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Abstract

The Virtual Fields Method (VFM) is a well established inverse technique

used to identify the constitutive parameters of material models using het-

erogeneous full-field strain data. When VFM is employed to retrieve the co-

efficients of advanced plasticity models, including non linear hardening and

anisotropy, however, the procedure may become computationally intensive.

Furthermore, the impact of experimental uncertainties is still not entirely

scrutinized. In this paper, an identification strategy based on uncoupling

the hardening behaviour and the anisotropic yield function is proposed. The

approach, based on VFM, allows to carry on the identification with low com-
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putational time, and provides also indications on the optimal smoothing level

to use in the full-field measurement.

The identification framework is applied on the linear transformation-

based yield condition Yld2000-2D, employing numerical data for the valida-

tion and, afterwards, using actual experimental data on a bake-hardenable

steel, i.e. BH340. Moreover, several aspects of the identification procedure

are investigated in dept, namely, the effect of smoothing, the influence of

VFM settings (type of virtual fields used, discretization method) and the

computational time. The identification results are compared with the stan-

dard calibration process, demonstrating that the proposed strategy is capable

of identifying properly the material anisotropic behaviour using only three

tests on notched specimens.

Keywords: Anisotropic plasticity, Inverse Identification, Virtual Fields

Method, Digital Image Correlation, Large deformations

1. Introduction

The application of the Finite Element (FE) modelling to simulate man-

ufacturing like sheet metal forming, represents a powerful tool to design

processes and products with enhanced structural performances and quality

standards, which are conform to the modern automotive industry require-

ments. However, the accuracy given by FE predictions depends on a number

of simulation parameters and is also intrinsically related to the constitutive

model adopted to describe the material response. In particular, the sheet

metals anisotropy is a key feature that can control the success of the sim-

ulation results. In fact, the rolling process induces a thermo-mechanical
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deformation on the sheet metal, which leads to preferential orientations in

the material texture [1, 2] often expressible as an orthotropic symmetry.

This microstructural character obviously reflects on the material behaviour

at macroscopic level, that is captured and described by an appropriate yield

condition. Several plastic anisotropy models were developed according to

different approaches, based, for example, on the definition of common stress

invariants and structural tensors of plastic anisotropy, or on the introduction

of transformations of the stress tensor [3]. In particular, this latter method is

the foundation of many constitutive models, where the anisotropic behaviour

is described by means of linear transformation tensors [4–8]. Among them,

the Yld2000-2D and the Yld2004-18p yield functions gained particular in-

terest for industrial applications because of their robustness and ability to

reproduce the material anisotropic response, as for the prediction of cup-

earing profile [9–11] and forming limit diagrams [12].

Nonetheless, a large number of experimental tests is required to calibrate

their constitutive parameters, including data from the uniaxial and biaxial

tests. The equibiaxial tension can be achieved by performing multiaxial

test on cruciform specimens [13] or via hydraulic bulge test [14], demanding

specific testing equipment that are not always available in industrial labs,

consequently increasing the costs for a complete characterization.

Recently, the rapid diffusion of full-field measurement techniques like the

Digital Image Correlation (DIC) [15] was followed by the development of

methods to inversely calibrate even complex material models [16, 17]. The

use of heterogeneous strain fields, in fact, allows the gathering of a larger

amount of information about the material state from a single test, permit-
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ting the reduction of the experimental efforts to characterize the constitutive

model [18]. The Finite Element Model Updating (FEMU), for instance, rep-

resents a widely diffused method, where the test is simulated by varying iter-

atively the material parameters until the difference between experimentally

measured variables (i.e. loading force, strain fields) and the numerical re-

sults is minimized. In plasticity FEMU was already applied to determine the

hardening behaviour of Domex 650 [19], and to calibrate anisotropic yielding

functions such as Hill48 [20, 21] and Yld2000-2D [22] models. In [23], the

weighted FEMU is compared with another inverse method, the Integrated

Digital Image Correlation (I-DIC), to identify the Ramberg-Osgoord model.

Based on the global DIC, whose nodal displacement and constitutive param-

eters are considered unknown and mutually determined by the identification

procedure, the I-DIC was also applied to characterize the Hill48 model in

[24] using biaxial test on cruciform specimen.

There are alternative identification approaches that do not employ FE

simulations, increasing the computational efficiency of the whole process [25,

26]. The Virtual Fields Method (VFM) [27], belongs to this class of inverse

techniques, and it has been successfully implemented in many non-linear

plasticity problems in the case of isotropic [28] and anisotropic behaviour [29–

32]; Pierron et al. [33] applied the VFM to cyclic plasticity with kinematic

hardening, and Fu et al. [34] to the HAH distortional plasticity model.

The accuracy of the identification results achieved with VFM is influ-

enced by the adopted virtual fields (VFs) because of their interaction with

experimental uncertainties. The VFs can be arbitrarly chosen by the user or

selected using dedicated procedures. For instance, Avril et al. [35] proposed
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a procedure to generate automatically the VFs minimizing the sensitivity

to noise. Recently, Marek et al. in [36] developed a VFs generation method

based on the sensitivity of the reconstructed stress field to the constitutive pa-

rameters. Although such method outperformed the traditional manual VFs

for calibrating the Yld2000-2D coefficients [36], only numerical data with

synthetic noise were adopted in that study, and the whole process to identify

both hardening law and yielding function were computationally intensive.

The present study proposes a novel inverse identification protocol for

large deformations problems based on the VFM, and is addressed to provide

a robust and reliable strategy capable of identifying correctly the sought

constitutive parameters. In particular, the main purposes of this paper are:

• simplify the experimental set-up and reducing the experimental effort

required by the standard calibration method;

• increase the computational efficiency of the whole inverse identification

process;

• provide effective criteria to define the VFM settings and to manipulate

the input data.

Thereby, the proposed procedure basically decouples the identification of the

hardening behaviour from the anisotropic plasticity model: the former is

achieved by using the linear stress-strain curve identification (LSSCI) [37],

while the latter relies on the non-linear VFM technique. This approach is

possible for the case where isotropic hardening is assumed

The identification strategy is exploited to identify the coefficients of Yld2000-

2D on computer-generated test data and, then, on real experiments per-
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formed on bake-hardenable (BH) steel for automotive applications, namely,

BH340.

2. Theoretical Framework

2.1. The non-linear VFM for large deformations problems

Continuum mechanics problems are founded on the equilibrium equations

and the relationship between displacements, strains and stresses, which must

be defined for all material points based on the kinematics. Let us introduce,

in the Euclidean space, a body B subjected to a general deformation process

at time t. According to the finite deformation theory [38], it is possible

to distinguish between its reference placement B0 and its current placement

Bt, as illustrated in Figure 1. Considering a single material point P , its

position in the reference configuration is indicated by the vector x0, while its

placement in the current configuration is represented by the position vector

x. The bijective function χ is introduced in order to describe the motion of

P , so that x = χ(x0, t); thereby, the displacement vector is defined as:

u(x0, t) = x− x0 = χ(x0, t)− x0 . (1)

Spatial derivatives of the motion function χ(x0, t) in the Lagrangian descrip-

tion can be used to calculate the deformation gradient F:

F = Gradχ(x0, t) = Gradu(x0, t) + I , (2)

where I represents the second order identity tensor and the operator Grad is

the gradient performed in the reference configuration. Basically, F is not the

6



gradient of a deformation, since it also contains rigid rotations. The polar

decomposition allows to separate the rotation, indicated by the tensor R,

from pure deformation, indicated by the right and left stretch tensors, i.e. U

and V respectively:

F = RU = VR . (3)

Figure 1: Kinematic of material body at finite strains with the definition of reference and

current placement and including the material orientation θ.

The VFM relies on the Principle of Virtual Work (PVW) that, in finite

deformation theory, can be written either in the reference or current place-

ment. So, using the Lagrangian description and neglecting body forces and

inertia (quasi-static loading), the PVW can be written as:

∫
B0

T1PK : δF∗ dV0 =

∫
∂B0

(T1PK n̂0) · δu∗ dA0 , (4)

where δu∗ is an arbitrary kinematically admissible virtual displacement field,
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δF∗ the corresponding deformation gradient and T1PK the First Piola-Kirchhoff

stress tensor, which is obtained as:

T1PK = det(F)σF−T , (5)

where σ is the Cauchy stress tensor. The first therm of Eq. 4 is the inter-

nal Virtual Work (IVW) that must be equal to the external Virtual Work

(EVW), i.e. the second therm of Eq. 4.

Introducing a generic constitutive law for plasticity, which expresses the

stress as a function of the deformation history F(t), regulated by a set of

m parameters ξ = [ξ1, ξ2, . . . , ξm], for each material point, the stress tensor

σ = σ (F(t), ξ). Thereby,if the deformation history of the body B0 is known,

the following cost function can be defined:

ψ(ξ, δu∗, t) =

∣∣∣∣∫
B0

T1PK : δF∗ dV0 −
∫
∂B0

(T1PKn̂0) · δu∗ dA0

∣∣∣∣ . (6)

If the constitutive parameters ξ are exact, the cost function ψ must be

equal to zero for any load step t of the test and for any selected virtual fields

(VF) δu∗. Moreover, when the VFM is applied to full-field measurement

data, the region of interest (ROI) considered is represented by a regularly

distributed grid of nP measurement points, and the IVW integral can be

numerically solved as a discrete sum. In the case of flat specimens with

constant thickness t0, Eq. 6 becomes:

ψ(ξ, δu∗, t) =

∣∣∣∣∣
nP∑
w=1

(
T

(w)
1PK : δF∗(w) S(w)t0

)
−
∫
∂B0

(T1PKn̂0) · δu∗ dA0

∣∣∣∣∣ , (7)

8



where S(w) is the surface area covered by the w-th measurement point.

If we consider nt different tests, with ns time steps and nvf VFs, a global

cost function can be defined as follows:

Ψ(ξ) =
nt∑
i=1

nvf∑
j=1

ns∑
k=1

ψi(ξ, δu
∗
j , tk) . (8)

In non-linear problems, the constitutive parameters ξ are identified as those

minimizing the function Ψ(ξ).

Often, gathering displacement and strain data from the bulk of the speci-

men is not a straightforward process, and only full-field data measured at its

surface are used for the VFM. This leads to assume a constant distribution

of the mechanical fields in the trough-thickness direction; so, since the iden-

tification is performed on specimens obtained from metal sheets, the plane

stress condition is assumed due to the small thickness compared to the other

two dimensions. In this way, all the out-of-plane components of the stress

tensor are neglected σ33 = σ13 = σ23 = 0, and, also, only the components of

δF∗ which effectively contribute to the IVW are defined.

2.2. Stress calculation from strain fields

At each iteration of the minimization process, the evaluation of the VFM

cost function in Eq. 6 requires the calculation of the T1PK tensor. However,

constitutive equations are generally defined in the material coordinate system

(ζ, η), as depicted in Figure 1, that, in anisotropic plasticity problems, is

aligned with the material texture.

According to the incremental deformation theory based on minimum plas-

tic work path (proportional logarithmic strain path) [39], the strain increment
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is expressed by using the spatial logarithmic strain definition ε (also called

Hencky strain) on the left stretch tensor V, i.e.:

ε = ln V , (9)

where V is computed as:

V =
√

FFT . (10)

This kinematic quantity is computed in the global coordinate system (̂i0, ĵ0);

thus, the strain fields must be projected to the material coordinate system:

εmat = RT
mat(R

TεR)Rmat , (11)

where Rmat indicates the rotation tensor to rotate the global coordinate

system into the material one in the reference placement. Thus, according to

additive decomposition of the strain, the elastic strain increment is decoupled

from the plastic one as follows:

∆εmat = ∆εemat + ∆εpmat . (12)

Generally, for inverse problems, the Cauchy stress tensor is calculated via

implicit algorithms based on the elastic predictor - plastic corrector scheme

[25, 30, 33, 40]. However, such algorithms may suffer from convergence prob-

lems when the strain increment is too large [41], and usually require a large

number of iterations to solve the set of non-linear equations describing the

material plastic behavior. Here, under the assumption of associated flow

rule, the stress integration is achieved with the direct method introduced by
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Rossi and Pierron in [29], capable of reconstructing the stress fields with no

iterations even in case of large strain increment. However, a complete defi-

nition of the direct method is beyond the scope of this paper, and a detailed

explanation of the algorithm is reported in [31] with its application to Hill48

and Yld2000-2D anisotropic models.

The Cauchy stress tensor σmat is calculated from εmat and defined in the

material frame. Finally, the σmat tensor is - then - rotated to the global

coordinate system:

σ = Rmat(Rσmat R
T )RT

mat ; (13)

this expression is introduced in Eq. 5 to obtain the first Piola-Kirchhoff tensor

T1PK .

2.3. Definition of Virtual Fields

The PVW expressed in Eq. 4 is valid for any VFs kinematically coherent

with the problem. However, their choice affects the identification results,

because they provide different weights to the material points included in the

cost function. Two approaches for virtual fields selection can be distinguished

according to their generation method. The first approach is based on user

defined virtual fields (UDVFs), employing polynomial or harmonic functions

that usually relies on the user experience. This operation is not always trivial

and needs a deep understanding of the problem. For instance, in [30] six

different virtual fields were introduced for the identification of anisotropic

plasticity constitutive coefficients, and their performances were evaluated

with a competitive comparison on numerical data. Another example can be
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found in [31], where three empirical virtual fields were selected in order to

activate different stress components. In this work, the same virtual fields were

employed in the identification for the UDVFs approach. Therefore, adopting

the coordinate system in Figure 2, the three VFs and the corresponding

gradients are, respectively:


δu
∗(1)
x = 0

δu
∗(1)
y =

y

h


δu
∗(2)
x =

x

w

|y| − h
h

δu
∗(2)
y = 0

δu
∗(3)
x =

1

π
sin

(
π
x

w

)
cos

(
π
y

2h

)
δu
∗(3)
y =

1

π
sin

(
π
x

w

)
cos

(
π
y

2h

) ,

(14)

and:


δF
∗(1)
xx = δF

∗(1)
xy = δF

∗(1)
yx = 0

δF
∗(1)
yy =

1

h


δF
∗(2)
xx =

|y| − h
wh

δF
∗(2)
xy = sgn(y)

x

wh

δF
∗(2)
yx = δF

∗(2)
yy = 0

δF
∗(3)
xx = δF

∗(3)
yx =

1

w
cos

(
π
x

w

)
cos

(
π
y

2h

)
δF
∗(3)
xy = δF

∗(3)
yy = − 1

2h
sin

(
π
x

w

)
sin

(
π
y

2h

)
(15)

It is also worth noting that the first set of VFs in Eq. 14 makes the EVW

proportional to the measured loading force
∫
∂B0(T1PK n̂0) · δu∗ dA0 = 2F ,

and affects only the stress component in the vertical direction. For the other

two sets of VFs, the EVW is equal to zero.
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Figure 2: Schematic of the reference frame adopted for the virtual fields definition.

The second approach for virtual fields selection is based, instead, on their

automatic generation according to suitable criteria. This characteristic, in

fact, reduces the dependence of user knowledge for the identification proce-

dure setting, making the VFM more attractive for industrial applications. A

first implementation can be found in [35] for the case of linear anisotropic

elasticity, where the procedure for virtual fields definition is governed by

the minimization of noise effects on the identified constitutive coefficients.

Lately, such procedure was extended to isotropic elasto-plasticity problems

[33], demonstrating that the implementation of optimized virtual fields is ca-

pable of improving the results accuracy. A recent contribution to automatic

virtual fields approach for non-linear constitutive models was proposed by

Marek et al. [42] in the case of isotropic plasticity and, then, extended

to anisotropy models like Hill48 and Yld2000 in [36]. Here, the generation

criterion relies on the sensitivity of the reconstructed stress field to each pa-

rameter of the constitutive model. Considering a set of parameters ξ, the

stress sensitivity maps corresponding to the parameter ξj can be generated

as:
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δT
(j)
1PK(ξ, t) = T1PK(ξ − δξj, t)−T1PK(ξ, t) , (16)

where δξj indicates a perturbation of the parameter ξj and, generally, 0.10 ξj ≤

δξj ≤ 0.20 ξj. The stress sensitivity can also be expressed in an incremental

form, as:

δT̃
(j)
1PK(ξ, t) =

δT
(j)
1PK(ξ, t)− δT(j)

1PK(ξ, t−∆t)

∆t
. (17)

Such sensitivity maps are used to generate virtual strain fields, amplifying

the information related to each constitutive parameter in the VFM cost func-

tion. This problem is tackled following a finite element approach where the

domain is subdivided in a virtual mesh using 4-nodes quadrilateral elements,

according to the piecewise virtual field implementation in [27]. Afterwards,

it is possible to define a set of virtual nodal displacements whose deriva-

tion produces a virtual strain fields similar to the stress sensitivity maps.

In particular, the virtual nodal displacements δu∗N are linked to the virtual

deformation gradient field using the element shape functions, so:

δF∗ = B δu∗N , (18)

where the matrix B stands for the global strain-displacement matrix relat-

ing virtual displacements to their spatial gradients. Moreover, the global

strain-displacement matrix must be corrected in order to ensure the partic-

ular boundary conditions of the problem, constraining the displacements of

the corresponding nodes. Consequently, the virtual displacements are cal-

culated from the stress sensitivity maps employing the pseudoinverse of the

modified global strain-displacement matrix B̄, so that:
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δu∗N(ξ, t) = pinv(B̄) δT1PK(ξ, t) , (19)

where the pinv(·) operator indicates the Moore-Penrose pseudoinverse ma-

trix, computed numerically by means of singular value decomposition.

Once the nodal virtual displacement are determined, the so called sensi-

tivity based virtual fields (SBVFs) are obtained. Further details about the

procedure for SBVFs generation are described in [36].

2.4. Constitutive model: the Yld2000-2D

The Yld2000-2D yielding function [6] describes the anisotropic behaviour

of materials by means of two functions of linear transformations of the devi-

atoric Cauchy stress tensor s. The yield function φ is defined as:

φ = φ′ + φ′′ = 2σ̄a , (20)

where σ̄ indicates the equivalent stress and the two functions are expressed

as:

φ′ = |X ′1 −X ′2|a (21)

φ′′ = |2X ′′2 +X ′′1 |a + |2X ′′1 +X ′′2 |a . (22)

In particular, the exponent a depends on the crystal structure of the material,

and controls the curvature of yield surface vertices, ensuring its convexity

when a ≥ 1. Usually the a value is set equal to 6 in case of BCC materials

or 8 for FCC materials [43] and is not calibrated from the experiments.
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Observing the two functions, the X ′j and X ′′j (with j = 1, 2) represent

the principal values of X′ and X′′ tensors respectively. Indicating with x the

rolling direction (RD) and y the transverse direction (TD), such tensors are

defined as linear transformation of the stress deviator:


X ′xx

X ′yy

X ′xy

 =


C ′11 C ′12 0

C ′21 C ′22 0

0 0 C ′33



sxx

syy

sxy

 (23)

and


X ′′xx

X ′′yy

X ′′xy

 =


C ′′11 C ′′12 0

C ′′21 C ′′22 0

0 0 C ′′33



sxx

syy

sxy

 (24)

Moreover, for simplicity, these equations can be extended to the Cauchy

stress tensor σ through T:

X ′ = C′s = C′Tσ = L′σ (25)

X ′′ = C′′s = C′′Tσ = L′′σ , (26)

with:

T =


2

3
−1

3
0

−1

3

2

3
0

0 0 1

 (27)

The two tensors L′ and L′′ are function of eight independent coefficients

αi:
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L′ =
1

3


2α1 −2α1 0

2α2 2α2 0

0 0 3α7

 (28)

L′′ =
1

9


8α5 − 2α3 − 2α6 + 2α4 −4α6 − 4α4 − 4α5 + α3 0

−4α3 − 4α5 − 4α4 + α6 8α4 − 2α6 − 2α3 + 2α5 0

0 0 9α8

 (29)

The standard calibration of the eight coefficients α of the Yld2000-2D

yield surface generally requires experimental data in terms of flow stresses

and the width-to-thickness strain ratio (r-value, also known as Lankford

coefficient), obtained from uniaxial and balanced biaxial stress states; so,

the yield function coefficients are retrieved by using a non-linear Newton-

Raphson solver, as reported in the Appendix of [6]. Similarly, in this paper

the identification process through the VFM was restricted to the charac-

terization of the anisotropy coefficients α, while the a exponent was selected

according to the material crystal structure. The identification of the material

parameter a from real experiments is nonetheless an interesting topic that

could be investigated in future studies, using suitably designed specimens.

3. Inverse identification strategy

The inverse identification protocol adopted in this study is depicted in

Figure 3. The input data are the geometry of the specimens, the displacement

fields measured with DIC and the force measured by the load cell of the tensile

machine. Afterwards, the strain field is computed using Eq. 9, 10 and 11,

with temporal and spatial smoothing to reduce the experimental error.
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As a first step, the hardening parameters are identified using the linear

stress-strain curve identification (LSSCI) method, described in [37]. Start-

ing from heterogeneous full-field data, the LSSCI retrives the flow curve in

terms of a piecewise function, using a pseudo-inverse function, with a rele-

vant computational efficiency. This procedure permits to include material

information in the post-necking regime, and, also, can be employed to assess

the quality of submitted strain field data, helping the user to evaluate an

adequate smoothing grade.

Figure 3: Flowchart of the proposed identification procedure.

The application of non-linear VFM is restricted, then, only to the identifi-

cation of anisotropic yield function coefficients, which are iteratively changed

by the optimization algorithm until the VFM cost function in Eq. 8 is mini-

18



mized. Excluding the hardening parameters from the VFM abets its conver-

gence, reducing significantly the computational effort for the identification.

The implemented procedure allows to select the two different types of vir-

tual fields previously discussed, choosing between the UDVFs and SBVFs.

Eq. 19 indicates that the SBVFs are computed for every time step at the

beginning of each iteration performed by the minimization algorithm. The

identification framework presented in [36] includes a selective updating algo-

rithm that, basically, generates a new set of SBVFs until the variation of the

VFM cost function ∆Ψ between two consecutive iterations is below a certain

tolerance. In this study, in order to enhance the computational efficiency of

the whole non-linear VFM procedure, the SBVFs construction occurs only

at the beginning of the identification process employing the initial guess pa-

rameters, without any upgrade during the minimization. Moreover, since

all the target coefficients of the anisotropic yield function are set equal to

1 at the initial iteration, the corresponding SBVFs are built from the stress

sensitivity obtained perturbing the isotropic case.

Marek et al. in [36] highlight how the minimization method can also affect

the computational efficiency, comparing two widely diffused optimization al-

gorithms: the Sequential Quadratic Programming (SQP) and the Levenberg-

Marquardt algorithm (LMA). In this paper, all the identification results for

the involved data sets are obtained adopting the latter; in fact, although its

accuracy is strongly affected by the initial guess of the target parameters,

the LMA offers an higher computational efficiency compared to the SQP,

achieving convergence with a reduced number of iterations. More non-linear

optimization methods have been tested in [44].
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4. Numerical Validation

The feasibility of the presented identification strategy was firstly eval-

uated on numerical data. The best specimen shape to be used in inverse

identification is still an open issue [45, 46]; for example, in [21], a double

perforated specimen was used to identify the 3D Hill48 yield function, Kim

et al. [30] proposed a Σ-shaped specimen, etc. Here, following the approach

used in [31, 36], tensile tests on deep notched specimens were employed. The

presence of circular notches, in fact, produces an heterogeneous strain field on

the specimen surface with a diffused plastic zone [22], permitting to feed the

identification with a larger number of information compared to the standard

unaxial test.

The tensile tests were reproduced with ABAQUS-Standard R©, using CPS4

4-nodes elements and considering three different material orientations (0◦,

45◦, 90◦). Figure 4 illustrates the FEM mesh as well as the dimension of the

specimen.

The hardening behaviour was described by the Swift Law:

σ̄ = K(ε0 + ε̄p)
N , (30)

where K, ε0 and N are the model material coefficients, and ε̄p indicates

the accumulated equivalent plastic strain, defined incrementally through the

plastic work equivalence σ̄ dε̄p = σ : dε. The Yld2000-2D anisotropy model

was implemented with the UMAT subroutine following the stress integration

scheme given by [9, 39]. All reference material coefficients adopted are listed

in Table 1.

A region of interest (ROI) was considered in the specimen’s area between
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Table 1: Reference material parameters for the hardening law and anisotropic yield func-

tion adopted in the FE model.

Swift law: Yld2000-2D:

K/MPa ε0 N α1 α2 α3 α4 α5 α6 α7 α8 a

980 0.02 0.48 1.11 1.35 1.21 1.11 1.07 0.96 1.21 1.15 6

Figure 4: Notched specimen geometry adopted for the numerical validation, the units are

in mm.

the two notches, as highlighted in Figure 4. Within the ROI, to simulate an

actual DIC measurement, a set of 141×281 equi-spaced displacement points

was generated by interpolation from the FE results. The loading path was

subdivided into 25 time steps. The full decoupled identification scheme was

applied on numerical data including two different data sets in the non-linear

VFM process: the first composed by strain data from specimens cut at three

different material orientations, the second composed only by one specimen

oriented at 45◦ with respect to the RD.

Since the physical meaning of the Yld2000-2D coefficients is not straight-
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Figure 5: Prediction of uniaxial flow stresses and r-values by using different VFs and

numerical data sets.

forward, an effective way to visualize the accuracy of the identification re-

sults is given by their capability to predict the anisotropy of normalized flow

stress and r-values at different material orientations [47] (Figure 5). Further-

more, the flow stress was normalized using the equi-biaxial stress, in order

to indirectly include in the chart information about such stress state. The

non-linear VFM was applied using both UDVFs and SBVFs, the latter con-

structed adopting a virtual mesh of 20 × 20 elements and a perturbation

parameter δξj=0.15. In the graphs, the identification with UDVFs is de-

noted by lines with dots while SBVFs with plain lines. The same approach

of Figure 5 was used in the rest of the paper to analyze the identification

results, however, for completeness, all numerical coefficients obtained in the

different identifications were listed in the Appendix.

The outcomes can be summarized as follows:

• the Yld2000-2D’s α-coefficients identified exploiting the tests at three
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material orientations produces an accurate identification of the anisotropic

behaviour, indicating that a rich data set helps to constrain the mini-

mization process. For the normalized stress, the average error between

the reference curve and identified one is around 1% for both UDVFs

and SBVFs. For the r-values, the error using SBVFs is around 1-2%

while it slightly increase using UDVFs, i.e around 2-4%.

• When the proposed scheme is applied only to data from the specimen

oriented at 45◦, the UDVFs are not capable of capturing correctly the

anisotropic behaviour of the material, giving totally inaccurate results

and confirming the conclusions of [36]. Using SBVFs, instead, the

identified parameters are able to predict the general trend, but a shift

is observed with respect to the reference curves in both normalized

stress and r-value. The shift in the normalized stress indicates that the

biaxial stress was not identified properly.

According to the identification strategy proposed in this paper, the hard-

ening curve was identified before the non-linear VFM using the LSSCI method,

as previously illustrated in the flowchart of Figure 3. The LSSCI method was

applied on the specimen at 0◦, using a piecewise function with 11 divisions

and without introducing the material anisotropy (LSSCI, von Mises). Then,

the non-linear VFM was employed to identify the anisotropy coefficients.

Figure 6 shows the comparison of the flow curves corresponding to 0◦ ori-

entation at the end of the identification procedure. Interestingly, although

the hardening behaviour was not updated during the non-linear VFM pro-

cess, a good agreement is found between the reference curve and the piecewise

curve identified initially with LSSCI and von Mises. As countercheck, the
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Figure 6: Comparison of identified flow stress curves at 0◦ orientation.

LSCCI was applied again employing the identified Yld2000-2D parameters

and, as illustrated in Figure 6, there are not significant differences between

the curves.

From the numerical validation, it turns out that the identification strat-

egy proposed in this paper allows to identify correctly the coefficients of

Yld2000-2D if three tests on three directions are used.

5. Experiments on BH340 steel

In the following sections, the identification procedure presented in this pa-

per was applied to characterize the Yld2000-2D model for the BH340 steel.

First, the anisotropic model was calibrated using the standard protocol de-

scribed in [6], with the aim to provide a touchstone for the evaluation of the

identification results. Then, the inverse identification was performed using

tensile tests on notched specimens. The hardening behaviour was identified
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by LSSCI and the non-linear VFM was used to characterize the anisotropic

yield function.

The elastic properties for this material are known, Young Modulus E =

210 GPa and Poisson’s Ratio ν = 0.3. Since the BH340 has a BCC crystal

structure, the material exponent a was imposed equal to 6, making the VFM

minimization applied only to the eight αj coefficients of Yld2000-2D.

5.1. Standard Calibration

According to the standard calibration protocol of the Yld2000-2D mate-

rial model, uniaxial tension test along the RD and TD and the equibiaxial

stress state provide three flow stresses σ0, σ90, σB and three r-values r0, r90,

rB, which are necessary to calibrate the coefficients from α1 to α6. It is

worth noting that rB represents the slope of the yield surface at balanced

biaxial stress state, and is defined as rB = ε̇yy/ε̇xx. The flow stress and r-

value obtained from uniaxial tensile test at 45◦ from RD supply the remain-

ing coefficients α7 and α8. In order to have a complete insight of material

anisotropic behaviour, standard uniaxial flat specimens with seven different

directions from the RD were machined from the same 0.7 mm thick BH340

sheet metal and tested. Displacement and strain fields on the specimen sur-

face were retrieved using a stereo-DIC set-up composed of two 2448 × 2048

CCD cameras, synchronized with the 500 kN loading cell to couple each frame

with the measured force (Figure 7a). The commercial software MatchID R©

(www.matchid.eu, version 2018.2.2) was employed to perform the measure-

ments. All the details about the setting used for DIC analysis are reported

in Appendix B under Table 8, and the engineering curves resulting from the

quasi-static tests (at ε̇ = 0.01 s−1) are reported in Figure 7b. The engineering
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(a) (b)

Figure 7: Uniaxial test experimental setup (a). Engineering stress-strain curves obtained

at seven different directions from the RD (b).

curves show an higher flow stress at 30◦, 45◦ and 60◦.

The equibiaxial stress state condition was obtained by means of a hy-

draulic bulge test [48, 49]. According to the ISO 16808:2014 standard [50],

the calculation of the biaxial stress-strain curve requires the measurement

of three quantities: the forming pressure of the fluid, the bulge curvature,

and the through-thickness strain. Full-field measurements with stereo-DIC

allows the determination of the latter two inputs; the in-plane strains can

be derived from displacements fields, and, then, the through-thickness strain

component from the hypothesis of incompressibility. The used stereo-DIC

system is illustrated in Figure 8 together with the strain fields measured at

last step along the RD and TD,. The analysis parameters of the correlation

software MatchID R© are listed in Table 9. The results are reported in Fig-

ure 9, where the r-value relative to the biaxial stress state rB is calculated

by means of a linear regression of the RD vs. TD strain data points.
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(a) (b)

Figure 8: Hydraulic bulge test machine with DIC set-up (a). Logarithmic strain fields

along the RD and TD directions (b).

(a) (b)

Figure 9: Hydraulic bulge test results for BH340: (a) logarithmic stress-strain curve in

balanced biaxial loading, where εzz indicates the through-thickness strain; (b) calculation

of biaxial r-value.
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Table 2: Input data for Yld2000-2D calibration and results.

Input experimental data:

Dir. 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ Biax.

σ/σB 0.9219 0.9180 0.9508 0.9558 0.9567 0.9288 0.9154 1

r 1.52 1.30 1.00 0.89 1.06 1.48 1.67 0.98

Parameters calibrated with the standard procedure:

α1 α2 α3 α4 α5 α6 α7 α8 a

1.0780 1.1629 0.9646 1.0212 1.0292 0.9346 1.0234 1.1336 6

Consequently, the flow stresses corresponding to this plastic work are em-

ployed for the characterization of Yld2000-2D model together with the mea-

sured r-value. All the input data and results are reported in Table 2.

5.2. VFM identification

The VFM identification was conducted using double notched specimens

cut from the same BH340 sheet metal used for the standard calibration, with

the same geometry illustrated in Figure 4. As for the numerical study, three

orientations were adopted, namely 0◦, 45◦ and 90◦ with respect to the RD.

Both DIC measurement hardware and software are the same employed in

Section 5.1 and all metrology settings adopted for the DIC are reported in

Table 10.

Figure 10 illustrates an example of the strain fields obtained from the

experiments. The ROI was restricted to this zone between the two notches

mainly for two reasons. First, this area remains planar up to large strains
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Figure 10: Logarithmic strain components in the material coordinate system on notched

specimens at different material orientations obtained with DIC, at the last step considered

for the VFM identification.
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Figure 11: Measured loading force and displacement for the three notched specimens.

whereas the other areas of the specimen tend to wrinkle when load increases

[31]; second, since the plastic flow localizes within this zone reaching the

highest deformations, the strain increment for each step is less affected by

noise, which generally has the magnitude of the elastic strains [15]. The

selected ROI consists of 146× 408 measurement points.

Figure 11 shows the force vs displacement curves measured in the three

notched tests. In this case, the three curves are almost similar, the increase

in terms of force observed in the uniaxial test at 45◦ is not significant in

the corresponding notched specimen. Each test was subdivided in 22 load

steps that were used in the inverse identification procedure. The results are

presented and discussed in the following section.
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6. Discussion

The identification was conducted on three tests, using 22 load steps and

146× 408 measurement points, loading to the processing of more than 1.3

million points were processed. In order to analyze the identification results, a

study was conducted to evaluate the distribution of the measurement points

in stress space.

6.1. Analysis of the stress heterogeneity

Figure 12a displays the stress state corresponding to each experimental

measurement point as a dot in the normalized yield surface. The stress was

computed from the strain field using the constitutive model and the reference

parameters of Table 2. Using three notched specimens at three different

material orientations allows to cover a diffused zone of the normalized π-plane

first quadrant. However, the chart of Figure 12a does not provide a complete

insight into the actual distribution of the heterogeneous stress fields, because

not all zones are covered with the same intensity. To overcome this issue, a

stress probability density function was defined dividing the normalized stress

plane in uniform square bins and counting the number of points within each

bin.

Figure 12b depicts such function computed for the experimental stress

points, showing that only some restricted portions of the yield surface present

an high frequency of occurrences. Material points from specimens oriented

at 0◦ and 90◦, are densely distributed closer to the plane strain region. Data

points from the 45◦ oriented specimen are densely distributed in a small area

in the centre of the yield surface, which corresponds to the plane strain region
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(a) (b)

Figure 12: Distribution of the experimental stress states and Yld2000-2D yield surface (a)

and corresponding probability density function contour plot (b).

oriented at 45◦.

The same approach was used to study the stress distribution at differ-

ent equivalent plastic strain increments in order to observe the stress field

evolution on the yield surface during the loading path. Considering an equiv-

alent plastic strain range 0 ≤ ε̄p ≤ 0.15 (Figure 13a), the stress data points

are scattered accordingly to the trend in Figure 12b; when the ε̄p range is

increased up to 0.3 (Figure 13b), the corresponding stress states tends to

spread out closer to the respective specimens’ material orientation. Finally,

the probability density of stress points at ε̄p > 0.3 (Figure 13c) covers a

smaller area compared to the previous cases. This analysis demonstrates

that the stress heterogeneity tends to reduce as the plastic strain localize at

the end of the test.
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(a) ε̄p ≤ 0.15 (b) 0.15 < ε̄p ≤ 0.3

(c) ε̄p > 0.3

Figure 13: Probability density function of the experimental stress states on the yield

surface locus at different levels of accumulated equivalent plastic strain ε̄p.
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6.2. Identification results

In this section the identification results are discussed, first the identifica-

tion of the hardening curve by LSSCI is presented, then the results of the

non-linear VFM are discussed considered different combination of VFs and

experimental tests.

6.2.1. Identification of the hardening curve and smoothing of the data

According to the adopted identification strategy, the LSSCI is the first

step that provides the material hardening behaviour by means of a linear

piecewise function. The hardening was identified from a single test, i.e. the

notched specimen cut at 0◦ from the RD. Furthermore, this step was also

exploited to define the level of smoothing to apply on the measured strain

data.

Experimental uncertainties of the DIC measurement play a crucial role

in the VFM identification. Noisy strain data can represent, in fact, a consid-

erable issue, as reported in [51–53] for elasticity or in [29, 31] for anisotropic

plasticity. For this reason, both temporal and spatial smoothing were applied

on the experimental data, using the least-square smoothing method based on

the convolution algorithm proposed by Gorry [54]. The temporal smoothing

was performed using 7 time steps. The size of the strain window used for the

spatial smoothing, instead, was chosen using the LSSCI method as diagnostic

tool. Figure 14 reports the hardening curve identified using different levels of

spatial smoothing. The hardening curve stabilizes using a strain windows of

9×9 points, i.e. increasing the level of smoothing does not produce variations

in the identified curve. Therefore, a strain window of 9×9 points was used

to process the experimental data input in the following VFM identification.
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Figure 14: Identified piecewise linear hardening curve with LSSCI method using experi-

mental data from notched specimen at 0◦.

6.2.2. Generation of Sensitivity Based Virtual Fields

Although the SBVFs are automatically defined through the stress sen-

sitivity, as already discussed in Section 2.3, their generation requires the

definition of few parameters which can interact with the experimental uncer-

tainties. So, in order to define their optimal configuration, each parameter

governing the SBVFs generation was varied for a competitive evaluation of

the identification results. The investigated aspects are the size of the virtual

mesh, the effect of the perturbation parameter δξj and difference between

the total (TSS, Eq. 16) and the incremental (ISS, Eq. 17) formulation of the

SBVFs.

Figure 15 illustrates the identification results obtained using 3 sizes of the

mesh grid and 2 values of the perturbation parameter. The incremental for-

mulation was always used. A good agreement with the standard calibration
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Figure 15: Effect of perturbation parameter δξj on the prediction of anisotropy of uniaxial

yield stress and r-value using different SBVFs virtual mesh size.

was always obtained in terms of r-values, instead a difference is observed in

the identification of the normalized flow stress. In particular, the increase

of the normalized flow stress at 45◦ is not observed using the 20 × 20 mesh

grid while better predictions are obtained using the coarser mesh grids. This

improvement can be linked to the mitigation of the experimental noise due to

the less dense distribution of nodes. The better identification was obtained

using the 5 × 5 mesh with a maximum difference between the experimental

points and the predicted ones of around 5%. The variation of the pertur-

bation parameter δξj does not produce significant changes in the identified

results.

Figure 16 illustrates the difference in the identification achieved using

the total (TSS) or the incremental (ISS) SBVFs, different sizes of the virtual

mesh are also taken into consideration. As previously, the r-values are always

identified correctly, however, the TSS outperforms the ISS, allowing a better
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Figure 16: Comparison of predicted uniaxial yield stress and r-value adopting total stress

sensitivity maps (TSS) and incremental stress sensitivity maps (ISS) to built the SBVFs,

at different virtual mesh size.

reproduction of the stress anisotropy and a reduction of the error at 45◦ below

3%. Moreover, Figure 16 indicates that the effect of mesh size previously

observed is not valid when the TSS is used to generate the SBVFs. In this

case, the results are only slightly affected by the mesh size, with the better

outcome achieved by the 20 × 20 mesh. Probably, the TSS formulation

provides strain sensitivity maps where the noise is intrinsically mitigated,

canceling the homogenization effect given by a coarser grid. This abet to

increase the resolution of the VFs by using a more dense virtual mesh, and,

consequentially, to capture fine features of the stress sensitivity.

6.2.3. Comparison with standard non-linear VFM identification framework

As a final analysis, the performances of the decoupled identification scheme

was compared with the common non-linear VFM framework, where the in-

verse characterization involves simultaneously the identification of the consti-
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tutive parameters for hardening and anisotropy. The Swift law was employed

to describe the hardening curve, thereby, the minimization process involves

now 11 variables. The initial estimate was chosen arbitrarily (see Table 7 in

Appendix). In addition, the two approaches were evaluated employing both

the UDVFs and the SBVFs, the latter with the settings that gave the best

identification in the previous section (i.e. TSS, ∆ξj = 0.20, 20× 20 grid).

As illustrated in Figure 17, when SBVFs are used in the non-linear VFM,

the full approach and the decoupled strategy proposed in this paper give the

same outcome. On the other hand, when UDVFs are used, the full identifica-

tion method produces a worse prediction, while the decoupled method gives

reasonably accurate results. The last observation suggest that the decoupled

procedure is more robust that the standard procedure where hardening and

anisotropy are combined in the same cost function.

Figure 17: Predicted anisotropy of flow stress and r-value using the standard non-linear

VFM identification scheme and the proposed decoupled strategy with different VFs types.

It is worth noting that, according to the numerical validation in Section 4,
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there is not a relevant difference between UDVFs and SBVFs when tests at

three different material orientation are adopted. Instead, in case of actual

experimental data, the SBVFs seems to perform better than UDVFs, prob-

ably because of they are better suited to handle experimental uncertainties

that were not introduced in the numerical validation.

Eventually, Figure 18 reports the normalized yield surfaces resulting from

the standard calibration and the inverse identification obtained with the

proposed decoupled method and the SBVFs, there is a remarkable agree-

ment between the two surfaces. Moreover, albeit there are no direct stress

data points from the balanced-biaxial state included in the VFM cost func-

tion (Figure 12a), feeding the identification with heterogeneous experimental

strain fields from notched tensile specimens at three material orientations is

sufficient to give an adequate prediction of the biaxial stress state.

Figure 18: Yield surfaces by employing the standard procedure and the proposed decoupled

identification strategy, normalized by their respective balanced biaxial stresses.
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6.2.4. Identification from 45◦ specimen data

A further study was conducted trying to identify all parameters from a

single test. In fact, according to the numerical validation of Section 4, the

application of SBVFs allows to identify the Yld2000-2D parameters feeding

the VFM only with data from a single notched specimen at 45◦, with a

maximum error on the r-value below the 10%. When the same approach

is applied to experimental data, unfortunately neither UDVFs nor SBVFs

permits to identify the correct anisotropic behaviour of BH340 (Figure 19). In

this case, noise and other experimental uncertainties deteriorate the material

information making the identification process necessitous of a larger set of

data.

Figure 19: Comparison between UDVFs and SBVFs results employing only strain data at

45◦ to predict the uniaxial yield stress and r-value anisotropy.
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7. Computational time

A reduced computational time represents an important aspect for indus-

trial applications of inverse methods. All analysis reported in this paper were

performed using a standard workstation equipped with an Intel R© Xeon R©

CPU E5-1650 v2 @ 3.50 GHz and 128 GB of RAM, while all routines were

written in Matlab R© language. The computational efficiency was assessed

considering each processes of the flowchart in Figure 3 individually:

• the identification of the material hardening behaviour took an average

of 1.5 s because of the linear piecewise formulation of LSSCI method,

that become the most efficient step of the decoupled strategy chain;

• the SBVFs generation represents a computationally expensive opera-

tion due to the calculation of stress sensitivity and the reconstruction

of piecewise virtual fields. For example, using the experimental strain

data used in this paper, the creation of a SBVFs related to a single

constitutive parameter was accomplished in almost 53 s, completing

the construction of the whole set of SBVFs for YLD2000-2D model in

almost 7 min;

• inverse calibration of the anisotropic plasticity model usually represents

the most time consuming task, due to the iterative minimization pro-

cess of the non-linear VFM cost function. Therefore, in order to speed

up the calculation taking advantage of the multi-core architecture of

the processor, the LMA optimization was parallelized on 6 cores. Ta-

ble 3 summarizes the CPU time required to perform the identification
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of YLD2000-2D model on the BH340 steel, by involving different combi-

nations of VFs and identification strategies. Decoupling the hardening

behaviour enhances the computational efficiency for both SBVFs and

UDVFs, by reducing the number of iterations to reach the solution.

Moreover, experimental data only at 45◦ specimen induces the min-

imization algorithm to increase the amount of iterations to find the

local minimum, due to the lack of material information to constrain

the minimization problem.

Table 3: Computational time evaluation results from non-linear VFM minimization.

Time [min] Iterations

Full-UDVFs, 3 tests 19 126

Full-SBVFs, 3 tests 22 136

Decoupled-UDVFs, 3 tests 11 64

Decoupled-SBVFs, 3 tests 16 82

Decoupled-SBVFs, 45◦ 82 493

8. Conclusions

In this paper, a VFM-based identification strategy is proposed for the in-

verse calibration of anisotropic plasticity models, investigating its capabilities

to efficiently identify the constitutive parameters of an advanced anisotropic

yield function: Yld2000-2D. Basically, the idea is to separate the identifica-

tions of the hardening behaviour and anisotropic yield function, where the
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former is achieved by the Linear Stress-Strain Curve Identification method

(LSSCI), and the latter is assigned to the non-linear VFM.

The performance of the adopted scheme was evaluated initially on simu-

lated tensile tests of deep notched specimens with longitudinal axes in three

material orientations, and replicated in real experiments on BH340 steel.

Moreover, the identification results were compared with the standard charac-

terization procedure, which must include information from the biaxial stress

state.

The study also focuses on the dependency of the results from the type of

virtual fields employed in the VFM minimization, showing that the sensitivity

based virtual fields lead to an accurate prediction of the material anisotropy.

This investigation leads to the following main conclusions:

• compared to standard applications of non-linear VFM, the separate

identification of hardening behaviour of the yield function effectively

enhance the results and reduces the computational time to achieve the

solution. In fact, in the optimization problem given by the non-linear

VFM, under equal constraints conditions, the decoupled scheme allows

the elimination of the extra “degrees of freedom” linked to the variables

regulating the hardening behaviour. This leads the minimization algo-

rithm to focus on a reduced set of constitutive coefficients, requiring

less iterations for convergence.

• Dealing with experimental uncertainties represents a relevant issue for

inverse identifications, especially due to the intrinsic and chaotic na-

ture of noise. Practically, there are not definite protocols that can help

to suitably preprocess the strain data yet. In this paper, the LSSCI
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method was employed as a diagnostic tool to rapidly evaluate the qual-

ity of experimental data, and, thus, to apply the adequate smoothing.

• The sensitivity-based virtual fields (SBVFs) can considerably improve

the results with respect to the user-defined virtual fields (UDVFs). In

particular, the SBVFs looks to behave better in the case of experimental

data. Moreover, their generation settings (i.e. virtual mesh size, ∆ξj

and formulation) affect the identification, and must be opportunely

defined to improve the results. According to the presented results, the

total formulation seems to work better than the incremental one.

• The proposed identification method was successfully applied to the in-

verse calibration of the Yld2000-2D yield function, using heterogeneous

strain data from double notched tensile specimens machined at three

material orientations. The identified coefficients lead to a reasonable

reproduction of the anisotropy of the biaxial stress state, thus, reduc-

ing the experimental effort to calibrate such complex material model.

Nevertheless, such conclusion has been proved only for the BH340 steel

and is not general. In this sense, the definition of the minimum amount

of material information required to identify a material model represents

a key issue for inverse methods, and may depends on the material it-

self. Therefore, further investigations should be made employing more

anisotropic materials.

• To verify the heterogeneity of the experimental stress field, a probabil-

ity density function of the stress distribution in the stress plane was

introduced. This concept can be exploited in future works to design
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heterogeneous tests more effective than the double notched specimen.
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Appendix A

In the following, the numerical values of the Yld2000-2D coefficients iden-

tified in this paper are listed. In particular, Table 4 contains the coefficients

obtained in the numerical validation (Section 4); Table 5 and Table 6 lists the

coefficients obtained in the experiments using the SBVFs and the UDVFs,

respectively; Table 7 lists the outcomes obtained with the full non-linear

VFM.

Table 4: Yld2000-2D coefficients by using the decoupled identification scheme with differ-

ent VFs and numerical data sets.

Data set: VFs: α1 α2 α3 α4 α5 α6 α7 α8

3 tests UDVFs 1.0180 1.2271 1.0587 1.0124 0.9796 0.8738 1.0997 1.0780

SBVFs 1.0237 1.2351 1.1232 1.0237 0.9884 0.9076 1.1098 1.0472

only 45◦ UDVFs 0.7852 1.0503 0.756 0.9556 1.0148 1.0471 1.1117 0.9937

SBVFs 0.9239 1.2377 1.2404 1.0052 0.9320 0.7241 1.0744 0.9908
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Table 8: Adopted DIC settings for tensile tests on dogbone specimens.

Camera Point Grey Grasshopper GRAS-50S5M-C

Image resolution 2448× 2048, 14-bit

Field of view 97.1× 81.3 mm

Pixel to mm conversion 1 pixel=0.03968 mm

Stereo-angle 21◦

Stand-off distance 153 mm

Patterning Technique Matt white spray paint base coat with black speckles

Pattern feature size (approx.) 3.3 pixel / 0.13 mm

DIC technique Stereo correlation

DIC software MatchID, version 2018.2.2

Image Filtering Gaussian, 5× 5 pixel kernel

Subset size 21 pixels / 0.83 mm

Step size 3 pixels / 0.12 mm

Subset shape function Affine

Matching criterion Zero-normalized sum of square differences (ZNSSD)

Interpolant Bi-cubic spline

Stereo transformation Affine

Strain computation Gradient

Spatial smoothing Local polynomial regression Q8, 13× 13 window

Temporal smoothing N/A

Virtual Strain Gauge Size 57 pixels / 2.26 mm

Displacement noise floor 0.03 pixels / 1.2 µm (in plane); 0.16 µm (out-of-plane)

Strain (Hencky) noise-floor 1.26× 10−5
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Table 9: Adopted DIC settings for the bulge test.

Camera Point Grey Grasshopper GRAS-50S5M-C

Image resolution 2448× 2048, 14-bit

Field of view 315.8× 264.25 mm

Pixel to mm conversion 1 pixel = 0.12903 mm

Stereo-angle 12.4◦

Stand-off distance 650 mm

Patterning Technique Matt white spray paint base coat with black speckles

Pattern feature size (approx.) 4.2 pixel / 0.54 mm

DIC technique Stereo correlation

DIC software MatchID, version 2018.2.2

Image Filtering Gaussian, 5× 5 pixel kernel

Subset size 43 pixels / 5.29 mm

Step size 7 pixels / 0.90 mm

Subset shape function Affine

Matching criterion Zero-normalized sum of square differences (ZNSSD)

Interpolant Bi-cubic spline

Stereo transformation Affine

Strain formulation Hencky logarithmic

Spatial smoothing Local polynomial regression Q8, 15× 15 window

Temporal smoothing N/A

Virtual Strain Gauge Size 139 pixels / 17.93 mm

Displacement noise floor 0.008 pixels / 0.28 µm (in plane); 2.0 µm (out-of-plane)

Strain (Hencky) noise-floor 1.65× 10−5
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Table 10: Adopted DICsettings for tensile tests on deep-notched specimens. For more

information on the strain calculation and the adopted smoothing parameters, the reader

is referred to Section 6.2.1 .

Camera Point Grey Grasshopper GRAS-50S5M-C

Image resolution 2448× 2048, 14-bit

Field of view 93.6× 78.3 mm

Pixel to mm conversion 1 pixel = 0.038226 mm

Stereo-angle 22.6◦

Stand-off distance 151 mm

Patterning Technique Matt white spray paint base coat with black speckles

Pattern feature size (approx.) 3.8 pixels / 0.14 mm

DIC technique Stereo correlation

DIC software MatchID, version 2018.2.2

Image Filtering Gaussian, 5× 5 pixels kernel

Subset size 25 pixels / 0.96 mm

Step size 3 pixels / 0.11 mm

Subset shape function Irregular

Matching criterion Zero-normalized sum of square differences (ZNSSD)

Interpolant Bi-cubic spline

Stereo transformation Affine

Strain formulation Hencky logarithmic

Strain computation Least-squares differentiation by the Convolution Method

Spatial smoothing Savitzky-Golay, 9× 9 window

Temporal smoothing Savitzky-Golay, 7 time steps window

Virtual Strain Gauge Size 49 pixels / 1.87 mm

Displacement noise floor (not smoothed) 0.006 pixels / 0.24 µm (in plane); 0.34 µm (out-of-plane)

Strain noise-floor (not smoothed) 8.43× 10−4
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[41] A. Pérez-Foguet and F. Armero. On the formulation of closest-point

projection algorithms in elastoplasticity—part II: Globally convergent

schemes. International Journal for Numerical Methods in Engineering,

53:331–374, 2002.

[42] A Marek, F.M. Davis, and F. Pierron. Sensitivity-based virtual fields

for the non-linear Virtual Fields Method. Computational Mechanics,

60:409–431, 2017.

57



[43] R.W. Logan and W.F. Hosford. Upper-bound anisotropic yield locus

calculations assuming <111>-pencil glide. International Journal of Me-

chanical Sciences, 22:419–430, 1980.

[44]  L. Kowalewski and M. Gajewski. Assessment of Optimization Meth-

ods used to determine plasticity parameters based on DIC and Back

Calculation Methods. Experimental Techniques, 43:385–396, 2019.

[45] N. Suoto, S. Thuillier, and A. Andrade-Campos. Design of an indication

to characterize and classify mechanical tests for sheet metals. Interna-

tional Journal of Mechanical Sciences, 101-102:252–271, 2015.

[46] N. Suoto, A. Andrade-Campos, and S. Thuillier. Mechanical design of a

heterogeneous test for material parameters identification. International

Journal of Material Forming, 2016.

[47] F. Barlat, Y. Maeda, K. Chung, M. Yanagawa, J. C. Brem,

Y. Hayashida, D. J. Lege, K. Matsui, S. J. Murtha, S. Hattori, R. C.

Becker, and S. Makosey. Yield function development for aluminium alloy

sheets. Journal of the Mechanics and Physics of Solids, 45(11/12):1727–

176, 1997.

[48] G. Gutsher, H.-C. Wu, G. Ngaile, and T. Altan. Determination of flow

stress for sheet metal forming using the viscous pressure bulge (VPB)

test. Journal of Materials Processing Technology, 146:1–7, 2004.

[49] J.Y. Lee, F. Barlat, R.H. Wagoner, and M.G. Lee. Balanced biaxial test-

ing of advanced high strength steels in warm conditions. Experimental

Mechanics, 53:1681–1692, 2013.

58



[50] ISO 16808:2014 : Determination of biaxial stress-strain curve by means

of bulge test with optical measuring systems, 2014.

[51] M. Rossi and F. Pierron. On the use of simulated experiments in de-

signing tests for material characterization from full-field measurements.

International Journal of Solids and Structures, 49:420–435, 2012.

[52] M. Rossi, P. Lava, F. Pierron, D. Debruyne, and M. Sasso. Effect of DIC

spatial resolution, noise and interpolation error on identification results

with the VFM. Strain, 51:206–222, 2015.

[53] M. Badaloni, M. Rossi, G. Chiappini, P. Lava, and D. Debruyne. Impact

of experimental uncertainties on the identification of mechanical mate-

rial properties using DIC. Experimental Mechanics, 55(8):1411–1426,

2015.

[54] A. Gorry. General least-squares smoothing and differentiation by the

convolution (Savitzky-Golay) method. Anal. Chem., 62:570–573, 1990.

59


	Introduction
	Theoretical Framework
	The non-linear VFM for large deformations problems
	Stress calculation from strain fields
	Definition of Virtual Fields
	Constitutive model: the Yld2000-2D

	Inverse identification strategy
	Numerical Validation
	Experiments on BH340 steel
	Standard Calibration
	VFM identification

	Discussion
	Analysis of the stress heterogeneity
	Identification results
	Identification of the hardening curve and smoothing of the data
	Generation of Sensitivity Based Virtual Fields
	Comparison with standard non-linear VFM identification framework
	Identification from 45 specimen data


	Computational time
	Conclusions

