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The hollow regions of an anti-resonant fiber (ARF) offer 
an excellent template for the deposition of functional 
materials. When the optical properties of such materials 
can be modified via external stimuli, it offers a method to 
control the transmission properties of the fiber device. In 
this letter, we show that integration of a MoS2 film into 
the ARF voids allows the fiber to act as an electro-optical 
modulator. We record a maximum modulation depth of 
3.5 dB at 744 nm, with an average insertion loss of 7.5 dB. © 2018 Optical Society of America 

http://dx.doi.org/10.1364/OL.99.099999 

Alternatives to step index fibers such as hollow core optical fiber geometries are becoming increasingly relevant to modern telecommunications systems, with recent results showing low loss on kilometer scales [1]. One such structure is the anti-resonant fiber (ARF) that is able to guide light in the air core using a variety of cladding architectures. Intriguingly, the high internal surface area presented by this waveguide geometry offers an ideal materials deposition template for strong light-matter interaction. We have previously demonstrated [1] that 300 nm thick silicon layers deposited conformally within an 8-ring tubular borosilicate cladding creates a novel composite material ARF (CM-ARF). The waveguide properties are theoretically identical to that of a single material ARF with an equivalent refractive index and core wall thickness. This suggests that only the optical path travelled by light at the core boundary is relevant for antiresonance guidance, thus opening the possibility of exploiting the active properties of materials selectively added to the basic air-silica design. This could include for example, the free carrier plasma dispersion effect, in which the change of refractive index and absorption resulting from a change in the concentration of free carriers (either photo- or electric field induced) could be used to achieve intensity or phase modulation [2]. CM-ARF designs therefore allow the otherwise 

passive photon transport properties of standard ARF air-silica waveguides to be actively managed and controlled. However, in order to minimize waveguide losses due to addition of functional materials at the core boundary, it is necessary to reduce layer thicknesses by an order of magnitude, as even the deposition of 300 nm of silicon substantially alters transmission properties [1].  Motivated by this requirement and for a more benign semiconductor deposition technology that does not require the use of toxic and highly pyrophoric precursors such as silane gas [1], we investigated the growth of 2D Transition Metal Dichalcogenide (2D TMDC) layers inside the fibers. These semiconductors are typically sub-10 nm in thickness, making them ideal materials for creating CM-ARF active devices exhibiting relatively low optical losses. Furthermore, the ability of TMDC materials to grow on amorphous substrates under benign, low temperature conditions was a major consideration in our synthesis protocol. We note that there already exist numerous examples of 2D TMDCs being used with conventional solid core optical fibers and planar devices [3,4]. Typically, the combination of these monolayers with incumbent fiber technologies exploits the imaginary component of the third order nonlinear susceptibility to create saturable absorbers in mode-locked and Q-switching lasers. However, in order to avoid the high peak powers required to induce such modulation in 2D materials, our aim is to produce optical control at power levels more compatible with datacom. To this end, we note that electrostatic gate tunable electro-absorption has recently been observed in silicon backgated TMDC planar (normal incidence, non-waveguide) device geometries. Evidence of such are reported by Yu et al. [5], or ITO backgated Hafnia/MoS2 structures fabricated by Vella et al. [6]. In this Letter, we offer an alternative method of electro-optic modulation through the use of a functionalized hollow core fiber waveguide. As shown in Fig. 1, the ARF used as the deposition template was fabricated in-house at the ORC in Southampton. It has a 50 µm core diameter and a 
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