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ABSTRACT
We present the design and evaluation of Talk-and-Gaze (TaG),
a method for selecting and correcting errors with voice and
gaze. TaG uses eye gaze to overcome the inability of voice-
only systems to provide spatial information. The user’s point
of gaze is used to select an erroneous word either by dwelling
on the word for 800 ms (D-TaG) or by uttering a “select” voice
command (V-TaG). A user study with 12 participants com-
pared D-TaG, V-TaG, and a voice-only method for selecting
and correcting words. Corrections were performed more than
20% faster with D-TaG compared to the V-TaG or voice-only
methods. As well, D-TaG was observed to require 24% less
selection effort than V-TaG and 11% less selection effort than
voice-only error correction. D-TaG was well received in a
subjective assessment with 66% of users choosing it as their
preferred choice for error correction in voice-based text entry.

Author Keywords
Text Entry; Voice; Eye Tracking; Multimodal; Usability;
Interaction Design

CCS Concepts
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Pointing devices;

INTRODUCTION
Recent improvements in speech recognition systems [1, 35]
have made voice input a popular modality for digital interac-
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tion. Voice input is now widely adopted, a key factor being
the speed of input compared to typing on a keyboard [32].

For voice-based text entry, validation of the entered text is
necessary, as recognition errors are inevitable. Recognition
challenges include ambient noise (that drowns out the voice),
multiple voices speaking simultaneously, and recognition er-
rors due to homophones or diction [42, 31]. These challenges
impact not only the entry of text but also the use of voice
commands to navigate the text and correct errors.

Error correction forms a major part of the text entry process. It
involves the complex task of identifying errors, navigating to
the errors, and then applying corrective measures. Thus, voice-
based text entry that also involves validating and correcting
the formed sentences is a challenge [30]. Sears et al. [35]
suggest that 66% of the interaction time is spent in correcting
errors with only 33% of the time used in transcribing. Karat
et al. [12] note that the assumed productivity gain for speech
dictation systems depreciates when error correction is factored
in.

One challenge for voice input is the inability to naturally pro-
vide spatial information. To correct an error, the first task is to
navigate to the location of the error. But, navigation by voice
is a challenge. Strategies include target-based navigation or
direction-based navigation [7, 17, 22]. In both approaches, re-
calling and articulating the commands and applying corrective
measures slows the overall speed of text entry. To overcome
these challenges, research has investigated combining voice
input with another modality [24, 25, 26, 10, 27].

Most approaches that involve an additional modality require
physical input and this presents a challenge when the hands
are used for an activity other than typing. Some users may
lack the fine motor control required to accurately place a pen
or similar device. Thus, the need for digital inclusion has



led researchers to investigate hands-free approaches for text
entry and error correction. Gaze, a natural modality like voice,
has been well investigated for web navigation [28, 20] and
text entry and editing [13, 16, 37, 38]. Although gaze has
the potential to complement the voice as an input modality,
there is little research [29] that combines voice as the primary
modality with gaze as the secondary modality.

Research Scope
We present a novel approach called "Talk-and-Gaze" or "TaG"
that uses gaze as an additional modality for hands-free voice-
based text entry. TaG facilitates error correction in a hands-free
environment by utilizing the strengths of gaze and voice as
input modalities. The identification of words to be edited
comprises two interaction tasks: First, the spatial position in
the text is defined by the gaze. Second, the position must be
selected when the erroneous word is gazed at, but not when
the gaze is used for reading and validating the text (to avoid
the Midas-Touch problem [11]). We have implemented two
versions of Talk-and-Gaze. D-TaG uses dwell-time selection:
An erroneous word is selected if the user’s gaze dwells on the
word longer than a pre-defined time threshold. V-TaG uses
voice command selection: An erroneous word is selected if the
user utters a command to lock-in the word at the gaze location.

We address the following research questions:

RQ1: How can we naturally integrate gaze for error correc-
tions in voice-based text entry?

RQ2: How do the D-TaG and V-TaG versions of TaG com-
pare with conventional voice-based error correction?

To answer these questions, we performed a comparative evalu-
ation of D-TaG, V-TaG, and Voice-Only error correction. We
performed objective and subjective evaluations of the three
edit methods for a read and correct task. This was followed by
a subjective analysis of the image description task where users
could freely form text based on what they perceived from the
given images.

The contributions of this research are as follows:

• We present the design and implementation of TaG, two
novel gaze-augmented voice-based error correction methods
where voice and gaze work in parallel helping in selecting
and correcting errors.

• We show that D-TaG performs better for most of the eval-
uation parameters against the V-TaG and Voice-only ap-
proaches.

RELATED WORK
Voice-based approaches
While speech-to-text has improved, recognition challenges
and false transcription remain a hindrance for voice-based
text input. Suhm et al. [40] describe error correction where
the incorrect word is replaced by re-speaking it, perhaps mul-
tiple times. The drawback is that speech recognition errors
may occur repeatedly for words where correction is required.
This leads to lengthy attempts at correction which are time-
consuming and yield a poor user experience. They also sug-
gested selecting the correct word from a list, but they did not

discuss the scenario where the list does not incorporate the
desired word.

Substantial research is directed at voice-controlled naviga-
tion within a document [5, 17, 7, 22, 35, 33]. The goal is to
efficiently locate and select the desired word through naviga-
tional voice commands. Navigation methods can be classified
as continuous, direction-based, and target-based. However,
each method comes with challenges. Continuous navigation
techniques [17, 7, 22] lack the ability to fluidly and continu-
ously generate movements without repeating the command.
De Mauro et al. [7] describe the design of a voice-controlled
mouse for direction-based commands. They shortened the
commands by mapping them to simple vowels. For example,
uttering ‘A’ continuously moves the mouse cursor left. Each
vowel mapped to a command for mouse movement. Whilst this
reduces the time to say lengthy commands, users must learn
the mappings. Complexity in constructing valid direction-
based commands alongside longer navigation sequences com-
plicates the interaction. Sears et al. [35] proposed another
direction based approach for error correction using spoken
commands to navigate to the location of an erroneous word
(e.g., move up, move down, move left, move right). There
are several challenges including the length of the voice com-
mands, the non-recognition of commands by the speech en-
gine, and the subsequent inconvenience and fatigue in saying
commands multiple times. Target-based navigation is efficient
compared to direction-based navigation; however, recognition
errors when executing commands is an issue. Hands-Free-
Chrome1, a voice-controlled plugin for Google Chrome, uses
target-based navigational approach, efficiently handling the
navigation of URLs on a web page through the command
"map". The command assigns a unique integer to all the avail-
able URLs, with the user uttering the desired number after the
"map" command. While accurate in selecting the desired links,
it struggles when homonymic numbers are not understood by
the system.

Current commercial examples of voice-based text entry like
Zoho Docs2, Google Docs3, and Microsoft Office 3654 also
suffer from similar challenges and limitations.

Integration of an Additional Modality
Oviatt et al. [23, 26] tried to overcome the limitations of voice
input by combining voice with pen-based gestures. They
studied different GUI-based interfaces and reported that the
task completion time improved for a multimodal approach
compared to unimodal approach. Similar experiments by
Mantravadi [18] combined voice and gaze for menu selec-
tions and showed improved accuracy and less ambiguity with
a multimodal approach. Kumar et al. [15] combined gaze
and keyboard with "look-press-look-release" interaction for
web navigation. Sengupta et al. [36] combined voice and
gaze for hands-free usage of a Web browser and found a 70%
improvement in link selection using a multimodal approach
compared to a unimodal approach. Castellina et al. [4] also
1https://www.handsfreechrome.com
2https://www.zoho.com/docs/
3https://www.google.co.uk/docs/about/
4https://www.office.com/
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found improved performance in a hands-free multimodal envi-
ronment.

Integration of Additional Modalities for Error Correction
McNair et al. [19] combined voice and mouse for error cor-
rection by re-speaking the incorrect word or by selecting an
alternate word from a list. The latter approach has at least two
problems: The correct word may be far down the list or the
correct word may not appear in the list. Danis et al. [6] used a
similar approach where the voice was the primary modality for
text entry and the mouse was a secondary modality providing
spatial information for locating and selecting the incorrect
word. Sindhwani et al. [39] investigated error corrections in a
multimodal environment by combining gaze with traditional
keyboards.

Using Voice and Gaze for Error Correction
Beelders et al. [2] showed an approach to interacting with the
GUI of Microsoft Word through voice and gaze. Although
erroneous words were located through eye movement and
fixation, corrections were done with the help of an on-screen
keyboard where the keys were selected by a combination of
gaze input and voice commands. However, the two modalities
were not used simultaneously to achieve any intended task.

To the best of our knowledge, the sole contribution that com-
bines voice and gaze for multimodal error correction in text
entry is by Portela et al. [29]. They present a method that uses
gaze (with a 2 s dwell) both to select an erroneous word and
to select the correct word from a list of alternatives. This was
compared to a voice method where the list of alternatives was
numbered. Speaking the number selected the alternate word.
However, if the correct word was not in the list, the user had
to re-speak the word to alter the prediction list. This repeated
approach leads to frustration if the correct word is not present
or speech recognition errors persist.

PILOT STUDY: DESIGN INVESTIGATION
A popular use case for voice-based text entry is the Google
Speech API for converting speech to text on Google Docs.
This widely used system has built-in functions for error correc-
tion if the Speech API transcribes spoken words incorrectly.

We conducted a pilot study to investigate design challenges in
using voice control in Google Docs. The aim was to collect
user feedback on the advantages and disadvantages of such a
system in a hands-free condition.

Five university students (4 male, 1 female, ages 22-29) volun-
teered for the study. All had prior knowledge of speech-based
commands on hand-held devices; however, none had experi-
ence using voice in Google Docs. The study was divided into
three parts.

First, the background and motivation for the study were ex-
plained. Participants were shown how voice commands work
on Google Docs and how to correct errors. Second, each
participant was asked to fix errors in five sentences without
any additional help. Finally, participants read a passage and
corrected erroneous words. They had to remember the voice
commands and make corrections. They were then asked to

share their experience and think of voice-based commands that
are intuitive for them. This qualitative feedback was provided
to us in writing.

The participants listed the following challenges which were
taken into account when our voice-only approach was de-
signed.

1. Remembering and recalling commands.

2. Inability to select the desired word when it occurs twice
in a sentence. For example, if the sentence was He had a
big head, big teeth, a big nose, and a big attitude. and the
objective was to select the second big, the select command
inadvertently selected the last big unless the cursor was
explicitly positioned at the big in question.

3. Inability to promptly select a word that occurs multiple
times across different paragraphs.

4. Effort to navigate across multiple incorrect words in pas-
sages.

VOICE-ONLY APPROACH
To overcome the challenges found in our pilot study, we de-
signed the initial interaction for voice-only error correction
using a “map” mode (see Section 2.1). For our implementa-
tion, the command “map” assigns a unique number to each
erroneous word in a passage. The participant then utters the
number to select a word. This eliminates the need to recall
commands and allows the participant to directly select an in-
correct word. It also eliminates the challenge when a word
occurs twice in a sentence. The voice-only error correction sys-
tem then offers a list of predictions along with three additional
editing options (refer to Figure 1a, 1b):

1. Delete – delete the currently selected word.

2. Spell – substitute the currently selected word by a new word
that is spelled. This mode is introduced as re-speaking the
incorrect word often does not lead to correct recognition.

3. Case Change – toggle the case of a letter in word that has
been accidentally capitalized or needs capitalization.

The map functionality also extends to “spell” mode where
the participant performs letter-level correction for incorrect
transcriptions caused by homophones, diction, or ambient
noise. “Spell” mode gives an opportunity to spell the word in
case recognition error occurs multiple times. The workflow of
Voice-Only approach is seen in Figure 1.

PILOT STUDY II : DESIGN INVESTIGATION
Based on the feedback from the first pilot study, the same
participants were asked to use our voice-based approach and
provide feedback. The investigation occurred in three parts and
in the end participants were asked to share their experience.

Using our voice-based approach, participants noted the follow-
ing:

1. Improved and quicker navigation style – they did not need to
use long commands in comparison to the voice commands
in Google Docs



(a) Workflow of Voice-only approach using available predictions

(b) Workflow of Voice-only approach using "SPELL" mode

Figure 1: Voice-only edit method using “map” functionality.

2. Predictions helped to quicken correction

3. Advantage of not adhering to one mode of error correction -
Spell mode gives additional help.

4. Spell mode helped in distinguishing homonyms. Some
words were homonymic because of the accents of non-
native English speakers.

5. Repeated use of "map" command to select errors led to
discomfort for some users.

TAG: AUGMENT VOICE-BASED TEXT INPUT WITH GAZE
From the feedback of the second pilot study, we understood
that the map-based approach helps in minimizing navigational
commands and ambiguity of word selection. However, it
introduced an intermediate step in error correction. To reduce
this for error correction, our design, TaG, augments voice with
gaze to facilitate faster error selection followed by correction.
A common challenge of gaze-based activation is Midas Touch
[11]. This leads to incorrect triggering and eventual frustration.
For our TaG method, we have examined two approaches to
alleviate this:

1. D-TaG – Gazing and then dwelling on the incorrect word for
0.8 seconds selects the word and triggers the text predictions.
While this minimizes the number of interaction steps, the
risk of Midas Touch, or inadvertent triggering, remains.
The dwell time was the average duration participants took
between observing the incorrect transcription and calling

(a) Workflow of D-TaG approach using available predictions

(b) Workflow of D-TaG approach using “SPELL” mode

Figure 2: Dwell based D-TaG workflow depicting the
“dwelling” approach which needs no verbal commands like
“map” or “select” for selecting the erroneous word.

out the mapped number in the second pilot study. The
workflow is seen in Figure 2.

2. V-TaG – Focusing on the incorrect word and then saying
“select” to select the erroneous word. While this avoids
the Midas Touch problem, it also introduces an intermedi-
ate step in selecting the incorrect word. The workflow is
depicted in Figure 3.

The selection of the predictions in both D-TaG and V-TaG
used the voice to minimize recognition errors and the Midas
Touch challenge. Uttering just the number associated with the
correct prediction instead of the entire word also reduced the
effort and recognition errors.

EXPERIMENT

Participants
Seventeen participants were recruited. All were well versed
in English with B2 level proficiency and knew all the words
in the sentence set. Most of the participants were university
students with a background in computer science. While there
was no problem in command recognition during our pilot study
II, the recognition engine failed to understand the commands
necessary for the selection of erroneous word for five of the
participants during their training process. Non-recognition or
mis-recognition of the keywords was due to the influence of
heavy native language accent and this led to their exclusion
at the onset of the training session. Ages ranged from 22
to 37 years (µ = 28.1, σ = 4.6). Seven participants were



(a) Workflow of V-TaG approach using available predictions

(b) Workflow of V-TaG approach using "SPELL" mode

Figure 3: V-TaG workflow showing the use of “select” to
confirm the selection of an incorrect word highlighted by gaze.

male, five females. Five wore corrective devices for vision
and five had prior experience in eye-tracking experiments.
While some used voice commands on their smartphones, none
had experience in voice-based typing or gaze-based typing.
Participants were compensated 30 C for their time.

Apparatus
A Tobii EyeX5platform was used used to collect the gaze
data. The eye tracker was attached below a 24-inch adjustable
monitor. A stand-alone microphone was positioned beside the
monitor on the desktop. Participants sat on a height-adjustable
chair. See Figure 4. The experiments were conducted in an
environment with controlled ambient light and sound. The
software to evaluate the interactions was made on React Na-
tive6 which recorded the participant’s performance. Data were
stored in a .csv file for further evaluation.

Tasks
Evaluations of text entry and correction systems often employ
a copy task where the participant copies text and then fixes
errors if any occurred. Voice-based text entry evaluations
frequently follow a similar protocol. The disadvantage is that
the copying involves cognitive overhead; that is, reading then
typing; this is atypical of most real-world situations.

5https://help.tobii.com/hc/en-us/categories/
201185405-EyeX
6https://facebook.github.io/react-native/

Figure 4: Experimental setup showing the fixed display with
the eye tracker, the stand-alone microphone, and a participant
performing error corrections in "spell" mode.

Types of Error Count

Missing Letter 37
Extra Letter 11
Double Letter 17
Mistakes 25

Table 1: Types of errors in the read and correct task. (For
example: Missing - terible → terrible; Extra - hers → her;
Double - upp→ up; Mistake - want→ went)

Therefore, our strategy was to let subjects perform a read and
correct task and an image description task as described below.

Read and Correct Task. This task is motivated by situations
when users encounter text they need to proofread and correct
[39]. It allows for understanding the effort required in correct-
ing erroneous text when already present. Since we wanted to
investigate the interaction procedure, not the participants’ skill
in finding errors, the errors were underlined in red (see Figure
2, 3). Underlining the error excluded visual search time from
the interaction.

Image Description Task. Dunlop et al. [8] argue that evaluat-
ing text entry and editing requires free-form input that is not
based on established transcription/copy tasks. They note that
fixed-phrase copying provides internal consistency but lacks
representativeness in natural text entry systems. Following
their rationale, we adopted an image description task that they
suggested. This setup is close to a realistic scenario of text
creation and editing. We used the image dataset from Dunlop
et al. [8].

Procedure
Participants first signed an informed consent form. This was
followed by an explanation of the study. Then, they were
shown how the system works by the experimenter (including
the calibration procedure). After that the eye tracker was cal-

https://help.tobii.com/hc/en-us/categories/201185405-EyeX
https://help.tobii.com/hc/en-us/categories/201185405-EyeX
https://facebook.github.io/react-native/


Figure 5: Image Description Task: Participants describe the
images freely without any assistive visual marker to show
errors.

ibrated to each participant using six calibration points. This
was followed by a training block where they operated the sys-
tem themselves. Once they were comfortable with the training
process, the actual experiment started. Breaks were provided
between sessions followed by participants recalibrating the
eye tracker and continuing the test.

To offset order effects, participants were assigned in sequence
to one of 3! = 6 orders for testing the three edit methods.
After the experiment, participants completed the NASA TLX
questionnaire, an SUS questionnaire, and an additional ques-
tionnaire. Testing took approximately 60 minutes per partic-
ipant for each edit method. Participants were told that their
gaze data will be recorded for evaluation purposes. Testing for
each task included a screen recording for further analysis to
understand the ease with which selection of erroneous words
occurred.

For the read and correct task, the experiment consisted of a
training block followed by five testing blocks. Each block
included three passages, each with five errors that the user
needed to correct. The passages were taken from American
short stories7. Each passage was around 90 words which
covered 50% of the screen space. The errors were chosen
to include misspellings, incorrect letter entry, missing letters,
and toggled order of letters. Table 1 summarizes the different
types of errors and their count in the experiment.

For the image description task, there was a training block
followed by three testing blocks. Participants were provided
with three distinct images (as seen in Figure 5) for each block
and were asked to describe any two. When they were satisfied
with the transcription and corrections, they could go to the
next image on uttering "next". However, the command only
gets activated when "next" is mentioned after a pause. Each
user performed three image description tasks where each set
of images was different.

The procedure is illustrated in Figure 6.

7https://americanliterature.com/home

Figure 6: Experimental procedure for Voice-only, D-TaG and
V-Tag edit methods

Design
The experiment was a 3 × 5 within-subjects design with the
following independent variables and levels:

• Edit method (Voice-only, D-TaG, V-TaG)
• Block (1, 2, 3, 4, 5)

The dependent variables were block completion time (seconds)
and selection effort (count). Block completion time was the
time to correct all 15 errors in a block. Selection effort was a
count of the number of events to select an erroneous word: the
more selection events, the higher the assumed effort. By edit
method, the events logged were non-recognition (Voice-only),
a shift in focus or non-recognition of "select" (V-TaG), and
selection miscues (D-TaG).

In summary, the total number of trials (corrections) was : 12
(participants) × 3 (edit methods) × 5 (blocks) × 3(passages
per session) × 5 (error per passage) = 2700.

https://americanliterature.com/home


Figure 7: Block completion time (s) by edit method and block.

RESULTS
The detailed results of the Read and Correct task and Image
Description task are described in the following subsections.
Read And Correct Task
Objective Measures
Block Completion Time. The grand mean for block comple-
tion time was 265.4 seconds. By edit method, the means were
294.8 s (Voice-only), 280.6 s (V-TaG), and 220.7 s (D-TaG).
Thus, D-TaG was 21.4% faster than V-TaG and 25.1% faster
than Voice-only. There was a slight improvement with prac-
tice with means of 282.0 s in block 2 and 249.5 s in block
6. (Block 1 was for training and was excluded from the data
analysis.) See Figure 7. Using a repeated-measures ANOVA,
the differences were deemed statistically significant for edit
method (F2,22 = 11.5, p = .0004) and block (F4,44 = 2.67, p
= .0447). The Voice-only edit method had the longest block
completion time in 60% of the cases while D-TaG consistently
was the fastest of the three approaches for error correction.

Selection Effort. The effort or the number of attempts to select
an erroneous word was measured. The measure is a count per
erroneous word, with a floor value of 1, implying a word was
selected on the first attempt. To the extent selection effort was
above 1, the measure reflects additional effort or frustration
in selecting the erroneous word. As noted earlier, selecting
erroneous words has been a challenge in most research and
commercial applications for voice-based text entry.

The grand mean for selection effort was 1.32. By edit method,
the means were 1.29 (Voice-only), 1.52 (V-TaG), and 1.15 (D-
TaG). D-TaG, evidently, required 24.3% less selection effort
than V-TaG and 10.9% less selection effort than Voice-only.
There was improvement with practice with means of 1.42 in
block 2 and falling to 1.24 in block 6. See Figure 8. The
differences were statistically significant for edit method (F2,22
= 19.1, p = .0001) and block (F4,44 = 10.2, p = .0001). The
V-TaG entry method had the highest selection effort in all
blocks while D-TaG demonstrated the lowest selection effort
in all blocks. The block-6 selection effort for D-TaG was 1.14,
implying an additional selection about once for every seven
erroneous words.

Figure 8: Selection effort (count) by edit method and block.
(Selection effort is the number of attempts to select an erro-
neous word)

Subjective Feedback
A subjective feedback session was conducted to understand
how participants perceived their interaction with the three edit
methods. The goal was to understand the perceived task load
using NASA TLX questionnaire [9] and the usability of the
edit method using the System Usability Scale (SUS) [3]. We
also included a custom questionnaire asking participants to
subjectively rate the edit methods on accuracy, learnability,
speed, and comfort.

The NASA TLX task load evaluation yielded means of 30.8
(Voice-only), 31.2 (D-TaG), and 50.9 (V-TaG). Although V-
TaG had the highest score – indicating a higher task load
compared to Voice-only and D-TaG – there were substantial
differences among the participants with scores ranging from
29 to 75. A Friedman non-parametric test indicated the dif-
ferences between the three edit methods were not statistically
significant (χ2(2) = 4.67,p = .097). On interviewing partic-
ipants, they mentioned that focusing on the erroneous word
and then speaking "select" for triggering error correction was
stressful.

Participants who did D-TaG before V-TaG were observed
to wait and dwell on the error word. On asking why, most
mentioned they forgot to give the "select" command as dwell
selection was simple for them.

The System Usability Scale (SUS) evaluation was conducted
to understand the overall usability of the edit methods. The
scores were 81.0 (Voice-only), 80.2 (D-TaG), and 73.3 (V-
TaG). The scores for Voice-only and D-TaG are quite good,
placing them in the top 10% of SUS scores.8 However, the
differences were deemed not statistically significant using the
Friedman test (χ2(2)= 3.96,p= .138). Participants expressed
comfort in using D-TaG as they did not need to focus and say
a command or say "map" to select an error.

The custom questionnaire was given to understand how partic-
ipants perceived accuracy, learnability, speed, and comfort of
8https://measuringu.com/sus/

https://measuringu.com/sus/


the edit methods. Responses were on a scale from 1 to 7, with
higher scores preferred. Participants reported that the speed
and accuracy of D-TaG made the experience of error correc-
tion simpler and easier than the other edit methods. Voice-only
and D-TaG scored the same for learnability (6.6) and accuracy
(5.7). D-TaG performed better on speed (6.0 vs. 5.3 vs. 4.7)
and comfort (5.3 vs. 5 vs. 4.7). See Figure 9.

Image Description Task
A free text formation task was performed asking participants
to describe images presented before them (Figure 5). A quali-
tative evaluation was performed based on their performance.

Figure 9: Read and Correct Task – average perceived perfor-
mance on a 1-7 scale with higher scores preferred

Preference. At the end of the study, participants were asked
to rank their preferences for the three edit methods. D-TaG
emerged as the most preferred choice with 66.6% going in its
favour. This was followed by Voice-only and finally V-TaG.

Comfort. As seen in Figure 10, Voice-only tops the list in com-
fort, followed by D-TaG and V-TaG. On asking participants
the reason, they noted it was difficult to focus on an erroneous
word while giving the command for selection with V-TaG.
While all praised D-TaG, they raised issues with accidental
selection of non-erroneous words. Voice trumps the list as it
is precise even though the steps take longer.

Speed. D-TaG was perceived as the fastest edit method (see
Figure 10) with most participants expressing comfort with the
0.8 second dwell time. However, when false triggering hap-
pened, they felt uncomfortable. One participant complained
about the speed of erroneous word selection but proposed a hy-
brid approach that combined the voice and D-TaG approaches.

Accuracy. Selecting the erroneous word by gaze and confirm-
ing it by speaking "select" for the V-TaG edit method was
difficult for some participants. This led V-TaG to the lowest
perceived accuracy in comparison to the other edit methods.

While they were comfortable with the selection in D-TaG,
participants also appreciated the voice-only approach.

Usage intention. Most participants confirmed that they would
like to use D-TaG over V-TaG. However, they also mentioned
the possibility of using Voice-only in tandem with D-TaG.

Overall experience. Three participants expressed fatigue from
using the "map" command with the Voice-only edit method.
Some found it difficult to focus on the erroneous word while
giving the "select" command. None reported fatigue with D-
TaG even though some noted and did not like the Midas Touch
issue.

Figure 10: Image Description Task – perceived performance
on a 1-7 scale with higher scores preferred

DISCUSSION
Discussions of the results below focus on (i) the use of gaze
in a voice-controlled environment for improving selection and
editing of text, (ii) the convenience of selecting erroneous
words in presence of an additional modality, and (iii) use of a
fall-back option when one modality fails to perform.

Objective measurements and subjective feedback favored the
combination of voice and gaze for hands-free error correc-
tion. As observed in block completion time, D-TaG performed
better than V-TaG. This is also supported by the perceived
speed in the qualitative evaluation. One reason is the speed
of gaze input for spatial exploration in the context of user
interfaces. In this work, we also leveraged gaze in a voice-
controlled hands-free environment to select textual errors in
fewer attempts compared to other edit methods. This is seen
in selection effort where D-TaG performed better than the
V-TaG and Voice-only methods. Our approach overcomes the
limitations of recognition errors in error selection, and thus
also performed better in perceived comfort. These observa-
tions can be leveraged by designers for faster pointing and
selection of items in hands-free applications. Applications for
text entry and editing in head-mounted multimodal displays



or selection of interface elements in a multi-monitor system
are areas where our approach has potential.

The questionaire responses show that the gaze-based D-TaG
interface was considered comfortable compared to the V-TaG
interface. The possible reason is the jitter in gaze movement
while fixating on the incorrect word before uttering “select".
Selection errors sometimes occurred and this forced the partic-
ipant to repeat the selection process.

Interestingly, participants preferred the Voice-only approach
over V-TaG. This is irrespective of the fact that Voice-only
has more steps to error correction than V-TaG. This gives us
insight for a fall-back mode which designers can leverage
for a multimodal hands-free environment. Applications can
primarily take advantage of the modalities available, but in
case of eye strain or eye tracker drift, a voice-only approach is
a fall-back method to complete the error correction task.

LIMITATIONS AND FUTURE WORK
The study presented here has some limitations. (1) Phoneti-
cally similar words were often incorrectly rendered (e.g., "lit-
tle" vs. “Lidl”, "year" vs. “yeah”). Incorrect recognition
increases the time for error correction and also creates a bar-
rier for command recognition. For example, "select" was often
recognized as “Sylhet” for three participants. For future work,
this can be addressed by a self-learning approach where the
system learns from mistakes corrected. (2) We used stand-
alone eye trackers with traditional eye tracking challenges,
such as calibration and drift. Some participants reported that
they had to look slightly above or below the target word. This
can be addressed by "on-the-fly" calibration [41, 34]. (3) Vi-
sual feedback for dwelling was not provided in this experiment.
Future work would include visual feedback as used in many
gaze-based selection methods [21, 14]. (4) Participants did not
undergo extensive training. Future work could include more
training to understand how far performance may improve be-
yond that shown in this evaluation. (5) The transcription API
was not trained extensively to understand different phonetic
variations of command used in our experiment by the partici-
pants. Future work could also focus on training the API for
more robust recognition. (6) The text editing scenario only
considered single-screen text. However, our approach sup-
ports editing of text that is longer than the height of the screen.
Voice commands like “scroll up” or “scroll down” could be
used along with gaze-based scrolling. This would help in
jumping across pages to do error correction. (7) While the
study focused on character-level error correction, complex text
edits (grammatical errors, moving words or sentences) were
not investigated. Future work could evaluate using voice and
gaze for implementing such features.

This work provides directions to future applications involving
voice and gaze for developers and designers. The subjective
evaluation for the image description task was intended to un-
derstand if using voice and gaze for error correction could
extend from a testing scenario to a more realistic scenario.
A detailed evaluation of different use cases is planned for a
near-future study.

CONCLUSION
Voice-based input offers a fast, hands-free approach for text
insertion. We presented the design and evaluation of two ver-
sions of TaG (Talk-and-Gaze): D-TaG and V-TaG, two novel
gaze-augmented voice-based text entry methods. Objective
measures and subjective feedback for a read and correct task
show D-TaG performed better than a Voice-only approach
and V-TaG. Results also showed that D-TaG enables users to
complete their task in the least number of attempts, thereby
leading to lower cognitive load and higher usability scores.
Our novel approach could be extended to different styles of
text editing thereby expand the potential of voice and gaze for
text-based interactions.
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