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THE USE OF CONFORMAL MAPPING IN SEAKEEPING CALCULATIONS

The determination of the motion of a ship in the seaway is a
difficult problem. Solutions that are approximate to some degree or
another abound in the literature. One common method of solution is
to use the so called 'strip theory'. This is in essence a cross-flow
hypothesis introduced by Lewis and applied to ships in the first
instance by Korvin-Kroukousky and Jacobs. The idea of this method is
to subdivide the ship-into longitudinal sections, twenty being a
typical number, so that the flow across that section 1is found. The
underlying principle behind the calculation of forces across such a
cross section is that the wave profile is unchanged across all
sections of the ship. This principle is referred to as the Froude-

Krilov hypothesis.

The results from more advanced and ful ler theories of Salvesen,
Tuck and Faltinsen have been used to correlate against model test
results. The analysis is particularly good for heave and pitch
motions, For the three coupled lateral motions roll, sway and yaw,
the degree of correlation depends entirely upon the detail that the
theory uses to predict the hydrodynamic damping of auxilliary control

sur faces.

The strip theory is used often uncritically for bodies that are

not ship shaped.

In the strip theory a method is regquired to calculate the
forces. In the many theories that are in the literature, two basic
methods are used. The majority base their scolutions around the
classic papers of Ursell. 1In the 6rigina1 paper Ursell studied the
oscillations of a circular cylinder heaving in regular sinusoidal
waves. Ursell produced a stream function that satisfied the linear
boundary conditions on the wave surface and the oscillating body for

all wave frequencies.
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A set of such stream functions is

o sigen by g 2
r r
where m = 1, 2, 3 ....
a is the radius of the circular cylinder
k = m2/g the wave number
r 1is the radial distance from the centre of the cylinder
8 1is the polar angle to a general point

To this set of stream functions must be added another stream function

that represents diverging wave trans, for example,

gA’ .
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where A is the amplitude at infinity of the diverging waves.
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The second method of solution is based upon the source
singularity distribution. The geometrical shape of the section is
mathematically represented by a series of straight line segments.
The velocity potential is then calculated for a distribution of
source singularities, each situated at the centre of the segment.
The strength of each source singularity is constant. Each source
singularity satisfies the laplaces equation, the free surface
condition and the condition that there are diverging waves a long
distance from the cylinder. The velocity potential boundary
condition is matched te the cylinder vertical veloeity to allow the

strength to be calculated.

In either case, Ursell or the scurce singularity method, the

velocity potential and stream function are found by a suitable



analytic technique. The actual forces on the ship cross section are
then calculated by use of a linear form of Bernoulli Theorem. The
dynamic pressure due to the unsteady velocity potential component in
Bernoulli Theorem has received the greatest attention in seakeeping.
Since the velocity potential will have terms, in general, that have
both sine and cosine variations with respect to the frequency of
oscillation, then there will be forces associated with both these
terms. The force that is associated with the component having the
same phase as the forced oscillation of the body is called the added
mass. The force that is out of phase with the forced oscillation is

called the damping.

The method of solution using singularities is not suitable
immediately for conformal mapping techniques so will not be discussed
further herein. The method due to Ursell will now be extrapolated to

be useful for ship shaped sections.

Since the method of Ursell is based upon circular sections
some method is required to transform the ship section shape into
circular sections without reméving or changing the boundary
conditions that the section has to satisfy. There are two types of
transformation that allow this process to take place, they are the
Joukowsky type and the Schwartz—Christoffel type. Both are conformal

transformations.

Schwartz-Christoffel Transformation

This transformation has been used only in a very limited number
of cases. It should prove to be superior to the Joukowski
transformation when there are abrupt changes in section curvature.

The form of the transformation is

z = aj j il (Cn-c)-e“/“ dg + a
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ag is a scale factor
ay is a constant to locate the body in the correct position in

the z plane

N
]

x+iy the points in the transformed plane, i.e. the circle
plane

€ = utiv is the section shape

Cn is the point in the ship body

8y is the exterior angle between sides joining

This transformation will thus allow for shapes with bilge keels,
chines, and rise of floor. The basic transformation maps the ship
section into a straight line. Thus to use Ursell's method requires a
further transformation. There are limited papers giving results from
such methods, but Wendel, and Lewis are two good examples. In both
cases the shape of the sections are simple and have rectangular-

cylinders,

Joukowski Mapping

The generalized Joukowski mapping is given by

n=1
This will map an arbitrary shape in the z-plane to a circle in the

plane.
It is worthwhile exploring this equation a little further, by
using the symmetry of the ship sections about the vertical
centreline. Consider the fdllowing three cases:

1. Symmetry about the x-axis (vertical symmetry)

Figure 1 gives details of the section.

. . ; Vg .
In this case the symmetry implies z =ﬂ2 the complex conjugate



The point
Z = re =

7 -ig
Z{7) = L ayC
but because of symmetry

Z(¢) = z(r}y = Z(Q)

T a, “C'(Z-n) - fa E(Z'n)

because (= re18 is an orthogonal function

ap = ap i.e. a, is real.

Thus for the ship sections to have vertical symmetry the coefficients

a, must be real

2. Symmetry about the y-axis (lateral symmetry)

The details are in Figure 2.

This symmetry implies z = -z
The point P corresponds to ¢ = rele
point S corresponds to [ = rel(n-B) = -reif = -T
7 = T

using the symnetry condition

L ap CZ-n = - % ag Cz—n - 5 E; E(Z*n)

but
2() = 2(-T) = 1 a(-0)>™



Thus using the orthogonality condition
— 2-n
-ap, = (-1) ap

l-n —
or an = (_1) an

This means that the series splits into two series

ay041 2re real i n=20,1, 2, ...
a2n are imaginary n=1, 2, 3,
3. Symmetry about both the x and y axes (vertical and lateral
symmetry)

Here both 1 and 2 of above apply equally,

This requires a, real for n =1, 2, ...
and a2n+1 real for n=20,1, 2,
ay imaginary for n=1, 2, 3, ...

This means that only the odd terms of the general Joukowski

transformation are non-zero i.e.

The series of terms that are used extensively by Naval Architects and

Hydrodynamicists is the last series i.e.

82n+1 are real

a
2n
The general problem of matching a section shape to the circle is not

are all zero

often attempted. Instead the series is truncated to a finite number
of terms. The number of terms being as small as three in the so

called Lewis transformation.



4A) Lewis Form

This derivative of the general Joukowski transformation is

Z = a [c +a, 1 + a, r;"3]

In this case only three terms are present, s¢ in principal any three

section properties will allow the calculation of the terms, Practice

is that the section half beam, section draught and section area are

provided to solve for a5, a; and aj.

Figure 3 gives details of the z and C planes,

The radius of the circle 1s taken to be 1 unit.

The points x = Bf2 y = 0 corresponds to 8

I
o

x =0 y = T corresponds to 6 wf2

B/2 = ao(l + oa) + a3)

and T = ao(l - a4+ a3)

The sectional area A is found from

B/2 :
A = 2 j ydx

x=0
where X = a, [tl+a1) cosd + a, cos36]
y = ag ((I-al) sinf - aq sin38]
On evaluation
= 7 2 - 2 . 2
A 5 a0 [1 al 3a3 ]



The area coefficient © is defined with respect to the c¢circumscribing

rectangle.

g = A/BT
. - 2 _ 2
T 1 a1 3a3
¢ = 7
2 _ 2
-(l+a3) a

1f the ratio H = B/2T is used together with the variable v, where

v = 1+ aq and r = allv
.. H1
H+1

which is a quadratic in v when re-arranged gives
[} + 2 + (1-r?) é%] vZ - Gv+2=020
This allows v to be found analytically as

v = 3+ 9-2¢.°!

where

c, = 3+ 2+ (1-r2) 4o/w

So the coefficients of the Lewis form can be found to be

ag = B/2 (1 + a, + a3)

a; = r (33 + 1)

a3 = 3 4+v 9 - 2c1 - Cl
€1

It has been shown, Wilson and Loader, that there are a range of
area coefficients , and ratios H for which the Lewis form produces

symmetrical and non re-entrant forms. These ranges are:

31 H 3 1
32 (3 + 4) >0 > 55 (2 H) H>1



and  3m i 31,
15 (3 + AH) > o > > (2-H) for H <1

If the ship is also limited to be of conventional shape i.e. no
bulbous bows or tunnel forms then there is a2 maximum value of the

area coefficient.

1

= 0 =
o} eV (H + i + 10)

Figure 4 shows the shape that is obtained by using the Lewis
form on a rectangular section. It can be seen that the matching of

the transformed section to that of original shape is poor.

To try to redress this problem many researchers have included
other terms. The inclusion of the ag term was first used by
Landweber and Macagno and this seems to have been forgotten by

Loukakis, Perakis and Papoulias in their work on seakeeping.

The ultimate method is obviously where the transformed section
~ matches extremely well that of the original section. Thus with the

previous definition of the transformation viz

_ N -(2n-1)
Z = ao [E + I aZn—l G J
n=1
and .

. = rele

X = a (Eosﬂ + EN a cos(Zn-l)él
0 Zn-1

n=1

y = a [ginﬁ - EN a sin(Zn-l)el

0 oy Can-1

The problem usually requires that N the number of coefficients
is minimized to achieve a good fit to the data points. The data
points are usually supplied at m values. There will be thus m-1

equations in x and a different m~1 equation in y.



Thus there are 2Zm-2 equations. The problem is usually posed to
make the data points which made an angleai (to some datum line)
correspond to a series of angles Bi in the transformed plane. These

transformed angles will not be generally known.

Thus the normal method of solution is to make the number of

equations 2m-2 equal to the number of unknowns m+N

2Zm - 2 = mtN

i.e. m = N+2

If this approach is used a Newton—Raphson technique can be used.
Alternatively a set of 2m-2 equations in N+m unknown can be solved by
an optimizing technique that minimizes the least squares distance
from the transformed section from the original section. In this case

the effect of increasing N can be seen quite easily.

In either case a starting solution is needed and the usual
method is to calculate the Lewis form coefficients ag, a; and as.
The effect of increasing the size of N can be seen in the figures 5-7

for the rectangular and ship shaped sections.

In conclusion the use that conformal mapping techniques have had
on the study of seakeeping have been profound. Without this method it
is doubtful that the predictive techniques now enjoyed by naval

architects would exist.
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