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Abstract—Conventional authentication mechanisms routinely
used for validating communication devices are facing signifi-
cant challenges. This is mainly due to their reliance on both
‘spoofable’ digital credentials and static binary characteristic,
and inevitable misdetection in physical layer authentication
using time-varying attributes, leading to the cascading risks
of security and trust. To circumvent these impediments, we
develop an adaptive trust management based soft authentication
and progressive authorization scheme by intelligently exploiting
the time-varying communication link-related attribute of the
transmitter to improve wireless security. First of all, the trust
relationship between the transmitter and receiver is established
based on the evaluation of selected physical layer attribute for
fast authentication and multiple-level authorization. Through the
designed trust model, the transmitter is authorized by the specific
level of services/resources corresponding to its trust level, so that
soft security is achieved. To dynamically update the trust level
of the transmitter, we propose an online conformal prediction-
based adaptive trust adjustment algorithm relying on the real-
time validation of its attribute estimates at the receiver, thus
resulting in progressive authorization. The performance of our
scheme is theoretically analyzed in terms of its individual risk
and individual satisfaction. Our simulation results demonstrate
that the proposed scheme significantly improves the security
performance and robustness in time-varying environments, and
performs better than the static binary authentication scheme and
existing physical layer authentication benchmarker.

Index Terms—Physical layer attributes, authentication and
authorization, trust management, online conformal prediction,
risk assessment, satisfaction evaluation

I. INTRODUCTION

INNOVATIONS in wireless communications and Internet
technologies during last few decades have brought about

not only radically new applications, but also significantly
increased security challenges imposed on the legitimate users
owing to the rapidly improving capability of adversaries. To
be specific, due to the broadcast nature of radio signal prop-
agation, owing to the intermittent nature of communications
as well as the complex dynamic network environments en-
countered, wireless communications are vulnerable to spoofing
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attacks [1]–[3]. A spoofer may intercept the transmissions
between legitimate devices and imitate them to obtain illegal
benefits from networks/systems, while counterfeiting autho-
rized identities for fraud or other malicious purposes.

Although key-based cryptographic techniques [4]–[7] have
been widely used for authentication, they face increasing
challenges in securing wireless communications. Differenti-
ating devices with the aid of digital credentials cannot be
readily achieved when the diverse attributes of communica-
tion devices are disregarded, thus leading to a high risk of
undetected spoofing attacks [8]. Furthermore, the conventional
key-based cryptographic techniques are static in time and
binary in nature, where the devices either pass the security
check or fail by a one-time authentication. These security
schemes cannot help in detecting/preventing spoofers after the
initial authentication has been completed. Although repeated
authentication may theoretically be achieved with the aid of
key-based cryptographic techniques by repeatedly logging into
the server/system, the excessive latencies and computational
overhead are particularly undesirable for delay-sensitive com-
munications as well as for devices having limited battery
lifetime and computational capability, such as the Internet-
of-Thing (IoT) devices [1]–[3].

Physical layer security techniques [8]–[15] provide alterna-
tive authentication methods relying on the uniquely random
link-related attributes, as exemplified by the channel impulse
response (CIR) [2], carrier frequency offset (CFO) [11], and
received signal strength (RSS) [8], just to name a few, which
are difficult for malicious devices to impersonate and predict.
Although they have obvious advantages including the low
computational requirement, low network overhead and modest
energy consumption, most of the physical layer authentication
schemes based on the classic hypothesis test are also static
in the time-domain, as exemplified by [10]–[13]. Hence, they
tend to be unsuitable for providing continuous identification.
A kernel machine learning-based physical layer authentication
scheme is proposed in our previous work of [2] through
tracking multiple time-varying attributes to provide lasting
protection for legitimate links. However, the above schemes
constitute binary admit/reject solutions as well as rely on
separate authentication and authorization, hence resulting in
latent loopholes for spoofing attacks because of the potential
misdetection events in physical layer authentication. Once an
adversary passed the authentication by spoofing a legitimate
device, the corresponding information/services/resources in
the system will be leaked to this adversary. Furthermore, these
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binary-type solutions fail to provide differentiated levels of
access control.

To overcome these challenges, the concept of soft au-
thentication and progressive authorization is extremely ben-
eficial for holistic system optimization in dynamic commu-
nication environments. The soft security solution provides
a fast authentication and multiple-level authorization, while
the progressive approach achieves continuous identification
to enhance the security by multiple-step validation of the
physical layer attribute observations. Through such scheme,
the threats and uncertainties caused by adversaries as well
as the cascading risks in security and trust can be evaluated
and controlled in real time. In achieving this, the decision-
making in high layer is also required for modelling the soft
authentication and progressive authorization as well as for
security enhancement.

Trust management processes symbolic representations of
trustworthiness in support of a decision-making process, which
has been widely studied in dealing with security problems
[16]–[24]. However, the conventional trust management ap-
proaches are usually used for modelling the trust relationships
among authenticated users/devices for supporting cooperations
in wireless networks. In this paper, we focus our attention on
proposing an adaptive trust management approach by evalu-
ating the attribute estimation of the transmitter to establish
the trust relationship between transceiver for authentication
and to provide metric for authorization. Through exploring
the adaptive trust management, our radical solution provides
fast authentication and dynamic multiple-level authorization,
thus resulting in soft and progressive security. More impor-
tantly, our scheme moves further away from the classical
mechanisms, since it quests a holistic system design of unified
authentication and authorization based on the continuous eval-
uation of time-varying physical layer attribute, which requires
new wireless radio technologies. Hence, the machine learning
techniques [1], [2] are studied in this paper for adaptive trust
management through classifying the time-varying attribute
estimates of the transmitter.

In the unsupervised machine learning techniques of [25]–
[28], an assumption is usually made for the classification
between normal and abnormal events that normal events
are those that occur frequently and anomalous events occur
rarely. This leads to a high false alarm rate in physical layer
authentication, since those rare attribute observations may be
deemed to be from the Spoofer. Therefore, the family of
supervised learning techniques is invoked for the classification
of the time-varying physical layer attribute estimates, which
may be from legitimate devices and (or) adversaries. However,
most of the existing supervised machine learning techniques
have a limited capability to update the trustworthiness of an au-
thenticating transmitter because of the lack of information on
how close their predictions are to the real observations. These
motivate us to explore the conformal prediction technique
of [29]–[31], where a valid measurement of each individual
prediction is provided along with a confidence value based
on the learning algorithms. More importantly, by invoking the
online machine learning technique of [32], [33], the associated
real-time classification results can be used for adaptive trust

management, thus improving the security performance in time-
varying communication scenarios.

In a nutshell, our online conformal prediction-based adap-
tive trust management approach provides differentiated lev-
els of continuous protection for legitimate communications.
Such approach evaluates the trustworthiness of an authenti-
cating transmitter using its physical layer attribute dynami-
cally, thereafter the corresponding level of services/resources
is authorized to the transmitter according to its trust level.
Furthermore, it integrates authentication and authorization for
achieving seamless and holistic system optimization, thus
leaving fewer loopholes open for spoofing attacks. Specifically,
the contributions of this paper are summarized as follows:
1) To achieve the soft security, we design a trust model for
evaluating the trustworthiness of an authenticating transmitter
relying on physical layer attribute without requiring its statis-
tical properties. This model achieves fast authentication and
provides metric for multiple-level authorization to deal with
the threats caused by adversaries and to control the risks of
being attacked;
2) An online conformal prediction-based adaptive trust adjust-
ment algorithm is proposed for real-time validation of trans-
mitter and for dynamically updating the trust model developed.
Therefore, our scheme becomes capable of adapting to time-
varying environments for security enhancement;
3) Our simulation results demonstrate that the proposed
scheme describes a soft access control and continuous pro-
cedure of authentication, thereby providing reliable adap-
tive protection for legitimate communication links. We also
demonstrate the superiority of our scheme over the static
binary authentication scheme and our an exiting physical layer
authentication scheme.

The rest of this paper is organized as follows. In Section II,
the system model used in this paper is presented. In Section
III, we propose our online conformal prediction-based adaptive
trust management scheme for achieving soft authentication and
progressive authorization using physical layer attribute. The
security performance analysis of our scheme is also presented
in Section III, while our simulation results are discussed in
Section IV. Finally, Section V concludes the paper.

Notations: In this paper, scalars are denoted by italic
letters, while vectors are respectively denoted by bold-face
letters. False alarm (FA) represents an event when the receiver
wrongly believes that the legitimate transmitter is an adver-
sary, while misdetection (MD) is an event when the receiver
wrongly identifies the adversary as a legitimate device. Table
I shows the notations of this paper.

II. SYSTEM MODEL AND PROBLEM
FORMULATION

As shown in Fig. 1, we commence by characterizing the
attack model in a time-varying environment, where Alice and
Bob represent a pair of legitimate devices and aim for commu-
nicating in the presence of a Spoofer, who tries to impersonate
Alice and hence to access the system. More explicitly, the
Spoofer not only tries to intercept Alice’s transmission, but
also to imitate her for obtaining illegal benefits from Bob. The
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TABLE I
NOTATIONS IN THIS PAPER

Notations Definitions
HA Attribute estimate collected from Alice.
HO Attribute estimate collected from Alice or the Spoofer.
t Time instant of physical layer authentication.
F Trust value of relationship {Bob : Transmitter, Alice}.
N Number of authorization levels.
Rind Individual risk of our scheme.
Sind Individual satisfaction of our scheme.
Ψ0 Scenario that the transmitter is the Spoofer.
Ψ1 Scenario that the transmitter is Alice.
Γ Conformal predictor.
y Label of an attribute estimate.
Z Set of training samples in conformal predictor.
Y Predicted set of conformal predictor.
ε Significance level of conformal predictor.
1− ε Confidence level on the predicted set Y .
e Error made by the conformal predictor.
A Nonconformity measure function.
α Nonconformity score.
p p-value of the conformal predictor.
θ Validation result of the attribute estimates.
L Number of training samples.

Spoofer also tries to counterfeit authorized identities for fraud
or other malicious purposes. The aggregated spoofing channel
(i.e. the physical channel spanning from the Spoofer to Bob,
as well as the hardware and analog components involved) is
assumed to be independent of the main channel between Alice
and Bob. Therefore, it is hard for the Spoofer to predict and
clone Alice’s physical layer attributes, such as her channel
impulse response (CIR) [2], carrier frequency offset (CFO)
[11], and received signal strength (RSS) [8]. In this paper,
only one physical layer attribute is utilized for authentication
and authorization.
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Fig. 1. Soft authentication and progressive authorization system between
Alice and Bob using a physical layer attribute continuously. The authentication
and authorization mechanisms secure the legitimate communications through
confirming the identities of all devices and their right access to the authorized
resources, data and services.

At the beginning of communication between Alice and Bob,
existing security schemes have been used to establish initial
authentication between them explicitly. Indeed, it is reasonable
to expect that the devices have to be registered before joining
the communication system, which is a basic prerequisite of
physical layer authentication schemes [10]–[13]. L estimates
of the selected physical layer attribute of Alice can be obtained
during the established initial authentication phase, which are

denoted as

HA1, HA2, ...,HAL, (1)

where each HAl represents an attribute estimate collected
from Alice, l ∈ {1, 2, ..., L} is an estimation time index, and
L is the number of estimates during the established initial
authentication phase. The major objective of physical layer
authentication is to verify that the information received is from
a legitimate device (i.e. Alice) by exploiting the difference
between the estimates HA1, HA2, ...,HAL and new estimates
of the selected attribute arriving from the transmitter (i.e. Alice
or the Spoofer) during the subsequent communication stages.
The new attribute estimates are denoted as HOt, explicitly
showing the time instants of physical layer authentication
t = 1, 2, 3, .... Due to the dynamic nature of the environment
encountered, the attribute estimates HOt are likely to be time-
varying. Explicitly, the new attribute estimates HOt may have
arrived from Alice or the Spoofer, and the validation of these
estimates has to identify whether they are from Alice or the
Spoofer. Moreover, the physical layer authentication starts at
time instant t = 1 by identifying the estimate HO1, which
is arranged to be the (L + 1)-st attribute estimate, because
we have had L estimates of Alice collected during the initial
authentication phase. Then, the physical layer authentication
at time instant t = 1 is formulated as

∆HO1 = f(HA1, HA2, ...,HAL, HO1), (2)

where f(·) represents a function that quantifies the difference
between the estimates HA1, HA2, ..., HAL and HO1. The
nonconformity measure of [35] will be applied in our scheme
for characterizing this difference (see Section III-A). If the
difference ∆HOt is small enough, the signal is deemed to be
coming from Alice, otherwise, from the Spoofer. We assume
that the attribute estimation noises of Alice and the Spoofer
are independent and identically distributed, which may caused
by the measurement errors, channel noises, interferences in
the wireless communication environment, and so on.

In order to achieve security enhancement, this paper focuses
on proposing a novel adaptive trust management approach for
achieving soft authentication and progressive authorization in
dynamic communication environments. To be more specific,
our soft security solution provides prompt authentication and
multiple-level authorization, while the progressive approach
enhances the security by multiple-step validation of the time-
varying physical layer attribute considered. The varying threats
and uncertainties caused by the Spoofer and the cascading
risks in security can be evaluated and controlled in real time
by our scheme. Furthermore, various levels of protection can
be provided for legitimate communications.

We characterize the trust relationship between the trans-
mitter (i.e. Alice or the Spoofer) and Bob for the sake of
evaluating the trustworthiness of the transmitter as follows:
Definition 1: The trust level of the relationship {Bob :
Transmitter,Alice} at time t is defined as the probability
that the transmitter is deemed to be Alice in Bob’s point of
view by identifying the selected physical layer attribute, which
is represented as

F [t] = Pr{Bob : Transmitter,Alice} ∈ [0, 1]. (3)
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We can observe from Definition 1 that Bob has full trust in
the transmitter when F [t] = 1, and Bob totally distrusts the
transmitter if F [t] = 0. Then the new concept of multiple-
level authorization is developed, where we have N classes
of security services/resources, denoted as {Φ0,Φ1, ...,ΦN−1}.
The multiple-level authorization classes satisfy Φ0 ⊂ Φ1 ⊂
... ⊂ ΦN−1, where ΦN−1 represents the highest level of
authorization, while Φ1 is the lowest one. Moreover, Φ0

represents failed authentication and access denial for Bob. Our
soft authentication and progressive authorization scheme can
be formulated relying on thresholds ν1, ν2, ..., νN−1 obeying

Φ0 : F [t] ∈ [ν0, ν1]

Φ1 : F [t] ∈ (ν1, ν2]

...

ΦN−1 : F [t] ∈ (νN−1, νN ]

, (4)

where the thresholds satisfy 0 = ν0 < ν1 < ν2 < · · · <
νN−1 < νN = 1.

As shown in Fig. 1, upon assuming the estimation range
of the selected physical layer attribute as [−a, a], we design
the soft authentication and progressive authorization process
based on the trust level F [t] by evaluating the estimates of the
selected attribute HOt as follows:

Soft authentication: We set the initial trust level of the
relationship {Bob : Transmitter,Alice} relying on the
physical layer attribute estimate HO1 at time instant t = 1
according to the authentication of (2) as

F [1] = 1−∆HO1. (5)

If the initial trust level satisfies F [1] ∈ (νn, νn+1], the
transmitter is allowed to access the services/resources asso-
ciated with the n-th level of authorization, namely at Φn,
n ∈ {0, 1, ..., N−1}. In contrast to the conventional hypothesis
testing-based physical layer authentication schemes [10]–[13],
our soft authentication solution does not require any knowl-
edge of the statical properties of the attribute selected and
neither does it require the derivation of optimal thresholds
for hypothesis testing. These simplifications lead to prompt
authentication via (4), but the lack of having an optimal
threshold may lead to an increased misdetection rate during the
soft authentication of (5). Fortunately, both the multiple-level
authorization and following progressive authorization designed
for our scheme are capable of enhancing the security by
authorizing the corresponding class of security services and
resources according to the trust level F as well as through the
multiple-step validation of the physical layer attribute selected.

Progressive authorization: Given estimates of the selected
physical layer attribute HOt ∈ [−a, a] at time instants t =
2, 3, 4, ..., the trust level F should be updated to control the
individual risk and individual satisfaction, which is formulated
as

F(HOt,F [t− 1]) : [−a, a]× [0, 1] → [0, 1], (6)

where the individual risk and individual satisfaction are given
in Definitions 2 and 3, respectively. Our progressive solution

provides security enhancement by validating the transmitter
continuously for ensuring that the security risks caused by
inevitable misdetection during the soft authentication can be
evaluated by the proposed trust management approach as well
as carefully controlled by the judicious adjustment of the
authorization level via (4).

Upon denoting the scenarios when the signal is from the
Spoofer and from Alice by Ψ0 and Ψ1, respectively, we define
the individual risk and individual satisfaction of our scheme
as:
Definition 2: The individual risk level of our soft authen-
tication and progressive authorization scheme at time t is
formulated as

Rind[t] =

N−1∑
n=1

rn · Pr(F [t] ∈ (νn, νn+1] | Ψ0), (7)

where rn is Bob’s degree of loss or damage, if the system
assigns the authorization level Φn to the Spoofer.
Definition 3: The individual satisfaction level of our soft
authentication and progressive authorization scheme at time
t is given by

Sind[t] =

N−1∑
n=1

sn · Pr(F [t] ∈ (νn, νn+1] | Ψ1), (8)

where sn denotes Alice’s degree of satisfaction at the autho-
rization level Φn.

According to Definitions 2 and 3, the individual risk quan-
tifies the potential loss of Bob if the Spoofer is granted
authentication, while the individual satisfaction level quantifies
the utility of services/resources granted to Alice by Bob. Note
that we have PMD = Rind and PFA = 1 − Sind in the
conventional binary authentication associated with N = 2 and
r1 = s1 = 1, where PMD and PFA represent the misdetection
rate and false alarm rate, respectively. Furthermore, we can
observe from (7) and (8) that there is a trade-off between
the individual risk and individual satisfaction level associated
with the thresholds ν1, ν2, ..., νN−1. If the thresholds are set
too low, Bob will suffer from a higher individual risk, because
the Spoofer may more easily succeed in imitating Alice and
accessing a higher authorization level, but Alice will access
more valuable services/resources to achieve a higher level of
individual satisfaction. By contrast, if they are set too high,
our scheme may suffer from a low individual satisfaction
level because of the lower authorization level Alice has,
although Bob will experience a lower risk level. In the specific
communication scenarios requiring high security protection,
the thresholds of our scheme can be increased for reducing
the risk caused by the Spoofer during the soft authentication
stage.
Remark 1. The designed trust model provides an efficient
metric for multiple-level authorization and for coping with
the uncertainty and uncontrollability caused by the Spoofer.
In contrast to the conventional physical layer authentication
schemes [10]–[12], which minimize the misdetection rate
while guaranteeing the false alarm rate, we focus our attention
on enhancing security by updating the trust level F [t] based
on the validation of the attribute estimates HOt continuously.
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Hence, we will propose an adaptive trust adjustment algorithm
to achieve soft authentication and progressive authentication in
next section.

III. ONLINE CONFORMAL PREDICTION-BASED
ADAPTIVE TRUST MANAGEMENT

In order to adaptively update the trust level F for soft
authentication and progressive authorization, we explore the
online conformal prediction technique for classifying the new
collected estimates of the physical layer attribute used, i.e.
HOt, t = 1, 2, 3, ..., which are time-varying and imperfectly
estimated. Through developing an adaptive trust adjustment
algorithm based on the confidence of prediction results, secu-
rity enhancement can be achieved by multiple-step validation
of the selected attribute and by appropriately adjusting autho-
rization level in real time.

A. Conformal Predictor for Classification of Physical Layer
Attribute Estimates

To classify the new attribute estimates, we explore the
conformal prediction technique in this subsection, which is a
method conceived for providing valid measures of confidence
for individual predictions by machine learning algorithms
[34]. One of the main advantages of a conformal predic-
tor is that it can guarantee that the probability of making
erroneous predictions is the same as a pre-defined signif-
icance level (apart from some statistical fluctuations) [30].
Let us denote the initial training set as {z1, z2, ..., zL} =
{(HA1, 1), (HA2, 1), ..., (HAL, 1)}. In general, each training
sample zl contains an attribute estimate in the set [−a, a] and
a label of yl ∈ {0, 1}. The label ‘0’ indicates that the attribute
estimate is from the Spoofer, while label ‘1’ indicates that
it is from Alice. The set of training inputs is denoted by
Z = [−a, a]× {0, 1}.

Given a new sample having the observed attribute HO1 and
a defined significance level of ε ∈ [0, 1], a conformal predictor
outputs a predicted set of Y εL+1 ⊆ {0, 1} for the unknown
label yL+1. Note that HO1 is arranged to be L+1-th attribute
estimate because of the L estimates of Alice collected during
the initial authentication phase. The complementary value of
(1 − ε) is called confidence level. We will always consider
nested prediction sets Y ε1L+1 ⊆ Y ε2L+1 when ε1 ≥ ε2. The
conformal predictor is formulated as a measurable function

Γ : Z∗ × [−a, a]× [0, 1] → {∅, {0}, {1}, {0, 1}}
z1, z2, ..., zL, HO1, ε → Y εL+1, (9)

where (z1, z2, ..., zL) ∈ Z∗.
The predicted set is valid at the specified significance level

ε in the sense that the probability of an error satisfies

Pr(yL+1 /∈ Y εL+1) ≤ ε, (10)

under the randomness assumption [34]. That is to say, we have
more than (1−ε) confidence in the predicted set Y εL+1. Let us
take ε = 0.1 as an example, we know that the probability that
a prediction set includes the true label is at least 90%. Whether

Γ makes an error on the L+ 1-th trial can be represented by
1 and by 0 in case of no error as

eεL+1 =

{
1, if yL+1 /∈ Y εL+1

0, otherwise
. (11)

The basic idea of conformal prediction is to estimate the
p-value for y ∈ {0, 1}, denoted as py , and to exclude those
labels from the predicted set, which satisfy py < ε. This p-
value indicates how different a sample is from a set of training
samples, and the higher the p-value, the better this sample fits
the group of other samples. In order to obtain the p-value, we
apply the nonconformity measure of [35] for estimate HO1 as

AL+1 : Z∗ ×Z → <. (12)

Then the nonconformity score, which measures how dif-
ferent a sample zl is from other samples in the set
{z1, z2, ..., zL, zL+1} [35], can be defined as

αl : AL+1({z1, z2, ..., zl−1, zl+1, ..., zL, zL+1}, zl) (13)

for each sample zl in {z1, z2, ..., zL, zL+1}. We can observe
from (13) that zL+1 depends on an unknown yL+1, so that the
nonconformity score αl relies on a variable y ∈ {0, 1}, which
is a possible label for the new observation of the selected
physical layer attribute HO1. The nonconformity scores are
based on the output of a classical underlying predictor, as
exemplified by the ridge regression technique of [36], the
k-nearest neighbours method of [37] and the autoregressive
moving average solution of [38].

Then the p-value of zL+1 with different y in set {0, 1}
can be estimated as the ratio of the nonconformity scores
α1, α2, ..., αL that are at least as large as αL+1, which is given
as

py,L+1 =
| {l = 1, 2, ...., L : αl ≥ αL+1} |

L
, (14)

where | · | represents the number of samples in the set
{z1, z2, ..., zL} satisfying αl ≥ αL+1 [34]. The predicted set
is formed by estimating the p-value for each sample having a
nonconformity score, and by adding those samples associated
with p-value≥ ε, which is formulated as

Y εL+1 = {y : y ∈ {0, 1}, py,L+1 ≥ ε}. (15)

Remark 2. Given the conformal predictor developed, the esti-
mates of the selected physical layer attribute can be classified.
Then the trust level F [t] can be adaptively adjusted depending
on the classification results and the confidence level (1− ε) in
real-time for progressive authorization, which will be explored
in next subsection.

B. Adaptive Trust Adjustment Based on Online Machine
Learning

In order to dynamically update the trust level F based on
the validation results of estimates HOt, t = 1, 2, 3, ... in this
subsection, we propose an online conformal prediction-based
adaptive trust adjustment algorithm. In online learning, the
samples zL+t = (HOt, yL+t), t = 1, 2, 3, ..., are presented
one by one. We observe the attribute estimate HOt and
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predict its label yL+t for each time, and then we move
on to the next attribute estimate. After obtaining the label
of each physical layer attribute estimate, the training set
{z1, z2, ..., zL} is updated by incorporating it and its label,
as well as by removing the decorrelated historical training
estimates. This is because the physical layer attribute used
may become gradually uncorrelated after a period of time.
Hence, the training set is also time-varying for maintaining
its capability of adapting to the dynamic environment. Note
that the attribute estimate at time instant t, namely HOt, is
arranged to represent the (L+t)-th trial in the online conformal
predictor due to having L initial training samples used at the
beginning of physical layer authentication.

This algorithm focuses on validating the collected attribute
estimates of the transmitter, i.e. HOt, t = 1, 2, 3, ..., thereby to
dynamically update the trust level F relying on the real-time
classification results of HOt, so that progressive authentication
associated with multiple-level authorization can be achieved.
To be more specific, according to Definition 1, if Bob observes
that the attribute estimate HOt is classified to be from Alice,
the trust level F will be increased, otherwise it will be
decreased. In this way, our trust model becomes robust even if
an inaccurate classification occurs during the learning process.
At the same time, the risk of a misdetection taking place during
the soft authentication stage can be controlled by authorizing
the corresponding class of security services/resources accord-
ing to the trust level F [t] and by multiple-step validation.

According to the results in [34], the confidence predictor
Γ is exactly valid if for each ε, eε1, e

ε
2, ... is a sequence of

independent Bernoulli-distributed random variables. Unfortu-
nately, the notion of exact validity is vacuous for confidence
predictors, since no confidence predictor is exactly valid [34].
A modification of conformal predictors is developed in [35],
named smooth conformal predictor Γsm, by redefining p-value
as

psm
y,L+t =

| {l : αl > αL+t} | +η | {l : αl = αL+t} |
L+ t− 1

, (16)

where l ranges over {1, 2, ..., L + t − 1} and η is generated
randomly from the uniform distribution on [0, 1]. Then, we
have the following Lemma:
Lemma 1 [35]: Given any significance level ε, the output of
the smooth conformal predictor Γsm satisfies

lim
t→∞

℘t = 1− ε, (17)

where ℘t is denoted as the prediction accuracy of the proposed
online conformal predictor at time instant t. It is formulated
as

℘t =
| {i = 1, 2, ...., t− 1 : eεi = 0} |

t− 1
. (18)

Based on the above analysis, the validation result of the
online conformal predictor at time instant t associated with
dynamically updating the trust level F is designed as

θt =


−(1− ε), if Y εL+t = {0}

1− ε, if Y εL+t = {1}

0, otherwise

. (19)

In this equation, (1 − ε) represents our confidence in the
prediction set Y εL+t = {1}, namely that the attribute estimate
collected is from Alice at time instant t. By contrast, −(1− ε)
quantizes the opposite of our confidence in the prediction set
Y εL+t = {0}, namely that the collected attribute estimate is
deemed to be from the Spoofer at time instant t. We set the
validation result for updating the trust level F [t] as θt = 0 in
the cases of Y εL+t = {0, 1} and Y εL+t = ∅, since the prediction
results are invalid for authentication and authorization. It is
plausible that if Y εL+t = {0, 1} or Y εL+t = ∅, we can just shift
our attention to other confidence levels, especially to specific
confidence levels ε for which Y εL+t is a singleton. Although
the empirical error rate of the online conformal predictor
approaches ε in our wireless communication scenarios, we
set the validation result in (19) according to the confidence
concerning the prediction results. This is because our scheme
requires multiple-step validation of the transmitter, thus re-
sulting in a robust performance as a benefit of the progressive
authorization process.

Then the trust level F at time instant t can be obtained by
Definition 1 and (6), which is updated as

F [t] =
ρF [t− 1] + θt

ρ+ 1
=
ρt−1F [1] +

∑t
i=2 ρ

t−i(ρ+ 1)i−2θi
(ρ+ 1)t−1

, (20)

where ρ ∈ (0, 1] is the forgetting factor. Note that the
forgetting factor should be chosen according to the specific
application scenario. Upon using this forgetting factor in the
trust management, the closer validation results will have a
higher influence on the trust level F . It is observed from
(20) that (1 − ε) ∈ [0, 1], −(1 − ε) ∈ [−1, 0], F [1] ∈ [0, 1],
and F [t − 1] ∈ [0, 1]. Upon setting F [t] ≤ 0 to 0, we
have F [t] ∈ [0, 1]. In summary, the adaptive trust adjustment
procedure conceived for soft authentication and progressive
authorization is summarized in Algorithm 1.
Remark 3. In Algorithm 1, Bob authenticates the transmitter
(Alice or the Spoofer) through an adaptive process based
on the classification of the physical layer attribute estimates.
Once the transmitter is believed to be the Spoofer, i.e. its
trust level F is lower than ν1, the communication session
will be terminated by Bob, otherwise, our scheme will be
operated until the end of their communications. This algorithm
describes a soft authentication and progressive authorization
process, which supports prompt connection and enhanced
security for legitimate devices.

C. Security Performance Analysis

According to Algorithm 1 and the proposed scheme, we can
formulate the following theorems:
Theorem 1: In the case of ν1 ≥ (ρ + ε − 1)/(ρ + 1) and
sn = rn, n = 1, 2, ..., N−1, the individual risk and individual
satisfaction of our scheme at time instant t satisfy

℘[t]Rind[t] = (1− ℘[t])Sind[t]. (21)

Proof : Please see Appendix A.
Theorem 2: In our soft authentication and progressive autho-
rization scheme, the individual risk at time instant t satisfies

(1− ℘[t])Rind[t− 1] ≤ Rind[t] < 1− ℘[t] (22)
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Algorithm 1 Online conformal prediction-based adaptive trust
adjustment

Given initial training set {z1, z2, ..., zL} and significance
level ε;
1. Soft authentication:
1.1 obtain the initial trust level F [1] via (5);
1.2 if F [1] ∈ (νn, νn+1], n ∈ {1, 2, ..., N − 1}
1.3 authorize this transmitter with Φn and go to Step 2;
1.4 else
1.5 authenticate this transmitter as the Spoofer and go

to Step 3;
1.6 end if
2. Progressive authorization:
2.1 update training set by {z1, z2, ..., zL}+ (HO1, yL+1)

−z1;
2.2 for authentication time instants t = 2, 3, 4, ...
2.3 collect new physical layer attribute estimate HOt;
2.4 obtain value psm

y,L+t and predicted set Y εL+t via
(16) and (15), respectively;

2.5 obtain validation result θt via (19), and then
update trust level F [t] via (20);

2.6 if F [t] ∈ (νn, νn+1], n ∈ {1, 2, ..., N − 1}
2.7 authorize this transmitter with Φn;
2.8 else
2.9 terminate the communication with this

transmitter and go to Step 3;
2.10 end if
2.11 update training set as {zt, zt+1, ..., zL+t−1}

+(HOt, yL+t)− zt;
2.12 end for
3. END

under the condition ν1 ≥ (ρ+ε−1)/(ρ+1) and νN−1 ≤ 1−ε.
Proof : Please see Appendix B.
Theorem 3: In our soft authentication and progressive autho-
rization scheme, the individual satisfaction at time instant t
obeys

℘[t]Sind[t− 1] ≤ Sind[t] < ℘[t] (23)

under the condition ν1 ≥ (ρ+ε−1)/(ρ+1) and νN−1 ≤ 1−ε.
Proof : Please see Appendix C.
Corollary 1: When t is large enough, the individual risk and
individual satisfaction of our scheme at time instant t satisfy

(1− ε)Rind[t] ≈ εSind[t], (24)

under conditions ν1 ≥ (ρ+ ε− 1)/(ρ+ 1) and sn = rn, n =
1, 2, ..., N − 1.
Proof : Please see Appendix D.

We can observe from Theorems 1-3 that the individual
satisfaction and individual risk of our scheme depend both
on the dynamic trust level F [t] as well as on the prediction
accuracy ℘[t], which rely on the real-time validation results
of the selected time-varying attribute. It is observed from
Theorems 2 and 3 that our scheme evaluates the physical layer
attribute used, thereby promptly adjusting the trust model, so
that the individual risk can be dramatically reduced within
a short time. Given the specific distribution of the attribute

estimates used in our scheme, the closed-form expressions of
the Rind[t] and of the Sind[t] can be obtained.

Case study: In order to characterize the performance of our
soft authentication and progressive authorization, we study a
special case assuming that the specific physical layer attribute
of Alice and that of the Spoofer obey the classic Gaussian
distribution with means of µ1 and µ2 as well as with variances
of σ2

1 and σ2
2 , respectively, and setting N = 3 and ρ = 1. Then

we can obtain the following results:
Corollary 2: The closed-form expressions of the individual
risk and individual satisfaction of our scheme at time instant
t = 1 can be formulated, respectively, as

Rind[1] =
r1√
π

[

∫ µ1−µ2+2a(1−ν1)

σ2
√

2

µ1−µ2+2a(1−ν2)

σ2
√

2

exp(−x2)dx

+

∫ µ1−µ2−2a(1−ν2)

σ2
√

2

µ1−µ2−2a(1−ν1)

σ2
√

2

exp(−x2)dx]

+
r2√
π

∫ µ1−µ2+2a(1−ν2)

σ2
√

2

µ1−µ2−2a(1−ν2)

σ2
√

2

exp(−x2)dx (25)

and

Sind[1] = s1[erf(

√
2a(1− ν1)

σ1
)− erf(

√
2a(1− ν2)

σ1
)]

+s2erf(

√
2a(1− ν2)

σ1
), (26)

where erf(·) is the error function.
Proof : Please see Appendix E.
Corollary 3: The closed-form expressions of the individual
risk and individual satisfaction of our scheme at time instant
t = 2, 3, 4, ... can be obtained based on the results of Corollary
2, respectively, as

Rind[t] = r1(1− ℘[t])Pr(F [t− 1] ∈ (2ν1 − 1 + ε, 2ν2 − 1 + ε])

+r2(1− ℘[t])Pr(F [t− 1] ∈ (2ν2 − 1 + ε, 1]) (27)

and

Sind[t] = s1℘[t]Pr(F [t− 1] ∈ (2ν1 − 1 + ε, 2ν2 − 1 + ε])

+s2℘[t]Pr(F [t− 1] ∈ (2ν2 − 1 + ε, 1]) (28)

under condition ν1 ≥ ε/2.
Proof : Please see Appendix F.
Corollary 4: Based on the results of Corollaries 2 and 3, the
solution of the following problem does exist.

(ν1, ν2) = arg maxSind[t], (29)
s.t. Rind[t] ≤ δ, 0 < ν1 < ν2 < 1,

where δ denotes maximum tolerate individual risk invoked for
controlling the risk in our soft authentication and progressive
authorization process.
Proof : Please see Appendix G.
Remark 4. Corollaries 2 and 3 give the closed-form expres-
sions of the individual risk and individual satisfaction in the
soft authentication phase (i.e. t = 1) and in the following
phases (namely t = 2, 3, 4, ...), respectively. It is observed
from Corollary 2 that the required soft security is achieved
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by setting multiple authorization levels, thus the risk of a
misdetection can be carefully controlled by configuring this
device for a low authorization level.
Remark 5. As we can observe from above Theorems and
Corollaries that the individual risk and individual satisfaction
depend on the thresholds ν1, ν2, ..., νN−1. Most of the conven-
tional physical layer authentication techniques determine the
threshold of the authentication system based on the Neyman-
Pearson criterion [2], [8], [11], which minimizes the misde-
tection rate subject to a maximum tolerable constraint on the
false alarm rate. However, these schemes constitute binary
authentication solutions, which are unsuitable for achieving
the soft authentication and progressive authorization. More
importantly, for a communication system, the thresholds can
be flexibly determined to meet the requirement of security.

IV. SIMULATION RESULTS

In order to evaluate the performance of our soft authentica-
tion and progressive authorization scheme, we provide simula-
tion results in this section by utilizing both carrier frequency
offset (CFO) and received signal strength indicator (RSSI).
Firstly, the training process and our results characterizing the
proposed online conformal predictor are presented. Then we
characterize the performance of our soft authentication solu-
tion by studying the trade-off between individual satisfaction
level vs. individual risk level during the soft authentication
stage. A scenario is studied for characterizing the security
performance and robustness of our progressive authorization
solution, where a misdetection event occurs during the soft
authentication stage or the Spoofer imitates Alice after the soft
authentication. Compared to the static binary authentication
scheme and the kernel machine learning-based authentication
scheme of [2], the superiority of our scheme is highlighted.

A. Online Conformal Prediction Results

In order to achieve soft authentication and progressive
authorization, we utilize both the CFO [11] and RSSI [39]
for the validation of our scheme. The observations of the
CFO seen in Fig. 2 (a) and those of the RSSI seen in Fig.
3 (a) used for training and testing of our scheme are collected
from the implementation-oriented contributions of [11] and
[39], respectively. In a little more detail, the authors of [11]
built a software-defined radio platform based on the Universal
Software Radio Peripheral to capture the real CFO data. The
system implemented comprises two transmitters (i.e. Alice and
the Spoofer) and one receiver (Bob) operating at a carrier
frequency of 2.47 GHz. Furthermore, the authors of [39] col-
lected data throughout three different measurement campaigns,
seven days combined and spread across two summer seasons.
The measurements were carried out in an approximate range
of 0-100 m at points which were approximately 10 m apart
from each other at 9 different parts of the orchard described
in [39] along five directions, namely along, across, 30◦, 45◦,
and 60◦ with respect to the tree rows. As shown in Fig. 1 and
the system model, the Spoofer can be viewed as the second
transmitter, who is located in a third location (i.e. more than
a wave length away from Alice) and tries to imitate Alice for
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Fig. 2. Performance of the proposed online conformal predictor relying on
CFO. (a) Carrier frequency offset (CFO) observations of Alice for training,
and CFO observations of both Alice and the Spoofer for testing in our scheme.
(b) p-value for case y = 1, i.e. the CFO estimate is from Alice. (c) Accuracy
of our online conformal predictor by utilizing CFO observations.

gleaning illegal advantages from Bob. Hence, the CFO and
RSSI estimates of the Spoofer are also collected for testing in
the simulation.

Given the initial training set {z1, z2, ..., zL}, L = 40, and
the significance level of ε = 0.1, we train and test the proposed
online conformal predictor by utilizing the collected observa-
tions of the CFO. Note that only Alice’s CFO observations are
used for training, i.e. the first 40 samples in Fig. 2 (a), and the
CFO observations of both Alice and the Spoofer are utilized
for testing the prediction accuracy of the proposed scheme
based on the online conformal predictor. The distribution of
the smoothened p-values recorded for y = 1 (i.e. the CFO
observations are from Alice) is given in Fig. 2 (b), which is
used to form the predicted set of (15). To be more specific,
the x-axis represents the p-values, while the y-axis is the
number of CFO observations. When the p-value is below the
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Fig. 3. Performance of the proposed online conformal predictor relying on
RSSI. (a) Received signal strength indicator (RSSI) observations of Alice for
training, and RSSI observations of both Alice and the Spoofer for testing in
our scheme. (b) p-value for case y = 1, i.e. the RSSI estimate is from Alice.
(c) Accuracy of our online conformal predictor by utilizing RSSI observations.

significance level ε, the class (either 0 or 1) will be removed
from the predicted set Y εt . Then we have a confidence level of
0.9 concerning the predicted set. More importantly, Fig. 2 (c)
characterizes the prediction accuracy of the proposed online
conformal predictor relying on new CFO observations, i.e. ℘t.
We can observe from Fig. 2 (c) that the prediction accuracy
values concerning new CFO observations are all higher than
0.9. The reason for this trend is that the proposed conformal
predictor keeps the error rate below the significance level ε.

Similarly, only Alice’s RSSI observations are used for
training, i.e. the first 40 samples in Fig. 3 (a), and the RSSI
observations of both Alice and the Spoofer are utilized for
testing in the online conformal predictor. Fig. 3 (b) and (c)
characterize the online conformal prediction results relying
on the RSSI observations by setting the significance level of
ε = 0.2, where (b) presents the p-values for the class of y = 1,

and (c) demonstrates the prediction accuracy of our scheme
concerning new RSSI observations. It is observed from Fig. 3
(c) that the prediction accuracy concerning new observations
is higher than 0.8.

B. Performance of Our Soft Authentication and Progressive
Authorization Scheme
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Fig. 4. Performance of our soft authentication solution: Individual satisfaction
vs. threshold of individual risk for the numbers of authorization levels N = 2,
N = 3, and N = 4 based on the results of Fig. 2. Case N = 2 is the binary
authentication scheme of [2] while cases N = 3 and N = 4 represent the
proposed soft solution in this paper.

Fig. 4 characterizes the individual satisfaction vs. the indi-
vidual risk with respect to the number of authorization levels
of N = 2, N = 3, and N = 4 by utilizing CFO of
Fig. 2. We can observe from Fig. 4 that upon increasing the
individual risk threshold, namely δ, the individual satisfaction
values increase in all cases. The reason for this trend is that
there is a trade-off between the individual risk and individual
satisfaction as demonstrated by the analytical results of Section
III-C. Furthermore, when the threshold of the individual risk is
lower than 0.2, the individual satisfaction value of the scenario
associated with N = 4 is the highest, while that of N = 2
is the lowest. It is because that using multiple authorization
levels in our scheme helps to access services/resources quickly
when the threshold of individual risk is low, i.e. the security
requirement is high.

Then we study the scenario when a misdetection event
occurs during the soft authentication stage or when the Spoofer
attacks Alice after the soft authentication stage. In Fig. 5, we
characterize the performance of our progressive authorization
scheme by utilizing the CFO (see Fig. 2) with respect to the
forgetting factors of ρ = 0.8, ρ = 0.6 and ρ = 0.4 compared
to that of the static binary authentication scheme. In this
figure, we set the number of authorization levels to N = 3 in
our scheme, while the classification of the services/resources
is given by Φ0, Φ1, and Φ2. We can observe from Fig. 5
that the individual risk values of our scheme decrease in all
cases upon increasing the number of observations (i.e. the
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estimates of CFO) of the transmitter. The reason for this trend
is that if Bob observes that the CFO is in nonconformity
with the training samples of Alice, the trustworthiness of
this transmitter will be decreased. Thereafter the authorization
level will be reduced to Φ0 within a short time. However,
in the static binary authentication scheme, the individual risk
value will not be decreased, leading to substantial losses
in this scenario. This demonstrates that the static binary
authentication scheme fails to deal with the scenario, when
a misdetection occurs during the soft authentication phase
or the Spoofer attacks the authorized device after the soft
authentication stage. It also demonstrates the superiority of
our scheme after soft authentication by providing additional
protection. Additionally, it can be observed from Fig. 5 that
the individual risk of our scheme associated with the forgetting
factor of ρ = 0.8 is higher than that of ρ = 0.6 and ρ = 0.4.
The risk level associated with ρ = 0.4 is the lowest in these
three cases. This is because the historical observations of
Alice’s CFO have more substantial effects on the adaptive trust
adjustment system in the case ρ = 0.8, so that the trust level F
is reduced slower than that of the forgetting factors of ρ = 0.6
and ρ = 0.4.
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Fig. 5. Performance of our progressive authorization solution for the forget-
ting factors of ρ = 0.8, ρ = 0.6 and ρ = 0.4 benchmarked against the static
binary authentication scheme.

In Fig. 6, we characterize the security performance of our
scheme for N = 3, N = 4 and N = 5 authorization levels
to show the effects of N on our scheme in the scenario that
a misdetection event occurs in the soft authentication stage
or the Spoofer attacks the authorized device after the soft
authentication stage. Some transient observations (from 3 to 5
observations) are added to show the robustness of our scheme,
which represent the prediction errors in the proposed online
conformal predictor, and are mainly caused by the imperfect
estimates and variations of the CFO, noisy observations, as
well as owing to the dynamic behaviors of the Spoofer. It
can be observed from Fig. 6 that the individual risk value of
our scheme recorded for N = 3 decreases quicker than in
the other cases in Stage 1. The reason for this trend is that
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Fig. 6. Security performance and robustness of our progressive authorization
solution parameterized by the number of authorization levels N = 3, N =
4 and N = 5. There are some transient observations (in Stage 2) in the
progressive authorization process.

when the CFO estimates are identified by Bob to be from the
Spoofer, the authorization of the transmitter in the N = 3
scenario will be reduced to the lowest level more quickly. By
contrast, the case of N = 5 needs more time (observations) to
achieve a low individual risk. Furthermore, the performance
of our scheme recorded for N = 3 suffers from the lowest
robustness, although the individual risk level of this scenario
decreases more quickly than in the other cases in Stage 1. To
be specific, the risk level of N = 3 decays fastest in Stage
1 (before 3 observations), while it increases fastest in Stage
2 (from 3 to 5 observations). In Stage 3, it decreases fastest
in all cases. This indicates that our scheme having a lower
number of authorization levels is less robust, but it achieves
a reduced individual risk more quickly in the scenario that a
misdetection event occurs in the soft authentication stage or
the Spoofer attacks Alice after the soft authentication stage.

Fig. 7 characterizes the individual satisfaction comparison
results of our progressive authorization process and the kernel
machine learning-based physical layer authentication process
of [2]. In this figure, we consider a scenario that false alarm
events occur during the authentication process because of
the imperfect estimates and variations of the CFO, as seen
from 6 to 8 observations. It is observed from Fig. 7 that the
individual satisfaction level of our scheme is a bit lower than
that of the physical layer authentication process of [2] for
less than 6 CFO observations. This is because of the specific
nature of the trust management approach used in the proposed
scheme, where the individual satisfaction level depends on
the trust level between Alice and Bob. However, once a
false alarm event occurs during the authentication process, the
individual satisfaction value of the authentication process of
[2] tends to 0, because the communication session between
Alice and Bob is terminated by Bob. By contrast, the proposed
progressive authorization scheme exhibits its robustness in
term of tolerating a few false alarms. In conclusion, both Fig.
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Fig. 7. Individual satisfaction comparison results of our scheme and the
physical layer authentication scheme of [2] in the scenario that false alarms
happen during the authentication process.

4 and Fig. 7 demonstrate that the proposed soft authentication
and progressive authorization scheme performs better than the
kernel machine learning-based authentication scheme of [2]
when the threshold of individual risk is low or when false
alarm events occur during the authentication process, hence
resulting in a faster access and higher robustness.

V. CONCLUSIONS
In this paper, we proposed a soft authentication and pro-

gressive authorization scheme based on the trust management
to achieve security enhancement by evaluating the physical
layer attribute estimates. A trust model was firstly designed
for evaluating the trustworthiness of the relationship between
transmitter and receiver, and for supporting a multiple-level
authorization. Then a conformal predictor was developed
for classifying the estimates of the physical layer attribute
selected, which are used for characterizing the trustworthiness
of the transmitter. We proposed an adaptive algorithm based
on online machine learning to update the trust management
in real time. The simulation results characterized the benefits
of our scheme, demonstrating its superiority over the static
binary authentication scheme and the exiting physical layer
authentication scheme benchmarker.

APPENDIX A
THE PROOF OF THEOREM 1

According to Definitions 2 and 3, and the proposed adaptive
trust management approach of (20), the individual risk and
individual satisfaction at time instant t can be expressed as
(30) and (31), respectively. Given the condition ν1 ≥ (ρ +
ε− 1)/(ρ+ 1), we can obtain

Pr(F [t− 1] ∈ (
νn(ρ+ 1) + 1− ε

ρ
,
νn+1(ρ+ 1) + 1− ε

ρ
])

= 0, (32)

since 0 < ν1 < ν2 < ··· < νN = 1 and (νn(ρ+1)+1−ε)/ρ ≥
1.

Then the individual risk and individual satisfaction at time
instant t can be rewritten as

Rind[t] = (1− ℘[t])

N−1∑
n=1

snPr(F [t− 1] ∈

(
νn(ρ+ 1)− 1 + ε

ρ
,
νn+1(ρ+ 1)− 1 + ε

ρ
]) (33)

and

Sind[t] = ℘[t]

N−1∑
n=1

snPr(F [t− 1] ∈

(
νn(ρ+ 1)− 1 + ε

ρ
,
νn+1(ρ+ 1)− 1 + ε

ρ
]) (34)

under the condition of sn = rn. Therefore, the individual risk
and individual satisfaction of our scheme at time instant t
satisfy (21). �

APPENDIX B
THE PROOF OF THEOREM 2

According to Definition 2 and the proposed adaptive trust
management approach of (20) as well as the results of Theo-
rem 1, the individual risk at time instant t can be expressed
as

Rind[t] = (1− ℘[t])

N−1∑
n=1

rnPr(F [t− 1] ∈

(
νn(ρ+ 1)− 1 + ε

ρ
,
νn+1(ρ+ 1)− 1 + ε

ρ
]) (35)

under the conditions ν1 ≥ (ρ+ε−1)/(ρ+1) and νN−1 ≤ 1−ε.
Then we have

νn(ρ+ 1)− (1− ε)
ρ

≤ νn, n = 1, 2, ..., N − 1, (36)

and

Pr(F [t− 1] ∈ (
νN−1(ρ+ 1)− 1 + ε

ρ
,

(ρ+ 1)− 1 + ε

ρ
])

≥ Pr(F [t− 1] ∈ (νN−1, 1]). (37)

Hence, the following result is obtained.

Rind[t] ≥ (1− ℘[t])Rind[t− 1]. (38)

Furthermore, due to
N−1∑
n=1

Pr(F [t− 1] ∈ (
νn(ρ+ 1)− 1 + ε

ρ
,

νn+1(ρ+ 1)− 1 + ε

ρ
]) ≤ 1, (39)

we have

(1− ℘[t])

N−1∑
n=1

rnPr(F [t− 1] ∈ (
νn(ρ+ 1)− 1 + ε

ρ
,

νn+1(ρ+ 1)− 1 + ε

ρ
]) < (1− ℘[t]). (40)

Hence, the individual risk at time instant t satisfies (22) in
our scheme. �
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Rind[t] =

N−1∑
n=1

rn · Pr(F [t− 1] ∈ (
νn(ρ+ 1)− θt

ρ
,
νn+1(ρ+ 1)− θt

ρ
] | Ψ0)

=

N−1∑
n=1

rn · {Pr(F [t− 1] ∈ (
νn(ρ+ 1) + 1− ε

ρ
,
νn+1(ρ+ 1) + 1− ε

ρ
])℘[t]

+ Pr(F [t− 1] ∈ (
νn(ρ+ 1)− 1 + ε

ρ
,
νn+1(ρ+ 1)− 1 + ε

ρ
])(1− ℘[t])}. (30)

Sind[t] =

N−1∑
n=1

sn · Pr(F [t− 1] ∈ (
νn(ρ+ 1)− θt

ρ
,
νn+1(ρ+ 1)− θt

ρ
] | Ψ1)

=

N−1∑
n=1

sn · {Pr(F [t− 1] ∈ (
νn(ρ+ 1)− 1 + ε

ρ
,
νn+1(ρ+ 1)− 1 + ε

ρ
])℘[t]

+Pr(F [t− 1] ∈ (
νn(ρ+ 1) + 1− ε

ρ
,
νn+1(ρ+ 1) + 1− ε

ρ
])(1− ℘[t])}. (31)

APPENDIX C
THE PROOF OF THEOREM 3

Similar to the proof of Theorem 2 in Appendix B, given
the conditions ν1 ≥ (ρ + ε − 1)/(ρ + 1) and νN−1 < 1 − ε,
the individual satisfaction at time instant t is shown in (30).
Based on the results of (34) and (37), as well as 0 ≤ s1 <
s2 < · · · < sN−1 ≤ 1, we have

Sind[t] ≥ ℘[t]Sind[t− 1]. (41)

Given the result of (39), the following inequality is satisfied

℘[t]

N−1∑
n=1

snPr(F [t− 1] ∈ (
νn(ρ+ 1)− 1 + ε

ρ
,

νn+1(ρ+ 1)− 1 + ε

ρ
]) < ℘[t]. (42)

Therefore, the individual satisfaction at time instant t satisfies
(23) in our scheme. �

APPENDIX D
THE PROOF OF COROLLARY 1

According to Lemma 1, when t is large enough, the em-
pirical prediction accuracy of the online conformal predictor
obeys

℘t ≈ 1− ε (43)

according to (17). Hence, the result of Corollary 1 can be
obtained directly based on (21) and (43). �

APPENDIX E
THE PROOF OF COROLLARY 2

In this case study, we assume that the attribute observations
of Alice and that of Spoofer obey Gaussian distribution with
means µ1 and µ2 and variances σ2

1 and σ2
2 , respectively, as

well as set N = 3 and ρ = 1. We formulate F [1] = |HA −
HO1|/2a where HA is the average of HA1, HA2, ...,HAL, and
|HA−H1|/2a normalizes the range of difference ∆HO1 in (2)

to the limited set [0, 1]. Then the individual risk and individual
satisfaction at time instant t = 1 can be given as (44) and (45),
respectively. Therefore, the closed-forms of individual risk
and individual satisfaction of our scheme at time instant t = 1
are shown in (25) and (26), respectively. �

APPENDIX F
THE PROOF OF COROLLARY 3

In this case study, the individual risk and individual satis-
faction at time instant t = 2, 3, 4, ... can be obtained based on
the results of Theorems 1-3 and Corollary 2 as

Rind[t] =

2∑
n=1

rnPr(
F [t− 1] + θt

2
∈ (νn, νn+1] | Ψ0)

= (1− ℘[t])r1Pr(F [t− 1] ∈ (2ν1 − 1 + ε, 2ν2 − 1 + ε])

+(1− ℘[t])r2Pr(F [t− 1] ∈ (2ν2 − 1 + ε, 1])

+℘[t]r1Pr(F [t− 1] ∈ (2ν1 + 1− ε, 2ν2 + 1− ε])
+℘[t]r2Pr(F [t− 1] ∈ (2ν2 + 1− ε, 3− ε]) (46)

and

Sind[t] =

2∑
n=1

snPr(
F [t− 1] + θt

2
∈ (νn, νn+1] | Ψ1)

= ℘[t]s1Pr(F [t− 1] ∈ (2ν1 − 1 + ε, 2ν2 − 1 + ε])

+℘[t]s2Pr(F [t− 1] ∈ (2ν2 − 1 + ε, 1])

+(1− ℘[t])s1Pr(F [t− 1] ∈ (2ν1 + 1− ε, 2ν2 + 1− ε])
+(1− ℘[t])s2Pr(F [t− 1] ∈ (2ν2 + 1− ε, 3− ε]). (47)

According to the derived Rind[1] and Sind[1] in (25) and (26),
respectively, the the individual risk and individual satisfaction
of our scheme at time instant t = 2, 3, 4, ... are given as (27)
and (28), respectively, under condition ν1 ≥ ε/2. �

APPENDIX G
THE PROOF OF COROLLARY 4

Given the problem of (29), we let Rind[t] = δ, since there
is a trade-off between the individual risk and individual sat-
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Rind[1] = r1Pr(F [1] ∈ (ν1, ν2] | Ψ0) + r2Pr(F [1] ∈ (ν2, 1] | Ψ0)

= r1Pr(|HA −HO1| ∈ [2a(1− ν2), 2a(1− ν1)) | Ψ0) + r2Pr(|HA −HO1| ∈ [0, 2a(1− ν2)) | Ψ0)

=
1

2
r1[erf(

HA + 2a(1− ν1)− µ2

σ2

√
2

)− erf(
HA + 2a(1− ν2)− µ2

σ2

√
2

) + erf(
HA − 2a(1− ν2)− µ2

σ2

√
2

)

−erf(
HA − 2a(1− ν1)− µ2

σ2

√
2

)] +
1

2
r2[erf(

HA + 2a(1− ν2)− µ2

σ2

√
2

)− erf(
HA − 2a(1− ν2)− µ2

σ2

√
2

)]

=
1

2
r1[erf(

µ1 − µ2 + 2a(1− ν1)

σ2

√
2

)− erf(
µ1 − µ2 + 2a(1− ν2)

σ2

√
2

) + erf(
µ1 − µ2 − 2a(1− ν2)

σ2

√
2

)

−erf(
µ1 − µ2 − 2a(1− ν1)

σ2

√
2

)] +
1

2
r2[erf(

µ1 − µ2 + 2a(1− ν2)

σ2

√
2

)− erf(
µ1 − µ2 − 2a(1− ν2)

σ2

√
2

)]. (44)

Sind[1] = s1Pr(F [1] ∈ (ν1, ν2] | Ψ1) + s2Pr(F [1] ∈ (ν2, 1] | Ψ1)

= s1Pr(|HA −HO1| ∈ [2a(1− ν2), 2a(1− ν1)) | Ψ1) + s2Pr(|HA −HO1| ∈ [0, 2a(1− ν2)) | Ψ1)

=
1

2
s1[erf(

HA + 2a(1− ν1)− µ1

σ1

√
2

)− erf(
HA + 2a(1− ν2)− µ1

σ1

√
2

) + erf(
HA − 2a(1− ν2)− µ1

σ1

√
2

)

−erf(
HA − 2a(1− ν1)− µ1

σ1

√
2

)] +
1

2
s2[erf(

HA + 2a(1− ν2)− µ1

σ1

√
2

)− erf(
HA − 2a(1− ν2)− µ1

σ1

√
2

)]

= s1[erf(
2a(1− ν1)

σ1

√
2

)− erf(
2a(1− ν2)

σ1

√
2

)] + s2erf(
2a(1− ν2)

σ1

√
2

). (45)

isfaction associated with the thresholds ν1, ν2. The maximum
Sind[t] can only be achieved when Rind[t] = δ. Hence, we
have

(1− ℘[t])r1Pr(F [t− 1] ∈ (2ν1 − 1 + ε, 2ν2 − 1 + ε])

+(1− ℘[t])r2Pr(F [t− 1] ∈ (2ν2 − 1 + ε, 1]) = δ (48)
⇒ ν2 = g(ν1), (49)

where g(·) is the function of ν2 in terms of ν1. Then the
problem of (29) can be rewritten as

ν1 = arg max{℘[t]s1Pr(F [t− 1] ∈ (2ν1 − 1 + ε, 2g(ν1)

−1 + ε]) + ℘[t]s2Pr(F [t− 1] ∈ (2g(ν1)− 1 + ε, 1])}. (50)

Therefore, the solution of problem (29) does indeed exist
because the righthand side of (50) is a continuous function in
terms of ν1 based on the closed-form expression of individual
satisfaction of (28). �
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