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1 Introduction

In this paper, we study the mechanism of the deconfinement transition in large-N gauge

theory. Concretely, we establish the existence of the recently proposed partially deconfined

phase [1–3], in simple, analytically tractable examples: the Gaussian matrix model, weakly

coupled Yang-Mills theory on the three-sphere, and the free gauged vector model on the

two-sphere.

Partial deconfinement means that a part of the SU(N) gauge group, which we denote by

SU(M), deconfines, while the rest of the degrees of freedom are not excited; see figure 1. It

applies to other groups such as O(N) as well. Partial deconfinement has been introduced

in order to explain the thermal properties of 4d N = 4 super Yang-Mills on the three-

sphere [1].1 According to the AdS/CFT duality [7], the thermodynamics of 4d N = 4 super

Yang-Mills theory is equivalent to that of the black hole in AdS5×S5 [8]. Correspondingly,

there must exist a phase dual to the small black hole which behaves as E ∼ N2T−7 [9].

Partial deconfinement naturally explains this behavior [1, 2] due to the changing number

of degrees of freedom participating in the dynamics [4, 5].

1A similar idea with the same motivation, applied to different models, can be found in refs. [4, 5] and

ref. [6].
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Figure 1. Partial deconfinement in the gauge sector and adjoint matters. Only the M ×M -block

shown in red is excited. The consistency of this cartoon picture with the gauge singlet constraint

is discussed around (3.12).

In ref. [2], it has been conjectured that partial deconfinement should take place in

any gauge theory at sufficiently large N .2 It is natural to identify the Gross-Witten-

Wadia (GWW) transition [11, 12], which is characterized by the formation of a gap in the

distribution of the Polyakov line phases, with the transition from the partially deconfined

phase to the completely deconfined phase [2]. The deconfinement transition in the usual

sense, where the distribution changes from uniform to nonuniform, corresponds to the

Hagedorn transition [13].

The idea of partial deconfinement has withstood a number of consistency checks [1, 2],

but no direct evidence, let alone an explicit construction, has been given so far. This gap

will be filled in this paper. We will show how in simple models, the partially deconfined

states can be explicitly constructed in the Hilbert space. As we will see, the entropy is

precisely explained by such states.

Confinement in the theories we consider is due to a singlet constraint that is inherited

from their interacting ancestors. Despite their simple nature, the models exhibit a rich

thermal structure [8, 14, 15]. At low temperatures, their free energies are O(N0) remi-

niscent of a completely confined phase where only singlet states can be excited. At high

temperatures, on the other hand, their free energy becomes O(N) for fundamental matter,

or O(N2) for adjoint matter, implying that all individual degrees of freedom are excited.

In this paper, we will demonstrate that the transition from low to high temperature phases

goes through a phase of partial deconfinement.

We start with explaining basic properties of the partially deconfined phase in sec-

tion 2. Then in section 3, section 4 and section 5 we show partial deconfinement for the

weak coupling limit of the matrix model, the weakly coupled Yang-Mills theory and the

free gauged O(N) vector model, respectively. Our arguments can be extended to interact-

2This conjecture originates from the startling resemblance between the dynamics of D-branes and the

phenomenological model of the formation of ant trails [10]. See ref. [2] for details.
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ing theories provided an assumption (‘truncation to M colors’), which will be explained

explicitly, remains true. In section 6, we discuss in which sense the partially deconfined

phase spontaneously breaks gauge symmetry. Section 7 is devoted to the discussions.

2 Basic properties of the partially deconfined phase

We begin by introducing the basic concept of partial deconfinement at the hand of several

defining properties. These have been used for a consistency check of the mechanism [1, 2]

and will play important roles in this paper as well.

For concreteness, we consider a confining SU(N) gauge theory at large N , and an

SU(M) subgroup with M
N of order N0, s.t. we can ignore both 1/M and 1/N corrections.

Let us further assume that the SU(M) sector can be described well by ignoring interactions

with the rest, as is the case for all theories studied in this paper.3 In this case, we can

truncate the N×N matrices to M×M [1], leading to an SU(M) gauge theory that describes

equivalent physics at low energies. Eventually, however, as we increase the energy, the

M ×M sector deconfines, and we need a larger subgroup to capture the physics of the full

SU(N) theory. This becomes clear when considering the free energy. In the SU(M) sector

it remains of order M2, while in the full SU(N) theory it grows towards N2. The fact that

the full SU(N) theory is described by gradually growing completely deconfined subgroups

is the essence of partial deconfinement. As we have stated before, it is natural to assume

that complete deconfinement sets in at the critical point of the GWW transition [2]. Hence,

the SU(M)-deconfined sector of the SU(N) theory should be seen as the GWW-point of

the SU(M)-truncated theory [2].

It immediately follows that M of the Polyakov loop phases should follow the distribu-

tion at the GWW transition, while the other N −M phases are distributed uniformly as

in the confined phase. Namely, we expect the distribution of the phase θ (−π ≤ θ ≤ π)

to be [2]

ρ(θ) =

(
1− M

N

)
ρconfine(θ) +

M

N
· ρGWW(θ;M)

=
1

2π

(
1− M

N

)
+
M

N
· ρGWW(θ;M). (2.1)

All distributions above are normalized such that the integral from −π to +π is 1. Here,

ρconfine(θ) denotes the distribution in the confined phase, ρconfine(θ)= 1
2π , while ρGWW(θ;M)

denotes the distribution at the GWW point of the SU(M) theory. It can in principle depend

on M , but in the examples we study in this paper, there is no M dependence.

Since M � 1, the entropy S is dominated by the deconfined sector and, as we have

explained above, it is natural to assume that the SU(M) deconfined sector is approximated

by the SU(M) theory at the GWW transition. Therefore, one should expect [1, 2]

S = SGWW(M), (2.2)

3There are exceptions that require a modified set of criteria. We explain this in detail in appendix C.
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where the right hand side represents the entropy of the SU(M) theory at the GWW tran-

sition. Other quantities, such as the energy, should behave in the same manner, namely

E = EGWW(M) (2.3)

up to the zero-point energy [1, 2]. The fact that eqs. (2.1), (2.2) and (2.3) are satisfied by

a single M serves as a strong consistency check.

3 Gauged Gaussian matrix model

We begin with the simplest possible example, the gauged Gaussian matrix model. The

Euclidean action is given by

S = N
D∑
I=1

∫ β

0
dtTr

(
1

2
(DtXI)

2 +
1

2
X2
I

)
, (3.1)

where the number of matrices D is larger than 1. The circumference of the temporal

circle β is related to temperature T by β = 1
T . The covariant derivative is defined by

DtXI = ∂tXI − i[At, XI ], where At is the gauge field which is responsible for the gauge

singlet constraint.

The free energy is given by

βF = − logZ(β)

=
N2D

2
log
(
det
(
−D2

0 + 1
))
− N2

2
log
(
det
(
−D2

0

))
=
DN2β

2
+N2

∞∑
n=1

1−Dxn

n
|un|2, (3.2)

where x = e−β , un = 1
NTrPn, and P is the Polyakov line operator obtained from the

holonomy of At around the thermal circle. In the second line, N2D
2 log

(
det
(
−D2

0 + 1
))

is the contribution from D scalars, while N2

2 log
(
det
(
−D2

0

))
is the Faddeev-Popov term

corresponding to the static diagonal gauge. In the last line we have used [15]

1

2
log
(
det
(
−D2

0 + ω2
))

=
βω

2
−
∞∑
n=1

xωn

n
|un|2. (3.3)

The un’s of a stable configuration of the model should minimize the free energy. At

T < Tc = 1
logD , |un| = 0 (n ≥ 1) is favored. At T = Tc, |u1| can take any value from 0

to 1
2 , while u2, u3, · · · remain zero, without changing the free energy. This is a first order

deconfinement transition. In figure 2, we have shown how the Polyakov loop P , entropy S

and energy E depend on temperature.

Let us consider the deconfinement transition at T = Tc.

• The Polyakov loop P = | 1
NTrP| = |u1| can take any value between 0 and 1

2 at

T = Tc. From the microcanonical viewpoint, P = 0, T = Tc is the transition point

from confinement to deconfinement, and P = 1
2 , T = Tc is the GWW transition. We

will interpret them as the transitions from confinement to partial deconfinement, and

from partial deconfinement to complete deconfinement.
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Figure 2. Cartoon pictures of the temperature dependence of the Polyakov loop P , entropy S

and energy E in the gauged Gaussian matrix model. Blue, orange and red lines are identified with

the confined, partially deconfined and completely deconfined phases, respectively.

• As derived in appendix A.1, at T = Tc, the energy can be written as

E(T = Tc, P,N) =
DN2

2
+N2P 2. (3.4)

The first term is the zero-point energy.

• The entropy S = β(E − F ) is

S(T = Tc, P,N) = N2P 2 logD. (3.5)

• For any N , the distribution of the Polyakov line phases at the critical temperature is4

ρ(θ) =
1

2π
(1 + 2P cos θ) = (1− 2P ) · 1

2π
+ 2P · 1

2π
(1 + cos θ) , (3.6)

up to 1/N corrections. In particular, the distribution at the GWW transition is

ρGWW(θ;N) =
1

2π
(1 + cos θ) . (3.7)

These results are consistent with (2.1), (2.2) and (2.3), with the identification of
M
2N = P , SGWW(M) = logD

4 M2 and EGWW(M) = M2

4 up to the zero-point energy DN2

2 .

Therefore, partial deconfinement is a promising description of this phase transition.

Next we construct all the SU(M) partially deconfined states in an SU(N)-invariant

manner, and show that they precisely explain the entropy of the SU(N) theory at E =

EGWW(M).5 To this end, we will first, in an abstract manner, identify the orthonormal

set of states in the SU(M) theory that reproduce the entropy eq. (3.5). Naturally, these

are precisely the SU(M) singlet states. Next, we extend them to orthonormal Hamiltonian

eigenstates in the full SU(N) singlet theory. To leading order in 1/M and 1/N , these

4Strictly speaking, there is an ambiguity associated with the center symmetry, namely the constant shift

of all the phases. We fixed the center symmetry such that the Polyakov loop becomes real and non-negative,

i.e. P = |P |.
5Berenstein [3] performed this task for the case of D = 2. He pointed out that the states with E ∼M2

can be represented by the Young tableaux with approximately M rows and columns, and that they can be

identified with the partially deconfined states. Below, we will give a more precise counting, including the

O(1) factors. Our method can easily be generalized to other theories.
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comprise the entire set of states that reproduces the correct scaling for the energy (3.4)

and entropy (3.5). Remarkably, we will along the way encounter a notion according to

which the SU(N) symmetry is ‘spontaneously broken’ to SU(M)× SU(N −M)×U(1).

Concretely, let us recall how the theory is defined in the Hamiltonian formulation. The

Hamiltonian is given by

Ĥfree =
∑
I

Tr

(
1

2
P̂ 2
I +

1

2
X̂2
I

)
=
∑
I,α

(
1

2
P̂ 2
Iα +

1

2
X̂2
Iα

)
, (3.8)

where P̂ij =
∑N2−1

α=1 P̂ατ
α
ij , X̂ij =

∑N2−1
α=1 X̂ατ

α
ij , with properly normalized SU(N) genera-

tors τα, and the commutation relation is given by [X̂Iα, P̂Jβ ] = iδIJδαβ . Physical states

are identified as those that satisfy the SU(N)-singlet condition. Such singlet states can be

constructed for example as Tr(â†I â
†
I′ · · · )|0〉, where the ground state |0〉 is given as usual by

âIα|0〉 = 0.

We now construct the SU(M) subsector. To this end, we separate the SU(N) genera-

tors into an SU(M) part τα
′

(red block in figure 1) and the rest τα
′′

(blue block in figure 1).

Similarly, we also separate the Hamiltonian into an SU(M) part Ĥ ′free and the rest Ĥ ′′free.

Explicitly, we have

Ĥ ′free =
∑
I,α′

(
1

2
P̂ 2
Iα′ +

1

2
X̂2
Iα′

)
, Ĥ ′′free =

∑
I,α′′

(
1

2
P̂ 2
Iα′′ +

1

2
X̂2
Iα′′

)
. (3.9)

By construction, the density of states of an SU(M)-singlet theory correctly reproduces the

energy and entropy (3.4) and (3.5). In the full SU(N) Hilbert space, we construct the

SU(M)-invariant states by acting on the vacuum only with α′-operators â†Iα′ . Let us refer

to them as |E; SU(M)〉. Due to the absence of the interaction term, they are eigenstates

of the full Hamiltonian Ĥfree = Ĥ ′free + Ĥ ′′free, with6

Ĥ ′free|E; SU(M)〉 = E|E; SU(M)〉. (3.10)

and

Ĥ ′′free|E; SU(M)〉 =
D(N2 −M2)

2
|E; SU(M)〉. (3.11)

In order to project |E; SU(M)〉 into the SU(N) singlet sector, we consider the super-

position of such states over all possible SU(N) gauge transformations U that rotate the

ladder operators â,

|E〉inv ≡ N−1/2

∫
dU U (|E; SU(M)〉) , (3.12)

where the integral runs over SU(N) by using the Haar measure, and N is a normaliza-

tion factor. It is not difficult to see that |E〉inv is not zero, and that |E〉inv’s made of

different SU(M)-invariant states are linearly independent. We refer the interested reader

6This is the only place where we use the assumption that the interaction is absent.
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to section A.2 for a detailed discussion. Since by construction, |E〉inv is still an eigen-

state of Ĥfree with the same energy, we have constructed an explicit mapping between the

eigenstates of SU(M) and SU(N) theories in a gauge-invariant manner, without changing

the energy. By using the states |E = EGWW(M)〉inv, the entropy of the SU(N) theory is

explained, and hence, no other states are needed.

The fact that M eigenvalues of the constraining matrix are deconfined, while N −M
are still confined, points to an effective breaking of the SU(N) symmetry down to an

SU(M)× SU(N −M)×U(1) subgroup. We will discuss this point in detail in section 6.

Why SU(M)×SU(N−M)×U(1)? If we just demanded the entropy to be S ∼M2 for

a given energy, deconfining a SU(M1)×SU(M2)×· · · -sector with M2
1 +M2

2 +· · · = M2 would

appear equally valid. However in order to explain the value of the Polyakov loop, we are

bound to consider exactly the SU(M)-deconfined phase. In order to understand why this

is the case, note that we have introduced a small interaction term in order to derive (3.4)

and (3.5) (see appendix A.1). With this interaction, Polyakov line phases typically attract

each other and prefer a single bound state. Therefore, SU(M)-deconfinement minimizes

the free energy, as opposed to all other patterns. The same comment applies to our next

example explained in section 4.

4 Weakly coupled Yang-Mills theory on S3

Another theory in which the mechanism of partial deconfinement is explicitly tractable is

given by the free limit of Yang-Mills on S3. This theory can be solved analytically, and

captures important features of the deconfinement transition [14, 15].

Due to the curvature of the spatial S3, all the modes except for the Polyakov line

phases become massive and can be integrated out to construct an effective action for the

Polyakov line phases. The results relevant for us are as follows [14, 15].

• There is a first order deconfinement phase transition at T = Tc. The Polyakov

loop P can take any value between 0 and 1
2 at the critical temperature. From the

microcanonical viewpoint, P = 0, T = Tc is the transition point from the confinement

to deconfinement, and P = 1
2 , T = Tc is the GWW transition. We will interpret

them as the transition from confinement to partial deconfinement, and from partial

deconfinement to complete deconfinement.

• At the critical temperature, the energy can be written as7

E(T = Tc, P,N) = EGWW(N)× |2P |2 ∝ N2 × |2P |2, (4.1)

up to the zero-point energy which is proportional to N2. The entropy is

S(T = Tc, P,N) = SGWW(N)× |2P |2 ∝ N2 × |2P |2. (4.2)

7As before, we are considering an infinitesimally small interaction, rather than considering literally ‘free’

theory.
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• For any large N , the distribution of the Polyakov line phases at the critical temper-

ature is

ρ(T = Tc, θ;N) =
1

2π
(1 + 2P cos θ) (4.3)

up to 1/N corrections. In particular, the distribution at the GWW transition is

ρGWW(θ;N) =
1

2π
(1 + cos θ) . (4.4)

These results are consistent with (2.1), (2.2) and (2.3), with the identification of P =
M
2N . Therefore, partial deconfinement is a promising description of this phase transition.

In order to construct the partially deconfined states explicitly, we can repeat the

argument presented in section 3. Namely we construct all SU(M) partially deconfined

states in an SU(N)-invariant manner, and show that the entropy of the SU(N) theory at

E = EGWW(M) is explained precisely by those states. Let us use φ̂α and π̂α to denote

the fields and the conjugate momenta. As before, we split them into two sets: the SU(M)

subsector (φ̂α′ , π̂α′), and the rest (φ̂α′′ , π̂α′′). We start with the eigenstates of the trun-

cated SU(M) theory, which are obtained by acting only with φ̂α′ and π̂α′ on the SU(N)

invariant perturbative vacuum. At the transition point to deconfinement for the SU(M)

theory, there are by construction precisely enough such states with energy EGWW(M) to

explain the entropy S(E = EGWW(M)) = SGWW(M).

In line with section 3, we can trivially uplift the states to eigenstates of the SU(N)

theory with the same energy, up to zero-point contributions. Moreover, integrating over all

gauge transformations on the three-sphere will project onto the SU(N) singlet sector. Ex-

plicitly, due to the gauge invariance of the Hamiltonian, |E〉inv≡N−1/2
∫

[dU ]U(|E; SU(M)〉)
is an SU(N)-invariant eigenstate of Ĥfree when the integral is taken over the gauge trans-

formation on the three-sphere.

Thus, we have shown that there are just enough number of states in the ‘SU(M)-

deconfined’ sector. Correspondingly, no further macroscopic contributions can arise from

other sectors, since this would contradict the analytic results above.

The argument in this section did not specify the regularization. For those who have

concern about this point, we explain the lattice regularization in appendix B.

Again, we are tempted to interpret that the gauge symmetry is broken as SU(N) →
SU(M)× SU(N −M)×U(1). In section 6, we will discuss this point further.

5 Free O(N) vector model

We may also interpret the results obtained by Shenker and Yin [16] from the point of

view of partial deconfinement, which provides yet another nontrivial consistency check.

We consider the 3d free O(N) vector model on the two-sphere of unit radius in the O(N)

singlet sector. For simplicity we set the number of flavor Nf to be one. We can repeat

essentially the same argument for generic dimensions d and Nf > 1. The minimal way to

enforce the singlet constraint is through a Lagrange multiplier field. The deconfinement

– 8 –
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transition can then be studied by considering the effective action for the Lagrange multiplier

after integrating out all massive excitations. In d = 3, this is equivalent to introducing

a gauge field Aµ with Chern-Simons action, and taking the zero-coupling limit, and thus

allows a description in forms of Polyakov line phases.

Compared to the matrix model, the biggest difference is the absence of Hagedorn-

behavior in the vector model. Therefore, deconfinement takes place gradually as the energy

increases. Indeed, the Polyakov loop is zero at T = 0, nonzero at any T > 0, and the Gross-

Witten-Wadia transition, which is identified with the transition to complete deconfinement,

takes place at T =
√

3
π

√
N .

By using b = T√
N

, and taking b to be of order one, the distribution of the Polyakov

line phase θ is written as8

ρ(θ) =
1

2π
+

2b2

π
f(θ), (5.1)

where

f(θ) = −π
2

12
+

(|θ| − π)2

4
. (5.2)

At b = bGWW =
√

3
π , the GWW transition takes place; the distribution becomes zero at

θ = ±π.

We can rewrite ρ(θ) as

ρ(θ) =
1

2π
− πb2

6
+
b2 (|θ| − π)2

2π

=
1

2π

(
1− b2

b2GWW

)
+

b2

b2GWW

·
b2GWW (|θ| − π)2

2π

=
1

2π

(
1− b2

b2GWW

)
+

b2

b2GWW

· ρ(θ; b = bGWW). (5.3)

This relation, combined with (2.1), suggests

M

N
=

b2

b2GWW

, (5.4)

where M is the size of the deconfined sector (see figure 3). Equivalently,

T = b
√
N = bGWW

√
M. (5.5)

Note that the critical temperature of the ‘truncated’ O(M) theory is TGWW(M) =

bGWW

√
M . Therefore, the identification leads to

ρ(θ, T = TGWW(M)) =
1

2π

(
1− M

N

)
+
M

N
· ρGWW(θ;M). (5.6)

8Generalization to Nf > 1 can be obtained by changing the definition of b with b = T

√
Nf
N

, as long as
Nf
N
� 1.
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Figure 3. Partial deconfinement in the vector model.

At 1� T ≤ TGWW, the energy scales as

E = AT 5, (5.7)

with an N -independent coefficient A = 16 ζ(5). Therefore, with T = TGWW(M), the

relation (2.3) holds, as well as relation (2.2) with S = 5
4AT

4. In this way, the Polyakov loop,

energy and entropy are consistently explained by the same M defined by (5.4) and (5.5).

Notice that unlike the previous cases with matrix degrees of freedom, for the free vector

model the critical energy scales with M as EGWW(M) ∼M
5
2 .

We can easily repeat the argument presented in section 3 and section 4 to prove

partial deconfinement. The only difference is that the fields transform in the fundamental

representation.

Combining the results of this section with those of section 4 allows us to perform

a very similar analysis to the weak coupling limit of QCD on S3 [17], corresponding to

weakly coupled Yang-Mills plus quarks in the fundamental representation. Again, we can

confirm the existence of a partially deconfined phase. It is interesting to note that partial

deconfinement appears to work without the ZN center symmetry.

Note that the O(N) vector model is a particular example where partial deconfinement

implies positive specific heat, as can be directly inferred from eqs. (5.5) and (5.7). Con-

sequently, the transition happens here for a range of temperatures, starting from T = 0,

until complete deconfinement occurs at T = bGWW

√
N .

6 ‘Spontaneous breaking’ of gauge symmetry

A potentially uncomfortable, but at the same time rather intriguing aspect of partial de-

confinement is the apparent breaking of the SU(N) gauge symmetry.9 The aim of this

section is to discuss this point and its potential applications to real world systems. Nat-

urally, in particular the latter implies that some of our points will be rather speculative.

We will frame our discussion in the language introduced in section 3.

9Here and in the following we will not be very picky in our choice of words and refer to the breaking of

the global subgroup as “gauge symmetry breaking”. We refer the reader to [18], where such subtleties are

beautifully addressed.
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To recall, we have introduced states |E; SU(M)〉 that alone account for the density of

states at energy E. In order to make the state counting precise, out of |E; SU(M)〉 we have

constructed SU(N) invariant states |E〉inv in a one-to-one manner. So how does this go in

hand with the notion of symmetry breaking?

To see this clearly, let us take a step back and not gauge the SU(N) symmetry. In

that case, the partition sum runs over states with arbitrarily charged states, and can in

principle allow for saddles with spontaneously broken SU(N) symmetry. However, such

saddles will lead to a gross overestimate of the density of states, since we are required to

count all linearly independent states that can be obtained from SU(N) rotating |E; SU(M)〉
for arbitrary U as genuinely different entities if the symmetry is global. Luckily, there is

a straightforward interpretation of this overestimate. By construction, only the transfor-

mations in the broken sector SU(N)/[SU(M) × SU(N −M) × U(1)] act nontrivially on

|E; SU(M)〉. But these are of course nothing but the Nambu-Goldstone modes associated

with the broken symmetries. And here gauge invariance comes to our rescue.

Just like in the Higgs mechanism, the Nambu-Goldstone modes are eliminated from

the spectrum through gauge invariance. There, they are eaten by gauge bosons and be-

come massive. In our case, the resolution is much more mundane, since the details of the

spontaneous symmetry breaking is different from the conventional Higgs mechanism - we

simply declare them to correspond to redundant transformations that do not change the

physical state.

Thus, while through this trick the SU(N) singlet nature of all states is restored, we

may nevertheless use the picture of spontaneously broken gauge symmetry as a ‘convenient

fiction’ [19]. As such, we may attempt to extend it to more general setups with dynamical

gluons, like those considered in the latter sections of the paper. Here, it proves convenient

to fix part of the gauge symmetry, leaving only SU(M) × SU(N −M)×U(1). As long as

we consider only SU(M)-invariant operators in the deconfined block (resp. the SU(N −
M)-invariant operators in the confined block), the system looks totally deconfined (resp.

confined). Off-diagonal blocks of the gauge field, which transform as a bifundamental

field, are not thermally excited, which suggests that they are massive. Probe quarks in the

SU(M) sector are deconfined (i.e. the quark-antiquark pair can be separated without major

energy cost), while those in the SU(N −M) sector are confined. The spectrum is clearly

different compared to the ‘gauge symmetric phases’, which are the completely confined and

completely deconfined phases. The gauge fixing makes the physics more easily accessible

and ‘gauge symmetry breaking’ serves as a convenient fiction.

In refs. [4, 5], the D0-brane matrix model has been studied. This model has scalars,

and the eigenvalues of scalars can escape to infinity along the flat direction. It has been

pointed out that the chain of the gauge symmetry breaking due to Higgsing, which is

associated with the flat direction, naturally leads to negative specific heat. The situation

under consideration is similar to this case, from the point of view of string theory: not

all D-branes are in a bound state. Similar gauge symmetry breaking by Higgsing is the

key ingredient of the Matrix Theory proposal [20] which admits multi-body interactions

to emerge from matrix degrees of freedom. For theories without flat directions, such as

4d N = 4 SYM on S3, we can consider essentially the same situations by using multiple
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deconfined blocks. This is reminiscent of the indistinguishability between the Higgsing and

confinement [21]. Again, gauge symmetry breaking provides us with a convenient fiction,

making physics intuitively understandable.

The arguments presented in the last few paragraphs can almost without change be

applied to the O(N) vector model. Here, an O(M) subsector deconfines at T = TGWW (M),

and the O(N) symmetry is effectively broken down to O(N−M). Note that this is a direct

consequence of the singlet constraint, and rather different in origin from the breaking of

the O(N) symmetry down to O(N − 1) due to condensation of the scalar, as is commonly

considered in the O(N) vector model.

7 Discussions

Once interactions are included, the SU(M)-invariant states are no longer exact energy

eigenstates. However, because partial deconfinement appears to be a good picture in various

interacting theories [1, 2], we find it likely that such an approximation is well-founded and

the rest of the arguments in this paper can be applied without major change.

When a weakly-curved gravity dual is available, the most natural geometric interpre-

tation of the partially deconfined phase would be that the deconfined and confined sectors

describe the interior (or the horizon) and exterior of the black hole, respectively (figure 4).10

Because the confined sector is the same as the ground state up to the 1/N -suppressed ef-

fects, the quantum entanglement expected in the ground state should survive, while in the

deconfined sector the thermal excitations can break the entanglement. We are tempted to

speculate that the strong entanglement in the confined sector is responsible for the emer-

gence of the bulk geometry from the matrix degrees of freedom, along the line suggested by

Van Raamsdonk [23]. Also, this picture suggests that the bulk geometry can be encoded

in the matrices as shown in figure 5, by slicing both sides to the layers in a natural manner

and relating the row/column number and the radial coordinate.11,12

Extrapolating our results to small N and non-vanishing coupling, a natural place to

look for partial deconfinement and spontaneous gauge symmetry breaking is the physics

of heavy-ion collisions. At low density, the thermal ‘transition’ appears to be a rapid

crossover [28], which mimics a thermodynamically stable partially deconfined phase [2],

like for the models discussed in section 5. Therefore, in the cross-over region, partial

deconfinement might be an approximately good description, which by the logic of section 5

implies that gauge symmetry will be broken spontaneously. Close to the critical point,

the deconfined sector would behave like the Hagedorn string. Another interesting possible

consequence is the enhancement of the flavor symmetry, when an SU(2) subgroup of the

SU(3) gauge group is confined or deconfined: because SU(2) is pseudo-real, the flavor

symmetry is enhanced to SU(2Nf ) [29, 30]. Such enhancement of symmetry can change

10Some discussions related to this issue can be found in refs. [1, 22].
11It would be interesting to speculate a possible connection bewteen the large-N renormalization [24] and

the holographic renormalization (see ref. [25] for a review).
12The large-N renormalization has been studied for the non-singlet sector of the c = 1 matrix model, and

the existence of the black hole phase with negative specific heat has been reported [26]. In such context, it

would be interesting to generalize our argument to the non-singlet sector.
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Figure 4. A natural dual gravity interpretation of partial deconfinement.

Figure 5. A possible correspondence between the matrix degrees of freedom (left) and bulk

geometry (right) suggested by partial deconfinement. As the black hole becomes larger, some part

of the bulk geometry is hidden behind the horizon, and some part of the matrices deconfines, making

it natural to identify them. Moreover, integrating out M2 color degrees of freedom in the ground

state (completely confining phase), naturally leads to an entanglement entropy of order M2, given

the all-to-all interaction, when M
N � 1. This is the same order as the entropy of the SU(M)-

deconfined phase, which is the area of the horizon of the small black hole. This is reminiscent of

the observation that the entanglement entropy of two spatial regions is proportional to the area of

the boundary between them [27].

the spectrum drastically. The observations regarding the low-energy behavior of the Quark-

Gluon-Plasma in refs. [31–33] might be related to these scenarios.13

In QCD, the center symmetry does not exist because of the quarks in the fundamen-

tal representation. However, the arguments for partial deconfinement apply in the same

manner, as mentioned in section 5. An intuitive paraphrase for the mechanism is that

if the energy is not large enough to excite all degrees of freedom, only a part of the de-

grees of freedom is excited. Such a symmetry breaking mechanism would apply to other

symmetries as well, whether they are gauged or not. As an example, let us consider 4d

N = 4 SYM on S3. The dual gravity description [8] naturally leads to two kinds of small

black hole solutions with negative specific heat: the AdS5-Schwarzschild solution which

13See refs. [34, 35] for a recent debate regarding refs. [31, 32].
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is not localized on S5, and the ‘ten-dimensional’ black hole which is localized on S5 [9].

The latter breaks the SO(6) R-symmetry spontaneously. Possibly, this phase diagram can

be explained on the QFT side both by partial deconfinement and another closely related

mechanism. While both solutions are partially deconfined in terms of the color degrees of

freedom, the spontaneous breaking of the flavor symmetry would be due to an enhanced

excitation of one of the scalars X1, X2, · · · , X6. Such a scenario would allow us to resolve

the puzzling features of the transition pointed out in ref. [36].

In theories without center symmetry, such as QCD, it is difficult to precisely define

‘deconfinement’. In the large-N limit, the jump of the energy from order one to order N2

can serve this purpose. If one can extrapolate our argument to N = 3, the breaking and

restoration of gauge symmetry can give a good definition for deconfinement in real QCD.
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A Some technicalities associated with the gauged Gaussian matrix model

A.1 Energy and entropy

The energy can be obtained from the free energy as E = ∂(βF )
∂β . There is a subtlety at the

transition point, where |u1| can take any value between 0 and 1
2 . Hence we introduce a

small interaction, which amounts to the following modification of the free energy:

βF =
DN2β

2
+N2(1−De−β + ε2)|u1|2 + ε4N

2|u1|4 + · · · . (A.1)

Here ε2 and ε4 are functions of β, and the higher order terms represented by dots will be

negligible in the ensuing analysis. Let T = T ′c be the solution of f(β) ≡ 1−De−β + ε2 = 0,

and introduce ∆β by ∆β = β − 1
T ′
c
.

By solving the saddle point equation ∂(βF )
∂|u1| = 0, the saddle point can be written as

|u1|2 ' −
f(β)

2ε4
' −f

′(T ′−1
c )∆β

2ε4
, (A.2)
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and the free energy becomes

βF =
DN2β

2
− N2(f ′(T ′−1

c ))2

4ε4
(∆β)2. (A.3)

Therefore,

E =
DN2

2
− N2(f ′(T ′−1

c ))2

2ε4
∆β +

N2(f ′(T ′−1
c ))2ε′4

4ε24
(∆β)2

' DN2

2
− N2(f ′(T ′−1

c ))2

2ε4
∆β

' DN2

2
+ f ′(T ′−1

c ) ·N2P 2

→ DN2

2
+N2P 2. (ε2 → 0) (A.4)

Here we have assumed ε4 and ε′4 are of the same order, which is true in reasonable examples.

The final form does not depend on the detail of ε2 and ε4.

A.2 The nonzero norm of |E〉inv

In addition to |E〉inv, there is another canonical mapping between the SU(M)- and SU(N)-

invariant states, which can further be used to show that the state
∫
dUU (|E; SU(M)〉)

has non-zero norm. Such canonical extension works as follows. We start with the state

|E, SU(M)〉, which as explained above has the general form

|E, SU(M)〉 =
∑ M2−1∑

α′,β′,...=1

cIJ ···K···L···
α′β′···â†Iα′ â

†
Jβ′ · · · |0〉 . (A.5)

It is SU(M)-invariant since the adjoint indices α′, β′, · · · are all contracted. The coefficients

cIJ ···K···L···
α′β′··· is made of the Kronecker delta and the structure constant of SU(M), and

transform covariantly under SU(M). We can obtain the SU(N) generalization of these

coefficients by using the Kronecker delta and structure constant of SU(N). Equivalently,

we replace TrM×M (âI âJ · · · ) with TrN×N (âI âJ · · · ).
Now the simple extension leads to an SU(N)-invariant state14

|E′, SU(N)〉 =
∑ N2−1∑

α,β,...=1

cIJ ···K···L···
αβ···â†Iαâ

†
Jβ · · · |0〉 . (A.6)

Further notice that since the α′ and the α′′ sectors are orthogonal, the inner product

〈E′, SU(N)|E, SU(M)〉 is automatically of the form of norm square since the α′′ sector

operators in 〈E′, SU(N)|, which enters in the sum, move freely to the right and annihilate

the ground state. This means

〈E′, SU(N)|E, SU(M)〉 = 〈E, SU(M)|E, SU(M)〉 > 0 . (A.7)

14Note that this state is not an energy eigenstate in generic theories with interactions.
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With this extension we can proceed to show that the state
∫
dUU (|E; SU(M)〉) is

non-zero. For this we consider

〈E′, SU(N)|
∫
dU U (|E; SU(M)〉)

=

∫
dU
(
〈E′, SU(N)|U

)
(|E; SU(M)〉)

=

(∫
dU

)
· 〈E′, SU(N)|E; SU(M)〉

= Vol(SU(N)) · 〈E, SU(M)|E, SU(M)〉 > 0. (A.8)

This means the left hand side is non-zero, which proves that
∫
dU U (|E; SU(M)〉) cannot

vanish.

Let us also confirm the linear independence. We take the orthonormal basis of the

SU(M) theory |E, i, SU(M)〉, where i is a label which distinguishes the states when the

energy is degenerate. From this, we have two kinds of the SU(N)-extensions |E, i〉inv

and |E, i, SU(N)〉 as explained above. These two extensions have a simple one-to-one

correspondence because the inner product 〈E, i, SU(N)|E′, j〉inv is nonzero only when E =

E′ and i = j. The same relation also shows that the |E, i〉inv are linearly independent.

B Hamiltonian formulation on lattice

Let us first recall the Hamiltonian formulation of lattice gauge theory by Kogut-

Susskind [37] on 3d flat space. Three spatial directions are discretized, while time is

continuous. The Hamiltonian consists of the electric term ĤE and the magnetic term ĤM

respectively, Ĥ = ĤE + ĤM, where

ĤE =
a3

2

∑
~x

∑
µ

N2−1∑
α=1

(
Êαµ,~x

)2
(B.1)

and

ĤM = − 1

ag2
YM

∑
~x

∑
µ<ν

Tr
(
Ûµ,~xÛν,~x+µ̂Û

†
µ,~x+ν̂Û

†
ν,~x

)
. (B.2)

Here Ûµ(~x) is the unitary link variable connecting ~x and ~x+ µ̂, where µ̂ is the unit vector

along the µ-direction (µ = x, y or z), and a is the lattice spacing. The commutation

relations are given by15

[Êαµ,~x, Ûν,~y] = agYMδµνδ~x~y · ταÛν,~y,

[Êµ,~x, Êν,~y] = [Ûµ,~x, Ûν,~y] = [Ûµ,~x, Û
†
ν,~y] = 0. (B.3)

Here τα (α = 1, 2, · · · , N2−1) are generators of the SU(N) algebra which satisfy Tr(τατβ) =

δαβ ,
∑

α τ
ij
α τklα = δilδjk − δijδkl

N . The Hamiltonian described above corresponds to the

15Intuitively, Ûµ,~x ' eiagYMÂ
α
µ,~xτα with the Hermitian gauge field Âµ,~x, and [Âαµ,~x, Ê

β
ν,~y] = iδµνδ~x~yδαβ .
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At = 0 gauge. Correspondingly, the gauge singlet constraint is imposed by hand, choosing

states to be gauge-invariant. This can be achieved by acting with Wilson loops Ŵ =

Tr
(
Ûµ,~xÛν,~x+µ̂ · · · Ûρ,~x−ρ̂

)
on the vacuum. The inner product is defined by using the Haar

measure on the group manifold.

We separate Êαµ,~x into the SU(M) part Êα
′

µ,~x and the rest Êα
′′

µ,~x. Correspondingly, we

can introduce Û ′µ,~x and Û ′′µ,~x such that

Ûµ,~x = Û ′µ,~xÛ
′′
µ,~x +O(a2),

[Êα
′

µ,~x, Û
′
ν,~y] = agYMδµνδ~x~yτ

α′
Û ′ν,~y, [Êα

′

µ,~x, Û
′′
ν,~y] = 0,

[Êα
′′

µ,~x, Û
′
ν,~y] = 0, [Êα

′′

µ,~x, Û
′′
ν,~y] = agYMδµνδ~x~yτ

α′′
Û ′′ν,~y,

[τα
′′
, Û ′µ,~x] = 0, [τα

′
, Û ′′µ,~x] = 0. (B.4)

The states in the SU(M) sector |E; SU(M)〉 can be obtained by acting with the loop

consisting of Û ′ on the gauge-invariant vacuum, which in this case corresponds to the

Fock vacuum of the Kaluza-Klein modes. (As gYM becomes smaller, we can take such

states parametrically close to the energy eigenstates of the full Hamiltonian.) The SU(N)

transformation on U ′ and U ′′ can be defined in a straightforward manner, and, by using

them, also |E〉inv.

Another SU(N)-extension |E′; SU(N)〉 can be defined by replacing U ′’s in |E; SU(M)〉
with U ’s. Through it, we can derive a relation analogous to (A.7).

The Hamiltonian given above applies to flat space, including the torus compactification.

In principle, the compactification on the sphere can be achieved as follows.16 Firstly, we

make a lattice with the topology of sphere. Locally, the plaquette Ûµ,~xÛν,~x+µ̂Û
†
µ,~x+ν̂Û

†
ν,~x is

identified with eia
2gYMF̂µν , where F̂µν is the field strength. Therefore, the magnetic term

on the sphere can be obtained by

ĤM = − 1

4ag2
YM

∑
~x

∑
µ,ν,ρ,σ

√
−g(~x)gµρ(~x)gνσ(~x)

×Tr
[(

1− (Ûµ,~xÛρ,~x+µ̂Û
†
µ,~x+ρ̂Û

†
ρ,~x)
)(

1− (Ûν,~xÛσ,~x+ν̂Û
†
ν,~x+σ̂Û

†
σ,~x)
)]
. (B.5)

Here we have assumed the lattice with the topology of the sphere, and choose the metric

gµρ(~x) appropriately so that the sphere is actually realized. The electric term is

ĤE =
a3

2

∑
~x

√
−g(~x)

∑
µ

N2−1∑
α=1

(
Êαµ,~x

)2
. (B.6)

C More on the properties of partial deconfinement

In this appendix we consider the cases in which the assumptions made in section 2 can

fail. Probably the simplest example is the bosonic Yang-Mills matrix model (dimensional

16This is rarely done because the parameter fine tuning needed for achieving the desired continuum limit

is technically very difficult.
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reduction of pure Yang-Mills to (0 + 1) dimension). In this theory, the energy scale is de-

termined by the ’t Hooft coupling λ = g2
YMN , which has the dimension of (mass)3. Based

on dimensional counting, the deconfinement temperature (from confinement to partial de-

confinement) is proportional to λ1/3, and if we naively truncate the theory to SU(M), then

it changes to (g2
YMM)1/3 = λ1/3(M/N)1/3. Clearly, a naive truncation is not working.

Another basic example is three-dimensional pure Yang-Mills on the flat noncompact space.

The energy scale is set by the ’t Hooft coupling λ = g2
YMN , which has the dimension of

mass, and the deconfinement temperature scales as g2
YMM = λ× M

N . Similar complication

can arise when the coupling runs with the energy scale, such as in QCD.

In these cases, if we assume that the energy is described by the zero-point energy on

top of the M2 units of the excitations,

E = aN2 + b(T )M2, (C.1)

would be a natural relation. Note that M is a function of T . Based on the numerical

simulation on the lattice, we know that the transition takes place in a narrow temperature

range. Therefore the temperature dependence of b(T ) in the transition region can be

neglected. In that case the situation is close to the free theories studied in section 3

and section 4. The condition for the Polyakov loop phases (2.1) is expected by the same

assumption. For the bosonic matrix model, the result of the numerical simulation [38]

reproduces these relations rather precisely.
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phase transition in Yang-Mills matrix model, accepted in JHEP [arXiv:1909.04592]

[INSPIRE].

– 20 –

https://doi.org/10.1038/nature05120
https://doi.org/10.1038/nature05120
https://arxiv.org/abs/hep-lat/0611014
https://inspirehep.net/search?p=find+EPRINT+hep-lat/0611014
https://doi.org/10.1103/PhysRevLett.45.100
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,45,100%22
https://doi.org/10.1016/0550-3213(80)90051-6
https://doi.org/10.1016/0550-3213(80)90051-6
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B175,197%22
https://doi.org/10.1103/PhysRevD.100.014502
https://doi.org/10.1103/PhysRevD.100.014502
https://arxiv.org/abs/1902.03191
https://inspirehep.net/search?p=find+EPRINT+arXiv:1902.03191
https://doi.org/10.1103/PhysRevD.89.077502
https://arxiv.org/abs/1402.1887
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.1887
https://doi.org/10.1103/PhysRevD.100.094507
https://doi.org/10.1103/PhysRevD.100.094507
https://arxiv.org/abs/1906.08047
https://inspirehep.net/search?p=find+EPRINT+arXiv:1906.08047
https://arxiv.org/abs/1909.04209
https://inspirehep.net/search?p=find+EPRINT+arXiv:1909.04209
https://arxiv.org/abs/1909.06656
https://inspirehep.net/search?p=find+EPRINT+arXiv:1909.06656
https://doi.org/10.1103/PhysRevD.97.026010
https://arxiv.org/abs/1710.06455
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.06455
https://doi.org/10.1103/PhysRevD.11.395
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D11,395%22
https://arxiv.org/abs/1909.04592
https://inspirehep.net/search?p=find+EPRINT+arXiv:1909.04592

	Introduction
	Basic properties of the partially deconfined phase
	Gauged Gaussian matrix model
	Weakly coupled Yang-Mills theory on S3
	Free O(N) vector model
	`Spontaneous breaking' of gauge symmetry
	Discussions
	Some technicalities associated with the gauged Gaussian matrix model
	Energy and entropy
	The nonzero norm of Einv

	Hamiltonian formulation on lattice
	More on the properties of partial deconfinement 

