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Abstract

Classification has applications in a wide range of fields including medicine, engi-

neering, computer science and social sciences among others. Liu et al. (2019) proposed

a confidence-set-based classifier that classifies a future object into a single class only

when there is enough evidence to warrant this, and into several classes otherwise. By

allowing classification of an object into possibly more than one class, this classifier

guarantees a pre-specified proportion of correct classification among all future objects.

However, the classifier uses a conservative critical constant. In this paper we show how

to determine the exact critical constant in applications where prior knowledge about

the proportions of the future objects from each class is available. As the exact critical

constant is smaller than the conservative critical constant given in Liu et al. (2019),

the classifier using the exact critical constant is better than the classifier in Liu et al.

(2019) as expected. An example is provided to illustrate the method.

Keywords: Classification; Confidence level; Confidence set; Coverage frequency; Statistical

inference.
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1 Introduction

Classification has applications in a wide range of fields including medicine, engineering, com-

puter science and social sciences among others. For overviews, the reader is referred to

the books Webb and Copsey (2011), Flach (2012), Theodoridis and Koutroumbas (2009),

Piegorsch (2015), and Hastie et al. (2017). In the recent paper, Liu et al. (2019) proposed

a new classifier based on confidence sets. It constructs a confidence set for the the unknown

parameter c, the true class of each future object, and classifies the object as belonging to the

set of classes given by the confidence set. Hence this approach classifies a future object into

a single class only when there is enough evidence to warrant this, and into several classes

otherwise. By allowing classification of an object into potentially more than one class, this

classifier guarantees a pre-specified proportion of correct classification among all future ob-

jects with a pre-specified confidence γ about the randomness in the training data based on

which the classifier is constructed.

However, the classifier of Liu et al. (2019) uses a conservative critical constant λ and so

the resultant confidence sets may be larger than necessary. The purpose of this paper is to

determine the exact critical constant λ and therefore to improve the classifier of Liu et al.

(2019) in situations where one has prior knowledge about the proportions of the (infinite)

future objects belonging to the k possible classes.

The layout of the paper is as follows. Section 2 gives a very brief review of the classifier of Liu

et al. (2019), and then considers the determination of the exact critical constant λ under the

additional knowledge/assumption given above. An illustrative example is given in Section
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3 to demonstrate the advantage of the improved classifier proposed in this paper when the

additional assumption holds. Section 4 contains conclusions and discussions. Finally some

mathematical details are provided in the appendix. As the same setting and notation as in

Liu et al. (2019) are used, it is recommended to read this paper in conjunction with Liu et

al. (2019).

2 Methodology

2.1 Methodology

Let the p-dimensional data vector xl = (xl1, . . . , xlp)
T denote the feature measurement on an

object from the lth class, which has multivariate normal distribution N(µl,Σl), l = 1, . . . , k;

here k denotes the total number of classes which is a known number. The available training

data set is given by T = {xl1, . . . ,xlnl
; l = 1, . . . , k}, where xl1, . . . ,xlnl

are i.i.d. observations

from the lth class with distribution N(µl,Σl), l = 1, . . . , k. The classification problem is to

make inference about c, the true class of a future object, based on the feature measurement

y = (y1, . . . , yp)
T observed on the object, which is only known to belong to one of the k classes

and so follows one of the k multivariate normal distributions. In statistical terminology, c is

the unknown parameter of interest that takes a possible value in the simple parameter space

C = {1, . . . , k}. We emphasize that c is treated as non-random in both Liu et al. (2019) and

here.

A classifier that classifies an object with measurement y into one single class in C = {1, . . . , k}
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can be regarded as a point estimator of c. The classifier of Liu et al. (2019) provides a set

CT (y) ⊆ C as plausible values of c. Depending on y and the training data set T , CT (y)

may contain only a single value, in which case y is classified into one single class given by

CT (y). When CT (y) contains more than one value in C, y is classified as possibly belonging

to the several classes given by CT (y). Hence, in statistical terms, the classifier uses the

confidence set approach. The inherent advantage of the confidence set approach over the

point estimation approach is the guaranteed 1−α proportion of confidence sets that contain

the true classes.

Specifically, the set CT (y) ⊆ C is constructed in Liu et al. (2019) as

CT (y) =
{
l ∈ C : (y − µ̂l)

T Σ̂−1l (y − µ̂l) ≤ λ
}
, (1)

where µ̂l = 1
nl

∑nl
m=1 xlm and Σ̂l = 1

nl−1
∑nl
m=1(xlm − µ̂l)(xlm − µ̂l)

T , l = 1, . . . , k, are re-

spectively the usual estimators of the unknown µl and Σl based on the training data set

T = {xl1, . . . ,xlnl
; l = 1, . . . , k}, and λ is a suitably chosen critical constant whose determi-

nation is considered next. The intuition behind the definition of CT (y) in (1) is that a future

object y is likely to be from class l if and only if (y − µ̂l)
T Σ̂−1l (y − µ̂l) ≤ λ.

Note that the proportion of the future confidence sets CT (yj) (j = 1, 2, . . .) that include the

true classes cj of yj (j = 1, 2, . . .) is given by lim infN→∞
1
N

∑N
j=1 I{cj∈CT (yj)}. So it is desirable

that

lim inf
N→∞

1

N

N∑
j=1

I{cj∈CT (yj)} ≥ 1− α (2)

where 1− α is a pre-specified large (close to 1) proportion, 0.95 say. While the constraint

in (2) is difficult to deal with, it is shown in Liu et al. (2019) that a sufficient condition for
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guaranteeing (2) is

inf
cj∈C

Eyj |T I{cj∈CT (yj)} ≥ 1− α (3)

where Eyj |T denotes the conditional expectation with respect to the random variable yj

conditioning on the training data set T (or, equivalently, {(µ̂1, Σ̂1), . . . , (µ̂k, Σ̂k)}).

Since the value of the expression on the left hand side of the inequality in (3) (and in (2) as

well) depends on T and T is random, the inequality in (3) cannot be guaranteed for each

observed T . We therefore guarantee (3) with a large (close to 1) probability γ with respect

to the randomness in T :

PT

{
inf
cj∈C

Eyj |T I{cj∈CT (yj)} ≥ 1− α
}

= γ, (4)

which in turn guarantees that

PT

 lim inf
N→∞

1

N

N∑
j=1

I{cj∈CT (yj)} ≥ 1− α

 ≥ γ. (5)

Computer code in R is provided in Liu et al. (2019) to compute the λ that solves the equation

in (4), which allows the confidence sets CT (yj) in (1) to be constructed for each future object.

The interpretation of the expressions in (5) and (6) below is that, based on one observed

training data set T , one constructs confidence sets CT (yj) for the cj’s of all future yj (j =

1, 2, · · ·) and claims that at least 1− α proportion of these confidence sets do contain the

true cj’s. Then we are γ confident with respect to the randomness in the training data set

T that the claim is correct.

A natural question is how to find the exact critical constant λ that solves the equation

PT

 lim inf
N→∞

1

N

N∑
j=1

I{cj∈CT (yj)} ≥ 1− α

 = γ (6)
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which is an improvement to the conservative λ that solves the equation in (4) as given in Liu

et al. (2019). Next we show how to find the exact critical constant λ under an additional

assumption which is satisfied in some applications.

Assume that, among the N future objects that need to be classified, Nl objects are actually

from the lth class with the distribution N(µl,Σl), l = 1, . . . , k. The additional assumption

we make is that

lim
N→∞

Nl

N
= rl, l = 1, . . . , k (7)

where the rl’s are assumed to be known constants in the interval [0, 1]. Intuitively this

assumption means that we know the proportions of the future objects that belong to each of

the k classes, even though we do not know the true class of each individual future object.

The assumption in (7) is reasonable in some applications. For example, when screening for a

particular disease among a specific population for preventive purpose, there are k = 2 classes:

having the disease (l = 1) or not having the disease (l = 2). If we know the prevalence of

the disease, d, in the overall population then r1 = d and r2 = 1− d, even though we do not

know whether an individual subject has the disease or not.

It is shown in the Appendix that, under the assumption in (7), the equation in (6) is equivalent

to

Pul,{vlm}


k∑
l=1

rlPwl |ul,{vlm}

(wl − ul)
T

 1

nl − 1

nl−1∑
m=1

vlmv
T
lm

−1 (wl − ul) ≤ λ

 ≥ 1− α

 = γ

(8)

where

wl ∼ N(0, Ip), ul ∼ N(0, Ip/nl), vlm ∼ N(0, Ip), m = 1, · · · , nl − 1 (9)
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and all the wl’s, ul’s and vlm’s are independent, Pwl |ul,{vlm}{·} denotes the conditional

probability about wl conditioning on (ul, {vlm}), and Pul,{vlm}{·} denotes the probability

about (ul, {vlm}).

2.2 Algorithm for computing the exact λ

We now consider how to compute the critical constant λ that solves the equation in (8).

Similar to Liu et al. (2019), this is accomplished by simulation in the following way. From the

distributions given in (9), in the sth repeat of simulation, s = 1, . . . , S, generate independent

usl ∼ N(0, Ip/nl) , vsl1, . . . ,v
s
l(nl−1) ∼ N(0, Ip) ; l = 1, . . . , k.

and find the λ = λs so that

k∑
l=1

rlPwl |us
l
,{vs

lm
}

(wl − usl )
T

 1

nl − 1

nl−1∑
m=1

vslmv
s
lm
T

−1 (wl − usl ) ≤ λs

 = 1− α. (10)

Repeat this S times to get λ1, . . . , λS and order these as λ[1] ≤ . . . ≤ λ[S]. It is well known

(cf. Serfling, 1980) that λ[γS] converges to the required critical constant λ with probability

one as S → ∞. Hence λ[γS] is used as the required critical constant λ for a large S value,

10,000 say.

To find the λs in (10) for each s, we use simulation in the following way. Generate independent

random vectors {wlq : q = 1, . . . , Q; l = 1, . . . , k} from N(0, Ip), where Q is the number of

simulations for finding λs. For each given value of λs > 0, the expression on the left-side of the

equation in (10) can be computed by approximating each of the k probabilities involved using

the corresponding proportions out of the Q simulations. It is also clear that this expression
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is monotone increasing in λs. Hence the λs that solves the equation in (10) can be found by

using a searching algorithm; for example, the bi-section method is used in our R code. To

approximate reasonably accurately the probabilities with the proportions, a large Q value,

10,000 say, should be used.

It is noteworthy from (8) and (9) that λ depends only on γ, α, p, k, n1, . . . , nk, r1, . . . , rk (and

the numbers of simulations S and Q which determine the numerical accuracy of λ due to

simulation randomness). It is also worth emphasizing that only one λ needs to be computed

based on the observed training dataset T which is then used for constructing the confidence

sets CT (yj) and classifying accordingly all future objects.

It is expected that larger values of S andQ will produce more accurate λ value, one can use the

method discussed in Liu et al. (2019) to assess how the accuracy of λ depends on the values

of S and Q. As in Liu et al. (2019), it is recommended to set S = 10, 000 and Q = 10, 000

for reasonable computation time and accuracy of λ due to simulation randomness.

3 An illustrative example

As in Liu et al. (2019), the famous iris data set introduced by Fisher (1936) is used in this

section to illustrate the method proposed in this paper. The data set contains k = 3 classes

representing the three species/classes of Iris flowers (1=setosa, 2=versicolor, 3=virginica),

and has ni = 50 observations from each class in T . Each observation gives the measurements

(in centimetres) of the four variables: sepal length and width, and petal length and width.
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We focus on the case that only the first two measurements, sepal length and width, are

used for classification in order to easily illustrate the method since the acceptance sets Al =

{
y ∈ Rp : (y − µ̂l)

T Σ̂−1l (y − µ̂l) ≤ λ
}
, l = 1, 2, 3 are two-dimensional and so can be easily

plotted in this case. Based on the fifty observations on p = 2 measurements from each of the

three classes, the µ̂l and Σ̂l are given in Liu et al. (2019).

Figure 1: The exact (solid) and conservative (dotted) acceptance sets for the three classes

For α = 5% and γ = 95%, the critical constant λ that solves the equation in (4) is computed

in Liu et al. (2019) to be λcon = 9.175 using S = 10, 000 and Q = 10, 000. The corresponding

acceptance sets, based on which the confidence set CT (y) in (1) can be constructed directly

(cf. Liu et al., 2019), are given by

Aconl =
{
y ∈ Rp : (y − µ̂l)

T Σ̂−1l (y − µ̂l) ≤ λcon
}
, l = 1, 2, 3

and plotted in Figure 1 by the dotted ellipsoidal region centred at µ̂l, marked by ‘+’.
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Now assume that we have the knowledge about the proportions of the three species among all

the Iris flowers (r1, r2, r3) and the Iris flowers that need to be classified reflect this composition.

For the same α = 5%, γ = 95%, S = 10, 000 and Q = 10, 000, and with, for example,

(r1, r2, r3) = (0.3, 0.4, 0.3), the exact critical constant λ that solves the equation in (6) is

computed by our R program to be λexa = 7.737. As expected, λexa is smaller than λcon and,

as a result, the corresponding confidence set CT (y) in (1) with λ = λexa and acceptance sets

Aexal =
{
y ∈ Rp : (y − µ̂l)

T Σ̂−1l (y − µ̂l) ≤ λexa
}
, l = 1, 2, 3, are also smaller than the Aconl

given in Liu et al. (2019).

The acceptance sets Aexal , l = 1, 2, 3 are plotted in Figure 1 by the solid ellipsoidal regions.

For example, if a future object has y = (4.79, 2.35), marked by a solid dot in Figure 1,

then the conservative confidence set of Liu et al. (2019) classifies the object as from classes

2 and 3 since this y belongs to both Acon2 and Acon3 . But the new exact confidence set of

this paper classifies the object as from class 2 only since this y belongs to Aexa2 but not

Aexa1 or Aexa3 . This demonstrates the advantage of the new confidence set using λexa in this

paper over the conservative confidence set using λcon in Liu et al. (2019). We have also

computed the value of λexa for several other given (r1, r2, r3). For example, λexa = 7.706 for

(r1, r2, r3) = (1/3, 1/3, 1/3), λexa = 7.865 for (r1, r2, r3) = (0.1, 0.45, 0.45), and λexa = 8.019

for (r1, r2, r3) = (0.1, 0.7, 0.2). The conservative λcon = 9.175 is considerably, ranging from

14% to 19%, larger than these λexa values.

One can download from http://www.personal.soton.ac.uk/wl/Classification/ the R

computer program ExactConfidenceSetClassifier.R that implements this simulation method

of computing the critical constant λexa. The computation of one λexa using (S,Q) =
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(10, 000, 10, 000) takes about 13 hours on an ordinary Window’s PC (Core(TM2) Duo CPU

P8400@2.26GHz).

It must be emphasized though the new confidence set is valid only if the assumption in (7)

is true. If the assumption does not holds, then the conservative confidence set of Liu et al.

(2019) should be used in order for the statement in (5) to hold.

4 Conclusions

The probability statement in (5) allows that the confidence sets in Liu et al. (2019) have

the nice interpretation that, with confidence level γ about the randomness in the training

data set T , at least 1 − α proportion of the confidence sets CT (yj), j = 1, 2, . . . contain the

true classes cj, j = 1, 2, . . . of the future objects yj, j = 1, 2, . . .. However, the confidence set

given in Liu et al. (2019) is conservative in that the λ in the confidence set in (1) is computed

to solve the equation in (4), which implies the constraint in (5). This paper considers how

to compute the λ in the confidence set in (1) so that the probability in (5) is equal to γ, i.e.

from the equation in (6). The confidence sets using the λ that solves the equation in (6) have

the confidence level equal to γ and so are exact. We show that this can be accomplished

under the extra assumption given in (7), which may be sensible in some applications.

As the λexa that solves the equation in (6) is smaller than the λcon that solves the equation

in (4) used in Liu et al. (2019), the new confidence sets are smaller and so better than the

confidence sets given in Liu et al. (2019).
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One wonders whether there are other sensible assumptions that allow the λ to be solved from

the equation (6). This warrants further research.

If CT (y) for a future object y is empty then, since y must be from one of the k classes, CT (y)

can be augmented to include the class that has the largest posterior probability using the

naive Bayesian classifier as in Liu et al. (2019). The probability statement in (5) clearly

holds under this augmentation to CT (y) only when CT (y) is empty.

There are applications in which information about the proportions rl would be known with

uncertainty. For example, the training set may be a representative sample from the popu-

lation and as such the proportion of each class can be estimated, or the proportions might

have been estimated by a previous independent auxiliary dataset. If one replaces the rl’s

in the expression in (8) by these estimates then the λ solved from the equation in (8) will

depend on these estimates and so be random. As a result, the probability statement in (5)

is no longer valid. How to deal with these applications warrants further research.

Finally, the classifier of Liu et al. (2019) is developed from the idea of Lieberman et al.

(1963, 1967). The same idea has also been used in, for example, Mee et al. (1991), Han et al.

(2016), Liu et al. (2016) and Peng et al. (2019) which all use conservative critical constants

as in Liu et al. (2019). The idea of this paper can be applied to all these works to compute

exact critical constants under suitable extra assumptions.
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5 Appendix: Mathematical details

In this appendix we show the equivalence of the equations in (6) and (8) under the assumption

in (7). Note first the well known fact (cf. Anderson, 2003) that µ̂l ∼ N(µl,Σl/nl), (nl −

1)Σ̂l =
∑nl−1
m=1 zlmz

T
lm with zl1, . . . , zl(nl−1) being i.i.d. N(0,Σl) random vectors independent

of µ̂l.

Among theN future objects that need to be classified, letNl be the number of objects actually

from the lth class with the feature measurements denoted as yl1, . . . ,ylNl
, l = 1, . . . , k.

Clearly we have N1 + · · ·+Nk = N and

lim inf
N→∞

1

N

N∑
j=1

I{cj∈CT (yj)}

= lim inf
N→∞

1

N

k∑
l=1

Nl∑
i=1

I{cl∈CT (yli)}

= lim inf
N→∞

k∑
l=1

Nl

N

 1

Nl

Nl∑
i=1

I{cl∈CT (yli)}

 . (11)

We have from the classical strong law of large numbers (cf. Chow and Teicher, 1978) that

lim
Nl→∞

1

Nl

Nl∑
i=1

[
I{cl∈CT (yli)} − Eyli|T I{cl∈CT (yli)}

]
= 0, (12)

in which the conditional expectation Eyli|T is used since all the confidence sets CT (yli) (i =

1, . . . , Nl) use the same training data set T . By noting that yli, i = 1, . . . , Nl are from the

lth class and so have the same distribution N(µl,Σl), we have from the definition of CT (y)

in (1) that

Eyli|T I{cl∈CT (yli)}

= Pyl1|T {cl ∈ CT (yl1)}
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= Pyl1|T
{

(yl1 − µ̂l)
T Σ̂−1l (yl1 − µ̂l) ≤ λ

}
= Pwl |ul,{vlm}

(wl − ul)
T

 1

nl − 1

nl−1∑
m=1

vlmv
T
lm

−1 (wl − ul) ≤ λ

 (13)

where

wl = Σ
−1/2
l (yl1 − µl) ∼ N(0, Ip)

ul = Σ
−1/2
l (µ̂l − µl) ∼ N(0, Ip/nl)

vlm = Σ
−1/2
l zlm ∼ N(0, Ip), m = 1, · · · , nl − 1

with all the wl’s, ul’s and vlm’s being independent. Note that wl depends on the future

observation yl1 but not the training data set T , while ul and {vlm} depend on the training

data set T but not the future observations.

Combining the assumption in (7) and the expressions in (11), (12) and (13) gives

lim inf
N→∞

1

N

N∑
j=1

I{cj∈CT (yj)} =
k∑
l=1

rlPwl |ul,{vlm}

(wl − ul)
T

 1

nl − 1

nl−1∑
m=1

vlmv
T
lm

−1 (wl − ul) ≤ λ

 ,

from which the equivalence of the equations in (6) and (8) follows immediately.
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