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BOLIB 2019: Bilevel Optimization LIBrary
of test problems version 2

Shenglong Zhou, Alain B. Zemkoho, and Andrey Tin

Abstract This paper presents the Bilevel Optimization LIBrary of the test problems
(BOLIB—for short), which contains a collection of test problems, with continuous
variables, to help support the development of numerical solvers for bilevel optimiza-
tion. The first version of the library, available at arxiv.org/abs/1812.00230, is made
of 124 examples of nonlinear bilevel optimization problems. This version contains
173 examples with 138 nonlinear (including the 124 from the first version), 24 linear,
and 11 simple bilevel optimization problems. This expansion of BOLIB further es-
tablishes it as the largest bilevel optimization library of test problems. Moreover, as
the library is computation-enabled with the MATLAB m-files of all the examples, it
provides a uniform basis for testing and comparing algorithms. The library, together
with all the related codes, is freely available at biopt.github.io/bolib.

1 Introduction

The bilevel optimization problem can take the form

min F(x, y)
x’y

s.t. G(x,y) <0, (D
y€S(x):= argmyin {f(x,y)] glx,y) <0},
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where the functions G : R"™ X R"» — R"G and g : R"™ x R"™ — Rz define the
upper-level and lower-level constraints, respectively. As for F : R x R"™ — R
and f : R™ X R™» — R, they denote the upper-level and lower-level objective
functions, respectively. The set-valued map S : R™ =3 R™ represents the opti-
mal solution/argminimum mapping of the lower-level problem. Further recall that
problem (1) as a whole is often called upper-level problem.

Our aim is to propose a computation-enabled library of test problems to help
accelerate the development of numerical methods for bilevel programs in the form
(1). For the sake of clarity, note that the bilevel optimization problems in this library,
that we classify into the following three categories, only involve continuous variables:

* Nonlinear bilevel programs, which are problems in the form (1) with at least one
of the functions involved being nonlinear.

* Linear bilevel programs are problems in the form (1) with functions F, f, and all
the components of G and g being linear.

» Simple bilevel programs (term coined in [13]) are optimization problems where
the feasible set is partly defined by the optimal solution set of a second opti-
mization problem. But unlike in (1), the lower-level problem is not a parametric
optimization problem. More precisely, a simple bilevel optimization has the form:

min F(y)
y

s.t. G(y) <0, 2)
yEeES:= argmyin {f(»1gly) <0},

where, similarly to (1), G : R — R"¢ and g : R — R"s describe the upper-
level and lower-level constraints, respectively, while the real-valued function F
(resp. f), defined R, represents the upper-level (resp. lower-level) objective
function. The expression “simple bilevel program” is used in [32] to refer to
bilevel optimization problems of the form (1), where y (resp. x) is not involved
in the upper-level (resp. lower-level) constraints.

The main contributions of the library are three-fold. First, BOLIB provides MAT-
LAB codes for 173 examples, including 138 nonlinear, 24 linear, and 11 simple
bilevel programs, ready to be used to test numerical algorithms. Secondly, it puts
together the true or best known solutions and the corresponding references for all
the examples included. Hence, can serve as a benchmark platform for numerical ac-
curacy evaluation for methods designed to solve problem (1). Thirdly, all examples
as well as their gradients and Hessians are programmed and stored in the MATLAB
m-files. Thus, facilitating the use of the examples and corresponding derivatives in
the implementation of numerical methods, where such information is necessary.

To the best of our knowledge, this is the largest library of test examples for bilevel
optimization, especially for the nonlinear class of the problem. It includes bilevel
optimization problems from Colson’s BIPA [1 1], Leyffer’'s MacMPEC [35], as well
as from Mitsos and Barton’s technical report [39]. We would like to emphasize that
the fundamental objective that we hope to achieve with BOLIB is the acceleration
of numerical software development for bilevel optimization, as it is our opinion that
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the level of expansion of applications of the problem has outpaced the development
rate for numerical solvers, especially for the nonlinear class of the problem.

In the next section, we describe the library with details on the inputs and outputs
of the codes, as well as some useful insights on the examples. In the subsequent
section, a guideline is given on how to access the library.

2 Description of the library

This section describes the structure of the library, while focusing on the inputs and
outputs of each example, as well as the list of all examples together with their true
or best known solutions and corresponding references. Before we proceed, note that
each m-file contains information about the corresponding example, which include
the first and second order derivatives of the input functions. For the upper-level
objective function F : R"** x R"™ — R, these derivatives are defined as follows

[ V., F
V F(x,y) = : € R,
| Vi, F
VL VL F ]
ViFy)=| 1 € R, (1)
Ve F o Ve,
[ V)ZCI)’IF V)zfnxyl
Vin(x, y) = € RMyXix,
_V)znyan V)zcnx_Vn,x

Similar expressions are valid for V, F(x,y) € R"™, Vin (x,y) € R™>*" and the
lower-level objective function f. As the constraint functions are vector-valued, we
use the following notations to refer to derivative information in the context of the
upper-level constraint function G : R™* X R — R"& for instance:
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V.Gi ] [V4Gi - V. G
VGy) = | o= i o [erme
VxGnG i Vx] GnG e Vxnx GnG
V/%C]X](;1 e V)anxlel
VJZCxGl V)Zflxn)( Gl T V)zcnxxnx Gl
V)ZCXG('X’ y) = = : . : € R("an)xnx’
V)zcx(;"lG V)qulGnG e V)zcnxle"G
: : (2)
:V)2€1xnx nG ?C;1xxr1x GnG
VszlylGl VxanGl
V)2€yGl v)zclyny Gl T V)zfplxyny Gl
VG = o=l e R(ram o,
V)zcy Gng V)ZCIYI Gng -+ V)chx y17nG
L V)Zfly;qy GnG e V)zcnx)’ny GnG |

Similar formulas are also valid for V,G(x,y) € R"¢*", ngG(x, y) € RrGnyXny
and the lower-level constraint g. It is important to emphasize that in the context of the
constraints, V,G(x, y) € R>x for example, is a row vector when ng = 1. However,
V. F(x,y) € R™ and V, f(x, y) € R"* are column vectors.

2.1 Inputs and outputs

The BOLIBver?2 folder (see Section 3 on how to access the library), which contains all
the library material, includes 3 sub-folders named Nonlinear, Linear, and Simple.
In the Nonlinear subfolder, there are 138 MATLAB m-files. Each one specifies
a nonliner bilevel optimization test example, named by a combination of authors’
surnames, year of publication, and when necessary, the order of the example in
the corresponding reference. For example, as in following figure (showing a partial
list of the examples), AiyoshiShimizul984Ex2.m stands for Example 2 in the
paper by Aiyoshi and Shimizu published in 1984 [1]. However, for a few examples
(DesignCentringP1, NetworkDesignP1, etc.), the problem naming is based on
previous use in the literature and therefore could help to easily recognize them.
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AiyoshiShimizul®  AllendeStill2013, AnEtal2009.m Bard1988Ex1.m Bard1988Ex2.m
84B2.m m

44 4 4 4

Bard1988E:3.m Bard1991Ed.m BardBook1998.m  CalamaiVicentel CalamaiVicentel
994a.m 994b.m

In folder Linear, there are 24 MATLAB m-files defining 24 liner bilevel optimiza-
tion test examples. The rule of naming each example is same as in the nonlinear case.
Similarly, folder Simple contains 11 simple bilevel optimization test examples.

Now we describe the inputs and outputs of the m-file of a given example. Each
file has the function handle named in the following way:

w = example_name(x, y, keyf, keyxy). 3)

For the inputs, we have

x e R™, yeR™,
keyf e {‘F’, ‘G’, ‘f’, ‘g’},
keyxy e {[ ], ‘x”, ‘y’, ‘xx’, ‘xy’, ‘yy’'}L

where ‘F’, ‘G’, ‘“f’, and ‘g’, respectively stand for the four functions involved
in (1). ‘x’ and ‘y’ represent the first order derivative with respect to x and y,
respectively. Finally, ‘xx’, ‘xy’,and ‘yy’ correspond to the second order derivative
of the function F, G, f, and g, with respect to xx, xy, and yy, respectively.

For the outputs, w = example_name(x,y,keyf) or w = example_name(x,
y,keyf, []) returns the function value of key f while w=example_name (x,y,keyf,
keyxy) can additionally return the first or second order derivative of keyf w.r.t. the
choice of keyxy as described above. We summarize all the scenarios in Table 1:

Table 1 Input—output scenarios from the m-files containing the examples

keyf/keyxy |[] ‘x’ ‘y’ ‘xx’ ‘xy’ ‘yy’

‘F’ F(x,y) ViF(x,y) VyF(x,y) Vi F(xy) Vi, F(xy) V3,F(xy)
‘¢’ Glx,y) ViG(xy) VyG(xy) Vi G(xy) V3,G(x,y) V5,G(x,y)
‘f fay) Vifny) Vyf(xy) Vi flny) Vi fxy) Vi f(xy)
‘9’ gxy) Vigxy) Vyglxy) Viglxy) Viygxny) Vi g(xy)
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For the dimension of w in each scenario, see (1)=(2). If ng = 0 (or ny = 0), all
outputs related to G (or g) should be empty, namely, w = [ ]. To further clarify the
outputs, let us look at some specific usage:

e w = example_name(x,y, ‘F’) or w = example_name(x, y, ‘F’,[]) returns the
function value of F,i.e., w = F(x, y); this is similar for G, f, and g;

e w = example_name(x,y, ‘F’, ‘x’) returns the partial derivative of F with re-
spect to x, i.e., w = V F(x, y);

e w = example_name(x, y, ‘G’, ‘y’) returns the Jacobian matrix of G with respect
toy,ie,w=V,G(x,y);

e w = example_name(x,y, ‘f’, ‘xy’) returns the Hessian matrix of f with respect
to xy,ie.,w = V)chf(x, y);

e w = example_name(x,y, ‘g’, ‘yy’) returns the second order derivative of g
with respect to yy, i.e., w = ngg(x, y).

We now use two examples to illustrate the definitions above. The first one is
nonlinear while the second one is a simple bilevel program.

Example

Shimizu et al. (1997), see [50], considered the bilevel program (1) with

Fx,y) = (x =5+ 2y + 1)%,
f(xy) = (y—1)* - L5xy,
-3x+y+3
glx,y):=[x-05y-4
x+y-7

Here, we have dimensions ny = 1, n, = 1, ng = 0, and n, = 3. The m-file is
named by ShimizuEtal1997a (i.e., exmaple_name = ShimizuEtal1997a ) and
was coded in MATLAB as it can be seen in Table 2. If we are given some inputs
(as in left column of the table below), then ShimizuEtal1997a will return us
corresponding results as in the right column:

Inputs QOutputs
X =4 X =4
y =0 y =20
F = ShimizuEtall1997a(x,y,’F’) F =2
Fx = ShimizuEtall997a(x,y,’F’,’x’) Fx = -2
Gy = ShimizuEtall997a(x,y,’G’,’y’) Gy =[]

fxy = ShimizuEtall997a(x,y,’f’,’xy’) fxy = -1.5
gyy = ShimizuEtall997a(x,y,’g’,’yy’) gyy = [0;0;0]



BOLIB 2019: Bilevel Optimization LIBrary of test problems version 2

Table 2 Matlab code for ShimizuEtal1997a.

function w=ShimizuEtall997a(x,y,keyf,keyxy)
if nargin<4 || isempty(keyxy)
switch keyf
case ‘F'; w

(x-5)422+2*y+1)12;

case ‘G’; w = []1;
case ‘f’; w = (y-1)42-1.5%*x*y;
case ‘g’; w = [-3*x+y+3; x-0.5%y-4; x+y-7];
end
else
switch keyf
case ‘F’

switch keyxy

case ‘x’ ; w = 2*(x-5);
case ‘y’ ; w = 4*Q%*y+1);
case ‘xx’; w = 2;
case ‘xy’; w = 0;
case ‘yy’; w = 8;
end
case ‘G’
switch keyxy
case ‘x’ ; w = [];
case ‘y’ ; w = [];
case ‘xx’; w = [];
case ‘xy’; w = [];
case ‘yy’; w = [];
end
case ‘f’
switch keyxy
case ‘x’ ; w = -1.5%y;
case ‘y’ ; w = 2*(y-1)-1.5%x;
case ‘xx’; w = 0;
case ‘xy’; w = -1.5;
case ‘yy’; w = 2;
end
case ‘g’
switch keyxy
case ‘x’ ; w=[-3; 1; 1];
case ‘y’ ; w=1[ 1;-0.5; 1];
case ‘xx’; w=1[0; 0; 0];
case ‘xy’; w=1[0; 0; 0];
case ‘yy’; w=1[0; 0; 0];
end
end

end
end
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Example

Franke et al. (2018), see [73], considered the bilevel program (1) with

F(y) := -y,
f(y) =3,

y2 -3
g(y) = [yt+yi-1

-y3

Here, we have dimensions n, = 0,n, = 3,ng = 0,and n, = 3. Them-file is named
by FrankeEtal2018Ex513 (i.e., exmaple_name = FrankeEtal2018Ex513) and
is equally coded in MATLAB as described in Table 3.

It is worth mentioning that despite the lack of variable x in the latter example,
we still treat it as an input, for the sake of unifying the inputs of the function
handle as in (3). Hence, for all the simple bilevel optimization examples, we
input x as a scalar. In this way, x has no impact on the example itself.

2.2 Useful details on the examples

The details related to each example presented in the BOLIB library are in a column
of Table 4 below. As we mentioned before, those examples are classified into 3
categories: nonliner, linear and simple bilevel optimisation test examples. The first
column of the table provides the list of problems, as they appear in the Examples
subfolder of the BOLIBver2 folder. The second column gives the reference in the
literature where the example might have first appeared. The third column combines
the labels corresponding to the nature of the functions involved in (1). Precisely, “N”
and “L” will be used to indicate whether the functions F, G, f, and g are nonlinear
(N) or linear (L), while “O” is used to symbolize that there is either no function G or
g present in problem (1). Then follows the column with n, and n, for the upper and
lower-level variable dimensions, as well as ng (resp. ng) to denote the the number of
components of the upper (resp. lower)-level constraint function. On the other hand,
F* and f* denote the best known optimal upper and lower-level objective function
values, respectively, according to the reference that is listed in the last column.
Note that examples Zlobec2001b and MitsosBartonEx32 have no optimal
solutions. There are 4 examples involving parameters; i.e., CalamaiVicente1994a
with p > 1 (its F* and f* listed in the table are under p = 1, other cases can be
found in [7]), HenrionSurowiec2011 with ¢ € R, IshizukaAiyoshi1992a with
M > 1 and RobustPortfolioPl with § € [1,+o0] (its F* and f* listed in the
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Table 3 Matlab code for FrankeEtal20®18Ex513.

function w=FrankeEtal2018Ex513(x,y,keyf,keyxy)
if nargin<4 || isempty(keyxy)

switch keyf
case ‘F'; w

case ‘G’; w
case ‘f’; w
case ‘g’; w
end

else
switch keyf
case ‘F’

-y(2);

[1;
y(3);

[y(D*2-y(3); y(*2+y(2)42-1; -y(3)];

switch keyxy

case ‘x
case ‘y’
case ‘xx
case ‘xy’;
case ‘yy’;
end

case ‘G’

y W

s = = =

switch keyxy

case ‘x
case ‘y’
case ‘xx
case ‘xy
case ‘yy
end

case ‘f’

= = = = =

switch keyxy

case ‘x’
case ‘y’
case ‘xx’;
case ‘xy’;
case ‘yy’;
end

case ‘g’

y W

= = = =

switch keyxy

case ‘x’
case ‘y’
case ‘xx
case ‘xy
case ‘yy
end

end

end
end

= = = =

y W

0;
[0; -1; 0];
0;
zeros(3,1);
zeros(3,3);

[1;
[1;
[1;
[1;
[1;

0;
[0; 0; 11;
0;
zeros(3,1);
zeros(3,3);

zeros(3,1);

[2%y(1) ® -1; 2*y(1) 2*y(2) 0; 0 0 -1];
zeros(3,1);

zeros(9,1);

[200;00 0;00 0;20 0; 0 2 0;zeros(4,3)];
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table are under ¢ = 2). Dimensions ny, ny, ng or ng of examples OptimalControl,
RobustPortfolioP1, RobustPortfolioP2, and ShehuEtal2019Ex42 can be
altered to get problems of different sizes, as necessary.

Table 4: List of bilevel programs with related labels and known solutions.

Example name Refl [F-G-f-g [nx ny ng ng |[F* f RefTl

Nonlinear bilevel programs

AiyoshiShimizul984Ex2 [I] |L-L-N-L [2 2 5 6 |5 0 [1]
AllendeStill2013 [2] |N-L-N-N |2 2 5 2 |1 -0.5 [2]
AnEtal2009 [3] |N-L-N-L |2 2 6 4 |2251.6 565.8 [3]
Bard1988Ex1 [4] |N-L-N-L |1 1 1 4 |17 1 [4]
Bard1988Ex2 [4] [N-L-N-L |4 4 9 12 [-6600 54 [11]
Bard1988Ex3 [4] |N-N-N-N 2 2 3 4 |-12.68 -1.02 [8]
Bard1991Ex1 [5] |L-L-N-L I 2 2 3 |2 12 [5]
BardBook1998Ex832 [6] |N-L-L-L (2 2 4 7 |0 5
CalamaiVicentel994a [71 |N-O-N-L |1 1 0O 3 |0 0 [71
CalamaiVicente1994b [71 [N-O-N-L |4 2 0 6 03125 -0.4063 [7]
CalamaiVicente1994c [7] |N-O-N-L |4 2 0 6 (0.3125 -0.4063 [7]
CalveteGalel999P1 [9] |L-L-L-N 2 3 2 6 |-29.2 0.31 [9, 23]
ClarkWesterbergl1990a  [I0] |[N-L-N-L |1 1 2 3 |5 4 [47]
Colson2002BIPA1 [11] |[N-L-N-L |1 1 3 3 250 0
Colson2002BIPA2 [I1] |[N-L-N-L |1 1 1 4 |17 2 [8]
Colson2002BIPA3 [11] |[N-L-N-L |1 1 2 2 |2 24.02 [8]
Colson2002BIPA4 [I1] |[N-L-N-L |1 1 2 2 8879 -0.77 [8]
Colson2002BIPAS [[1] |[N-L-N-N I 2 1 6 |[2.75 0.57 [8]
Dempe1992a [12] |IL-N-N-N |2 2 1 2 IX X
Dempe1992b [12] |[N-O-N-N |1 1 0 1 |31.25 4 [8]
DempeDutta2012Ex24 [14] IN-O-N-N |1 1 0 1 0 0 [14]
DempeDutta2012Ex31 (4] |[L-N-N-N |2 2 4 2 [ 4 [14]
DempeEtal2012 [15] |L-L-N-L |1 1 2 2 |1 -1 [15]
DempeFranke2011Ex41 [16] IN-L-N-L |2 2 4 4 |5 -2 [16]
DempeFranke2011Ex42 [l6] [N-L-N-L |2 2 4 3 |2.13 -3.5 [16]
DempeFranke2014Ex38 [17] |IL-L-N-L |2 2 4 4 |-1 -4 [17]
DempeLohse2011Ex31a [I18] [N-O-N-L [2 2 0 4 |[-55 0 [18]
DempeLohse2011Ex31b [18] IN-O-N-L |3 3 0 5 |-12 0
DeSilval978 [19] [N-O-N-L |2 2 0 4 |-1 0 [8]
FalkLiu1995 [20] |[N-O-N-L |2 2 0 4 [-2.1962 O [8]
FloudasEtal2013 [21]7|L-L-N-L (2 2 4 7 |0 200 [52]
FloudasZlobec1998 [22] IN-L-L-N |1 2 2 6 1 -1 [23, 39]
GumusFloudas2001Ex1 [23] IN-L-N-L |1 1 3 3 2250 197.75 [39]
GumusFloudas2001Ex3 [23] [L-L-N-L |2 3 4 9 |-29.2 0.31 [39]
GumusFloudas2001Ex4 [23] |[N-L-N-L |1 1 5 2 09 0 [39]
GumusFloudas2001Ex5 [23] |L-L-N-N |1 2 2 6 019 -7.23 [29]
HatzEtal2013 [24] |L-0-N-L 1 2 0 2 0 0 [24]
HendersonQuandt1958 [25] IN-L-N-L |1 1 2 1 -3266.7 -711.11 [25]
HenrionSurowiec2011 [261[N-0-N-0 [1 1 0 0 [-c?/4 =c?/8 [27]
IshizukaAiyoshil992a  [28] IN-L-L-L |1 2 1 5 |0 -M [28]
KleniatiAdjiman2014Ex3 [29] |L-L-N-L |1 1 2 2 |- 0 [29]
KleniatiAdjiman2014Ex4 [29] |[N-N-N-N [5 5 13 11 |-10 -3.1 [29]
LamparSagrat2017Ex23 [30] |L-L-N-L |1 2 2 2 |1 1 [20]
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LamparSagrat2017Ex31 [31] [N-L-L-L |1 1 1 1 1 0 [31]
LamparSagrat2017Ex32 [31] IN-O-N-O |1 1 0 0 |05 0 [31]
LamparSagrat2017Ex33  [31] [N-L-L-L (1 2 1 3 |05 0 [31]
LamparSagrat2017Ex35 [31] [N-L-L-L |1 1 2 3 108 -0.4 [31]
LucchettiEtal1987 [33] [N-L-N-L |1 1 2 2 |0 0 [33]
LuDebSinha2016a [34] [N-L-N-O I I 4 O |L.14 1.69 [34]
LuDebSinha2016b [34] [N-L-N-O0 |1 1 4 0 |0 1.66 [34]
LuDebSinha2016¢c [34] |[N-L-N-O0 |1 1 4 0 (112 0.06 [34]
LuDebSinha2016d [34] [IL-N-L-N |2 2 11 3 |[X X
LuDebSinha2016e [34] IN-L-L-N I 2 6 3 |X X
LuDebSinha2016f [34] |L-N-N-O |2 I 9 0 |x X
MacalHurter1997 [36] IN-O-N-O0 |1 1 0 0 |[81.33 -0.33 [36]
Mirrlees1999 [38] |[N-O-N-O |1 1 0 0 |1 0.06 [38]
MitsosBarton2006Ex38 [39] IN-L-N-L |1 1 4 2 |0 0 [29]
MitsosBarton2006Ex39 [39] |[L-L-N-L |1 1 32 |- -1 [29]
MitsosBarton2006Ex310 [39] |L-L-N-L |1 1 2 2 105 -0.1 [39]
MitsosBarton2006Ex311 [39] |[L-L-N-L |1 1 2 2 |08 0 [29]
MitsosBarton2006Ex312 [39] |[N-L-N-L |1 1 2 2 |0 0 [39]
MitsosBarton2006Ex313 [39] |[L-L-N-L |1 1 2 2 |- 0 [329]
MitsosBarton2006Ex314 [39] |[N-L-N-L |1 1 2 2 1025 -0.08 [39]
MitsosBarton2006Ex315 [39] |L-L-N-L |1 1 2 2 10 -0.83 [39]
MitsosBarton2006Ex316 [39] [L-L-N-L |1 1 2 2 |2 0 [329]
MitsosBarton2006Ex317 [39] |[N-L-N-L |1 1 2 2 |0.19 -0.02 [39]
MitsosBarton2006Ex318 [39] [N-L-N-L |1 1 2 2 |[-0.25 0 [39]
MitsosBarton2006Ex319 [39] [N-L-N-L |1 1 2 2 |-0.26 0 [39]
MitsosBarton2006Ex320 [39] [N-L-N-L |1 1 2 2 031 -0.08 [29]
MitsosBarton2006Ex321 [39] [N-L-N-L |1 1 2 2 1021 -0.07 [39]
MitsosBarton2006Ex322 [39] |[N-L-N-N |1 1 2 3 021 -0.07 [39]
MitsosBarton2006Ex323 [39] [N-N-L-N |1 1 3 3 |0.18 -1 [29]
MitsosBarton2006Ex324 [39] |[N-L-N-L |1 1 2 2 |-1.75 0 [39]
MitsosBarton2006Ex325 [39] [N-N-N-N |2 3 6 9 |-1 -2 [39]
MitsosBarton2006Ex326 [39] IN-N-N-L (2 3 7 6 [-2.35 -2 [39]
MitsosBarton2006Ex327 [39] [N-N-N-N [5S 5 13 13 |2 -1.1 [39]
MitsosBarton2006Ex328 [39] [N-N-N-N |5 5 13 13 |-10 -3.1 [29]
MorganPatrone2006a [40] |L-L-N-L |1 1 2 2 |1 0 [40]
MorganPatrone2006b [40] |L-O-N-L |1 1 0 4 |[-1.25 0 [40]
MorganPatrone2006c [40] [L-O-N-L |1 1 0 4 |1 -0.25 [40]
MuuQuy2003Ex1 [41] |[N-L-N-L |1 2 2 3 |-2.08 -0.59 [41]
MuuQuy2003Ex2 [41] IN-L-N-L |2 3 3 4 |[0.64 1.67 [41]
NieEtal2017Ex34 [42] [L-L-N-N [T 2 2 2 |2 0 [42]
NieEtal2017Ex52 [42] [N-N-N-N |2 3 5 2 |-1.71 -2.23 [42]
NieEtal2017Ex54 [2] [N-N-N-N |4 4 3 2 [|-044 -1.19 [47]
NieEtal2017Ex57 [42] IN-N-N-N |2 3 5 2 |2 -1 [42]
NieEtal2017Ex58 [A2] [N-N-N-N |4 4 3 2 |349 -086 [47]
NieEtal2017Ex61 [42] IN-N-N-N 2 2 5 1 |-1.02 -1.08 [42]
Outratal990Exla [43] IN-O-N-L |2 2 0 4 [-8.92 -6.05 [43]
Outratal990Ex1lb [43] [N-O-N-L |2 2 0 4 |-7.56 -0.58 [43]
Outratal990Ex1c [43] IN-O-N-L |2 2 0 4 |-12 -112.71 [43]
Outratal990Ex1ld [43] [N-O-N-L |2 2 0 4 |[-3.6 -2 [43]
Outratal990Exle [43] [N-O-N-L |2 2 0 4 |-3.15 -16.29  [43]
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Outratal990Ex2a [43] |[N-L-N-L (I 2 1 4 05 -14.53  [43]
Outratal990Ex2b [43] IN-L-N-L |1 2 1 4 |05 -4.5 [43]
Outratal990Ex2c [43] [N-L-N-L |1 2 1 4 11.86 -10.93  [43]
Outratal990Ex2d [43] IN-L-N-N |1 2 1 4 (092 -19.47  [43]
Outratal990Ex2e [43] IN-L-N-N |1 2 1 4 10.90 -14.94  [43]
Outratal993Ex31 [44] IN-L-N-N I 2 1 4 |1.56 -11.67  [44]
Outratal993Ex32 [44] IN-L-N-N |1 2 1 4 |[3.21 -20.53  [44]
Outratal994Ex31 [45] [N-L-N-N |1 2 2 4 |321 -20.53  [45]
OutrataCervinka2009 [46] |L-L-N-L |2 2 1 3 10 0 [46]
PaulaviciusEtal2017a [47] IN-L-N-L |1 1 4 2 1025 0 [47]
PaulaviciusEtal2017b  [47] |L-L-N-L |1 1 4 2 |2 -1.5 [47]
SahinCiric1998Ex2 [48] IN-L-N-L |1 1 2 3 |5 4 [48]
ShimizuAiyoshil981Ex1 [49] [N-L-N-L |1 1 3 3 |100 0 [49]
ShimizuAiyoshil981Ex2 [49] [N-L-N-L |2 2 3 4 [225 100 [49]
ShimizuEtall997a [50] [N-O-N-L |1 1 0 3 |x X

ShimizuEtal1997b [50] [N-L-N-L I I 2 2 (2250 197.75 [50]
SinhaMaloDeb2014TP3 [51] IN-N-N-N |2 2 3 4 |[-18.68 -1.02 [51]
SinhaMaloDeb2014TP6 [51] |N-L-N-L (I 2 1 6 [-1.21 7.62 [51]
SinhaMaloDeb2014TP7 [51] IN-N-N-L |2 2 4 4 |-1.96 1.96 [51]
SinhaMaloDeb2014TP8 [51] [N-L-N-L |2 2 5 6 0 100 [51]
SinhaMaloDeb2014TP9 [51] [N-O-N-L |10 10 O 20 |0 1 [51]
SinhaMaloDeb2014TP10 [51] [N-O-N-L |10 10 O 20 |[O 1 [51]
TuyEtal2007 [52] [N-L-L-L I 1T 2 3 225 -1.52 [52]
Vogel2002 [53] [N-L-N-L |1 1 2 1 |1 -2 [53]
WanWangLv2011 [54] |[N-O-L-L |2 3 0 8 |10.63 -0.5 [54]
YeZhu2010Ex42 [55] [N-L-N-L I 1 2 1 |1 2 [55]
YeZhu2010Ex43 [55] [N-L-N-L |1 1 2 1 [1.25 -2 [55]
Yezzal996Ex31 [56] [N-L-N-L (1 1 2 2 |15 -2.5 [56]
Yezzal996Ex41 [56] IN-O-N-L |1 2 0 2 |05 2.5 [56]
Zlobec2001la [57] [N-O-L-L I 2 0 3 |-1 -1 [57]
Zlobec2001b [57] |IL-L-L-N |1 1 2 4 |no solution [57]
DesignCentringP1 [71] [N-N-N-N |3 6 3 3 |[X X

DesignCentringP2 [71] |[N-N-N-N |4 6 5 3 |X X

DesignCentringP3 [717|N-N-N-N |6 6 3 3 |X X

DesignCentringP4 [71] |[N-N-N-N |4 6 3 12 |Xx X

NetworkDesignP1 [TT]IN-L-N-L |5 5 5 6 |[300.5 419.8 [8]
NetworkDesignP2 [I1]|N-L-N-L |5 5 5 6 |[1429 81.95 [8]
OptimalControl [37] |[N-N-N-L |2 n, 3 2ny|X X

RobustPortfolioP1 [71]7 [L-N-N-N |[N+1N N+3 N+1{1.15 0 [71]
RobustPortfolioP2 [71] |L-N-N-N [N+IN N+3 N+1|L.15 0 [71]
TollSettingP1 [I1] IN-L-N-L |3 8 3 18 |-7 12 [8]
TollSettingP2 [I1] |N-L-N-L (3 18 3 38 |45 32 [8]
TollSettingP3 [I1] [N-L-N-L |3 18 3 38 [-3.5 32 [8]
TollSettingP4 [I1]|N-O-N-L [2 4 0 8 |4 14 [8]
TollSettingP5 [[1] |[N-O-N-L I 4 O 8 |[-25 14 [8]

Linear bilevel programs

AnandalinghamWthite1990 [58] |L-L-L-L |1 1 1 6 |49 15 [58]
Bard1984a [75] lL-L-L-L |1 1 1 5 [28/9 -60/9 [75]
Bard1984b [75] |L-L-L-L |1 1 1 5 |376 1.6 [75]
Bard1991Ex2 [5] |L-L-L-L |1 2 1 5 |-1 -1 [5]
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BardFalk1982Ex2 [59] |L-L-L-L |2 2 2 5 |-3.25 -4 [59]
Ben-AyedBlair1990a [76] |L-L-L-L |1 2 2 4 |25 -5 [76]
Ben-AyedBlair1990b [76] |[L-L-L-L |1 1 1 4 |6 5 [76]
BialasKarwanl984a [77] |L-L-L-L (1 2 1 7 |2 -0.5 [77]
BialasKarwan1984b [77] |L-L-L-L |1 1 1 6 |-11 11 [77]
CandlerTownsley1982 [60] |[L-L-L-L |2 3 2 6 |-29.2 32 [60]
ClarkWesterberg1988 [61] |L-O0-L-L |1 1 o 3 |[-37 14 [61]
ClarkWesterberg1990b  [10] |[L-L-L-L |1 2 2 5 |-13 -4 [10]
GlackinEtal2009 [62] |[L-L-L-L |2 1 3 3 |6 0 [62]
HaurieSavardWhitel1990 [78] [L-O-L-L |1 1 0o 4 |27 -3 [78]
HuHuangZhang2009 [63] |L-L-L-L (I 2 1 5 |-76/9 -41/9 [63]
LanWenShihLee2007 [64] |L-L-L-L |1 1 1 7 |-85.09 50.17 [64]
LiuHart1994 [67] |L-L-L-L |1 1 1 4 |-16 4 [67]
MershaDempe2006Ex1 [65] |L-L-L-L |1 1 1 5 X X [65]
MershaDempe2006Ex2 [65] [L-L-L-L |1 1 2 2 |20 -6 [65]
TuyEtal1993 [79] |L-L-L-L |2 2 3 4 |-3.25 -6 [79]
TuyEtal1994 [80] |L-L-L-L |2 2 3 3 |6 0 [80]
TuyEtal2007Ex3 [52] |L-L-L-L |10 6 12 13 |[-467.46 -11.62 [52]
VisweswaranEtall1996 [68] [L-L-L-L |1 1 1 5 |28/9 -60/9 [68]
WangJiaolLi2005 [66] [L-L-L-L |1 2 2 2 |-1000 -1 [66]
Simple bilevel programs

FrankeEtal2018Ex53 [73] IN-L-N-L |0 2 4 4 1 1 [73]
FrankeEtal2018Ex511 [73] |[N-O-L-L [0 3 O 4 |3 0 [73]
FrankeEtal2018Ex513 [73] IL-O-L-N |0 3 O 3 |[-1 0 [73]
FrankeEtal2018Ex521 [73] |IL-O-L-N |0 2 0 3 |-1 0 [73]
MitsosBarton2006Ex31 [39] |L-L-L-L |0 1 2 2 1 -1 [29]
MitsosBarton2006Ex32 [39] |L-L-L-L |0 1 3 2 |no solution [39]
MitsosBarton2006Ex33 [39] |L-L-N-N |0 1 2 3 |-1 1 [39]
MitsosBarton2006Ex34 [39] |L-L-N-L |0 1 2 2 1 -1 [29]
MitsosBarton2006Ex35  [39] |[L-L-N-L [0 1 2 2 |05 -1 [39]
MitsosBarton2006Ex36 [39] |L-L-N-L |0 1 2 2 |- -1 [39]
ShehuEtal2019Ex42 [72] |[N-O-N-O [0 n, O O |X X

It is worth pointing out that some examples involve equalities constraints in
the upper or lower-level problems. As only 8% of the BOLIB problems have
such constraints, we preserve the uniformity in the structure of the codes by
converting equalities constraints into inequalities. For the sake of clarity, we
list all the examples with equality constraints below.

Table 5: List of bilevel programs with equalities constraints.

Example name Ref. F-G-H-f-g-h |nx ny, ng nyg ng np
DempeDutta2012Ex31 [14] L-L-N-N-N-0 |2 2 2 1 2 0
DempeFranke2011Ex41 [16] N-L-L-N-L-0 |2 2 2 1 4 0
DempeFranke2011Ex42 [16] N-L-L-N-L-0 |2 2 2 1 3 0
Zlobec2001b [57] L-L-0-L-L-N |1 1 2 0 2 1
NetworkDesignP1 [11] N-L-0-N-O-L |5 5 5 0 0 3
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NetworkDesignP2 [11] N-L-0-N-O-L |5 5 5 0 0 3
OptimalControl [37] N-N-O-N-L-L |2 ny 3 0 ny %ny
RobustPortfolioP1 [71] L-N-L-N-N-O0 [N+1 N N+1 1 N+1 0
RobustPortfolioP2 [71] L-N-L-N-N-O [N+1 N N+1 1 N+1 0
TollSettingP1 [11] N-L-O-N-L-L |3 8 3 0 8 5
TollSettingP2 [11] N-L-O-N-L-L |3 18 3 0 18 10
TollSettingP3 [11] N-L-O-N-L-L |3 18 3 0 18 10
TollSettingP4 [11] N-0-O-N-L-L |2 4 0 0 2 4
TollSettingP5 [11] N-0-O-N-L-L |1 4 0 0 2 4

3 How to access the library?

The BOLIB library (versions 1 and 2) can be accessed through the dedicated web-
site biopt.github.io/bolib. Under this link, you will find the zipped folder named
BOLIBver?2 containing all the relevant files for the version of the library presented
in this paper. The folder contains the subfolder named Examples, which contains all
the m-files with the codes of the examples, as described in the previous section. The
pdf file named Formulas collects all the mathematical formulas of all the examples
in this library. To start with the library, it is advised to consult the readme file for
some useful instructions on how to use it.
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