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ABSTRACT: In the weak coupling limit of SUN Yang-Mills theory and the O(N) vector
model, explicit state counting allows us to demonstrate the existence of a partially decon-
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one (complete deconfinement). We point out that the mechanism admits a simple interpre-
tation in the form of spontaneous breaking of gauge symmetry. In terms of the dual gravity
theory, such breaking occurs during the formation of a black hole. We speculate whether
the breaking and restoration of gauge symmetry can serve as an alternative definition of
the deconfinement transition in theories without center symmetry, such as QCD. We also
discuss the role of the color degrees of freedom in the emergence of the bulk geometry in
holographic duality.
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1 Introduction

In this paper, we study the mechanism of the deconfinement transition in large-N gauge
theory. Concretely, we establish the existence of the recently proposed partially deconfined
phase [1-3], in simple, analytically tractable examples: the Gaussian matrix model, weakly
coupled Yang-Mills theory on the three-sphere, and the free gauged vector model on the
two-sphere.

Partial deconfinement means that a part of the SU(N) gauge group, which we denote by
SU(M), deconfines, while the rest of the degrees of freedom are not excited; see figure 1. It
applies to other groups such as O(N) as well. Partial deconfinement has been introduced
in order to explain the thermal properties of 4d N/ = 4 super Yang-Mills on the three-
sphere [1].! According to the AdS/CFT duality [7], the thermodynamics of 4d N = 4 super
Yang-Mills theory is equivalent to that of the black hole in AdS5xS® [8]. Correspondingly,
there must exist a phase dual to the small black hole which behaves as E ~ N2T~7 [9].
Partial deconfinement naturally explains this behavior [1, 2] due to the changing number
of degrees of freedom participating in the dynamics [4, 5].

'A similar idea with the same motivation, applied to different models, can be found in refs. [4, 5] and
ref. [6].
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Figure 1. Partial deconfinement in the gauge sector and adjoint matters. Only the M x M-block
shown in red is excited. The consistency of this cartoon picture with the gauge singlet constraint
is discussed around (3.12).

In ref. [2], it has been conjectured that partial deconfinement should take place in
any gauge theory at sufficiently large N.? It is natural to identify the Gross-Witten-
Wadia (GWW) transition [11, 12], which is characterized by the formation of a gap in the
distribution of the Polyakov line phases, with the transition from the partially deconfined
phase to the completely deconfined phase [2]. The deconfinement transition in the usual
sense, where the distribution changes from uniform to nonuniform, corresponds to the
Hagedorn transition [13].

The idea of partial deconfinement has withstood a number of consistency checks [1, 2],
but no direct evidence, let alone an explicit construction, has been given so far. This gap
will be filled in this paper. We will show how in simple models, the partially deconfined
states can be explicitly constructed in the Hilbert space. As we will see, the entropy is
precisely explained by such states.

Confinement in the theories we consider is due to a singlet constraint that is inherited
from their interacting ancestors. Despite their simple nature, the models exhibit a rich
thermal structure [8, 14, 15]. At low temperatures, their free energies are O(N°) remi-
niscent of a completely confined phase where only singlet states can be excited. At high
temperatures, on the other hand, their free energy becomes O(N) for fundamental matter,
or O(N?) for adjoint matter, implying that all individual degrees of freedom are excited.
In this paper, we will demonstrate that the transition from low to high temperature phases
goes through a phase of partial deconfinement.

We start with explaining basic properties of the partially deconfined phase in sec-
tion 2. Then in section 3, section 4 and section 5 we show partial deconfinement for the
weak coupling limit of the matrix model, the weakly coupled Yang-Mills theory and the
free gauged O(INV) vector model, respectively. Our arguments can be extended to interact-

2This conjecture originates from the startling resemblance between the dynamics of D-branes and the
phenomenological model of the formation of ant trails [10]. See ref. [2] for details.



ing theories provided an assumption (‘truncation to M colors’), which will be explained
explicitly, remains true. In section 6, we discuss in which sense the partially deconfined
phase spontaneously breaks gauge symmetry. Section 7 is devoted to the discussions.

2 Basic properties of the partially deconfined phase

We begin by introducing the basic concept of partial deconfinement at the hand of several
defining properties. These have been used for a consistency check of the mechanism [1, 2]
and will play important roles in this paper as well.

For concreteness, we consider a confining SU(N) gauge theory at large N, and an
SU(M) subgroup with % of order NV, s.t. we can ignore both 1/M and 1/N corrections.
Let us further assume that the SU(M) sector can be described well by ignoring interactions
with the rest, as is the case for all theories studied in this paper.? In this case, we can
truncate the N x N matrices to M x M [1], leading to an SU(M ) gauge theory that describes
equivalent physics at low energies. Eventually, however, as we increase the energy, the
M x M sector deconfines, and we need a larger subgroup to capture the physics of the full
SU(N) theory. This becomes clear when considering the free energy. In the SU(M) sector
it remains of order M2, while in the full SU(N) theory it grows towards N2. The fact that
the full SU(N) theory is described by gradually growing completely deconfined subgroups
is the essence of partial deconfinement. As we have stated before, it is natural to assume
that complete deconfinement sets in at the critical point of the GWW transition [2]. Hence,
the SU(M)-deconfined sector of the SU(N) theory should be seen as the GWW-point of
the SU(M )-truncated theory [2].

It immediately follows that M of the Polyakov loop phases should follow the distribu-
tion at the GWW transition, while the other N — M phases are distributed uniformly as
in the confined phase. Namely, we expect the distribution of the phase 0 (-7 < 0 < 7)
to be [2]

p(&) = <1 — %) pconﬁne(e) + % : pGWW(e; M)

1 M M
= o <1 - N) TN - paww (0; M). (2.1)

All distributions above are normalized such that the integral from —7 to 47 is 1. Here,
Peonfine (0) denotes the distribution in the confined phase, peonfine(0) = %, while paww (0; M)
denotes the distribution at the GWW point of the SU(M) theory. It can in principle depend
on M, but in the examples we study in this paper, there is no M dependence.

Since M > 1, the entropy S is dominated by the deconfined sector and, as we have
explained above, it is natural to assume that the SU(M) deconfined sector is approximated
by the SU(M) theory at the GWW transition. Therefore, one should expect [1, 2]

S = Saww (M), (2.2)

3There are exceptions that require a modified set of criteria. We explain this in detail in appendix C.



where the right hand side represents the entropy of the SU(M) theory at the GWW tran-
sition. Other quantities, such as the energy, should behave in the same manner, namely

E = Egww (M) (2.3)

up to the zero-point energy [1, 2]. The fact that eqgs. (2.1), (2.2) and (2.3) are satisfied by
a single M serves as a strong consistency check.

3 Gauged Gaussian matrix model

We begin with the simplest possible example, the gauged Gaussian matrix model. The
Euclidean action is given by

> g 1 2 1 2

where the number of matrices D is larger than 1. The circumference of the temporal
circle g is related to temperature T by 8 = % The covariant derivative is defined by
D X; = 0, X1 —i[As, X1|, where A; is the gauge field which is responsible for the gauge
singlet constraint.

The free energy is given by

BE = —log Z(B3)
2 2
= N2 tog (det (~Df + 1)) — 1o (det (-13))

2
DN?B o =1-Dz"
n=1
where z = e ?, u, = %Tﬁ?”, and P is the Polyakov line operator obtained from the

holonomy of A; around the thermal circle. In the second line, # log (det (—Dg + 1))
is the contribution from D scalars, while NTQ log (det (—D(Q))) is the Faddeev-Popov term
corresponding to the static diagonal gauge. In the last line we have used [15]

wn

o0
%log (det (—Dg + w2)) = %ﬂ - Z %]un|2 (3.3)
n=1

The w,’s of a stable configuration of the model should minimize the free energy. At
T<T. = @, lup| =0 (n > 1) is favored. At T = T, |ui| can take any value from 0
to %, while ug, us, - -+ remain zero, without changing the free energy. This is a first order
deconfinement transition. In figure 2, we have shown how the Polyakov loop P, entropy S
and energy E depend on temperature.

Let us consider the deconfinement transition at 17" = T..

e The Polyakov loop P = |+TtP| = |u1| can take any value between 0 and 1 at
T = T.. From the microcanonical viewpoint, P = 0,T = T, is the transition point
from confinement to deconfinement, and P = %, T =T, is the GWW transition. We
will interpret them as the transitions from confinement to partial deconfinement, and
from partial deconfinement to complete deconfinement.
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Figure 2. Cartoon pictures of the temperature dependence of the Polyakov loop P, entropy S
and energy F in the gauged Gaussian matrix model. Blue, orange and red lines are identified with
the confined, partially deconfined and completely deconfined phases, respectively.

e As derived in appendix A.1, at T = T, the energy can be written as

DN?
E(T =T, P/N)= + N?P2, (3.4)
The first term is the zero-point energy.
e The entropy S = (F — F) is
S(T =T.,P,N) = N*P*log D. (3.5)
e For any N, the distribution of the Polyakov line phases at the critical temperature is*
1 1 1
p(0) = o (1+2Pcosf)=(1—-2P)- o T 2P - (1 + cosf), (3.6)
0 7

up to 1/N corrections. In particular, the distribution at the GWW transition is

1
peww (0; N) = o (14 cosb). (3.7)
These results are consistent with (2.1), (2.2) and (2.3), with the identification of
M =P, Saww(M) = 82 M? and Eqww(M) = 4 Ly
Therefore, partial deconfinement is a promising descrlptlon of this phase transition.

—2 up to the zero-point energy 28°-

Next we construct all the SU(M) partially deconfined states in an SU(N)-invariant
manner, and show that they precisely explain the entropy of the SU(N) theory at E =
Egww(M).> To this end, we will first, in an abstract manner, identify the orthonormal
set of states in the SU(M) theory that reproduce the entropy eq. (3.5). Naturally, these
are precisely the SU(M) singlet states. Next, we extend them to orthonormal Hamiltonian
eigenstates in the full SU(N) singlet theory. To leading order in 1/M and 1/N, these

4Strictly speaking, there is an ambiguity associated with the center symmetry, namely the constant shift
of all the phases. We fixed the center symmetry such that the Polyakov loop becomes real and non-negative,
ie. P=|P|.

Berenstein [3] performed this task for the case of D = 2. He pointed out that the states with E ~ M?
can be represented by the Young tableaux with approximately M rows and columns, and that they can be
identified with the partially deconfined states. Below, we will give a more precise counting, including the
O(1) factors. Our method can easily be generalized to other theories.



comprise the entire set of states that reproduces the correct scaling for the energy (3.4)
and entropy (3.5). Remarkably, we will along the way encounter a notion according to
which the SU(N) symmetry is ‘spontaneously broken’ to SU(M) x SU(N — M) x U(1).

Concretely, let us recall how the theory is defined in the Hamiltonian formulation. The
Hamiltonian is given by

Fliee = 3T (;pf + ;X?> = @p;a + ;X;> | (3.8)
I I«

where If’ij = Zgi;l PQT%, Xij = Zé\ifl )A(aTi‘;‘-, with properly normalized SU(NN) genera-
tors 7%, and the commutation relation is given by [X’ ]O”Pjﬁ] = 1077003. Physical states
are identified as those that satisfy the SU(V)-singlet condition. Such singlet states can be
constructed for example as Tr(&}df,, --+)|0), where the ground state |0) is given as usual by
a10|0) = 0.

We now construct the SU(M) subsector. To this end, we separate the SU(N) genera-
tors into an SU(M) part 7 (red block in figure 1) and the rest 7 (blue block in figure 1).
Similarly, we also separate the Hamiltonian into an SU(M) part ﬁf’ree and the rest ﬁgee.

Explicitly, we have

Hreo= 3 (550 + 5500 ) Hie= 3 (3Pho4 3500 ). (39)

I,/ Ia"
By construction, the density of states of an SU(M)-singlet theory correctly reproduces the
energy and entropy (3.4) and (3.5). In the full SU(N) Hilbert space, we construct the
SU(M )-invariant states by acting on the vacuum only with o/-operators d}a,. Let us refer
to them as |E;SU(M)). Due to the absence of the interaction term, they are eigenstates

of the full Hamiltonian Hpee = ]fléree + ﬁgee, with©
Hiyeo| B5SU(M)) = E|E; SU(M)). (3.10)
and
g E:sun) = 2O sy, (3.11

In order to project |E;SU(M)) into the SU(N) singlet sector, we consider the super-
position of such states over all possible SU(N) gauge transformations U that rotate the
ladder operators a,

By = N1/2 / dUU (|B;SUM))) (3.12)

where the integral runs over SU(N) by using the Haar measure, and A is a normaliza-
tion factor. It is not difficult to see that |E)i,y is not zero, and that |F)i,’s made of
different SU(M )-invariant states are linearly independent. We refer the interested reader

5This is the only place where we use the assumption that the interaction is absent.



to section A.2 for a detailed discussion. Since by construction, |E)in, is still an eigen-
state of Hpee with the same energy, we have constructed an explicit mapping between the
eigenstates of SU(M) and SU(N) theories in a gauge-invariant manner, without changing
the energy. By using the states |E = Egww (M ))inv, the entropy of the SU(N) theory is
explained, and hence, no other states are needed.

The fact that M eigenvalues of the constraining matrix are deconfined, while N — M
are still confined, points to an effective breaking of the SU(N) symmetry down to an
SU(M) x SU(N — M) x U(1) subgroup. We will discuss this point in detail in section 6.

Why SU(M)xSU(N—-M)xU(1)? If we just demanded the entropy to be S ~ M? for
a given energy, deconfining a SU(M;)x SU(Mz) x - - - -sector with MZ+M3+--- = M? would
appear equally valid. However in order to explain the value of the Polyakov loop, we are
bound to consider exactly the SU(M)-deconfined phase. In order to understand why this
is the case, note that we have introduced a small interaction term in order to derive (3.4)
and (3.5) (see appendix A.1). With this interaction, Polyakov line phases typically attract
each other and prefer a single bound state. Therefore, SU(M )-deconfinement minimizes
the free energy, as opposed to all other patterns. The same comment applies to our next
example explained in section 4.

4 Weakly coupled Yang-Mills theory on S3

Another theory in which the mechanism of partial deconfinement is explicitly tractable is
given by the free limit of Yang-Mills on S3. This theory can be solved analytically, and
captures important features of the deconfinement transition [14, 15].

Due to the curvature of the spatial S, all the modes except for the Polyakov line
phases become massive and can be integrated out to construct an effective action for the
Polyakov line phases. The results relevant for us are as follows [14, 15].

e There is a first order deconfinement phase transition at T = T,.. The Polyakov
loop P can take any value between 0 and % at the critical temperature. From the
microcanonical viewpoint, P = 0,7 = T is the transition point from the confinement
to deconfinement, and P = %,T = T, is the GWW transition. We will interpret
them as the transition from confinement to partial deconfinement, and from partial
deconfinement to complete deconfinement.

e At the critical temperature, the energy can be written as’
E(T =T.,P,N) = Eqww(N) x [2P|>  N? x |2P]?, (4.1)

up to the zero-point energy which is proportional to N2. The entropy is

S(T =T.,P,N) = Saww(N) x |2P]? « N? x |2P%. (4.2)

7 As before, we are considering an infinitesimally small interaction, rather than considering literally ‘free’
theory.



e For any large N, the distribution of the Polyakov line phases at the critical temper-
ature is

1
p(T =T.,0;N) = o (1+2Pcos®) (4.3)
T
up to 1/N corrections. In particular, the distribution at the GWW transition is

peww (0; N) = % (14 cos®). (4.4)

These results are consistent with (2.1), (2.2) and (2.3), with the identification of P =
%. Therefore, partial deconfinement is a promising description of this phase transition.

In order to construct the partially deconfined states explicitly, we can repeat the
argument presented in section 3. Namely we construct all SU(M) partially deconfined
states in an SU(NV)-invariant manner, and show that the entropy of the SU(N) theory at
E = Ecgww(M) is explained precisely by those states. Let us use qga and 7, to denote
the fields and the conjugate momenta. As before, we split them into two sets: the SU(M)
subsector (éa/, T’ ), and the rest (qgau, o). We start with the eigenstates of the trun-
cated SU(M) theory, which are obtained by acting only with $or and o on the SU(N)
invariant perturbative vacuum. At the transition point to deconfinement for the SU(M)
theory, there are by construction precisely enough such states with energy Foww (M) to
explain the entropy S(E = Egww(M)) = Saww (M).

In line with section 3, we can trivially uplift the states to eigenstates of the SU(N)
theory with the same energy, up to zero-point contributions. Moreover, integrating over all
gauge transformations on the three-sphere will project onto the SU(N) singlet sector. Ex-
plicitly, due to the gauge invariance of the Hamiltonian, |E)iy, =N V2 [[dU)U(|E; SU(M)))
is an SU(N)-invariant eigenstate of ﬁfree when the integral is taken over the gauge trans-
formation on the three-sphere.

Thus, we have shown that there are just enough number of states in the ‘SU(M)-
deconfined’ sector. Correspondingly, no further macroscopic contributions can arise from
other sectors, since this would contradict the analytic results above.

The argument in this section did not specify the regularization. For those who have
concern about this point, we explain the lattice regularization in appendix B.

Again, we are tempted to interpret that the gauge symmetry is broken as SU(N) —
SU(M) x SU(N — M) x U(1). In section 6, we will discuss this point further.

5 Free O(NN) vector model

We may also interpret the results obtained by Shenker and Yin [16] from the point of
view of partial deconfinement, which provides yet another nontrivial consistency check.
We consider the 3d free O(NN) vector model on the two-sphere of unit radius in the O(N)
singlet sector. For simplicity we set the number of flavor Ny to be one. We can repeat
essentially the same argument for generic dimensions d and Ny > 1. The minimal way to
enforce the singlet constraint is through a Lagrange multiplier field. The deconfinement



transition can then be studied by considering the effective action for the Lagrange multiplier
after integrating out all massive excitations. In d = 3, this is equivalent to introducing
a gauge field A, with Chern-Simons action, and taking the zero-coupling limit, and thus
allows a description in forms of Polyakov line phases.

Compared to the matrix model, the biggest difference is the absence of Hagedorn-
behavior in the vector model. Therefore, deconfinement takes place gradually as the energy
increases. Indeed, the Polyakov loop is zero at T' = 0, nonzero at any 7' > 0, and the Gross-
Witten-Wadia transition, which is identified with the transition to complete deconfinement,
takes place at T' = é\/ﬁ

By using b = %, and taking b to be of order one, the distribution of the Polyakov
line phase 6 is written as®
1 20
0)=—+—f(0 5.1
p(6) = 5+ =1 (0), (5.1)
where
(6] - m)*
- . 2
7o) = -+ 2 (52)

At b = boww = g, the GWW transition takes place; the distribution becomes zero at
0 = +m.
We can rewrite p(f) as

2 2 2
T B (101 = )
2w béww b2GWW 2m
% (1 B ) * A - p(0;0 = baww). (5.3)
2m ww Dww 7

This relation, combined with (2.1), suggests

M b?

N 2o (5.4)
GWW

where M is the size of the deconfined sector (see figure 3). Equivalently,

T =bV/N = b(}ww\/ﬂ. (5.5)

Note that the critical temperature of the ‘truncated’ O(M) theory is Tagww(M) =
boww Vv M. Therefore, the identification leads to

1 M M
0, T ="1T; M)=—|(1——|+—"- 0; M). 5.6
pl6.T = T (01)) = 5 (1= 7 ) + Ty - peww (B521) (5:)
8Generalization to Ny > 1 can be obtained by changing the definition of b with b = T %, as long as

N
F <1
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Figure 3. Partial deconfinement in the vector model.

At 1 <« T < Tgww, the energy scales as
E = AT, (5.7)

with an N-independent coefficient A = 16 ((5). Therefore, with T'" = Taww (M), the
relation (2.3) holds, as well as relation (2.2) with S = %AT4. In this way, the Polyakov loop,
energy and entropy are consistently explained by the same M defined by (5.4) and (5.5).
Notice that unlike the previous cases with matrix degrees of freedom, for the free vector
model the critical energy scales with M as Eqww(M) ~ M 3.

We can easily repeat the argument presented in section 3 and section 4 to prove
partial deconfinement. The only difference is that the fields transform in the fundamental
representation.

Combining the results of this section with those of section 4 allows us to perform
a very similar analysis to the weak coupling limit of QCD on S? [17], corresponding to
weakly coupled Yang-Mills plus quarks in the fundamental representation. Again, we can
confirm the existence of a partially deconfined phase. It is interesting to note that partial
deconfinement appears to work without the Zy center symmetry.

Note that the O(N) vector model is a particular example where partial deconfinement
implies positive specific heat, as can be directly inferred from egs. (5.5) and (5.7). Con-
sequently, the transition happens here for a range of temperatures, starting from 7' = 0,
until complete deconfinement occurs at 1" = bowwVN.

6 ‘Spontaneous breaking’ of gauge symmetry

A potentially uncomfortable, but at the same time rather intriguing aspect of partial de-
confinement is the apparent breaking of the SU(N) gauge symmetry.” The aim of this
section is to discuss this point and its potential applications to real world systems. Nat-
urally, in particular the latter implies that some of our points will be rather speculative.
We will frame our discussion in the language introduced in section 3.

9Here and in the following we will not be very picky in our choice of words and refer to the breaking of
the global subgroup as “gauge symmetry breaking”. We refer the reader to [18], where such subtleties are
beautifully addressed.

~10 -



To recall, we have introduced states |E; SU(M)) that alone account for the density of
states at energy F. In order to make the state counting precise, out of |E; SU(M)) we have
constructed SU(NV) invariant states |E)iny in a one-to-one manner. So how does this go in
hand with the notion of symmetry breaking?

To see this clearly, let us take a step back and not gauge the SU(N) symmetry. In
that case, the partition sum runs over states with arbitrarily charged states, and can in
principle allow for saddles with spontaneously broken SU(N) symmetry. However, such
saddles will lead to a gross overestimate of the density of states, since we are required to
count all linearly independent states that can be obtained from SU(N) rotating |E; SU(M))
for arbitrary U as genuinely different entities if the symmetry is global. Luckily, there is
a straightforward interpretation of this overestimate. By construction, only the transfor-
mations in the broken sector SU(N)/[SU(M) x SU(N — M) x U(1)] act nontrivially on
|E;SU(M)). But these are of course nothing but the Nambu-Goldstone modes associated
with the broken symmetries. And here gauge invariance comes to our rescue.

Just like in the Higgs mechanism, the Nambu-Goldstone modes are eliminated from
the spectrum through gauge invariance. There, they are eaten by gauge bosons and be-
come massive. In our case, the resolution is much more mundane, since the details of the
spontaneous symmetry breaking is different from the conventional Higgs mechanism - we
simply declare them to correspond to redundant transformations that do not change the
physical state.

Thus, while through this trick the SU(V) singlet nature of all states is restored, we
may nevertheless use the picture of spontaneously broken gauge symmetry as a ‘convenient
fiction’ [19]. As such, we may attempt to extend it to more general setups with dynamical
gluons, like those considered in the latter sections of the paper. Here, it proves convenient
to fix part of the gauge symmetry, leaving only SU(M) x SU(N — M)xU(1). As long as
we consider only SU(M )-invariant operators in the deconfined block (resp. the SU(N —
M)-invariant operators in the confined block), the system looks totally deconfined (resp.
confined). Off-diagonal blocks of the gauge field, which transform as a bifundamental
field, are not thermally excited, which suggests that they are massive. Probe quarks in the
SU(M) sector are deconfined (i.e. the quark-antiquark pair can be separated without major
energy cost), while those in the SU(N — M) sector are confined. The spectrum is clearly
different compared to the ‘gauge symmetric phases’, which are the completely confined and
completely deconfined phases. The gauge fixing makes the physics more easily accessible
and ‘gauge symmetry breaking’ serves as a convenient fiction.

In refs. [4, 5], the DO-brane matrix model has been studied. This model has scalars,
and the eigenvalues of scalars can escape to infinity along the flat direction. It has been
pointed out that the chain of the gauge symmetry breaking due to Higgsing, which is
associated with the flat direction, naturally leads to negative specific heat. The situation
under consideration is similar to this case, from the point of view of string theory: not
all D-branes are in a bound state. Similar gauge symmetry breaking by Higgsing is the
key ingredient of the Matrix Theory proposal [20] which admits multi-body interactions
to emerge from matrix degrees of freedom. For theories without flat directions, such as
4d N = 4 SYM on S3, we can consider essentially the same situations by using multiple

- 11 -



deconfined blocks. This is reminiscent of the indistinguishability between the Higgsing and
confinement [21]. Again, gauge symmetry breaking provides us with a convenient fiction,
making physics intuitively understandable.

The arguments presented in the last few paragraphs can almost without change be
applied to the O(V) vector model. Here, an O(M ) subsector deconfines at T' = Taww (M),
and the O(V) symmetry is effectively broken down to O(N — M). Note that this is a direct
consequence of the singlet constraint, and rather different in origin from the breaking of
the O(N) symmetry down to O(N — 1) due to condensation of the scalar, as is commonly
considered in the O(N) vector model.

7 Discussions

Once interactions are included, the SU(M )-invariant states are no longer exact energy
eigenstates. However, because partial deconfinement appears to be a good picture in various
interacting theories [1, 2], we find it likely that such an approximation is well-founded and
the rest of the arguments in this paper can be applied without major change.

When a weakly-curved gravity dual is available, the most natural geometric interpre-
tation of the partially deconfined phase would be that the deconfined and confined sectors
describe the interior (or the horizon) and exterior of the black hole, respectively (figure 4).19
Because the confined sector is the same as the ground state up to the 1/N-suppressed ef-
fects, the quantum entanglement expected in the ground state should survive, while in the
deconfined sector the thermal excitations can break the entanglement. We are tempted to
speculate that the strong entanglement in the confined sector is responsible for the emer-
gence of the bulk geometry from the matrix degrees of freedom, along the line suggested by
Van Raamsdonk [23]. Also, this picture suggests that the bulk geometry can be encoded
in the matrices as shown in figure 5, by slicing both sides to the layers in a natural manner
and relating the row/column number and the radial coordinate.!!+!2

Extrapolating our results to small NV and non-vanishing coupling, a natural place to
look for partial deconfinement and spontaneous gauge symmetry breaking is the physics
of heavy-ion collisions. At low density, the thermal ‘transition’ appears to be a rapid
crossover [28], which mimics a thermodynamically stable partially deconfined phase [2],
like for the models discussed in section 5. Therefore, in the cross-over region, partial
deconfinement might be an approximately good description, which by the logic of section 5
implies that gauge symmetry will be broken spontaneously. Close to the critical point,
the deconfined sector would behave like the Hagedorn string. Another interesting possible
consequence is the enhancement of the flavor symmetry, when an SU(2) subgroup of the
SU(3) gauge group is confined or deconfined: because SU(2) is pseudo-real, the flavor
symmetry is enhanced to SU(2Ny) [29, 30]. Such enhancement of symmetry can change

9Some discussions related to this issue can be found in refs. 1, 22].

11t would be interesting to speculate a possible connection bewteen the large- N renormalization [24] and
the holographic renormalization (see ref. [25] for a review).

12The large-N renormalization has been studied for the non-singlet sector of the ¢ = 1 matrix model, and
the existence of the black hole phase with negative specific heat has been reported [26]. In such context, it
would be interesting to generalize our argument to the non-singlet sector.
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deconfined

Exterior
confined

Figure 4. A natural dual gravity interpretation of partial deconfinement.

Figure 5. A possible correspondence between the matrix degrees of freedom (left) and bulk
geometry (right) suggested by partial deconfinement. As the black hole becomes larger, some part
of the bulk geometry is hidden behind the horizon, and some part of the matrices deconfines, making
it natural to identify them. Moreover, integrating out M? color degrees of freedom in the ground
state (completely confining phase), naturally leads to an entanglement entropy of order M?, given
the all-to-all interaction, when % < 1. This is the same order as the entropy of the SU(M)-
deconfined phase, which is the area of the horizon of the small black hole. This is reminiscent of
the observation that the entanglement entropy of two spatial regions is proportional to the area of
the boundary between them [27].

the spectrum drastically. The observations regarding the low-energy behavior of the Quark-
Gluon-Plasma in refs. [31-33] might be related to these scenarios.!

In QCD, the center symmetry does not exist because of the quarks in the fundamen-
tal representation. However, the arguments for partial deconfinement apply in the same
manner, as mentioned in section 5. An intuitive paraphrase for the mechanism is that
if the energy is not large enough to excite all degrees of freedom, only a part of the de-
grees of freedom is excited. Such a symmetry breaking mechanism would apply to other
symmetries as well, whether they are gauged or not. As an example, let us consider 4d
N =4 SYM on S3. The dual gravity description [8] naturally leads to two kinds of small

black hole solutions with negative specific heat: the AdSs-Schwarzschild solution which

13See refs. [34, 35] for a recent debate regarding refs. [31, 32].
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is not localized on S°, and the ‘ten-dimensional’ black hole which is localized on S® [9].
The latter breaks the SO(6) R-symmetry spontaneously. Possibly, this phase diagram can
be explained on the QFT side both by partial deconfinement and another closely related
mechanism. While both solutions are partially deconfined in terms of the color degrees of
freedom, the spontaneous breaking of the flavor symmetry would be due to an enhanced
excitation of one of the scalars X1, Xs, -+, Xg. Such a scenario would allow us to resolve
the puzzling features of the transition pointed out in ref. [36].

In theories without center symmetry, such as QCD, it is difficult to precisely define
‘deconfinement’. In the large-N limit, the jump of the energy from order one to order N2
can serve this purpose. If one can extrapolate our argument to N = 3, the breaking and
restoration of gauge symmetry can give a good definition for deconfinement in real QCD.
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A Some technicalities associated with the gauged Gaussian matrix model

A.1 Energy and entropy

The energy can be obtained from the free energy as E = %BF). There is a subtlety at the
transition point, where |u;| can take any value between 0 and 1. Hence we introduce a
small interaction, which amounts to the following modification of the free energy:

DN?
BF = 5 B —|—N2(1 —D67ﬁ+62)‘U1’2+64N2|U1‘4+"' . (A.1)

Here €5 and ¢4 are functions of 5, and the higher order terms represented by dots will be
negligible in the ensuing analysis. Let T' = T! be the solution of f(8) =1 — De™? + e =0,
and introduce AS by A =8 — T%’

o(Br)

By solving the saddle point equation O] = 0, the saddle point can be written as

J8)  Fahas
24 2¢€4 ’ (A-2)

Jur [ =
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and the free energy becomes

_ DN?8_ N*(J(T171)?

2
pF="" (s (A.3)
Therefore,
DN?  N*(f'(1;71))? N2(f(T7 )€ n av2
B=— 2¢4 AP+ 4¢3 (A6)
2 20 £ (I—1\\2
_ DN NAFIR
2 264
2
2
L PN N (€3 — 0) (A.4)

Here we have assumed €4 and €} are of the same order, which is true in reasonable examples.
The final form does not depend on the detail of €5 and €4.

A.2 The nonzero norm of |E)j,y,

In addition to |E)iny, there is another canonical mapping between the SU(M)- and SU(NV)-
invariant states, which can further be used to show that the state [ dUU (|E;SU(M)))
has non-zero norm. Such canonical extension works as follows. We start with the state
|E,SU(M)), which as explained above has the general form

M2-1
[BSUM) =" 3" ergerer®? a0, 10) (A.5)
o'\ p...=1
It is SU(M)-invariant since the adjoint indices o, §’, - - - are all contracted. The coefficients

cryek-% B is made of the Kronecker delta and the structure constant of SU(M), and
transform covariantly under SU(M). We can obtain the SU(IV) generalization of these
coefficients by using the Kronecker delta and structure constant of SU(N). Equivalently,
we replace Trysxar(aray---) with Tryxn(aray---).

Now the simple extension leads to an SU(N)-invariant state!

N2-1

B SUN) =" > e af al o 10) (A.6)
a,fB,...=1

Further notice that since the o and the o” sectors are orthogonal, the inner product
(E',SU(N)|E,SU(M)) is automatically of the form of norm square since the o sector
operators in (E’,SU(N)|, which enters in the sum, move freely to the right and annihilate
the ground state. This means

(E',SU(N)|E,SU(M)) = (E,SU(M)|E,SU(M)) >0 . (A7)

Note that this state is not an energy eigenstate in generic theories with interactions.
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With this extension we can proceed to show that the state [dUU (|E;SU(M))) is
non-zero. For this we consider

(B, 8U)| [ avu(Essuon)
_ / dU ((E',SU(N)U) (| E:SU(M)))

_ (/ dU) (', SU(N)|E: SU(M))
— VOl(SU(N)) - (B, SU(M)|E, SU(M)) > 0. (A.8)

This means the left hand side is non-zero, which proves that [dU U (|E;SU(M))) cannot
vanish.

Let us also confirm the linear independence. We take the orthonormal basis of the
SU(M) theory |E,i,SU(M)), where i is a label which distinguishes the states when the
energy is degenerate. From this, we have two kinds of the SU(N)-extensions |E,)iny
and |E,i,SU(N)) as explained above. These two extensions have a simple one-to-one
correspondence because the inner product (E,i, SU(N)|E’, j)iny is nonzero only when E =
E’ and i = j. The same relation also shows that the |E, )i, are linearly independent.

B Hamiltonian formulation on lattice

Let us first recall the Hamiltonian formulation of lattice gauge theory by Kogut-
Susskind [37] on 3d flat space. Three spatial directions are discretized, while time is
continuous. The Hamiltonian consists of the electric term ﬁE and the magnetic term fIM
respectively, H = Hg + Hy, where

N2-1

ﬁE_‘;ZZZ( ) (B.1)

X

and

LYY T (0002140} 24508 2) - (B.2)

agYM Z p<v

Here U, ,.(Z) is the unitary link variable connecting # and & + fi, where [ is the unit vector
along the p-direction (@ = z,y or z), and a is the lattice spacing. The commutation
relations are given by!®

(£} 2 U, 7] = agymduwdzg - U, 7,
[ u,iaE g] [Uu:raU ] [U}Lx?U ] 0. (B?’)

Here 7, (e = 1,2, -+, N2—1) are generators of the SU(V) algebra which satisfy Tr(7,75) =
SaBr Don T i Tk = §ilsik — ‘WT‘W. The Hamiltonian described above corresponds to the

Yntuitively, U, z ~ " 9YMAL 7o with the Hermitian gauge field A, z, and [Aﬁf, E‘f 7l = 16u0z500p.
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Ay = 0 gauge. Correspondingly, the gauge singlet constraint is imposed by hand, choosing
states to be gauge-invariant. This can be achieved by acting with Wilson loops W =
Tr (Uu xU,, AR Up,x ﬁ) on the vacuum. The inner product is defined by using the Haar
measure on the group manifold.

We separate E - into the SU(M) part Ef ; and the rest £ .. Correspondingly, we

can introduce U/; zand U L’ = such that

UH U/ U// +O( 2)

w2z
[EA;Of,IaBa UL,@] agy MmO 0z5T" ULy’ [ uaszL/ A =0,

(YU, g =0, (B9 UL A = agymbudzgm® UL,
[r", U} 5] =0, [, U 5] = 0. (B.4)

The states in the SU(M) sector |E;SU(M)) can be obtained by acting with the loop
consisting of U’ on the gauge-invariant vacuum, which in this case corresponds to the
Fock vacuum of the Kaluza-Klein modes. (As gyn becomes smaller, we can take such
states parametrically close to the energy eigenstates of the full Hamiltonian.) The SU(N)
transformation on U’ and U” can be defined in a straightforward manner, and, by using
them, also |E)iny.

Another SU(N)-extension |E’; SU(N)) can be defined by replacing U”’s in |E; SU(M))
with U’s. Through it, we can derive a relation analogous to (A.7).

The Hamiltonian given above applies to flat space, including the torus compactification.
In principle, the compactification on the sphere can be achieved as follows. ' Firstly, we
make a lattice with the topology of sphere. Locally, the plaquette Uu xU,, IJF#U LU s

w4+ v,@
identified with e’ 9P w - where F;w is the field strength. Therefore, the magnetic term
on the sphere can be obtained by

Hy = 4a Z Z D@
Fim T po

<Tr | (1= Ozl a4l f+pU;x)) (1 ~ (Ol 0] 21,01 )] - (B5)

Here we have assumed the lattice with the topology of the sphere, and choose the metric
g"?(Z) appropriately so that the sphere is actually realized. The electric term is

=% 3 Vo S (i) (5.6)

C More on the properties of partial deconfinement

In this appendix we consider the cases in which the assumptions made in section 2 can
fail. Probably the simplest example is the bosonic Yang-Mills matrix model (dimensional

16This is rarely done because the parameter fine tuning needed for achieving the desired continuum limit
is technically very difficult.
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reduction of pure Yang-Mills to (0 + 1) dimension). In this theory, the energy scale is de-
termined by the 't Hooft coupling A = g%MN , which has the dimension of (mass)3. Based
on dimensional counting, the deconfinement temperature (from confinement to partial de-
confinement) is proportional to A1/3, and if we naively truncate the theory to SU(M), then
it changes to (g2, M)Y3 = A3(M/N)Y/3. Clearly, a naive truncation is not working.
Another basic example is three-dimensional pure Yang-Mills on the flat noncompact space.
The energy scale is set by the 't Hooft coupling A = g%MN , which has the dimension of
mass, and the deconfinement temperature scales as g%MM = A X % Similar complication
can arise when the coupling runs with the energy scale, such as in QCD.

In these cases, if we assume that the energy is described by the zero-point energy on
top of the M? units of the excitations,

E = aN? 4 b(T)M?, (C.1)

would be a natural relation. Note that M is a function of 7. Based on the numerical
simulation on the lattice, we know that the transition takes place in a narrow temperature
range. Therefore the temperature dependence of b(T) in the transition region can be
neglected. In that case the situation is close to the free theories studied in section 3
and section 4. The condition for the Polyakov loop phases (2.1) is expected by the same
assumption. For the bosonic matrix model, the result of the numerical simulation [38]
reproduces these relations rather precisely.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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