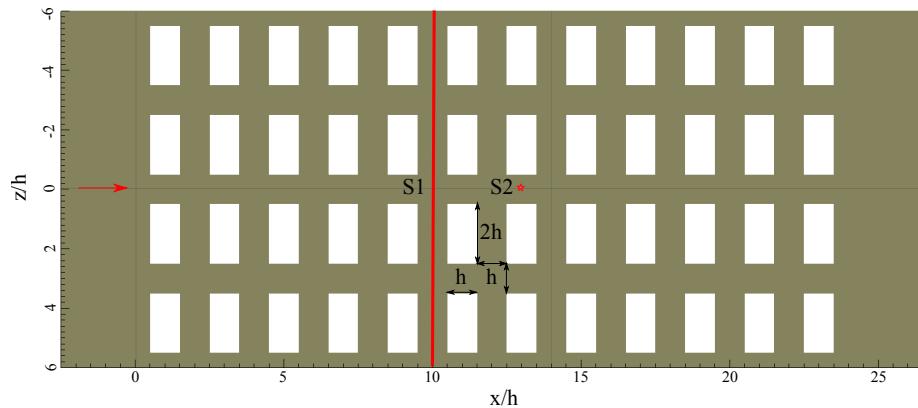


Figure 1: Plan view of the array configuration showing dimensions of buildings and streets, coordinate system, flow direction, and locations of line source $S1$ and point source $S2$.

149 *3.1. Geometry, mesh and resolution*

150 The array of regular cuboid elements modelled in this paper represents part
 151 of a larger array used in the wind tunnel experiments of Castro et al. (2017) and
 152 Marucci et al. (2018b). This array was designed to simulate a neighbourhood
 153 scale region in which statistical homogeneities are assumed. The basic obstacle
 154 layout is identical to those described in Sessa et al. (2018) and in Fuka et al.
 155 (2017).

156 A plan view of the modelled array is shown in Fig. 1 where the street units
157 parallel to the x axis are $1h$ long and referred to as ‘short streets’ hereinafter.
158 Street units parallel to the z axis are $2h$ long and referred to as ‘long streets’.
159 The rectangular array comprised 48 aligned blocks with h spacing, which leads
160 to a plan area density of $\lambda_p = 0.33$ when considering the single block unit.

161 The dimensions of the modelled domain were $31.5h \times 12h \times 12h$ within a
162 uniform Cartesian grid of resolution $\Delta = h/16$. The top boundary was placed
163 at $y = 12h$ to be very close to the experimental boundary layer height (Marucci
164 et al., 2018b). In order to ensure the zero-gradient outflow boundary condition,
165 the domain size was extended by $2.5h$ in x -direction compared to the domain
166 used in Sessa et al. (2018). Computations were made for the 0° wind direction
167 by assuming that the mean wind flow was perpendicular to the front face of the
168 cuboid elements as indicated in Fig. 1.

169 *3.2. Scalar sources*

170 A passive scalar was released from a ground-level point source (S2) and a
171 ground-level line source (S1) within the array of cuboid elements. Because of
172 the finite size of the grid, the shape of the point source only approximated the
173 source used in the experiment. The shape and size of the point source was
174 identical to that reported in Fuka et al. (2017). The diameter was represented
175 by 4 cells and so measured $0.25h$, while the height was one cell ($h/16$). The
176 point source was positioned in the middle of a short street within the seventh
177 row of blocks (Fig. 1) in accordance with the experimental set-up of Marucci
178 et al. (2018b).

179 The line source was positioned on the ground between the fifth and sixth
180 rows of blocks. The lateral extent of the line source was set equal to the entire
181 width of the domain ($12h$) while the height and width of it were one cell ($h/16$)
182 and four cells ($4h/16$) respectively. A constant scalar flux release rate was set
183 for each cell inside the volume of both the point source and the line source.

184 3.3. *Inlet conditions of temperature for LES*

185 In order to analyse the effects of thermal stratification on flow and disper-
 186 sion, LES simulations were conducted for various bulk Richardson numbers R_i ,
 187 defined as:

$$R_i = \frac{gH(\bar{T}_{ref} - \bar{T}_0)}{\bar{T}_0 \bar{u}_{ref}^2} \quad (6)$$

188 where \bar{u}_{ref} is the freestream velocity at the inlet, g is the acceleration due to
 189 gravity, H is the domain height and \bar{T}_0 is the mean temperature on the ground.
 190 LES comparisons for increasing stable stratification were achieved in a similar
 191 manner to Boppana et al. (2013), by fixing \bar{T}_{ref} and \bar{T}_0 and changing the value
 192 of g as shown in Tab. 1. The upstream boundary layer height was kept fixed
 193 at $H = 12h$ in the LES simulations for all values of R_i , as in the wind tunnel
 194 experiments of Marucci et al. (2018b) in which the tendency towards reducing
 195 boundary layer height with increasing stability was overcome by the level of
 196 turbulence generated by the inlet spires.

197 The LES requires a continuous specification of tur-
 198 bulence in time at the inlet to simulate an evolving
 199 turbulent boundary layer. This was achieved by us-
 200 ing the inflow turbulence method developed by Xie &
 201 Castro (2008) to generate a synthetic turbulent inflow
 202 with exponential-form correlations in time and space.
 203 This inflow method has been shown to provide a high
 204 fidelity reconstruction of the turbulence characteristics
 205 in both the energy-containing region and inertial sub-
 206 layer of the spectra. Moreover, recent work by Bercin
 207 et al. (2018) has shown that that the exponential form
 208 correlations provide a better approx than the Gaussian ones.

Table 1: LES variation of
 gravity g with R_i

Case	R_i	g
$R_i=0$	0.00	9.81
$R_i=0.21$	0.21	0.74
$R_i=0.5$	0.50	1.77
$R_i=0.7$	0.70	2.48
$R_i=1$	1.00	3.54
$R_i = 1^*$	1.00	3.54

Figure 2: Vertical profiles of prescribed integral length scales at the LES inlet $x = -2.5h$.

209 The turbulence generated by the inflow method satisfies the prescribed inte-
210 gral length scales and Reynolds stress-tensor values. The integral length scales
211 L_x, L_y and L_z prescribed in the streamwise, vertical and lateral directions re-
212 spectively are shown in Fig. 2. These were estimated from data presented in
213 Marucci et al. (2018b) for an experiment simulating $R_i = 0.21$.

214 The estimated integral length scales can have considerable uncertainties due
215 to the complexity of auto-correlation function, etc. Xie & Castro (2008) per-
216 formed numerical sensitivity tests using different length scale combinations im-
217 posed at inlet (i.e. L_x, L_y and L_z factored by 0.5, 1 or 2). They found that the
218 mean velocities and turbulent stresses within or immediately above the canopy
219 were not sensitive to these variations provided the baseline length scales are not
220 too different from the ‘true’ values. This suggested that it was not necessary to
221 consider the effect of integral length scales in the current work.

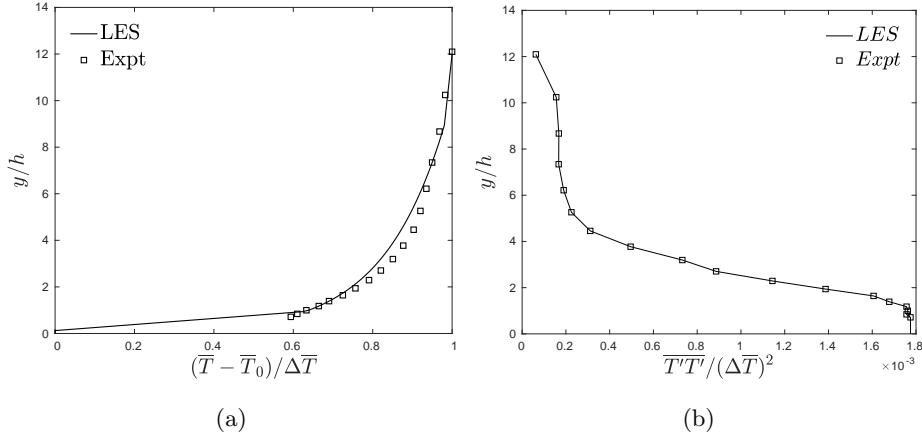


Figure 3: (a) Vertical profiles of laterally averaged mean temperature from LES at inlet and prescribed mean temperature from experiments. (b) Vertical profiles of prescribed temperature variance at the LES inlet and experimental values.

The inflow turbulence method of Xie & Castro (2008) was also used to generate temperature fluctuations. The integral length scale of turbulence in the vertical direction L_y (Fig. 2) was chosen as the integral length scale of temperature fluctuations. Xie et al. (2013) and Okaze & Mochida (2017) used similar approaches to generate flow temperature fluctuations, whereas Xie et al. (2013) did not carry out a validation and Okaze & Mochida (2017) considered temperature as passive scalar. The prescribed mean temperature (Fig. 3a) and temperature variance (Fig. 3b) were obtained from the wind tunnel experiment at $R_i = 0.21$ reported in Marucci et al. (2018b) by assuming lateral homogeneity. Marucci et al. (2018b) fitted the mean temperature profile (Fig. 3a) for $R_i = 0.21$ in the usual log–law form,

$$T(y) - T_0 = \frac{T_*}{\kappa} \left[\ln\left(\frac{y - d}{y_{0h}}\right) + 16 \frac{y - d - y_{0h}}{L} \right], \quad (7)$$

where the von-Karman constant $\kappa = 0.41$, the roughness displacement height $d = 0$, the ratio of the boundary layer thickness to the Monin-Obukhov length $H/L = 1.13$, the scaling temperature $T_* = 0.34K$, the thermal roughness length $y_{0h} = 0.021mm$, and the maximum temperature difference $\Delta\bar{T}_{MAX}$ between the cooled floor \bar{T}_0 and the free stream flow \bar{T}_{ref} was fixed as $16K$. Because

²³⁸ of the experimental uncertainty in measuring temperature values close to the
²³⁹ ground, Marucci et al. (2018b) applied the least-squares fitting procedure to
²⁴⁰ estimate the ground temperature \bar{T}_0 shown in Hancock & Hayden (2018).

²⁴¹ Figure 3b shows the prescribed temperature variance at the LES inlet and
²⁴² the experimental values. A constant temperature variance was prescribed in the
²⁴³ vicinity of the floor ($h \leq 1$) where we assume there is a surface layer. The flow
²⁴⁴ within the array of cuboid elements was assumed to be adiabatic, as the inlet
²⁴⁵ wind speed was high, the air pass-through time over the array was short, and
²⁴⁶ the local heat transfer over the block surfaces was negligible. This assumption
²⁴⁷ was validated against data from the wind tunnel experiments of Marucci &
²⁴⁸ Carpentieri (2018a) in Sec. 4.1.

249 3.4. Inlet conditions of velocities for LES

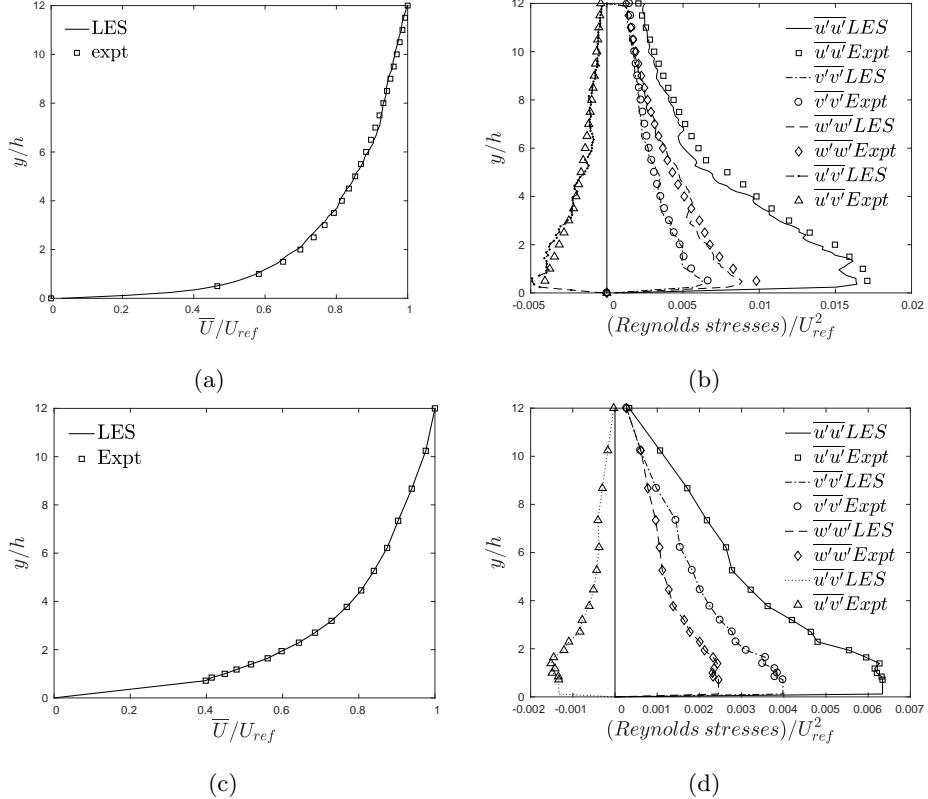
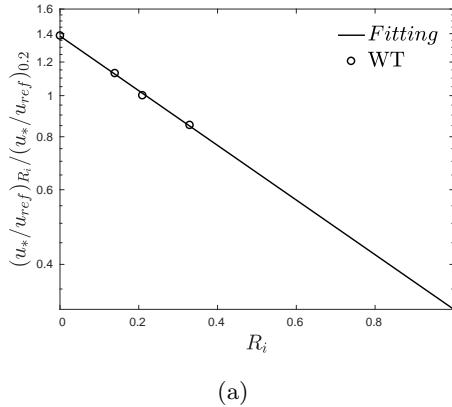



Figure 4: Vertical profiles of experimental and numerically prescribed inlet mean velocity and turbulent stresses. (a) mean velocity, $R_i = 0$; (b) turbulent stresses, $R_i = 0$; (c) mean velocity, $R_i = 0.21$; (d) turbulent stresses, $R_i = 0.21$.

250 Figure 4a and Fig. 4b show vertical profiles of experimental data (Marucci
 251 et al., 2018b) and numerically (Sessa et al., 2018) prescribed inlet mean velocity
 252 and turbulent stresses in neutral condition $R_i = 0$, respectively. Figure 4c and
 253 Fig. 4d show vertical profiles of experimental data (Marucci et al., 2018b) and
 254 numerically prescribed inlet mean velocity and turbulent stresses respectively,
 255 at $R_i = 0.21$. The prescribed inlet mean velocity and turbulent stresses for the
 256 cases $R_i = 0.5, 0.7, 1$ (Table 1) were the same as those for the case $R_i = 0.21$.
 257 This was useful for quantifying to which extent the thermal stratification alone

258 impacted turbulence and dispersion, as in Xie et al. (2013).

259 The case $R_i = 1^*$ (Table 1) was designed to quantify the effect of inlet TKE.
 260 The inlet mean velocity profile was prescribed to be the same as that of $R_i = 1$,
 261 while the turbulent stresses were estimated using a simple method. The ratios of
 262 the friction velocity to the freestream velocity u_*/u_{ref} at $R_i = 0, 0.14, 0.21, 0.33$
 263 reported in Marucci et al. (2018b) were normalised by that at $R_i = 0.21$, and
 264 fitted to an exponential–function of R_i number(Fig. 5a).

(a)

Figure 5: (a) The data of u_*/u_{ref} at $R_i = 0, 0.14, 0.21, 0.33$ in Marucci et al. (2018b) fitted to an exponential–function of R_i number, normalised by that at $R_i = 0.21$.

265 Marucci et al. (2018b) found that the ratio of turbulent stresses to the friction
 266 velocity (i.e. $\overline{u'u'}/u_*^2$) did not change significantly in the vicinity of the wall in
 267 various weakly stable conditions. We therefore assumed that this ratio was
 268 constant between $R_i = 1$ and $R_i = 0.21$. The turbulent stresses for ‘ $R_i = 1^*$ ’ at
 269 the inlet were determined from the estimated friction velocity u_* obtained from
 270 Fig 5. The estimated TKE prescribed at inlet for ‘ $R_i = 1^*$ ’ was about 10% of
 271 that for ‘ $R_i = 0.21$ ’.

272 **4. LES validation and verification**

273 *4.1. Validation*

274 Predictions of turbulence, dispersion and mean temperature at $R_i = 0.21$
 275 were validated against the wind tunnel (WT) data reported in Marucci et al.
 276 (2018b) and (Marucci & Carpentieri, 2018a). The standard error of the ex-
 277 perimental measurements was around $\pm 1\%$ for mean velocity, $\pm 5\%$ for mean
 278 concentration and turbulent variances (Marucci et al., 2018b; Marucci & Car-
 279 pentieri, 2018a). Mean velocity and temperature, streamwise and lateral tur-
 280 bulent stresses, mean concentration and concentration variance from the point
 281 source $S2$ were compared with wind tunnel data measured at $x = 16h$ and
 282 $z = 0$.

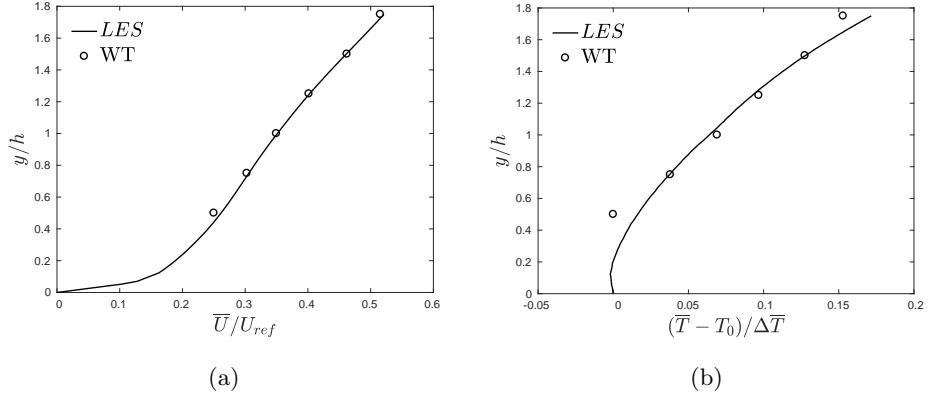


Figure 6: (a) Vertical profiles of laterally averaged mean velocity from LES and experiments.
 (b) Vertical profiles of mean temperature from LES and wind tunnel (WT).

283 LES mean velocity (Fig. 6a) and mean temperature (Fig. 6b) were spatially
 284 averaged over four identical street intersections at $x = 16h$, whereas the exper-
 285 imental data were averaged in time only. The LES predictions of mean velocity
 286 were found to be in good agreement with experimental values below and imme-
 287 diately above the canopy (Fig. 6a). Similarly, the experimental profile of mean
 288 temperature was well captured by LES although the experimental uncertainty
 289 in temperature measurements close to the ground is not negligible.

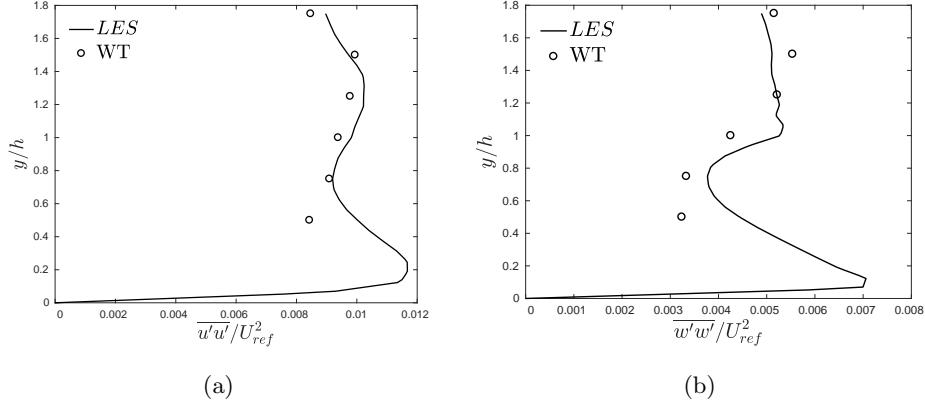


Figure 7: (a) Vertical profiles of laterally averaged streamwise turbulent stress 6(a) and lateral turbulent stress 6(b) from LES and wind tunnel (WT).

290 Figure 7 presents comparisons between LES predictions of the mean stream-
 291 wise and lateral turbulent stresses again averaged over four identical street inter-
 292 sections at $x = 16h$ with the corresponding experimental data. The small
 293 differences between the second-order statistics in the LES and wind tunnel data
 294 in the figures demonstrate the success of the validation. The differences may
 295 reasonably be attributed to comparing spatial averages from the LES with a
 296 single sampling station in the experimental data.

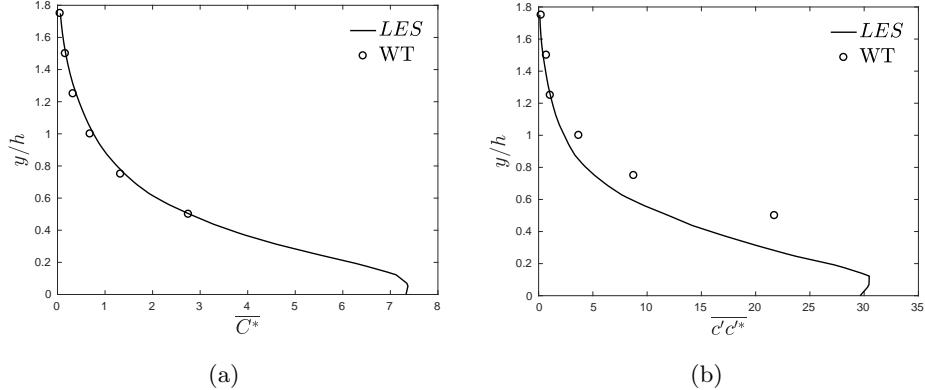


Figure 8: (a) Vertical profiles of laterally averaged mean concentration (a) and vertical concentration variance (b) from LES and wind tunnel (WT).

297 The scalar concentration from the point source $S2$ was normalised following
 298 the method of Sessa et al. (2018) and Fuka et al. (2017):

$$\overline{C^*} = \overline{C} \frac{u_{ref} L_{ref}^2}{Q}, \quad (8)$$

299 where the characteristic length L_{ref} was the building height h and Q was the
 300 emission rate. Similarly, the scalar variance was normalized as:

$$\overline{c'c'^*} = \left[\frac{\sqrt{c'c'} u_{ref} L_{ref}^2}{Q} \right]^2. \quad (9)$$

301 Laterally averaged LES mean concentration (Fig. 8a) and scalar variance
 302 (Fig. 8b) data were sampled at the main street intersection ($x = 16h$, $z = 0$)
 303 and compared with the experimental data. It can be seen that the LES ac-
 304 curately predicted the experimental mean concentration for $y \geq 0.5h$. The
 305 close agreement suggests that the predicted mean concentration at ground level
 306 should also be accurate. Figure 8b shows that the concentration variance was
 307 also well predicted above the canopy, but under-estimated within it. This dif-
 308 ference may well be due to the uncertainties in measuring the concentration
 309 variance in the wind tunnel, and the source shape/size differences which affect
 310 the results in the near field (Sessa et al., 2018).

311 *4.2. Ground temperature sensitivity test*

312 As discussed in Sec. 3.3, Marucci et al. (2018b) used the least-square fitting
 313 method of Hancock & Hayden (2018) to obtain the upstream mean temperature
 314 profile and the temperature at the surface. From this they determined a good
 315 fit close to the ground. They then determined that the stability level in the
 316 wind tunnel was $R_i = 0.21$ by considering the maximum temperature difference
 317 $\Delta\overline{T} = 16K$ between the cooled floor \overline{T}_0 and the free stream flow \overline{T}_{ref} .

318 Although the temperature comparison was good, because of the experimen-
 319 tal uncertainty in determining the surface temperature, the sensitivity of the
 320 derived value of R_i to this must be assessed. A ground surface temperature sen-
 321 sitivity assessment was therefore conducted to assess to what extent turbulence

322 and dispersion within and above the canopy were affected by a small change in
 323 ground temperature at the inlet. One case was simulated using the inlet mean
 324 temperature profile shown in Fig. 3a but changing the temperature profile in
 325 the vicinity of the ground (i.e. for $y \leq 0.125h$) to be a constant which was 2K
 326 lower than \bar{T}_0 in Section 4.1.

327 The normalised total heat flux, $\psi_{h,tot}^{u_*}$, in the direction of flow resulting from
 328 the prescribed inlet temperature profile (Fig. 3a) can be estimated.

$$\psi_{h,tot}^{u_*} = \int_{y/h \in (0,12)} \frac{(\bar{U}\bar{T} + \bar{u'}\bar{T}')}{{u_*}\bar{T}_*} d\left(\frac{y}{h}\right), \quad (10)$$

329 where u' and T' are the velocity and temperature fluctuations respectively. As
 330 discussed above, the temperature in the vicinity of the ground was changed
 331 between the two LES cases for $y \leq 0.125h$ only. This meant that the incoming
 332 heat flux was only expected to change below $y = 0.125h$. It is to be noted
 333 that close to the ground the turbulent flux component $\bar{u'}\bar{T}'$ in Eq. 10 is always
 334 very small or negative compared to the advective part $\bar{U}\bar{T}$ (Fuka et al., 2017;
 335 Goulart et al., 2019). Similarly, the advective component $\bar{U}\bar{T}$ in the vicinity of
 336 the ground is also very small as the mean velocity is nearly zero.

337 Vertical profiles of mean velocity and turbulent stresses were sampled at
 338 $x = 16h$ and laterally averaged over 60 locations. The mean concentration
 339 from point source $S2$ was sampled in the lateral direction at $x = 16h$ and
 340 $y = 0.5h$ below the canopy, and normalized as in Eq. 8. As expected, the mean
 341 velocity, turbulent stresses and normalised concentration values for the two cases
 342 were found to be in close agreement. This confirmed that small differences in
 343 incoming heat flux due to the measurement errors in ground surface temperature
 344 had a negligible effect on the downstream turbulence and dispersion within and
 345 above the canopy.

346 4.3. Inlet TKE sensitivity test

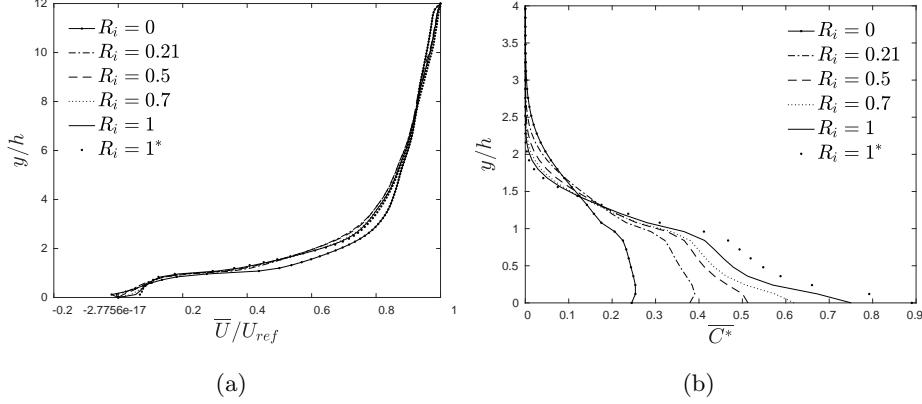
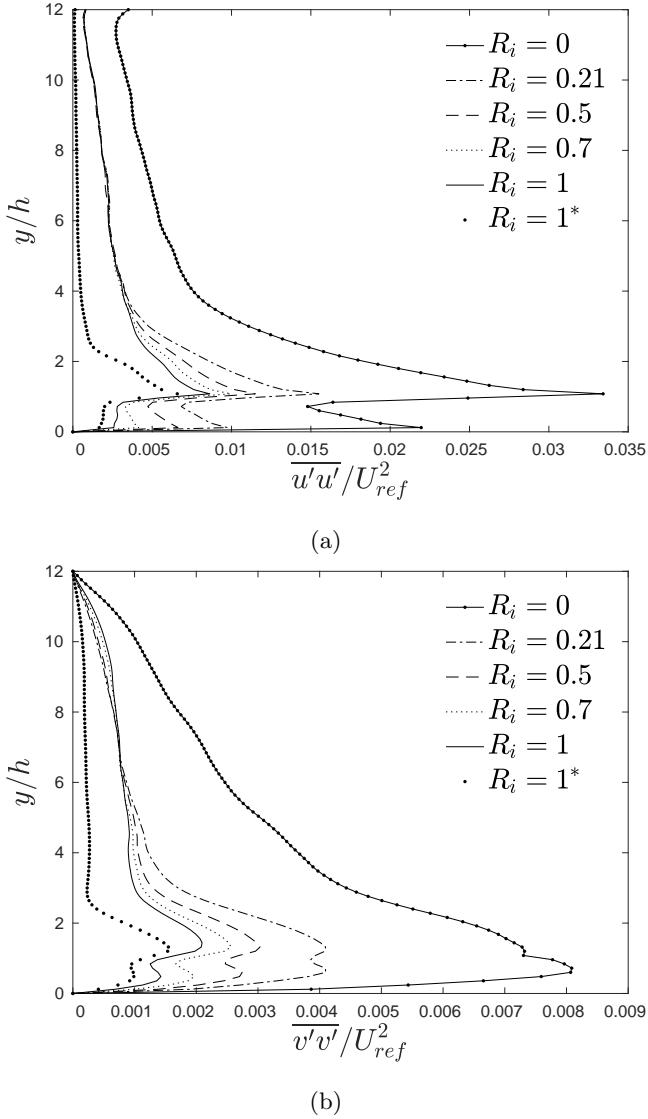
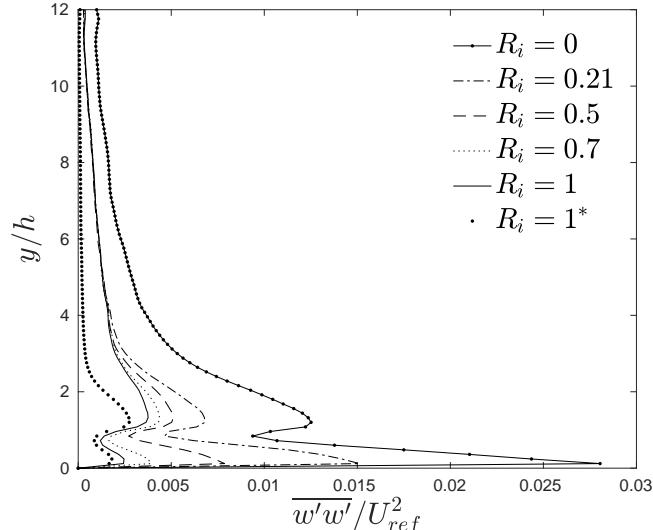
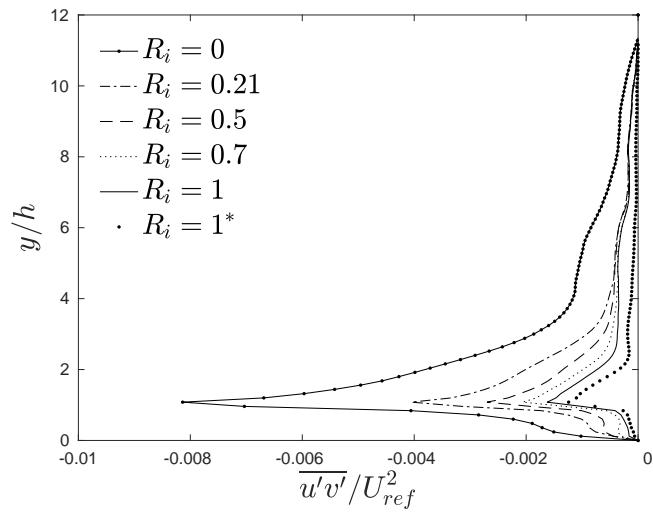


Figure 9: Vertical profiles of mean velocity (a) and normalized concentration from the line source (b) measured at $x = 16h$ and laterally averaged over 60 locations.

347 Vertical profiles of mean velocity (Fig. 9a) and normalized mean concentration
 348 (Fig. 9b) were sampled at $x = 16h$ and laterally averaged over 60 locations.
 349 The effect of applying an inflow with a much lower TKE (i.e. ‘ $R_i = 1^*$ ’) on the
 350 mean velocity profile at $x = 16h$ was negligible. This shows that the difference
 351 between the mean velocity $x = 16h$ for $R_i = 0$ and the stable cases was mainly
 352 due to the small difference in the velocity profiles at the inlet (Fig. 4).

353 Figure 9b shows vertical profiles of laterally averaged mean concentration at
 354 $x = 16h$ for the line source $S1$ at various stratification levels. It is to be noted
 355 that dispersion from the line source is a quasi- $2D$ problem where the plume is
 356 laterally homogeneous. Increasing stability yielded higher concentrations within
 357 the canopy and lower concentrations above it. These effects were found to be
 358 further enhanced by prescribing much lower TKE at the inlet. The increase in
 359 concentration below the canopy also demonstrates the impact of reduced vertical
 360 mixing above it.


Figure 10: Vertical profiles of streamwise (a) and vertical (b) turbulent stresses laterally averaged over 60 points at $x = 16h$.

361 Figures 10a and 10b respectively show vertical profiles of streamwise and
 362 turbulent stresses laterally averaged over 60 points at $x = 16h$. The effects of
 363 inflow TKE and thermal stability are clearly visible on both quantities. For
 364 $R_i = 0.2, 0.5, 0.7, 1$, both the streamwise and the vertical stresses were found to

³⁶⁵ be reduced within and above the canopy by increasing stability. For the cases
³⁶⁶ $R_i = 0.2, 0.5, 0.7, 1$, the differences above $\sim 6h$ were negligible due to the same
³⁶⁷ inflow turbulence conditions being imposed at the inlet. On the contrary, for
³⁶⁸ the cases $R_i = 0$ and ' $R_i = 1^*$ ', the different turbulence conditions imposed at
³⁶⁹ the inlet led to substantial differences in turbulent stresses at $x = 16h$ above the
³⁷⁰ height $6h$ compared to the other cases. The evident differences in the $R_i = 0, 1$
³⁷¹ and 1^* profiles demonstrate the importance of applying the correct inflow TKE
³⁷² for a chosen stability level.

(a)

(b)

Figure 11: Vertical profiles of lateral normal turbulent stress (a) and shear stress (b) measured at $x = 16h$ and laterally averaged over 60 locations. Estimated TKE at inlet for ' $R_i = 1^*$ '.

373 Figure 11 shows laterally averaged vertical profiles of lateral normal turbulent
 374 stress and turbulent shear stress at $x = 16h$. Similarly to the profiles of
 375 streamwise and vertical turbulent stresses in Fig. 10, both the lateral normal

³⁷⁶ turbulent stress and turbulent shear stress profiles showed no visible differences
³⁷⁷ above $\sim 6h$ for $R_i = 0.2, 0.5, 0.7, 1$, while within and immediately above
³⁷⁸ the canopy increasing stability damped the lateral normal turbulent stress and
³⁷⁹ turbulent shear stress. For the ' $R_i = 1^*$ ' case, both the turbulent stresses were
³⁸⁰ lower than those for $R_i = 1$, due to the much lower TKE prescribed at the inlet,
³⁸¹ which was nearly zero above $4h$.

³⁸² **5. Stability effects on the internal boundary layer**

³⁸³ The transition from the rough surface upstream of the array to the much
³⁸⁴ higher roughness of the array itself causes an internal boundary layer IBL to
³⁸⁵ develop from the leading edge of the array. In neutral stratification conditions,
³⁸⁶ the IBL increases in depth as it develops downstream over the array and the
³⁸⁷ flow within it has greater turbulent kinetic energy than that in the external
³⁸⁸ boundary layer (e.g. Sessa et al., 2018). Given that IBLs develop at rural to
³⁸⁹ urban transitions etc, and affect the dispersion in urban areas, it is important to
³⁹⁰ understand their characteristics and how these affect the dispersion of pollutants
³⁹¹ at various stability levels.

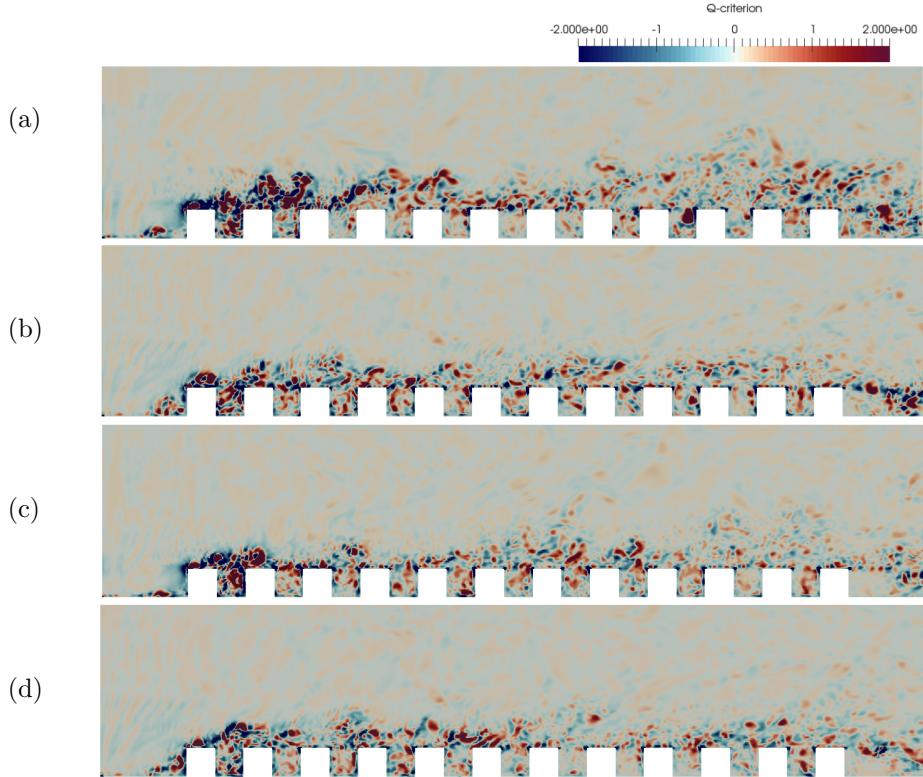
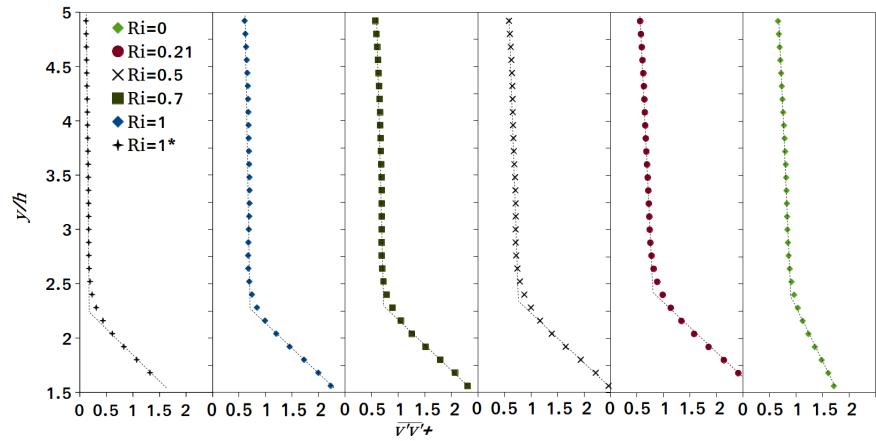
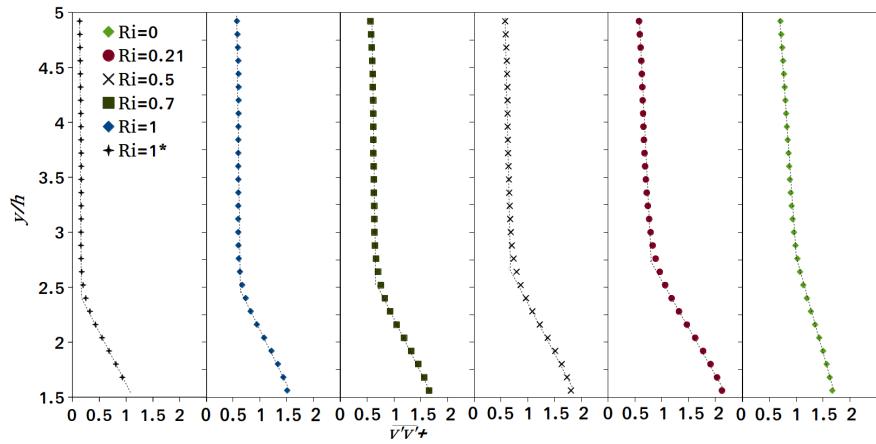
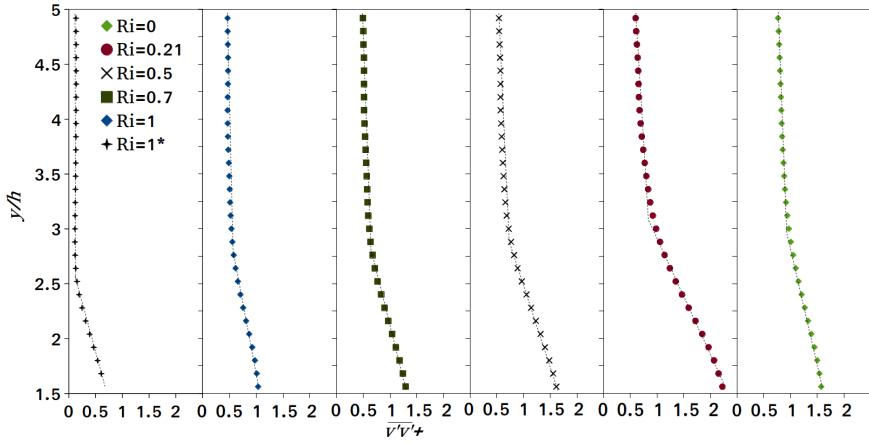



Figure 12: Q -criterion analysis of flow at $z = -1.5h$ for various stratification conditions and same inflow turbulence conditions. $R_i = 0.21$ (a), $R_i = 0.5$ (b), $R_i = 0.7$ (c), $R_i = 1$ (d).


392 The Q -criterion is defined as,

$$Q = 0.5(\Omega_{ij}\Omega_{ij} - S_{ij}S_{ij}), \quad (11)$$

393 where $\Omega_{ij} = 0.5(\frac{\partial u_i}{\partial x_j} - \frac{\partial u_j}{\partial x_i})$ and $S_{ij} = 0.5(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i})$. It is useful for highlighting
 394 flow regions in which rotation is dominant over the shear. Figure 12 shows the
 395 results of Q criterion analyses for $R_i = 0.2$ (Fig. 12a), $R_i = 0.5$ (Fig. 12b),
 396 $R_i = 0.7$ (Fig. 12c) and $R_i = 1$ (Fig. 12d) cases. The IBL was shallower and of
 397 a lower growth rate compared to weaker thermal stratification. The Q -criterion
 398 analyses were repeated for several cross-sections in the lateral direction with
 399 similar results.


(a)

(b)

(c)

(d)

Figure 13: Vertical profiles of wall-normal turbulent stress $\overline{v'v'^+}$ at $x = 6h$ (a), $x = 10h$ (b), $x = 14h$ (c) and $x = 18h$ (d), averaged over 60 points in the lateral direction.

400 The method described in (Sessa et al., 2018) was used to process the data
 401 from each lateral street downstream of the leading edge of the array to locate
 402 the height of the IBL interface for various stability cases (Fig.13). This involves
 403 deriving vertical profiles above the canopy by laterally averaging the dimension-
 404 less wall-normal turbulent stress $\overline{v'v'^+}$, and is easy to implement and provides a
 405 reasonable indication of the IBL development. Figure 13 plots vertical profiles
 406 of wall-normal turbulent stress immediately above the canopy, shows visible

407 discontinuities in these profiles. Fitting linearly these profiles to two straight
408 lines yielded intersections (i.e. “knee” points). These were identified as the in-
409 terface of the internal and external boundary layer, which was consistent with
410 the Q-criterion analyses shown in Fig. 12. This approach is in a similar manner
411 to the methods of Antonia & Luxton (1972) and Efros & Krogstad (2011). The
412 vertical stress profiles in the external and internal boundary layer regions were
413 linearly fitted to a residual error of less than 2% in all cases.

414 Figure 13 shows that for the case ‘ $R_i = 1^*$ ’ the wall-normal turbulent stress
415 was much smaller than the other cases because less TKE was prescribed at the
416 inlet. On the contrary, for the $R_i = 0$ case, the wall-normal turbulent stress
417 was greater than for the other stable cases because of the greater level of TKE
418 defined at the inlet.

419 In Fig. 13a for $x = 6h$ the intersection of the two straight lines shows the
420 height of the IBL interface was approximately the same for all the LES cases.
421 This is due to a strong recirculation bubble formed at the leading edge, whose
422 size was relatively insensitive to the inflow turbulence and thermal stability.
423 At $x = 10h$ (Fig. 13b) and farther downstream $x = 14h$ and $18h$ (Figs. 13c
424 and 13d), the effects of thermal stability on the depth of the IBL were more
425 evident and the IBL was found to be shallower as the stratification was increased
426 from $R_i = 0$ to $R_i = 1$. These results confirm that increasing the thermal
427 stratification damped the turbulence and mixing, and led to a thinner IBL. It
428 is to be noted that the local mean temperature gradient within the IBL is much
429 greater than that above it (Fig. 3a), resulting in a greater local stratification
430 effect on the turbulence and mixing in the IBL and almost a step-change in
431 normal Reynolds stress at the interface.

432 Figures 13a – 13d show that under the same stratification, lower incoming
433 turbulence (i.e. ‘ $R_i = 1^*$ ’) yields a shallower IBL compared to greater incoming
434 turbulence (i.e. ‘ $R_i = 1$ ’). This suggests that an approaching boundary layer
435 with lower turbulence intensity is more susceptible to the effect of local thermal
436 stratification over an urban area. This is consistent with the work of Williams
437 et al. (2017) who found that the critical Richardson number for a rough wall was

438 greater than for a smooth wall. This also emphasises the importance of mod-
 439 elling the non-linear interaction between the incoming turbulence and locally
 440 generated turbulence in thermally stratified conditions.

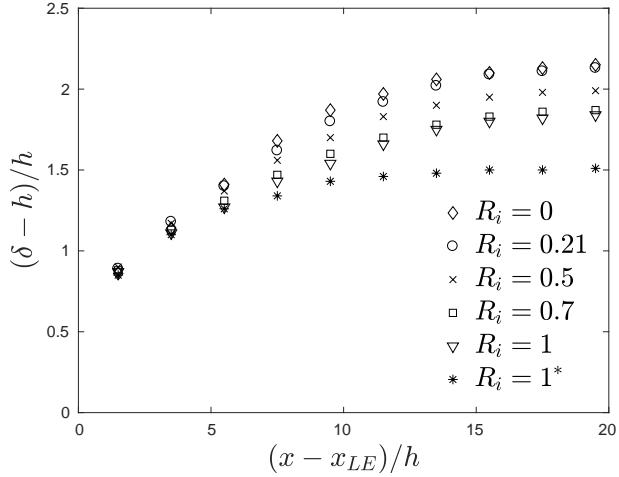


Figure 14: IBL height δ for different stratification conditions derived using the method of Sessa et al. (2018) based on vertical profiles of wall-normal turbulent stress $\overline{v'v'}^+$. x_{LE} is the streamwise coordinate of the leading edge of the array.

441 Figure 14 shows the IBL height δ for different stratification conditions de-
 442 rived by using the method of Sessa et al. (2018) based on vertical profiles of
 443 wall-normal turbulent stress $\overline{v'v'}^+$. It can be seen that the overall depth and
 444 growth rate of the IBL were sensitive to both the thermal stability and inflow
 445 turbulence conditions. Increasing stratification leads to a reduced IBL depth
 446 and a lower growth rate. A reduced TKE at the inlet (' $R_i = 1^*$ ') enhances these
 447 effects further compared to the case ' $R_i = 1$ '. The depth of the IBL varies by
 448 up to 30% within the studied range of thermal stratification conditions. Given
 449 that the present work has only considered weakly stably stratified conditions,
 450 we can conclude that both the depth of the IBL and the turbulence below and
 451 above it following a change in surface roughness are significantly affected by
 452 even small changes in thermal stratification.

453 **6. Pollutant dispersion**

454 The effects of stable stratification on pollutant dispersion were investigated
455 by considering the emission of a passive scalar from a line source $S1$ (Fig. 1).
456 This setup is useful for studying the effect of stratification on scalar concen-
457 tration and scalar fluxes. As the periodic boundary conditions were used in
458 the lateral direction, dispersion from the line source was a quasi- $2D$ problem
459 because the scalar plume was laterally homogeneous.

460 *6.1. Stability effects on scalar fluxes*

461 The total vertical flux $\psi_{tot}^{v*} = \psi_{adv}^{v*} + \psi_{turb}^{v*}$ includes contributions from both
462 advective (Eq. 12) and turbulent (Eq. 13) scalar fluxes. The advective and
463 turbulent vertical concentration fluxes transport pollutants from the canopy
464 flow to the boundary layer above. The dimensionless advective and turbulent
465 vertical flux components are defined respectively as follows (Fuka et al., 2017):

$$\psi_{adv}^{v*} = \bar{V} \bar{C} \frac{h^2}{Q} \quad (12)$$

$$\psi_{turb}^{v*} = \bar{v'} \bar{c'}^* = (\bar{V} \bar{C} - \bar{V} \bar{C}) \frac{h^2}{Q} \quad (13)$$

466 where v' and c' are the vertical velocity and concentration fluctuations respec-
467 tively and \bar{V} is the mean vertical velocity.

468 Similarly, the total streamwise flux in the streamwise direction is defined as
469 follows:

$$\psi_{tot}^{u*} = (\bar{U} \bar{C} + \bar{u'} \bar{c'}) \frac{h^2}{Q} \quad (14)$$

470 where u' is the streamwise velocity fluctuation and \bar{U} is the mean streamwise
471 velocity.

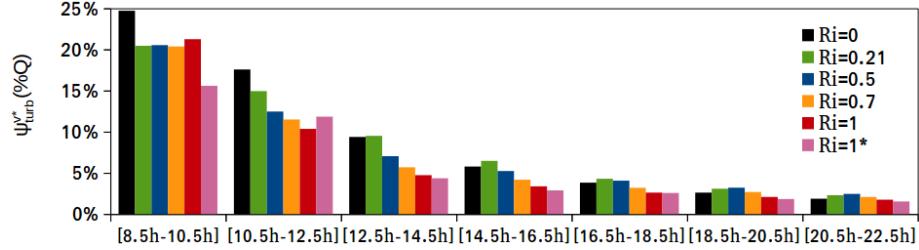


Figure 15: Integrated turbulent vertical concentration flux for horizontal planes $2h \times 12h$ at $y = 1h$ at 7 streamwise locations for various stratification conditions. Line source placed at $x = 10h$.

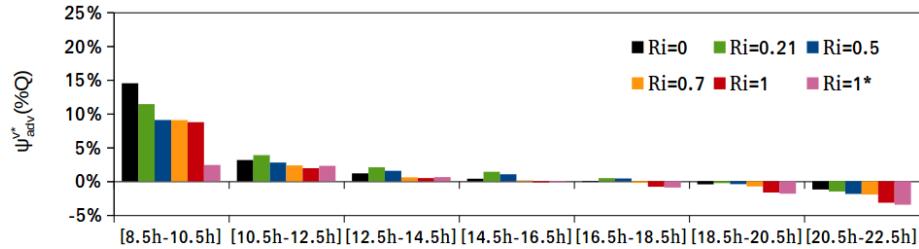


Figure 16: Integrated advective vertical concentration flux for horizontal planes $2h \times 12h$ at $y = 1h$ at 7 streamwise locations for various stratification conditions. Line source placed at $x = 10h$.

473 The vertical turbulent (Fig. 15) and advective (Fig. 16) concentration fluxes
 474 from the line source $S1$ were integrated at the canopy height $y = 1h$ across the
 475 entire span $12h$, between two x coordinates separated by $2h$.

$$\psi^{a,b} = \int \int_{x/h \in (a,b), y/h=1} \psi^{v*} d\left(\frac{x}{h}\right) d\left(\frac{z}{h}\right). \quad (15)$$

476 Large positive turbulent and advective fluxes were found over the first interval
 477 ($x = 8.5h - 10.5h$) because the horizontal plane was above the source street
 478 ($x = 10h$). Further downstream, the turbulent and advective concentration flux
 479 components decreased significantly. Figures 15 and 16 show that the turbulent
 480 flux was generally greater in magnitude than the advective flux.

481 Both the turbulent and the advective fluxes generally decreased as R_i was
 482 increased from 0.2 to 1.0, given the same turbulent inflow conditions. This
 483 confirmed that increasing stratification reduced vertical transport of pollutant

484 due to decreasing both the turbulent and advective scalar fluxes in the vertical
485 direction. For $R_i = 0$, because of higher TKE prescribed at inlet, the general
486 pattern was slightly different. For example, at the third downstream interval
487 from the line source ($x = 14.5h - 16.5h$), the turbulent scalar flux (Fig. 15) was
488 found to be lower than that for $R_i = 0.2$. This was due to higher turbulent
489 kinetic energy near the source which yielded greater vertical transport above
490 the canopies than that for $R_i = 0.2$. For ' $R_i = 1^*$ ', the much lower TKE at
491 the inlet caused significantly low turbulent and advective scalar fluxes over the
492 source street ($x = 8.5h - 10.5h$). As a result, the scalar plume for ' $R_i = 1^*$ ' was
493 strongly advected into the following lateral street ($x = 10.5h - 12.5h$), producing
494 a so-called virtual secondary source. Figures 15–16 show that over the first two
495 lateral streets both the turbulent and advective scalar fluxes for ' $R_i = 1^*$ ' have
496 almost the same magnitude. This again confirms the existence of the virtual
497 secondary source in the 2nd street.

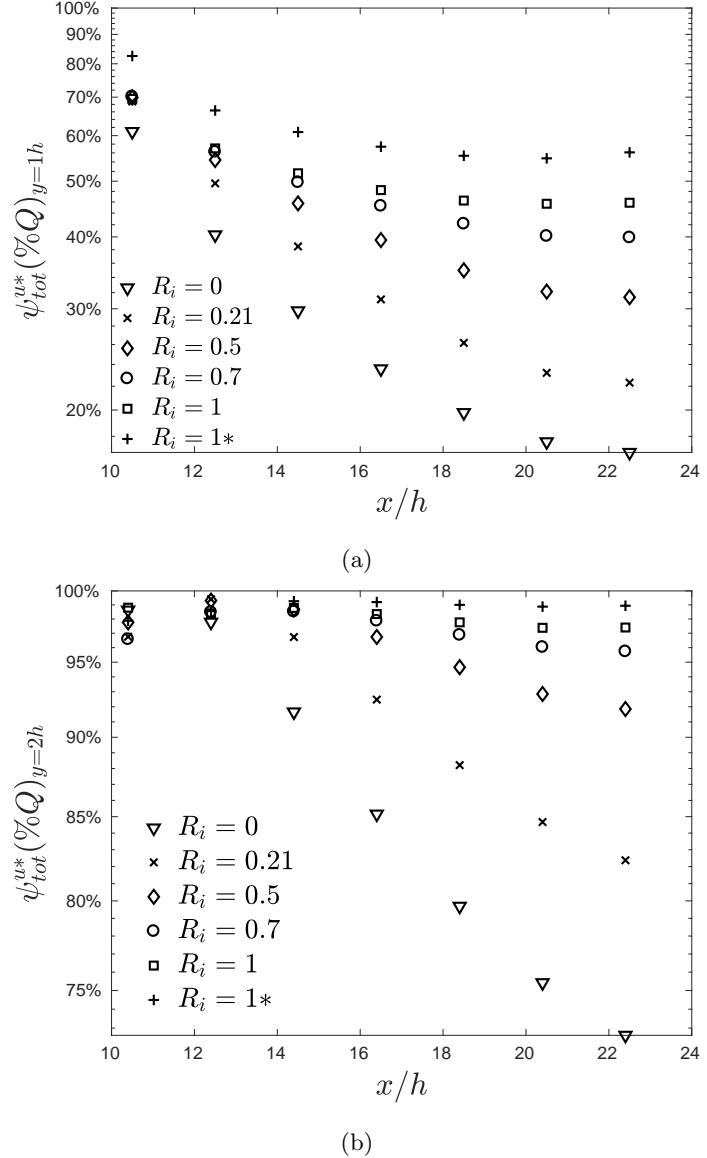


Figure 17: Total streamwise flux over $1h \times 12h$ (a) and $2h \times 12h$ (b) vertical planes at 7 streamwise locations downstream of the line source (at $x = 10h$).

498 The streamwise total concentration flux (Eq. 14) of the line source $S1$ was
 499 integrated over vertical planes with dimensions $(1h \times 12h)$ as shown in Fig. 17a
 500 and $(2h \times 12h)$ as shown in Fig. 17b. The integration was performed between

501 two constant y coordinates across the entire span. For example, at $x = 10.5h$,
 502 the total flux was computed as follows:

$$\psi^{a,b} = \int \int_{y/h \in (a,b), x/h = 10.5} \psi^{u*} d\left(\frac{y}{h}\right) d\left(\frac{z}{h}\right). \quad (16)$$

503 Figure 17a shows the amount of pollutant transported in the streamwise
 504 direction below the canopy top. Near the line source, approximately 60% of the
 505 total emission Q for $R_i = 0$ was transported in the streamwise direction while
 506 $\sim 40\%$ of the emission Q was transported vertically through the horizontal
 507 plane above the source street. Further downstream, the amount of pollutant
 508 transported in the streamwise direction dropped to less than 20% of the total
 509 flux for $x \geq 20h$.

510 From $R_i = 0.2$ to $R_i = 1$ a similar amount of pollutant was transported
 511 downstream at $x = 10.5h$ because the kinetic energy close to the source was
 512 similar in all cases. Away from the source, greater stability trapped more pollu-
 513 tant within the canopy layer. In the range $R_i = 0.2$ to $R_i = 1$ the total concen-
 514 tration flux below the canopy increased by more than 50% at $x/h = 20$ which
 515 is 5 rows of blocks downstream from the line source. For the case ' $R_i = 1^*$ ' with
 516 lower incoming TKE, the stratification effect is evidently stronger compared to
 517 the case $R_i = 1$.

518 Figure 17b shows the amount of pollutant transported through the vertical
 519 plane below $y = 2h$ in the streamwise direction. All of the profiles show a
 520 peak value at approximately $x = 12.5h$. The vertical plane at $x = 10.5h$ was
 521 very close to the line source at $x = 10h$, where the gradient of total streamwise
 522 flux, and consequently the error in integrated total streamwise flux through the
 523 plane was greatest. This might explain why the integrated total streamwise flux
 524 at $x = 10.5h$ shown in Fig. 17b is not 100%. Further downstream, the total
 525 streamwise flux through the vertical plane $y = 0 - 2h$ increases monotonically
 526 as the stratification level increases for the same incoming turbulence intensity,
 527 confirming again that the spreading of the plume is evidently affected by the
 528 stability level. Furthermore, reducing incoming turbulence resulted in an in-

529 increase in total streamwise flux through the vertical plane $y = 0 - 2h$ at the
 530 same stratification.

531 *6.2. Stability effects on mean concentration*

532 As stated earlier in Section 6, within the LES simulations the dispersion from
 533 a ground-level constant line source can be considered to be laterally homogeneous,
 534 with spreading of the plume constrained in the lateral direction. The
 535 previous sections show that increasing R_i decreased the vertical scalar trans-
 536 port above the canopy and led to higher concentrations close to the ground. In
 537 this section, we quantify these effects on mean concentration.

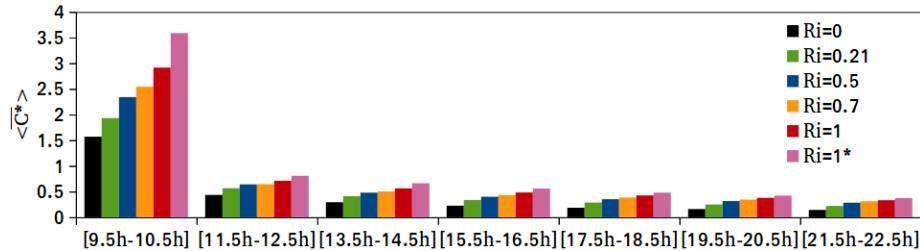


Figure 18: Volume-averaged of normalized mean concentration within lateral streets, from the ground to the canopy height $y = 1h$. The lateral source street is defined at $x = 9.5 - 10.5h$.

538 The volume-averaged concentration was calculated within each lateral street
 539 up to the canopy height, starting from the source street which was located
 540 between $x = 9.5h$ and $x = 10.5h$. Mean concentration from the line source $S1$
 541 was normalized as in accordance with Eq. 8 and averaged over a volume with
 542 dimensions $1h \times 1h \times 12h$:

$$\langle \overline{C^*} \rangle^{a,b} = \int_{x/h \in (a,b)} \int_{y/h \in (0,1)} \int_{z/h \in (-6,6)} \overline{C^*} d\left(\frac{x}{h}\right) d\left(\frac{y}{h}\right) d\left(\frac{z}{h}\right). \quad (17)$$

543 Figure 18 shows that the volume-averaged concentration increased mono-
 544 tonically in all of the streets as the thermal stability was increased, and de-
 545 creased with distance from the source at all stratification conditions. This is
 546 because increased stability suppresses turbulence resulting in reduced vertical
 547 mixing within and above the canopy (see Fig.13). Figure 18 also shows that

548 the volume-averaged concentration was increased when a lower TKE was pre-
 549 scribed at the inlet in the case ' $R_i = 1^*$ ' compared to that in the case $R_i = 1$.
 550 This is consistent with a reduction in vertical scalar flux in the case ' $R_i = 1^*$ '
 551 compared to that in the case $R_i = 1$ (Sec. 6.1).

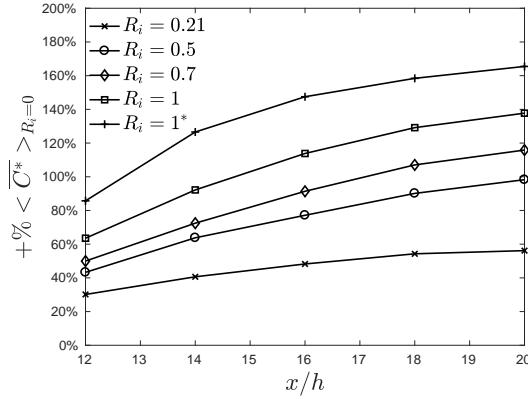


Figure 19: Increase (%) in volume-averaged concentration $\langle \overline{C}^* \rangle$ for cases at $R_i \geq 0.2$ compared to $R_i = 0$ within lateral streets up to the canopy height.

552 Figure 19 shows a monotonic increase in volume-averaged concentration
 553 within each lateral street for cases at $R_i \geq 0.2$ compared to that within the
 554 same street for case $R_i = 0$. This again confirms the effect of increasing thermal
 555 stratification and the lower TKE in the approaching flow for the $R_i = 1^*$ case
 556 shows a 20% increase in volume-averaged concentration.

557 7. Conclusions and discussion

558 In this paper we have rigorously examined the effects of various levels of
 559 weakly stable stratification ($0 \leq R_i \leq 1$) on turbulence and dispersion over
 560 a rural-to-urban transition region using a high-fidelity large eddy simulation
 561 (LES) approach. Firstly we validated the LES predictions against wind tunnel
 562 measurements on a stratified boundary layer approaching a regular array of
 563 cuboid elements at $R_i = 0.21$. The validation suggested that our developed
 564 synthetic inflow generation method embedded in LES was able to accurately

565 predict mean velocities, turbulent stresses, mean concentration and variance of
566 concentration fluctuations from a ground-level point source in weakly stratified
567 flows over a rough-to-very-rough transition region, such as from rural-to-urban
568 region. It is to be noted that this is the first time we carried out assessment of
569 synthetic generation of turbulence and temperature fluctuations for modelling
570 a developing weakly stable atmospheric boundary layer.

571 A numerical sensitivity test was conducted to assess whether a small change
572 of ground temperature upstream of the step change in roughness affected tur-
573 bulence and dispersion further downstream. This was required to assess the po-
574 tential impact of the non-negligible errors of measuring the ground temperature
575 upstream of the step change in the experiments. We found that the differences
576 in incoming heat flux due to changes in the surface temperature were negli-
577 gible because the mean streamwise velocity was nearly zero in the vicinity of
578 the ground. We conclude that the turbulence and dispersion downstream of the
579 step change in roughness was insensitive to small changes of ground temperature
580 upstream of the step change.

581 The transition from a rough surface to a much rougher surface composed of
582 an array of regular cuboids generated an internal boundary layer (IBL) from
583 the leading edge of the array. The method developed in Sessa et al. (2018) was
584 used to evaluate the depth of the IBL for the different stratification conditions
585 simulated (i.e. $0 \leq R_i \leq 1$) and different inflow turbulence intensities. We found
586 that the IBL became shallower as the thermal stratification was increased. The
587 greater local vertical temperature gradient within the IBL than in the external
588 boundary layer led to a greater local stratification effect within the IBL and
589 consequently a more pronounced step-change of normal Reynolds stress at the
590 the interface of IBL.

591 We also found that the IBL height was reduced as the level of TKE was
592 reduced in the approaching flow for the same stratification condition. This
593 suggests that an approaching boundary layer with less turbulence intensity is
594 more susceptible to the effect of local thermal stratification over an urban area.
595 This also suggests the importance of accurately modelling the non-linear inter-

596 action between the incoming turbulence and the locally generated turbulence in
597 thermal stratification conditions.

598 The dispersion and scalar fluxes from a ground-level line source placed be-
599 hind the fifth row of elements downstream of the leading edge were analysed
600 extensively in various stratification conditions ($0 \leq R_i \leq 1$). The total ver-
601 tical flux decreased above the lateral streets whereas the horizontal total flux
602 increased within the lateral streets as the thermal stratification was increased.
603 This led to larger volume-averaged concentrations within streets with increas-
604 ing stratification. If the TKE in the approaching boundary layer is reduced
605 while maintaining the same level of thermal stratification, the effect on the to-
606 tal scalar fluxes within and above the canopy, and on the volume-averaged mean
607 concentration within lateral streets is greater.

608 We conclude that even weakly stable stratification ($0 \leq R_i \leq 1$) in an
609 approaching boundary layer significantly changes the concentration levels that
610 result from material dispersing from point or line sources within an array of
611 blocks. This is because of the suppression of the turbulence in the IBL, and the
612 reduced vertical transport of pollutant above the canopy.

613 **Acknowledgements.** VS is grateful to the Defence Science and Technology
614 Laboratory and the University of Southampton for the funding of his PhD stu-
615 dentship. We thank to the EnFlo team at the University of Surrey for providing
616 the wind tunnel data through the appropriate publications. We are also grate-
617 ful to Prof Ian P. Castro, Dr Glyn Thomas and Mr Timothy Foat for helpful
618 comments. The relevant data are available from the University of Southampton
619 database, under the DOI (to be provided).

620 **References**

621 Antonia, R. A., & Luxton, R. E. (1972). The response of a turbulent boundary
622 layer to a step change in surface roughness. part 2. rough-to-smooth. *Journal*
623 *of Fluid Mechanics*, 53, 737–757. doi:10.1017/S002211207200045X.

624 Bercin, K. M., Xie, Z.-T., & Turnock, S. R. (2018). Exploration of digital-filter
625 and forward-stepwise synthetic turbulence generators and an improvement
626 for their skewness-kurtosis. *Computers & Fluids*, 172, 443 – 466. doi:<https://doi.org/10.1016/j.compfluid.2018.03.070>.

627

628 Boppana, V. B. L., Xie, Z. T., & Castro, I. P. (2013). Large-eddy simulation of
629 heat transfer from a single cube mounted on a very rough wall. *Boundary-
630 Layer Meteorology*, 147, 347–368. doi:10.1007/s10546-012-9793-7.

631 Boppana, V. B. L., Xie, Z.-T., & Castro, I. P. (2014). Thermal stratification
632 effects on flow over a generic urban canopy. *Boundary-Layer Meteorology*,
633 153, 141–162. doi:10.1007/s10546-014-9935-1.

634 Britter, R. E., & Hanna, S. R. (2003). Flow and dispersion in urban areas. *Annual
635 Review of Fluid Mechanics*, 35, 469–496. doi:10.1146/annurev.fluid.
636 35.101101.161147.

637 Castro, I. P., Xie, Z. T., Fuka, V., Robins, A. G., Carpentieri, M., Hayden,
638 P., Hertwig, D., & Coceal, O. (2017). Measurements and computations of
639 flow in an urban street system. *Boundary-Layer Meteorology*, 162, 207–230.
640 doi:10.1007/s10546-016-0200-7.

641 Cheng, H., & Castro, I. P. (2002). Near-wall flow development after a step
642 change in surface roughness. *Boundary-Layer Meteorology*, 105, 411–432.
643 doi:10.1023/A:1020355306788.

644 Cheng, W., & Liu, C.-H. (2011). Large-eddy simulation of turbulent transports
645 in urban street canyons in different thermal stabilities. *Journal of Wind
646 Engineering and Industrial Aerodynamics*, 99, 434 – 442. doi:<https://doi.org/10.1016/j.jweia.2010.12.009>. The Fifth International Symposium on
647 Computational Wind Engineering.

648

649 Efros, V., & Krogstad, P.-A. (2011). Development of a turbulent boundary
650 layer after a step from smooth to rough surface. *Experiments in Fluids*, 51,
651 1563–1575. doi:10.1007/s00348-011-1167-2.

652 Fuka, V., Xie, Z. T., Castro, I. P., Hayden, P., Carpentieri, M., & Robins, A. G.
653 (2017). Scalar fluxes near a tall building in an aligned array of rectangular
654 buildings. *Boundary-Layer Meteorology*, . doi:10.1007/s10546-017-0308-4.

655 Goulart, E., Reis, N., Lavor, V., Castro, I., Santos, J., & Xie, Z. (2019). Local
656 and non-local effects of building arrangements on pollutant fluxes within the
657 urban canopy. *Building and Environment*, 147, 23 – 34. doi:<https://doi.org/10.1016/j.buildenv.2018.09.023>.

659 Hancock, P. E., & Hayden, P. (2018). Wind-tunnel simulation of weakly and
660 moderately stable atmospheric boundary layers. *Boundary-Layer Meteorol-
661 ogy*, 168, 29–57. doi:10.1007/s10546-018-0337-7.

662 Hanson, R. E., & Ganapathisubramani, B. (2016). Development of turbulent
663 boundary layers past a step change in wall roughness. *Journal of Fluid Me-
664 chanics*, 795, 494–523. doi:10.1017/jfm.2016.213.

665 Hertwig, A., Soulhac, L., Fuka, V., Auerswald, T., Carpentieri, M., Hayden, P.,
666 Robins, A., Xie, Z., & O, C. (2018). Evaluation of fast atmospheric dispersion
667 models in a regular street network. *Environ. Fluid Mech.*, 18, 1007–1044.

668 Inagaki, M., Kondoh, T., & Nagano, Y. (2005). A mixed-time-scale sgs model
669 with fixed model-parameters for practical LES. *Journal of Fluids Engineering*,
670 127, 1–13. doi:10.1115/1.1852479.

671 Kanda, I., & Yamao, Y. (2016). Passive scalar diffusion in and above urban-
672 like roughness under weakly stable and unstable thermal stratification condi-
673 tions. *Journal of Wind Engineering and Industrial Aerodynamics*, 148, 18–33.
674 doi:10.1016/j.jweia.2015.11.002.

675 Marucci, D., & Carpentieri, M. (2018a). Wind tunnel study on the effect of
676 atmospheric stratification on flow and dispersion in an array of buildings, .
677 ICUC10: 10th International Conference on Urban Climate, 6 – 10 August,
678 2018, New York, USA.

679 Marucci, D., Carpentieri, M., & Hayden, P. (2018b). On the simulation of thick
680 non-neutral boundary layers for urban studies in a wind tunnel. *International*
681 *Journal of Heat and Fluid Flow*, *72*, 37 – 51. doi:<https://doi.org/10.1016/j.ijheatfluidflow.2018.05.012>.

683 Ohya, Y. (2001). Wind-tunnel study of atmospheric stable boundary layers over
684 a rough surface. *Boundary-Layer Meteorology*, *98*, 57–82. doi:[10.1023/A:1018767829067](https://doi.org/10.1023/A:1018767829067).

686 Okaze, T., & Mochida, A. (2017). Cholesky decompositionbased generation of
687 artificial inflow turbulence including scalar fluctuation. *Computers & Fluids*,
688 *159*, 23 – 32.

689 Sessa, V., Xie, Z.-T., & Herring, S. (2018). Turbulence and dispersion below
690 and above the interface of the internal and the external boundary layers.
691 *Journal of Wind Engineering and Industrial Aerodynamics*, *182*, 189 – 201.
692 doi:<https://doi.org/10.1016/j.jweia.2018.09.021>.

693 Tomas, J. M., Pourquie, M. J. B. M., & Jonker, H. J. J. (2016). Stable strat-
694 ification effects on flow and pollutant dispersion in boundary layers entering
695 a generic urban environment. *Boundary-Layer Meteorology*, *159*, 221–239.
696 doi:[10.1007/s10546-015-0124-7](https://doi.org/10.1007/s10546-015-0124-7).

697 Williams, O., Hohman, T., Van Buren, T., Bou-Zeid, E., & Smits, A. J. (2017).
698 The effect of stable thermal stratification on turbulent boundary layer statis-
699 tics. *Journal of Fluid Mechanics*, *812*, 10391075. doi:[10.1017/jfm.2016.781](https://doi.org/10.1017/jfm.2016.781).

700 Wood, C. R., Lacser, A., Barlow, J. F., Padhra, A., Belcher, S. E., Nemitz,
701 E., Helfter, C., Famulari, D., & Grimmond, C. S. B. (2010). Turbulent flow
702 at 190 m height above london during 2006–2008: A climatology and the
703 applicability of similarity theory. *Boundary-Layer Meteorology*, *137*, 77–96.
704 doi:[10.1007/s10546-010-9516-x](https://doi.org/10.1007/s10546-010-9516-x).

705 Xie, Z. T., & Castro, I. P. (2008). Efficient generation of inflow conditions for

706 large eddy simulation of street-scale flows. *Flow, Turbulence and Combustion*,
707 81, 449–470. doi:10.1007/s10494-008-9151-5.

708 Xie, Z.-T., Hayden, P., & Wood, C. R. (2013). Large-eddy simulation of
709 approaching-flow stratification on dispersion over arrays of buildings. *At-*
710 *mospheric Environment*, 71, 64 – 74. doi:<http://dx.doi.org/10.1016/j.atmosenv.2013.01.054>.

712 Yassin, M., Kato, S., Ooka, R., Takahashi, T., & Kouno, R. (2005). Field and
713 wind-tunnel study of pollutant dispersion in a built-up area under various
714 meteorological conditions. *Journal of Wind Engineering and Industrial Aero-*
715 *dynamics*, 93, 361 – 382. doi:<https://doi.org/10.1016/j.jweia.2005.02.005>.