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Energy-Efficient Resource Allocation for
Latency-Sensitive Mobile Edge Computing
Xihan Chen, Yunlong Cai, Liyan Li, Minjian Zhao, Benoit Champagne, and Lajos Hanzo

Abstract—Resource allocation algorithms are conceived for
minimizing the energy consumption of multiuser mobile edge
computing (MEC) systems operating in the face of interference
channels, and where mobile users can offload their latency-
sensitive tasks to the mobile edge server via a base station (BS).
Latency-sensitive applications that benefit from MEC services
can be divided into two major classes: 1) applications requiring
uninterrupted execution and that cannot be fragmented and
therefore require full offloading (FO); 2) applications which can
benefit from fractional or partial offloading (PO). For each class
of applications, we first formulate a joint optimization problem
where the aim is to minimize the overall energy consumption
across the sub-network subject to latency, transmission qual-
ity, computational budget and transmit power constraints. The
proposed optimization problems are nonconvex, tightly coupled,
and consequently challenging to solve. By exploiting binary relax-
ation, smooth approximation and auxiliary variables, we convert
these problems into more tractable forms and subsequently
develop novel algorithms based on the concave-convex procedure
(CCCP) to solve them. Furthermore, by incorporating a measure
of user priority, a reduced-complexity solution is proposed for
the FO scheme. The benefits of our energy-efficient resource
allocation algorithms for latency-sensitive MEC are demonstrated
through simulations.

Index Terms—Mobile edge computing, Resource allocation,
Full offloading scheme, Partial offloading scheme, CCCP.

I. INTRODUCTION

During the last decade, the explosive growth in the number,

type and functionality of smart mobile devices has spurred

the development of new mobile services [1]. A distinguishing

feature of these services - such as augmented reality, real-

time image recognition and natural language processing - is

their computation-intensive and latency-sensitive nature, which

poses very stringent requirements on both the computational

and radio resources. In effect, the limited computational capa-

bility and battery life of mobile devices cannot guarantee the

quality of experience (QoE) anticipated by the end users. To

overcome these limitations, the telecommunication industry is

increasingly turning towards mobile edge computing (MEC), a
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new network architecture that supports cloud computing along

with compelling Internet services at the network edge [2]. This

architecture has the potential of significantly reducing latency,

whilst avoiding congestion and prolonging the battery charge

life of mobile devices. This is achieved by the provision of

ample computational and storage resources at the network

edge, in order to support demanding computation-intensive

and latency-critical applications, hence freeing from these

tasks the resource-limited mobile devices [3]–[5].

A wide variety of latency-sensitive1 applications can benefit

from MEC services, with distinctive characteristics that call for

different resource allocation and offloading mechanisms [3],

[4], [7]. Indeed, the design objectives for various classes of

latency-sensitive applications can be quite different. For exam-

ple, the image compression applications focus on computation

efficiency, while interactive applications such as mobile games

emphasize the stability of operation [8]. In practice, due to

hardware and software limitations, latency-sensitive applica-

tions can be divided into two main classes, i.e.:continuous-

execution and data-partitioning-oriented applications [9]. In

continuous-execution applications, it is not known in advance

how long the application will take to be executed. Interactive

applications such as mobile gaming, virtual reality, etc. belong

to this class [10]. These applications must not be fragmented

and hence they either have to be executed without interruption

by user, or completely offloaded to the MEC server, which is

termed as full offloading (FO). In data-partitioning-oriented

applications, the amount of data to be processed is known in

advance and therefore, fragmentation is allowed. In this case,

one can take advantage of parallel processing, where a portion

of the data is processed at the MEC server, while the remaining

portion is processed locally by the user device, which is termed

as partial-offloading (PO).

A. Prior Work

Considerable research efforts have been dedicated to the

study of centralized resource allocation strategies for FO

MEC systems. In [11] and [12], the authors derived the

optimal resource allocation solution for a single-user MEC

offloading system having multiple elastic tasks, with the goal

of minimizing the average execution latency of all tasks

under power constraints. In [13], game-theoretic decentralized

computation offloading algorithms were proposed for wireless

multi-user MEC systems. Sardellitti et al. [14] considered the

joint optimization of radio and computational resources for

computation offloading in a dense deployment scenario, in

the presence of intercell interference. In order to reduce the

1Latency sensitive applications are characterized by their bounded end-to-
end delay requirements [6].
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signalling overhead encountered in FO MEC systems, decen-

tralized algorithms [15] have also been proposed. Wang et al.

[16] conceived a decentralized algorithm based on the alter-

nating direction multiplier method (ADMM) for computation

offloading, resource allocation and Internet content caching

optimization in heterogeneous MEC-aided wireless networks.

Sergio et al. [17] invoked MEC-aided computation offloading

techniques for millimeter wave (mmWave) communications

and tackled the intermittent nature of mmWave propagation by

relying on multiple links. Wang et al. [18] exploited the multi-

antenna non-orthogonal multiple access (NOMA) technique

for computation offloading in order to enable multiple users to

share the allotted spectrum in the most effective manner. The

authors of [19], [20] integrated the MEC system with wireless

power transfer (WPT) techniques to provide numerous low-

power wireless devices with enhanced computation capability

and sustainable energy supply.

Recently, several methods have also been proposed to

improve the performance of PO-based MEC systems. You

et al. [21] investigated the optimal resource and offloading

decision policy by minimizing the weighted sum of mobile

energy consumption under a computation latency constraint in

a multiuser time-division multiple access (TDMA)/orthogonal

frequency-division multiple access (OFDMA) MEC system.

Chen et al. [22] struck a trade-off between the execution

delay and the network’s energy consumption by proposing a

joint cooperative computation and interactive communication

framework for relay-assisted MEC systems. Ranadheera et

al. [23] formulated the computational offloading problem as

a minority game and developed a novel distributed server

activation mechanism. They also addressed the randomness

in both channel quality and user requests, and analyzed the

statistical characteristics of the offloading delay. The authors

of [24]–[26] combined MEC-based computation offloading

techniques with unmaned aeiral vehicle (UAV) communica-

tions to provide high-quality services with reduced cost and

high maneuverability. Ren et al. [27] investigated the latency-

minimization problem in a multi-user TDMA MEC system

relying on joint communication and computation resource

allocation. Wang et al. [7] investigated partial computation

offloading in conjunction with dynamic voltage and frequency

scaling in MEC systems by considering the energy versus

latency minimization problem.

B. Challenges and Contributions

To the best of our knowledge, the following challenges have

not been well investigated in the literature on MEC: (i) How

should we construct the multiuser MEC system model in the

presence of interference channels, whilst exploiting the charac-

teristics of different types of latency-sensitive applications? (ii)

What is the optimal resource allocation strategy that minimizes

the system’s energy consumption under the constraints of la-

tency, transmission quality, computational budget and transmit

power? (iii) How can we alleviate the performance bottleneck

caused by the channel state information (CSI) overhead and

computational complexity issue due to the scalability in a

large-scale mobile network? In this work, we aim to shed more

light on these key issues by explicitly formulating the energy-

efficient resource allocation problem for latency sensitive

applications in multi-user MEC systems, and conceiving com-

putationally efficient solution approaches for both the FO and

PO schemes. The formulated optimization problems contain

highly coupled nonconvex objective functions and constraints,

which are difficult to handle. In particular, in the FO scheme,

the presence of discrete binary constraints on the allocation

variables makes the problem more strenuous. As for the PO

scheme, the presence of nonconvex constraints involving the

l0-norm constitutes a different, yet no less simpler issue.

Our main contributions in addressing the above challenges

are summarized as follows:

1) We construct the system model of multiuser MEC un-

der interference channels for both continuous-execution

applications (FO scheme) and data-partitioning-oriented

applications (PO scheme). We then formulate the corre-

sponding constrained energy consumption minimization

(ECM) problems for efficient resource allocation, which

we refer to as the ECM-FO and ECM-PO problems.

2) By applying a series of suitable transformations involv-

ing auxiliary variables and relaxation techniques, we

first recast these challenging optimization problems into

equivalent but more tractable forms. Specifically, we

transform the binary variables into continuous ones in

the FO scheme and approximate the nonconvex l0-norm

with smooth functions in the PO scheme.

3) We then propose new algorithms for the resultant prob-

lems based on the concave-convex procedure (CCCP) for

handling the highly coupled terms and jointly optimize

the MEC system parameters. In addition, we develop an

ADMM-based algorithm which can be implemented in

a distributed fashion to mitigate the effects caused by

the CSI overhead and high complexity. Furthermore, by

incorporating user priority parameters into the system

model and invoking bisection search, a sub-optimal algo-

rithm with reduced-complexity is conceived for the FO

scheme.

4) We evaluate the performance of the proposed algorithms

using in-depth simulations with diverse system parameter

configurations. The results clearly demonstrate the con-

vergence behavior of the new algorithms and the effect

of various parameters on the system performance, whilst

providing useful insights into the benefits of MEC for

low-latency applications.

The rest of this paper is organized as follows. Section II

presents the system model of a multiuser MEC system under

interference channels. Section III formulates the ECM-FO

and the ECM-PO problems for the continuous-execution and

data-partitioning-oriented classes of applications, respectively.

Section IV proposes an efficient CCCP-based FO (CFO)

algorithm as well as a simplified algorithm for solving the

ECM-FO problem. Section V proposes the CCCP-based PO

(CPO) algorithm for solving the ECM-PO problem. Section

VI discusses the ADMM-based distributed implementation of

our proposed algorithms. Section VII presents the simulation

results. The paper is concluded in Section VIII.

II. SYSTEM MODEL

We consider a multiuser MEC system as shown in Fig. 1,

which consists of a multi-antenna BS connected to a MEC
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server via a high-speed optical link and N single-antenna

mobile wireless users. The MEC server, which is located at

the network edge, is equipped with abundant computing capa-

bilities and core-network communication resources, allowing

the mobile users to further benefit from cloud computing

and Internet services. We assume that the mobile users have

computationally intensive and delay sensitive tasks to be

completed with the assistance of the MEC server. To this

end, each user can offload some or all of its computational

tasks to the MEC server via the BS, whilst executing the

remaining tasks locally (i.e., on the mobile device). We con-

sider the quasi-static scenario, where the mobile users remain

unchanged during a computation offloading period, but may

change across successive periods. For simplicity, we assume

flat fading channels between the mobile users and the BS.

Since the offloading decision of each mobile user is strongly

influenced by the available channel conditions and computing

resources at the MEC server, we next introduce details of the

communication and computation models. For convenience, we

list the key notations of this paper in Table I.

Core

Network

Mobile

Users

Wireless

Base-Station

MEC

Server

Fig. 1: MEC system model

A. Communication model

We denote αi as the offloading parameter for user i. In the

FO scheme, αi ∈ {0, 1} is a binary variable serving as the

offloading indicator for user i, i.e.: αi = 1 if user i fully

offloads its computational tasks to MEC server and αi = 0
if he/she executes all these tasks locally. In the PO scheme,

0 ≤ αi ≤ 1 is a continuous variable which gives the fraction

of the computation tasks of user i that is offloaded to the MEC

server, while (1−αi) gives the fraction of the tasks executed

locally.

In both FO and PO schemes, task offloading requires the

transmission of binary data from the corresponding users to

the BS. Considering the mutual interference caused by other

users and the background noise, the signal-to-interference-

plus-noise-ratio (SINR) of user i after demodulation at the

BS is given by

Γi =
βP tr

i Hi

σ2 +
N
∑

j 6=i

P tr
j Hj

, (1)

where Hi represents the channel gain2 for user i, P tr
i denotes

the transmit power for user i, σ2 denotes the variance of

2This includes the combined effect of radio transmission between the
mobile user and BS, as well as other processing gains within the BS receiver.

TABLE I: Summary of key notations

Notation Description

N Number of single-antenna mobile wireless users

W System bandwidth

Li Size of the tasks before computation for user i
Ji Average number of CPU cycles required to process each bit for user i
K Coefficient depending on chip architecture

αi Offloading parameter for user i

P tr
i Transmit power for user i

P l
i Power consumption for local computation at user i

P idle
i Power consumption at user i in standby mode

P t
i,max Transmit power budget for user i

f l
i Local CPUs computational speed for user i

fc
i Portion of MEC server’s CPU resources allocated to user i

fc Available computational budget at the MEC server

f l
max Limitation on the CPU speed for user i on the local user side

fc
max Limitation on the CPU speed for user i on the MEC server side

Γi SINR for user i
γi SINR threshold for user i
Ri Achievable transmission rate for user i

tli Potential execution time for the local computation at user i
tci Potential execution time of the MEC server for user i

ttri Potential transmission time of user i during the offloading period

tidlei,F Duration of standby mode at user i for the FO scheme

tidlei,P Duration of standby mode at user i for the PO scheme

tdi Deadline for user i’s task during the overall MEC phase

El
i Energy consumption for the local computation at user i

Eidle
i,F Energy consumption at user i in standby mode for the FO scheme

Eidle
i,P Energy consumption at user i in standby mode for the PO scheme

Etr
i Transmission energy consumption of user i during the offloading period

EF
i Overall energy consumption of user i for the FO scheme

EP
i Overall energy consumption of user i for the PO scheme

θ Measure of the offloading priority given by the network to user i
p Parameter controlling the smoothness of approximation

the additive channel noise, and β is a factor that depends

on the specific type of modulation and signal processing

being implemented at the physical layer. Then the achievable

transmission rate (in bits/s) for user i is given by

Ri = W log2(1 + Γi), (2)

where W is the system bandwidth (in Hz).

B. Computation model

We characterize the overall computation tasks at user i by

the pair (Li, Ji), where Li (in bits) is the size of the tasks

before computation, and Ji is the average number of CPU

cycles required to process each bit. Below, we further develop

the computation model for the local device and MEC server.

1) Local computing: The computation tasks are executed

locally on each mobile device. As in [7], we model the power

consumption of user i as P l
i = K(f l

i )
3, where f l

i and K are

the local CPU’s computational speed (in cycles per second)

and a coefficient depending on chip architecture, respectively.

The potential execution time for the local computations at user

i is given by

tli = (1− αi)JiLi/f
l
i , (3)

while the corresponding energy consumption is given by

El
i = P l

i t
l
i = (1− αi)KJiLi(f

l
i )

2. (4)

2) Edge computing: We recall that the MEC server is

equipped with much more powerful hardware than the mobile

devices. Hence, when user i offloads some of its tasks to

the MEC server, the latter allocate a portion of its CPU

resources to this user, as represented by the cycle frequency
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f c
i . Therefore, the potential execution time of the MEC server

for user i is given by

tci = αiJiLi/f
c
i . (5)

In addition, we need to consider the time delay and energy

consumption due to data transmission. Compared to the num-

ber of input bits sent by a mobile user to the MEC server for

processing, we assume that the number of output bits returned

by the MEC to that user as a result of such computations

is relatively small. Therefore, we neglect the delay and the

energy consumption incurred by the transmission of the output

bits and only consider that of the input bits sent by the mobile

user to the MEC server via the BS [7] [11] [12]. The potential

transmission time and the energy consumption of user i during

the offloading period will be

ttr
i = αiLi/Ri, (6)

where the data rate Ri is taken from (2), and

Etr
i = P tr

i t
tr
i , (7)

respectively. Besides, the time delay and energy consumption

of mobile users in standby mode, i.e. waiting for the MEC

server execution, should be considered.

In the FO scheme, user i is in standby mode with power

consumption P idle while the MEC executes its offloaded com-

putation tasks. As depicted in Fig. 2, the duration of standby

mode for user i in the FO scheme is given by tidle
i,F , tci , and

the corresponding energy consumption by this user is given

by

Eidle
i,F , P idle

i tidle
i,F . (8)

In the PO scheme, one can take advantage of parallel pro-

cessing, where the process of local computing and offloading

occur simultaneously. As depicted in Fig. 2, there exists two

cases labeled as A and B. Case A corresponds to tli ≤ tci + ttr
i ,

where the duration of local processing is less than that of the

data transmission plus edge computing. Here, the mobile user

remains in standby mode until the data processing by the MEC

server is completed. Case B corresponds to tli ≥ tci+ttr
i , where

the duration of local processing exceeds that of data transmis-

sion plus edge computing, so that local device does not switch

to standby mode. Therefore, the duration of the standby mode

in the PO scheme is given by tidle
i,P , max{0, tci + ttr

i − tli}.

As in [21], [27], we assume that the performance of local

computing remains unchanged during the offloading phase,

and consequently, the energy consumption at mobile user i in

standby mode is given by

Eidle
i,P , P idle

i tidle
i,P . (9)

Finally, the overall energy consumption of a given user i
during the overall MEC computing phase for the FO and PO

schemes, respectively, can be expressed as

EF
i = El

i + Etr
i + Eidle

i,F , (10)

EP
i = El

i + Etr
i + Eidle

i,P . (11)

Standby mode

Start End

User

MEC

Waiting for uplink offloading

a) FO scheme

Standby mode

Start End

User

MEC

Waiting for uplink offloading

b) PO scheme: Case A

Active mode

Start End

User

MEC

Waiting for uplink offloading

c) PO scheme: Case B

Fig. 2: The timeline of different offloading schemes.

III. PROBLEM FORMULATION

In this section, we first consider the issue of achieving

energy-efficient resource allocation for the multiuser MEC

system. For convenience, let us define the following param-

eter vectors over which optimization will take place: α =
[α1, . . . , αN ]T , f l = [f l

1, . . . , f
l
N ]T , f c = [f c

1 , . . . , f
c
N ]T and

P
t = [P tr

1 , . . . , P
tr
N ]T . According to the communication and

computation models presented in Section II, we can find that

the offloading parameter α , the local computation capacity f
l

and the computation capacity f
c at the MEC server, as well as

the transmit power Pt of the mobile users are tightly coupled.

If too many mobile users simultaneously choose to offload

their tasks to the MEC server, this may lead to severe multiuser

interference and scarcity of computational resources at the

MEC server, which further reduce the transmission rate and

incur long execution delays on the MEC server side. In turn,

the mobile users will need to consume more energy in order

to complete their latency-sensitive applications within a pre-

defined time limit or deadline. In this case, it would be more

beneficial for the mobile users to implement a larger fraction

of their tasks locally. Based on such considerations, it appears

necessary to perform joint optimization of the offloading
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parameters and computation resources as well as the transmit

powers, in order to minimize the energy consumption for com-

pleting latency-sensitive applications. Below, we formulate the

corresponding optimization problems in mathematical terms

for the different types of applications, i.e., FO versus PO

schemes.

A. Energy consumption minimization for the FO scheme

The energy consumption minimization problem based upon

the FO scheme (ECM-FO) can be formulated as follows3:

min
{α,fc,f l,Pt}

N
∑

i=1

EF
i (α, f c, f l,Pt), (12a)

s.t. (tci + ttr
i ) + tli ≤ tdi , (12b)

Γi ≥ αiγi, (12c)

N
∑

i=1

αif
c
i ≤ fc, (12d)

0 ≤ P t
i ≤ P t

i,max, (12e)

0 ≤ f c
i ≤ f c

i,max, (12f)

0 ≤ f l
i ≤ f l

i,max, (12g)

αi ∈ {0, 1}. (12h)

In this formulation, constraint (12b) guarantees that the pro-

cessing delay of user i’s task during the overall MEC phase is

less than the required deadline tdi . Constraint (12c) is added

to guarantee the reliability of offloading transmission, where

γi denotes the SINR threshold of user i. When user i offloads

some of its tasks to the MEC server (i.e., αi = 1), the SINR

of user i is required to be above a target γi, such that the

achievable transmission rate of user i is no smaller than a given

positive target. Consequently, the transmission time of user i
during the offloading period is not too long. In this way, user

i’s tasks can be processed before the deadline tdi . In contrast,

there is no need to impose quality of service (QoS) constraints

on the offloading transmission when the computation tasks of

user i are only executed locally on each mobile device (i.e.,

αi = 0). Constraint (12d) reflects the fact that the available

computational budget at the MEC server is limited by fc.

Constraint (12e) represents the limitation in the transmit power

budget for the offloading phase. Constraints (12f) and (12g)

denote the limitations on the CPU speed for each user on the

MEC server side and the local user side, respectively. Finally,

(12h) reflects the fact that in the FO scheme, the offloading

parameter αi is binary.

B. Energy consumption minimization for the PO scheme

When the mobile users have data-partitioning-oriented ap-

plications to execute, it is preferable to employ the PO scheme

to take advantage of parallel processing. For each user, a

portion of the standing tasks is processed at the MEC server

side while the remaining portion is processed at the local

user side. We note several differences between the PO and

FO schemes as follows: (i) the total processing delay does

not simply depend on the local computing time or remote

3For constraints involving user index i, it is implicitly assumed that the
constraint must apply ∀i ∈ {1, ..., N}.

execution time 4; (ii) to deal with these changes, we define

the total processing delay as the maximum between the local

computing and remote execution times, and make use of the

l0-”norm” to effectively characterize the resource occupancy.

Thus, the energy consumption minimization problem for the

PO scheme (ECM-PO) can be formulated as:

min
{α,fc,f l,Pt}

N
∑

i=1

EP
i (α, f c, f l,Pt), (13a)

s.t. max{tci + ttr
i , t

l
i} ≤ tdi , (13b)

Γi ≥ |αi|0γi, (13c)

N
∑

i=1

|αi|0f c
i ≤ fc, (13d)

αi ∈ [0, 1], (13e)

(12e) − (12g). (13f)

Different from the ECM-FO problem, constraint (13b) guar-

antees that the parallel processing delay of users i’s tasks

during the overall MEC phase is less than the deadline tdi .

Besides, (13e) reflects the fact that an arbitrary fraction of the

computation tasks for each user can be off-loaded to the MEC,

i.e., αi is no longer a binary variable. In addition, the l0-norm

is introduced in constraints (13c) and (13d), where |x|0 = 1
if x 6= 0 and |x|0 = 0 otherwise.

Based on the ECM-FO and ECM-PO problem formulations,

we will develop optimization approaches for devising energy-

efficient resource allocation policies for the multiuser MEC

system under interference channels. The main flow of ideas

in developing these policies is illustrated in Fig. 3 while their

precise details will be explained in the following sections.

IV. THE PROPOSED FULL-OFFLOADING ALGORITHM

In this section, we first analyze the structure of the ECM-

FO problem (12) and elaborate on the challenges facing

its solution. We then present the proposed CCCP-based FO

algorithm, which is derived by first transforming the ECM-FO

problem into a more tractable form and applying CCCP along

with DC programming. At last, by incorporating a measure

of user priority to improve the performance, a simplified

algorithm is proposed that allows a further reduction of the

computational complexity.

A. Challenges surrounding the ECM-FO problem

Solving problem (12) is quite challenging because the

optimization variables are highly coupled in the nonconvex

objective function and constraints. Besides, the user offloading

indicator αi is a discrete binary variable, which makes the

feasible set nonconvex. Hence, we are faced with a mixed-

integer linear programming (MILP) problem, which is usually

considered as NP-hard. In principle, the standard exhaustive

search for obtaining the optimal α entails a complexity factor

of O(2N ) , which represents an unacceptable computation

overhead for large N since, for each permutation, the op-

timal transmit power and computational resource allocation

4In the sequel, the term “remote execution time” shall refer to the trans-
mission time plus the edge computing time.
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Energy Consumption

Minimization Problem

for the FO Scheme

Mobile User

Uniterrupted-execution

applications

Partitioning-tolerant applications

Smoothed ECM-PO DC

Program (33)

Smoothed

Approxiamtion

Inequality

Transformation

Relaxed ECM-FO DC

Program (20)

Binary Relaxation

Introducing Auxiliary

Variables

CFO

Algorithm

CCCP

technique

CPO

Algorithm

Simplified Algorithm
Incorporating System Parameters

Bi-section Method

Energy Consumption

Minimization Problem

for the PO Scheme

AFO

Algorithm

ADMM

Method

APO

Algorithm

CCCP

technique

ADMM

Method

Fig. 3: Development of energy-efficient resource allocation policies for latency-sensitive MEC systems.

still need to be optimized. Hence, instead of employing an

exhaustive search, we will propose an algorithm based on

DC programming and the CCCP that significantly speeds

up computations. For a brief review of these methods of

optimization, the reader can consult Appendix A.

B. The CCCP-based FO algorithm

In the following, we develop an efficient CCCP-based

FO (CFO) algorithm for the optimization of α, f c and P
t

in the non-convex ECM-FO problem (12). To this end, we

first transform the problem into a more tractable form and

then develop an efficient CCCP algorithm for its solution. In

particular, in order to approximate the transformed problem as

a convex one, an equivalent DC program is formulated.

1) Problem transformation: Before applying CCCP to the

original problem (12), a suitable transformation for the later

is necessary. The transformation consists of two steps, i.e.:

introducing auxiliary variables and applying binary relaxation.

In order to transform the nonconvex feasible set of problem

(12) into a convex set, we first introduce a number of auxiliary

variables that will facilitate considerable simplifications of

the problem. Firstly, we decompose the tangled constraint

(12b) into multiple simpler constraints by introducing auxiliary

variables : zi,1, zi,2, zi,3, Ri,∆i, ϕi, si and ui, so that we can

transform the problem (12) into the following equivalent form:

min
X

N
∑

i=1

EF
i (X ) (14a)

s.t. zi,1 + zi,2 + zi,3 ≤ tdi , (14b)

αiJiLi/f
c
i ≤ zi,1, (14c)

αiLi/Ri ≤ zi,2, (14d)

(1− αi)JiLi/f
l
i ≤ zi,3, (14e)

Ri ≤ W log2(1 + 1/ϕi), (14f)

1/ϕi ≤ ∆i, (14g)

βP tr
i Hi/(σ

2 +

N
∑

j 6=i

P tr
j Hj) ≤ 1/ϕi, (14h)

αi/f
c
i ≤ si, (14i)

αiP
tr
i /Ri ≤ ui, (14j)

(12d) − (12h). (14k)

where the modified objective function is given by

EF
i (X ) = El

i + JiLiP
idle
i si + Liui, (15)

with X = {αi,f
c
i ,f

l
i ,Ri,Γi,ϕi,zi,1,zi,2,zi,3,P

tr
i ,si,ui}Ni=1 de-

noting the final set of optimization variables in the FO scheme.

The equivalence between probelm (12) and (14) is proven

in Appendix B. It is worth noting that the term 1/ϕi in

constraint (14f) simplifies the subsequent application of the

CCCP and avoids the use of successive convex approximations

of logarithmic functions in toolbox CVX [30].

We next relax the domain of the discrete integer parameters

αi ∈ {0, 1} into a closed connected subset of the real axis,

i.e, αi ∈ [0, 1], In this context, continuous variable αi may be

interpreted as the offloading tendency of user i, that is: user

i tends to offload when αi is close to 1; while the same user

tends to compute locally when αi is close to 0. Following

the introduction of auxiliary variables and binary relaxation,
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problem (12b) can be expressed as

min
X

N
∑

i=1

EF
i (X ) (16a)

s.t. αi ∈ [0, 1], (16b)

(12d) − (12g), (14b) − (14j). (16c)

2) CCCP-based algorithm: Even though we converted (12)

into the more tractable problem (16), the latter remains to

solve due to the nonconvexity and coupling of constraints. The

special bi-linear structure of these coupling constraints, which

actually occurs in a variety of joint design problems, can be

conveniently handled by means of the following lemma.

Lemma 1: The bi-linear funciton g(x1, x2) = x1x2 can be

expressed as the following DC program:

gi(x1, x2) =
1

2
(x1 + x2)

2 − 1

2
(x2

1 + x2
2). (17)

Lemma 1 provides a simple way of handling bi-linear coupled

constraints via the introduction of an equivalent DC program.

We note that bi-linear constraints occur in many design and

optimization problems of various natures in science and engi-

neering, and as such, Lemma 1 can be applied to the solution

of these other problems as well.

To make efficient use of the CCCP, we convert the problem

(16) into a general form of DC programs with the aid of

Lemma 1. The equivalent DC program is given by

min
X

N
∑

i=1

EF
i (X ) (18a)

s.t. 2αiJiLi + (f c
i )

2
+ z2i,1 − (f c

i + zi,1)
2 ≤ 0, (18b)

2αiLi +Ri
2 + z2i,2 − (Ri + zi,2)

2 ≤ 0, (18c)

2(1− αi)JiLi + (f l
i )

2
+ z2i,3 − (f l

i + zi,3)
2 ≤ 0, (18d)

2(σ2 +

N
∑

j 6=i

P tr
j Hj) +ϕi

2 +(P tr
i Hi)

2−(ϕi+P tr
i Hi)

2 ≤ 0,

(18e)

zi,1 + zi,2 + zi,3 ≤ tdi , (18f)

(αiγ+ σ2+
N
∑

j 6=i

P tr
j Hj)

2 − (αiγ)
2 − (σ2 +

N
∑

j 6=i

P tr
j Hj)

2

− 2P tr
i Hi ≤ 0, (18g)

N
∑

i=1

(αi + f c
i )

2 − (α2
i + (f c

i )
2
) ≤ 2fc, (18h)

2αi + (f c
i )

2
+ s2i − (f c

i + si)
2 ≤ 0, (18i)

(αi + P tr
i )

2 +R2
i + u2

i − α2
i − (P tr

i )
2 − (Ri + ui)

2 ≤ 0,
(18j)

(12e), (12f), (14f), (16b). (18k)

Based on the CCCP concept, we approximate the nonconvex

part in both the constraints and the objective function with the

aid of linearization. For example, focusing on (14f), we obtain

Ri −W log2(1 +
1

ϕ̂i
) +

W (ϕi − ϕ̂i)

ϕ̂2
i + ϕ̂i

≤ 0, (19)

where ϕ̂i represent the current point of variable ϕi.

Finally, by invoking the CCCP (see Appendix A and es-

pecially eq. (46)), an iterative algorithm is obtained for the

solution of (18)) whereby at the current iteration, only the

simplified convex optimization problem below needs to be

solved:

min
X

N
∑

i=1

EF
i (X ) (20a)

s.t. 2αiJiLi + (f c
i )

2
+ z2i,1 − (f̂ c

i + ẑi,1)
2

− 2(f̂ c
i + ẑi,1)(f

c
i + zi,1 − f̂ c

i − ẑi,1) ≤ 0, (20b)

2αiLi +Ri
2 + z2i,2 − (Ri + zi,2)

2

− 2(R̂i + ẑi,2)(Ri + zi,2 − R̂i + ẑi,2) ≤ 0, (20c)

2(1− αi)JiLi + (f l
i )

2
+ z2i,3 − (f̂ l

i + ẑi,3)
2

− 2(f̂ l
i + ẑi,3)(f

l
i + zi,3 − f̂ l

i + ẑi,3) ≤ 0, (20d)

2(σ2+

N
∑

j,j 6=i

P tr
j Hj)+ϕi

2+(P tr
i Hi)

2−(ϕ̂i+P̂ tr
i Hi)

2−2(ϕ̂i

+ P̂ tr
i Hi)(ϕi − ϕ̂i)− 2Hi(ϕ̂i + P̂ tr

i Hi)(P
tr
i − P̂ tr

i )≤ 0,
(20e)

(αiγ+σ2+

N
∑

j 6=i

P tr
j Hj)

2−(α̂iγ)
2−(σ2+

N
∑

j,j 6=i

P tr
j Hj)

2−2P tr
i Hi

−2γα̂i(αi−α̂i)−2
N
∑

j,j 6=i

Hj(σ
2+

N
∑

j 6=i

P̂ tr
j Hj)(P

tr
j −P̂ tr

j ) ≤ 0,

(20f)

N
∑

i=1

(αi + f c
i )

2 − α̂2
i − (f̂ c

i )
2 − 2α̂i(αi − α̂i)

− 2f̂ c
i (f

c
i − f̂ c

i ) ≤ 2fc, (20g)

2αi + (f c
i )

2
+ s2i − (f c

i + si)
2 − 2(f̂ c

i + ŝi)(f
c
i + si

− f̂ c
i − ŝi) ≤ 0, (20h)

(αi+P tr
i )

2+R2
i +u2

i −α̂2
i −(P̂ tr

i )
2−2(α̂i)(αi−α̂i)−2P̂ tr

i (P
tr
i

−P̂ tr
i )−(R̂i+ûi)

2−2(R̂i+ûi)(Ri+ui−R̂i−ûi) ≤ 0, (20i)

(12e), (12f), (16b), (18f), (19). (20j)

where X̂ = {α̂i,f̂
c
i ,f̂

l
i ,R̂i,∆̂i,ϕ̂i,ẑi,1,ẑi,2,ẑi,3,P̂

tr
i ,ŝi,ûi}Ni=1

represents the current point of the set of optimization variables

in the FO scheme.

Problem (20) can be efficiently solved by the convex

programming toolbox CVX [30]. The implementation of the

proposed CFO algorithm is summarized in Table 1. Repeated

application of the CCCP iteration will eventually lead to a

stationary solution of problem (20) [31]. We can show that

the limit point of the iterates generated by the proposed

CFO algorithm also satisfies the KKT conditions of the DC

program (18) and thus converges to a local optimal solution

of problem (12). The proof is similar to that of Lemma 2

and Theorem 1 in [32], and we therefore omit the details.

Denoting by I1 the number of iterations required by the CCCP

algorithm, it can be shown that the complexity of the CFO

algorithm is O(I1
√
8N + 1(4N2 + 84N + 14)), where the

factor
√
8N + 1(4N2+84N+14) comes from the application

of a generic interior-point method for solving the convex

optimization at each iteration [33].
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Algorithm 1 Proposed CCCP-based FO (CFO) iterative algo-

rithm

1. Initialization: Define the tolerance of accuracy δ1 and the max-
imum number of iteration Nmax. Initialize the algorithm with a
feasible point X 0. Set the iteration number t = 0.

2. Repeat

– Solve the convex optimization problem (20) with the affine
approximation, and assign the solution to X t+1.

– Update the iteration number: t← t+ 1

3. Until |EF (X t+1)−EF (X t)| ≤ δ1 or reaching the max iteration
number.

C. Simplified algorithm

In the previous subsection, we have proposed the CFO

algorithm for solving the ECM-FO problem. While this new

algorithm achieves near optimal performance, it still incurs a

high computational burden because the CCCP calls for the

solution of an iterative sequence of complex convex opti-

mization problems, where the computation bottelneck results

from the SINR related constraints and DC programs. Here,

motivated by these considerations, a simplified algorithm is

proposed for solving the ECM-FO problem. With the double

goal of improving system performance and reducing design

complexity, we introduce a new set of system parameters, i.e.

θi = Hi/(JiLif
l
i ), i ∈ {1, . . . , N}. (21)

Specifically, θi will be used here as a measure of the priority

given by the network to user i in offloading its tasks to the

MEC. That is, a user with a larger value of parameter θi
will have a higher priority to offload their jobs. Considering

(21), a user with a higher channel power gain Hi, smaller job

size JiLi, or smaller local computation capacity will be given

a higher priority to offload [34]. In the sequel, to simplify

presentation, we shall assume that the users have been indexed

by increasing order of priority, i.e. θ1 ≤ θ2 ≤ ... ≤ θN to

determine the offloading users5.

Here, we adopt a simple offloading procedure derived from

the bi-section method and making use of the priority parame-

ters. Specifically, once a user has been selected for offloading,

it will adopt the maximum transmit power. Meanwhile, the

computation resources at the MEC server are equally allocated

to the selected users. Let Nmax be the maximum number

of offloading mobile users such that problem (12) remains

feasible. To find Nmax in an efficient bisection manner, we

have to solve the following convex feasibility problem,

F1(i) : Find U [i] (22)

s.t. (12b) − (12d), (12f), (12g),

where U [i] = {i + 1, ..., N} represents the set of selected

users. That is, the last N − i mobile users, sorted by their θi
values, are chosen for offloading their tasks via the BS to the

MEC server. We note that if problem F1(i) is feasible, then

a feasible solution exists to F1(j) for all j ≤ i. Therefore,

determining the largest N = Nmax that results in a feasible

solution of the problem F1(i) can be accomplished by solving

no more than O(1+[log(1+N)]) such feasibility problems via

5This is always possible since the various parameters entering the definition
of θi in (27) are assumed known.

the bisection search. The simplified algorithm resulting from

these considerations is summarized in Table 2.

Algorithm 2 Simplified algorithm

1. Initialization: Obtain the parameters Hi, Li, f
l
i , P

t
i,max, P

idle
i

and sort the users in ascending order of priority: θ1 ≤ θ2 ≤ ... ≤
θK . Initialize Nlow = 0, Nup = 0, i = 0.

2. Repeat

– set i← [
Nlow+Nup

2
].

– Solve the feasibility problem F1(i): If it is feasible, set
Nlow = i; otherwise, set Nup = i.

3. Until Nup − Nlow = 1, obtain N max = Nup and obtain the
offloading user set U⋆ = {Nmax + 1, ..., N}.

V. PROPOSED PARTIAL-OFFLOADING ALGORITHM

In this section, we first show that the ECM-PO problem

can be converted into a DC program after approximating

various l0-norms with smooth functions and applying adequate

inequality transformations [29]. Finally, a CCCP-based PO

(CPO) algorithm is proposed to efficiently solve the resulting

problem.

A. Problem transformation

In addition to the challenges previously faced in the solution

of problem (12) in the previous section, especially highly

coupled nonconvex objective functions and constraints, the

presence of multiple non-convex l0-norms in (13) further

complicates its solution. Before applying CCCP to problem

(13), a suitable transformation consisting of two main steps

is necessary, i.e.: smoothed l0-norm approximation and intro-

duction of auxiliary variables.

In this work, we approximate the discontinuous l0-norm in

constraints (13c) and (13d) with a smooth surrogate function

[35]. While several such functions have been proposed [36],

here we make use of the following approximation:

up(x) = 1− e(−|x|/p), p > 0, (23)

where p > 0 is a parameter controlling the smoothness of

approximation. In particular, the use of a smaller p leads to

a better approximation but reduced smoothness for up(x) and

vice versa. This surrogate function has the additional property

of providing a lower bound of the l0-norm function, which

is preferred for faster convergence [36]. Before applying the

smooth approximation |x|0 ≈ up(x) to the constraint (13d),

we first decompose the latter into several simpler constraints

by introducing auxiliary variables {µi}Ni=1:

f c
i ≤ µi + (1− |αi|0)f c

max, (24)

N
∑

i=1

µi ≤ fc, (25)

Combining (24) and (25), (13d) can be expressed as:

N
∑

i=1

f c
i ≤ fc + f c

max

N
∑

i=1

(1− |αi|0). (26)
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Now, using the smooth approximation (23) for the l0-norm,

we can replace (13c) and (13d) by the following:

N
∑

i=1

f c
i ≤ fc + f c

max

N
∑

i=1

e−αi/p, (27)

Γi ≥ Gi ≥ (1− e−αi/p)γi, (28)

where Gi is an auxiliary variable. As for the other coupled

constraints, we can simplify them by proceeding as in Section

IV-B2. Ultimately, problem (13) can be converted into the

following form:

min
Y

N
∑

i=1

EP
i (Y) (29a)

s.t. αiJiLi/f
c
i ≤ zi,1, (29b)

αiLi/Ri ≤ zi,2, (29c)

Ri ≤ W log2(1 + 1/ϕi), ∀i, (29d)

2(σ2+

N
∑

j 6=i

P tr
j Hj)+ϕi

2+(P tr
i Hi)

2−(ϕi+P tr
i Hi)

2 ≤ 0,

(29e)

zi,1 + zi,2 ≤ tdi , (29f)

(1− αi)JiLi/f
l
i ≤ zi,3, (29g)

zi,3 ≤ tdi , (29h)

(Gi + σ2 +

N
∑

j 6=i

P tr
j Hj)

2 −G2
i − (σ2 +

N
∑

j 6=i

P tr
j Hj)

2

− 2P t
iHi ≤ 0, (29i)

Gi ≥ (1− e−αi/p)γi, (29j)

0 ≤ zi,1 + zi,2 − zi,3 ≤ si, (29k)

αiP
tr
i /Ri ≤ ui, (29l)

(13e), (13f), (27). (29m)

In (29a), the modified objective function EP
i (Y) for user i is

given by

EP
i (Y) = El

i + P idle
i si + Liui, (30)

where Y = {αi, f
c
i , f

l
i , Ri, ϕi, zi,1, zi,2, zi,3, Gi, P

tr
i , si, ui}Ni=1

represents the set of optimization variables in the PO scheme.

B. The CCCP-based PO algorithm

To efficiently apply the CCCP technique, we first convert

problem (29) into a general form of DC program by means of

Lemma 1, i.e.:

min
Y

N
∑

i=1

EP
i (Y) (31a)

s.t. 2αiJiLi + f2
i,c + z2i,1 − (fi,c + zi,1)

2 ≤ 0, (31b)

2αiLi +Ri
2 + z2i,2 − (Ri + zi,2)

2 ≤ 0, (31c)

2(1− αi)JiLi + (f l
i )

2 + (zi,3)
2 − (f l

i + zi,3)
2 ≤ 0,

(31d)

(αi + P tr
i )

2 +R2
i + u2

i − α2
i − (P tr

i )
2 − (Ri + ui)

2 ≤ 0,
(31e)

(29d) − (29f), (29h) − (29m) (31f)

To efficiently solve problem (31) while decreasing the

objective value, we then linearize the nonconvex part in both

constraints and the objective function to tackle the noncon-

vexity. Let us focus on constraint (29e) as an example. By

linearizing the nonconvex term −(ϕi + P tr
i Hi)

2 around the

current point {P̂ tr
i , ϕ̂i}, we approximate (29e) as the following

constraint

2(σ2+

N
∑

j,j 6=i

P tr
j Hj)+ϕi

2+(P tr
i Hi)

2 − (ϕ̂i+P̂ tr
i Hi)

2−2(ϕ̂i

+P̂ tr
i Hi)(ϕi−ϕ̂i)−2Hi(ϕ̂i+P̂ tr

i Hi)(P
tr
i −P̂ tr

i ) ≤ 0. (32)

Hence, with the aid of CCCP concepts, problem (31) can be

reformulated as the following convex optimization problem:

min
Ŷ

N
∑

i=1

EP
i (Ŷ) (33a)

s.t. (Gi+σ2+
N
∑

j 6=i

P tr
j Hj)

2−Ĝ2
i −(σ2+

N
∑

j 6=i

P̂ tr
j Hj)

2−2Ĝi(Gi

−Ĝi)−2
N
∑

j 6=i

Hj(σ
2+

N
∑

j 6=i

P̂ tr
j Hj)(P

tr
j −P̂ tr

j )−2P tr
i Hi ≤ 0,

(33b)

γ +
γe−α̂i/p

p
(αi − α̂i)−Gi − γe−α̂i/p, (33c)

N
∑

i=1

f c
i − fc +

f c
max

p

N
∑

i=1

e−α̂i/p(αi − α̂i) ≤ 0, (33d)

(13e)−(13f),(19),(20b)−(20e),(20i),(29f),(29h),(29k),(32),
(33e)

where Ŷ = {α̂i, f̂
c
i , f̂

l
i , R̂i, ϕ̂i, ẑi,1, ẑi,2, ẑi,3, Ĝi, P̂

tr
i , ŝi, ûi}Ni=1

represents the values of the optimization variables in the PO

scheme at the current iteration. Similar to the CFO algorithm

in Section IV-B2, this problem can be efficiently solved by

employing the convex programming toolbox CVX [30], and

the convergence is guaranteed. The proposed CPO algorithm

is summarized in Table 3.

Algorithm 3 Proposed CCCP-based PO (CPO) iterative algo-

rithm

1. Initialization: Define the tolerance of accuracy δ2 and the max-
imum number of iterations Nmax. Initialize the algorithm with a
feasible point Y0. Set the iteration number t = 0.

2. Repeat

– Solve the convex optimization problem (33), and assign the
solution to Yt+1.

– Update the iteration number: t← t+ 1

3. Until |EP (Yt+1) − EP (Yt)| ≤ δ2 or reaching the maximum
number of iterations.

VI. ADMM-BASED DISTRIBUTED IMPLEMENTATION

In the previous sections, we proposed the CFO and CPO

algorithms for solving the ECM-FO and ECM-PO problems

in a centralized manner, respectively. In practice, the compu-

tational complexity of these algorithms increases rapidly with

the number of users, while their implementation requires full

CSI knowledge at BS.
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To alleviate these issues, it is of interest to design a

distributed implementation method, which enables the BS

and all users within the system to simultaneously participate

in the computation. In this section, we develop extensions

of the proposed CFO and CPO algorithms based on the

ADMM, which can be implemented in a distributed manner

and significantly reduce the peak computational complexity

compared to a centralized implementation.

A. Proposed distributed algorithms

The main obstacle in designing a distributed algorithm lies

in solving the approximated convex problem (20), which is

part of the CCCP. In the following, we focus on the FO

scenario to expose our proposed ADMM-based approach to

the derivation of a distributed algorithm; however, a similar

approach can be applied to obtain a distributed algorithm for

the PO scenario.

Step 1 (Problem decomposition): To enable each user to par-

ticipate in the computation, their optimization variables should

be separable so that the original problem can be decomposed

into N independent subproblems to be solved individually

among the users. However, the optimization variables in X
are highly coupled in the constraints of problem (20), which

renders such a decomposition impractical.

To overcome this difficulty, we first define the optimization

variables in X as the global optimization variables, and then

introduce local copies of the global variables in X at each

user. Specifically, we define X̃ = {X̃n}Nn=1 with X̃n =
{α̃n,i,f̃

c
n,i,f̃

l
n,i,R̃n,i,Γ̃n,i,ϕ̃n,i,z̃

n
i,1, z̃ni,2,z̃

n
i,3, P̃

tr
n,i,s̃n,i,ũn,i}Ni=1

as the local copy of X̂ for user n, where following consensus

constraints apply: α̃n,i = αi, f̃
c
n,i = f c

i , f̃ l
n,i = f l

i , R̃n,i = Ri,

Γ̃n,i = Γi, ϕ̃n,i = ϕi, z̃
n
i,1 = zni,1, z̃ni,2 = zni,2, z̃ni,3 = zni,3,

P̃ tr
n,i = P tr

i , s̃n,i = si, ũn,i = ui, ∀i, n.

With the above notations, problem (20) can be equivalently

reformulated as

min
X̃

N
∑

n=1

EF
n (X̃n) (34a)

s.t. 2α̃n,iJiLi + (f̃ c
n,i)

2
+ z2i,1 − (f̂ c

n,i + ẑni,1)
2

− 2(f̂ c
n,i + ẑni,1)(f̃

c
n,i + z̃ni,1 − f̂ c

n,i − ẑni,1) ≤ 0, (34b)

2α̃n,iLi + R̃2
n,i + (z̃ni,2)

2 − (R̃n,i + z̃ni,2)
2

− 2(R̂n,i + ẑni,2)(R̃
n
i + z̃ni,2 − R̂n,i + ẑni,2) ≤ 0, (34c)

2(1− α̃n,i)JiLi + (f̃ l
n,i)

2
+ (z̃ni,3)

2 − (f̂ l
n,i + ẑni,3)

2

− 2(f̂ l
n,i + ẑni,3)(f̃

l
n,i + z̃ni,3 − f̂ l

n,i + ẑni,3) ≤ 0 (34d)

2(σ2+

N
∑

j,j 6=i

P̃ tr
n,jHj) + ϕ̃2

n,i − (ϕ̂n,i + P̂ tr
n,iHi)

2

+ (P̃ tr
n,iHi)

2 − 2(ϕ̂n,i + P̂ tr
n,iHi)(ϕ̃n,i − ϕ̂n,i)

− 2Hi(ϕ̂n,i + P̂ tr
n,iHi)(P̃

tr
n,i − P̂ tr

n,i) ≤ 0, (34e)

(α̃n,iγ + σ2 +

N
∑

j 6=i

P̃ tr
n,jHj)

2 − (σ2 +

N
∑

j,j 6=i

P̃ tr
n,jHj)

2

− (α̂n,iγ)
2 − 2P̃ tr

n,iHi − 2γ ˆαn,i(α̃n,i − α̂n,i)

−2
N
∑

j,j 6=i

Hj(σ
2+

N
∑

j 6=i

P̂ tr
n,jHj)(P̃

tr
n,j−P̂ tr

n,j) ≤ 0, (34f)

N
∑

i=1

(α̃n,i + f̃ c
n,i)

2 − α̂2
n,i − (f̂ c

n,i)
2−2α̂n,i(α̃n,i−α̂n,i)

− 2f̂ c
n,i(f̃

c
n,i − f̂ c

n,i) ≤ 2fc, (34g)

2α̃n,i + (f̃ c
n,i)

2
+ s̃2n,i − (f̃ c

n,i + s̃n,i)
2 − 2(f̂ c

n,i + ŝn,i)

× (f̃ c
n,i + s̃n,i − f̂ c

n,i − ŝn,i) ≤ 0, (34h)

R̃n,i−W log2(1 +
1

ϕ̂n,i
)+

W (ϕ̃n,i − ϕ̂n,i)

ϕ̂2
n,i + ϕ̂n,i

≤ 0, (34i)

(α̃n,i + P̃ tr
n,i)

2 + R̃2
n,i + ũ2

n,i−2P̂ tr
n,i(P̃

tr
n,i−P̂ tr

n,i)−α̂2
n,i

− (R̂n,i +ûn,i)
2−2(α̂n,i)(α̃n,i−α̂n,i)− (P̂ tr

n,i)
2

−2(R̂n,i+ûn,i)(R̃n,i+ũn,i−R̂n,i−ûn,i) ≤ 0, (34j)

0 ≤ f̃ c
n,i ≤ f c

i,max, 0 ≤ f̃ l
n,i ≤ f l

i,max, α̃i ∈ [0, 1], (34k)

0 ≤ P̃ t
n,i ≤ P t

i,max, z̃
n
i,1 + z̃ni,2 + z̃ni,3 ≤ t̃dn,i, (34l)

P̃ tr
n,i = P tr

i , f̃
c
n,i = f c

i , f̃
l
n,i = f l

i , R̃n,i = Ri, (34m)

ϕ̃n,i = ϕi, z̃
n
i,1 = zni,1, z̃

n
i,2 = zni,2, z̃

n
i,3 = zni,3, (34n)

s̃n,i = si, ũn,i=ui, Γ̃n,i=Γi, α̃n,i=αi. (34o)

We define Ωn as the feasible set of the local copy X̃n

for user n, whose constituent variables satisfy all the above

constraints, except for the consensus ones in (34m)-(34o).

Note that the objective function for user i in problem (34),

i.e., EF
n (X̃n), is now decoupled with respect to the other users

in the system.

Step 2 (ADMM iterative update equation): By penalizing

and dualizing the consensus constraints into a global objective
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function (34a), we obtain the following augmented Lagrangian

problem:

min
{X̃n,λn}N

n=1

Lρ(X , {X̃n,λn}Nn=1) (35)

s.t. X̃n ∈ Ωn, ∀n = 1, · · · , N,

where ρ ∈ R+ is the penalty parameter, λn =
[λT

1,n, · · · ,λT
12,n]

T denotes the Lagrange multipliers corre-

sponding to the consensus constraints in problem (34) for each

user, and

Lρ(X , {X̃n,λn}Nn=1)

=

N
∑

n=1

EF
n (X̃n)+

ρ

2

N
∑

n=1

N
∑

i=1

{|α̃n,i − αi +
λ1,n,i

ρ
|2+|f̃ c

n,i−f c
i

+
λ2,n,i

ρ
|2 + |f̃ l

n,i − f l
i +

λ3,n,i

ρ
|2 + |R̃n,i −Ri +

λ4,n,i

ρ
|2

+ |ϕ̃n,i−ϕi+
λ5,n,i

ρ
|2 + |z̃ni,1−zni,1+

λ6,n,i

ρ
|2 + |z̃ni,2−zni,2

+
λ7,n,i

ρ
|2 + |z̃ni,3 − zni,3 +

λ8,n,i

ρ
|2 + |P̃ tr

n,i − P tr
i +

λ9,n,i

ρ
|2

+ |s̃n,i − si +
λ10,n,i

ρ
|2 + |ũn,i − ui +

λ11,n,i

ρ
|2

+ |Γ̃n,i − Γi +
λ12,n,i

ρ
|2} =

N
∑

n=1

Ln,ρ(X , X̃n,λn).

The overall update procedure of the proposed ADMM-based

distributed algorithm for solving problem (20) are summarized

in Table 4. Below, we further elaborate the main steps of this

procedure.
a) Optimization of local copies {X̃n}Nn=1: Observing that

local copies {X̃n}Nn=1 are now separable from each other in

problem (35), we can decompose the latter into N independent

subproblems, each of which can be solved at the user end:

min
X̃n,λn

Ln,ρ(X , X̃n,λn) (36)

s.t. X̃n ∈ Ωn.

This problem, which is a convex problem due to its quadratic

objective function and convex feasible set Ωn, can be solved by

using the CVX programming toolbox. After the computation,

each user sends the updating solution to the BS.
b) Optimization of global variables {X}: It follow from

(35) that all subproblems with respect to each one of global

variables are unconstrained quadratic problems, which can

be efficiently solved by applying the first-order optimality

condition. Thus, by using the corresponding local copies from

the users, the global variables can be updated at the BS relying

on (37)-(40), which is shown at the bottom of this page.
c) Adjustment of Lagrange multipliers λ: After the BS has

received the current local copies of the updated local variables

from all users, the Lagrange multipliers are adjusted according

to (41)-(44), displayed at the bottom of this page. Once the

computation of the global variables and Lagrange multipliers

is completed, the BS feeds back the updated results to each

user.
To sum up, the overall distributed ADMM-based FO (AFO)

algorithm consists of two embedded loops, where the outer

loop follows the CCCP steps shown in Table 1 and the inner

loop performs the ADMM-based algorithm shown in Table 4.

Algorithm 4 Proposed distributed ADMM-based FO (AFO)

algorithm for solving problem (20)

1. Initialization: Define the tolerance of accuracy δ4 and the max-
imum number of iterations Nmax. Initialize the algorithm with

feasible global variables X 0 and local copies X̃ 0. Set the iteration
number t = 0 and the penalty parameter ρ.

2. Repeat

– Solve problem (36). Update the local copies X̃ t
n at each user.

– Update the global variables X t according to (37)-(40) at the
BS.

– Update the Lagrangian multipliers λt according to (41)-(44)
at the BS.

– Update the iteration index: t← t+ 1.

3. Until the difference between successive values of the objective
function in (36) is less than δ4 or the maximum iteration number
is reached.

B. Convergence and computational complexity

Due to general properties of the ADMM optimization

framework [37], the proposed ADMM-based algorithm can

αi =
1

N

N
∑

n=1

(

α̃n,i +
λ1,n,i

ρ

)

, f c
i =

1

N

N
∑

n=1

(

f̃ c
n,i +

λ2,n,i

ρ

)

, f l
i =

1

N

N
∑

n=1

(

f̃ l
n,i +

λ3,n,i

ρ

)

, (37)

Ri =
1

N

N
∑

n=1

(

R̃n,i +
λ4,n,i

ρ

)

, ϕi =
1

N

N
∑

n=1

(

ϕ̃n,i +
λ5,n,i

ρ

)

, zni,1 =
1

N

N
∑

n=1

(

z̃ni,1 +
λ6,n,i

ρ

)

, (38)

zni,2 =
1

N

N
∑

n=1

(

z̃ni,2 +
λ7,n,i

ρ

)

, zni,3 =
1

N

N
∑

n=1

(

z̃ni,3 +
λ8,n,i

ρ

)

, P tr
i =

1

N

N
∑

n=1

(

P̃ tr
n,i +

λ9,n,i

ρ

)

, (39)

si =
1

N

N
∑

n=1

(

s̃n,i +
λ10,n,i

ρ

)

, ui =
1

N

N
∑

n=1

(

ũn,i +
λ11,n,i

ρ

)

,Γi =
1

N

N
∑

n=1

(

Γ̃n,i +
λ12,n,i

ρ

)

. (40)

λ1,n,i = λ1,n,i + ρ(α̃n,i − αi), λ2,n,i = λ2,n,i + ρ(f̃ c
n,i − f c

i ), λ3,n,i = λ3,n,i + ρ(f̃ l
n,i − f l

i ), (41)

λ4,n,i = λ4,n,i + ρ(R̃n,i −Ri), λ5,n,i = λ5,n,i + ρ(ϕ̃n,i − ϕi), λ6,n,i = λ6,n,i + ρ(z̃ni,1 − zni,1), (42)

λ7,n,i = λ7,n,i + ρ(z̃ni,2 − zni,2), λ8,n,i = λ8,n,i + ρ(z̃ni,3 − zni,3), λ9,n,i = λ9,n,i + ρ(P̃ tr
n,i − P tr

i ), (43)

λ10,n,i = λ10,n,i + ρ(s̃n,i − si), λ11,n,i = λ11,n,i + ρ(ũn,i − ui), λ12,n,i = λ12,n,i + ρ(Γ̃n,i − Γi). (44)
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globally solve the approximated convex problem (20). Thus,

it is readily seen that the proposed overall distributed algorithm

can converge to a stationary point of problem (12).

Each inner iteration of the distributed AFO algorithm is

divided into three steps: updating the local copies, updating

the global variables, and updating the Lagrange multipliers.

When updating the local copies, the computational complexity

is dominated by the use of a generic interior-point method in

toolbox CVX, which needs O(N) flops. When updating the

global variables, the solution of the corresponding quadratic

problems can be obtained in O(1) flops. At last, updating of

Lagrange multiplier can be achieved in O(1) flops. Based on

this analysis, the total computation complexity of the proposed

AFO algorithm is given by O(I3N), where I3 denotes the

number of required iterations by the proposed distributed

algorithm. In comparison with its centralized counterpart, the

proposed distributed algorithm has much lower complexity,

which is amenable to large-scale multiuser scenarios.

VII. SIMULATION RESULTS

In this section, we use Monte Carlo simulations to demon-

strate the benefits of the proposed resource allocation algo-

rithms for MEC in terms total energy consumption. For all

the simulation results, unless specified otherwise, we consider

a MEC system with N mobile users distributed randomly

within a circular area with radius r = 0.2km [39]. The radio

bandwidth available for transmission from the mobile users to

the BS is W = 20MHz [40]. As in [38], the corresponding

channel coefficients are generated as normalized, independent

Rayleigh fading components with distance-dependent path

loss, modeled as PL = 20 log10(d)+112.45dB, where d is the

distance between the mobile users and the BS in kilometers.

The target SINR of each mobile user is set to γ = 10 dB.

In addition, the mobile users’ standby power and maximum

transmission power are set to P idle = 0.5W and P t
max = 1W,

respectively. Delay-sensitive applications are characterized by

their bounded end-to-end delay requirements [7]. As in [6],

[8], the delay tolerance of each task is set to td = 0.15s. For

each task of mobile user i, Li follows the uniform distribution

over [1 × 105, 5 × 105] (bits), and the workload is set to

Ji = 18000 CPU cycles per bit [41]. Furthermore, the power

consumption coefficient for the given chip architecture is set as

K = 10−24(Watt ×s3) [21]. Besides, the computational budget

of the MEC server and the local user are set to f c
max = 1600

MHz and f l
max = 400MHz, respectively. For convenience, all

simulation parameters are listed in Table II.

TABLE II: Simulation parameters

Parameters Value

Number of mobile users N 4-12

Radius of coverage area r 0.2km

Radio bandwidth between mobile users and BS W 20MHz

Distance-dependent path loss PL 20 log(d) + 112.45dB

Target SINR γ 10dB

Maximum transmission power P t
max 1W

Standby power of mobile user P idle 0.5W

Delay tolerance td 0.15s

Size of each task before computation Li [1 × 105, 5 × 105] bits

CPU cycles required to process per bit Ji 18000 cycles / bit

Coefficient depending on chip architecture K 10−24 Watt ×s3,

Computational budget of the MEC server fc
max 1600 MHz

Computational budget of the local user f l
max 400 MHz

In our simulations, we compare the energy consumption

performance of the proposed algorithms to three alternative

baseline algorithms, as follows:

• Local Computing (LC) algorithm: For any type of appli-

cations in the multiuser MEC system, the tasks of each

user are only executed locally without offloading, i.e., on

the corresponding user device.

• Dynamic Computation Offloading (DVC) algorithm [7]:

Existing joint offloading decision and resource allocation

algorithm designed for partial offloading scheme.

• Exhaustive-Search (ES) algorithm: For continuous-

execution applications, the user selection indicators for

offloading are obtained by exhaustive-search and the re-

maining variables are optimized by the CCCP algorithm.

While the ES algorithm exhibits very high computational

complexity, it provides an upper bound on performance for

continuous-execution applications in multiuser MEC systems

and therefore serves as a useful benchmark.
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Fig. 4: Total energy performance versus the number of users

for the different allocation algorithms.

In Fig. 4, we plot the total energy performance versus the

number of users N for the algorithms under comparison. In

particular, the total energy consumption reduction ratio over

the LC algorithm is defined as Υalg ,
ELC−Ealg

ELC
, where

Ealg and ELC are respectively the total energy consumption
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Fig. 5: Total energy consumption versus delay tolerance for

the different allocation algorithms.

achieved by the algorithm analyzed and the LC algorithm.

For continuous-execution applications, it can be observed

that the minimum total energy consumption in a multiuser

MEC system is achieved by the ES algorithm, followed by

the proposed CFO algorithm, where the performance gap

between the ES and the CFO algorithms is extremely small.

Furthermore, the proposed CFO algorithm achieves significant

gains over the LC, simplified, and DVC algorithms, which

demonstrates the importance of joint optimization. As the

number of users increases, due to the power control, the gap

between the proposed CFO algorithm and these other algo-

rithms is enlarged. Although the performance of the simplified

algorithm is not as good as that of the CFO algorithm, the

former is still very promising due to its lower computational

complexity. Moreover, it can be seen that the CPO algorithm

outperforms all the other competing schemes. This is due to

the fact that the CPO algorithm can take advantage of parallel

processing in handling data-partitioning-oriented applications,

which can reduce the total energy consumption under specific

delay tolerance. Finally, we should note that both AFO and

APO algorithm can achieve near-optimal performance in a

distributed manner when compared to the CFO algorithm and

CPO algorithm, respectively.

In Fig. 5, we plot the total energy consumption versus

the delay tolerance tdi for the different algorithms under

comparison. When the delay tolerance grows, the total energy

consumption decreases, and the performance gap between

the ES and the proposed CFO algorithms becomes smaller.

The results also show that compared with the LC algorithm,

the CFO algorithm can significantly reduce the total energy

consumption, by about 90% over the considered range of tdi .

Here again, it is seen that the energy consumptions of the

CPO and ES algorithms nearly coincide over the considered

range of tdi values. Indeed, because the computation capacity

of the MEC server is much larger than that of mobile users,

when the delay tolerance is stringent, the mobile users tend

to offload more of their applications to the MEC server

for shortening latency, even if these applications are data-

partitioning-oriented.

In Fig. 6, we plot the total energy consumption versus the
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Fig. 6: Total energy consumption versus the data size of tasks

for the different allocation algorithms.

data size of the different tasks Li for the different algorithms

under comparison. Note that different from other simulations,

Li is deterministic and does not follow the uniform distribution

as defined before. For convenience in comparison, we set the

size of tasks for different users equal. We can see that as

the data size of tasks grows, the total energy consumption

gradually increases. For continuous-execution tasks, it is also

observed that the total energy consumption achieved with

the proposed CFO algorithm is lower than that achieved by

the other algorithms except the ES algorithm. However, the

performance of the CPO algorithm coincides with that of the

ES algorithm when the data size of tasks is large. Hence, it

appears that for tasks with large sizes, processing them at the

MEC server is preferable from an optimum resource allocation

perspective.
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Fig. 7: Total energy consumption versus the MEC server

computation capacity for the different allocation algorithms.

In Fig. 7, we plot the total energy consumption versus

the MEC server computation capacity f c
max. For continuous-

execution applications, the proposed CFO algorithm achieves a

near-optimal performance, i.e. very close to the upper bound

on performance provided by the ES algorithm, and signifi-

cantly outperforms all the competing algorithms. Moreover, it
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is observed that the proposed CPO algorithm can achieve a

significant gain over the CFO algorithm when the computa-

tional capacity of the MEC server is limited. In other words,

by leveraging the parallel processing of data-partitioning-

oriented applications, the proposed CPO algorithm provides

more flexibility for the resource allocation scheme as well as

more refined control on the multiuser interference management

in the MEC system. Finally, when the computational capacity

of the MEC server is sufficient, the energy consumptions of the

CFO, CPO and ES algorithms converge to a common value,

where the system performance is constrained by the use of the

radio resource. This reveals a fundamental design principle for

MEC systems: once the system operation is constrained by the

available radio resource, there is no need to deploy additional

computational resources.

VIII. CONCLUSION

In this paper, we have investigated an energy-efficient

resource allocation problem for a multiuser MEC system under

interfering channels and have formulated specific optimization

problems for two different types of applications, specifically,

the ECM-FO problem for full offloading of continuous-

execution tasks and the ECM-PO problem for partial of-

floading of data-partitioning-oriented tasks. In order to handle

binary variables as well as highly coupled nonconvex terms

in the objective functions and nonconvex constraints of the

ECM-FO problem, we have introduced auxiliary variables and

applied linearization to transform the original problem into a

more tractable form. We then proposed the CFO algorithm

to find local stationary solutions. In addition, a simplified

resource allocation algorithm with reduced computational

complexity was proposed for the FO case by introducing

a suitable measure of user priority. To solve the ECM-

PO problem, we resorted smooth functional approximation

of the l0-norm constraints and employed various algebraic

transformations, which in turn lead to the CPO algorithm.

To alleviate the performance bottleneck caused by the CSI

overhead and high complexity, due to the scalability of large-

scale mobile users, we develop a distributed implementation

method for both CFO and CPO algorithm. Simulation results

demonstrate that, for continuous-execution applications in a

multiuser MEC system, the energy consumption performance

of the CFO algorithm is very close to the best performance

achieved from an exhaustive search. For data-partitioning-

oriented applications in a multiuser MEC system, the proposed

CPO algorithm achieves significant gains over the benchmark

schemes by leveraging the parallel processing.

APPENDIX A

BRIEF REVIEW OF CCCP METHOD

DC programming deals with optimization problems involv-

ing objective and constraint functions with each represented

as a difference of two convex functions [28]. A general form

of DC programming problems can be expressed as follows:

min
x

f0(x)− g0(x) (45)

fk(x)− gk(x) ≤ 0, for k ∈ {1, . . . ,K},
where fk and gk for k = 0, 1, ...,K, are all convex functions,

and K is the number of constraints.

However, a DC program is not convex unless the functions

gi are affine, and is difficult to solve in general. The CCCP

is a heuristic algorithm to find a local optimal solution of DC

programs [29]. Its main idea is to convexify the problem by re-

placing the concave part in each DC function, which is gk(x),
by its first order Taylor series expansion around the current

estimated value of x, and in this way, successively solve a

sequence of convex problems in an iterative manner, starting

with an initial feasible point x0, i.e., fk(x0)−gk(x0) ≤ 0. At

iteration t, it solves the following convex subproblem:

min
x

f0(x)− g0(x
t)−∇g0(x

t)T (x− x
t) (46)

fk(x)− gk(x
t)−∇gk(x

t)T (x− x
t) ≤ 0, ∀k,

where x
t is the optimal solution obtained from the previous it-

eration. The objective function values decrease monotonically

and thus the limit point of the iterates generated by the CCCP

method will converge to the KKT solution of the original

problem [31].

APPENDIX B

PROOF OF EQUIVALENCE BETWEEN (12) AND (14)

Let us first introduce variables zi,1, zi,2 and zi,3 as the upper

bound of tci , ttr
i and tli , respectively, ∀i. Thus, the constraint

(12b) can be equivalently expressed as

zi,1 + zi,2 + zi,3 ≤ tdi , (47)

αiJiLi/f
c
i ≤ zi,1, (48)

αiLi

W log2(1 +
βP tr

i
Hi

σ2+
N∑

j 6=i

P tr
j
Hj

)
≤ zi,2, (49)

(1− αi)JiLi/f
l
i ≤ zi,3. (50)

Due to the fractional form of the Γi expressions (see (1)),

constraints (49) remain difficult to tackle. In the following,

we convert them into equivalent yet tractable forms. By intro-

ducing auxiliary variable ϕi, ∆i, si and ui as the upper bound

of

σ2+
N∑

j 6=i

P tr
j Hj

βP tr
i
Hi

, 1/ϕi, αi/f
c
i , and αiP

tr
i /Ri, respectively, and

Ri as the lower bound of W log2(1+1/ϕi), problem (12) can

be equivalently converted as

min
X

N
∑

i=1

EF
i (X ) (51a)

s.t. zi,1 + zi,2 + zi,3 ≤ tdi , (51b)

αiJiLi/f
c
i ≤ zi,1, (51c)

αiLi/Ri ≤ zi,2, (51d)

(1− αi)JiLi/f
l
i ≤ zi,3, (51e)

Ri ≤ W log2(1 + 1/ϕi), (51f)

1/ϕi ≤ ∆i, (51g)

βP tr
i Hi/(σ

2 +
N
∑

j 6=i

P tr
j Hj) ≤ 1/ϕi, (51h)

αi/f
c
i ≤ si, (51i)

αiP
tr
i /Ri ≤ ui, (51j)

(12c) − (12h). (51k)

This completes the proof.
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